WO2008044329A1 - Spectrophotomètre - Google Patents

Spectrophotomètre Download PDF

Info

Publication number
WO2008044329A1
WO2008044329A1 PCT/JP2007/001048 JP2007001048W WO2008044329A1 WO 2008044329 A1 WO2008044329 A1 WO 2008044329A1 JP 2007001048 W JP2007001048 W JP 2007001048W WO 2008044329 A1 WO2008044329 A1 WO 2008044329A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
liquid sample
light
window plate
spectrophotometer
Prior art date
Application number
PCT/JP2007/001048
Other languages
English (en)
French (fr)
Inventor
Yasuo Tsukuda
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to CN2007800369067A priority Critical patent/CN101523191B/zh
Priority to JP2008538562A priority patent/JP4853518B2/ja
Priority to US12/444,308 priority patent/US8049884B2/en
Priority to EP07827827.2A priority patent/EP2071317B1/en
Publication of WO2008044329A1 publication Critical patent/WO2008044329A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • G01N2021/035Supports for sample drops
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample
    • G01N2201/0668Multiple paths; optimisable path length

Definitions

  • the present invention relates to a spectrophotometer that irradiates a liquid sample with light and measures the transmitted light, and more particularly, a spectrophotometer suitable for measuring the transmission characteristics of a liquid sample that is a trace amount. About.
  • a spectrophotometer such as a general-purpose ultraviolet-visible spectrophotometer that has been widely used in the past, for example, light emitted from a light source is wavelength-dispersed by a spectroscope to extract measurement light having a specific wavelength.
  • An optical system is used that irradiates the measurement light to a sample installed in the sample chamber and detects the light that has passed through the sample.
  • sample cells, sample exchange mechanisms, and the like are installed in the sample chamber according to the purpose of analysis and the type of sample (see, for example, Patent Document 1).
  • transmission characteristics such as transmittance and absorbance of a liquid sample
  • a typical cuvette cell has an internal volume of several milliliters or more, and it is necessary to prepare a sufficient amount of liquid sample to satisfy this.
  • the sample cell for measuring a trace liquid sample described in Patent Document 2 is a capillary cell that sucks and holds a liquid sample by using a capillary phenomenon, but even in the case of such a capillary cell, there are generally several UL The amount of liquid above is necessary, It cannot cope with the analysis of a liquid sample having a smaller liquid volume. In addition, there are problems with the liquid cell such that the injection of the liquid sample into the cell is troublesome and the cleaning after the measurement takes time.
  • the upper side base portion 40 When the liquid sample is set, the upper side base portion 40 is retracted upward, for example, and the liquid sample is dropped on the upper end surface of the light receiving side optical fiber 43. Thereafter, the upper base 40 is once lowered to a height at which the lower end surface of the light emitting side optical fiber 41 almost comes into contact with the upper end surface of the light receiving side optical fiber 43 (see Fig. 9 (a)), and then the upper side. The base 40 is raised to a predetermined height. As a result, the liquid sample S between the lower end surface of the light emitting side optical fiber 4 1 and the upper end surface of the light receiving side optical fiber 43 has a drum shape whose center is constricted by the surface tension as shown in Fig. 9 (b). It will be bridged up and down.
  • the liquid sample S is connected between the light projecting side optical fiber 4 1 and the light receiving side optical fiber 4 3, and the measurement light transmitted through the light projecting side optical fiber 41 is It passes through the liquid sample S and is sent into the light receiving side optical fiber 43.
  • the optical path length in a liquid sample is set to about 1 mm, and it is said that analysis of a very small amount of liquid sample of about 1 to 21_ is possible.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-3 1 5324
  • Non-Patent Document 1 “NanoDrop ND-1000 Overview”, [online], US Nanodrop Technologies, [September 1996 25] Day search], Internet URL: http: / / www. Nanodrop. Com / nd-1000-overvi ew. Html>
  • the present invention has been made in view of the above problems, and the object of the present invention is to provide a simple and inexpensive configuration and easy measurement of transmission of a very small amount of liquid sample of about 1 to 2 L or less. It is to provide a spectrophotometer for measuring a small amount of liquid sample that can be carried out by simple operation.
  • the present invention made to solve the above-described problems includes an optical system that forms a measurement light passage in the vertical direction in a space, and a liquid sample that is inserted into the measurement light passage by the optical system.
  • a spectrophotometer for measuring the transmission characteristics of the liquid sample wherein the sample holding unit comprises:
  • a sample stage made of a material that can transmit light, and whose upper and lower surfaces are both horizontal;
  • a window made of a material capable of transmitting light and held on the sample stage so as to form an interface parallel to the upper surface with a predetermined distance on the liquid sample dropped on the upper surface of the sample stage.
  • the lower surface of the window plate is brought close to a position at a predetermined distance from the upper surface of the sample table.
  • the measurement light is irradiated from above or below to measure the light transmitted downward or upward.
  • the material constituting the sample stage and the window plate be as highly translucent as possible.
  • the liquid sample liquid It must be hard enough not to be deformed by the weight of the drop.
  • quartz glass may be used as the material.
  • a glass or plastic optical fiber can be cut into an appropriate length and used as a sample stage.
  • the window plate that sandwiches the liquid sample from above and below and the sample stage are placed in the passage of measurement light in the space, so that the measurement light moves the sample up and down (from top to bottom or vice versa).
  • the above predetermined distance becomes the optical path length of the measurement.
  • the liquid sample held in the sample holder is 1 to
  • a trace amount of about 2 UL or less is sufficient, it is suitable for analyzing a trace amount liquid sample such as a biological sample.
  • the liquid sample only needs to be dropped on the upper surface of the sample stage as a sample preparation, so the work involved in the analysis is very simple and labor-saving.
  • the parts that come into contact with the liquid sample such as the upper surface of the sample stage and the lower surface of the window plate, are flat, so that wiping and cleaning with a cleaning solution can be performed easily and are easy to dry.
  • the configuration for holding the liquid sample between the end faces of the optical fiber as described above.
  • the liquid sample does not come into contact with the main body of the measurement optical system or the like, it is difficult to damage or contaminate the expensive main body of the apparatus, and the burden of maintenance and inspection does not increase.
  • it is not necessary to move the optical system that forms the measurement light path in order to set the sample or replace the sample so the measurement optical system can be fixed and simple in structure and can be inexpensive.
  • sample replacement is easy either manually or automatically, and analysis throughput can be improved.
  • the distance between the window plate and the sample table is gradually narrowed, and the sample table and the window plate itself or those are used as the regulating member.
  • the distance can be set with high accuracy by stopping the narrowing of the distance when the member holding the contact is made.
  • the measurement optical path length is determined with high accuracy and the measurement accuracy can be improved, and the cost is reduced because the structure is simple and high positioning accuracy is not required for stopping operation of, for example, the window plate moving mechanism. It is also effective.
  • the measurement optical path length is shortened, and when the sample concentration is low and the absorbance per unit length is small, the measurement optical path length is short. Measuring accuracy can be improved by ensuring a long period of time. Therefore, in the configuration of the above aspect, if the height of the regulating member can be changed to change the predetermined distance, the measurement optical path length can be easily changed. With these changes, the measurement optical system may be exactly the same, and it is necessary to prepare multiple sample cells with different optical path lengths, such as cuvette cells. Therefore, the change in the measurement optical path length can be realized with a small increase in cost.
  • FIG. 1 is a top plan view (a) of a pedestal portion of a sample holder used in a spectrophotometer according to an embodiment of the present invention, and (b) an end view taken along line ⁇ _ ⁇ ′.
  • FIG. 2 is a schematic side view for explaining a procedure for setting a liquid sample in the sample holder shown in FIG.
  • FIG. 4 is an overall configuration diagram of the optical system of the spectrophotometer of the present embodiment.
  • FIG. 5 is a plan view of the rotating plate for changing the measurement optical path length as viewed from above.
  • FIG. 6 Top view (a) and front view (b) of another configuration for changing the measurement optical path length.
  • FIG. 7 is a control block diagram of a spectrophotometer based on the optical system shown in FIG.
  • FIG. 8 is a top plan view of the pedestal of the sample holder in the spectrophotometer of another embodiment (a
  • FIG. 9 is an explanatory diagram of a conventional method for holding a trace liquid sample.
  • FIG. 1 is a top plan view (a) of the pedestal 20 of the sample holder and an end view (b) along the line A_A ′.
  • FIG. 2 is a schematic side view for explaining the procedure for setting the liquid sample in the sample holder.
  • the thickness d 3 of the substrate 21 is 2 mm
  • the diameter d 1 of the light guide 22 is 0.8 to 1. O mm. This diameter d 1 is taken into account so that the liquid sample can maintain a granular state on its surface.
  • the measurement optical path length depends on the height d 4 of the spacer 23, as described above, for example, as shown in Fig. 3 (c), the spacer 2 3 'has a different height.
  • the measurement optical path length can be easily changed.
  • the optical path length is extended to L2.
  • the entire height can be increased by inserting another auxiliary spacer 24 on the spacer 23 as shown in Fig. 3 (b). You may make it change the length.
  • the optical path length is suitably in the range of about 0.2 to 0.7 mm.
  • the liquid sample S thus prepared is irradiated with measurement light from directly above through the translucent cover plate 25.
  • the wavelength component corresponding to the sample component in the sample S is absorbed, and the transmitted light is guided to the light guide 2 It goes out downward through 2.
  • most of the unnecessary light such as scattered light is blocked by the light-blocking substrate 21 and therefore does not exit downward.
  • the transmitted light is collected by the lens 1 2 at the detector 1 1, and after the light region is limited by the slit 1 3, the diffraction grating
  • the transmitted light is wavelength-dispersed by the diffraction grating 14, and the wavelength-dispersed light is detected almost simultaneously by a multi-channel detector 15 such as a C CD linear sensor.
  • a multi-channel detector 15 such as a C CD linear sensor.
  • the configuration of the optical system can be changed as appropriate, such as turning the diffraction grating 14 to an optical system that scans the wavelength of light incident on the detector 15.
  • a double beam configuration is also possible.
  • the detector 15 can obtain a detection signal reflecting the transmission characteristics of the liquid sample S as described above, an absorption spectrum having a predetermined wavelength range, for example, can be obtained in a signal processing unit described later. Can be created.
  • a skirt portion 27 having a conical peripheral surface is provided around a cylindrical light guide 22 protruding upward from the substrate 21.
  • the light guide 2 2 and the skirt 2 7 may be integrated or separated. This configuration makes it difficult for the waste to get caught in the corner on the upper surface of the light guide 22, ensuring smooth movement of the wiping head and attaching the waste fibers to the light guide 22. Can also be prevented.
  • the dropping of the liquid sample is performed by the operator, and is not automated. This is because collecting and dropping a very small amount of a liquid sample of about 1 L or less using a micropipette is generally difficult with an inexpensive apparatus, but of course, this may be automated.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Description

明 細 書
分光光度計
技術分野
[0001 ] 本発明は、 液体試料に光を照射してその透過光を測定する分光光度計に関 し、 さらに詳しくは、 微量である液体試料の透過特性を測定するのに好適な 分光光度計に関する。
背景技術
[0002] 従来から広く利用されている汎用的な紫外可視分光光度計等の分光光度計 では、 例えば、 光源から出射した光を分光器により波長分散させて特定の波 長を有する測定光を取り出し、 その測定光を試料室内に設置された試料に照 射して該試料を通過した光を検出する、 という光学系が利用される。 そして 、 分析目的や試料の種類などに応じて試料室内には様々な形態の試料セルや 試料交換機構などが設置されるようになっている (例えば特許文献 1など参 照) 。 例えば液体試料の透過率や吸光度などの透過特性を測定する際には、 液体試料を収容する角形状或いは円筒形状のキュベットセルを用いるのが一 般的である。 一般的なキュベットセルの内容積は数 m L以上であり、 これを 満たすために十分な量の液体試料を用意する必要がある。
[0003] 近年、 蛋白質や D N Aの定量などの生化学分野で上記のような紫外可視分 光光度計が利用されることが多くなつているが、 こうした際に分析対象とさ れる液体試料はその量が極めて少ないことが多い。 特に D N A関連の分析に おいては、 試料が貴重で且つ高価であるため、 数; U L以下の液体試料で分析 を行う必要がある場合もある。 こうした微量の液体試料を分析する目的では 上記のようなキュベットセルは使用できない。 そこで、 こうした微量な液体 試料を分光測定するために適した容器が従来より知られている。
[0004] 例えば特許文献 2などに記載の微量液体試料測定用試料セルは、 毛細管現 象を利用して液体試料を吸い上げて保持するキヤビラリセルであるが、 こう したキヤビラリセルの場合でも、 一般に数; U L以上の液量が必要であって、 これよりも少ない液量の液体試料の分析には対応できない。 また、 キヤビラ リセルではセル内への液体試料の注入が面倒であったり、 測定後の洗浄に手 間が掛かったりするという問題もある。
[0005] 一方、 1 L程度のごく微量な液体試料の分光測定を可能とした装置とし て、 米国ナノ ドロップテクノロジーズ社が販売している分光光度計 N D _ 1 0 0 0が知られている (非特許文献 1参照) 。 この分光光度計における試料 保持部の概略構成を図 9に示す。 この試料保持部では、 上部側基部 4 0によ り保持された投光側光ファイバ 4 1の下向きの端面と下部側基部 4 2により 保持された受光側光ファイバ 4 3の上向きの端面とが上下方向に対向するよ うに配置されている。 下部側基部 4 2は位置が固定であるのに対し、 上部側 基部 4 0は上下方向に移動可能である。
[0006] 液体試料をセッ卜する際には上部側基部 4 0は例えば上方に退避され、 受 光側光ファイバ 4 3の上端面上に液体試料が滴下される。 その後、 投光側光 ファイバ 4 1の下端面が受光側光ファイバ 4 3の上端面に殆ど接触する高さ まで上部側基部 4 0は一旦降下され (図 9 ( a ) 参照) 、 それから上部側基 部 4 0は所定高さまで引き上げられる。 これにより投光側光ファイバ 4 1の 下端面と受光側光ファイバ 4 3の上端面との間で液体試料 Sは、 図 9 ( b ) に示すように、 表面張力によって中央がくびれた鼓形状で上下方向に橋架さ れる。
[0007] したがって、 投光側光ファイバ 4 1 と受光側光ファイバ 4 3との間を液体 試料 Sで連結したような状態となり、 投光側光ファイバ 4 1中を送られてき た測定光は液体試料 Sを通過して受光側光ファイバ 4 3中に送り込まれる。 通常、 液体試料中の光路長は 1 m m程度に設定されており、 1〜2 1_程度 のごく微量の液体試料の分析が可能であるとされている。
[0008] しかしながら、 この分光光度計では、 投光側光ファイバ 4 1の光軸と受光 側光ファイバ 4 3の光軸とがー致しないと光量の損失が発生するため、 上部 側基部 4 0を上下動させる機構の精度ゃ両基部 4 0、 4 2の位置精度を十分 に高くする必要があり、 その分コストが高いものとなる。 また、 測光光学系 を構成する光ファイバ 4 1、 43と液体試料 Sとが直接接触するため、 前述 の如く例えば試料室内空間などの測定光経路中に試料セルを挿入するような 場合に比べて、 試料の交換が遙かに面倒で手間が掛かり、 自動的に試料を交 換しながら多数の試料の測定を行うような場合に時間が掛かる。
[0009] 特許文献 1 :特開平 5— 3 1 5324号公報
特許文献 2:特開平 5— 302893号公報
非特許文献 1 : 「ナノ ドロップ ND- 1000 オーバ一ビュー (NanoDrop ND-1000 0verview)」 、 [onl ine]、 米国ナノ ドロップ■テクノロジ一ズ社 (NanoDrop T echnologies), [平成 1 8年 9月 25日検索]、 インタ一ネットく URL : http:/ /www. nanodrop. com/nd-1000-overvi ew. html>
発明の開示
発明が解決しょうとする課題
[0010] 本発明は上記課題に鑑みて成されたものであり、 その目的とするところは 、 1〜 2 L程度或いはそれ以下のごく微量の液体試料の透過測定を簡便で 安価な構成且つ手軽な操作で以て行うことができる微量液体試料測定用の分 光光度計を提供することである。
課題を解決するための手段
[0011] 上記課題を解決するために成された本発明は、 空間内に上下方向に測定光 の通過経路を形成する光学系と、 該光学系による測定光の通過経路中に挿入 され液体試料を保持する試料保持部と、 を具備し、 前記液体試料の透過特性 を測定するための分光光度計において、 前記試料保持部は、
a)光を透過可能な材料から成り、 上面及び下面がともに水平である試料台 と、
b)光を透過可能な材料から成り、 前記試料台の上面上に滴下された液体試 料の上に該上面と所定距離を以て平行な界面を形成するように前記試料台上 に保持される窓板と、
から成り、 前記試料台の上面に液体試料を滴下した後に、 前記窓板の下面 が前記試料台の上面から所定距離となる位置まで両者を近接させて前記試料 台の上面と前記窓板の下面とに液体試料を接触させた状態でその上方向又は 下方向から測定光を照射して下方向又は上方向に透過した光を測定すること を特徴としている。
[0012] 試料台及び窓板を構成する材料はできるだけ透光性が高いものであること が望ましく、 また特に試料台はその上面に直接液体試料が滴下されることか ら、 この液体試料の液滴の重量を受けても変形しない程度の硬度を有してい る必要がある。 こうしたことから例えば石英ガラスなどを材料として用いる とよい。 具体的には、 試料台としてはガラス製又はプラスチック製の光ファ ィバを適宜の長さに切断して用いることができる。
[0013] 本発明に係る分光光度計において試料保持部に液体試料をセッ卜する際に は、 窓板を試料台上方から退避させた状態又は障害にならない程度まで両者 の間隔を離した状態で、 試料台上面にピぺット等で液体試料を微量滴下する 。 滴下された液体試料は液体の表面張力によって試料台上面上で盛り上がつ た液滴状となる。 その後、 窓板をその下面が試料台の上面から所定距離にな るまで降下させると、 窓板の下面に液滴上面が接触し、 窓板下面と試料台上 面との間の空間に液体試料が保持される。 その上面は液体試料と窓板との界 面、 下面は液体試料と試料台との界面となる。 このようにして液体試料を上 下からサンドィツチ状に挟む窓板と試料台とは空間内で測定光の通過経路中 に置かれるため、 測定光は試料を上下方向 (上から下に又はその逆) に通過 し、 上記所定距離が測定の光路長となる。
発明の効果
[0014] 本発明に係る分光光度計によれば、 試料保持部に保持する液体試料は 1〜
2 U L程度又はそれ以下のごく微量でよいから、 生体試料等の微量液体試料 の分析に好適である。 また、 試料の準備として試料台の上面に液体試料を滴 下すればよいので、 分析に関わる作業が非常に簡単で手間が掛からない。 ま た、 試料台の上面、 窓板の下面等、 液体試料が接触する部位は平面であるた め、 拭き取りや洗浄液による洗浄作業も簡単に行えるし、 乾燥もし易い。
[0015] また、 上述したような光ファイバの端面間に液体試料を保持する構成とは 異なり、 測定光学系等、 装置本体には液体試料が接触しないので、 高価な装 置本体に傷を付けたり汚したりしにくく、 保守■点検の負担が増加すること もない。 また、 試料をセットしたり試料を交換したりするために測定光経路 を形成する光学系自体を移動させずに済むので、 測定光学系は固定状態でよ く構造が簡単でコストも安価にできる。 もちろん、 投光側光ファイバと受光 側光ファイバとの光軸合わせも不要であるので、 光軸のずれによる光量の損 失のおそれもない。 さらにまた、 手作業又は自動のいずれにおいても試料交 換が容易であり、 分析のスループッ卜の向上が可能である。
[001 6] 前述のように本発明に係る分光光度計では、 試料台の上面と窓板の下面と の間の距離が測定光路長となるため、 正確な測定を行うにはその距離の設定 精度を高める必要がある。 そこで、 本発明の一態様として、 前記試料台と前 記窓板との間の空間に設置された規制部材に前記試料台及び前記窓板そのも の又はそれらをそれぞれ保持する部材が当接することで、 前記試料台上面と 前記窓板下面との間の距離が所定距離に設定される構成とするとよい。
[001 7] この構成によれば、 試料台の上面に液体試料が滴下された後に窓板と試料 台との距離を徐々に狭めていって規制部材に試料台及び窓板そのもの又はそ れらを保持する部材が当接したときにその距離の狭まりが停止するようにす ることにより、 高い精度で上記距離を設定することができる。 これにより、 測定光路長が高い精度で決まり測定の精度向上を図ることができるとともに 、 構造が簡単であって例えば窓板の移動機構などの停止動作に高い位置精度 を要しないのでコストを抑制するのにも有効である。
[0018] なお、 一般に透過測定では、 例えば試料濃度が高く単位長当たりの吸光度 が大きい場合には測定光路長を短くし、 試料濃度が低く単位長当たりの吸光 度が小さい場合には測定光路長を長く確保することで測定精度を高めること ができる。 そこで、 上記態様の構成において、 前記規制部材は前記所定距離 を変更するためにその高さが変更可能である構成とすれば、 測定光路長を容 易に変更することができる。 こうした変更に伴い測定光学系は全く同一でよ く、 キュべットセルのように光路長の異なる複数の試料セルを用意する必要 もないので、 小さなコス卜の増加で以て測定光路長の変化を実現することが できる。
図面の簡単な説明
[0019] [図 1]本発明の一実施例である分光光度計に使用される試料保持部の台座部の 上面平面図 (a) 、 及び Α_Α' 矢視線端面図 (b) 。
[図 2]図 1に示した試料保持部での液体試料のセッ卜の手順を説明するための 概略側面図。
[図 3]図 1に示した試料保持部で測定光路長を変更する場合の構成を示す概略 側面図。
[図 4]本実施例の分光光度計の光学系の全体構成図。
[図 5]測定光路長変更のための回転板を上方から見た平面図。
[図 6]測定光路長変更のための別の構成の上面図 (a) 及び正面図 (b) 。
[図 7]図 4に示した光学系をベースとした分光光度計の制御系プロック図。
[図 8]他の実施例の分光光度計における試料保持部の台座部の上面平面図 ( a
) 、 及び Α_Α' 矢視線端面図 (b) 。
[図 9]従来の微量液体試料の保持方法の説明図。
符号の説明
[0020] 1 …光照射部
2 …光源
3 …反射鏡
4 …レンズ
5 …試料室
6 …窓板ホルダ
7 …上下駆動機構
8 …台座ホルダ
9 …回転板
1 0…軸部
1 1…検出部 1 2■■•レンズ
1 3-- .スリット
1 4-- •回折格子
1 5-- 出
2 0.. •台座部
2 1■■ •基板
2 2■■ •導光体
2 3-- -スぺ一サ
2 4、 24 a〜24 d…補助スぺ
2 5-- •透光性カバー板
2 6--ゼぺット
2 7■■ •裾部
3 0.. •制御部
3 1■■ •測光部
3 2■■ •信号処理部
3 3-- •出力部
3 4-- •試料保持駆動部
3 5-- •拭き取り機構駆動部
3 6-- •操作部
発明を実施するための最良の形態
[0021] 本発明に係る分光光度計の一実施例について、 図面を参照して説明する。
まず本実施例の分光光度計に用いられる特徴的な試料保持部の構成について 説明する。 図 1は試料保持部の台座部 20の上面平面図 (a) 、 及び A_A ' 矢視線端面図 (b) である。 図 2はこの試料保持部での液体試料のセット の手順を説明するための概略側面図である。
[0022] この試料保持部は大別して、 台座部 20とその上に載せられる透光性カバ —板 (本発明における窓板) 25とから成る。 台座部 20は、 図 1に示すよ うに、 遮光性を有する材料、 例えば金属や樹脂などから成る基板 21に上下 に貫通する円形状の穴が設けられ、 その穴に透光性を有する材料から成る円 柱形状の導光体 (本発明における試料台) 2 2が揷設されてなる。 導光体 2 2の平坦な下面は基板 2 1の下面とほぼ面一にされ、 導光体 2 2の平坦な上 面は基板 2 1の上面よりも高さ d 2だけ上方に突出している。 この例では、 基板 2 1の板厚 d 3は 2 m m、 導光体 2 2の径 d 1は 0 . 8〜 1 . O m mと されている。 この径 d 1は液体試料がその表面で粒状の状態を維持できるよ うに考慮される。
[0023] また、 導光体 2 2はその上面に液体試料を直接滴下することから、 この液 滴の重量によって変形することのない或る程度の硬度を有し、 且つ高透光性 であることが望ましく、 例えば石英ガラスなどを利用することができるがプ ラスチックでもよい。 導光体 2 2として、 例えば適宜の長さに切断した光フ アイバ (光ファイバ素線) を利用するができる。 また、 透光性カバ一板 2 5 も同様に石英ガラスやプラスチックなどから成るものとすることができる。 さらにまた、 導光体 2 2の上面 (つまり接液面) 及び下面は光学研磨を施す ことにより、 光の散乱を軽減するとともに接液面での表面張力を高めるよう にすることが望ましい。 また、 導光体 2 2の上面は液体試料が広がらずに粒 状にかたまるように撥水加工処理を施すことが望ましい。
[0024] 上記構成の試料保持部に液体試料をセットする際には、 図 2 ( a ) に示す ように、 基板 2 1の上面には上記高さ d 2よりも大きな適宜の高さ d 4のス ぺ_サ (本発明における規制部材) 2 3が配置される。 そして、 透光性カバ 一板 2 5を邪魔にならない位置まで上昇させた或いは台座部 2 0の上方から 取り除いた状態で、 ピぺット 2 6などを用いて微量の液体試料 Sを導光体 2 2の上面に滴下する。 滴下された液体試料 Sは、 表面張力によって導光体 2 2の上面で粒状となる。
[0025] その上から図 2 ( b ) に示すように透光性カバ一板 2 5を被せ、 透光性力 バー板 2 5の下面がスぺ一サ 2 3の上面に当接するまで降下させる。 前述の ように、 スぺ一サ 2 3の高さ d 4は導光体 2 2の突出高さ d 2よりも大きい ため、 透光性カバ一板 2 5の下面と導光体 2 2の上面との間には d 4 - d 2 の距離の間隙が形成され、 その間隙に液体試料 Sが満たされるように保持さ れる (図 2 ( c ) 参照) 。 即ち、 液体試料 Sは透光性カバー板 2 5と導光体 2 2とでサンドィツチ状に挟まれ、 透光性カバ一板 2 5の下面が液体試料 S の上の界面、 導光体 2 2の上面が液体試料 Sの下の界面となる。 以上がこの 試料保持部における液体試料のセット方法である。
[0026] 上記のように準備された液体試料 Sの吸光度や透過率などの透過特性を測 定する際には、 液体試料 Sに上方から垂直下方に向けて測定光を照射する。 この測定光の光軸は円柱形状の導光体 2 2のほぼ中心軸に沿つて進むように 設定されており、 透光性カバー板 2 5と導光体 2 2の間に満ちた液体試料 S 中を通過した透過光が真下に抜ける。 したがって、 d 4 _ d 2の距離が液体 試料 Sの測定の光路長 L 1 となり (図 3 ( a ) 参照) 、 最初に滴下された液 体試料の量に依存せずに光路長は一義的に且つ精度良く定まる。
[0027] このように測定光路長はスぺ一サ 2 3の高さ d 4に依存するから、 例えば 図 3 ( c ) に示すようにスぺ一サ 2 3 ' を高さの相違するものに変更するこ とにより、 測定光路長を容易に変更することができる。 図 3 ( c ) の例では 、 光路長は L 2に拡大されている。 また、 スぺ一サ 2 3を交換する代わりに 、 図 3 ( b ) に示す如くスぺ一サ 2 3の上に別の補助スぺ一サ 2 4を揷入す ることで全体の高さを変更するようにしてもよい。 一般に、 測定光路長を変 更したいのは試料濃度が異なる場合であるが、 無段階に光路長を変更可能と しておく必要はなく、 たかだか数段階程度に変更可能であれば十分である。 したがって、 高さの相違するスぺ一ザに交換する方法でも、 それほど多数の スぺ—サを用意してお <必要はない。 なお、 液体試料の液量が 1〜2 Lで ある場合には、 光路長は 0 . 2〜0 . 7 m m程度の範囲が適切である。
[0028] 次に、 上記試料保持部を使用して液体試料の透過特性を測定する分光光度 計の一実施例について、 図 4、 図 5を参照して説明する。 図 4は本実施例の 分光光度計の光学系の全体構成図である。
[0029] この分光光度計では、 光照射部 1から鉛直下向きに測定光が出射され、 試 料を通過した透過光を分光検出する検出部 1 1は試料室 5を挟んで光照射部 1の下方に配置されている。 即ち、 試料室 5が設置される空間内を上から下 向きに測定光が進行する光学系となっている。 具体的には、 光照射部 1にお いて光源 2から出射された光は反射鏡 3で反射されて下向きに方向を変えレ ンズ 4により集光されて測定光として試料保持部に保持される液体試料 Sに ほぼ真上から照射される。 液体試料 Sは上述したように透光性カバー板 2 5 と導光体 2 2との間に保持されている。 台座部 2 0は台座ホルダ 8により軸 部 1 0に対しその位置が固定されており、 一方、 透光性カバ一板 2 5はカバ 一板ホルダ 6に保持され、 上下駆動機構 7により軸部 1 0に沿って上下動可 能となっている。
[0030] さらに、 軸部 1 0を中心に回動自在である円板状の回転板 9には、 周方向 に互いに離して高さの相違する複数の補助スぺ一サ 2 4が装着されている。 図 5はこの回転板 9を上方から見た平面図である。 軸部 1 0の周りに回転板 9を回動させて所望の高さの補助スぺ一サ 2 4 a〜2 4 d (但し、 補助スぺ ーサ 2 4 aは回転板 9自体の厚さのみが補助スぺーザとして機能する) を基 板 2 1の上に挿入する。 この例では台座部 2 0ではなく窓板ホルダ 6の下面 にスぺ一サ 2 3が取り付けられ、 窓板ホルダ 6が降下したときにスぺ一サ 2 3の下面が基板 2 1上面又はその間隙に挿入される補助スぺ一サ 2 4に当接 するように構成されている。
[0031 ] 透光性カバー板 2 5を上げた状態で試料保持部の導光体 2 2の上面に前述 したように分析対象である液体試料を滴下し、 その後に上下駆動機構 7によ りカバ一板ホルダ 6を下降させる。 すると、 スぺ一サ 2 3の下面が基板 2 1 上に位置している補助スぺ一サ 2 4 a〜2 4 dのいずれかに当接し、 その位 置でカバー板ホルダ 6つまりは透光性カバー板 2 5の降下が停止する。 これ により、 透光性カバー板 2 5と導光体 2 2との間に液体試料 Sが保持され、 その測定光路長も補助スぺ一サ 2 4 a〜2 4 dに応じて定まる。
[0032] こうして用意された液体試料 Sに対し、 図 4に示したように、 測定光は真 上から透光性カバー板 2 5を通して照射される。 液体試料 Sを通過する過程 で該試料 S中の試料成分に応じた波長成分が吸収を受け、 透過光が導光体 2 2を経て下方に出射する。 また、 散乱光などの不要な光の多くは遮光性を有 する基板 2 1で遮られるため、 下方に出射しない。 透過光は検出部 1 1にお いてレンズ 1 2で集光され、 スリット 1 3で光域が制限された後に回折格子
1 4に導入される。 この回折格子 1 4で透過光は波長分散され、 その波長分 散光は例えば C C Dリニアセンサ等であるマルチチャンネル型の検出器 1 5 によりほぼ同時に検出される。 もちろん、 回折格子 1 4を回動させることで 検出器 1 5に入射する光の波長が走査される光学系とする等、 光学系の構成 は適宜に変更することができる。 また、 ダブルビームの構成とすることもで さる。
[0033] 以上のようにして、 検出器 1 5では液体試料 Sの透過特性を反映した検出 信号を得ることができるから、 後述する信号処理部において例えば所定の波 長範囲の吸光スぺク トルを作成することができる。
[0034] 図 4で明らかなように、 透光性カバ一板 2 5と台座部 2 0とで構成される 試料保持部は測定光が通過する空間内 (図 4では試料室 5内) に配設されて いるため、 光照射部 1や検出部 1 1などの測定光学系に影響を与えることな く容易に入れ替えることができ、 それによつて測定対象の試料を次々に交換 することができる。 この入れ替えは台座部 2 0のみを入れ替えることもでき るし、 台座部 2 0と透光性カバ一板 2 5とを組として入れ替えることもでき る。 但し、 コンタミネ一シヨンを回避するために、 台座部 2 0のみを入れ替 え、 透光性カバー板 2 5は共通のものとする場合に、 液体試料が接触する透 光性カバー板 2 5の下面は測定の度に洗浄 (又は拭き取り) を行う必要があ るが、 いずれにしても簡単な機構を付加することにより試料の自動交換を実 現することができる。
[0035] なお、 試料濃度に応じて補助スぺーサ 2 4 a〜2 4 dは適宜に選択すれば よいが、 上述のような回動式の切替機構ではなく、 図 6に示すように厚さの 相違する補助スぺ一サ 2 4 a〜2 4 dを一直線上に配列してその配列方向に 沿って往復動可能な機構を用いても、 同様に簡単に測定光路長を変更するこ とができる。 [0036] 図 7は図 4に示した光学系をベースとする分光光度計の一実施例による制 御系ブロック図である。 この分光光度計では、 試料の測定を効率良く行うた めに試料の滴下以外の各種作業が自動的に行われるように構成されている。 マイクロコンピュータ等を含む制御部 3 0は、 導光性カバー板 2 2を上下動 させる上下動駆動機構 7に含まれるモータなどを駆動する試料保持駆動部 3
4、 導光性カバ一板 2 5の下面及び導光体 2 2の上面に付着している測定済 みの液体試料を拭き取るための機構を駆動するための拭き取り機構駆動部 3
5、 上記光照射部 1や検出部 1 1などを含む測光部 3 1、 を予め設定された シーケンスに従って制御する。 また制御部 3 0に接続された操作部 3 6は分 析開始や一時中止等の指示を与えるものである。 測光部 3 1で得られた検出 信号は信号処理部 3 2で処理されて吸光スぺク トルなどが作成され、 その結 果が出力部 3 3より出力される。
[0037] 本装置は、 測定待ち (スタンドバイ) 状態では、 透光性カバー板 2 5が上 昇した状態にある。 この状態で分析担当者はマイクロピぺットにより微量の 液体試料を導光体 2 2の上面に滴下し、 操作部 3 6より測定開始を指示する 。 すると、 この指示を受けた制御部 3 0は、 試料保持駆動部 3 4により透光 性カバ一板 2 5を所定高さまで降下させる、 これにより、 上述したように導 光体 2 2と透光性カバー板 2 5との間に液体試料が保持される。 次に、 制御 部 3 0は測光部 3 1に指示を与え、 液体試料に測定光を照射し、 その透過光 の強度を測定する。 この測定時の波長範囲や波長ステップなどは予め設定し た測定条件に則って決められる。 そして測定が終了すると、 試料保持駆動部 3 4により透光性カバー板 2 5が所定高さまで上昇される。 その後、 拭き取 り機構駆動部 3 5によりウェスが装着された拭き取り用へッドが移動され、 導光体 2 2の上面及び透光性カバー板 2 5の下面に付着している液体試料が 除去される。 その後、 拭き取り用へッドは導光体 2 2と透光性カバー板 2 5 との間から退避され、 さらに試料保持駆動部 3 4により透光性カバー板 2 5 が最大高さまで上昇された状態でスタンドバイ状態に移行し、 次の測定の指 示を待つ。 なお、 拭き取り機構については、 本出願人が特願 2 0 0 7— 2 0 1 8 7 6号などで提案している機構を用いることができる。
[0038] 上述したように導光体 2 2の上面に残った液体試料を拭き取るために、 紙 タオルなどから成るウェスをほぼ水平に移動させながら導光体 2 2の上面に 接触させる場合、 試料保持部が図 1に示した構成であると、 導光体 2 2の上 面の略 9 0 ° のコーナ一にウェスが引掛かり易く、 ウェスのスムーズな移動 に支障をきたしたり、 ウェスの繊維が残ったりすることがあり得る。 そこで 、 特に、 液体試料の拭き取りの容易性を考慮した場合に、 試料保持部の構造 を図 8に示すように変形するとよい。 図 8において図 1に記載の構成要素と 同一のものには同一の符号を付している。 この変形例の構成では、 基板 2 1 から上方に突出した円柱状の導光体 2 2の周囲に周面が円錐状の裾部 2 7を 設けている。 導光体 2 2と裾部 2 7とは一体でも別体でもよい。 この構成に より、 導光体 2 2の上面のコーナ一にウェスが引掛かりにくくなるので、 拭 き取りへッドのスムーズな移動が確保され、 ウェスの繊維が導光体 2 2に付 着することも防止できる。
[0039] また、 上記説明では液体試料の滴下は作業者が行うようにしており、 自動 化されていない。 これは、 一般にマイクロピぺットを用いた 1 L程度以下 のごく微量の液体試料の採取及び滴下は安価な装置では難しいためであるが 、 もちろん、 これも自動化しても構わない。
[0040] なお、 上記実施例は本発明の一例にすぎず、 本発明の趣旨の範囲で適宜変 形、 修正、 追加等を行っても本願請求の範囲に包含されることは当然である

Claims

請求の範囲
[1 ] 空間内に上下方向に測定光の通過経路を形成する光学系と、 該光学系によ る測定光の通過経路中に挿入され液体試料を保持する試料保持部と、 を具備 し、 前記液体試料の透過特性を測定するための分光光度計において、 前記試 料保持部は、
a)光を透過可能な材料から成り、 上面及び下面がともに水平である試料台 と、
b)光を透過可能な材料から成り、 前記試料台の上面上に滴下された液体試 料の上に該上面と所定距離を以て平行な界面を形成するように前記試料台上 に保持される窓板と、
から成り、 前記試料台の上面に液体試料を滴下した後に、 前記窓板の下面 が前記試料台の上面から所定距離となる位置まで両者を近接させて前記試料 台の上面と前記窓板の下面とに液体試料を接触させた状態でその上方向又は 下方向から測定光を照射して下方向又は上方向に透過した光を測定すること を特徴とする分光光度計。
[2] 請求項 1に記載の分光光度計において、 前記試料台と前記窓板との間の空 間に設置された規制部材に前記試料台及び前記窓板そのもの、 又はそれらを それぞれ保持する部材が当接することで、 前記試料台上面と前記窓板下面と の間の距離が所定距離に設定されることを特徴とする分光光度計。
[3] 請求項 2に記載の分光光度計において、 前記規制部材は前記所定距離を変 更するためにその高さが変更可能であることを特徴とする分光光度計。
[4] 請求項 1又は 2に記載の分光光度計において、 前記窓板の下面と前記試料 台の上面との間の距離が変化するように少なくともいずれか一方を上下方向 に移動させる移動手段と、 前記試料台の上面と前記窓板の下面とに液体試料 を接触させた状態でその上方向又は下方向から測定光を照射して下方向又は 上方向に透過した光を測定する測光手段と、 をさらに備えることを特徴とす る分光光度計。
[5] 請求項 4に記載の分光光度計において、 前記移動手段により前記窓板の下 面と前記試料台の上面との距離が所定距離になるように少なくとも一方を移 動させ、 前記試料台の上面と前記窓板の下面とに液体試料が接触した状態で 、 前記測光手段により、 その上方向又は下方向から測定光を照射して下方向 又は上方向に透過した光を測定するように、 それら各手段の動作を制御する 制御手段をさらに備えることを特徴とする分光光度計。
PCT/JP2007/001048 2006-10-06 2007-09-27 Spectrophotomètre WO2008044329A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800369067A CN101523191B (zh) 2006-10-06 2007-09-27 分光光度计
JP2008538562A JP4853518B2 (ja) 2006-10-06 2007-09-27 分光光度計
US12/444,308 US8049884B2 (en) 2006-10-06 2007-09-27 Spectrophotometer
EP07827827.2A EP2071317B1 (en) 2006-10-06 2007-09-27 Spectrophotometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-274693 2006-10-06
JP2006274693 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008044329A1 true WO2008044329A1 (fr) 2008-04-17

Family

ID=39282541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001048 WO2008044329A1 (fr) 2006-10-06 2007-09-27 Spectrophotomètre

Country Status (5)

Country Link
US (1) US8049884B2 (ja)
EP (1) EP2071317B1 (ja)
JP (1) JP4853518B2 (ja)
CN (1) CN101523191B (ja)
WO (1) WO2008044329A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504769A (ja) * 2008-10-03 2012-02-23 ナノドロップ テクノロジーズ リミテッド ライアビリティ カンパニー 最適な吸光度測定のための光路長センサ及び方法
JP2012504767A (ja) * 2008-10-03 2012-02-23 ナノドロップ テクノロジーズ リミテッド ライアビリティ カンパニー デュアルサンプルモードの分光光度計
JP2012519839A (ja) * 2009-03-04 2012-08-30 マルベルン インスツルメンツ リミテッド 粒子特性の測定
WO2014137123A1 (ko) * 2013-03-06 2014-09-12 주식회사 메카시스 시료 분석을 위한 광경로 자동조절 방법 및 이를 포함하는 시료 분석 방법과 그 장치.
JP2015522177A (ja) * 2012-07-09 2015-08-03 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー 分光測定用電動光路長可変セル
CN105244396A (zh) * 2014-07-10 2016-01-13 光红建圣股份有限公司 光电微型模块及其制造方法
KR20160068346A (ko) * 2014-12-05 2016-06-15 한국표준과학연구원 흡광도를 이용한 액체시료 분석장치 및 그 방법
JP2018501476A (ja) * 2014-12-02 2018-01-18 メトラー−トレド ゲーエムベーハー 圧力を受ける所定量のサンプルの光吸収測定を実施するための装置および方法
JP2022507100A (ja) * 2018-11-08 2022-01-18 ロジェリオ バプティスタ アウアド 流体の分析装置および方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2486435A (en) * 2010-12-14 2012-06-20 Morteza Bahrami Liquid sample receiving apparatus
US9341515B2 (en) * 2011-02-11 2016-05-17 University Of Central Florida Research Foundation, Inc. Optical absorbance measurement apparatus, method, and applications
EP2697624B1 (en) * 2011-04-13 2017-05-31 McMillan, Norman An optical instrument
US9279746B2 (en) * 2012-02-16 2016-03-08 Endress+ Hauser Conducta Inc. Inline optical sensor with modular flowcell
US20130293887A1 (en) * 2012-05-03 2013-11-07 Jasco Corporation Solution Sample Holding Method, Sample Cell, And Circular Dichroism Measuring Apparatus
GB2531293A (en) 2014-10-14 2016-04-20 Stephen Smith Determining an absorption coefficient of a liquid
JP6659713B2 (ja) * 2014-11-13 2020-03-04 マーケット ユニバーシティー 分光蛍光光度計のセルホルダー用のアダプター
DE102015117063B4 (de) * 2015-10-07 2018-11-15 Pyreos Ltd. Absorptionsspektrometer
CN109313017B (zh) 2015-12-18 2020-11-13 雅培实验室 组织学染色剂的光谱区分
KR20190019051A (ko) * 2016-04-08 2019-02-26 베리파이 리미티드 분광 광도법용 샘플 용기
US10393643B2 (en) * 2016-09-07 2019-08-27 Rochester Institute Of Technology Optical vortex coronagraph scatterometer
JP6786039B2 (ja) * 2017-03-03 2020-11-18 国立大学法人 熊本大学 光学測定システム、光学セル及び光学測定方法
JP7064217B2 (ja) 2018-08-31 2022-05-10 株式会社島津製作所 分析装置、分析方法、微量液体採取装置、および微量液体採取方法
DE102019201440A1 (de) * 2019-02-05 2020-08-06 Implen GmbH Vorrichtung für eine lichtspektroskopische Analyse
CN112304878A (zh) * 2019-07-30 2021-02-02 杭州米欧仪器有限公司 分光光度计光纤头组件、光度计及测量溶液浓度的方法
CN110487764B (zh) * 2019-08-30 2024-06-21 天津陆海石油设备***工程有限责任公司 定量荧光分析仪的手自动进样方式切换装置
KR102245238B1 (ko) * 2019-10-29 2021-04-28 (주)마이크로디지탈 흡광 분석 장치
US11733156B2 (en) 2021-02-23 2023-08-22 Joseph R. Demers Semiconductor package for free-space coupling of radiation and method
US11680897B2 (en) * 2021-02-23 2023-06-20 Joseph R. Demers Multi-pass spectroscopy apparatus, associated sample holder and methods
JP2024049239A (ja) * 2022-09-28 2024-04-09 横河電機株式会社 光学装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927485U (ja) * 1972-06-09 1974-03-08
JPH0552749A (ja) * 1991-08-28 1993-03-02 Juki Corp 液体試料の透過光量測定方法及びその装置
JPH05302893A (ja) 1992-02-29 1993-11-16 Shimadzu Corp 微量液体試料の分光特性測定装置
JPH05315324A (ja) 1992-05-12 1993-11-26 Oki Electric Ind Co Ltd 半導体素子の製造方法
JPH11148896A (ja) * 1997-11-14 1999-06-02 Toppan Printing Co Ltd 液体の光学特性測定用セルおよびその作製方法
JP2006023088A (ja) * 2004-07-06 2006-01-26 Toppan Printing Co Ltd 液体測色装置および液体測色方法
JP2007201876A (ja) 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd カメラ装置及びネットワークカメラ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927485A (ja) * 1972-07-10 1974-03-11
JPS6184565A (ja) * 1984-10-02 1986-04-30 Nec Corp 電界強度検知方法
JPS6184565U (ja) * 1984-11-06 1986-06-04
US5039487A (en) * 1987-12-22 1991-08-13 Board Of Regents, The University Of Texas System Methods for quantifying components in liquid samples
US5793976A (en) * 1996-04-01 1998-08-11 Gte Laboratories Incorporated Method and apparatus for performance monitoring in electronic communications networks
US5948685A (en) * 1998-02-10 1999-09-07 Angros; Lee Analytic plate with containment border and method of use
EP1210579B1 (en) * 1999-08-20 2008-06-04 NanoDrop Technologies, LLC Liquid photometer using surface tension to contain sample
EP1265124B1 (de) * 2001-06-07 2004-05-19 Siemens Aktiengesellschaft Verfahren zum Übermitteln von Zeitinformation über ein Datenpaketnetz
JP3979157B2 (ja) * 2002-04-16 2007-09-19 凸版印刷株式会社 液体の光学特性測定方法
US7257087B2 (en) * 2002-10-04 2007-08-14 Agilent Technologies, Inc. System and method to calculate round trip delay for real time protocol packet streams
CN2625888Y (zh) * 2003-07-23 2004-07-14 路建乡 一种检测液体透明度的光纤探头
US7375815B2 (en) * 2004-10-12 2008-05-20 Agilent Technologies, Inc. Optical devices, systems and method for producing a collimated light path
US7365852B2 (en) * 2004-11-24 2008-04-29 Agilent Technologies, Inc. Methods and systems for selecting pathlength in absorbance measurements
GB2421141A (en) * 2004-12-08 2006-06-14 Zarlink Semiconductor Ltd Adaptive clock recovery scheme
JP4645739B2 (ja) * 2006-04-03 2011-03-09 株式会社島津製作所 微量液体試料用光学測定装置
JP4877137B2 (ja) 2007-08-02 2012-02-15 株式会社島津製作所 光学測定装置用拭き取り機構

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927485U (ja) * 1972-06-09 1974-03-08
JPH0552749A (ja) * 1991-08-28 1993-03-02 Juki Corp 液体試料の透過光量測定方法及びその装置
JPH05302893A (ja) 1992-02-29 1993-11-16 Shimadzu Corp 微量液体試料の分光特性測定装置
JPH05315324A (ja) 1992-05-12 1993-11-26 Oki Electric Ind Co Ltd 半導体素子の製造方法
JPH11148896A (ja) * 1997-11-14 1999-06-02 Toppan Printing Co Ltd 液体の光学特性測定用セルおよびその作製方法
JP2006023088A (ja) * 2004-07-06 2006-01-26 Toppan Printing Co Ltd 液体測色装置および液体測色方法
JP2007201876A (ja) 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd カメラ装置及びネットワークカメラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2071317A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504767A (ja) * 2008-10-03 2012-02-23 ナノドロップ テクノロジーズ リミテッド ライアビリティ カンパニー デュアルサンプルモードの分光光度計
JP2012504769A (ja) * 2008-10-03 2012-02-23 ナノドロップ テクノロジーズ リミテッド ライアビリティ カンパニー 最適な吸光度測定のための光路長センサ及び方法
JP2012519839A (ja) * 2009-03-04 2012-08-30 マルベルン インスツルメンツ リミテッド 粒子特性の測定
JP2014186039A (ja) * 2009-03-04 2014-10-02 Malvern Instruments Ltd 粒子特性の測定
JP2015522177A (ja) * 2012-07-09 2015-08-03 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー 分光測定用電動光路長可変セル
US9952138B2 (en) 2012-07-09 2018-04-24 Thermo Electron Scientific Instruments Llc Motorized variable path length cell for spectroscopy
WO2014137123A1 (ko) * 2013-03-06 2014-09-12 주식회사 메카시스 시료 분석을 위한 광경로 자동조절 방법 및 이를 포함하는 시료 분석 방법과 그 장치.
KR101472504B1 (ko) * 2013-03-06 2014-12-15 주식회사 메카시스 시료 분석을 위한 광경로 자동조절 방법 및 이를 포함하는 시료 분석 방법과 그 장치.
CN105244396A (zh) * 2014-07-10 2016-01-13 光红建圣股份有限公司 光电微型模块及其制造方法
CN105244396B (zh) * 2014-07-10 2017-09-26 光红建圣股份有限公司 光电微型模块及其制造方法
JP2018501476A (ja) * 2014-12-02 2018-01-18 メトラー−トレド ゲーエムベーハー 圧力を受ける所定量のサンプルの光吸収測定を実施するための装置および方法
KR20160068346A (ko) * 2014-12-05 2016-06-15 한국표준과학연구원 흡광도를 이용한 액체시료 분석장치 및 그 방법
KR101645168B1 (ko) * 2014-12-05 2016-08-03 한국표준과학연구원 흡광도를 이용한 액체시료 분석장치 및 그 방법
JP2022507100A (ja) * 2018-11-08 2022-01-18 ロジェリオ バプティスタ アウアド 流体の分析装置および方法
JP7388801B2 (ja) 2018-11-08 2023-11-29 ロジェリオ バプティスタ アウアド 流体の分析装置および方法

Also Published As

Publication number Publication date
US8049884B2 (en) 2011-11-01
EP2071317A4 (en) 2014-05-14
US20100045980A1 (en) 2010-02-25
JP4853518B2 (ja) 2012-01-11
EP2071317A1 (en) 2009-06-17
CN101523191B (zh) 2012-06-06
EP2071317B1 (en) 2020-05-20
JPWO2008044329A1 (ja) 2010-02-04
CN101523191A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4853518B2 (ja) 分光光度計
EP2948756B1 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
US7576855B2 (en) Spectrophotometric method and apparatus
JP5568070B2 (ja) マイクロキュベットアセンブリ及びその利用方法
US9488579B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
EP0408181A2 (en) An adaptor for holding a micropipette
EP2030000B1 (en) Analytical apparatus
JP4645739B2 (ja) 微量液体試料用光学測定装置
US10092899B2 (en) Pipette tip system, device and method of use
US9488576B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JPS61204546A (ja) 流動物質分析用光度計
RU2442973C2 (ru) Иммунотурбидиметрический планшетный анализатор
CN219122022U (zh) 测量微量分光光度计的光路长度的设备及微量分光光度计
JP2007127449A (ja) 測定容器
JP2007170984A (ja) 試料セル及び該試料セルを用いた分光光度計
EP2786119B1 (en) Device for receiving small volume liquid samples

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036906.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07827827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538562

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007827827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12444308

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE