WO2008041749A1 - Epoxy resin, phenol resin, their production methods, epoxy resin composition and cured product - Google Patents

Epoxy resin, phenol resin, their production methods, epoxy resin composition and cured product Download PDF

Info

Publication number
WO2008041749A1
WO2008041749A1 PCT/JP2007/069482 JP2007069482W WO2008041749A1 WO 2008041749 A1 WO2008041749 A1 WO 2008041749A1 JP 2007069482 W JP2007069482 W JP 2007069482W WO 2008041749 A1 WO2008041749 A1 WO 2008041749A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
general formula
resin
represented
phenol
Prior art date
Application number
PCT/JP2007/069482
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Nakahara
Masasi Kaji
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to CN200780036932XA priority Critical patent/CN101522739B/en
Priority to KR1020097008024A priority patent/KR101423170B1/en
Priority to JP2008537550A priority patent/JP5515058B2/en
Publication of WO2008041749A1 publication Critical patent/WO2008041749A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/30Chemically modified polycondensates by unsaturated compounds, e.g. terpenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/302Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention is an epoxy resin that gives a cured product that is excellent in low viscosity and also excellent in moisture resistance, heat resistance, flame retardancy, etc., a phenol resin suitable as an intermediate thereof, a method for producing them,
  • the present invention relates to an epoxy resin composition using an epoxy resin and a cured product thereof, and is suitably used for insulating materials in the electrical and electronic fields such as semiconductor encapsulation and printed wiring boards.
  • epoxy resin having low moisture absorption, high heat resistance and low viscosity is desired.
  • low-viscosity epoxy resins bisphenol A type epoxy resin, bisphenol F type epoxy resin, etc. are generally widely used.
  • those epoxy resins having low viscosity are liquid at normal temperature and are used for transfer molding. It is difficult to obtain a resin composition.
  • these epoxy resins are not sufficient in terms of heat resistance, mechanical strength and moisture resistance.
  • biphenyl epoxy resins are excellent in low hygroscopicity and high heat resistance.
  • JP-A-58-39677 and bisphenol-based epoxy resins JP-A-6-345850 have been proposed, but are not sufficient in terms of adhesion to metal substrates. Also close contact From the viewpoint of improving the properties, an epoxy resin having a sulfur structure containing a sulfur atom (Japanese Patent Laid-Open No. 6-145300) has been proposed. The heat resistance is not sufficient. Also, conventionally known epoxy resins having a sulfone structure are high! /, although they have heat resistance, they have high water absorption and sufficient adhesion! /.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 58-39677
  • Patent Document 2 JP-A-6-345850
  • Patent Document 3 JP-A-6-145300
  • the object of the present invention is suitably used for encapsulating electronic components of semiconductor elements that give a cured product excellent in fluidity, high filler filling property, moisture resistance, heat resistance, flame retardancy, and the like. It is to provide an epoxy resin and a composition thereof.
  • the present invention relates to an epoxy resin represented by the following general formula (3).
  • R R independently represents a hydrogen atom or a substituent represented by the following formula (a) or (b):
  • X is a single bond, —CH 2 —CH 2 (CH 2)
  • the present invention also relates to a phenol resin represented by the following general formula (1).
  • the present invention relates to a method for producing a phenol resin having a substituent represented by the above formula (a) or (b).
  • the present invention is characterized in that the phenol resin represented by the above general formula (1) or the phenol resin obtained by the above method for producing a phenol resin is reacted with epichlorohydrin. This is a method for producing an epoxy resin.
  • the present invention also relates to an epoxy resin obtained by the method for producing the epoxy resin.
  • the present invention is an epoxy resin composition
  • an epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin composition is blended with the epoxy resin as an epoxy resin component, and the epoxy resin composition is cured. It relates to the cured product obtained.
  • the epoxy resin of the present invention is represented by the general formula (3). Where R to R are hydrogen atoms
  • R to R are represented by the general formula (a).
  • R to R may be a hydrogen atom which may be a hydrogen atom and a substituent represented by the formula (a).
  • the substituent represented by the formula (a) or the substituent represented by the formula (b) may be composed of the substituent represented by the formula ⁇ and the formula (b). You can just make it! /
  • X is a single bond, — CH— — CH (CH) — — C (CH) — — CO— — O—
  • a linking group selected from S and SO- is shown. Single bond from the viewpoint of low viscosity
  • n represents a number of 0 50, and a preferable value of n varies depending on an application to be applied. For example, for semiconductor encapsulant applications that require a high filling factor of the filler, a low viscosity is desired.
  • the value of n is 0.5, preferably 0.12, and more preferably n. Those with 0 are those that contain more than 50wt%.
  • n means an average value (number average). In this case, more preferably n-force SO.
  • high molecular weight epoxy resins are preferably used.
  • the value of n is 250, preferably 240.
  • the above range is good as the average value n. In this case, if the average value is 50 or less, a molecule in which n is an integer of 50 or more may be included.
  • the epoxy resin of the present invention reacts, for example, with an aromatic olefin selected from indene or acenaphthylene (hereinafter sometimes simply referred to as aromatic olefin) to the bisphenol compound represented by the general formula (2).
  • aromatic olefin selected from indene or acenaphthylene
  • the resulting phenol resin is obtained as an intermediate and can be produced by a method such as reacting this phenol resin with epichlorohydrin.
  • Indene and wasennaphthylene are one of the aromatic olefins and can be replaced by the benzene ring of the bisphenol compound represented by the general formula (2) by the Friedel-Crafts reaction.
  • the benzene ring is substituted as a substituent represented by the formula (a) or (b) (hereinafter sometimes simply referred to as a substituent). Note that up to two of these substituents can be substituted on one benzene ring due to steric hindrance.
  • the substituent represented by formula (a) is a structure in which one hydrogen atom is removed from indene
  • the substituent represented by formula (b) is a structure in which one hydrogen atom is removed from acenaphthylene, It can be said to be a group derived from indene or acenaphthylene, respectively.
  • R and X correspond to RR and X in general formula (3). Therefore, preferred RR And X are the same as RR and X in general formula (3).
  • X is a single bond, —CH 2 —CH 2 (CH 2) —C (CH 2) —CO
  • linking group X 4, 4 'first, 3, 4'-position, 3, 3' first, 2, 4'- 2, 3 'first 2, 2' first There is.
  • These may be compounds consisting of a single isomer or a mixture of these isomers! /, But the steric hindrance of the above formula (a) or (b) is great! Therefore, from the viewpoint of reactivity when an epoxy resin is used, those containing a 2,4 ′ body or a 2,2 ′ body are preferred. In this case, the total amount of the 2,4 ′ body and 2,2 ′ body should be 30 mol% or more, preferably 50 mol% or more of the whole. The same applies to X in the general formulas (1) and (3).
  • the phenol resin of the present invention comprises an aromatic olefin selected from indene or acenaphthylene as the bisphenol compound represented by the general formula (2), and 14 mol of aromatic olefin relative to 1 mol of the bisphenol compound. It can be obtained by reacting.
  • aromatic olefin selected from indene or acenaphthylene is added to the bisphenol compound represented by the general formula (2), and aromatic olefin is added to 1 mol of the bisphenol compound.
  • This is a method in which the above substituent is substituted with a benzene ring by reacting with 24 moles.
  • the reaction amount of the aromatic olefin with respect to 1 mol of the bisphenol compound is in the range of 0.24.0 mol, preferably 0.54.0. It is in the range of mono, more preferably 1.0-3.0 mono. If it is less than this, the effect of improving the moisture resistance and flame retardancy when using epoxy resin will not be sufficiently exhibited. On the other hand, if it exceeds the above range, the viscosity becomes high and the high filling property and moldability of the filler are lowered.
  • the amount used as a reaction raw material when reacting a bisphenol compound with an aromatic olefin is almost the same as the target number of substituted moles (number of moles of substituents per mole of bisphenol compound). Based on this, the usage amount may be determined. It is also possible to adopt reaction conditions in which any of the raw materials remain unreacted, but in this case as well, the amount of aromatic olefin used per mole of bisphenol compound should be in the range of 0.2 6.0 mol. That power S is good. If any raw material remains unreacted, it is desirable to separate it
  • the aromatic olefin used for the reaction with the bisphenol compound is indene, isenaphthylene, or a mixture thereof. From the viewpoint of low viscosity, those containing indene as the main component are preferable. From the viewpoint of flame retardancy, those containing asanaphthylene as the main component are preferable.
  • the aromatic olefin used in the reaction contains, as other reactive components, an unsaturated bond-containing component such as styrene, ⁇ -methylolstyrene, divininolebenzene, coumarone, benzothiophene, indanol and vinylinonaphthalene.
  • an unsaturated bond-containing component such as styrene, ⁇ -methylolstyrene, divininolebenzene, coumarone, benzothiophene, indanol and vinylinonaphthalene.
  • the indene and acenaphthylene content in all the reaction components is 50 wt% or more, preferably 70 wt% or more. If it is less than this, the effect of improving heat resistance and flame retardancy is small.
  • aromatic olefins may contain non-reactive compounds such as toluene, dimethylbenzene, trimethylbenzene, indane, naphthalene, methylnaphthalene, dimethylnaphthalene, and acenaphthene. From the viewpoint of improving characteristics such as heat resistance and flame retardancy, these non-reactive compounds should be excluded from the system. Preferably, the total amount is 5 wt% or less, more preferably 2 wt% or less.
  • a removal method generally, a method such as vacuum distillation is applied.
  • the aromatic olefin used in the reaction contains, as another reactive component, an unsaturated bond-containing component such as styrene, ⁇ -methylenstyrene, divininolebenzene, coumarone, benzothiophene, indanol or vinino naphthalene,
  • the resulting phenolic resin will include compounds in which the groups resulting from these are substituted on the benzene ring.
  • the phenol resin obtained by the method for producing a phenol resin of the present invention may include a phenol resin having such a substituent.
  • the epoxy resin obtained by the method for producing an epoxy resin of the present invention may contain an epoxy resin having such a substituent.
  • a reaction method using a known freedelcraft catalyst such as an acid catalyst can be employed.
  • a phenol resin in which the above substituent is substituted on the benzene ring of the bisphenol compound is obtained.
  • This phenol resin is usually a mixture having different numbers of substituents and different substitution positions, but it should have an average of 0.4 to 4, preferably 1 to 4 substituents.
  • phenol resin can also be purified or isolated as a target product.
  • the method for producing the epoxy resin of the present invention is the phenol resin represented by the general formula (1) or the phenol resin obtained by the method for producing the phenol resin (hereinafter, when it is not necessary to distinguish between the two). (Also simply referred to as phenolic resin) and epichlorohydrin.
  • the reaction between phenolic resin and epichlorohydrin is 0.80-1.20 times the hydroxyl group in the phenolic resin! : Preferably (O. 85-1.05 times equivalent !: Hydroxyl hydroxide HJ cumum, alkali metal hydroxide such as potassium hydroxide, etc. If less than this, the remaining hydrolyzable chlorine
  • the metal hydroxide is used in the form of an aqueous solution, an alcohol solution or a solid.
  • an excessive amount of epichlorohydrin is used with respect to the phenol resin.
  • the amount is higher than this, the production efficiency is lowered, and when the amount is lower than this, the amount of the high molecular weight polymer of the epoxy resin increases and the viscosity is increased.
  • the reaction is usually performed at a temperature of 120 ° C or lower. If the temperature is high during the reaction, the amount of so-called non-hydrolyzable chlorine increases and high purity becomes difficult. Preferably below 100 ° C More preferably, the temperature is 85 ° C or lower.
  • a quaternary ammonium salt or a polar solvent such as dimethyl sulfoxide, diglyme may be used.
  • the quaternary ammonium salt include tetramethyl ammonium chloride, tetilaptyl ammonium chloride, benzyltriethyl ammonium chloride, etc., and the amount added is 0.1 with respect to the phenol resin. The range of ⁇ 2. Owt% is preferred. If the amount is less than this, the effect of adding quaternary ammonium salt is small. If the amount is more than this, the amount of hardly hydrolyzable chlorine produced increases, making it difficult to achieve high purity.
  • the addition amount of the polar solvent is preferably in the range of 10 to 200 wt% with respect to the phenol resin. If the amount is less than this, the effect of addition is small. If the amount is more than this, the volumetric efficiency is lowered, which is not preferable in the economy.
  • the obtained epoxy resin is further added to the remaining hydrolyzable chlorine;! ⁇ 30 times the amount of alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, A ring closure reaction takes place.
  • the reaction temperature at this time is usually 100 ° C. or lower, preferably 90 ° C. or lower.
  • the epoxy resin obtained by the method for producing an epoxy resin of the present invention is preferably an epoxy resin represented by the above general formula (3) or an epoxy resin containing this as a main component (50 wt% or more). .
  • the substituent may have an average of 0.;! To 2.0, preferably 0.5 to 2.0 per benzene ring.
  • the phenol resin obtained by the method for producing a phenol resin of the present invention is preferably a phenol resin represented by the above general formula (1) or a phenol resin mainly composed thereof.
  • the substituent may have an average of 0.;! To 2.0, preferably 0.5 to 2.0, per benzene ring.
  • the epoxy resin composition of the present invention includes an epoxy resin represented by the above general formula (1), an epoxy resin mainly composed of the epoxy resin, or an epoxy resin obtained by the method for producing the epoxy resin ( Hereinafter, these are also collectively referred to as the present epoxy resin) and a curing agent. It is an essential ingredient.
  • the curing agent to be blended in the epoxy resin composition of the present invention all those generally known as epoxy resin curing agents can be used. Examples include dicyandiamide, polyvalent phenols, acid anhydrides, aromatic and aliphatic amines.
  • examples of polyhydric phenols include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4, 4'-biphenol, 2, 2, monobiphenol, hydroquinone. , Resorcinol, naphthalenediol and other divalent phenols, or tris (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenenole) ethane, phenol novolak, o— There are trihydric or higher phenols such as cresol novolac, naphthol nopolac, polybuhlphenol. Furthermore, monovalent phenols such as phenols and naphthols, bisphenol A and bisphenols?
  • Bisphenols such as bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2, 2, monobiphenol, hydroquinone, resorcin, naphthalene diol, formaldehyde, acetoaldehyde, benzaldehyde, p —Polyhydric phenolic compounds synthesized by condensing agents such as hydroxy benzaldehyde and p-xylylene alcohol. Further, those obtained by reacting these phenolic curing agents with indene or acenaphthylene may be used as the curing agent.
  • Acid anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, nadic anhydride, trimellitic anhydride Etc.
  • amines examples include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, p-xylylenediamine, and the like.
  • aliphatic amines such as aromatic amines, ethylenediamine, hexamethylenediamine, jetylenetriamine, and triethylenetetramine.
  • epoxy resin composition of the present invention one or two or more of these curing agents are used in combination.
  • the epoxy resin composition of the present invention may contain other types of epoxy resins in addition to the present epoxy resin as an epoxy resin component.
  • a normal epoxy resin having two or more epoxy groups in the molecule can be used as another type of epoxy resin.
  • bisphenol A bisphenol S, fluorene bisphenol, 4, 4, — bivalent phenols such as biphenol, 2, 2, 1 biphenol, hydroquinone, resorcin, or tris (4— Trivalent or higher phenols such as hydroxyphenyl) methane, 1,1,2,2,2-tetrakis (4-hydroxyphenenole) ethane, phenol novolak, o-cresol novolak or tetrabromobisphenol A And the like, and darcidyl etherified compounds derived from them.
  • These epoxy resins can be used alone or in combination of two or more.
  • the compounding quantity of this epoxy resin is 5-100 wt% in the whole epoxy resin, Preferably it is the range of 60-100 wt%.
  • the epoxy resin composition of the present invention may contain an inorganic filler.
  • the inorganic filler examples include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, and glass powder.
  • the amount of inorganic filler used is usually 75 wt% or more. From the viewpoint of low moisture absorption and high solder heat resistance, 80 wt% or more is preferable! / ,.
  • the epoxy resin composition of the present invention appropriately contains an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyester, polyurethane, petroleum resin, indene coumarone resin, or phenoxy resin.
  • additives such as pigments, refractory agents, thixotropic agents, coupling agents, and fluidity improvers may be blended.
  • the pigment include organic or inorganic extender pigments and scale-like pigments.
  • thixotropic agents include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite.
  • the epoxy resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane, and a colorant such as carbon black.
  • a release agent such as carnauba wax and OP wax
  • a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane
  • a colorant such as carbon black.
  • flame retardants such as antimony trioxide, low stress agents such as silicone oil, lubricants such as calcium stearate, and the like can be used.
  • the epoxy resin composition of the present invention can be used with a known curing accelerator.
  • a known curing accelerator examples include amines, imidazoles, organic phosphines, and noNA acids.
  • the amount added is usually in the range of 0.2 to 5 parts by weight per 100 parts by weight of the epoxy resin.
  • the amount of curing agent added is usually 100 wt. The range is 10 to 100 parts by weight with respect to parts.
  • the cured product of the present invention obtained by curing the resin composition of the present invention can be molded and processed by a method such as casting, compression molding, transfer molding or the like.
  • the temperature at this time is usually in the range of 120 to 220 ° C.
  • Epoxy resin A had an epoxy equivalent of 278 g / eq., Hydrolyzable chlorine of 420 ppm, and a softening point of 58 ° C. and 150 ° C., and a melt viscosity of 0 ⁇ 045 Pa ′s.
  • hydrolyzable chlorine is a sample obtained by dissolving 0.5 g of a sample in 30 ml of dioxane, adding 10 ml of 1 ⁇ _ ⁇ , boiling and refluxing for 30 minutes, cooling to room temperature, and then adding 100 ml of 80% acetone water. Measured by potentiometric titration with 0.002N-AgNO aqueous solution.
  • the softening point is a value obtained by a ball & ring method at a heating rate of 5 ° C / min, and the viscosity was measured using a Brookfield cone plate viscometer.
  • GPC measurement conditions were as follows: apparatus; MODEL151 (manufactured by Waters Co., Ltd.), column; TSK-GEL 2000 X 3 and TSK-GEL4000 X 1 (Le, also from Tosoh Co., Ltd.), solvent; tetrahydride Mouth furan, flow rate: 1 ml / min, temperature: 38 ° C, detector; The infrared absorption spectrum was determined by the KBr tablet molding method, and the NMR spectrum was measured in acetone-d6 using an apparatus; JNM_LA400 manufactured by JEOL Ltd.
  • Fig. 1 shows the infrared absorption spectrum of epoxy resin A.
  • Fig. 2 shows the NMR spectrum.
  • Example 2 Into a 3 L 4-separable flask, add 300 g of the phenolic resin B synthesized in Example 2 After dissolving in 810 g of oral hydrin and 122 g of diglyme, the reaction was conducted in the same manner as in Example 4 using 96 g of 48% aqueous sodium hydroxide solution at 60 ° C. under reduced pressure to obtain 335 g of a pale yellow epoxy resin.
  • Epoxy resin B The epoxy equivalent was 336 g / eq., Hydrolyzable chlorine was 340 ppm, the soft rice crack point was 76 ° C, and the molten rice occupancy at 150 ° C was 0.136 Pa's.
  • epoxy resins A to C synthesized in Examples 4 to 6, bisphenol F type epoxy resin (epoxy resin D; manufactured by Tohto Kasei, YDF-170, epoxy equivalent 1 69), biphenyl type epoxy resin ( Epoxy resin E: Made by Japan Epoxy Resin, YX-4000H, Epoxy equivalent 195, Melting point 105 ° C), Phenolic nopolac as curing agent (Curing agent A; OH equivalent 107, Softening point 82 ° C), phenol aralkyl resin (Curing agent B: Mitsui Chemicals, XL_225-LL, OH equivalent 175, softening point 74 ° C), silica (average particle size, 22 m) as filler, and triphenylphosphine as curing accelerator in Table 1.
  • An epoxy resin composition was obtained by kneading with the formulation shown.
  • the epoxy resin composition was molded at 175 ° C. and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements.
  • the amounts shown in Table 1 are parts by weight.
  • the glass transition point (Tg) was determined by a thermomechanical measurement device under a temperature increase rate of 10 ° C / min.
  • the water absorption is the value obtained when the epoxy resin composition is used to form a disk with a diameter of 50 mm and a thickness of 3 mm, and after post-curing, it is absorbed for 100 hours at 85 ° C and 85% relative humidity. is there.
  • the epoxy resin of the present invention and the epoxy resin obtained by the production method of the present invention have excellent moldability, high filler filling property, moisture resistance, and heat resistance.
  • it provides a cured product having excellent flame retardancy, and can be suitably used for applications such as sealing of electric and electronic parts, circuit board materials, and the like. In particular, it makes unnecessary or reduces the use of flame retardants with excellent flame retardancy and environmental impact.

Abstract

Disclosed is an epoxy resin having excellent fluidity and high filler filling property, which provides a cured product excellent in moisture resistance, heat resistance and flame retardance. This epoxy resin is suitable for sealing of electronic components and uses as circuit board materials. Also disclosed is a composition of such an epoxy resin. Specifically disclosed is an epoxy resin represented by the general formula (3) below, which is obtained by reacting epichlorohydrin with a phenol resin which is obtained by reacting 0.2-6.0 moles of indene or acenaphthylene with 1 mole of a bisphenol compound represented by the general formula (2) below. (In the formulae, X represents a single bond, -CH2-, -CH(CH3)-, -C(CH3)2-, -CO-, -O-, -S- or -SO2-; and R1-R4 independently represent a hydrogen atom or a substituent derived from indene or acenaphthylene.)

Description

明 細 書  Specification
エポキシ樹脂、フエノール樹脂、それらの製造方法、エポキシ樹脂組成物 及び硬化物  Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product
技術分野  Technical field
[0001] 本発明は、低粘度性に優れるとともに、耐湿性、耐熱性、難燃性等にも優れた硬化 物を与えるエポキシ樹脂、その中間体として適するフエノール樹脂、それらの製造方 法並びにこのエポキシ樹脂を用いたエポキシ樹脂組成物及びその硬化物に関する ものであり、半導体封止、プリント配線板等の電気電子分野の絶縁材料等に好適に 使用される。  [0001] The present invention is an epoxy resin that gives a cured product that is excellent in low viscosity and also excellent in moisture resistance, heat resistance, flame retardancy, etc., a phenol resin suitable as an intermediate thereof, a method for producing them, The present invention relates to an epoxy resin composition using an epoxy resin and a cured product thereof, and is suitably used for insulating materials in the electrical and electronic fields such as semiconductor encapsulation and printed wiring boards.
背景技術  Background art
[0002] 半導体封止材料には、エポキシ樹脂を主剤とする樹脂組成物が広く用いられてき ているが、プリント基板への部品の実装の方法として、従来の揷入方式から表面実装 方式への移行が進展している。表面実装方式においては、パッケージ全体が半田温 度まで加熱され、吸湿した水分の急激な体積膨張により引き起こされるパッケージク ラックが大きな問題点となってきている。更に、半導体素子の高集積化、素子サイズ の大型化、配線幅の微細化が急速に進展しており、ノ /ケージクラックの問題が一層 深刻化してきている。ノ ンケージクラックを防止する方法として樹脂構造の強靱化、無 機フイラ一の高充填化による高強度化、低吸水率化等の方法がある。  [0002] Resin compositions based on epoxy resins have been widely used as semiconductor sealing materials, but as a method of mounting components on a printed circuit board, the conventional insertion method has been changed to a surface mounting method. Transition is progressing. In the surface mounting method, the entire package is heated to the solder temperature, and the package crack caused by the rapid volume expansion of the absorbed moisture has become a big problem. Furthermore, the high integration of semiconductor devices, the increase in device size, and the miniaturization of wiring width are rapidly progressing, and the problem of no / cage cracks is becoming more serious. There are methods for preventing the occurrence of cracks such as toughening the resin structure, increasing the strength by increasing the filling of the organic filler, and reducing the water absorption rate.
[0003] 中でも、無機フィラーの高充填化が強く指向されており、そのためには低吸湿性、 高耐熱性に優れ、かつ低粘度であるエポキシ樹脂が望まれている。低粘度エポキシ 樹脂としては、ビスフエノール A型エポキシ樹脂、ビスフエノール F型エポキシ樹脂等 が一般に広く用いられているが、これらのエポキシ樹脂において低粘度のものは常 温で液状であり、トランスファー成形用の樹脂組成物とすることは困難である。更に、 これらのエポキシ樹脂は耐熱性、機械的強度、耐湿性の点で十分ではない。  [0003] In particular, high filling of inorganic fillers is strongly directed, and for that purpose, an epoxy resin having low moisture absorption, high heat resistance and low viscosity is desired. As low-viscosity epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, etc. are generally widely used. However, those epoxy resins having low viscosity are liquid at normal temperature and are used for transfer molding. It is difficult to obtain a resin composition. Furthermore, these epoxy resins are not sufficient in terms of heat resistance, mechanical strength and moisture resistance.
[0004] 上記背景から低吸湿性、高耐熱性に優れたものとして、ビフエニル系エポキシ樹脂  [0004] From the above background, biphenyl epoxy resins are excellent in low hygroscopicity and high heat resistance.
(特開昭 58— 39677号公報)、ビスフエノール系エポキシ樹脂(特開平 6— 345850 号公報)が提案されているが、金属基材との密着性の点で十分ではない。また、密着 性向上の観点から、硫黄原子を含有するスルフイド構造を有するエポキシ樹脂(特開 平 6— 145300号公報)が提案されている力 耐熱性が十分ではない。また、従来よ り知られたスルホン構造を有するエポキシ樹脂は高!/、耐熱性を有するものの、吸水 率が高くかつ密着性も十分ではな!/、。 (JP-A-58-39677) and bisphenol-based epoxy resins (JP-A-6-345850) have been proposed, but are not sufficient in terms of adhesion to metal substrates. Also close contact From the viewpoint of improving the properties, an epoxy resin having a sulfur structure containing a sulfur atom (Japanese Patent Laid-Open No. 6-145300) has been proposed. The heat resistance is not sufficient. Also, conventionally known epoxy resins having a sulfone structure are high! /, Although they have heat resistance, they have high water absorption and sufficient adhesion! /.
[0005] 特許文献 1 :特開昭 58— 39677号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 58-39677
特許文献 2 :特開平 6— 345850号公報  Patent Document 2: JP-A-6-345850
特許文献 3:特開平 6— 145300号公報  Patent Document 3: JP-A-6-145300
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] したがって、本発明の目的は、流動性、フイラ一高充填性、耐湿性、耐熱性、難燃 性等に優れた硬化物を与える半導体素子の電子部品封止用に好適に使用されるェ ポキシ樹脂及びその組成物を提供することにある。 [0006] Therefore, the object of the present invention is suitably used for encapsulating electronic components of semiconductor elements that give a cured product excellent in fluidity, high filler filling property, moisture resistance, heat resistance, flame retardancy, and the like. It is to provide an epoxy resin and a composition thereof.
課題を解決するための手段  Means for solving the problem
[0007] すなわち、本発明は、下記一般式(3)で表されるエポキシ樹脂に関する。
Figure imgf000004_0001
That is, the present invention relates to an epoxy resin represented by the following general formula (3).
Figure imgf000004_0001
(但し、 R Rは、独立に水素原子又は下記式 (a)若しくは (b)で表される置換基を (However, R R independently represents a hydrogen atom or a substituent represented by the following formula (a) or (b):
1 4  14
示すが、少なくとも 1つは上記置換基である。 Xは、単結合、—CH -CH (CH )  As shown, at least one of the above substituents. X is a single bond, —CH 2 —CH 2 (CH 2)
2 3 C (CH ) C〇一 〇一 S 又は S〇一を示し、 nは、 0 50の  2 3 C (CH) C 0 1 0 1 Indicates S or S 0 1, n is 0-50
3 2 2  3 2 2
数を示す。 )  Indicates a number. )
Figure imgf000004_0002
Figure imgf000004_0002
[0008] また、本発明は、下記一般式(1)で表されるフエノール樹脂に関する。
Figure imgf000005_0001
[0008] The present invention also relates to a phenol resin represented by the following general formula (1).
Figure imgf000005_0001
(但し、 R〜R及び Xは、式(3)と同じ意味を有する。 ) (However, R to R and X have the same meaning as in formula (3).)
1 4  14
[0009] また、本発明は、下記一般式 (2)、
Figure imgf000005_0002
[0009] Further, the present invention provides the following general formula (2),
Figure imgf000005_0002
(但し、 Xは、式(3)と同じ意味を有する。)で表されるビスフエノール化合物 1モルに 対して、インデン又はァセナフチレン力、ら選ばれる芳香族ォレフイン 0. 2〜4モルを 反応させることを特徴とする上記式 (a)又は (b)で表される置換基を有するフエノール 樹脂の製造方法に関する。 (However, X has the same meaning as in formula (3).) One mole of the bisphenol compound represented by the formula (3) is reacted with 0.2 to 4 moles of aromatic olefin selected from indene or acenaphthylene power. The present invention relates to a method for producing a phenol resin having a substituent represented by the above formula (a) or (b).
[0010] 更に、本発明は、上記一般式(1)で表されるフエノール樹脂又は上記フエノール樹 脂の製造方法で得られたフエノール樹脂と、ェピクロルヒドリンを反応させることを特 徴とするエポキシ樹脂の製造方法である。また、このエポキシ樹脂の製造方法によつ て得られたエポキシ樹脂に関する。  [0010] Further, the present invention is characterized in that the phenol resin represented by the above general formula (1) or the phenol resin obtained by the above method for producing a phenol resin is reacted with epichlorohydrin. This is a method for producing an epoxy resin. The present invention also relates to an epoxy resin obtained by the method for producing the epoxy resin.
[0011] 更に、本発明は、エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物であって、 エポキシ樹脂成分として上記のエポキシ樹脂を配合したことを特徴とするエポキシ樹 脂組成物及びこれを硬化させて得られる硬化物に関する。  [0011] Further, the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin composition is blended with the epoxy resin as an epoxy resin component, and the epoxy resin composition is cured. It relates to the cured product obtained.
[0012] まず、本発明のエポキシ樹脂について説明する。  First, the epoxy resin of the present invention will be described.
本発明のエポキシ樹脂は、上記一般式(3)で表される。ここで、 R〜Rは水素原子  The epoxy resin of the present invention is represented by the general formula (3). Where R to R are hydrogen atoms
1 4 又は上記式 ω若しくは (b)で表される置換基を示す力 少なくとも 1つは式 ω若しく は (b)で表される置換基である。低粘度性の観点から、 R〜Rは一般式 (a)で表され  14 or the force representing the substituent represented by the above formula ω or (b) At least one is a substituent represented by the formula ω or (b). From the viewpoint of low viscosity, R to R are represented by the general formula (a).
1 4  14
る置換基が好ましぐ低吸湿性、難燃性の観点からは、一般式 (b)の置換基が好まし い。なお、上記一般式(3)において、括弧内の Rと R及び Rと Rは入れ替わつてい  From the viewpoint of low hygroscopicity and flame retardancy, the substituent of formula (b) is preferred. In the above general formula (3), R and R and R and R in parentheses are interchanged.
1 3 2 4  1 3 2 4
てもよい。  May be.
[0013] なお、 R〜Rは、水素原子と式 (a)で表される置換基とからなつてもよぐ水素原子  [0013] Note that R to R may be a hydrogen atom which may be a hydrogen atom and a substituent represented by the formula (a).
1 4  14
と式 (b)で表される置換基とからなつてもよく、水素原子と式 ωと式 (b)で表される置 換基とからなってもよぐ式 ωと式 (b)で表される置換基からなってもよぐ式 (a)で表 される置換基のみ又は式 (b)で表される置換基のみからなってもよ!/、。 And a substituent represented by formula (b), a hydrogen atom, formula ω, and a formula represented by formula (b). The substituent represented by the formula (a) or the substituent represented by the formula (b) may be composed of the substituent represented by the formula ω and the formula (b). You can just make it! /
[0014] また、 Xは、単結合、— CH― — CH (CH )― — C (CH ) ― — CO— — O— [0014] X is a single bond, — CH— — CH (CH) — — C (CH) — — CO— — O—
2 3 3 2  2 3 3 2
S 又は SO—から選ばれた連結基を示す。低粘度性の観点からは、単結合  A linking group selected from S and SO- is shown. Single bond from the viewpoint of low viscosity
2  2
-CH O 又は S が好適に選択される。  -CH 2 O or S is preferably selected.
2  2
[0015] nは、 0 50の数を表し、好ましい nの値は、適用する用途に応じて異なる。例えば 、フィラーの高充填率化が要求される半導体封止材の用途には、低粘度であるもの が望ましぐ nの値は、 0 5、好ましくは 0. 1 2、更に好ましくは、 nが 0のものが 50w t%以上含まれるものである。本発明のエポキシ樹脂力 ¾の値が異なる混合物である 場合は、 nは平均値 (数平均)を意味する。この場合、より好ましくは n力 SO.ト 1のも のである。また、プリント配線板等の用途には、高分子量のエポキシ樹脂が好適に使 用され、この場合の nの値は、 2 50、好ましくは 2 40である。 nの値が異なる混合 物である場合は、平均値 nとして上記の範囲がよい。この場合、平均値が 50以下とな れば、 nが 50以上の整数となる分子が含まれてもよい。  [0015] n represents a number of 0 50, and a preferable value of n varies depending on an application to be applied. For example, for semiconductor encapsulant applications that require a high filling factor of the filler, a low viscosity is desired. The value of n is 0.5, preferably 0.12, and more preferably n. Those with 0 are those that contain more than 50wt%. In the case of a mixture having different epoxy resin strength values of the present invention, n means an average value (number average). In this case, more preferably n-force SO. For applications such as printed wiring boards, high molecular weight epoxy resins are preferably used. In this case, the value of n is 250, preferably 240. In the case of a mixture with different values of n, the above range is good as the average value n. In this case, if the average value is 50 or less, a molecule in which n is an integer of 50 or more may be included.
[0016] 本発明のエポキシ樹脂は、例えば、上記一般式(2)で表されるビスフエノール化合 物にインデン又はァセナフチレンから選ばれる芳香族ォレフイン(以下、単に芳香族 ォレフィンということもある)を反応させて得られるフエノール樹脂を中間体として得て 、このフエノール樹脂とェピクロルヒドリンを反応させるなどの方法により製造すること ができる。インデン、ァセナフチレンは、芳香族ォレフインの 1種であるので、フリーデ ルクラフツ反応により、一般式(2)で表されるビスフエノール化合物のベンゼン環に置 換可能である。そして、式 (a)又は (b)で表される置換基(以下、単に置換基ということ もある)として、ベンゼン環に置換する。なお、この置換基は立体障害により 1つのべ ンゼン環に 2つまでが置換可能である。式 (a)表される置換基は、インデンから 1個の 水素原子がとれた構造であり、式 (b)表される置換基は、ァセナフチレンから 1個の 水素原子がとれた構造であり、それぞれインデン又はァセナフチレンから生ずる基と いうことができる。  The epoxy resin of the present invention reacts, for example, with an aromatic olefin selected from indene or acenaphthylene (hereinafter sometimes simply referred to as aromatic olefin) to the bisphenol compound represented by the general formula (2). The resulting phenol resin is obtained as an intermediate and can be produced by a method such as reacting this phenol resin with epichlorohydrin. Indene and wasennaphthylene are one of the aromatic olefins and can be replaced by the benzene ring of the bisphenol compound represented by the general formula (2) by the Friedel-Crafts reaction. Then, the benzene ring is substituted as a substituent represented by the formula (a) or (b) (hereinafter sometimes simply referred to as a substituent). Note that up to two of these substituents can be substituted on one benzene ring due to steric hindrance. The substituent represented by formula (a) is a structure in which one hydrogen atom is removed from indene, and the substituent represented by formula (b) is a structure in which one hydrogen atom is removed from acenaphthylene, It can be said to be a group derived from indene or acenaphthylene, respectively.
[0017] 本発明のフエノール樹脂は、上記一般式(1)で表される。一般式(1)において、 R [0017] The phenol resin of the present invention is represented by the general formula (1). In general formula (1), R
R及び Xは、一般式(3)の R R及び Xと対応する。したがって、好ましい R R 及び X等も一般式(3)の R R及び Xと同様である。 R and X correspond to RR and X in general formula (3). Therefore, preferred RR And X are the same as RR and X in general formula (3).
1 4  14
[0018] 一般式(2)で、 Xは、単結合、—CH -CH (CH ) —C (CH ) -CO  [0018] In the general formula (2), X is a single bond, —CH 2 —CH 2 (CH 2) —C (CH 2) —CO
2 3 3 2  2 3 3 2
O S 又は SO を示す力 低粘度性の観点からは、単結合、 CH  Force indicating O S or SO From the viewpoint of low viscosity, single bond, CH
2  2
O 又は S が好適に選択される。一般式(2)において、水酸基の置換位 O or S is preferably selected. In the general formula (2), the substitution position of the hydroxyl group
2 2
置は、連結基 Xに対して、 4, 4'一位、 3, 4'—位、 3, 3'一位、 2, 4'— 2, 3'一位 2, 2'一位のものがある。これらは、単一異性体からなる化合物であってもよいし、こ れらの異性体の混合物であってもよ!/、が、上記式(a)又は (b)の立体障害が大き!/、た め、エポキシ樹脂とした際の反応性の観点からは、 2, 4' 体又は 2, 2'一体が含ま れているものが好ましい。この場合、 2, 4' 体と 2, 2'一体の合計量が全体の 30モ ル%以上、好ましくは 50モル%以上であることがよい。なお、上記は一般式(1)及び (3)の Xについても、同様である。  With respect to linking group X, 4, 4 'first, 3, 4'-position, 3, 3' first, 2, 4'- 2, 3 'first 2, 2' first There is. These may be compounds consisting of a single isomer or a mixture of these isomers! /, But the steric hindrance of the above formula (a) or (b) is great! Therefore, from the viewpoint of reactivity when an epoxy resin is used, those containing a 2,4 ′ body or a 2,2 ′ body are preferred. In this case, the total amount of the 2,4 ′ body and 2,2 ′ body should be 30 mol% or more, preferably 50 mol% or more of the whole. The same applies to X in the general formulas (1) and (3).
[0019] 本発明のフエノール樹脂は、上記一般式(2)で表されるビスフエノール化合物にィ ンデン又はァセナフチレンから選ばれる芳香族ォレフインを、ビスフエノール化合物 1 モルに対し芳香族ォレフインを 1 4モル反応させるなどして得ることができる。  [0019] The phenol resin of the present invention comprises an aromatic olefin selected from indene or acenaphthylene as the bisphenol compound represented by the general formula (2), and 14 mol of aromatic olefin relative to 1 mol of the bisphenol compound. It can be obtained by reacting.
[0020] 本発明のフエノール樹脂の製造方法は、上記一般式(2)で表されるビスフエノール 化合物にインデン又はァセナフチレンから選ばれる芳香族ォレフインを、ビスフエノー ル化合物 1モルに対し芳香族ォレフインを 0. 2 4モル反応させることにより、上記置 換基をベンゼン環に置換させる方法である。  [0020] In the method for producing a phenol resin of the present invention, aromatic olefin selected from indene or acenaphthylene is added to the bisphenol compound represented by the general formula (2), and aromatic olefin is added to 1 mol of the bisphenol compound. This is a method in which the above substituent is substituted with a benzene ring by reacting with 24 moles.
[0021] 本発明のフエノール樹脂の製造方法において、ビスフエノール化合物 1モルに対す る芳香族ォレフインの反応量は 0. 2 4. 0モルの範囲であるが、好ましくは、 0. 5 4. 0モノレ、更に好ましくは、 1. 0—3. 0モノレの範囲である。これより,少ないと、ェポキ シ樹脂とした際の耐湿性、難燃性の向上効果が十分に発現されない。逆に、これより 多いと粘度が高くなりフイラ一の高充填性や成形性が低下する。  In the method for producing a phenolic resin of the present invention, the reaction amount of the aromatic olefin with respect to 1 mol of the bisphenol compound is in the range of 0.24.0 mol, preferably 0.54.0. It is in the range of mono, more preferably 1.0-3.0 mono. If it is less than this, the effect of improving the moisture resistance and flame retardancy when using epoxy resin will not be sufficiently exhibited. On the other hand, if it exceeds the above range, the viscosity becomes high and the high filling property and moldability of the filler are lowered.
[0022] 一方、ビスフエノール化合物と芳香族ォレフインを反応させる際の反応原料として使 用量は、 目的とする置換モル数 (ビスフエノール化合物 1モルに対する、置換基のモ ル数)とほぼ対応するので、それによつて使用量を定めればよい。なお、いずれかの 原料が未反応で残る反応条件を採用することもできるが、この場合でもビスフエノー ル化合物 1モルに対する芳香族ォレフインの使用量は 0. 2 6. 0モルの範囲とする こと力 Sよい。いずれかの原料が未反応で残る場合は、それを分離することが望ましい[0022] On the other hand, the amount used as a reaction raw material when reacting a bisphenol compound with an aromatic olefin is almost the same as the target number of substituted moles (number of moles of substituents per mole of bisphenol compound). Based on this, the usage amount may be determined. It is also possible to adopt reaction conditions in which any of the raw materials remain unreacted, but in this case as well, the amount of aromatic olefin used per mole of bisphenol compound should be in the range of 0.2 6.0 mol. That power S is good. If any raw material remains unreacted, it is desirable to separate it
1S 少量であれば残存したままでも差し支えない。また、芳香族ォレフインを多量に 使用すると、未反応の芳香族ォレフインが残存するとか、芳香族ォレフインのホモオリ ゴマーが生成することがあり、エポキシ樹脂としての耐熱性や難燃性を低下させる原 因となる。したがって、ビスフエノール化合物 1モルに対する芳香族ォレフインの原料 としての使用量は多くとも 6· 0モルである。 1S Small amount can be left as it is. In addition, if a large amount of aromatic olefin is used, unreacted aromatic olefin may remain or a homo-oligomer of aromatic olefin may be produced, which causes a decrease in heat resistance and flame retardancy as an epoxy resin. It becomes. Therefore, the amount of aromatic olefin used as a raw material for 1 mol of bisphenol compound is at most 6.0 mol.
[0023] ビスフエノール化合物に反応させる芳香族ォレフインとしては、インデン、ァセナフ チレン又はこれらの混合物である。低粘度性の観点からは、インデンを主成分とする ものが好ましぐ難燃性の観点からは、ァセナフチレンを主成分とするものが好ましい [0023] The aromatic olefin used for the reaction with the bisphenol compound is indene, isenaphthylene, or a mixture thereof. From the viewpoint of low viscosity, those containing indene as the main component are preferable. From the viewpoint of flame retardancy, those containing asanaphthylene as the main component are preferable.
[0024] 反応に用いる芳香族ォレフイン中には、他の反応性成分として、スチレン、 α—メチ ノレスチレン、ジビニノレベンゼン、クマロン、ベンゾチォフェン、インドーノレ、ビニノレナフ タレン等の不飽和結合含有成分を含んでいても良いが、全反応成分中のインデン及 びァセナフチレンの含有率が 50wt%以上、好ましくは 70wt%以上のものが使用さ れる。これより少ないと、耐熱性、難燃性の向上効果が小さい。また、芳香族ォレフィ ン中には、トルエン、ジメチルベンゼン、トリメチルベンゼン、インダン、ナフタレン、メ チルナフタレン、ジメチルナフタレン、ァセナフテン等の非反応性の化合物が含まれ ていても良いが、エポキシ樹脂とした際の耐熱性、難燃性等の特性向上の観点から 、これら非反応性の化合物は系外に除いた方が良い。好ましくは、全体の 5wt%以 下、更に好ましくは、 2wt%以下となるまで除かれる。除去方法としては、一般的には 、減圧蒸留等の方法が適用される。 [0024] The aromatic olefin used in the reaction contains, as other reactive components, an unsaturated bond-containing component such as styrene, α-methylolstyrene, divininolebenzene, coumarone, benzothiophene, indanol and vinylinonaphthalene. However, the indene and acenaphthylene content in all the reaction components is 50 wt% or more, preferably 70 wt% or more. If it is less than this, the effect of improving heat resistance and flame retardancy is small. In addition, aromatic olefins may contain non-reactive compounds such as toluene, dimethylbenzene, trimethylbenzene, indane, naphthalene, methylnaphthalene, dimethylnaphthalene, and acenaphthene. From the viewpoint of improving characteristics such as heat resistance and flame retardancy, these non-reactive compounds should be excluded from the system. Preferably, the total amount is 5 wt% or less, more preferably 2 wt% or less. As a removal method, generally, a method such as vacuum distillation is applied.
[0025] 反応に用いる芳香族ォレフイン中には、他の反応性成分として、スチレン、 α—メチ ノレスチレン、ジビニノレベンゼン、クマロン、ベンゾチォフェン、インドーノレ、ビニノレナフ タレン等の不飽和結合含有成分を含む場合、得られるフエノール樹脂にはこれらから 生ずる基がベンゼン環に置換した化合物が含まれることになる。本発明のフエノール 樹脂の製造方法で得られるフエノール樹脂は、このような置換基を有するフエノール 樹脂を含み得る。同様に、本発明のエポキシ樹脂の製造方法で得られるエポキシ樹 脂は、このような置換基を有するエポキシ樹脂を含み得る。 [0026] ビスフエノール化合物と芳香族ォレフインとの反応は、酸触媒等の公知のフリーデ ルクラフツ触媒を使用する反応方法等が採用できる。この反応によりビスフエノール 化合物のベンゼン環に上記置換基が置換したフエノール樹脂が得られる。このフエノ ール樹脂は通常、置換基の数や置換位置の異なる混合物であるが、平均として 0. 4 〜4個、好ましくは 1〜4の置換基を有することがよい。ビスフエノール化合物と芳香族 ォレフィンとの反応終了後は、必要により触媒又は未反応成分の除去をして、次のェ ポキシ化反応に供する。しかし、エポキシ化反応を阻害しない成分や酸触媒のような 中和可能な成分は除去しなくともよぐまた、エポキシ化反応後に行われる洗浄、蒸 留等の精製工程で除去される場合やエポキシ樹脂に含まれても差し支えない場合も 、除去しなくともよい。ビスフエノール化合物と芳香族ォレフインとの反応終了後の反 応生成物をそのままエポキシ化反応も使用することは精製工程が 1つ減るという点で 有利である。なお、フエノール樹脂を目的物として精製又は単離することもできる。 [0025] The aromatic olefin used in the reaction contains, as another reactive component, an unsaturated bond-containing component such as styrene, α-methylenstyrene, divininolebenzene, coumarone, benzothiophene, indanol or vinino naphthalene, The resulting phenolic resin will include compounds in which the groups resulting from these are substituted on the benzene ring. The phenol resin obtained by the method for producing a phenol resin of the present invention may include a phenol resin having such a substituent. Similarly, the epoxy resin obtained by the method for producing an epoxy resin of the present invention may contain an epoxy resin having such a substituent. [0026] For the reaction between the bisphenol compound and the aromatic olefin, a reaction method using a known freedelcraft catalyst such as an acid catalyst can be employed. By this reaction, a phenol resin in which the above substituent is substituted on the benzene ring of the bisphenol compound is obtained. This phenol resin is usually a mixture having different numbers of substituents and different substitution positions, but it should have an average of 0.4 to 4, preferably 1 to 4 substituents. After completion of the reaction between the bisphenol compound and the aromatic olefin, the catalyst or unreacted components are removed if necessary and used for the next epoxidation reaction. However, components that do not inhibit the epoxidation reaction and components that can be neutralized, such as acid catalysts, do not have to be removed. Even if it is included, it does not have to be removed. Using the reaction product after completion of the reaction between the bisphenol compound and the aromatic olefin in the epoxidation reaction is advantageous in that the number of purification steps is reduced by one. In addition, a phenol resin can also be purified or isolated as a target product.
[0027] 本発明のエポキシ樹脂の製造方法は、上記一般式(1)で表されるフエノール樹脂 又は上記フエノール樹脂の製造方法で得られたフエノール樹脂(以下、両者を区別 する必要がないときは、単にフエノール樹脂ともいう)と、ェピクロルヒドリンとを反応さ せることにより得られる。  [0027] The method for producing the epoxy resin of the present invention is the phenol resin represented by the general formula (1) or the phenol resin obtained by the method for producing the phenol resin (hereinafter, when it is not necessary to distinguish between the two). (Also simply referred to as phenolic resin) and epichlorohydrin.
[0028] フエノール樹脂とェピクロルヒドリンとの反応には、フエノール樹脂中の水酸基に対 して 0. 80-1. 20倍当!:、好ましく (ま 0. 85-1. 05倍当!:の水酸ィ匕ナ HJクム、水 酸化カリウム等のアルカリ金属水酸化物が用いられる。これより少ないと残存する加 水分解性塩素の量が多くなり好ましくない。金属水酸化物としては、水溶液、アルコ ール溶液又は固体の状態で使用される。  [0028] The reaction between phenolic resin and epichlorohydrin is 0.80-1.20 times the hydroxyl group in the phenolic resin! : Preferably (O. 85-1.05 times equivalent !: Hydroxyl hydroxide HJ cumum, alkali metal hydroxide such as potassium hydroxide, etc. If less than this, the remaining hydrolyzable chlorine The metal hydroxide is used in the form of an aqueous solution, an alcohol solution or a solid.
[0029] 反応に際しては、フエノール樹脂に対しては過剰量のェピクロルヒドリンが使用され る。通常、フエノール樹脂中の水酸基 1モルに対して、 1. 5〜; 15倍モルのェピクロル ヒドリンが使用される力 好ましくは 2〜8倍モルの範囲である。これより多いと生産効 率が低下し、これより少ないとエポキシ樹脂の高分子量体の生成量が増え、粘度が 高くなる。  [0029] In the reaction, an excessive amount of epichlorohydrin is used with respect to the phenol resin. Usually, the power at which 1.5 to 15 times mole of epichlorohydrin is used, preferably 2 to 8 times moles, per mole of hydroxyl group in the phenolic resin. When the amount is higher than this, the production efficiency is lowered, and when the amount is lower than this, the amount of the high molecular weight polymer of the epoxy resin increases and the viscosity is increased.
[0030] 反応は、通常、 120°C以下の温度で行われる。反応の際、温度が高いと、いわゆる 難加水分解性塩素量が多くなり高純度化が困難になる。好ましくは 100°C以下であり 、更に好ましくは 85°C以下の温度である。 [0030] The reaction is usually performed at a temperature of 120 ° C or lower. If the temperature is high during the reaction, the amount of so-called non-hydrolyzable chlorine increases and high purity becomes difficult. Preferably below 100 ° C More preferably, the temperature is 85 ° C or lower.
[0031] 反応の際、四級アンモニゥム塩あるいはジメチルスルホキシド、ジグライム等の極性 溶媒を用いてもよい。四級アンモニゥム塩としては、例えばテトラメチルアンモニゥムク 口ライド、テチラプチルアンモニゥムクロライド、ベンジルトリェチルアンモニゥムクロラ イド等があり、その添加量としては、フエノール樹脂に対して、 0. 1〜2. Owt%の範 囲が好ましい。これより少ないと四級アンモニゥム塩添加の効果が小さぐこれより多 いと難加水分解性塩素の生成量が多くなり、高純度化が困難になる。また、極性溶 媒の添加量としては、フエノール樹脂に対して、 10〜200wt%の範囲が好ましい。こ れより少ないと添加の効果が小さぐこれより多いと容積効率が低下し、経済上好まし くない。 In the reaction, a quaternary ammonium salt, or a polar solvent such as dimethyl sulfoxide, diglyme may be used. Examples of the quaternary ammonium salt include tetramethyl ammonium chloride, tetilaptyl ammonium chloride, benzyltriethyl ammonium chloride, etc., and the amount added is 0.1 with respect to the phenol resin. The range of ~ 2. Owt% is preferred. If the amount is less than this, the effect of adding quaternary ammonium salt is small. If the amount is more than this, the amount of hardly hydrolyzable chlorine produced increases, making it difficult to achieve high purity. Further, the addition amount of the polar solvent is preferably in the range of 10 to 200 wt% with respect to the phenol resin. If the amount is less than this, the effect of addition is small. If the amount is more than this, the volumetric efficiency is lowered, which is not preferable in the economy.
[0032] 反応終了後、過剰のェピクロルヒドリンや溶媒を留去し、残留物をトルエン、メチル イソプチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩や残存溶媒を除去し、 次いで溶剤を留去することによりエポキシ樹脂とすることができる。  [0032] After completion of the reaction, excess epichlorohydrin and the solvent are distilled off, and the residue is dissolved in a solvent such as toluene and methyl isobutyl ketone, filtered, washed with water to remove inorganic salts and residual solvent, Subsequently, it can be set as an epoxy resin by distilling a solvent off.
[0033] 有利には、得られたエポキシ樹脂を更に、残存する加水分解性塩素に対して、;!〜 30倍量の水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物を加え、再 閉環反応が行われる。この際の反応温度は、通常、 100°C以下であり、好ましくは 90 °C以下である。  [0033] Advantageously, the obtained epoxy resin is further added to the remaining hydrolyzable chlorine;! ~ 30 times the amount of alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, A ring closure reaction takes place. The reaction temperature at this time is usually 100 ° C. or lower, preferably 90 ° C. or lower.
[0034] 本発明のエポキシ樹脂の製造方法で得られたエポキシ樹脂は、上記一般式(3)で 表されるエポキシ樹脂又はこれを主成分(50wt%以上)とするエポキシ樹脂であるこ とが好ましい。しかし、全体として上記一般式(3)において、上記置換基をベンゼン 環 1個当たり、平均 0.;!〜 2· 0、好ましくは 0. 5〜2· 0有するものであってもよい。同 様に、本発明のフエノール樹脂の製造方法で得られたフエノール樹脂は、上記一般 式(1)で表されるフエノール樹脂又はこれを主成分とするフエノール樹脂であることが 好ましい。しかし、全体として上記一般式(3)において、上記置換基をベンゼン環 1 個当たり、平均 0.;!〜 2· 0、好ましくは 0. 5〜2· 0有するものであってもよい。  [0034] The epoxy resin obtained by the method for producing an epoxy resin of the present invention is preferably an epoxy resin represented by the above general formula (3) or an epoxy resin containing this as a main component (50 wt% or more). . However, as a whole, in the above general formula (3), the substituent may have an average of 0.;! To 2.0, preferably 0.5 to 2.0 per benzene ring. Similarly, the phenol resin obtained by the method for producing a phenol resin of the present invention is preferably a phenol resin represented by the above general formula (1) or a phenol resin mainly composed thereof. However, as a whole, in the above general formula (3), the substituent may have an average of 0.;! To 2.0, preferably 0.5 to 2.0, per benzene ring.
[0035] 本発明のエポキシ樹脂組成物は、上記一般式(1)で表されるエポキシ樹脂又はこ のエポキシ樹脂を主成分とするエポキシ樹脂又は上記エポキシ樹脂の製造方法で 得られたエポキシ樹脂(以下、これらを総称して本エポキシ樹脂ともいう。)と硬化剤を 必須成分とする。本発明のエポキシ樹脂組成物に配合する硬化剤としては、一般に エポキシ樹脂の硬化剤として知られているものはすべて使用できる。例えば、ジシァ ンジアミド、多価フエノール類、酸無水物類、芳香族及び脂肪族ァミン類等がある。 [0035] The epoxy resin composition of the present invention includes an epoxy resin represented by the above general formula (1), an epoxy resin mainly composed of the epoxy resin, or an epoxy resin obtained by the method for producing the epoxy resin ( Hereinafter, these are also collectively referred to as the present epoxy resin) and a curing agent. It is an essential ingredient. As the curing agent to be blended in the epoxy resin composition of the present invention, all those generally known as epoxy resin curing agents can be used. Examples include dicyandiamide, polyvalent phenols, acid anhydrides, aromatic and aliphatic amines.
[0036] 具体的に例示すれば、多価フエノール類としては、例えば、ビスフエノール A、ビス フエノール F、ビスフエノール S、フルオレンビスフエノール、 4, 4'—ビフエノール、 2, 2,一ビフエノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の 2価のフエノ ール類、あるいは、トリス一(4—ヒドロキシフエニル)メタン、 1 , 1 , 2, 2—テトラキス(4 ーヒドロキシフエ二ノレ)ェタン、フエノールノボラック、 o—クレゾ一ルノボラック、ナフト ールノポラック、ポリビュルフエノール等に代表される 3価以上のフエノール類がある。 更には、フエノール類、ナフトール類等の 1価のフエノール類や、ビスフエノール A、ビ スフエノール?、ビスフエノール S、フルオレンビスフエノーノレ、 4, 4'—ビフエノーノレ、 2 , 2,一ビフエノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の 2価のフエ ノール類と、ホルムアルデヒド、ァセトアルデヒド、ベンズアルデヒド、 p—ヒドロキシべ ンズアルデヒド、 p—キシリレンダリコール等の縮合剤により合成される多価フエノール 性化合物等がある。また、これらのフエノール性硬化剤にインデン又は、ァセナフチ レンを反応させたものを硬化剤に用いても良い。  [0036] Specifically, examples of polyhydric phenols include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4, 4'-biphenol, 2, 2, monobiphenol, hydroquinone. , Resorcinol, naphthalenediol and other divalent phenols, or tris (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenenole) ethane, phenol novolak, o— There are trihydric or higher phenols such as cresol novolac, naphthol nopolac, polybuhlphenol. Furthermore, monovalent phenols such as phenols and naphthols, bisphenol A and bisphenols? Bisphenols such as bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2, 2, monobiphenol, hydroquinone, resorcin, naphthalene diol, formaldehyde, acetoaldehyde, benzaldehyde, p —Polyhydric phenolic compounds synthesized by condensing agents such as hydroxy benzaldehyde and p-xylylene alcohol. Further, those obtained by reacting these phenolic curing agents with indene or acenaphthylene may be used as the curing agent.
[0037] 酸無水物としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水 フタル酸、へキサヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸、メチル無水 ハイミック酸、無水ナジック酸、無水トリメリット酸等がある。  [0037] Acid anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, nadic anhydride, trimellitic anhydride Etc.
[0038] また、アミン類としては、 4, 4'ージアミノジフエニルメタン、 4, 4'ージアミノジフエ二 ルプロパン、 4, 4'ージアミノジフエニルスルホン、 m—フエ二レンジァミン、 p—キシリ レンジァミン等の芳香族ァミン類、エチレンジァミン、へキサメチレンジァミン、ジェチ レントリアミン、トリエチレンテトラミン等の脂肪族ァミン類がある。  [0038] Examples of amines include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, p-xylylenediamine, and the like. There are aliphatic amines such as aromatic amines, ethylenediamine, hexamethylenediamine, jetylenetriamine, and triethylenetetramine.
[0039] 本発明のエポキシ樹脂組成物には、これら硬化剤の 1種又は 2種以上を混合して 用いること力 Sでさる。  [0039] In the epoxy resin composition of the present invention, one or two or more of these curing agents are used in combination.
[0040] また、本発明のエポキシ樹脂組成物中には、エポキシ樹脂成分として、本エポキシ 樹脂以外に別種のエポキシ樹脂を配合してもよレ、。この場合の別種のエポキシ樹脂 としては、分子中にエポキシ基を 2個以上有する通常のエポキシ樹脂が使用できる。 例を挙げれば、ビスフエノール A、ビスフエノール S、フルオレンビスフエノール、 4, 4, —ビフエノール、 2, 2,一ビフエノール、ハイドロキノン、レゾルシン等の 2価のフエノー ル類、あるいは、トリス一(4—ヒドロキシフエニル)メタン、 1 , 1 , 2, 2—テトラキス(4— ヒドロキシフエ二ノレ)ェタン、フエノールノボラック、 o—クレゾ一ルノボラック等の 3価以 上のフエノール類又はテトラブロモビスフエノーノレ A等のハロゲン化ビスフエノール類 力、ら誘導されるダルシジルエーテル化物等がある。これらのエポキシ樹脂は、 1種又 は 2種以上を混合して用いることができる。そして、本エポキシ樹脂を必須成分とする エポキシ樹脂組成物の場合、本エポキシ樹脂の配合量はエポキシ樹脂全体中、 5〜 100wt%、好ましくは 60〜100wt%の範囲であることがよい。 [0040] In addition, the epoxy resin composition of the present invention may contain other types of epoxy resins in addition to the present epoxy resin as an epoxy resin component. In this case, a normal epoxy resin having two or more epoxy groups in the molecule can be used as another type of epoxy resin. For example, bisphenol A, bisphenol S, fluorene bisphenol, 4, 4, — bivalent phenols such as biphenol, 2, 2, 1 biphenol, hydroquinone, resorcin, or tris (4— Trivalent or higher phenols such as hydroxyphenyl) methane, 1,1,2,2,2-tetrakis (4-hydroxyphenenole) ethane, phenol novolak, o-cresol novolak or tetrabromobisphenol A And the like, and darcidyl etherified compounds derived from them. These epoxy resins can be used alone or in combination of two or more. And in the case of the epoxy resin composition which uses this epoxy resin as an essential component, the compounding quantity of this epoxy resin is 5-100 wt% in the whole epoxy resin, Preferably it is the range of 60-100 wt%.
[0041] 必要に応じて、本発明のエポキシ樹脂組成物には、無機充填材が配合され得る。  [0041] If necessary, the epoxy resin composition of the present invention may contain an inorganic filler.
無機充填材としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等の シリカ粉末、アルミナ粉末、ガラス粉末等が挙げられる。半導体封止材に応用する場 合、無機充填材の使用量は、通常、 75wt%以上である力 低吸湿性、高半田耐熱 性の点からは、 80wt%以上であることが好まし!/、。  Examples of the inorganic filler include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, and glass powder. When applied to semiconductor encapsulants, the amount of inorganic filler used is usually 75 wt% or more. From the viewpoint of low moisture absorption and high solder heat resistance, 80 wt% or more is preferable! / ,.
[0042] 更に、本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポ リエ一テル、ポリウレタン、石油樹脂、インデンクマロン樹脂、フエノキシ樹脂等のオリ ゴマー又は高分子化合物を適宜配合してもよいし、顔料、難然剤、揺変性付与剤、 カップリング剤、流動性向上剤等の添加剤を配合してもよい。顔料としては、有機系 又は無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、シリコン系、 ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等 を挙げること力 Sできる。また更に必要に応じて、本発明のエポキシ樹脂組成物には、 カルナバワックス、 OPワックス等の離型剤、 γ—グリシドキシプロピルトリメトキシシラ ン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤 、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を使用できる。  [0042] Further, the epoxy resin composition of the present invention appropriately contains an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyester, polyurethane, petroleum resin, indene coumarone resin, or phenoxy resin. Alternatively, additives such as pigments, refractory agents, thixotropic agents, coupling agents, and fluidity improvers may be blended. Examples of the pigment include organic or inorganic extender pigments and scale-like pigments. Examples of thixotropic agents include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite. Furthermore, if necessary, the epoxy resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, and a colorant such as carbon black. In addition, flame retardants such as antimony trioxide, low stress agents such as silicone oil, lubricants such as calcium stearate, and the like can be used.
[0043] 更に必要に応じて、本発明のエポキシ樹脂組成物には、公知の硬化促進剤を用い ること力 Sできる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ノレイス 酸等がある。添加量としては、通常、エポキシ樹脂 100重量部に対して、 0. 2から 5 重量部の範囲である。また、硬化剤の添加量としては、通常、エポキシ樹脂 100重量 部に対して、 10〜; 100重量部の範囲である。 [0043] Further, if necessary, the epoxy resin composition of the present invention can be used with a known curing accelerator. Examples include amines, imidazoles, organic phosphines, and noreise acids. The amount added is usually in the range of 0.2 to 5 parts by weight per 100 parts by weight of the epoxy resin. The amount of curing agent added is usually 100 wt. The range is 10 to 100 parts by weight with respect to parts.
[0044] 本発明の樹脂組成物を硬化させて得られる本発明の硬化物は、上記エポキシ樹脂 組成物を注型、圧縮成形、トランスファー成形等の方法により、成形加工し得ることが できる。この際の温度は通常、 120〜220°Cの範囲である。 [0044] The cured product of the present invention obtained by curing the resin composition of the present invention can be molded and processed by a method such as casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120 to 220 ° C.
図面の簡単な説明  Brief Description of Drawings
[0045] [図 1]エポキシ樹脂 Aの赤外吸収スペクトル [0045] [Figure 1] Infrared absorption spectrum of epoxy resin A
[図 2]エポキシ樹脂 Aの1 H— NMRスぺクトノレ [Figure 2] 1 H-NMR spectrum of epoxy resin A
実施例  Example
[0046] 以下実施例により本発明を更に具体的に説明する。  [0046] The present invention will be described more specifically with reference to the following examples.
[0047] 実施例 1 [0047] Example 1
1Lフラスコにビスフエノール F (本州化学製、 4, 4,体(31 %)、 2, 4,体(49%)、 2, 2'体(20%) ) 200g (l . 0モル)を仕込み 175°Cまで昇温させた。溶融後、撹拌しな カら p—トノレエンスノレホン酸 0. lgを仕込み、 175。Cにおレヽてインデン 232g (2. 0モ ノレ)を約 3時間かけて滴下した。更に全還流下において 3時間反応を継続した。その 後、減圧下で低沸点成分を除去し、インデン付加フエノール樹脂 413gを得た (フエノ ール樹脂 A)。 OH当量は 216g/eq.であり、軟化点は 78°C、 150°Cでの溶融粘度 は 0. 06Pa ' sであった。  Bisphenol F (4, 4, body (31%), 2, 4, body (49%), 2, 2 'body (20%)) 200g (l. 0 mol) was charged into a 1L flask. The temperature was raised to 175 ° C. 175. After melting, stir and pour p-tonoleensnorephonic acid 0. lg, 175. Indene (232 g, 2.0 monole) was added dropwise to C over about 3 hours. Furthermore, the reaction was continued for 3 hours under total reflux. Thereafter, low-boiling components were removed under reduced pressure to obtain 413 g of an indene-added phenol resin (phenol resin A). The OH equivalent was 216 g / eq., The softening point was 78 ° C, and the melt viscosity at 150 ° C was 0.06 Pa's.
[0048] 実施例 2 [0048] Example 2
1Lフラスコにビスフエノール F 200g (l . 0モル)を 175°Cまで昇温させた。溶融後、 撹拌しながら P-トルエンスルホン酸 0. 15gを仕込み、 175°Cにおいてインデン 348 g (3. 0モル)を約 3時間かけて滴下した。その後、減圧下で低沸点成分を除去し、ィ ンデン付加フエノール樹脂 527gを得た(フエノール樹脂 B)。 OH当量は 274g/eq. であり、軟化点は 86°C、 150°Cでの溶融粘度は 0. 15Pa' sであった。  In a 1 L flask, 200 g (1.0 mol) of bisphenol F was heated to 175 ° C. After melting, 0.15 g of P-toluenesulfonic acid was charged with stirring, and 348 g (3.0 mol) of indene was added dropwise over about 3 hours at 175 ° C. Thereafter, low-boiling components were removed under reduced pressure to obtain 527 g of indene-added phenol resin (phenol resin B). The OH equivalent was 274 g / eq., The softening point was 86 ° C, and the melt viscosity at 150 ° C was 0.15 Pa's.
[0049] 実施例 3 [0049] Example 3
1Lフラスコにビスフエノール F 200g (l . 0モル)を仕込み 180°Cまで昇温させた。 溶融後、撹拌しながら P-トルエンスルホン酸 0. 04gを仕込み、 180°Cにおいてァセ ナフチレン 304g (2. 0モル)を約 3時間かけて滴下した。その後、減圧下 200°Cに昇 温し、低沸点成分を除去し、ァセナフチレン付加フエノール樹脂 491gを得た (フエノ ール樹脂 C)。 OH当量は 252g/eq.であり、軟化点は 99°C 150°Cでの溶融粘度 は 0. 59Pa ' sであった。 In a 1 L flask, 200 g (1.0 mol) of bisphenol F was charged, and the temperature was raised to 180 ° C. After melting, 0.04 g of P-toluenesulfonic acid was charged with stirring, and 304 g (2.0 mol) of acenaphthylene was added dropwise at 180 ° C. over about 3 hours. Thereafter, the temperature was raised to 200 ° C. under reduced pressure to remove low boiling point components, and 491 g of acenaphthylene-added phenol resin was obtained (phenol). Resin C). The OH equivalent was 252 g / eq., And the melt viscosity at a softening point of 99 ° C and 150 ° C was 0.59 Pa's.
なお、実施例;!〜 3において、インデンの反応率は約 100%であった。  In Examples;! To 3, the reaction rate of indene was about 100%.
[0050] 実施例 4 [0050] Example 4
3Lの 4ロセパラブルフラスコに、実施例 1で合成したフエノール樹脂 A300g、ェピク 口ルヒドリン 900g及びジグライム 135gに溶解した後、減圧下、 60°Cにて 48%水酸化 ナトリウム水溶液 116gを 4時間かけて滴下した。この間、生成する水はェピクロルヒド リンとの共沸により系外に除き、留出したェピクロルヒドリンは系内に戻した。滴下終 了後、更に 1時間反応を継続した。その後、ェピクロルヒドリン及びジグライムを減圧 留去し、メチルイソプチルケトン 987gに溶解した後、水洗により生成した塩を除いた。 その後、 12%水酸化ナトリウム水溶液 64gを加え、 80°Cで 2時間反応させた。反応後 、水洗を行った後、溶媒であるメチルイソプチルケトンを減圧留去し、淡黄色のェポキ シ樹脂 346gを得た(エポキシ樹脂 A)。このエポキシ樹脂 Aのエポキシ当量は 278g /eq.であり、加水分解性塩素は 420ppm、軟化点は 58°C 150°Cでの溶融粘度 は 0· 045Pa ' sであった。  In a 3 L 4-rose separable flask, dissolve in 300 g of phenol resin A synthesized in Example 1, 900 g of epihydrin hydrin and 135 g of diglyme, and then under reduced pressure, 116 g of 48% aqueous sodium hydroxide solution at 60 ° C for 4 hours. And dripped. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epicyclohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, epichlorohydrin and diglyme were distilled off under reduced pressure and dissolved in 987 g of methylisoptyl ketone, and then the salt produced by washing with water was removed. Thereafter, 64 g of a 12% aqueous sodium hydroxide solution was added and reacted at 80 ° C. for 2 hours. After the reaction, washing with water was carried out, and then methylisoptyl ketone as a solvent was distilled off under reduced pressure to obtain 346 g of a light yellow epoxy resin (epoxy resin A). Epoxy resin A had an epoxy equivalent of 278 g / eq., Hydrolyzable chlorine of 420 ppm, and a softening point of 58 ° C. and 150 ° C., and a melt viscosity of 0 · 045 Pa ′s.
[0051] ここで、加水分解性塩素とは、試料 0. 5gをジォキサン 30mlに溶解後、 1Ν_ΚΟΗ 10mlを加え 30分間煮沸還流した後、室温まで冷却し、更に 80%アセトン水 100mlを カロえたものを、 0. 002N-AgNO水溶液で電位差滴定を行うことにより測定された値 [0051] Here, hydrolyzable chlorine is a sample obtained by dissolving 0.5 g of a sample in 30 ml of dioxane, adding 10 ml of 1Ν_ΚΟΗ, boiling and refluxing for 30 minutes, cooling to room temperature, and then adding 100 ml of 80% acetone water. Measured by potentiometric titration with 0.002N-AgNO aqueous solution.
3  Three
である。また、軟化点とはボール &リング法により昇温速度 5°C/分で得られる値であ り、粘度はブルックフィールド社製コーンプレート型粘度計を用いて測定した。  It is. The softening point is a value obtained by a ball & ring method at a heating rate of 5 ° C / min, and the viscosity was measured using a Brookfield cone plate viscometer.
[0052] GPC測定条件は、装置; MODEL151 (ウォーターズ (株)製)、カラム; TSK-GEL 2000 X 3本及び TSK-GEL4000 X 1本(レ、ずれも東ソー(株)製)、溶媒;テトラヒド 口フラン、流量; 1 ml/min、温度; 38°C、検出器; RIの条件で行った。赤外吸収スぺ タトルは KBr錠剤成形法により求め、 NMRスペクトルは、装置; JNM_LA400 日本電子 (株)製)を用い、アセトン- d6中で測定した。  [0052] GPC measurement conditions were as follows: apparatus; MODEL151 (manufactured by Waters Co., Ltd.), column; TSK-GEL 2000 X 3 and TSK-GEL4000 X 1 (Le, also from Tosoh Co., Ltd.), solvent; tetrahydride Mouth furan, flow rate: 1 ml / min, temperature: 38 ° C, detector; The infrared absorption spectrum was determined by the KBr tablet molding method, and the NMR spectrum was measured in acetone-d6 using an apparatus; JNM_LA400 manufactured by JEOL Ltd.
エポキシ樹脂 Aの赤外吸収スペクトルを図 1 NMRスペクトルを図 2に示す。  Fig. 1 shows the infrared absorption spectrum of epoxy resin A. Fig. 2 shows the NMR spectrum.
[0053] 実施例 5  [0053] Example 5
3Lの 4ロセパラブルフラスコに、実施例 2で合成したフエノール樹脂 B300gをェピク 口ルヒドリン 810g及びジグライム 122gに溶解した後、減圧下、 60°Cにて 48%水酸化 ナトリウム水溶液 96gを用いて、実施例 4と同様に反応を行い、淡黄色のエポキシ樹 脂 335gを得た(エポキシ樹脂 B)。エポキシ当量は 336g/eq.であり、加水分解性 塩素は 340ppm、軟ィ匕点、は 76°C、 150°Cでの溶融米占度は 0. 136Pa ' sであった。 Into a 3 L 4-separable flask, add 300 g of the phenolic resin B synthesized in Example 2 After dissolving in 810 g of oral hydrin and 122 g of diglyme, the reaction was conducted in the same manner as in Example 4 using 96 g of 48% aqueous sodium hydroxide solution at 60 ° C. under reduced pressure to obtain 335 g of a pale yellow epoxy resin. (Epoxy resin B). The epoxy equivalent was 336 g / eq., Hydrolyzable chlorine was 340 ppm, the soft rice crack point was 76 ° C, and the molten rice occupancy at 150 ° C was 0.136 Pa's.
[0054] 実施例 6 [0054] Example 6
3Lの 4ロセパラブルフラスコに、実施例 3で合成したフエノール樹脂 C300gをェピ クロルヒドリン 810g及びジグライム 122gに溶解した後、減圧下、 60°Cにて 48%水酸 化ナトリウム水溶液 99gを用いて、実施例 4と同様に反応を行い、淡黄色のエポキシ 樹脂 230gを得た(エポキシ樹脂 C)。エポキシ当量は 318g/eq.であり、加水分解 性塩素は 330ppm、軟化点は 83°C、 150°Cでの溶融粘度は 0. 226Pa ' sであった。  In a 3 L 4-rose separable flask, 300 g of phenolic resin synthesized in Example 3 was dissolved in 810 g of epichlorohydrin and 122 g of diglyme, and then 99 g of 48% aqueous sodium hydroxide solution was used at 60 ° C under reduced pressure. Then, the reaction was carried out in the same manner as in Example 4 to obtain 230 g of a light yellow epoxy resin (epoxy resin C). The epoxy equivalent was 318 g / eq., Hydrolyzable chlorine was 330 ppm, softening point was 83 ° C, and melt viscosity at 150 ° C was 0.226 Pa's.
[0055] 実施例 7〜; 11及び比較例;!〜 2  [0055] Examples 7 to 11 and comparative examples;! To 2
エポキシ樹脂成分として、実施例 4〜6で合成したエポキシ樹脂 A〜C、ビスフエノ ール F型エポキシ樹脂(エポキシ樹脂 D ;東都化成製、 YDF— 170、エポキシ当量 1 69)、ビフエニル型エポキシ樹脂(エポキシ樹脂 E ;ジャパンエポキシレジン製、 YX— 4000H、エポキシ当量 195、融点 105°C)、硬化剤としてフエノールノポラック(硬化 剤 A ; OH当量 107、軟化点 82°C)、フエノールァラルキル樹脂(硬化剤 B ;三井化学 製、 XL_225-LL、 OH当量 175、軟化点 74°C)を用い、充填剤としてシリカ(平均粒 径、 22 m)、硬化促進剤としてトリフエニルホスフィンを表 1に示す配合で混練しェ ポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて 175°Cにて成形し、 17 5°Cにて 12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供し た。なお、表 1に示す配合量は重量部である。  As epoxy resin components, epoxy resins A to C synthesized in Examples 4 to 6, bisphenol F type epoxy resin (epoxy resin D; manufactured by Tohto Kasei, YDF-170, epoxy equivalent 1 69), biphenyl type epoxy resin ( Epoxy resin E: Made by Japan Epoxy Resin, YX-4000H, Epoxy equivalent 195, Melting point 105 ° C), Phenolic nopolac as curing agent (Curing agent A; OH equivalent 107, Softening point 82 ° C), phenol aralkyl resin (Curing agent B: Mitsui Chemicals, XL_225-LL, OH equivalent 175, softening point 74 ° C), silica (average particle size, 22 m) as filler, and triphenylphosphine as curing accelerator in Table 1. An epoxy resin composition was obtained by kneading with the formulation shown. The epoxy resin composition was molded at 175 ° C. and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements. The amounts shown in Table 1 are parts by weight.
[0056] ガラス転移点 (Tg)は、熱機械測定装置により、昇温速度 10°C/分の条件で求め た。吸水率は、本エポキシ樹脂組成物を用いて、直径 50mm、厚さ 3mmの円盤を成 形し、ポストキュア後、 85°C、相対湿度 85%の条件で 100時間吸湿させたときのもの である。接着強度は、 42ァロイ板 2枚の間に 25mm X 12. 5mm X 0. 5mmの成形 物を圧縮成型機により 175°Cで成形し、 175°C、 12時間ポストキュアを行った後、引 張剪断強度を求めることにより評価した。難燃性は、厚さ 1/16インチの試験片を成 形し、 UL94V— 0規格によって評価した。燃焼時間とは、 n = 5の試験での合計燃焼 時間である。表 2に評価結果を示す。 [0056] The glass transition point (Tg) was determined by a thermomechanical measurement device under a temperature increase rate of 10 ° C / min. The water absorption is the value obtained when the epoxy resin composition is used to form a disk with a diameter of 50 mm and a thickness of 3 mm, and after post-curing, it is absorbed for 100 hours at 85 ° C and 85% relative humidity. is there. The adhesive strength is 25 mm X 12.5 mm X 0.5 mm between two 42 alloy plates, molded at 175 ° C with a compression molding machine, post-cured at 175 ° C for 12 hours, and then drawn. Evaluation was made by determining the tensile shear strength. Flame retardancy was evaluated by UL94V-0 standard by forming a 1/16 inch thick test piece. Burning time is the total burning in a test with n = It's time. Table 2 shows the evaluation results.
[0057] [表 1] [0057] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0058] [表 2] [0058] [Table 2]
Figure imgf000016_0002
産業上の利用の可能性
Figure imgf000016_0002
Industrial applicability
[0059] 本発明のエポキシ樹脂及び本発明の製造方法で得られるエポキシ樹脂は、ェボキ シ樹脂組成物に応用した場合、優れた成形性、フイラ一高充填性を有するとともに、 耐湿性、耐熱性及び難燃性に優れた硬化物を与え、電気'電子部品類の封止、回 路基板材料等の用途に好適に使用することが可能である。特に、難燃性に優れ、環 境負荷のある難燃剤の使用を不要とさせ又は減少させる。  [0059] When applied to an epoxy resin composition, the epoxy resin of the present invention and the epoxy resin obtained by the production method of the present invention have excellent moldability, high filler filling property, moisture resistance, and heat resistance. In addition, it provides a cured product having excellent flame retardancy, and can be suitably used for applications such as sealing of electric and electronic parts, circuit board materials, and the like. In particular, it makes unnecessary or reduces the use of flame retardants with excellent flame retardancy and environmental impact.

Claims

請求の範囲  The scope of the claims
下記一般式(1)で表されるフエノール樹脂,
Figure imgf000017_0001
ここで、 R Rは、独立に水素原子又は下記式 (a)若しくは (b)で表される置換基
Phenolic resin represented by the following general formula (1),
Figure imgf000017_0001
Here, RR is independently a hydrogen atom or a substituent represented by the following formula (a) or (b):
1 4  14
を示すが、少なくとも 1つは上記置換基である。 Xは、単結合、 CH CH (CH  Wherein at least one of the above substituents. X is a single bond, CH CH (CH
2  2
)―、一 C (CH ) ― C〇一 〇一 S 又は S〇一を示す;  )-, 1 C (CH)-C 0 1 0 1 Indicates S or S 0 1;
Figure imgf000017_0002
下記一般式 (2)、
Figure imgf000017_0003
ここで、 Xは、単結合、一 CH―、一 CH (CH )―、一 C (CH ) ―、一 C〇一 一〇
Figure imgf000017_0002
The following general formula (2),
Figure imgf000017_0003
Where X is a single bond, one CH-, one CH (CH)-, one C (CH)-, one C
2 3 3 2  2 3 3 2
― S 又は— SO—を示す;  -Indicates S or-SO-;
2  2
で表されるビスフエノール化合物 1モルに対して、インデン又はァセナフチレンから選 ばれる芳香族ォレフイン 0· 2 4モルを反応させることを特徴とする下記式(a)又は( b)  The following formula (a) or (b), wherein 1 mol of a bisphenol compound represented by the formula is reacted with 0.2 mol of aromatic olefin selected from indene or acenaphthylene:
Figure imgf000017_0004
で表される置換基を有するフエノール樹脂の製造方法。
Figure imgf000017_0004
The manufacturing method of phenol resin which has a substituent represented by these.
[3] 下記一般式 (3)で表されるエポキシ樹脂。
Figure imgf000018_0001
ここで、 R Rは、独立に水素原子又は下記式 (a)若しくは (b)で表される置換基
[3] An epoxy resin represented by the following general formula (3).
Figure imgf000018_0001
Here, RR is independently a hydrogen atom or a substituent represented by the following formula (a) or (b):
1 4  14
を示すが、少なくとも 1つは上記置換基であり、 Xは、単結合、 CH CH (CH  Wherein at least one of the above substituents, X is a single bond, CH CH (CH
2  2
)一、 C (CH ) CO O S 又は一 SO—を示し、 nは、 0 50の ), C (CH) CO O S or SO—, n is 0 50
3 3 2 2 3 3 2 2
数を示す;  Indicate the number;
Figure imgf000018_0002
Figure imgf000018_0002
[4] 請求項 1に記載のフエノール樹脂とェピクロルヒドリンを反応させることを特徴とする 請求項 3に記載のエポキシ樹脂の製造方法。 [4] The method for producing an epoxy resin according to [3], wherein the phenol resin according to claim 1 is reacted with epichlorohydrin.
[5] 請求項 2に記載のフエノール樹脂の製造方法で得られたフエノール樹脂とェピクロ ルヒドリンを反応させることを特徴とするエポキシ樹脂の製造方法。 [5] A method for producing an epoxy resin, comprising reacting the phenol resin obtained by the method for producing a phenol resin according to claim 2 with epichlorohydrin.
[6] 請求項 5に記載のエポキシ樹脂の製造方法によって得られたことを特徴とするェポ キシ樹脂。 [6] An epoxy resin obtained by the method for producing an epoxy resin according to [5].
[7] エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物であって、エポキシ樹脂成 分として請求項 3に記載のエポキシ樹脂を配合したことを特徴とするエポキシ樹脂組 成物。  [7] An epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin composition according to claim 3 is blended as an epoxy resin component.
[8] 請求項 7に記載のエポキシ樹脂組成物を硬化させて得られたことを特徴とする硬化 物。  [8] A cured product obtained by curing the epoxy resin composition according to claim 7.
PCT/JP2007/069482 2006-10-04 2007-10-04 Epoxy resin, phenol resin, their production methods, epoxy resin composition and cured product WO2008041749A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780036932XA CN101522739B (en) 2006-10-04 2007-10-04 Epoxy resin, phenol resin, their production methods, epoxy resin composition and cured product
KR1020097008024A KR101423170B1 (en) 2006-10-04 2007-10-04 Epoxy resin, phenol resin, their production methods, epoxy resin composition and cured product
JP2008537550A JP5515058B2 (en) 2006-10-04 2007-10-04 Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006272566 2006-10-04
JP2006-272566 2006-10-04

Publications (1)

Publication Number Publication Date
WO2008041749A1 true WO2008041749A1 (en) 2008-04-10

Family

ID=39268601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069482 WO2008041749A1 (en) 2006-10-04 2007-10-04 Epoxy resin, phenol resin, their production methods, epoxy resin composition and cured product

Country Status (5)

Country Link
JP (1) JP5515058B2 (en)
KR (1) KR101423170B1 (en)
CN (1) CN101522739B (en)
TW (1) TWI427093B (en)
WO (1) WO2008041749A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178836A (en) * 2010-02-26 2011-09-15 Nippon Steel Chem Co Ltd Crystalline epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
WO2012014715A1 (en) * 2010-07-30 2012-02-02 Dic株式会社 Curing resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
WO2012043563A1 (en) * 2010-09-29 2012-04-05 Dic株式会社 Curable resin composition, substance resulting from curing same, phenol resin, epoxy resin, and semiconductor sealing material
WO2013187185A1 (en) * 2012-06-12 2013-12-19 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410919B1 (en) * 2010-09-27 2014-06-24 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyhydric hydroxy resin, epoxy resin, production method therefor, epoxy resin composition and cured product thereof
WO2020017399A1 (en) * 2018-07-19 2020-01-23 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate and wiring board
CN114149659B (en) * 2021-12-31 2023-07-14 苏州生益科技有限公司 Resin composition and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204141A (en) * 1999-01-12 2000-07-25 Nippon Steel Chem Co Ltd Polyhydric hydroxy resin, epoxy resin, epoxy resin composition including them and its cured product
WO2003104295A1 (en) * 2002-06-11 2003-12-18 新日鐵化学株式会社 Acenaphthylene modified phenolic resin and epoxy resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE785914A (en) * 1971-07-08 1973-01-08 Munchen Michael H PROCESS FOR MANUFACTURING FILM-GENERATED CONDENSATION PRODUCTS WHICH CAN BE USED AS BINDERS IN PRINTING INKS
GB1403895A (en) * 1971-10-08 1975-08-28 Hoechst Ag Process for the preparation of natural resin products
JP4150104B2 (en) * 1998-05-13 2008-09-17 新日本石油株式会社 Anticorrosion paint composition
JPH11343386A (en) * 1998-06-01 1999-12-14 Nippon Steel Chem Co Ltd Phenol resin composition and epoxy resin composition containing the same
JP2001151861A (en) 1999-11-25 2001-06-05 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204141A (en) * 1999-01-12 2000-07-25 Nippon Steel Chem Co Ltd Polyhydric hydroxy resin, epoxy resin, epoxy resin composition including them and its cured product
WO2003104295A1 (en) * 2002-06-11 2003-12-18 新日鐵化学株式会社 Acenaphthylene modified phenolic resin and epoxy resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178836A (en) * 2010-02-26 2011-09-15 Nippon Steel Chem Co Ltd Crystalline epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
WO2012014715A1 (en) * 2010-07-30 2012-02-02 Dic株式会社 Curing resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
WO2012043563A1 (en) * 2010-09-29 2012-04-05 Dic株式会社 Curable resin composition, substance resulting from curing same, phenol resin, epoxy resin, and semiconductor sealing material
JP5136729B2 (en) * 2010-09-29 2013-02-06 Dic株式会社 Curable resin composition, cured product thereof, phenol resin, epoxy resin, and semiconductor sealing material
US8703845B2 (en) 2010-09-29 2014-04-22 Dic Corporation Curable resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
WO2013187185A1 (en) * 2012-06-12 2013-12-19 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JPWO2013187185A1 (en) * 2012-06-12 2016-02-04 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom

Also Published As

Publication number Publication date
TW200833728A (en) 2008-08-16
JP5515058B2 (en) 2014-06-11
KR20090075826A (en) 2009-07-09
CN101522739A (en) 2009-09-02
JPWO2008041749A1 (en) 2010-02-04
CN101522739B (en) 2012-09-05
TWI427093B (en) 2014-02-21
KR101423170B1 (en) 2014-07-25

Similar Documents

Publication Publication Date Title
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5931234B2 (en) Method for producing epoxy resin composition
WO2008041749A1 (en) Epoxy resin, phenol resin, their production methods, epoxy resin composition and cured product
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP6139997B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP6124865B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2017066268A (en) Polyhydric hydroxy resin, epoxy resin, methods of producing them, epoxy resin composition and cured article thereof
JP5166096B2 (en) Polyvalent hydroxy compound, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP7320942B2 (en) Epoxy resin, epoxy resin composition and cured product
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5139914B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5570453B2 (en) Epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2004123859A (en) Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
JP5276031B2 (en) Crystalline epoxy resin, method for producing the same, epoxy resin composition using the same, and cured product
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
WO2003104295A1 (en) Acenaphthylene modified phenolic resin and epoxy resin composition
JP2004010724A (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product of the composition
JP2022011688A (en) Resin composition and cured product thereof
JP2007039501A (en) Epoxy resin, method for producing the same, epoxy resin composition, and cured product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036932.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829220

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008537550

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097008024

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07829220

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)