WO2008037167A1 - Circuit de secours à consommation électrique super faible - Google Patents

Circuit de secours à consommation électrique super faible Download PDF

Info

Publication number
WO2008037167A1
WO2008037167A1 PCT/CN2007/002210 CN2007002210W WO2008037167A1 WO 2008037167 A1 WO2008037167 A1 WO 2008037167A1 CN 2007002210 W CN2007002210 W CN 2007002210W WO 2008037167 A1 WO2008037167 A1 WO 2008037167A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
low power
terminal network
output
standby circuit
Prior art date
Application number
PCT/CN2007/002210
Other languages
English (en)
French (fr)
Inventor
Shuguang He
Chun Wah Lam
Original Assignee
Shuguang He
Chun Wah Lam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shuguang He, Chun Wah Lam filed Critical Shuguang He
Priority to EP07785143A priority Critical patent/EP2068432A1/en
Priority to US12/306,580 priority patent/US8125804B2/en
Publication of WO2008037167A1 publication Critical patent/WO2008037167A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of power saving technologies, and more particularly to an ultra low power standby circuit. Background technique
  • This low voltage DC power supply is often obtained by a power conversion device commonly known as a "power adapter.”
  • This "power adapter” is input to the power frequency AC 220V or 110V power supply, and the output low voltage DC is used to supply power to the home appliance; the “power adapter” also outputs only low voltage AC.
  • AC/DC switching power supply technology is used, or the power frequency transformer and rectification filtering technology are used to convert the AC power to low-voltage DC; only the low-voltage AC is output without rectification and filtering.
  • the "power adapter" using the power frequency transformer is hereinafter referred to as “common power frequency adapter”, and the “normal power frequency adapter” consumes less energy under no-load conditions, that is, the standby power consumption is too large. , wasting energy.
  • the traditional "common power frequency adapter” is a power-frequency transformer for step-down and a rectifier bridge plus a filter electrolytic capacitor (only low-voltage AC output, even rectification and filtering are eliminated), with the outer casing.
  • the demand is quite large and the competition is fierce.
  • the power frequency transformer consumes copper and silicon steel sheets, it has the disadvantages of large volume and heavy weight.
  • the process is easy to achieve high insulation strength, has good electric strength, good anti-surge impact performance, and easy maintenance.
  • There is no advantage of electromagnetic radiation pollution, so "common power frequency adapter” still has its living space, these advantages are precisely the more difficult problems in switching power supply technology.
  • the "Energy Star” certification imposes strict regulations on the lower limit of energy utilization efficiency under the "power adapter” operating state, and the upper limit of the energy consumption in the no-load state, that is, standby power consumption, and is also in a timely manner.
  • the "power adapter" standby power consumption upper limit The power supply of less than 10W "power adapter” after July 1, 2006 standby power consumption shall not be greater than 0. 3W; greater than 10W less than 250W "power adapter” standby power consumption shall not be greater than 0 . 5W.
  • the present invention solves this technical problem by accounting for an ultra-low power standby circuit.
  • the standby power consumption of the measured samples is much lower than the "Energy Star" certification.
  • the ultra low power standby circuit of the present invention is a four-terminal network, and the input end of the four-terminal network is connected in series to the secondary side of the power frequency transformer, and the output end of the four-terminal network is connected in series to the primary side of the power frequency transformer;
  • the four-terminal network includes a sensing and isolation sensing portion, a signal amplification and driving portion, an electronic switch, and an impedance element.
  • the detection and isolation sensing part of the four-terminal network includes a current transformer, the input of the current transformer acts as the input of the four-terminal network, and the output of the current transformer is connected to the signal amplification and driving part.
  • the signal amplifying and driving portion in the four-terminal network is preferably a double voltage rectification or a multiple voltage rectification method, and the driving circuit for driving the electronic switch is preferably in the form of a three-pole transistor separate element amplifier.
  • the impedance element is connected across the output of the four-terminal network; the impedance element can be a resistor or a capacitive reactance or a combination of a resistor and a capacitive reactance, or a constant current source composed of an electronic component.
  • the electronic switch includes a thyristor and a rectifier bridge.
  • the ultra-low power standby circuit of the invention can be made into a small module, which is attached to the "common power frequency adapter", and the "normal power frequency adapter” is upgraded into a new type of "low standby power consumption power frequency adapter”. .
  • the standby power consumption is greatly reduced, the energy saving effect is achieved, and the cost is low.
  • the ultra low power standby circuit of the present invention can also be applied to other products requiring low standby power consumption.
  • 3 ⁇ 4 1 is a schematic block diagram of the ultra low power standby circuit of the present invention.
  • FIG. 2 is a schematic diagram of a conventional power adapter to be connected to the ultra low power standby circuit of the present invention.
  • FIG. 3 is a specific circuit diagram of the ultra low power standby circuit of the present invention.
  • FIG. 4 is a schematic diagram of a triple voltage rectification circuit applied in the present invention.
  • FIG. 5 is an overall circuit diagram of an ultra low power standby circuit applied to a power frequency adapter according to the present invention. detailed description
  • the ultra low power standby circuit of the present invention comprises a detection isolation sensing circuit 1, a signal amplification driving circuit 2, an electronic switch 3 and an impedance element Z.
  • the two terminals XI and X2 in this figure disconnect the AC input of the primary side of the power frequency transformer T1.
  • the purpose is to connect an electronic switch in series between the two terminals.
  • the two terminals X3 and X4 disconnect the AC output of the secondary side of the power frequency transformer T1.
  • the purpose is to connect a detection circuit in series between the two terminals to detect whether the load is connected to the power. If the XI and X2 terminals are shorted together, and the X3 and X4 terminals are also shorted together, this is the "normal power frequency adapter".
  • This circuit only has three components: power frequency transformer Tl, rectifier bridge VC1 and filter electrolytic capacitor C1. Among them, ⁇ 1 and ⁇ 2 are two terminals that input power frequency AC from the power grid, and OUT OUT2 is the two terminals of the "power frequency adapter" output low voltage DC.
  • FIG. 1 This block diagram embodies the technical idea of the present invention.
  • the functions of each part of the circuit are as follows: Detecting the isolated sensing circuit 1: detecting and isolating the sensing; detecting whether there is a signal for supplying power to the load, and isolating the sensing to the subsequent circuit, the signal is input by the four-terminal network Terminals 3, ⁇ 4 two terminal inputs.
  • Signal amplification drive circuit 2 Signal amplification and driving; its function is to amplify the weak sensing signal, and output a driving signal to control the electronic switch to open and close.
  • Electronic switch 3 Electronic switch; When the load is connected to power, the electronic switch should be turned on, otherwise it should be disconnected.
  • the two connection terminals of the electronic switch are XI, ⁇ 2, which is the output end of the four-terminal network; XI and ⁇ 2 are also connected with an impedance element ⁇ at both ends.
  • the four terminals of XI, ⁇ 2, ⁇ 3, ⁇ 4 in Fig. 1 are respectively connected with the four terminals of XI, ⁇ 2, ⁇ 3, ⁇ 4 in Fig. 2, which is "the power frequency adapter with extremely low standby power consumption".
  • the specific circuit of each circuit frame will be described in detail next.
  • the impedance element Z is a very important component that is in parallel with the electronic switch.
  • the electronic switch is turned off, and the impedance element Z acts as the AC path of the primary side of the power frequency transformer T1.
  • a small current such as lmA
  • the standby power frequency transformer there is no current flowing through the secondary side of T1, but there is an induced voltage, which is proportional to the primary side inductance. If there is load access at this time, the secondary side of T1 will also induce a small current. This signal is sensed, amplified, and the electronic switch is turned on.
  • the "power frequency adapter" is in the normal power supply state.
  • the impedance element Z can be either a resistor or a capacitive reactance, a combination of a resistor and a capacitive reactance, or a constant current source composed of electronic components.
  • the impedance element Z either uses a high value resistor or a low value capacitor.
  • Detecting the isolation sensing circuit 1 is responsible for detecting whether the load is powered, and isolating this signal to the task of the subsequent amplifying circuit.
  • the current transformer should be preferred. As shown by the dotted line box in Figure 3, there is no current on the secondary side of the power transformer T1 during standby, and the induced voltage of the secondary of the current transformer T2 is zero. Once the load is connected, the power frequency transformer T1 A current flows through the secondary side. Although this current is small, the induced voltage of the secondary of the current transformer T2 is not zero.
  • the magnetic material with high magnetic permeability is selected, and the appropriate primary and secondary turns ratio is used to make the induced voltage of the secondary current of the current transformer T2 as large as possible.
  • Current transformers also have the advantage of signal isolation sensing, which facilitates subsequent circuit design.
  • the circuit for detecting the isolation sensing circuit 1 is essentially an "electric-magnetic-electric” converter. There are many circuits that can realize the “electric-magnetic-electric” conversion method. In addition to current transformers, Hall elements, magnetic sensors (Wiegent devices), electret elements, etc. can be used properly. “Electric - 3 ⁇ 4 ⁇ ⁇ electric” conversion function.
  • the circuit of the signal amplification driving circuit 2 is responsible for amplifying the weak sensing signal, and driving and controlling the electronic switch to open and close.
  • the induced AC voltage from the secondary of the front-end current transformer T2 is not large, where the capacitors C3, C4 and the diodes VD1, VD2 form a double voltage rectifier circuit, which is both amplified.
  • the function is to obtain a DC drive signal. If the double voltage rectification amplification factor is not enough, multi-voltage rectification can be used, as shown in Fig. 4 is a triple voltage rectification circuit.
  • the resistors R1, R2, 3 and the transistors VI and V2 in the dotted line frame of Fig. 3 constitute an amplifying and driving circuit, which amplifies the DC drive signal obtained by voltage doubler rectification, and obtains sufficient power to drive and control the electronic switch.
  • capacitor C3 is connected in series with the cathode of diode VD1 at point (3), and the other end of C3 is connected to one output terminal (1) of current transformer T2, and the anode of VD1 is connected to the other output terminal of T2 ( 2);
  • the anode of diode VD2 is connected to the series connection point of C3 and VD1 (3), the resistor R3 and capacitor C4 are connected in series at point (4), the cathode of VD2 is connected to this point;
  • the other end of R3 is connected to the base of transistor VI, C4
  • the other end is connected to the output terminal of T2 (2); the collector of transistor VI is connected to the transistor.
  • the collector of V2 is connected to resistor R1, and the other end of R1 is connected to the anode of thyristor VT1 (7); the emitter of VI is connected with V2 After the base and resistor R2 are connected, they are connected to the output terminal (2) of T2, the other end of R2 is connected to the cathode (8) of thyristor VT1, and the emitter of V2 is connected to the gate (6) of VT1.
  • the specific circuit of the electronic switch 3 is as shown by the dotted line C in Fig. 3.
  • the electronic switch When the load is connected to the power, the electronic switch should be turned on, otherwise it should be turned off.
  • this electronic switch consists of two components: the crystal tube VT1 and the rectifier bridge VC2. Specifically, the anode (7) of the VT1 is connected to the positive terminal (9) of the VC2 output, the cathode (8) of the VT1 is connected to the negative terminal (10) of the VC2 output, and the gate (6) of the VT1 is connected to the emitter of the transistor V2;
  • the AC inputs (11) and (12) of VC2 act as outputs XI and X2 of the four-terminal network.
  • Impedance component Z is a single capacitor C2 that is connected between XI and X2.
  • the thyristor VT1 is a "half-controlled” component that can be replaced by a “full control” component such as a transistor, field effect transistor, or IGBT transistor.
  • the output current of the transistor of the transistor V2 triggers the gate of the thyristor VT1, and the thyristor is turned on.
  • the diode in the rectifier bridge VC2 is shorted to XI and X2, that is, the impedance component Z is shorted, "power frequency The adapter "is in a normal power state.
  • the present invention is characterized in that the ultra-low power standby circuit is a four-terminal network, and the input terminals of the four-terminal network are X3 and X4.
  • the output terminals are XI and X2; the input terminals X3 and X4 of the four-terminal network are serially connected to the secondary side of the power frequency transformer T1, and the output terminals XI and X2 of the four-terminal network are serially connected to the primary side of the power frequency transformer T1; It consists of four parts: detection and isolation sensing, signal amplification and driving, electronic switching and impedance components.
  • the first part of the four-terminal network is for detecting and isolating sensing. In essence, it is an "electric-magnetic-electric” converter.
  • This "electric-magnetic-electric” converter is the preferred current transformer of the present invention.
  • Huo Element, magnetic sensor (Wiegent device), electret element can also be used.
  • the second part of the four-terminal network is signal amplification and driving.
  • the sensing signal amplifies the preferred double voltage rectification or multi-voltage rectification circuit of the present invention, and drives the preferred three-pole transistor separation element amplifier of the present invention as the driving circuit of the electronic switch.
  • the third part of the four-terminal network is the electronic switch and the impedance element ⁇ .
  • the impedance element Z must be connected to the output XI and X2 of the four-terminal network, and is connected in parallel with the electronic switch.
  • the invention preferably has an inter-crystalline tube VT1 - a rectifier bridge.
  • the circuit of the two components of the VC2 is an electronic switch, and the impedance component is a capacitor C2.
  • the AC input terminal of the VC2 is the output terminals XI and X2 of the four-terminal network.
  • Figure 5 is the overall circuit diagram of the power frequency adapter. 2 and 3 are combined. It is a preferred embodiment of the invention. Industrial applicability
  • the ultra-low power standby circuit of the invention can be made into a small module, attached to the "common power frequency adapter", and the "normal power frequency adapter” is upgraded into a new type of "low standby power consumption power frequency adapter”. .
  • the standby power consumption is greatly reduced, the energy saving effect is achieved, and the cost is low.
  • the ultra low power standby circuit of the present invention can also be applied to other products requiring low standby power consumption.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Description

超低功耗待机电路
技术领域 本发明涉及节电技术领域, 特别是一种超低功耗待机电路。 背景技术
很多小功率家电产品需要低压直流电源供电。 这个低压直流电源常通过一种俗称为 "电源适配器"的 电源变换装置来得到。 这种 "电源适配器"输入工频交流 220V或 110V电源, 输出低压直流为家电产品供 电; "电源适配器"也有仅输出低压交流的。 "电源适配器"内或采用 AC/DC开关电源技术, 或采用工频变 压器加整流滤波技术, 将交流电源变换为低压直流电; 仅输出低压交流的无需整流滤波。采用工频变压器 的这种 "电源适配器", 为叙述方便计, 以下简称为 "普通工频适配器", "普通工频适配器" 空载状态下 的能耗较髙, 也就是待机功耗偏大, 浪费能源。
传统的 "普通工频适配器"是由一个降压用的工频变压器加一个整流桥再加一个滤波电解电容 (仅输 出低压交流的, 连整流滤波都免了), 配上外壳即成。 但需求量颇大, 竞争激烈。 虽然工频变压器耗用铜 材、 硅钢片, 存在体积较大, 重量较重的缺点, 但其工艺较易做到高绝缘强度, 具有抗电强度好, 抗浪涌 冲击性能好, 维修容易, 没有电磁辐射污染等优点, 所以 "普通工频适配器"仍有它的生存空间, 这些优 点恰恰是开关电源技术中较为棘手的问题。
为节约能源, 保护环境, 各国先后出台了许多节能的法律法规。 如美国出台了 "能源之星"认证, 它 是由美国政府支持, 以高效节能认证的方式促进商业及个人的环境保护意识。 "电源适配器"生产商可以 以自愿的方式, 选择并通过由美国环保署制定的严格的能效标准和检测程序, 获取能源之星认证。 生产商 "电源适配器" 获取能源之星认证后, 即意味着获取了对某些国家、 地区出口产品的 "准入"资格, 对 其产品的促销作用非常明显。 我国中标认证中心 (中国节能产品认证中心) 作为美国环保署的合作伙伴, 也制定了类似 "能源之星" 的认证标准。
"能源之星"认证对于 "电源适配器"工作状态下能源利用效率的下限, 空载状态下的能耗上限即待 机功耗, 作出了严格的规定, 而且与时倶进。例如对"电源适配器" 待机功耗上限规定: 小于 10W的"电 源适配器"在 2006年 7月 1 日后待机功耗不得大于 0. 3W; 大于 10W小于 250W的 "电源适配器"待机功 耗不得大于 0. 5W。
但 "普通工频适配器"的待机功耗远达不到 "能源之星"认证标准, 成了一个技术难题, 严重影响出 口销售。 发明内容
本发明 计了一种超低功耗待机电路,解决了这一技术难题。实测样品的待机功耗远低于"能源之星" 认证规定的指标。
本发明的超低功耗待机电路是一个四端网络, 该四端网络的输入端串联接入工频变压器的副边, 该四 端网络的输出端串联接入工频变压器的原边; 这个四端网络包括检测和隔离传感部分、信号放大和驱动部 分、 电子开关和阻抗元件。 四端网络内检测和隔离传感部分包括一个电流互感器, 电流互感器的输入端作为四端网络的输入端,' 电流互感器的输出端下接信号放大和驱动部分。
四端网络内信号放大和驱动部分优选二倍压整流或多倍压整流方式,驱动电子开关的驱动电路优选三 极晶体管分离元件放大器形式。
阻抗元件接于四端网络的输出两端; 阻抗元件可以是电阻或容抗或电阻与容抗的组合,还可以是由电 子元件组成的恒流源。
电子开关包括一个晶闸管、 一个整流桥。
本发明的超低功耗待机电路可制成一个小模块, 附在"普通工频适配器"内,便将"普通工频适配器" 升格成为一种新型的 "低待机功耗的工频适配器"。使其待机功耗大大降低, 达到节能效果, 且成本较低。 本发明的超低功耗待机电路还可应用于需要低待机功耗的其它产品上。 附图说明
¾ 1为本发明超低功耗待机电路的原理框图。
图 2为待接入本发明超低功耗待机电路的习知的工 适配器示意图。 图 3为本发明超低功耗待机电路的具体电路图。
图 4为本发明中应用的三倍压整流电路示意图。 图 5为本发明超低功耗待机电路应用于工频适配器的整体电路图。 具体实施方式
以下结合附图来阐述本发明原理。 请参阅图 1, 把图 1所示框图视作一个四端网络, 这个四端网络的输入为 X3、 X4两个端子, 输出为 XI、 X2两个端子。 本发明超低功耗待机电路包括检测隔离传感电路 1, 信号放大驱动电路 2, 电子开关 3 以及阻抗元件 Z。
请一并参阅图 2所示电路,该图中的 XI与 X2两个端子断开了工频变压器 T1原边的交流的输入, 目 的是要在这两个端子间串联接入一个电子开关; X3与 X4两个端子断开了工频变压器 T1副边的交流输出, 目的是要在这两个端子间串联接入一个检测电路, 检测负载是否接入用电。 如果将 XI与 X2两个端子短 接起来, 同时也将 X3与 X4两个端子短接起来, 这就是 "普通工频适配器"了。 这个电路只有工频变压 器 Tl、 整流桥 VC1和滤波电解电容 C1三个元器件。 其中 ΙΝ1、 ΙΝ2是从电网输入工频交流的两个端子, OUT OUT2是 "工频适配器" 输出低压直流的两个端子。
再参阅图 1。该框图体现了本发明的技术构思。 图中各部分电路的功能分别为: 检测隔离传感电路 1 : 检测、 隔离传感; 由它检测出是否有对负载供电的信号, 并隔离传感到后续电路, 这个信号由四端网络的 输入端 Χ3、 Χ4两个端子输入。 信号放大驱动电路 2: 信号放大、 驱动; 其作用为放大微弱传感信号, 输 出一个驱动信号控制电子开关通、 断。 电子开关 3: 电子开关; 当负载接入用电时, 该电子开关应该接通, 否则应该断开。 电子开关的两个连接端子为 XI、 Χ2, 即是四端网络的输出端; XI、 Χ2两端还连接了一 个阻抗元件 Ζ 。 将附图 1中的 XI、 Χ2、 Χ3、 Χ4四个端子与附图 2中的 XI、 Χ2、 Χ3、 Χ4四个端子分 别对应相连, 这就是 "特低待机功耗的工频适配器"的设计方案。 因为传输的是交流信号, 也可以将附图 1中的 XI与附图 2中的 Χ2相连、 附图 1中的 Χ2与附图 2中的 XI相连; 也可以将附图 1中的 Χ3与附 图 2中的 X4相连、 附图 1中的 X4与附图 2中的 X3相连; 这样连接同样正确。下一步再详细说明各个电 路框的具体电路。
阻抗元件 Z是很重要的元件, 它与电子开关是并联关系。 待机时, 电子开关断开, 阻抗元件 Z作为 工频变压器 T1原边的交流通路。 适当选取阻抗元件 Z的值, 使待机时工频变压器 T1的原边流过一个很 小的电流, 例如 lmA。 待机时工频变压器 T1副边无电流流过, 但有感应电压, 此感应电压大小与原边电 感成正比。 若此时有负载接入, T1 副边也会感应产生一个小电流, 这个信号通过传感、 放大, 驱动电子 开关接通, "工频适配器" 即处于正常供电状态。
由于待机时 "工频适配器" 内仅阻抗元件 Z流过 1mA左右的小电流, 其待机功耗必然低于 "能源之 星"认证标准。 阻抗元件 Z可以是电阻或是容抗, 也可以是电阻与容抗的组合, 还可以是由电子元件组 成的恒流源。 为简单计, 阻抗元 Z或选用一个高值电阻, 或选用一个低值电容。
实现附图 1各个框功能的具体电路有多种, 以下为一种较佳的实施方式。
检测隔离传感电路 1的承担检测负载是否用电, 并将这一信号隔离传感到后续放大电路的任务。 电流 互感器应是首选, 如附图 3的 A虚线框所示, 待机时工频变压器 T1副边无电流, 电流互感器 T2次级的 感应电压为零; 一旦接入负载, 工频变压器 T1 副边便有电流流过, 虽然这个电流很小, 电流互感器 T2 次级的感应电压就不为零了。 选用高磁导率的磁性材料, 合适的初、 次级匝数比, 尽可能使电流互感器 T2次级的感应电压大一些。 电流互感器还有信号隔离传感的优点, 这为后续电路设计带来方便。
检测隔离传感电路 1的电路实质是一个 "电——磁——电"的转换器。 能实现 "电——磁——电"转 换方式的电路多种多样, 除电流互感器外, 霍尔元件、 磁敏传感器 (韦根特器件), 驻极体元件等, 恰当 使用都能实现 "电—— ¾ ^■电"转换功能。
信号放大驱动电路 2的电路负责放大微弱传感信号, 驱动控制电子开关通、断。如附图 3的 B虚线框 所示,来自前级电流互感器 T2次级的感应出来的交流电压不大,这里电容器 C3、 C4和二极管 VD1、 VD2 组成二倍压整流电路, 既起了放大作用, 又取得了直流驱动信号。 若二倍压整流放大倍数不够, 可釆用多 倍压整流, 如附图 4就是一个三倍压整流电路。
附图 3的 B虚线框内电阻 Rl、 R2、 3和三极管 VI、 V2组成放大、 驱动电路, 它把倍压整流得的直 流驱动信号作功率放大, 得到足够大的功率去驱动控制电子开关通、 断。 ·
B虚线框内电路具体这样连接: 电容器 C3与二极管 VD1的负极串联于 (3) 点, C3另一端接电流互 感器 T2的一个输出端 (1 ), VD1的正极接 T2的另一个输出端 (2); 二极管 VD2的正极连接 C3与 VD1 的串联点 (3), 电阻 R3与电容器 C4串联于(4)点, VD2的负极接于该点; R3另一端与三极管 VI的基 极连接, C4另一端接 T2的输出端 (2); 三极管 VI的集电极与三极管. V2的集电极相连后再与电阻 R1 连接, R1另一端与晶闸管 VT1阳极 (7)连接; VI的发射极与 V2的基极及电阻 R2相连后, 再连到 T2 的输出端 (2), R2另一端接晶闸管 VT1的阴极 (8), V2的发射极接 VT1的门极 (6)。 '
电子开关 3的具体电路如附图 3的 C虚线框所示, 当负载接入用电时, 该电子开关应该接通, 否则应 该断开。 如附图 3的 C虚线框所示, 这个电子开关由晶闹管 VT1、 整流桥 VC2两个元件组成。 具体这样 连接: VT1的阳极 (7) 接 VC2输出的正端 (9), VT1的阴极 (8) 接 VC2输出的负端 (10), VT1的门 极 (6)接三极管 V2的发射极; VC2的交流输入端 (11 )、 ( 12) 作为四端网络的输出端 XI与 X2。 阻抗 元件 Z则是单个电容 C2 , 跨接在 XI与 X2之间。 晶闸管 VT1是个 "半控" 元件, 用晶体三极管、 场 效应管、 IGBT管等 "全控" 元件完全可以取代它。
当负载接入用电时, 三极管 V2发射极输出电流触发晶闸管 VT1门极, 晶闸管导通, 经过整流桥 VC2 内的二极管短接了 XI 与 X2, 即是短接了阻抗元件 Z, "工频适配器 "便处于正常供电状态。
用作放大、 驱动和电子开关可供应用的电路较多, 要依据成本、 工艺难易程度和体积小型化的可能性 来选择。
综上所述,本发明的特点是:超低功耗待机电路为一个四端网络,这个四端网络的输入端为 X3、X4, 输出端为 XI、 X2; 这个四端网络的输入端 X3、 X4串入工频变压器 T1的副边, 四端网络的输出端 XI、 X2 串入工频变压器 T1 的原边; 这个四端网络由检测和隔离传感、 信号放大和驱动、 电子开关和阻抗元 件四部分所组成。
四端网络的第一部分为检测和隔离传感, 实质是一个"电——磁——电"转换器, 这个"电——磁一 一电" 转换器本发明优选电流互感器, 当然, 霍尔元件、 磁敏传感器(韦根特器件), 驻极体元件也可选 用。
四端网络的第二部分为信号放大和驱动, 传感信号放大本发明优选二倍压整流或多倍压整流电路, 驱 动本发明优选三极晶体管分离元件放大器作为电子开关的驱动电路。
四端网络的第三部分为电子开关和阻抗元件∑, 阻抗元件 Z必须接于四端网络的输出 XI、 X2两端, 与电子开关是并联关系。 本发明优选一个晶间管 VT1—个整流桥 VC2两个元件的电路作电子开关, 阻抗 元件则是电容 C2, VC2的交流输入端即是四端网络的输出端 XI与 X2。
在 "普通工频适配器" 内附加超低功耗待机电路四端网络的模块后, 便成了 "低待机功耗的工频适 配器", 附图 5是这种工频适配器的整体电路图, 它由附图 2和附图 3组合而成。 为本发明的一种最佳实 施方式。 工业实用性
本发明的超低功耗待机电路可制成一个小模块, 附在"普通工频适配器"内, 便将"普通工频适配器" 升格成为一种新型的 "低待机功耗的工频适配器"。使其待机功耗大大降低, 达到节能效果, 且成本较低。 本发明的超低功耗待机电路还可应用于需要低待机功耗的其它产品上。

Claims

权利要求
1. 一种超低功耗待机电路, 附加于工频变压器 (T1) , 其特征在于: 所述超低功耗待机电路是一个四 端网络, 该四端网络的输入端 (X3、 X4) 串联接入工频变压器 (T1) 的副边, 该四端网络的输出端 (Xl、 X2) 串联接入工频变压器 (T1) 的原边; 这个四端网络包括检测和隔离传感部分 (1)、 信号放大和驱动 部分 (2)、 电子开关 (3) 和阻抗元件 (Z)。
2. 如权利要求 1所述的超低功耗待机电路, 其特征在于: 四端网络内检测和隔离传感部分(1)包括 一个电流互感器 (T2), 电流互感器 (T2) 的输入端作为四端网络的输入端 (X3、 X4), 电流互感器 (T2) 的输出端下接信号放大和驱动部分 (2)。 ·
3. 如权利要求 1所述的超低功耗待机电路, 其特征在于: 四端网络内信号放大和驱动部分(2)优选 二倍压整流或多倍压整流方式, 驱动电子开关的驱动电路优选三极晶体管分离元件放大器形式。
4. 如权利要求 1所述的超低功耗待机电路, 其特征在于: 阻抗元件 (Z) 接于四端网络的输出 (Xl、 X2)两端; 阻抗元件 (Z) 可以是电阻或容抗或电阻与容抗的组合, 还可以是由电子元件组成的恒流源。
5. 如权利要求 3所述的超低功耗待机电路, 其特征在于: 电子开关 (3)包括一个晶闸管(VT1)、 一 个整流桥 (VC2); 具体 (VT1 ) 的阳极 (7)接 (VC2) 输出的正端 (9), (VT1 ) 的阴极 (8) 接 (VC2) 输 出的负端 (10), (VT1) 的门极(6)接三极管 (V2) 的发射极; (VC2) 的交流输入端(11)、 ( 12)作为四 端网络的输出端 (XI) 与 (X2); 电容器 (C2) 作为阻抗元件 (Ζ), 跨接在 (XI ) 与 (Χ2) 之间。
6. 如权利要求 5所述的超低功耗待机电路, 其特征在于: 四端网络内信号放大和驱动部分 (2): 二 倍压整流和驱动电子开关的驱动电路具体包括: 电容器(C3)与二极管(VD1)的负极串联于(3)点, (C3) 另一端接电流互感器(Τ2)的一个输出端(1), (VD1)的正极接 (Τ2)的另一个输出端(2); 二极管(VD2) 的正极连接 (C3) 与 (VD1) 的串联点 (3), 电阻(R3) 与电容器 (C4) 串联于 (4) 点, (VD2) 的负极接 于该点; (R3) 另一端与三极管 (VI) 的基极连接, (C4)另一端接 (Τ2) 的输出端(2); 三极管 (VI) 的 集电极与三极管 (V2) 的集电极相连后再与电阻 (R1)连接, (R1) 另一端与晶闸管 (VT1) 阳极 (7)连 接; VI的发射极与 V2的基极及电阻 R2相连后, 再连到 Τ2的输出端 (2), (R2) 另一端接晶闸管 (VT1) 的阴极(8), (V2) 的发射极接 (VT1) 的门极(6)。
7.如权利要求 5所述的超低功耗待机电路,其特征在于:四端网络内电子开关 (3)所用的晶闸管 (VT1), 可用晶体三极管、 场效应管、 及 IGBT管取代。
8. 如权利要求 1所述的超低功耗待机电路, 其特征在于: 其能满足 "能源之星"认证空载状态下能 耗要求的标准。
PCT/CN2007/002210 2006-09-22 2007-07-20 Circuit de secours à consommation électrique super faible WO2008037167A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07785143A EP2068432A1 (en) 2006-09-22 2007-07-20 A standby circuit with super low power consumption
US12/306,580 US8125804B2 (en) 2006-09-22 2007-07-20 Circuit for minimizing standby power in power supply systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNU2006200148512U CN200976549Y (zh) 2006-09-22 2006-09-22 一种超低功耗待机电路
CN200620014851.2 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008037167A1 true WO2008037167A1 (fr) 2008-04-03

Family

ID=38902828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002210 WO2008037167A1 (fr) 2006-09-22 2007-07-20 Circuit de secours à consommation électrique super faible

Country Status (4)

Country Link
US (1) US8125804B2 (zh)
EP (1) EP2068432A1 (zh)
CN (1) CN200976549Y (zh)
WO (1) WO2008037167A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209050A (zh) * 2016-08-19 2016-12-07 德力西电气有限公司 一种低成本低功耗的电子开关电路

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923220B1 (ko) * 2008-06-04 2009-10-27 (주)골든칩스 스위칭 모드 전원 공급기의 대기전력 최소화장치
KR101757460B1 (ko) 2010-07-05 2017-07-12 에스프린팅솔루션 주식회사 스위칭 모드 전원공급장치 및 이를 이용하여 전원을 공급하는 방법
US20120146402A1 (en) * 2010-12-09 2012-06-14 Siemens Industry, Inc. Control system for regulating bus voltage for an electric shovel
FR2969864A1 (fr) * 2010-12-23 2012-06-29 St Microelectronics Tours Sas Circuit d'alimentation a faibles pertes en mode veille
KR101199199B1 (ko) * 2010-12-27 2012-11-07 엘지이노텍 주식회사 전원 공급 장치
JP5929667B2 (ja) * 2012-09-25 2016-06-08 富士ゼロックス株式会社 画像形成装置及びバイアス電源装置
CN202995349U (zh) * 2012-12-26 2013-06-12 黄冠雄 微功耗待机***及厚膜混合集成电路模块
US20170324270A1 (en) * 2013-12-26 2017-11-09 Calvin Shie-Ning Wang Standby circuit, and outlet, plug, and device having the same
CN108063559B (zh) * 2017-11-20 2020-07-07 中山市尊宝实业有限公司 一种待机状态超低功耗电源
US11277024B2 (en) 2020-07-24 2022-03-15 ZQ Power, LLC Devices, systems, and methods for reducing standby power consumption
CN112350621A (zh) * 2020-10-29 2021-02-09 南京理工大学 一种应用于无刷电机的驱动电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292363A (ja) * 1993-04-05 1994-10-18 Fuji Facom Corp Acアダプタ
JP2000004547A (ja) * 1998-03-19 2000-01-07 Kazuya Maeda 電源回路およびacアダプタ
JP2003111418A (ja) * 2001-09-26 2003-04-11 Sony Corp 電源回路及びacアダプタ
JP2003299355A (ja) * 2002-04-03 2003-10-17 Seiko Epson Corp Acアダプタ及び充電器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016458A (en) * 1975-01-23 1977-04-05 Jerrold Electronics Corporation Radio frequency distribution network standby power system with overvoltage protection
KR920000347Y1 (ko) * 1989-12-29 1992-01-15 삼성전자 주식회사 두 출력의 smps 콘트롤 회로
GB9623612D0 (en) * 1996-11-13 1997-01-08 Rca Thomson Licensing Corp Separate power supplies for standby operation
EP1355410A1 (en) * 1997-04-30 2003-10-22 Fidelix Y.K. A power supply apparatus
US6172492B1 (en) * 1999-03-26 2001-01-09 Sarnoff Corporation Fixed off time and zero voltage switching dual mode power factor correcting converter
US6538419B1 (en) * 2000-01-11 2003-03-25 Thomson Licensing S.A. Power supply with synchronized power on transition
US6324082B1 (en) * 2000-06-06 2001-11-27 Thomson Licensing, S.A. Mains frequency synchronous burst mode power supply
JP4214484B2 (ja) * 2002-12-12 2009-01-28 サンケン電気株式会社 直流電源装置
GB2420666B (en) * 2003-08-08 2007-01-03 Astec Int Ltd A circuit for maintaining hold-up time while reducing bulk capacitor size and improving efficiency in a power supply
JP4127399B2 (ja) * 2004-03-31 2008-07-30 松下電器産業株式会社 スイッチング電源制御用半導体装置
WO2005114823A1 (en) * 2004-05-24 2005-12-01 Young-Chang Cho Method for controlling lo w- voltage using waves ac and system for performing the same
WO2006011032A1 (en) * 2004-07-23 2006-02-02 Thomson Licensing A system and method for reducing standby power consumption
JP4099593B2 (ja) * 2004-09-17 2008-06-11 ソニー株式会社 スイッチング電源回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292363A (ja) * 1993-04-05 1994-10-18 Fuji Facom Corp Acアダプタ
JP2000004547A (ja) * 1998-03-19 2000-01-07 Kazuya Maeda 電源回路およびacアダプタ
JP2003111418A (ja) * 2001-09-26 2003-04-11 Sony Corp 電源回路及びacアダプタ
JP2003299355A (ja) * 2002-04-03 2003-10-17 Seiko Epson Corp Acアダプタ及び充電器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209050A (zh) * 2016-08-19 2016-12-07 德力西电气有限公司 一种低成本低功耗的电子开关电路
CN106209050B (zh) * 2016-08-19 2023-08-04 德力西电气有限公司 一种低成本低功耗的电子开关电路

Also Published As

Publication number Publication date
US20090185402A1 (en) 2009-07-23
CN200976549Y (zh) 2007-11-14
US8125804B2 (en) 2012-02-28
EP2068432A1 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
WO2008037167A1 (fr) Circuit de secours à consommation électrique super faible
CN102780406A (zh) 转换器
TWI427887B (zh) 高壓電源供應模組及其所適用之供電系統
CN102262977B (zh) 交流接触器的驱动电路
TWM423273U (en) Flyback power application circuit
CN206447440U (zh) 电梯抱闸控制装置
CN201413202Y (zh) 一种在线两路温度检测装置
CN102957324A (zh) 电源检测电路
CN104578844A (zh) 一种开关电源电路
TWI511433B (zh) 電源轉換裝置與其控制晶片
CN106992668B (zh) 一种交直流混合输入直流电源
CN102386780A (zh) 一种dc/dc部分的推挽电路
JP2012239269A (ja) セミブリッジレス力率改善回路とセミブリッジレス力率改善回路の駆動方法
CN101149596A (zh) 一种超低功耗待机电路
CN102064518B (zh) 电流测控器
CN214338161U (zh) 电磁炉专用芯片二级电流浪涌保护电路
JP5697255B2 (ja) セミブリッジレス力率改善回路とセミブリッジレス力率改善回路の駆動方法
CN202918197U (zh) 电源检测电路
CN203691696U (zh) 一种无桥led驱动电路
CN202256445U (zh) 电压检测电路
CN202837873U (zh) 零功率待机电路及相应电子产品
CN102377247B (zh) 一种具有监控功能的电源装置
TW201112597A (en) Single-stage flyback power factor correction converter
CN2704849Y (zh) 一种节能型感应式电能表
US10014796B2 (en) Power transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007785143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12306580

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE