WO2008029058A2 - Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile - Google Patents

Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile Download PDF

Info

Publication number
WO2008029058A2
WO2008029058A2 PCT/FR2007/051873 FR2007051873W WO2008029058A2 WO 2008029058 A2 WO2008029058 A2 WO 2008029058A2 FR 2007051873 W FR2007051873 W FR 2007051873W WO 2008029058 A2 WO2008029058 A2 WO 2008029058A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling system
cooling
coolant
cylinder head
valve
Prior art date
Application number
PCT/FR2007/051873
Other languages
English (en)
Other versions
WO2008029058A3 (fr
Inventor
Frédéric ABAD
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to EP07823770A priority Critical patent/EP2069620A2/fr
Publication of WO2008029058A2 publication Critical patent/WO2008029058A2/fr
Publication of WO2008029058A3 publication Critical patent/WO2008029058A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the present invention relates to a cooling system of a motor vehicle engine, the so-called double cooling type or "split-cooling", particularly suitable for cooling engines whose combustion is auto-ignited (Diesel).
  • An internal combustion engine usually comprises a housing closed by a cylinder head. For the proper functioning of the engine, these elements must be cooled. To do this, the engine is provided with a cooling circuit in which a heat transfer fluid is circulated by means of a pump and which, in turn, is cooled by passing through a radiator.
  • the operating temperature of an engine is normally much higher than the outside temperature, especially in cold weather. Any start is therefore accompanied by a preheating phase during which the performance is not optimal, in particular during which the pollutant emissions (unburned hydrocarbons) are in much greater quantity than in nominal regime.
  • double cooling systems often known as Anglo-Saxon split-cooling, in which the coolant circulates independently in the cylinder head and in the housing, the circulation in the crankcase being established only after the preheating phase has been completed.
  • US Patent No. 6,823,823 discloses a cooling system of this type, comprising a cooling chamber disposed in the housing and a second chamber, isolated from the first, disposed in the housing.
  • the supply of the coolant in the two cooling chambers is carried out using a single column consisting of two parts, arranged respectively in the housing and the cylinder head.
  • This column comprises for this purpose two superimposed orifices, passing through a wall of the column and opening respectively in each of the two cooling chambers.
  • the heat transfer fluid is separated into two streams for the respective cooling of the housing and the cylinder head by means internal to the column which comprise the orifice opening into the housing cooling chamber.
  • a double cooling system assumes means to cut the circulation of the coolant in the casing cooling chamber.
  • GB Patent 2,245,703 discloses a cooling fluid distribution device for a double cooling system having downstream of the cylinder head cooling chamber a main thermostat and downstream of the cooling chamber of the casing a auxiliary thermostat. Below a first threshold temperature, the coolant circulates only in the cylinder head and the main thermostat cuts the flow in the branch of the circuit through the radiator, so that the coolant is not cooled. Beyond a second threshold temperature, greater than the first, the auxiliary thermostat further allows the circulation of the cooling fluid in the crankcase.
  • the fluid temperature at the auxiliary thermostat may not be identical to that of the fluid in the housing cooling chamber which generates a risk of overheating of the engine.
  • the present invention relates to a new cooling system obviant all or part of the problems mentioned and in particular, particularly suitable for cooling diesel engines.
  • the "breech" branch is exclusively dedicated to the exhaust side of the cylinder head, and that the intake side of the cylinder head is integrated with the branch "housing" of the cooling circuit.
  • the separate cylinder head and crank chamber are replaced by a lower chamber, comprising the crankcase chamber and the cooling chamber of the intake valves of the cylinder head and a high chamber for cooling the exhaust valves.
  • the invention starts from the consideration that the cooling requirements of the intake zone of the cylinder head, that is to say the area surrounding the intake valves fresh air, are substantially equivalent to those of the crankcase. engine, the exhaust zone, which surrounds the exhaust gas exhaust valves for its part a need for permanent cooling even when the engine is still "cold".
  • the outputs of the high and low chambers are connected to the inputs of a liquid distribution box in the cooling circuit.
  • This housing is generally arranged on the cylinder head.
  • the circuit of the coolant essentially follows a U-shaped path, with a passage in the lower part and then in the opposite direction, in the upper part, the association of the intake zone of the cylinder head with the crankcase cooling zone allows an output of the lower chamber on the same side as the outlet of the upper chamber so that the design of the housing and fittings on it does not have to be fully recovered.
  • the heat transfer fluid flow is separated between two separate flows directed towards the lower chamber and the upper chamber, by separating means located upstream of an inlet of the heat transfer fluid in the carter part of the lower chamber.
  • the distribution of the heat transfer fluid in the various branches of the cooling system is advantageously obtained by means of a distribution system having on the one hand a junction having at least 4 inputs / outputs one of them being connected to the upper chamber and secondly a connector whose input connected to the lower chamber and whose output is one of the 4 inputs / outputs of the junction.
  • the other two inputs / outputs of the junction constitute a main output and an auxiliary output leading to a shunt passing through the radiator.
  • This auxiliary output is controlled by a controlled valve Th1 to reach an open position when the coolant circulating in the junction reaches a first threshold temperature T s i.
  • Another valve Th2 can block the incoming flow from the connection (and therefore the lower chamber). This valve Th2 is controlled to reach an open position when the heat transfer fluid present in the connection reaches a second threshold temperature T S 2 different from the first threshold temperature T s i.
  • the distribution circuit comprises means for establishing a heat transfer fluid leak between the junction and the fitting, but only when the valve Th2 is in the open position and the valve Th1 in the closed position, or in other in other words, when the temperature of the coolant is between the two threshold temperatures.
  • Such an arrangement optimizes the rise in temperature of the heat transfer fluid while avoiding any risk of overheating due to late opening of the valve Th2 because as soon as the temperature of the heat transfer fluid exceeds the first threshold temperature, the flow rate leakage is sufficient to ensure that the coolant present in the fitting is not significantly cooler than that present in the crankcase.
  • Figure 1 is an overall perspective view of an engine comprising a cooling system according to one embodiment of the invention.
  • FIG. 2 is a schematic view of the engine cooling chambers belonging to the cooling system according to the embodiment shown in FIG. 1.
  • FIG 3 is a detailed view of the separation means of the cooling system of Figure 1.
  • FIG. 4 is a diagram of a cooling system of an engine according to a first particular embodiment of the invention.
  • FIGS. 4A, 4B and 4C illustrate the circulation flows of the cooling fluid according to different engine temperatures;
  • FIG. 5 is a detailed diagram of the liquid distribution device of the cooling system of FIG. 4.
  • FIGs 1 and 2 there is shown a motor having a housing 10 and a cylinder head 12.
  • This engine is for example diesel type.
  • This cooling system comprises a cooling chamber 14, disposed in the casing 10 and intended to receive a cooling liquid, exchanging heat with the cylinders C1, C2, C3, C4 of the engine in which combustion of the fuel occurs.
  • the cooling chamber 14 communicates with a chamber 18 which surrounds the intake valves SA of the cylinder head 12, the chambers 14 and 18 constituting within the meaning of the invention the low cooling chamber.
  • the system of Figures 1 and 2 also comprises a cooling chamber 16, isolated from the chamber 18 by a wall 19 inside the cylinder head and the chamber 14 by a cylinder head gasket 20 placed between the housing 10 and the cylinder head 12.
  • the chamber 16 surrounds the exhaust valves SA and thus forms the upper chamber. This upper chamber is isolated from the lower chamber and allows separate cooling of the cylinder head 1 at the exhaust.
  • the gasket 20 comprises orifices 22, made only in the part of the gasket 20 for the circulation of the coolant between the chambers 14 and 18.
  • the cooling system described in this example also includes a pump 24 for supplying the chambers 14, 16, 18 with heat transfer fluid.
  • a baffle 26 is disposed downstream of the feed pump 24 and upstream of an inlet 34 of the liquid in the housing 10. This baffle ensures the separation of the liquid into two separate streams 28 and 28 '.
  • the baffle 26 may be constituted by a prism of generally triangular cross section, an apex 30 of which is disposed facing the liquid outlet of the feed pump 24.
  • the two sides connecting the vertex 30 to the side 38, opposite the vertex 30, are curved, their center of curvature being on the same side of the median from the top 30, to allow the progressive deflection of the streams 28, 28 ' to the inlets 34, 40 of the first 14 and second 16 cooling chambers, both located in the engine.
  • the baffle 26 is designed to direct the flow 28, 28 'to the inputs 34, 40 of the chambers 14, 16, 18 cooling and profiled to prevent the formation of turbulence in the coolant.
  • a deflector 36 is also arranged in the first cooling chamber 14 and disposed in the vicinity of the inlet 34 of the liquid in said chamber 14. This deflector 36 is of generally elongate shape parallel to the axes of the casing cylinders and is of the same size as the cooling chamber 14 in this direction. It is intended to direct the liquid entering the first chamber 14 in a given direction. Indeed, it prevents the passage of the liquid in the direction opposite to the given direction by closing the space between the internal walls of the cooling chamber 14.
  • the heat transfer fluid in this case the coolant, first comes out of the feed pump 24. It is then separated by the baffle 26 in two separate streams 28, 28 'intended for cooling, respectively of the housing 10 and the cylinder head 12.
  • the baffle 26 is perforated to allow the circulation of a residual flow.
  • the flow 28 then enters the first cooling chamber by an inlet 34. Then, it is directed by the deflector 36 in the given direction, shown in Figure 2.
  • the liquid therefore flows in the first chamber 14 around the cylinders in a single direction, trombone, as shown in Figure 2.
  • the chamber 14 When the chamber 14 is filled with the liquid, the latter through the holes 22 of the cylinder head gasket 20 and enters the chamber 8.
  • the flow 28 ' engages in a rise 38 of water of the cylinder head 12 and enters the chamber 16 by an inlet 40.
  • the two flows 28 and 28' flow substantially parallel in the chambers 16 and 18 and escape from the yoke 12 by respective outlets 42, 44, disposed at the same end of said yoke 12.
  • the liquid Once the liquid has passed through the outlets 42, 44, it circulates in a liquid distribution box in the cooling circuit (not shown in the figures), arranged on the cylinder head 12.
  • This housing directs the liquid to a radiator of the engine, allowing the cooling thereof, where it is again sent to the pump 24 supply.
  • the design of the distribution system is more particularly illustrated with reference to FIGS. 4 and 5.
  • FIGS. 4 and 5 there are the chambers 14, 16 and 18 supplied with cooling liquid by the pump 24.
  • the circuit comprises by elsewhere a radiator 15 for cooling the fluid after the engine is passed through.
  • heat exchangers such as a heater A - to heat air for the habitable and EE EGR exchanger (EGR is the acronym for Exhaust Gas Recirculation, meaning “exhaust gas recirculation”), for cooling a fraction of the exhaust gases re-injected into the combustion chambers.
  • EGR Exhaust Gas Recirculation
  • the mode illustrated in FIG. 1A corresponds to a "cold" cooling fluid, the temperature of which is lower than a first threshold temperature T s1, for example of the order of 83 ° C.
  • T s1 a first threshold temperature
  • the cooling fluid therefore simply passes through the cylinder head, with a "direct" return 3 to the pump 24 - or possibly passes through the branch 4 carrying the heater and the EGR exchanger, the flow rates of cooling liquid passing through these elements or passing by the branch 4 being controlled for example by means of a valve here not shown.
  • FIG. 5 shows more particularly the heat transfer fluid distribution device at the motor output, with the combination of the two valves Th1 and Th2.
  • This device disposed on the cylinder head comprises a junction 70 disposed downstream of the chamber 16.
  • the coolant is admitted into the junction 70 by a main inlet 21 connected to the cooling chamber on the exhaust side of the cylinder head.
  • the junction 70 constitutes the main element of the distribution system of the coolant towards the different branches of the cooling circuit and to this end, communicates with the branches 3, 4, 5 and 6 respectively by the inlets / outlets 31, 41, 51 and 61. In the embodiment shown here, only the output 41 is not provided with flow control means therethrough.
  • the outputs 31 and 51 are controlled by the valve Th1 constituted by a system with two valves, with a valve 32 sized to close the outlet 31 and a valve 52 sized to close the outlet 51.
  • the valve 52 is applied against the output 51 by a spring 53.
  • the valves 32 and 52 are controlled by control means comprising a thermoactive member 54, for example constituted by wax, bathed by the liquid of the junction 70.
  • This member 54 is suitable to control the valve Th1 between a first position in which the valve 52 obstructs the outlet 51, while the outlet 31 is open (hypothesis of Figures 1A and 2A, the temperature of the coolant is less than T s i) and a second position, in which the valve 32 obstructs the outlet 31 while the circulation is established in the branch 5 (the temperature of the coolant is greater than T s - ⁇ ).
  • the fourth output of the junction 70 is the output 61 for establishing a circulation in the cooling chamber of the housing 14. To do this, this output 61 (or more precisely this input if we consider the direction of flow of the cooling fluid) communicates with a connector 71 defining the pipe 6. The outlet 61 is controlled by the valve Th2. Any circulation between the coupling 71 (and therefore the crank chamber) and the junction 70 downstream of the cylinder head is thus blocked by a valve 62 displaced on the one hand by a return spring 63, means 64 - similar to the means 74 and electrical means 75.
  • the means 64 are designed to cause the valve 62 to open when the heat transfer fluid has reached a temperature greater than the second threshold temperature T S 2
  • these means are located in the coupling 71 in which the heat transfer fluid does not circulate as the valve 62 is closed, the temperature rise of the fluid in the connection can be delayed, with the risk of overheating of the engine whose housing is not cooled.
  • a pipe 76 is provided opening on the one hand in the connector 71 and on the other hand at the valve 52 which in the closed position also closes the pipe 76.
  • the pipe 76 has a narrow section, for example of the order of one-tenth of the section of the outlet 61.
  • the electrical means 75 are auxiliary control means for opening the valve 62 during the preheating phase, especially when the engine operates at high speeds during this phase. These means are therefore controlled by the engine control, which for example according to a map based on the engine speed, the torque and a temperature taken by a sensor 77, and will for example act on an electrical resistance which, by Joule effect , will heat the wax to operate the flap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Système de refroidissement d'un moteur de véhicule automobile comportant un carter (10), une culasse (12) contenant les conduits et sièges des soupapes d'admission et des soupapes d'échappement, ledit système comportant une pompe (24) et un circuit de fluide caloporteur bifurquant en aval de la pompe (24) pour a alimenter séparément une chambre basse (14, 18) pour le refroidissement du carter (10) et de la partie de la culasse entourant les soupapes d'admission et une chambre haute (16) pour le refroidissement de la partie de la culasse entourant les soupapes d'échappement, les deux branches du circuit de fluide caloporteur convergeant en sortie des chambres hautes et basse Moteur Diesel comportant un tel système de refroidissement.

Description

DISPOSITIF DE DISTRIBUTION DE LIQUIDE DE REFROIDISSEMENT DANS UN MOTEUR DE VEHICULE AUTOMOBILE
[0001] La présente invention revendique la priorité de la demande française 0653585 déposée le 06/09/2006 dont le contenu (description, revendications et dessins) est incorporé ici par référence.
[0002] La présente invention concerne un système de refroidissement d'un moteur de véhicule automobile, du type dit à double refroidissement ou « split-cooling », tout particulièrement adapté au refroidissement des moteurs dont la combustion est auto- inflammée (Diesel).
[0003] Un moteur à combustion interne comporte habituellement un carter fermé par une culasse. Pour le bon fonctionnement du moteur, ces éléments doivent être refroidis. Pour ce faire, le moteur est muni d'un circuit de refroidissement dans lequel un fluide caloporteur est mis en circulation au moyen d'une pompe et qui, à son tour, est refroidi en traversant un radiateur.
[0004] Pour autant, la température de fonctionnement d'un moteur est normalement bien supérieure à la température extérieure, en particulier par temps froid. Tout démarrage s'accompagne donc d'une phase de préchauffage pendant laquelle les performances ne sont pas optimales, en particulier pendant laquelle les émissions de polluants (hydrocarbures imbrûlés) sont en quantité beaucoup plus importantes qu'en régime nominal.
[0005] Pour réduire ce temps de préchauffage, il est connu des systèmes dits à double refroidissement, souvent connus sous le terme anglo-saxon de split-cooling, dans lesquels le fluide caloporteur circule de façon indépendante dans la culasse et dans le carter, la circulation dans le carter n'étant établie qu'une fois la phase de préchauffage achevée.
[0006] On connaît du brevet américain n ° 6,823,823 un système de refroidissement de ce type, comportant une chambre de refroidissement disposée dans le carter et une seconde chambre, isolée de la première, disposée dans le carter. L'alimentation du fluide caloporteur dans les deux chambres de refroidissement est effectuée à l'aide d'une unique colonne constituée de deux parties, disposées respectivement dans le carter et la culasse. Cette colonne comporte à cet effet deux orifices superposés, traversant une paroi de la colonne et débouchant respectivement dans chacune des deux chambres de refroidissement. Le fluide caloporteur est donc séparé en deux flux pour le refroidissement respectif du carter et de la culasse par des moyens internes à la colonne qui comprennent l'orifice débouchant dans la chambre de refroidissement carter.
[0007] Cette disposition a pour conséquence un refroidissement non homogène des cylindres, en particulier lorsque la circulation est coupée dans le carter, le cylindre le plus proche de l'orifice d'entrée restant en partie refroidi contrairement aux autres cylindres. De plus, quand le carter est effectivement refroidi, le débit du fluide caloporteur circulant dans la culasse est réduit et celle-ci n'est plus nécessairement correctement refroidie. Ces inconvénients sont surtout sensibles pour les moteurs de type Diesel.
[0008] Par ailleurs, un système à double refroidissement suppose de moyens pour couper la circulation du fluide caloporteur dans la chambre de refroidissement carter.
[0009] On connaît du brevet GB 2,245,703 un dispositif de distribution d'un fluide de refroidissement pour un système à double refroidissement comportant en aval de la chambre de refroidissement de la culasse un thermostat principal et en aval de la chambre de refroidissement du carter un thermostat auxiliaire. En dessous d'une première température de seuil, le fluide de refroidissement circule uniquement dans la culasse et le thermostat principal coupe la circulation dans la branche du circuit traversant le radiateur, de sorte que le fluide de refroidissement n'est pas refroidi. Au-delà d'une seconde température de seuil, supérieure à la première, le thermostat auxiliaire autorise de plus la circulation du fluide de refroidissement dans le carter moteur.
[0010] Avec un tel dispositif, tant que le débit est nul dans le carter, la température du fluide au niveau du thermostat auxiliaire peut ne pas être identique à celle du fluide dans la chambre de refroidissement carter ce qui génère un risque de surchauffe du moteur. [0011] La présente invention a pour objet un nouveau système de refroidissement obviant tout ou partie des problèmes cités et notamment, tout particulièrement adapté au refroidissement des moteurs Diesel.
[0012] La solution au problème technique posé consiste à ce que la branche « culasse » soit exclusivement dédiée au côté échappement de la culasse, et ce que le côté admission de la culasse soit intégré à la branche « carter » du circuit de refroidissement. En d'autres termes, les chambres séparées culasse et carter sont remplacées par une chambre basse, comportant la chambre carter et la chambre de refroidissement des soupapes d'admission de la culasse et une chambre haute pour le refroidissement des soupapes d'échappement.
[0013] L'invention part de la considération que les besoins en refroidissement de la zone admission de la culasse, c'est-à-dire la zone qui entoure les soupapes d'admission en air frais, sont sensiblement équivalents à ceux du carter moteur, la zone échappement, qui entoure les soupapes d'échappement des gaz brûlés ayant pour sa part une nécessité d'un refroidissement permanent même lorsque le moteur est encore « froid ».
[0014] Les sorties des chambres haute et basse sont connectées aux entrées d'un boîtier de distribution du liquide dans le circuit de refroidissement. Ce boîtier est en général disposé sur la culasse. Comme le circuit du fluide caloporteur suit essentiellement un trajet en U, avec un passage dans la partie basse puis dans la direction opposée, en partie haute, l'association de la zone admission de la culasse à la zone de refroidissement carter permet une sortie de la chambre basse du même côté que la sortie de la chambre haute de sorte que la conception du boîtier et des raccords sur celui-ci n'a pas à être entière reprise.
[0015] Selon une variante plus spécialement préférée de l'invention, le flux de fluide caloporteur est séparé entre deux flux distincts dirigés vers la chambre basse et la chambre haute, par des moyens séparateurs situés en amont d'une entrée du fluide caloporteur dans la partie carter de la chambre basse.
[0016] Ceci permet une montée d'eau directe vers la chambre haute et évite le refroidissement non homogène du carter qui génère des déformations des fûts des cylindres qui sont associés à des à des problèmes de gommage ou de grippage et des fuites accrues de gaz de carter (blow-by).
[0017] Avec un système de refroidissement d'un moteur selon l'invention, il est avantageusement prévu trois modes de fonctionnement :
« un mode principal, dans lequel le fluide caloporteur est refroidi par un radiateur et circule dans les chambres haute et basse ;
• un mode « froid », dans lequel le fluide caloporteur circule exclusivement dans la chambre haute, sans même être refroidi par le radiateur et ;
• un mode intermédiaire, dans lequel le fluide caloporteur est refroidi par le radiateur mais la circulation n'est pas pour autant établie dans la chambre basse.
[0018] Pour la mise en œuvre de ces trois modes de fonctionnement, la distribution du fluide caloporteur dans les différentes branches du système de refroidissement est avantageusement obtenu au moyen d'un système de distribution comportant d'une part une jonction ayant au moins 4 entrées/sorties une d'entre elles étant reliée à la chambre haute et d'autre part un raccord dont l'entrée reliée à la chambre basse et dont la sortie constitue une des 4 entrées/sorties de la jonction.
[0019] Les deux autres entrées/sorties de la jonction constituent une sortie principale et une sortie auxiliaire débouchant vers une dérivation passant par le radiateur. Cette sortie auxiliaire est contrôlée par une vanne Th1 pilotée pour atteindre une position d'ouverture lorsque le fluide caloporteur circulant dans la jonction atteint une première température de seuil Tsi.
[0020] Une autre vanne Th2 permet de bloquer le flux entrant provenant du raccord (et donc de la chambre basse). Cette vanne Th2 est pilotée pour atteindre une position d'ouverture lorsque le fluide caloporteur présent dans le raccord atteint une seconde température de seuil TS2 différente de la première température de seuil Tsi.
[0021] Par ailleurs, le circuit de distribution comporte des moyens pour établir une fuite de fluide caloporteur entre la jonction et le raccord, mais seulement lorsque la vanne Th2 est en position ouverte et la vanne Th1 en position fermée, ou en d'autres termes, lorsque la température du fluide caloporteur est comprise entre les deux températures de seuil. [0022] Une telle disposition permet d'optimiser la montée en température du fluide caloporteur tout en évitant tout risque de surchauffe dû à une ouverture tardive de la vanne Th2 car dès que la température du fluide caloporteur excède la première température de seuil, le débit de fuite est suffisant pour garantir que le fluide caloporteur présent dans le raccord n'est pas significativement plus froid que celui présent dans le carter.
[0023] La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
[0024] La figure 1 est une vue d'ensemble en perspective d'un moteur comportant un système de refroidissement selon un mode de réalisation de l'invention.
[0025] La figure 2 est une vue schématique des chambres de refroidissement du moteur, appartenant au système de refroidissement selon le mode de réalisation représenté à la figure 1.
[0026] La figure 3 est une vue détaillée des moyens de séparation du système de refroidissement de la figure 1.
[0027] La figure 4 est un schéma d'un système de refroidissement d'un moteur selon un premier mode de réalisation particulier de l'invention. Les figures 4A, 4B et 4C illustrent les flux de circulation du fluide de refroidissement selon différentes températures du moteur ;
[0028] La figure 5 est un schéma de détail du dispositif de distribution de liquide du système de refroidissement de la figure 4.
[0029] Sur les figures 1 et 2, est représenté un moteur comportant un carter 10 et une culasse 12. Ce moteur est par exemple de type Diesel. Ce système de refroidissement comporte une chambre 14 de refroidissement, disposée dans le carter 10 et destinée à recevoir un liquide de refroidissement, échangeant de la chaleur avec les cylindres C1 , C2, C3, C4 du moteur dans lesquels se produit la combustion du carburant. [0030] La chambre de refroidissement 14 communique avec une chambre 18 qui entoure les soupapes d'admission SA de la culasse 12, les chambres 14 et 18 constituant au sens de l'invention la chambre basse de refroidissement.
[0031] Le système des figures 1 et 2 comporte également une chambre 16 de refroidissement, isolée de la chambre 18 par une paroi 19 interne à la culasse et de la chambre 14 par un joint de culasse 20 placé entre le carter 10 et la culasse 12. La chambre 16 entoure les soupapes d'échappement SA et forme donc la chambre haute. Cette chambre haute est isolée de la chambre basse et permet un refroidissement séparé de la culasse 1 au niveau de l'échappement.
[0032] Le joint 20 de culasse comprend des orifices 22, pratiqués uniquement dans la partie du joint 20 de culasse pour la circulation du fluide caloporteur entre les chambres 14 et 18.
[0033] Comme le montre la figure 1 , le système de refroidissement décrit dans cet exemple comporte également une pompe 24 pour alimenter les chambres 14, 16, 18 en fluide caloporteur.
[0034] Une chicane 26 est disposée en aval de la pompe 24 d'alimentation et en amont d'une entrée 34 du liquide dans le carter 10. Cette chicane assure la séparation du liquide en deux flux distincts 28 et 28'. Comme cela apparaît plus clairement sur la figure 3, la chicane 26 peut être constituée par un prisme, de section de forme générale triangulaire, dont un sommet 30 est disposé face à la sortie du liquide de la pompe 24 d'alimentation
[0035] Les deux côtés reliant le sommet 30 au côté 38, opposé au sommet 30, sont courbes, leur centre de courbure étant du même côté de la médiane issue du sommet 30, afin de permettre la déviation progressive des flux 28, 28' vers les entrées 34, 40 des première 14 et deuxième 16 chambres de refroidissement, toutes deux situées dans le moteur.
[0036] La chicane 26 est donc conçue pour diriger les flux 28, 28' vers les entrées 34, 40 des chambres 14, 16, 18 de refroidissement et profilé pour éviter la formation de turbulences dans le liquide de refroidissement. [0037] Un déflecteur 36 est également agencé dans la première chambre 14 de refroidissement et disposé au voisinage de l'entrée 34 du liquide dans ladite chambre 14. Ce déflecteur 36 est de forme générale sensiblement allongée parallèlement aux axes des cylindres du carter et est de même dimension que la chambre 14 de refroidissement dans cette direction. Il est destiné à diriger le liquide rentrant dans la première chambre 14 dans une direction donnée. En effet, il empêche le passage du liquide dans la direction opposée à la direction donnée en obturant l'espace entre les parois internes de la chambre 14 de refroidissement.
[0038] On va maintenant décrire la circulation du fluide caloporteur dans le système décrit dans cet exemple.
[0039] Le fluide caloporteur, en l'occurrence le liquide de refroidissement, sort tout d'abord de la pompe 24 d'alimentation. Il est alors séparé par la chicane 26 en deux flux distincts 28, 28', destinés au refroidissement, respectivement du carter 10 et de la culasse 12. Dans une variante de l'invention, la chicane 26 est ajourée pour permettre la circulation d'un débit résiduel.
[0040] Le flux 28 entre ensuite dans la première chambre de refroidissement par une entrée 34. Puis, il est dirigé par le déflecteur 36 dans la direction donnée, représentée à la figure 2. Le liquide circule donc dans la première chambre 14 autour des cylindres dans un unique sens, en trombone, comme cela est visible sur la figure 2. Lorsque la chambre 14 est remplie par le liquide, ce dernier traverse les orifices 22 du joint 20 de culasse puis entre dans la chambrel 8.
[0041] En parallèle, le flux 28' s'engage dans une montée 38 d'eau de la culasse 12 puis entre dans la chambre 16 par une entrée 40. Les deux flux 28 et 28' s'écoulent sensiblement parallèlement dans les chambres 16 et 18 et s'échappent de la culasse 12 par des sorties respectives 42, 44, disposées à une même extrémité de ladite culasse 12.
[0042] Une fois que le liquide a traversé les sorties 42, 44, il circule dans un boîtier de distribution du liquide dans le circuit de refroidissement (non représenté sur les figures), aménagé sur la culasse 12. Ce boîtier dirige le liquide vers un radiateur du moteur, permettant le refroidissement de celui-ci, d'où il est à nouveau envoyé vers la pompe 24 d'alimentation. [0043] La conception du système de distribution est plus spécialement illustrée à l'aide des figures 4 et 5. Sur ces figures, on trouve les chambres 14, 16 et 18 alimentées en liquide de refroidissement par la pompe 24. Le circuit comporte par ailleurs un radiateur 15 pour refroidir le fluide après la traversée du moteur. Par ailleurs, dans et éventuellement, d'autres moyens échangeurs de chaleur, comme par exemple un aérotherme A - pour réchauffer de l'air destiné à l'habitable et un échangeur EGR EE (EGR étant l'acronyme anglais de Exhaust Gaz Recirculation, signifiant « recyclage des gaz d'échappement »), destiné à refroidir une fraction des gaz d'échappement réinjectées dans les chambres de combustion.
[0044] Dans certaines conditions, par exemple suite à un démarrage à froid, une mise en route immédiate de l'ensemble du système de refroidissement peut conduire à un retard de montée en température du moteur, néfaste à ses performances. Les auteurs de la présente invention proposent donc 3 modes de fonctionnement, illustrés respectivement aux figures 4A, 4B et 4C :
[0045] Le mode illustré à la figure 1A correspond à un fluide de refroidissement « froid », dont la température est inférieure à une première température de seuil Ts1 par exemple de l'ordre de 83° C. Dans ces conditions, il est inutile de refroidir le fluide de refroidissement qui peut donc court-circuiter le radiateur 15 ce qui permet de plus de favoriser la montée en température du carter pour atteindre le plus rapidement possible une température de régime, ne serait-ce que pour se placer dans la plage de température optimale pour la lubrification. Le fluide de refroidissement traverse donc simplement la culasse, avec un retour « direct » 3 vers la pompe 24 - ou éventuellement passe par la branche 4 portant l'aérotherme et l'échangeur EGR, les débits de liquide de refroidissement traversant ces éléments ou passant par la branche 4 étant contrôlés par exemple au moyen d'une vanne ici non représentée.
[0046] Quand la température du fluide de refroidissement s'élève au-delà de cette température de seuil Ts, un refroidissement du liquide devient nécessaire, d'où comme illustré figure 4B la mise en circulation dans la branche 5 passant par le radiateur 15, avec une dérivation au niveau de la vanne Th1. Comme il sera plus particulièrement expliqué en relation avec la figure 5, simultanément on coupe la circulation dans le by-pass 3. [0047] Enfin, dans le mode de fonctionnement correspondant à la figure 4C, au-delà d'une seconde température de seuil, Ts2, par exemple de l'ordre de 105°c, la circulation est établie dans le carter 14 au moyen de la branche 6 dont le débit est contrôlé au niveau de la vanne Th2.
[0048] La figure 5 montre plus particulièrement le dispositif de distribution du fluide caloporteur en sortie de moteur, avec la combinaison des deux vannes Th1 et Th2.
[0049] Ce dispositif disposé sur la culasse, comprend une jonction 70, disposée en aval de la chambre 16. Le fluide caloporteur est admis dans la jonction 70 par une entrée principale 21 reliée à la chambre de refroidissement du côté échappement de la culasse. La jonction 70 constitue l'élément principal du système de distribution du fluide caloporteur vers les différentes branches du circuit de refroidissement et pour ce faire, communique avec les branches 3, 4, 5 et 6 respectivement par les entrées/sorties 31 , 41 , 51 et 61. Dans le mode de réalisation ici représenté, seule la sortie 41 n'est pas dotée de moyens de contrôle du débit la traversant.
[0050] Les sorties 31 et 51 sont contrôlées par la vanne Th1 constituée par un système à deux clapets, avec un clapet 32 dimensionné pour obturer la sortie 31 et un clapet 52 dimensionné pour obturer la sortie 51. Le clapet 52 est appliqué contre la sortie 51 par un ressort 53. Par ailleurs, les clapets 32 et 52 sont pilotés par des moyens de pilotage comportant un organe thermoactif 54, par exemple constitué par de la cire, baigné par le liquide de la jonction 70. Cet organe 54 est apte à piloter la vanne Th1 entre une première position dans laquelle le clapet 52 obstrue la sortie 51 , alors que la sortie 31 est ouverte (hypothèse des figures 1 A et 2A, la température du fluide caloporteur est inférieure à Tsi) et une seconde position, dans laquelle le clapet 32 obstrue la sortie 31 alors que la circulation est établie dans la branche 5 (la température du fluide caloporteur est supérieure à Ts-ι).
[0051] La quatrième sortie de la jonction 70 est la sortie 61 permettant d'établir une circulation dans la chambre de refroidissement du carter 14. Pour ce faire, cette sortie 61 (ou plus précisément cette entrée si on considère le sens de circulation du fluide de refroidissement) communique avec un raccord 71 délimitant la conduite 6. La sortie 61 est contrôlée par la vanne Th2. Toute circulation entre le raccord 71 (et donc la chambre carter) et la jonction 70 en aval de la culasse est ainsi bloquée par un clapet 62 déplacé d'une part par un ressort de rappel 63, des moyens 64 - analogues aux moyens 74 et des moyens électriques 75.
[0052] Les moyens 64 sont conçus pour provoquer l'ouverture du clapet 62 lorsque le fluide caloporteur a atteint une température supérieure à la seconde température de seuil TS2 Toutefois, dans la mesure où ces moyens sont localisés dans le raccord 71 dans lequel le fluide caloporteur ne circule pas tant que le clapet 62 est fermé, la montée en température du fluide dans le raccord peut être retardée, avec le risque d'une surchauffe du moteur dont le carter n'est pas refroidi.
[0053] C'est pourquoi selon l'invention une conduite 76 est prévue débouchant d'une part dans le raccord 71 et d'autre part au niveau du clapet 52 qui en position fermée obture également la conduite 76. La conduite 76 a une section étroite, par exemple de l'ordre du dixième de la section de la sortie 61.
[0054] Ainsi lorsque la température du fluide caloporteur est inférieure à la première température de seuil Tsi, aucune circulation de fluide caloporteur n'est permise dans le chambre carter. Une fois la conduite débouchée, une faible circulation se met en place au travers de cette conduite 76. Comme la section de la conduite est petite, cette circulation n'est pas suffisante pour permettre contrarier la montée en température du carter mais elle suffit à garantir que la température du fluide caloporteur dans le raccord 71 est bien la même que celle du fluide dans le carter, de sorte que l'ouverture du clapet 62 est bien réalisée dès que la phase de préchauffage du moteur est terminée.
[0055] Les moyens électriques 75 sont des moyens de pilotage auxiliaires permettant l'ouverture du clapet 62 pendant la phase de préchauffage, notamment lorsque le moteur fonctionne à régimes élevés pendant cette phase. Ces moyens sont donc pilotés par le contrôle moteur, qui par exemple en fonction d'une cartographie basée sur le régime moteur, le couple et une température prélevée par un capteur 77, et vont par exemple agir sur une résistance électrique qui, par effet Joule, va chauffer la cire pour actionner le clapet.

Claims

REVENDICATIONS
1. Système de refroidissement d'un moteur de véhicule automobile comportant un carter (10), une culasse (12) contenant les conduits et sièges des soupapes d'admission et des soupapes d'échappement, ledit système comportant une pompe (24) et un circuit de fluide caloporteur bifurquant en aval de la pompe (24) pour alimenter séparément une chambre basse (14, 18) pour le refroidissement du carter (10) et de la partie de la culasse entourant les soupapes d'admission et une chambre haute (16) pour le refroidissement de la partie de la culasse entourant les soupapes d'échappement, les deux branches du circuit de fluide caloporteur convergeant en sortie des chambres hautes et basse.
2. Système de refroidissement selon la revendication 1 , caractérisé en ce qu'il comprend un joint (20) de culasse, disposé entre le carter (10) et la culasse (12), et au moins un orifice (22) destiné à la circulation du fluide caloporteur dans la chambre basse (14, 18), entre la partie carter (14) et la partie admission (18).
3. Système de refroidissement selon la revendication 1 , caractérisé en ce que le fluide caloporteur s'écoule selon des flux (28, 28') sensiblement parallèles dans la chambre haute (16) et la partie admission (18) de la chambre haute (14) et s'échappe de la culasse (12) en une même extrémité de ladite culasse (12).
4. Système de refroidissement selon l'une quelconque des revendications précédentes, caractérisé en ce la bifurcation est obtenue avec des moyens (26) de séparation du liquide situés en amont d'une entrée (34) du liquide dans le carter (10).
5. Système de refroidissement selon la revendication 3, caractérisé en ce que les moyens de séparation comprennent une chicane (26) disposée en aval de la pompe (24) d'alimentation.
6. Système de refroidissement selon la revendication 5, caractérisé en ce que la chicane (26) est ajourée pour permettre la circulation d'un débit résiduel.
7. Système de refroidissement selon l'une quelconque des revendications 1 à 7, caractérisé en ce que un déflecteur (36) est disposé dans la première chambre (14) de refroidissement, de façon à diriger le liquide rentrant dans ladite première chambre dans une direction donnée.
8. Système de refroidissement selon la revendication 7, caractérisé en ce que le déflecteur (36) est de forme générale allongée parallèlement aux axes des cylindres du carter.
9. Système de refroidissement selon l'une quelconque des revendications précédentes, caractérisé en ce que les flux ayant traversé les chambres haute et basse convergent dans un dispositif de distribution comportant :
• une jonction (70) comportant une entrée principale (21 ), une entrée auxiliaire (61 ) dont l'ouverture est contrôlée par une vanne d'entrée Th2, une sortie principale (41 ) et une sortie auxiliaire (51 ) conduisant vers un radiateur (15), la sortie auxiliaire (51 ) étant contrôlée par une vanne de sortie Th1 pilotée pour atteindre une position d'ouverture lorsque le fluide caloporteur circulant dans la jonction (70) atteint une première température de seuil Ts1 ;
• un raccord (71 ) débouchant sur l'entrée auxiliaire (61 ) de la jonction, la vanne d'entrée Th2 étant pilotée pour atteindre une position d'ouverture lorsque le fluide caloporteur présent dans le raccord (71 ) atteint une seconde température de seuil
Ts2 supérieur à la première température de seuil Ts1 ; et
• des moyens (76) pour créer un débit de fuite de fluide caloporteur entre la jonction (70) et le raccord (71 ) lorsque la vanne de sortie Th1 est en position ouverte et la vanne d'entrée Th2 en position fermée.
10. Système de refroidissement selon la revendication 9, caractérisé en ce que la vanne de sortie Th 1 et la vanne d'entrée Th2 sont du type comportant un élément thermoactif baigné par le fluide caloporteur.
1 1. Système de refroidissement selon la revendication 10, caractérisé en ce que ledit élément thermoactif est en cire.
12. Système de refroidissement selon l'une des revendications 10 ou 11 caractérisé en ce que les moyens de pilotage de la vanne d'entrée Th2 comportent de plus une résistance électrique, disposée sur l'organe thermoactif et alimentée électriquement par un organe générateur de courant pour piloter la vanne d'entrée quand la température du fluide caloporteur n'a pas atteint TS2-
13. Système de refroidissement selon l'une quelconque des revendications 9 à 12 caractérisé en ce que les moyens pour créer un débit de fuite comprennent une conduite dont la section est inférieure à la section de l'entrée auxiliaire, la conduite débouchant au voisinage de la vanne de sortie de sorte que la conduite est obturée lorsque cette vanne de sortie est en position fermée.
14. Système de refroidissement selon l'une quelconque des revendications 9 à 13, caractérisé en ce qu'un aérotherme contribuant au conditionnement thermique de l'air de l'habitacle du véhicule est disposé dans la portion du circuit du liquide de refroidissement comprise entre la sortie principale (41 ) et la pompe (24).
15. Système de refroidissement selon l'une quelconque des revendications 9 à 14, caractérisé en ce qu'un échangeur de chaleur contribuant au refroidissement de la fraction recirculée des gaz d'échappement est disposé dans la portion du circuit du liquide de refroidissement comprise entre la sortie principale (41 ) et la pompe (24).
16. Système de refroidissement selon l'une quelconque des revendications 13 à 15, caractérisé en ce que la jonction comporte de plus une sortie (31 ) débouchant sur un by-pass menant directement à la pompe.
17. Système de refroidissement selon la revendication 16, caractérisée en ce que la vanne Th 1 commande de plus la fermeture d'un clapet (52) obturant la sortie by-pass (51 ) quand la sortie (31 ) est en position ouverte.
18. Système de refroidissement selon la revendication 16, caractérisée en ce que la sortie (41 ) est munie de moyens de régulation du débit pour contrôler la fraction du débit de fluide caloporteur dirigée vers le by-pass et la fraction dirigée vers la boucle principale.
19 Moteur Diesel équipé d'un système de refroidissement selon l'une quelconque des revendications 1 à 18.
PCT/FR2007/051873 2006-09-06 2007-09-05 Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile WO2008029058A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07823770A EP2069620A2 (fr) 2006-09-06 2007-09-05 Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653585 2006-09-06
FR0653585A FR2905423B1 (fr) 2006-09-06 2006-09-06 Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile

Publications (2)

Publication Number Publication Date
WO2008029058A2 true WO2008029058A2 (fr) 2008-03-13
WO2008029058A3 WO2008029058A3 (fr) 2008-04-24

Family

ID=38055172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051873 WO2008029058A2 (fr) 2006-09-06 2007-09-05 Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile

Country Status (3)

Country Link
EP (1) EP2069620A2 (fr)
FR (1) FR2905423B1 (fr)
WO (1) WO2008029058A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243545B2 (en) 2013-01-11 2016-01-26 Ford Global Technologies, Llc Liquid-cooled internal combustion engine with liquid-cooled cylinder head and with liquid-cooled cylinder block
DE102015201240A1 (de) * 2015-01-26 2016-07-28 Ford Global Technologies, Llc Split-Kühlsystem sowie Brennkraftmaschine mit einem Split-Kühlsystem und entsprechend ausgestattetes Fahrzeug
DE102015009501A1 (de) * 2015-07-22 2017-01-26 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Brennkraftmaschinenkühlung
DE102016215310A1 (de) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kühlung einer Hubkolbenmaschine, Computerprogrammprodukt und Motor
US10337389B2 (en) 2015-01-26 2019-07-02 Ford Global Technologies, Llc Control means for controlling the coolant flows of a split cooling system
FR3097591A1 (fr) * 2019-06-20 2020-12-25 Novares France Boîtier de sortie de liquide caloporteur destiné à être monté sur un moteur thermique de véhicule automobile

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936013B1 (fr) * 2008-09-16 2010-09-10 Renault Sas Dispositif de regulation thermique pour un moteur.
EP2325453B1 (fr) 2009-07-30 2012-07-18 Ford Global Technologies, LLC Système de refroidissement
EP2309106B1 (fr) 2009-07-30 2017-06-07 Ford Global Technologies, LLC circuit de refroidissement
WO2011067829A1 (fr) * 2009-12-01 2011-06-09 トヨタ自動車株式会社 Dispositif de refroidissement de moteur
GB2518655B (en) * 2013-09-27 2016-03-16 Jaguar Land Rover Ltd Fluid cooling system
FR3014485B1 (fr) * 2013-12-10 2017-12-29 Renault Sas Moteur thermique de vehicule automobile a circuit de refroidissement perfectionne
FR3057304B1 (fr) 2016-10-12 2019-11-15 Renault S.A.S. "deflecteur de liquide de refroidissement"

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835221A (ja) * 1981-08-26 1983-03-01 Toyota Motor Corp 内燃機関の冷却装置
JPH08218873A (ja) * 1995-02-09 1996-08-27 Toyota Motor Corp 内燃機関の冷却装置
EP1375857A1 (fr) * 2002-06-27 2004-01-02 Renault s.a.s. Dispositif de refroidissement pour moteur à combustion
FR2855555A1 (fr) * 2003-05-27 2004-12-03 Renault Sa Circuit de refroidissement de moteur a combustion interne
FR2860833A1 (fr) * 2003-10-08 2005-04-15 Peugeot Citroen Automobiles Sa Circuit de refroidissement d'un moteur a combustion interne constitue d'au moins trois passages de refroidissement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835221A (ja) * 1981-08-26 1983-03-01 Toyota Motor Corp 内燃機関の冷却装置
JPH08218873A (ja) * 1995-02-09 1996-08-27 Toyota Motor Corp 内燃機関の冷却装置
EP1375857A1 (fr) * 2002-06-27 2004-01-02 Renault s.a.s. Dispositif de refroidissement pour moteur à combustion
FR2855555A1 (fr) * 2003-05-27 2004-12-03 Renault Sa Circuit de refroidissement de moteur a combustion interne
FR2860833A1 (fr) * 2003-10-08 2005-04-15 Peugeot Citroen Automobiles Sa Circuit de refroidissement d'un moteur a combustion interne constitue d'au moins trois passages de refroidissement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243545B2 (en) 2013-01-11 2016-01-26 Ford Global Technologies, Llc Liquid-cooled internal combustion engine with liquid-cooled cylinder head and with liquid-cooled cylinder block
DE102015201240A1 (de) * 2015-01-26 2016-07-28 Ford Global Technologies, Llc Split-Kühlsystem sowie Brennkraftmaschine mit einem Split-Kühlsystem und entsprechend ausgestattetes Fahrzeug
US10337389B2 (en) 2015-01-26 2019-07-02 Ford Global Technologies, Llc Control means for controlling the coolant flows of a split cooling system
DE102015201240B4 (de) 2015-01-26 2022-01-27 Ford Global Technologies, Llc Split-Kühlsystem sowie Brennkraftmaschine mit einem Split-Kühlsystem und entsprechend ausgestattetes Fahrzeug
DE102015009501A1 (de) * 2015-07-22 2017-01-26 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Brennkraftmaschinenkühlung
US10119451B2 (en) 2015-07-22 2018-11-06 GM Global Technology Operations LLC Internal combustion engine cooling
DE102016215310A1 (de) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kühlung einer Hubkolbenmaschine, Computerprogrammprodukt und Motor
FR3097591A1 (fr) * 2019-06-20 2020-12-25 Novares France Boîtier de sortie de liquide caloporteur destiné à être monté sur un moteur thermique de véhicule automobile

Also Published As

Publication number Publication date
FR2905423A1 (fr) 2008-03-07
WO2008029058A3 (fr) 2008-04-24
EP2069620A2 (fr) 2009-06-17
FR2905423B1 (fr) 2008-10-10

Similar Documents

Publication Publication Date Title
WO2008029058A2 (fr) Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile
EP2112347B1 (fr) Circuit de refroidissement moteur
FR2920834A1 (fr) Dispositif et procede de recirculation des gaz d'echappement d'un moteur thermique
FR2801637A1 (fr) Circuit de refroidissement pour un moteur a combustion interne
EP1706615A1 (fr) Module d'echange de chaleur pour la regulation de la temperature des gas admis dans un moteur thermique de vehicule automobile
WO2008029029A1 (fr) Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile
WO2005024193A1 (fr) Dispositif de regulation thermique de gaz d’echappement
FR3036135A1 (fr) Circuit de refroidissement d’un moteur
FR3060666B1 (fr) Conduit de passage de liquide de refroidissement pour moteur a combustion interne de vehicule automobile
FR2908458A1 (fr) Systeme de refroidissement d'un moteur thermique a deux niveaux de temperature
FR2886887A1 (fr) Dispositif de chauffage additionnel d'un vehicule automobile
FR2909595A3 (fr) Systeme de regulation thermique et son utilisation pour un vehicule automobile.
EP2187016A1 (fr) Circuit de refroidissement moteur
FR2908457A3 (fr) Systeme de refroidissement d'un moteur thermique
EP1892389B1 (fr) Dispositif permettant de commander un circuit de circulation d'un liquide de refroidissement ainsi qu'un circuit de circulation d'huile de lubrification d'un moteur thermique de véhicule
FR2920706A1 (fr) Module multifonctionnel pour moteur a combustion interne
FR2932845A1 (fr) Procede et dispositif de refroidissement d'un moteur thermique.
FR3064674A1 (fr) Dispositif de gestion thermique d’un groupe motopropulseur de vehicule
FR2859238A1 (fr) Dispositif de regulation thermique de gaz d'echappement
FR2838477A1 (fr) Circuit de refroidissement d'un moteur a combustion interne
EP0850791B1 (fr) Système de chauffage de l'habitacle d'un véhicule automobile à moteur diesel à injection directe
EP2187015B1 (fr) Circuit de refroidissement moteur
EP2090763B1 (fr) Circuit de refroidissement moteur
FR2905422A1 (fr) Systeme de refroidissement d'un vehicule automobile
FR3114127A3 (fr) Piquage de dégazage thermostaté

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823770

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007823770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE