WO2008026479A1 - Acceleration nozzle and ejection nozzle device - Google Patents

Acceleration nozzle and ejection nozzle device Download PDF

Info

Publication number
WO2008026479A1
WO2008026479A1 PCT/JP2007/066199 JP2007066199W WO2008026479A1 WO 2008026479 A1 WO2008026479 A1 WO 2008026479A1 JP 2007066199 W JP2007066199 W JP 2007066199W WO 2008026479 A1 WO2008026479 A1 WO 2008026479A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas
ring
acceleration
gas flow
Prior art date
Application number
PCT/JP2007/066199
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Oda
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to CN200780023670.3A priority Critical patent/CN101479046B/en
Publication of WO2008026479A1 publication Critical patent/WO2008026479A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/203Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed having originally the shape of a wire, rod or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/224Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material having originally the shape of a wire, rod or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present invention relates to an acceleration nozzle suitable for forming a film by colliding particles atomized by gas collision with a film formation target in a cooled or molten state, and an injection equipped with the acceleration nozzle
  • the present invention relates to a nozzle device.
  • the main technologies for atomizing metal materials using gas are (1) fine powder production, (2) spray forming, and (3) thermal spraying. Nozzle is being used.
  • the fine powder production used for powder metallurgy is to atomize metal material by colliding jet gas from a plurality of nozzles arranged on the circumference of the molten metal flow poured from a container toward the molten metal flow. (For example, refer to Patent Document 1).
  • a conical Laval nozzle is disposed, the gas is accelerated by the Laval nozzle, and a metal material or the like is introduced into the gas accelerated at a high speed in a molten state,
  • a method of atomization see, for example, Patent Document 2.
  • the atomizer (atomizer) having the same structure as that for fine powder production is used!
  • metal particles can be prevented from adhering to the inner wall of the nozzle. Coercive force
  • the metal particles adhere to the inner wall of the nozzle in the form of a film and are pulled by the gas flowing in the center of the nozzle Since it is slowly pushed out toward the nozzle outlet, it is discharged from the nozzle outlet with a very large particle size compared to the fine particles flying in the center of the nozzle. As a result, the quality of the film is deteriorated and the quality of the deposit is lowered.
  • spraying is a coating technology that forms a film by supplying a small amount of material according to the same principle. These include arc spraying using electricity as a heat source and flame spraying using combustion gas as a heat source.
  • a metal material is supplied in the form of two wires, electric charges are added using each wire as an anode and a cathode, an arc is generated between the two wires, and the metal material is melted (for example, see Patent Document 4). .
  • the temperature of the nozzle wall is heated to a temperature equal to or higher than the melting point of the metal material in consideration of the fact that particles adhere to the nozzle.
  • the arc spraying device described in Patent Document 5 is configured so as to promote a high-speed spray flow downstream of the atomizing section.
  • the wire rods 111 and 111 that have passed through the wire rod guides 110 and 110 are brought into contact with each other on the nozzle central axis, and the tapered taper section 112a and the taper of the taper are coaxial with the central axis.
  • a gas cap 112 communicating with the super compartment 112b is provided, and a primary gas flow G1 for spraying molten metal is generated by allowing gas to pass through the taper compartment 112a, and secondary from a plurality of orifices 112c provided in the taper compartment 112b. Gas stream G2 is generated.
  • the secondary gas flows G2 are directed inward from each other so that they are sufficiently spaced downstream from the contact point of the wire 111 so as not to interfere with the atomization of the molten metal. As a result, the primary gas flow G1 is narrowed and accelerated by the secondary gas flow G2.
  • the nozzle structure of the above-mentioned arc spraying device has a force S intended to increase the particle velocity, and the half apex angle (angle formed by the nozzle central axis and the nozzle inner wall) in the tapered section 112b of the gas cap 112 is extremely large. Since the force and the length are short, flow separation occurs in the gas cap 112 and it is difficult to form a supersonic gas flow.
  • thermal spraying apparatus see, for example, Patent Document 6 in which a nozzle is used to form a high-speed frame toward the sprayed surface, and a spray material is introduced in the middle of the high-speed frame (combustion flame).
  • a gas shroud is added to the spray gun barrel by the high-speed flame, and an inert gas is supplied into the shroud through a circumferentially formed slit in the gas shroud, and the velocity of the metal particles sprayed from the gun barrel.
  • the metal particles collide with the surface of the base material while being accelerated from the atmosphere and blocked from the atmosphere (see, for example, Patent Document 7).
  • the inclined surface of the slit for supplying the inert gas is inclined within 70 ° with respect to a line perpendicular to the central axis of the shroud tube portion. Beyond 70 °, it seems that it becomes difficult to mix inert gas into the flame flowing in the center of the shroud.
  • (3-3) 3D modeling It is a method of three-dimensional modeling by spraying the atomized molten metal toward the target and solidifying it.
  • the wire is melted outside the nozzle! / (See, for example, Patent Document 8).
  • This modeling method has a problem that the accuracy of the molten metal droplet hitting the substrate is low because the molten metal is blown off by the gas that is jetted from the nozzle and diffused.
  • a film is formed by colliding with a base material in a solid state in supersonic flow together with gas without melting or gasifying the material (see, for example, Patent Document 9).
  • the material that collides at supersonic speed becomes a film by plastic deformation of the particles themselves, and unlike other thermal spraying methods, changes in material properties and oxidation due to heat are suppressed.
  • Patent Document 1 Japanese Patent Publication No. 62-24481
  • Patent Document 2 JP-A-62-110738
  • Patent Document 3 Japanese Translation of Special Publication 2004-503385
  • Patent Document 4 JP-A-2006-175426
  • Patent Document 5 Japanese Laid-Open Patent Publication No. U-279743
  • Patent Document 6 Japanese Patent Laid-Open No. 200-181817
  • Patent Document 7 Japanese Patent Laid-Open No. 2003-183805
  • Patent Document 8 JP 2000-248353 A
  • Patent Document 9 Japanese Patent Laid-Open No. 2006-52449
  • the present invention has been made in consideration of the problems in the related art injection nozzles as described above.
  • the particles do not adhere to the inner wall of the nozzle, and the force and the atomization effect obtained by the gas flow rate and the particles are obtained. It is an object of the present invention to provide an acceleration nozzle and an injection nozzle device that can effectively utilize the acceleration effect of the nozzle.
  • the accelerating nozzle of the present invention has a nozzle hole whose inner diameter continuously or stepwise expands toward the tip of the nozzle, and directs a high-speed gas flow toward the nozzle tip side on the circumferential inner wall of the nozzle hole.
  • the gist of the invention is that an injection port for injecting into a substantially cylindrical shape is formed, and that the injection port is provided in a plurality of stages in the cylinder axis direction of the nozzle hole.
  • the injection ports are annularly opened at the inner wall step portions of the connected upstream and downstream ring-shaped parts. That power S.
  • a gas supply path for supplying the gas for forming the high-speed gas flow is provided through each ring-shaped part excluding the ring-shaped part at the tip, and from the gas supply path, the gas supply path is provided. It is possible to form a gas passage for individually supplying the gas to the injection port of each stage.
  • the gas passage is formed by providing a gap between the upstream and downstream ring-shaped parts connected to the acceleration nozzle, and in the vicinity of the injection port in the gas passage, The force S is applied to form a high-speed gas flow forming portion that forms the high-speed gas flow by narrowing the width of the gas passage.
  • the acceleration nozzle having the above-described configuration can be connected to the nozzle outlet of the thermal spraying apparatus, can be connected to the nozzle outlet of the fine powder production apparatus, and is further connected to the nozzle outlet of the cold spray apparatus.
  • the power to do S can be connected to the nozzle outlet of the thermal spraying apparatus, can be connected to the nozzle outlet of the fine powder production apparatus, and is further connected to the nozzle outlet of the cold spray apparatus.
  • the jet nozzle device of the present invention is a material in which the carrier gas introduced to the nozzle inlet side is passed through the throat portion in the nozzle to form a high-speed gas flow and is in a molten state in the nozzle.
  • the spray nozzle device that atomizes the material by the high-speed gas flow and sprays the atomized particles from the nozzle outlet side
  • the circumferential inner wall of the nozzle hole on the downstream side of the throat portion is substantially parallel to the downstream side of the nozzle center axis.
  • the gist of the present invention is that it has an injection port for injecting a shield gas toward the surface, and a shield gas supply unit for forming a cylindrical shield gas flow around the high-speed gas flow.
  • the formation of the cylindrical shield gas flow is not particularly limited as long as a substantially cylindrical flow is formed, for example, by injecting an annular injection rocker shield gas. It may be formed, or may be formed in a cylindrical shape by injecting shield gas from a plurality of plural ports arranged on the circumference.
  • the nozzle may be formed as a divergent nozzle having an inner diameter that continuously or stepwise expands from the throat portion toward the nozzle outlet.
  • the nozzle can be constituted by an assembly in which a plurality of ring-shaped components are connected in the ring central axis direction.
  • the nozzle of the injection nozzle device is formed of a divergent nozzle having an inner diameter that gradually increases from the throat portion toward the nozzle outlet, the stepped portion of each adjacent inner wall in the connected ring-shaped part
  • the force S is used to form a slit as the shield gas injection port in an annular shape.
  • the injection nozzle device if a shield gas throat portion is formed in the shield gas supply path on the upstream side of the slit to make the flow velocity of the shield gas equal to the flow velocity of the high-speed gas flow, for example, in the case of an injection nozzle device that accelerates gas at high speed, such as a Laval nozzle, the high-speed gas flow can be promoted by the introduced shielding gas.
  • a gas flow deflecting portion for aligning the flow of the shield gas substantially parallel to the central axis of the nozzle toward the downstream side is provided at the downstream inner peripheral edge of the ring-shaped component. Can be provided.
  • a pair of wire guides for supplying the spray material in the form of wires is disposed in the vicinity of the throat portion of the nozzle in the spray nozzle device, and the tip of these wire guides is inserted into the nozzle.
  • a charge is applied to each of a pair of wires protruding in the form of an anode and a cathode Can be configured.
  • the ring-shaped component disposed on the most upstream side in the flow direction of the high-speed gas flow is made of ceramics, and a pair of wires serving as a thermal spray material is supplied to the ceramics.
  • the wire guides are passed through, and the electric charges are applied to the pair of wires protruding into the nozzle from the tips of these wire guides as the anode and cathode electrodes.
  • the ring-shaped component disposed on the most upstream side in the flow direction of the high-speed gas flow is made of ceramics, and the ring-shaped component is supplied from the wire guide through the throat portion.
  • a fixed electrode for arc melting with the wire can be provided.
  • a melt nozzle for supplying a melt to the nozzle central axis through the throat portion can be provided.
  • the injection nozzle apparatus supplies the molten metal nozzle force penetrating the ring-shaped part, the directional force intersecting the high-speed gas flow in the nozzle, and the molten metal. It can be configured with the power S.
  • the particles do not adhere to the inner wall of the nozzle, and the force S can effectively utilize the atomization effect and particle acceleration effect obtained by the gas flow velocity. And! /, Has the advantage.
  • FIG. 1 (a) is a front sectional view showing the principle of an accelerating nozzle according to the present invention, and (b) is an enlarged view of part B thereof.
  • FIG. 2 is a perspective view showing a downstream side surface of the ring-shaped component in FIG. 1.
  • FIG. 3 is a graph showing a particle velocity distribution obtained by the acceleration nozzle of the present invention.
  • FIG. 4 is an explanatory view showing a gas flow by the acceleration nozzle of the present invention.
  • FIG. 5 is an explanatory diagram showing a method for adjusting the flow velocity of the acceleration nozzle according to the present invention.
  • FIG. 6 is an explanatory diagram showing velocity vectors of mainstream gas and shield gas in the nozzle.
  • FIG. 7 is a principle view showing a second embodiment of the acceleration nozzle of the present invention.
  • 8] A principle diagram showing a third embodiment of the acceleration nozzle of the present invention.
  • FIG. 9 is a principle diagram showing a modification of the acceleration nozzle shown in FIG.
  • FIG. 10 is a principle diagram showing another modification of the acceleration nozzle shown in FIG.
  • (a) is a plan sectional view showing the configuration of the zinc injection nozzle device, and (b) is a front sectional view thereof.
  • (a) is a front cross-sectional view showing the configuration of the proximal ring-shaped part shown in FIG. 11, (b) is a right side view thereof, and (c) is a cross-sectional view taken along the line EE in FIG. It is.
  • FIG. 16 (a) is a front sectional view of the ring-shaped parts to be connected, and (b) is a right side view thereof.
  • Fig. 17 (a) is a front sectional view of the ring-shaped part at the tip of the nozzle, and (b) is a right side view thereof.
  • (18) (a) is a plan sectional view showing the structure of the titanium injection nozzle device, and (b) is a front sectional view thereof.
  • FIG. 21 A cross-sectional view showing the configuration of the accelerating nozzle of the present invention applied to a cold spray using a principle diagram.
  • [Sen 23] is a cross-sectional view showing the configuration when the acceleration nozzle of the present invention is applied to the atomization apparatus.
  • FIG.25 Graph showing the particle velocity distribution in the direction perpendicular to the spray direction, based on the water experiment model.
  • FIG. 26 is a graph showing changes in the particle velocity distribution in the spray direction and the particle diameter according to the water experiment model.
  • FIG. 27 is a perspective view showing a configuration when the acceleration nozzle is formed in a rectangular tube shape.
  • FIG. 28 is a cross-sectional view showing a configuration of a related art injection nozzle device.
  • FIG. 1 shows the principle of an accelerating nozzle according to the present invention.
  • FIG. 1 (a) shows a front cross-sectional view
  • FIG. 1 (b) is an enlarged view of part B of FIG. 1 (a).
  • the acceleration nozzle 1 introduces a carrier gas into the inlet side 3 of the nozzle 2.
  • the introduced carrier gas forms a high-speed gas flow (hereinafter referred to as mainstream gas Gs) by passing through a throat section 4 with a narrowed inner diameter, and solid or liquid particles are generated by the mainstream gas Gs flow.
  • the atomized particles are sprayed from the outlet side 5 of the nozzle 2.
  • the nozzle 2 is configured by connecting a plurality of ring-shaped components 2a to 3 provided with through holes for flowing the mainstream gas Gs in the nozzle central axis direction.
  • a ceramic ring-shaped part 2a serving as a base is disposed on the most upstream side in the flow of the main gas Gs (direction A), and a SUS ring-shaped part serving as a nozzle end on the most downstream side.
  • the SUS ring-shaped parts 2b to 2i for connection are arranged in multiple stages between the ring-shaped parts 2a and 3 ⁇ 4.
  • Reference numeral 6 denotes a shield gas supply path (gas supply path) drilled through each of the ring-shaped parts 2a to 2i.
  • the shield gas supply path 6 is connected to the ring-shaped parts 2a to 3 ⁇ 4.
  • An annular passage (gas passage) 6a provided as a gap portion in the connecting portion communicates with each other, and each annular passage 6a further communicates with an annular slit (injection port) T formed at the circumferential position of the nozzle inner wall.
  • the slit T opens in an annular shape at the step portion on the inner wall of the connected upstream ring-shaped component 2a and downstream ring-shaped component 2b, as shown in FIG. 1 (a).
  • a plurality of stages are provided in the direction of the cylinder axis of the nozzle hole.
  • the shielding gas SGs introduced into the shielding gas supply path 6 joins in the annular passage 6a, and is individually supplied to the slits T as the injection ports of the respective stages through the annular passage 6a.
  • the whole is formed into a cylindrical shape and is injected into the nozzle 2.
  • the shield gas supply path 6 and the slit T function as a shield gas supply unit.
  • a wire guide (described later) for supplying a wire as a thermal spray material into the nozzle 2 is passed through the ring-shaped part 2a, and the two wires protruding from each wire guide are slow. They are in contact with each other in the vicinity of the outlet side of the groove portion 4.
  • the accelerating nozzle 1 is a fresh air (shield) covering the inner wall of the nozzle 2 by sequentially feeding a fresh gas from the ring-shaped parts 2a to 2i into the nozzle 2 at a flow rate substantially the same as the mainstream gas Gs flowing in the nozzle 2.
  • Gas SGs gas SGs film is formed, and metal particles adhere to the inner wall of nozzle 2.
  • the shielding gas SGs is preferably injected in parallel with the nozzle central axis, and is preferably supplied uniformly over the entire circumference of the nozzle inner wall 2k.
  • the shielding gas SGs is formed into a cylindrical flow by supplying the shielding gas SGs from an annular slit having the same width over the entire circumference, and the nozzle 2 It would be ideal to supply
  • the gas flow deflector 7 is required as a running section.
  • a shielding gas is provided between the upstream ring-shaped part 2a and the downstream ring-shaped part 2b.
  • the gas flow deflector 7 has a ring-shaped part 2a with a downstream inner periphery projecting in a jaw shape, and extends further downstream beyond the upstream end face 8 of the ring-shaped part 2b. (Refer to protrusion length N in the figure). Thereby, the slit communicating with the annular passage 6a.
  • T is formed in an annular shape.
  • the annular passage 6a and the annular slit T force S are formed in each of the ring-shaped parts 2a to 2i.
  • FIG. 2 is a perspective view showing the downstream side surface of the ring-shaped component 2a.
  • a gas flow deflecting portion 7 is formed in a cylindrical shape at the periphery of a through-hole provided in the center of the ring-shaped component 2a, and an annular passage 6a is recessed in the bottom thereof.
  • shield gas supply passages 6 are formed on the circumference at equal intervals (eight in this embodiment).
  • the shield gas SGs supplied from the shield gas supply path 6 flows into the annular passage 6a and merges, and the gas flow deflecting unit 7 changes the direction of the gas flow to the nozzle central axis direction and is cylindrical. And is supplied into the nozzle 2.
  • the gas flow deflecting unit 7 changes the direction of the gas flow to the nozzle central axis direction and is cylindrical. And is supplied into the nozzle 2.
  • each ring-shaped part 2a to 3 ⁇ 4 the nozzle hole diameter of the downstream ring-shaped part is formed larger than that of the upstream ring-shaped part.
  • the particle concentration on the nozzle central axis is usually the highest. It is said that the particle concentration decreases according to the Gaussian distribution as it reaches the periphery (radial direction).
  • the particles supplied from the nozzle center axis spread in the nozzle radial direction while flying downstream of the nozzle, and this spread is caused by the disturbance of the flow in the nozzle. Affected.
  • the flow in the nozzle 2 appears more turbulent as the velocity gradient (the rate at which the velocity changes in space) increases, so the gas flow rate in the nozzle 2 is preferably as uniform as possible.
  • the acceleration nozzle 1 of the present invention has overcome the major problem of matching the velocity of the shield gas with that of the mainstream gas, and has succeeded in forming a uniform gas flow in the nozzle 2.
  • the pressure in the nozzle is equal to ⁇ 2 equal to the pressure on the rear side of the slit, and therefore the pressure on the front side of all the slits of the ring-shaped parts 2a to 3 ⁇ 4 including the most upstream slit ⁇ should be pi. .
  • the accelerating nozzle 1 shown in FIG. 1 employs a distribution system from the header, and supplies a shielding gas having the same pressure pi to the slits T of the ring-shaped parts 2a to 3 ⁇ 4.
  • the nozzle is a nozzle that operates at a supersonic speed with a Mach number of the flow in the nozzle of 1 or more When using a supersonic nozzle, it must pass through a nozzle shape having an enlarged portion such as a Laval nozzle. Shield gas SGs cannot be supplied into nozzle 2 at the same flow rate as mainstream gas Gs.
  • a curved surface is processed on the inner peripheral edge of the downstream ring-shaped part 2b so that the opening width C of the slit T outlet is greater than the opening width D of the narrowest slit 2m. ing.
  • the slit narrowest part (shield gas throat part) 2m finally communicates with the inner wall of the nozzle, whereas the gas flow deflection part 7 facing the slit narrowest part 2m is linear. It is formed on a flat surface. In this way, by forming the flow path with a gap between the straight part and the arc part, the slit T for jetting the shielding gas SGs has the narrowest part throat in the middle and the opening width increases toward the downstream side. It will constitute a spreading Laval nozzle.
  • the slit T has a Laval nozzle structure, it is not necessarily limited to a combination of a straight line portion and an arc portion as described above, and may be a combination of an arc and an arc, for example. .
  • FIG. 3 is a graph showing the particle velocity distribution obtained by the acceleration nozzle 1.
  • the outlet diameter of the nozzle 2 is ⁇ 15 mm, and therefore indicates a range force of +7.5 mm and 7.5 mm on the horizontal axis.
  • the gas pressure of nitrogen gas is 1 ⁇ 3 MPa
  • the gas flow rate is 0 ⁇ 17 kg / s
  • the gas Mach number is 1 ⁇ 8 Yes
  • the supply of zinc is 1 ⁇ 7 X 10_ 4 kg / s.
  • the average speed at the nozzle outlet was about 420 m / s.
  • the part where the particles existed was within the range of ⁇ 12mm (+ 66mm), and the particle velocity was almost constant.
  • the particle diameter colliding with the substrate is ⁇ 10 30
  • the nozzle 2 is configured by connecting a plurality of ring-shaped parts 2a to 3 ⁇ 4, and from the slits T formed at the respective connecting portions of the ring-shaped parts.
  • Each shield gas SGs is supplied into the nozzle 2 in a direction substantially parallel to the nozzle center axis, and the supply operation of the shield gas SGs is repeated to the length required for particle acceleration.
  • the interval at which the shielding gas SGs is supplied into the nozzle 2 can be selected within the range of a force determined by the thickness of the ring-shaped part 2a 2i, usually 520 mm.
  • ring-shaped parts of various thicknesses are prepared and atomized, and the thickness of the ring-shaped parts is determined by trial and error. To decide.
  • the thickness is changed to a ring-shaped component having a small thickness, and when there is no particle adhesion, the thickness of the ring-shaped component is increased.
  • the nozzle length necessary for particle acceleration depends on the metal material and the method of supplying the metal material (the material is supplied from the melting furnace at a temperature sufficiently high above the melting point, or the material is wired.
  • the nozzle length is adjusted by changing the number of connected ring-shaped parts, because it varies depending on the power supplied in this form and arc melting, or also depending on the gas flow velocity in the nozzle.
  • the nozzle length is an important parameter because it is related to the yield and porosity that adheres in thermal spraying, and the yield and density that accumulates in spray forming and 3D modeling.
  • the nozzle length can be adjusted by a simple method of changing the number of connected ring-shaped parts, so that the nozzle length can be changed without remanufacturing the entire nozzle 2. Is possible.
  • the force required to disassemble and clean the nozzle 2 after the atomization work is ensured because the ring-shaped parts 2a to 3 ⁇ 4 of this embodiment are configured so that fingers can reach any part. Can be performed easily and the time required for maintenance can be greatly reduced.
  • the velocity of the gas flow can be expressed by the Mach number obtained by dividing the flow velocity by the velocity of sound and making it dimensionless.
  • the flow velocity is expressed using the Mach number M. explain.
  • Both the mainstream gas Gs injected into the nozzle 2 through the throat section 4 shown in Fig. 1 and the shield gas SGs injected into the nozzle 2 through each slit T are pressure (static pressure) in the nozzle 2. ) Expands until balanced. In the case of supersonic flow, the force that causes the pressure wave to be reflected in a complex manner within the nozzle 2 is ignored.
  • the shield gas SGs is divided by drilling the shield gas supply passage 6 from the upstream side of the ring-shaped part 2a through the ring-shaped parts 2a to 2i from the upstream side. do it.
  • Fig. 4 is a model of the gas flow in the nozzle.
  • the number of ring-shaped parts connected is six, and the slits are T1 to T5.
  • the nozzle for maintaining a constant Mach number is a long nozzle composed of a substantially straight pipe represented by GO, whereas in the acceleration nozzle of the present invention, the shielding gas SGs is set to G1 to G5. As shown in Fig. 4, the nozzle inner wall surface can be moved stepwise away from the nozzle center axis, which is effective in preventing particle adhesion.
  • the area ratio between the narrowest part and the outlet should be equal for the throat part 4 and the slits T1 to T5.
  • Fig. 6 representatively shows the velocity vector of the mainstream gas Gs and the shielding gas SGs injected from the slit T formed at the connecting portion of the ring-shaped part 2a and the ring-shaped part 2b.
  • the shielding gas SGs flows in parallel with the mainstream gas Gs, and the flow velocity is substantially the same.
  • 7 to 12 are principle diagrams showing other embodiments of the acceleration nozzle according to the present invention.
  • the acceleration nozzle 20 shown in FIG. 7 is a wire guide 22 for supplying a wire as a thermal spray material in the vicinity of the upstream side of the throat portion 21d formed in the ring-shaped component 21a arranged on the most upstream side. 23, and wires 24 and 25 that serve as anode and cathode electrodes are supplied into the nozzle 26 through these wire guides 22 and 23, and are melted on the upstream side of the throat portion 21d. .
  • the ring-shaped member 31a disposed on the most upstream side is made of ceramics, and wire guides 3 and 33 for supplying a wire as a thermal spray material to the ring-shaped member 31a.
  • the wires 34 and 35 that serve as the anode and cathode electrodes that pass through these wire guides 32 and 33 are supplied into the nozzle 36 and melted downstream of the throat 31d. It is.
  • FIG. 9 and FIG. 10 show a modification of the acceleration nozzle 30 shown in FIG.
  • the acceleration nozzle 37 shown in Fig. 9 narrows the nozzle hole upstream of the arc point (for example, assuming that the hole diameter of the throat portion 31d shown in Fig. 8 is 3.5mm, the hole diameter of the throat portion 31f is ⁇ 1. It is designed to accelerate the airflow flowing through the nozzle to subsonic speed by reducing it to 3mm.
  • the acceleration nozzle 38 shown in FIG. 10 has a small diameter nozzle passage 31 ⁇ (1.3 mm) up to the vicinity of the upstream side of the arc point so as to inject subsonic airflow in the vicinity of the arc point. It is a thing.
  • the arc is blown away by the supersonic air flow, or the wires 34 and 35 are made of a relatively soft material such as A1 and receive the supersonic air flow. It has the effect of stabilizing the arc when it becomes unstable due to vibration.
  • the subsonic air flow is brought close to the arc point. Since the injection can be performed, the arc can be stabilized more than the acceleration nozzle 37 of FIG.
  • the force S can be achieved to realize a narrow and high energy density spray.
  • the ring-shaped member 41a arranged on the most upstream side is made of ceramics, and supplied to the ring-shaped member 41a from the wire guide through the nozzle throat portion 41d.
  • the fixed electrodes 43 and 44 for arc melting with the wire 42 are arranged.
  • the acceleration nozzle 50 shown in FIG. 12 has a nozzle 52 composed of ring-shaped members 51a to 51c arranged in the vertical direction, and serves as a means for supplying a metal material into the nozzle 52.
  • a melt nozzle 53 for supplying a melt through 51d is provided.
  • nozzle 13 has a nozzle 62 composed of ring-shaped members 61a to 61c arranged in the horizontal direction, and serves as a means for supplying a metal material into the nozzle 62 as a throat portion 61d.
  • the molten metal nozzle 63 is inserted through the ring-shaped member 61b disposed in the vicinity of the downstream side of the gas from the direction substantially perpendicular to the flow of the mainstream gas Gs (downward), and from the molten nozzle 63 to the high speed in the nozzle 62 The molten metal is supplied to the gas flow.
  • acceleration nozzle is not limited to being arranged in the vertical and horizontal orientations described above, but may be arranged in an inclined posture.
  • Zn has a low melting point (692.7 K)
  • the gas pressure was 1.2 MPa and the gas temperature was room temperature.
  • Fig. 10 (a) is a cross-sectional view of the entire injection nozzle device 10
  • Fig. 10 (b) is a cross-sectional view of the front view thereof.
  • the injection nozzle device 10 is provided with a main body 11 and a projection protruding from the main body 11. Noznore 12 is available.
  • a gas passage 13 for flowing the mainstream gas Gs toward the nozzle 12 is formed.
  • the gas passage 13 has a tapered shape toward the downstream side when viewed from the plane, and communicates with a gas supply passage 13a for supplying gas from the left-right direction.
  • a pair of wire guides 14 and 14 are disposed in the gas passage 13 at an acute angle (toward the downstream side), and the wires 15 and 15 fed from these wire guides 14 and 14 are ring-shaped. Through the guide hole formed in the shaped part 12a, it protrudes into the nozzle part 12, and the protruding tips contact each other on the downstream side of the throat part 12m.
  • the ends of the wires 15, 15 serve as both an anode and a cathode, and are arc-melted by the addition of electric charge.
  • the nozzle 12 is configured by connecting a plurality of ring-shaped parts 12a to 12k in the nozzle central axis direction.
  • FIG. 15 shows the configuration of the ring-shaped part 12a constituting the base end of the nozzle 12.
  • FIG. 15 (a) is a plan sectional view
  • FIG. 15 (b) is a right side view
  • FIG. Figure (c) is a cross-sectional view taken along the line EE in Figure 15 (b).
  • a gas flow path 12 ⁇ through which the mainstream gas Gs flows is formed at the center of the ring-shaped part 12a, and a throat portion 12m is formed in the middle of the gas flow path 12 ⁇ .
  • a concave groove 12r is formed around the gas flow deflecting portion 12q in an annular shape, and a larger diameter than the concave groove 12r is formed between the concave groove 12r and the downstream end surface 12s of the ring-shaped part.
  • the engaged recess 12t is formed in an annular shape.
  • shield gas supply passages 12u for supplying the shield gas SGs are arranged at equal intervals on the circumference in the concave groove 12r, and the sheathed gas SGs supplied from each shield gas supply passage 12u. Is joined at the concave groove 12r to form a cylindrical flow along the outer wall of the gas flow deflector 12r (see shield gas flow SGs in FIG. 15 (c)).
  • FIG. 16 shows the configuration of the ring-shaped component 12b connected to the downstream side of the ring-shaped component 12a.
  • FIG. 16 (a) is a plan sectional view
  • FIG. 16 (b) is a right side view. It is.
  • the ring-shaped parts 12b to l3 ⁇ 4 are basically the same except that the inner diameter of the gas flow path 12 ⁇ is sequentially expanded, the ring-shaped parts 12b are representative of those. The configuration will be described.
  • a cylindrical engaging convex portion 12x is formed at the center of the upstream end face 12w of the ring-shaped component 12b.
  • the engaging convex portion 12x is connected to the engaging concave portion 12t of the ring-shaped component 12a. It comes to fit.
  • the inner diameter d2 of the gas flow path 12 ⁇ in the ring-shaped part 12b is greater than the outer diameter dl in the gas flow deflection section 12q of the ring-shaped part 12a.
  • annular groove 12y An O-ring as a sealing material is attached to the annular groove 12y.
  • 12q ′ is a gas flow deflecting portion
  • 12 is an annular concave groove
  • 121 ′ is an engaging concave portion into which an engaging convex portion of a ring-shaped component connected further downstream is fitted.
  • FIG. 17 shows the configuration of the ring-shaped part 12k arranged at the tip of the nozzle 12.
  • (A) is a plan sectional view
  • (b) is a right side view.
  • the ring-shaped part 12k has a gas flow path 12 ⁇ formed at the center thereof, and an engaging convex part 12 formed on the upstream end face 12.
  • the inner diameter d of the gas flow path 12 ⁇ expanded stepwise from the ring-shaped part 12a is finally the inner diameter of the ring-shaped part 12k, which is 15 mm in this embodiment.
  • Ti has a high melting point (1953K), so if the particles get too cold, it will not accelerate to about 700m / s, and the surface will not melt and adhere with heat due to the plastic deformation heat at the time of collision! / ,.
  • the gas pressure required to accelerate these particles will exceed 50 MPa in the case of air. Therefore, use a short nozzle to prevent particles from getting too cold during Ti spraying.
  • the gas pressure was 1.8 MPa and the gas temperature was room temperature.
  • Fig. 18 (a) is an overall plan view of the injection nozzle device 10 ', and Fig. 18 (b) is a cross-sectional view of the front view thereof.
  • the injection nozzle device 10 is protruded from the main body portion 16 and the main body portion 16. And a nozzle portion 17 provided.
  • a gas passage 18 for flowing mainstream gas toward the nozzle portion 17 is formed in the main body portion 16, and a gas supply passage 18a for supplying gas from the left and right directions to the gas passage 18 is provided. Is formed.
  • a pair of wire guides 19 and 19 are disposed at an acute angle in the gas passage 18, and the wires 19a and 19a fed from the wire guides 19 and 19 are formed in the ring-shaped part 12a. After passing through the guide hole, it protrudes into the nozzle portion 17, and the protruding tips come into contact with each other on the downstream side of the throat portion 17i!
  • the nozzle portion 17 is configured by connecting the ring-shaped components 17a to 17h in the cylinder axis direction, and the shield gas from the slits formed in the connecting portions of the ring-shaped components 17a to 17h. SGs is injected into the nozzle 17 in parallel with the flow of the mainstream gas Gs.
  • thermal spraying material Zn and Ti are explained as examples of the thermal spraying material.
  • metals / alloys such as Al, Cu, SUS steel, ceramics, cermet, etc. should be used as the thermal spraying material.
  • a plurality of ring-shaped parts having the same thickness can be connected, and the parts that have different thicknesses can be connected together.
  • the nozzle may be constituted by a divergent nozzle that continuously expands with a force constituted by a divergent nozzle whose inner diameter gradually increases from the throat portion toward the nozzle outlet.
  • the shielding gas is injected toward the downstream side substantially parallel to the nozzle central axis.
  • the graph shown in Fig. 19 compares the thermal spray performance when different thermal spray materials are used.
  • the graph (a) shows the density of the coating formed by thermal spraying, and the graph (b) shows the yield of the coating. Each of them is shown.
  • the thermal spray materials used as test pieces are Al, Cu, Ti, and SUS304.
  • the nozzle length was adjusted for each thermal spray material by changing the number of ring-shaped parts connected. Specifically, for thermal spray materials with low melting points, long nozzles that emphasize acceleration For example, for Al and Cu, a 200 mm long nozzle was used. On the other hand, it is a spray material with a high melting point! / The particles are too cold! / Short as short! / Zozul, such as Ti! / 40mm
  • the coating density obtained with each thermal spray material was as high as 90 to 94%, and a good film formation state was confirmed.
  • the nozzle length was changed in the range of 40 to 200 mm, and the film yield was examined. As a result, it was confirmed that the yield decreased for each sprayed material as the nozzle length increased. This is thought to be because if the particles in flight are too cold, they adhere to the substrate.
  • a yield of about 40% can be obtained even with a nozzle length of 200 mm.
  • a yield of about 15% for Cu, 5 to 10% for SUS304 and Ti, and a yield of about 10% cannot be obtained. Therefore, when using a material with a low melting point for the thermal spray material, it is possible to use a nozzle with a length of up to 200 mm.
  • the upper limit of the nozzle length is set to 70 mm or less. It is preferable to do. More preferably, it is about 40 mm.
  • the graph shown in Fig. 20 shows an EPM of a Ti sprayed coating formed using a 40 mm long nozzle.
  • Ti is detected as an element of the thermal spray coating, as shown by the component force from the graph.
  • N and C were also detected in very small amounts, but N was detected as nitrogen as the carrier gas, and C was detected as a resin for molding the test piece. It can be ignored.
  • Cold spray is a method in which a thermal spray gas powder having a temperature lower than the melting point of the thermal spray material is injected with the powder thermal spray material, and the thermal spray material collides with the substrate in the solid state to form a coating. Is the law.
  • thermal spraying material metal, alloy, cermet, ceramics, etc.
  • particle size of the thermal spray material can generally be as follows;
  • an injection nozzle device 70 for cold spray mainly includes a main body 71 and an acceleration nozzle 72 connected to the tip of the main body 71.
  • the main body 71 has a hollow chamber 71a, and a tapered portion 71b is formed on the front side in the spray direction of the hollow chamber 71a.
  • the hollow chamber 71a communicates with a first supply hole 71c for supplying high-pressure gas and a second supply hole 71d for supplying high-pressure gas and powder, and each high-pressure gas has a common gas source ( Nitrogen, helium, air, etc.)
  • the configuration of the acceleration nozzle 72 is basically the same as the configuration of the acceleration nozzle 1 shown in FIG. 1, and a cylindrical shield gas is formed around the sprayed material flying in the nozzle. It is structured so that it can be driven by force S!
  • the high-pressure gas containing the thermal spray material supplied through the supply hole 71d merges in the hollow chamber 71a and passes through the tapered portion 71b to become supersonic flow.
  • each slit T of each ring-shaped part 72a to 72k constituting the accelerating nozzle 72 gas is sequentially ejected along its inner wall to form a substantially cylindrical gas flow.
  • the thermal spray material flying in the acceleration nozzle 72 is shielded by a gas flow that flows in a substantially cylindrical shape.
  • the sprayed material sprayed from the main body 71 at supersonic speed is accelerated without contacting the inner wall of the acceleration nozzle 72, that is, without being deposited on the inner wall, and collides with the base material. A film is formed.
  • the injection nozzle device 70 for example, it is possible to perform partial application only aiming at a necessary range of parts, and it is possible to form a dense film.
  • FIG. 22 shows a configuration when the acceleration nozzle of the present invention is applied to high-speed flame spraying.
  • the spray gun 80 of the high-speed flame spraying device is connected to the combustion chamber 80a. It has the power of Zunole 80b and Norenole 80c.
  • Fuel and oxygen are mixed and ignited in the combustion chamber 80a, and a combustion flame (frame) is generated.
  • This combustion flame is once squeezed by the throat part 80d formed in the nozzle part 80b, thereby causing a high-speed flow. And pass through the barrel 80c.
  • the acceleration nozzle 81 having basically the same configuration as that of the acceleration nozzle 1 shown in FIG. 1 is connected.
  • the acceleration nozzle of the present invention is not limited to the above-described high-speed flame spraying, and can be connected to a subsequent stage of a thermal spraying apparatus that melts particles with a high-temperature gas such as plasma spraying. It is possible to eliminate the adhesion of particles to the inner wall of the nozzle by maintaining the acceleration at this point.
  • reference numeral 82 denotes thermal spray particles
  • 83 denotes a base material
  • 84 denotes a thermal spray coating deposited on the base material 83.
  • FIG. 23 shows a configuration in which the acceleration nozzle of the present invention is applied to a pulverizing apparatus for producing metal powder by refining a molten metal flow.
  • the atomizer 90 is housed in a housing 92 disposed below the melting furnace 91.
  • the atomizer 90 includes a hollow annular portion 90a and a support extending in the diameter direction from the outer peripheral wall.
  • One support 90c is hollow and communicates with the annular portion 90a to function as a high-pressure gas supply path! /.
  • the supports 90b and 90c are adapted to rotate around their axes, thereby
  • the annular portion 90a can be swung in the thickness direction of the paper.
  • an acceleration nozzle 93 On the bottom surface of the annular portion 90a, an acceleration nozzle 93 having basically the same configuration as that of the acceleration nozzle 1 shown in FIG.
  • the high-pressure gas supplied to the annular portion 90a through the support 90c is also injected from the slits T of the ring components 93a to 93h of the injection nozzle device 93.
  • the atomization apparatus 90 is a melting furnace.
  • the atomized particles are further accelerated by the high-pressure gas injected from the slit T when passing through the acceleration nozzle 93, and the collision speed of colliding with the base material is increased.
  • the density of the billet formed by the deposition of particles on the substrate is almost proportional to the collision speed of the particles, the density of the billet can be increased by adding the acceleration nozzle 93 that can accelerate the particles. Can form high billets and billets.
  • Figure 24 shows a water experiment model configured to measure the velocity and velocity distribution of particles flying in the acceleration nozzle.
  • 96 is a water tank 91 'nozure which drooped.
  • the hollow annular portion 90a 'force also supplied high pressure gas.
  • the water experiment model shown in Fig. 24 is an arrangement in which the atomizer shown in Fig. 23 is viewed from the high-pressure gas supply direction. Therefore, the acceleration nozzle 93 'swings in the left-right direction.
  • the graph shown in FIG. 25 is obtained by measuring the particle velocity distribution in the direction orthogonal to the spray direction using the water experimental model.
  • the horizontal axis indicates the distance from the spray center S, and the vertical axis indicates the particle velocity! /. Note that the hole diameter of the nozzle outlet of the acceleration nozzle 93 ′ used in this water experimental model is ⁇ 16 mm.
  • the characteristic Ml is the measured nozzle velocity at a distance of 25 mm from the nozzle outlet force.
  • the particle velocity is fast (350 m / s) at the spray periphery near the nozzle inner wall, and at the spray center.
  • a velocity distribution was obtained in which the particle velocity was slow (250 m / s). This is considered to be a delay caused by having to accelerate while sucking atmospheric gas in the center of the spray.
  • Characteristic M2 is a measurement of the particle velocity at a distance of 250 mm from the nozzle outlet. The particle velocity at the spray center is accelerated compared to the characteristic Ml, while the spray periphery is from the spray center. As the distance increases, so does the particle velocity.
  • Characteristic M3 is obtained by measuring the particle velocity at a distance of 550 mm from the nozzle outlet. Compared to the above characteristic M2, the particle velocity at the center of the spray is slightly attenuated, and the spray further spreads out.
  • the graph shown in Fig. 26 is obtained by measuring the particle velocity distribution in the spray direction.
  • the horizontal axis represents the spray height
  • the left vertical axis represents the particle velocity
  • the right vertical axis represents the particle diameter.
  • Characteristic N1 is a measurement of the change in particle velocity in the spray height range of 60 to 1250 mm. Since the particle is being accelerated up to a spray height of about 300 mm, the velocity increases to about 310 m / s. After that, it gradually attenuates.
  • the particle size is stable at around 21 ⁇ m up to a spray height of 500 mm, but the particle size tends to increase slightly when the spray height exceeds 500 mm. This is presumably due to the coalescence of flying particles.
  • the acceleration nozzle of the present invention can be used for painting in an IJ.
  • the accelerating nozzle of the present invention can be widely applied to all fields such as fine powder production, spray forming, thermal spraying, film formation, three-dimensional modeling, and painting. Touch with force S.
  • the cylindrical acceleration nozzle has been described as an example.
  • the acceleration nozzle is not limited to the cylindrical shape described above.
  • the rectangular tube nozzle 100 may be connected.
  • the opening shape of the nozzle hole 100e may be a flat rectangle or a square.
  • 100f is a throat part.
  • the present invention can be used in an acceleration nozzle and an injection nozzle apparatus including the acceleration nozzle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

An acceleration nozzle has a nozzle hole with an inner diameter continuously or stepwise expanding toward the tip of the nozzle. In the circumferential inner wall of the nozzle hole are formed ejection openings for ejecting in a tubular form a high-speed gas flow to the nozzle tip side. The ejection holes are arranged in multiple stages in the direction of the axis of the nozzle hole tube.

Description

明 細 書  Specification
加速ノス'ノレおよび噴射ノス'ノレ装置  Acceleration nose and injection nose device
技術分野  Technical field
[0001] 本発明は、ガスを衝突させることによって微粒化した粒子を、冷却または溶融状態 で成膜対象に衝突させ皮膜を形成するのに好適である加速ノズルおよびその加速ノ ズノレを備えた噴射ノズル装置に関するものである。  [0001] The present invention relates to an acceleration nozzle suitable for forming a film by colliding particles atomized by gas collision with a film formation target in a cooled or molten state, and an injection equipped with the acceleration nozzle The present invention relates to a nozzle device.
背景技術  Background art
[0002] ガスを用いて金属材を微粒化する主な技術として、 (1)微粉製造、 (2)スプレーフォ 一ミング、 (3)溶射があり、これらの溶射技術には各種構造からなる噴射ノズルが使用 されている。  [0002] The main technologies for atomizing metal materials using gas are (1) fine powder production, (2) spray forming, and (3) thermal spraying. Nozzle is being used.
[0003] (1)微粉製造  [0003] (1) Fine powder production
粉末冶金に利用される微粉製造は、容器から注がれる溶湯流に対し、円周上に配 置された複数のノズルからその溶湯流に向けてジェットガスを衝突させ、金属材を微 粒化する (例えば特許文献 1参照)。  The fine powder production used for powder metallurgy is to atomize metal material by colliding jet gas from a plurality of nozzles arranged on the circumference of the molten metal flow poured from a container toward the molten metal flow. (For example, refer to Patent Document 1).
[0004] また、上記複数のノズルに代えて円錐状のラバルノズルを配置し、そのラバルノズ ルでガスを加速させ、高速に加速されたガス中に金属材等を溶融状態で導入するこ とにより、微粒化する方法もある(例えば特許文献 2参照)。  [0004] Further, instead of the plurality of nozzles, a conical Laval nozzle is disposed, the gas is accelerated by the Laval nozzle, and a metal material or the like is introduced into the gas accelerated at a high speed in a molten state, There is also a method of atomization (see, for example, Patent Document 2).
[0005] 上記ラバルノズルの長さは短いものを使用しているため、ノズル内壁に微粒化され た粒子が付着することは少な!/、が、ノズノレの長さが短!/、と高速気流となって!/、るノズ ノレ内を溶湯や微粒子が通過する時間が極めて短いため、ガス流速によって引き出す ことのできる本来の微粒化効果を十分に活用することはできない。  [0005] Since the length of the Laval nozzle is short, the atomized particles are less likely to adhere to the inner wall of the nozzle! /, But the length of the nozzle is short! / As a result, the time required for the molten metal and fine particles to pass through the inner ring is extremely short, so the original atomization effect that can be extracted by the gas flow rate cannot be fully utilized.
[0006] (2)スプレーフォーミング  [0006] (2) Spray forming
プリフォームを製造するスプレーフォーミングにおいても上記微粉製造と同様な構 成の微粒化装置(アトマイザ一)が使用されて!/、る。  In spray forming for producing preforms, the atomizer (atomizer) having the same structure as that for fine powder production is used!
[0007] この種の微粒化装置においても、ノズル孔から放出されて減速してしまったガスを 溶湯に衝突させるものはガス流によって粒子を十分加速させることができず、その結 果として得られた堆積物の密度は低くなり、材料は多孔質になりがちである。 [0008] 例えば、特許文献 3に記載のスプレー形成方法では、金属材が噴霧前に凝固しな いように、ノズル温度を十分高い温度に維持するための加熱エレメントがノズル周囲 に設けられている。 [0007] Even in this kind of atomization apparatus, the gas that has been released from the nozzle hole and decelerated and collides with the molten metal cannot be sufficiently accelerated by the gas flow, and is obtained as a result. The density of the deposited material tends to be low and the material tends to be porous. [0008] For example, in the spray forming method described in Patent Document 3, a heating element for maintaining the nozzle temperature at a sufficiently high temperature is provided around the nozzle so that the metal material does not solidify before spraying. .
[0009] この微粒化装置によればノズル内壁に金属粒子が付着することを防止できる。とこ ろ力 ノズル内壁を構成している材料と、ノズルに供給した金属材とが濡れ性のよい 場合には、金属粒子がノズル内壁に膜状に付着し、ノズル中央を流れるガスに引つ 張られてゆっくりとノズル出口側に押し出されるため、ノズル中央を飛行する微粒子と 比べると非常に大きな粒径のままノズル出口から吐き出されることになる。その結果、 成膜の品質が悪化したり、堆積物の品質が低下する。  [0009] According to this atomization device, metal particles can be prevented from adhering to the inner wall of the nozzle. Coercive force When the material that forms the inner wall of the nozzle and the metal material supplied to the nozzle have good wettability, the metal particles adhere to the inner wall of the nozzle in the form of a film and are pulled by the gas flowing in the center of the nozzle Since it is slowly pushed out toward the nozzle outlet, it is discharged from the nozzle outlet with a very large particle size compared to the fine particles flying in the center of the nozzle. As a result, the quality of the film is deteriorated and the quality of the deposit is lowered.
[0010] さらに、ノズル内壁と接触した後に吐き出された金属粒子は、ノズル壁材料の成分 が混入して!/、るため、微粒化した金属粒子を汚染する可能性もある。  [0010] Furthermore, since the metal particles discharged after coming into contact with the inner wall of the nozzle are mixed with components of the nozzle wall material !, there is a possibility that the atomized metal particles are contaminated.
[0011] (3)溶射  [0011] (3) Thermal spraying
上記スプレーフォーミングが大容量の溶湯を供給して塊の堆積物や成型体を得る のに対し、溶射は同様の原理によって少量の材料を供給し皮膜を形成するコーティ ング技術であり、溶射の方式としては電気を熱源とするアーク溶射や燃焼ガスを熱源 とするフレーム溶射等がある。  While spray forming supplies large volumes of molten metal to obtain lump deposits and molded bodies, spraying is a coating technology that forms a film by supplying a small amount of material according to the same principle. These include arc spraying using electricity as a heat source and flame spraying using combustion gas as a heat source.
[0012] (3-1)ノズル内で金属材を溶融させるもの [0012] (3-1) Melting metal material in nozzle
アーク溶射は、金属材を 2本のワイヤの形態で供給し、それぞれのワイヤを陽極と 陰極として電荷を付加し、両ワイヤ間でアークを発生させ金属材を溶融する(例えば 特許文献 4参照)。  In arc spraying, a metal material is supplied in the form of two wires, electric charges are added using each wire as an anode and a cathode, an arc is generated between the two wires, and the metal material is melted (for example, see Patent Document 4). .
[0013] この特許文献 4に記載の溶射ノズル装置では、ノズルに粒子が付着することを予め 考慮してノズル壁の温度を金属材の融点以上まで加熱している。  [0013] In the thermal spray nozzle device described in Patent Document 4, the temperature of the nozzle wall is heated to a temperature equal to or higher than the melting point of the metal material in consideration of the fact that particles adhere to the nozzle.
[0014] この溶射ノズル装置を含め、多くのアーク溶射では、金属粒子の加速性能を犠牲 にしてノズル内壁に溶融状態の粒子が付着しな!/、方法を選択して!/、る。 [0014] In many arc spraying including this thermal spray nozzle device, molten particles do not adhere to the inner wall of the nozzle at the expense of the acceleration performance of the metal particles!
[0015] また、特許文献 5に記載のアーク溶射装置は、図 28に示すように、霧化部の下流に ぉレ、て高速の噴霧流を促進するように構成されてレ、る。 [0015] Further, as shown in FIG. 28, the arc spraying device described in Patent Document 5 is configured so as to promote a high-speed spray flow downstream of the atomizing section.
[0016] 詳しくは、線材ガイド 110, 110を通した線材 111 , 111を、ノズル中心軸上で互い に接触させるようにし、その中心軸と同軸に、先細のテーパ区画 112aと先広がりのテ ーパ区画 112bが連通するガスキャップ 112を設け、テーパ区画 112aにガスを通過 させることにより溶融金属噴霧用の一次ガス流 G1を発生させ、テーパ区画 112bに 設けられた複数のオリフィス 112cから二次ガス流 G2を発生させている。 [0016] Specifically, the wire rods 111 and 111 that have passed through the wire rod guides 110 and 110 are brought into contact with each other on the nozzle central axis, and the tapered taper section 112a and the taper of the taper are coaxial with the central axis. A gas cap 112 communicating with the super compartment 112b is provided, and a primary gas flow G1 for spraying molten metal is generated by allowing gas to pass through the taper compartment 112a, and secondary from a plurality of orifices 112c provided in the taper compartment 112b. Gas stream G2 is generated.
[0017] 二次ガス流 G2は互いに内側に向けられており、溶融金属の霧化を妨害しないよう に、線材 111の接触点から下流側に十分に間隔を置!、た位置で合流するようにし、 それにより、一次ガス流 G1が二次ガス流 G2によって狭められ、かつ加速されるように なっている。 [0017] The secondary gas flows G2 are directed inward from each other so that they are sufficiently spaced downstream from the contact point of the wire 111 so as not to interfere with the atomization of the molten metal. As a result, the primary gas flow G1 is narrowed and accelerated by the secondary gas flow G2.
[0018] 上記アーク溶射装置のノズル構造は粒子速度を高めることを意図している力 S、ガス キャップ 112のテーパ区画 112bにおける半頂角(ノズル中心軸とノズル内壁がなす 角度)が極めて大きくし力、も長さが短いため、ガスキャップ 112内で流れの剥離が生じ 、超音速のガス流を形成することは困難である。  [0018] The nozzle structure of the above-mentioned arc spraying device has a force S intended to increase the particle velocity, and the half apex angle (angle formed by the nozzle central axis and the nozzle inner wall) in the tapered section 112b of the gas cap 112 is extremely large. Since the force and the length are short, flow separation occurs in the gas cap 112 and it is difficult to form a supersonic gas flow.
[0019] (3-2)ノズル外で金属材を溶融させるもの  [3] (3-2) Melting metal material outside the nozzle
ノズルを使用することによって溶射面に向けて高速フレームを形成するとともに、そ の高速フレーム (燃焼炎)の途中に溶射材を投入する溶射装置 (例えば特許文献 6 参照)がある。  There is a thermal spraying apparatus (see, for example, Patent Document 6) in which a nozzle is used to form a high-speed frame toward the sprayed surface, and a spray material is introduced in the middle of the high-speed frame (combustion flame).
[0020] また、同じく高速フレームによる溶射ガンバレルにガスシュラウドを付加し、そのガス シュラウドにおいて円周状に形成されたスリットより不活性ガスをシュラウド内に供給し 、ガンバレルより溶射される金属粒子の速度を加速させ、大気から遮断した状態で基 材表面に金属粒子を衝突させるものもある(例えば特許文献 7参照)。  [0020] Further, a gas shroud is added to the spray gun barrel by the high-speed flame, and an inert gas is supplied into the shroud through a circumferentially formed slit in the gas shroud, and the velocity of the metal particles sprayed from the gun barrel In some cases, the metal particles collide with the surface of the base material while being accelerated from the atmosphere and blocked from the atmosphere (see, for example, Patent Document 7).
[0021] 金属粒子の加速が得られた理由は、ガスシュラウドが存在することによってノズルの 長さが延長され粒子の加速距離が増加したことと、高温のフレームに対して周囲から 不活性ガスが供給されたこととが考えられる。超音速で流れて!/、る気流は加熱される と減速し、冷却されると加速する性質を持ってレ、るからである。  [0021] The acceleration of the metal particles was obtained because of the presence of the gas shroud, the length of the nozzle was extended and the acceleration distance of the particles was increased. It is thought that it was supplied. This is because the airflow that flows at supersonic speed decelerates when heated and accelerates when cooled.
[0022] また、不活性ガスを供給するスリットの傾斜面は、シュラウド筒部の中心軸への直交 線に対して 70° 以内に傾斜させることが好ましいとある。 70° を超えると、シュラウド 中央を流れるフレームに対し不活性ガスを混合させることが難しくなるからと思われる  [0022] Further, it is preferable that the inclined surface of the slit for supplying the inert gas is inclined within 70 ° with respect to a line perpendicular to the central axis of the shroud tube portion. Beyond 70 °, it seems that it becomes difficult to mix inert gas into the flame flowing in the center of the shroud.
[0023] (3-3) 3次元の造形 微粒化した溶融金属を標的に向けて噴射し凝固させることにより 3次元の造形を行 う方法である。 [0023] (3-3) 3D modeling It is a method of three-dimensional modeling by spraying the atomized molten metal toward the target and solidifying it.
[0024] 金属材を線材にし、この線材の端部を放電によって溶融させ、形成された溶融球を ガス流で飛翔させる力 ガスで噴射された溶融金属がノズル内壁に付着することを避 けるため、ノズルの外部で線材を溶解させて!/、る(例えば特許文献 8参照)。  [0024] A force for causing a metal material to be a wire material, melting an end portion of the wire material by electric discharge, and flying the formed molten sphere by a gas flow, in order to prevent the molten metal injected by the gas from adhering to the inner wall of the nozzle The wire is melted outside the nozzle! / (See, for example, Patent Document 8).
[0025] この造形方法では、ノズルから噴射し拡散するガスによって溶融金属が吹き飛ばさ れるため、基材に対する溶融金属滴の命中精度が低いという問題がある。 [0025] This modeling method has a problem that the accuracy of the molten metal droplet hitting the substrate is low because the molten metal is blown off by the gas that is jetted from the nozzle and diffused.
[0026] 仮に、溶融金属の粒子を長!/ゾズル内で飛行させ、直進性を保った状態でノズノレ 力、ら噴射することができれば、命中精度を格段向上させることが期待できる力 このよ うなノズノレは実現されて!/、なレ、。 [0026] If it is possible to fly molten metal particles in a long / fuzzy nozzle and inject a nose force with a straight line maintained, it is possible to expect a significant improvement in hit accuracy. Nozure has been realized!
[0027] (3-4)コールドスプレー [0027] (3-4) Cold spray
材料を溶融またはガス化させることなくガスとともに超音速流で固相状態のまま基材 に衝突させて皮膜を形成する方法である(例えば特許文献 9参照)。超音速で衝突し た材料は粒子自体が塑性変形することによって皮膜となるため、他の溶射方法とは 異なり、熱による材料の特性変化や酸化が抑制される。  In this method, a film is formed by colliding with a base material in a solid state in supersonic flow together with gas without melting or gasifying the material (see, for example, Patent Document 9). The material that collides at supersonic speed becomes a film by plastic deformation of the particles themselves, and unlike other thermal spraying methods, changes in material properties and oxidation due to heat are suppressed.
特許文献 1:特公昭 62-24481号公報  Patent Document 1: Japanese Patent Publication No. 62-24481
特許文献 2 :特開昭 62-110738号公報  Patent Document 2: JP-A-62-110738
特許文献 3:特表 2004-503385号公報  Patent Document 3: Japanese Translation of Special Publication 2004-503385
特許文献 4 :特開 2006-175426号公報  Patent Document 4: JP-A-2006-175426
特許文献 5:特開平; U-279743号公報  Patent Document 5: Japanese Laid-Open Patent Publication No. U-279743
特許文献 6 :特開 200卜181817号公報  Patent Document 6: Japanese Patent Laid-Open No. 200-181817
特許文献 7:特開 2003-183805号公報  Patent Document 7: Japanese Patent Laid-Open No. 2003-183805
特許文献 8:特開 2000-248353号公報  Patent Document 8: JP 2000-248353 A
特許文献 9:特開 2006-52449号公報  Patent Document 9: Japanese Patent Laid-Open No. 2006-52449
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0028] 上記微粉製造、スプレーフォーミング、溶射に使用されて!/、る関連技術の噴射ノズ ルの!/、ずれにつ!/、ても、粒子がノズノレ内壁に付着すると!/、う問題は解消されて!/、な い。また、長さの短いノズルを使用して、あるいはノズル外部で金属材を微粒化する 方法では、ガス流速によって引き出すことのできる本来の微粒化効果を十分に活用 すること力 Sできな!/、と!/、う問題がある。 [0028] Used for fine powder production, spray forming, and thermal spraying! /, Spray nozzles of related technologies! /, Misalignment! / Even if particles adhere to the inner wall of the nozzle! / Is gone! / Yes. In addition, the method of atomizing a metal material using a short nozzle or outside the nozzle cannot fully utilize the original atomization effect that can be extracted by the gas flow velocity! /, There is a problem!
[0029] 本発明は以上のような関連技術の噴射ノズルにおける課題を考慮してなされたもの であり、粒子がノズル内壁に付着せず、し力、もガス流速によって得られる微粒化効果 および粒子の加速効果を有効に活用することができる加速ノズルおよび噴射ノズル 装置を提供するものである。  [0029] The present invention has been made in consideration of the problems in the related art injection nozzles as described above. The particles do not adhere to the inner wall of the nozzle, and the force and the atomization effect obtained by the gas flow rate and the particles are obtained. It is an object of the present invention to provide an acceleration nozzle and an injection nozzle device that can effectively utilize the acceleration effect of the nozzle.
課題を解決するための手段  Means for solving the problem
[0030] 本発明の加速ノズルは、ノズルの先端に向けて内径が連続的または段階的に拡大 するノズル孔を有し、上記ノズル孔における周方向内壁に、高速ガス流をノズル先端 側に向けて略筒状に噴射するための噴射口が形成されるとともに、この噴射口が上 記ノズル孔の筒軸方向に複数段設けられて!/、ることを要旨とする。  [0030] The accelerating nozzle of the present invention has a nozzle hole whose inner diameter continuously or stepwise expands toward the tip of the nozzle, and directs a high-speed gas flow toward the nozzle tip side on the circumferential inner wall of the nozzle hole. The gist of the invention is that an injection port for injecting into a substantially cylindrical shape is formed, and that the injection port is provided in a plurality of stages in the cylinder axis direction of the nozzle hole.
[0031] 上記加速ノズルにおいて、内径が異なる複数のリング状部品を筒状に連結した場 合、連結された上流側および下流側リング状部品の内壁段差部分に、上記噴射口を 環状に開口させること力 Sできる。  [0031] In the acceleration nozzle, when a plurality of ring-shaped parts having different inner diameters are connected in a cylindrical shape, the injection ports are annularly opened at the inner wall step portions of the connected upstream and downstream ring-shaped parts. That power S.
[0032] 上記加速ノズルにおいて、先端の上記リング状部品を除く各リング状部品を貫通し て、上記高速ガス流形成用のガスを供給するガス供給路を設け、このガス供給路か ら、上記各段の噴射口に上記ガスを個別に供給するためのガス通路を形成すること ができる。  [0032] In the acceleration nozzle, a gas supply path for supplying the gas for forming the high-speed gas flow is provided through each ring-shaped part excluding the ring-shaped part at the tip, and from the gas supply path, the gas supply path is provided. It is possible to form a gas passage for individually supplying the gas to the injection port of each stage.
[0033] 上記加速ノズルにおレ、て、連結された上流側および下流側リング状部品の間に間 隙を設けることによって上記ガス通路を形成し、このガス通路における上記噴射口近 傍に、ガス通路の幅を絞って上記高速ガス流を形成する高速ガス流形成部を形成す ること力 Sでさる。  [0033] The gas passage is formed by providing a gap between the upstream and downstream ring-shaped parts connected to the acceleration nozzle, and in the vicinity of the injection port in the gas passage, The force S is applied to form a high-speed gas flow forming portion that forms the high-speed gas flow by narrowing the width of the gas passage.
[0034] 上記構成を有する加速ノズルは、溶射装置のノズル出口に接続することができ、ま た、微粉製造装置のノズル出口に接続することができ、さらにまた、コールドスプレー 装置のノズル出口に接続すること力 Sできる。  [0034] The acceleration nozzle having the above-described configuration can be connected to the nozzle outlet of the thermal spraying apparatus, can be connected to the nozzle outlet of the fine powder production apparatus, and is further connected to the nozzle outlet of the cold spray apparatus. The power to do S.
[0035] 本発明の噴射ノズル装置は、ノズル入口側に導入したキャリアガスを、上記ノズル 内のスロート部を通過させることにより高速ガス流とし、ノズル内で溶融状態にある材 料をその高速ガス流によって微粒化し、微粒化した粒子をノズル出口側から噴射す る噴射ノズル装置において、 上記スロート部下流側のノズル孔における周方向内壁 にノズル中心軸と略平行に且つ下流側に向けてシールドガスを噴射する噴射口を有 し、上記高速ガス流の周囲に筒状のシールドガスの流れを形成するシールドガス供 給部を備えてなることを要旨とする。 [0035] The jet nozzle device of the present invention is a material in which the carrier gas introduced to the nozzle inlet side is passed through the throat portion in the nozzle to form a high-speed gas flow and is in a molten state in the nozzle. In the spray nozzle device that atomizes the material by the high-speed gas flow and sprays the atomized particles from the nozzle outlet side, the circumferential inner wall of the nozzle hole on the downstream side of the throat portion is substantially parallel to the downstream side of the nozzle center axis. The gist of the present invention is that it has an injection port for injecting a shield gas toward the surface, and a shield gas supply unit for forming a cylindrical shield gas flow around the high-speed gas flow.
[0036] 上記筒状のシールドガスの流れを形成するとは、実質的に筒状の流れが形成され るものであればよぐ例えば環状の噴射ロカ シールドガスを噴射することによって筒 状の流れを形成してもよぐまたは、円周上に配置された多数の複数口からシールド ガスを噴射することによって筒状に形成するものであってもよい。 [0036] The formation of the cylindrical shield gas flow is not particularly limited as long as a substantially cylindrical flow is formed, for example, by injecting an annular injection rocker shield gas. It may be formed, or may be formed in a cylindrical shape by injecting shield gas from a plurality of plural ports arranged on the circumference.
[0037] 上記噴射ノズル装置において、上記ノズルは上記スロート部からノズル出口に向け て内径が連続的または段階的に拡大する末広ノズルに形成することができる。 [0037] In the spray nozzle device, the nozzle may be formed as a divergent nozzle having an inner diameter that continuously or stepwise expands from the throat portion toward the nozzle outlet.
[0038] 上記噴射ノズル装置にお!/、て、上記ノズルは、複数のリング状部品をリング中心軸 方向に連結した集合体から構成することができる。 [0038] In the above injection nozzle device, the nozzle can be constituted by an assembly in which a plurality of ring-shaped components are connected in the ring central axis direction.
[0039] 上記噴射ノズル装置のノズルを、上記スロート部からノズル出口に向けて内径が段 階的に拡大する末広ノズルで形成した場合、連結されたリング状部品における各隣り 合った内壁の段差部分に、上記シールドガス噴射口としてのスリットを環状に形成す ること力 Sでさる。 [0039] When the nozzle of the injection nozzle device is formed of a divergent nozzle having an inner diameter that gradually increases from the throat portion toward the nozzle outlet, the stepped portion of each adjacent inner wall in the connected ring-shaped part In addition, the force S is used to form a slit as the shield gas injection port in an annular shape.
[0040] 上記噴射ノズル装置にお!/、て、上記スリット上流側のシールドガス供給路に、シー ルドガスの流速を上記高速ガス流の流速に揃えるためのシールドガス用スロート部を 形成すれば、例えばラバルノズル等のガスを高速に加速するタイプの噴射ノズル装 置についても、導入したシールドガスによって上記高速ガス流を促進させることがで きる。  [0040] In the injection nozzle device, if a shield gas throat portion is formed in the shield gas supply path on the upstream side of the slit to make the flow velocity of the shield gas equal to the flow velocity of the high-speed gas flow, For example, in the case of an injection nozzle device that accelerates gas at high speed, such as a Laval nozzle, the high-speed gas flow can be promoted by the introduced shielding gas.
[0041] 上記噴射ノズル装置において、上記リング状部品の下流側内周縁部に、上記シー ルドガスの流れを上記ノズルの中心軸と略平行に且つ下流側に向けて揃えるための ガス流偏向部を設けることができる。  [0041] In the injection nozzle device, a gas flow deflecting portion for aligning the flow of the shield gas substantially parallel to the central axis of the nozzle toward the downstream side is provided at the downstream inner peripheral edge of the ring-shaped component. Can be provided.
[0042] 上記噴射ノズル装置にお!/、て、上記ノズルのスロート部近傍に、溶射材料をワイヤ の形態で供給する一対のワイヤガイドを配設し、これらのワイヤガイドの先端からノズ ル内に突出した一対のワイヤに対し、陽極と陰極の各電極として電荷を印加するよう に構成することができる。 [0042] A pair of wire guides for supplying the spray material in the form of wires is disposed in the vicinity of the throat portion of the nozzle in the spray nozzle device, and the tip of these wire guides is inserted into the nozzle. A charge is applied to each of a pair of wires protruding in the form of an anode and a cathode Can be configured.
[0043] 上記噴射ノズル装置において、上記高速ガス流の流れ方向において最上流側に 配置される上記リング状部品をセラミックスで構成し、このセラミックスに、溶射材料と してのワイヤを供給する一対のワイヤガイドを揷通し、これらのワイヤガイドの先端か らノズル内に突出した一対のワイヤに対し、陽極と陰極の各電極として電荷を印加す るように構成することカでさる。 [0043] In the spray nozzle device, the ring-shaped component disposed on the most upstream side in the flow direction of the high-speed gas flow is made of ceramics, and a pair of wires serving as a thermal spray material is supplied to the ceramics. The wire guides are passed through, and the electric charges are applied to the pair of wires protruding into the nozzle from the tips of these wire guides as the anode and cathode electrodes.
[0044] 上記噴射ノズル装置において、上記高速ガス流の流れ方向において最上流側に 配置される上記リング状部品をセラミックスで構成し、このリング状部品に、ワイヤガイ ドから上記スロート部を通して供給されたワイヤとの間でアーク溶解を行うための固定 電極を配設することができる。 [0044] In the injection nozzle device, the ring-shaped component disposed on the most upstream side in the flow direction of the high-speed gas flow is made of ceramics, and the ring-shaped component is supplied from the wire guide through the throat portion. A fixed electrode for arc melting with the wire can be provided.
[0045] 上記噴射ノズル装置において、上記スロート部を通して、上記ノズル中心軸上に溶 湯を供給する溶湯ノズルを設けることができる。 [0045] In the spray nozzle device, a melt nozzle for supplying a melt to the nozzle central axis through the throat portion can be provided.
[0046] 上記噴射ノズル装置にお!/、て、上記リング状部品を貫通して設けられた溶湯ノズノレ 力、ら上記ノズノレ内の高速ガス流に対して交差する方向力、ら溶湯を供給するように構 成すること力 Sでさる。 [0046] The injection nozzle apparatus supplies the molten metal nozzle force penetrating the ring-shaped part, the directional force intersecting the high-speed gas flow in the nozzle, and the molten metal. It can be configured with the power S.
発明の効果  The invention's effect
[0047] 本発明の加速ノズルおよび噴射ノズル装置によれば、粒子がノズル内壁に付着せ ず、し力、もガス流速によって得られる微粒化効果および粒子加速効果を有効に活用 すること力 Sできると!/、う長所を有する。  [0047] According to the acceleration nozzle and the injection nozzle device of the present invention, the particles do not adhere to the inner wall of the nozzle, and the force S can effectively utilize the atomization effect and particle acceleration effect obtained by the gas flow velocity. And! /, Has the advantage.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 l](a)は本発明に係る加速ノズルの原理を示す正面断面図、(b)はその B部拡大図 である。  [0048] [FIG. 1] (a) is a front sectional view showing the principle of an accelerating nozzle according to the present invention, and (b) is an enlarged view of part B thereof.
[図 2]図 1のリング状部品の下流側側面を示す斜視図である。  2 is a perspective view showing a downstream side surface of the ring-shaped component in FIG. 1. FIG.
[図 3]本発明の加速ノズルによって得られる粒子速度分布を示すグラフである。  FIG. 3 is a graph showing a particle velocity distribution obtained by the acceleration nozzle of the present invention.
[図 4]本発明の加速ノズルによるガス流れを示す説明図である。  FIG. 4 is an explanatory view showing a gas flow by the acceleration nozzle of the present invention.
[図 5]本発明に係る加速ノズルの流速調整方法を示す説明図である。  FIG. 5 is an explanatory diagram showing a method for adjusting the flow velocity of the acceleration nozzle according to the present invention.
[図 6]ノズル内の主流ガスとシールドガスの速度ベクトルを示した説明図である。  FIG. 6 is an explanatory diagram showing velocity vectors of mainstream gas and shield gas in the nozzle.
[図 7]本発明の加速ノズルの第二実施形態を示した原理図である。 園 8]本発明の加速ノズルの第三実施形態を示した原理図である。 FIG. 7 is a principle view showing a second embodiment of the acceleration nozzle of the present invention. 8] A principle diagram showing a third embodiment of the acceleration nozzle of the present invention.
[図 9]図 8に示す加速ノズルの変形例を示した原理図である。  FIG. 9 is a principle diagram showing a modification of the acceleration nozzle shown in FIG.
[図 10]図 8に示す加速ノズルの別の変形例を示した原理図である。  FIG. 10 is a principle diagram showing another modification of the acceleration nozzle shown in FIG.
園 11]本発明の加速ノズルの第四実施形態を示した原理図である。 11] It is a principle diagram showing a fourth embodiment of the acceleration nozzle of the present invention.
園 12]本発明の加速ノズルの第五実施形態を示した原理図である。 12] It is a principle diagram showing a fifth embodiment of the acceleration nozzle of the present invention.
園 13]本発明の加速ノズルの第六実施形態を示した原理図である。 13] It is a principle diagram showing a sixth embodiment of the acceleration nozzle of the present invention.
園 14](a)は亜鉛用噴射ノズル装置の構成を示す平面断面図、(b)はその正面断面図 である。 14] (a) is a plan sectional view showing the configuration of the zinc injection nozzle device, and (b) is a front sectional view thereof.
園 15](a)は図 11に示した基端側リング状部品の構成を示す正面断面図、(b)はその 右側面図、(c)は同図 (b)の E-E矢視断面図である。 15] (a) is a front cross-sectional view showing the configuration of the proximal ring-shaped part shown in FIG. 11, (b) is a right side view thereof, and (c) is a cross-sectional view taken along the line EE in FIG. It is.
園 16](a)は連結されるリング状部品の正面断面図、(b)はその右側面図である。 園 17](a)はノズル先端のリング状部品の正面断面図、(b)はその右側面図である。 園 18](a)はチタン用噴射ノズル装置の構成を示す平面断面図、(b)はその正面断面 図である。 Garden 16] (a) is a front sectional view of the ring-shaped parts to be connected, and (b) is a right side view thereof. Fig. 17] (a) is a front sectional view of the ring-shaped part at the tip of the nozzle, and (b) is a right side view thereof. (18) (a) is a plan sectional view showing the structure of the titanium injection nozzle device, and (b) is a front sectional view thereof.
園 19](a)は溶射性能を密度で比較したグラフ、(b)は溶射性能を歩留まりで比較した グラフである。 So 19] (a) is a graph comparing spray performance by density, and (b) is a graph comparing spray performance by yield.
園 20]本発明によって形成された溶射皮膜の成分を分析したグラフである。 20] This is a graph analyzing the components of the thermal spray coating formed by the present invention.
園 21]本発明の加速ノズルをコールドスプレーに適用した場合の構成を原理図で示 した断面図である。 21] A cross-sectional view showing the configuration of the accelerating nozzle of the present invention applied to a cold spray using a principle diagram.
園 22]本発明の加速ノズルを高速フレーム溶射に適用した場合の構成を原理図で 示した断面図である。 22] A cross-sectional view showing the configuration of the acceleration nozzle of the present invention when applied to high-speed flame spraying in principle.
園 23]本発明の加速ノズルを微粒化装置に適用した場合の構成を示す断面図であ 園 24]微粒化装置における粒子速度を測定する水実験モデルの構成図である。 [Sen 23] is a cross-sectional view showing the configuration when the acceleration nozzle of the present invention is applied to the atomization apparatus.
[図 25]水実験モデルによる、スプレー方向と直交する方向の粒子速度分布を示すグ ラフである。 [Fig.25] Graph showing the particle velocity distribution in the direction perpendicular to the spray direction, based on the water experiment model.
[図 26]水実験モデルによる、スプレー方向の粒子速度分布および粒子径の変化を示 すグラフである。 [図 27]加速ノズルを角筒状にした場合の構成を示す斜視図である。 FIG. 26 is a graph showing changes in the particle velocity distribution in the spray direction and the particle diameter according to the water experiment model. FIG. 27 is a perspective view showing a configuration when the acceleration nozzle is formed in a rectangular tube shape.
[図 28]関連技術の噴射ノズル装置の構成を示す断面図である。  FIG. 28 is a cross-sectional view showing a configuration of a related art injection nozzle device.
符号の説明  Explanation of symbols
[0049] 1加速ノズル [0049] 1 Acceleration nozzle
2ノズノレ  2 Noznore
2a〜¾リング状部品  2a ~ ¾ Ring-shaped parts
2k ノズル内壁  2k nozzle inner wall
2m スリット最狭部  2m slit narrowest part
3 入口側  3 Entrance side
4 スロート部  4 Throat section
5 出口側  5 Exit side
6 シールドガス供給路  6 Shield gas supply path
7 ガス流偏向部  7 Gas flow deflector
8 上流側端面  8 Upstream end face
9 スタックボルト孔  9 Stack bolt hole
11 本体部  11 Body
12 ノズル部  12 Nozzle
12a〜12kリング状部品  12a-12k ring-shaped parts
13ガス通路  13 Gas passage
14ワイヤガイド  14 wire guide
15ワイヤ  15 wires
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0050] 以下、図面に示した実施の形態に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
[0051] 1加速ノズルの原理 [0051] Principle of single acceleration nozzle
図 1は本発明に係る加速ノズルの原理を示したものであり、同図 (a)は正面断面図を 示し、同図 (b)は図 1(a)の B部拡大図である。  FIG. 1 shows the principle of an accelerating nozzle according to the present invention. FIG. 1 (a) shows a front cross-sectional view, and FIG. 1 (b) is an enlarged view of part B of FIG. 1 (a).
[0052] 両図において、加速ノズル 1は、ノズル 2の入口側 3にキャリアガスを導入するように なっている。 [0053] 導入されたキャリアガスは、内径が絞られたスロート部 4を通過することによって高速 ガス流(以下、主流ガス Gsと呼ぶ)を形成し、その主流ガス Gs流によって固体もしくは 液体の粒子を微粒化し、その微粒化した粒子をノズル 2の出口側 5から噴射するよう になっている。 In both figures, the acceleration nozzle 1 introduces a carrier gas into the inlet side 3 of the nozzle 2. [0053] The introduced carrier gas forms a high-speed gas flow (hereinafter referred to as mainstream gas Gs) by passing through a throat section 4 with a narrowed inner diameter, and solid or liquid particles are generated by the mainstream gas Gs flow. The atomized particles are sprayed from the outlet side 5 of the nozzle 2.
[0054] また、上記ノズル 2は、主流ガス Gsを流すための貫通孔を備えた複数のリング状部 品 2a〜¾を、ノズル中心軸方向に連結することによって構成されている。  [0054] Further, the nozzle 2 is configured by connecting a plurality of ring-shaped components 2a to 3 provided with through holes for flowing the mainstream gas Gs in the nozzle central axis direction.
[0055] 詳しくは、主流ガス Gsの流れ (A方向)において最も上流側に、例えばベースとなる セラミックス製リング状部品 2aが配置され、最も下流側にノズルエンドとなる SUS製リ ング状部品 ¾が配置され、それらのリング状部品 2aおよび ¾の間に連結用の SUS製 リング状部品 2b〜2iが多段に配置されている。  [0055] Specifically, for example, a ceramic ring-shaped part 2a serving as a base is disposed on the most upstream side in the flow of the main gas Gs (direction A), and a SUS ring-shaped part serving as a nozzle end on the most downstream side. The SUS ring-shaped parts 2b to 2i for connection are arranged in multiple stages between the ring-shaped parts 2a and ¾.
[0056] また、 6は各リング状部品 2a〜2iを貫通して穿設されたシールドガス供給路(ガス供 給路)であり、このシールドガス供給路 6は、リング状部品 2a〜¾の連結部分に間隙 部分として設けられた環状通路 (ガス通路) 6aと連通し、各環状通路 6aはさらにノズ ル内壁円周位置に形成された環状のスリット(噴射口) Tと連通している。このスリット T は、図 1(b)に示すように、連結された上流側リング状部品 2aと下流側リング状部品 2b の内壁段差部分に環状に開口しており、図 1(a)に示すように、ノズル孔の筒軸方向 に複数段設けられている。  [0056] Reference numeral 6 denotes a shield gas supply path (gas supply path) drilled through each of the ring-shaped parts 2a to 2i. The shield gas supply path 6 is connected to the ring-shaped parts 2a to ¾. An annular passage (gas passage) 6a provided as a gap portion in the connecting portion communicates with each other, and each annular passage 6a further communicates with an annular slit (injection port) T formed at the circumferential position of the nozzle inner wall. As shown in FIG. 1 (b), the slit T opens in an annular shape at the step portion on the inner wall of the connected upstream ring-shaped component 2a and downstream ring-shaped component 2b, as shown in FIG. 1 (a). Thus, a plurality of stages are provided in the direction of the cylinder axis of the nozzle hole.
[0057] それにより、シールドガス供給路 6に導入されたシールドガス SGsは、環状通路 6a で合流し、その環状通路 6aを通じて各段の噴射口としてのスリット Tに個別に供給さ れ、スリット T全体から筒状となってノズル 2内に噴射されるようになっている。  [0057] As a result, the shielding gas SGs introduced into the shielding gas supply path 6 joins in the annular passage 6a, and is individually supplied to the slits T as the injection ports of the respective stages through the annular passage 6a. The whole is formed into a cylindrical shape and is injected into the nozzle 2.
[0058] 上記シールドガス供給路 6およびスリット Tは、シールドガス供給部として機能する。  The shield gas supply path 6 and the slit T function as a shield gas supply unit.
[0059] 次に、上記構成を有する加速ノズル 1の動作について溶射を例に取り説明する。  Next, the operation of the accelerating nozzle 1 having the above configuration will be described by taking thermal spraying as an example.
[0060] リング状部品 2aには、溶射材料としてのワイヤをノズル 2内に供給するワイヤガイド( 後述する)がー対揷通されており、各ワイヤガイドから突出した 2本のワイヤは、スロー ト部 4の出口側近傍で互いに接触するようになっている。  [0060] A wire guide (described later) for supplying a wire as a thermal spray material into the nozzle 2 is passed through the ring-shaped part 2a, and the two wires protruding from each wire guide are slow. They are in contact with each other in the vicinity of the outlet side of the groove portion 4.
[0061] 加速ノズル 1は、ノズル 2内を流れる主流ガス Gsと略同じ流速でフレッシュなガスを 各リング状部品 2a〜2iからノズル 2内に順次送り込むことによりノズル 2内壁を覆う新 気(シールドガス SGs)の膜を形成し、それにより、ノズル 2内壁に金属粒子が付着す る機会を大幅に減少させてレ、る。 [0061] The accelerating nozzle 1 is a fresh air (shield) covering the inner wall of the nozzle 2 by sequentially feeding a fresh gas from the ring-shaped parts 2a to 2i into the nozzle 2 at a flow rate substantially the same as the mainstream gas Gs flowing in the nozzle 2. Gas SGs) film is formed, and metal particles adhere to the inner wall of nozzle 2. Greatly reduce opportunities
[0062] また、シールドガス SGsは、理想的にはノズル中心軸と平行に噴射させることが好ま しぐさらに、ノズル内壁 2k全周にわたって一様に供給することが好ましい。 [0062] Further, ideally, the shielding gas SGs is preferably injected in parallel with the nozzle central axis, and is preferably supplied uniformly over the entire circumference of the nozzle inner wall 2k.
[0063] したがって、円形断面を有するノズル 2では、全周にわたって同一幅で構成された 環状のスリットからシールドガス SGsを供給することにより、シールドガス SGsを筒状の 流れに形成し、ノズル 2内に供給することが理想となる。 Therefore, in the nozzle 2 having a circular cross section, the shielding gas SGs is formed into a cylindrical flow by supplying the shielding gas SGs from an annular slit having the same width over the entire circumference, and the nozzle 2 It would be ideal to supply
[0064] このシールドガス SGsをノズル中心軸と平行に供給するには、助走区間として、ガス 流偏向部 7が必要になる。 [0064] In order to supply the shielding gas SGs in parallel with the nozzle central axis, the gas flow deflector 7 is required as a running section.
[0065] 詳しくは、上流側のリング状部品 2aと下流側のリング状部品 2bの間にシールドガス[0065] Specifically, a shielding gas is provided between the upstream ring-shaped part 2a and the downstream ring-shaped part 2b.
SGs供給用の環状通路 6aが形成されて!/、る。 An annular passage 6a for SGs supply is formed!
[0066] ガス流偏向部 7は、リング状部品 2aにおける下流側内周縁が顎状に突出形成され たものであり、リング状部品 2bにおける上流側端面 8を超えてさらに下流側に延設さ れている(図中、突出し長さ N参照)。それにより、上記環状通路 6aと連通するスリット[0066] The gas flow deflector 7 has a ring-shaped part 2a with a downstream inner periphery projecting in a jaw shape, and extends further downstream beyond the upstream end face 8 of the ring-shaped part 2b. (Refer to protrusion length N in the figure). Thereby, the slit communicating with the annular passage 6a.
Tが環状に形成されている。このような環状通路 6aと環状スリット T力 S、リング状部品 2 a〜2iのそれぞれに形成されて!/、る。 T is formed in an annular shape. The annular passage 6a and the annular slit T force S are formed in each of the ring-shaped parts 2a to 2i.
[0067] 1-1加速ノズルの構成 [0067] 1-1 Acceleration nozzle configuration
図 2はリング状部品 2aの下流側側面を示した斜視図である。  FIG. 2 is a perspective view showing the downstream side surface of the ring-shaped component 2a.
[0068] リング状部品 2aの中心部に設けられた貫通孔の周縁にガス流偏向部 7が筒状に形 成され、その裾部に環状通路 6aが凹設されている。この環状通路 6aには、シールド ガス供給路 6が円周上に等間隔に (本実施形態では 8個)形成されている。 [0068] A gas flow deflecting portion 7 is formed in a cylindrical shape at the periphery of a through-hole provided in the center of the ring-shaped component 2a, and an annular passage 6a is recessed in the bottom thereof. In this annular passage 6a, shield gas supply passages 6 are formed on the circumference at equal intervals (eight in this embodiment).
[0069] すなわち、シールドガス供給路 6から供給されるシールドガス SGsは、環状通路 6a に流れて合流し、ガス流偏向部 7によってガス流の向きがノズル中心軸方向に変更さ れるとともに筒状の流れに形成され、ノズル 2内に供給されるようになっている。なお、 That is, the shield gas SGs supplied from the shield gas supply path 6 flows into the annular passage 6a and merges, and the gas flow deflecting unit 7 changes the direction of the gas flow to the nozzle central axis direction and is cylindrical. And is supplied into the nozzle 2. In addition,
[0070] 図 1に戻って説明する。 [0070] Returning to FIG.
[0071] 各リング状部品 2a〜¾において、上流側のリング状部品に対し下流側のリング状部 品のノズル孔径は大きく形成されており、その孔径の違いによって生じる段差を利用 して上記スリット Tを確保して!/、る。また、下流側に向けてノズル孔径を段階的に拡径 していることにより、同時に、溶融状態の粒子が多く飛行するノズノレ中心軸付近からノ ズノレ内壁を遠ざけることを可能にしている。 [0071] In each ring-shaped part 2a to ¾, the nozzle hole diameter of the downstream ring-shaped part is formed larger than that of the upstream ring-shaped part. Secure T! / Also, gradually increase the nozzle hole diameter toward the downstream side. By doing so, it is possible to move the inner wall of the nozzle from the vicinity of the central axis of the nozzle where many molten particles fly.
[0072] ノズル中心軸に溶融金属を導入する力、、若しくはノズル中心軸上にワイヤの形態で 供給された金属材をアーク溶解した場合、通常、ノズル中心軸上での粒子濃度が最 も高く、周辺(径方向)に至るほど粒子濃度は減少するガウス分布に従うと言われてい [0072] When the molten metal is introduced into the nozzle central axis, or when a metal material supplied in the form of a wire is arc-melted on the nozzle central axis, the particle concentration on the nozzle central axis is usually the highest. It is said that the particle concentration decreases according to the Gaussian distribution as it reaches the periphery (radial direction).
[0073] したがって、ノズル内壁をノズル中心軸から遠ざけると、粒子がノズル内壁 2kに接 触する確率を減少させることができる。 [0073] Therefore, when the nozzle inner wall is moved away from the nozzle central axis, the probability that the particles come into contact with the nozzle inner wall 2k can be reduced.
[0074] また、ノズル中心軸上から供給された粒子は、上記したようにノズル下流側に飛行 する間にノズル径方向に広がっていくが、この広がりはノズル内の流れの乱れによつ て影響される。 [0074] Further, as described above, the particles supplied from the nozzle center axis spread in the nozzle radial direction while flying downstream of the nozzle, and this spread is caused by the disturbance of the flow in the nozzle. Affected.
[0075] ノズル 2内の流れは、速度勾配(空間上で速度が変化する割合)が大きいほど大き な乱れとなって現れるため、ノズル 2内のガス流速は極力一様であることが好ましい。  [0075] The flow in the nozzle 2 appears more turbulent as the velocity gradient (the rate at which the velocity changes in space) increases, so the gas flow rate in the nozzle 2 is preferably as uniform as possible.
[0076] 本発明の加速ノズル 1は、シールドガスの速度を主流ガスのそれと一致させるという 大きな課題を克服し、上記ノズル 2内に一様なガス流れを形成することに成功してい  [0076] The acceleration nozzle 1 of the present invention has overcome the major problem of matching the velocity of the shield gas with that of the mainstream gas, and has succeeded in forming a uniform gas flow in the nozzle 2.
[0077] 以下、詳しく説明する。 [0077] Hereinafter, this will be described in detail.
[0078] (a)ノズルが、ノズル内流れのマッハ数が 1未満の亜音速で作動するノズルの場合 スリット Tを通過するシールドガスの流速 uはスリット前側の圧力 piとスリット後側の圧 力 p2より、ガスの密度 Pを用いて [0078] (a) When the nozzle is a nozzle operating at a subsonic speed with a Mach number of the flow in the nozzle of less than 1, the flow velocity u of the shield gas passing through the slit T is the pressure pi on the front side of the slit and the pressure on the rear side of the slit From p2, using gas density P
[0079] 國 [0079] country
ΪΙΪΙ
V I (1 ) V I (1)
ρ  ρ
で表される。  It is represented by
[0080] ノズル内圧力はスリット後側の圧力と等しぐ ρ2であるから、最も上流側のスリット Τを 含めてリング状部品 2a〜¾のすベてのスリット前側圧力を piにすればよい。  [0080] The pressure in the nozzle is equal to ρ2 equal to the pressure on the rear side of the slit, and therefore the pressure on the front side of all the slits of the ring-shaped parts 2a to ¾ including the most upstream slit Τ should be pi. .
[0081] これを実現するために、全てのスリット Tに個別のシールドガス供給路を用意し、圧 力をすベて所定値となるように調整することもできる力 S、より簡単にこれを実現する方 法としては、一力所のガス貯留タンク(通常ヘッダーと呼ばれる)から分岐させて各スリ ット Tにシールドガス SGsを供給する方法を採用することができる。 [0081] In order to achieve this, a separate shield gas supply path is prepared for all the slits T, and the force S can be adjusted so that all the pressures become predetermined values. Realize As a method, it is possible to adopt a method of supplying shield gas SGs to each slit T by branching from a gas storage tank (usually called a header) at one power station.
[0082] 図 1に示した加速ノズル 1は上記ヘッダーからの分配方式を採用しており、各リング 状部品 2a〜¾のスリット Tに対して同一圧力 piのシールドガスを供給している。 The accelerating nozzle 1 shown in FIG. 1 employs a distribution system from the header, and supplies a shielding gas having the same pressure pi to the slits T of the ring-shaped parts 2a to ¾.
[0083] (b)ノズルが、ノズル内流れのマッハ数が 1以上の超音速で作動するノズルの場合 超音速ノズルを使用する場合、ラバルノズルのように拡大部を有するノズル形状を 通過させなければ、主流ガス Gsと同一の流速でシールドガス SGsをノズル 2内に供 給することができない。 [0083] (b) When the nozzle is a nozzle that operates at a supersonic speed with a Mach number of the flow in the nozzle of 1 or more When using a supersonic nozzle, it must pass through a nozzle shape having an enlarged portion such as a Laval nozzle. Shield gas SGs cannot be supplied into nozzle 2 at the same flow rate as mainstream gas Gs.
[0084] 図 1(b)ではそのための構成として、スリット T出口の開口幅 C〉スリット最狭部 2mの 開口幅 Dとなるように、下流側リング状部品 2bの内周縁に曲面が加工されている。  [0084] In Fig. 1 (b), as a configuration for that purpose, a curved surface is processed on the inner peripheral edge of the downstream ring-shaped part 2b so that the opening width C of the slit T outlet is greater than the opening width D of the narrowest slit 2m. ing.
[0085] スリット最狭部(シールドガス用スロート部) 2mは、最終的にはノズル内壁と連絡す るのに対し、スリット最狭部 2mと対向しているガス流偏向部 7は直線的な平面に形成 されている。このように、直線部分と円弧部分がある隙間を持って流路を形成すること により、シールドガス SGs噴射用のスリット Tは、中間に最狭部スロートを有し下流側 にいくほど開口幅が広がるラバルノズルを構成していることになる。  [0085] The slit narrowest part (shield gas throat part) 2m finally communicates with the inner wall of the nozzle, whereas the gas flow deflection part 7 facing the slit narrowest part 2m is linear. It is formed on a flat surface. In this way, by forming the flow path with a gap between the straight part and the arc part, the slit T for jetting the shielding gas SGs has the narrowest part throat in the middle and the opening width increases toward the downstream side. It will constitute a spreading Laval nozzle.
[0086] なお、スリット Tをラバルノズル構造とするにあたっては、必ずしも、上記したように直 線部分と円弧部分の組み合わせに限定されるものではなく、例えば円弧と円弧の組 み合わせであってもよい。  [0086] Note that, when the slit T has a Laval nozzle structure, it is not necessarily limited to a combination of a straight line portion and an arc portion as described above, and may be a combination of an arc and an arc, for example. .
[0087] 1-2粒子速度分布  [0087] 1-2 Particle velocity distribution
図 3は上記加速ノズル 1によって得られる粒子速度分布を示したグラフである。  FIG. 3 is a graph showing the particle velocity distribution obtained by the acceleration nozzle 1.
[0088] 同図において、横軸のゼロはノズル 2の中心を示し、 +値および一値はそのノズル 中心からの相反する方向の X方向距離および Y方向距離を示し、縦軸は粒子速度を 示している。  [0088] In the figure, zero on the horizontal axis indicates the center of nozzle 2, + value and one value indicate the X direction distance and Y direction distance in the opposite direction from the nozzle center, and the vertical axis indicates the particle velocity. Show.
[0089] ノズル 2の出口径は φ 15mmであり、従って、横軸における + 7. 5mm 7. 5m mの範囲力 Sノズル領域内を示していることになる。  [0089] The outlet diameter of the nozzle 2 is φ15 mm, and therefore indicates a range force of +7.5 mm and 7.5 mm on the horizontal axis.
[0090] また、同グラフの測定結果は、アーク溶解機構を備えたノズル(図 7参照)を用いて 亜鉛の溶射を行ったものであり、溶射条件は以下の通りである。 [0090] In addition, the measurement results of the graph were obtained by performing zinc spraying using a nozzle (see Fig. 7) having an arc melting mechanism, and the spraying conditions are as follows.
[0091] 窒素ガスのガス圧力は 1 · 3MPa,ガス流量は 0· 17kg/s,ガスマッハ数は 1 · 8で あり、亜鉛の供給量は 1 · 7 X 10_4kg/sである。 [0091] The gas pressure of nitrogen gas is 1 · 3 MPa, the gas flow rate is 0 · 17 kg / s, and the gas Mach number is 1 · 8 Yes, the supply of zinc is 1 · 7 X 10_ 4 kg / s.
[0092] レーザー位相ドップラー流速計によって計測した結果、ノズル出口における平均速 度は 420m/s程度であった。また、ノズル出口径 φ 15mmに対して、粒子が存在し ていた部位は Φ 12mm ( + 6 6mm)の範囲内であり、粒子速度はほぼ一定であ つた。 [0092] As a result of measurement with a laser phase Doppler velocimeter, the average speed at the nozzle outlet was about 420 m / s. For the nozzle outlet diameter of φ15mm, the part where the particles existed was within the range of Φ12mm (+ 66mm), and the particle velocity was almost constant.
[0093] また、堆積物のミクロ観察写真を分析すると、基材に衝突した粒子径は φ 10 30  [0093] Further, when the micro observation photograph of the deposit is analyzed, the particle diameter colliding with the substrate is φ 10 30
μ mであった。  μm.
[0094] また、堆積物厚さ方向の EPMA (Electron Probe Micro Analyzer)ライン分析を行つ たところ、リング状部品の主成分である Feが所々で検出されている。これはリング状 部品の内壁面と衝突した粒子のあることを意味している力 S、その濃度は極めて僅かで あり、し力、も散発的にし力、発生していないことから、ノズル 2を溶融金属から保護する シールドガス SGsが機能していたことがわ力、る。  [0094] Further, when EPMA (Electron Probe Micro Analyzer) line analysis in the thickness direction of the deposit was performed, Fe as a main component of the ring-shaped part was detected in some places. This means that the force S, which means that there are particles that collided with the inner wall of the ring-shaped part, the concentration is very slight, and the force is not sporadic. Protecting against molten metal Shielding gas SGs are working.
[0095] また、キャリアガスが亜鉛と反応して窒化した可能性を確認すべく窒素の存在を調 查したが窒素は全く検出されな力 た。このことは窒化する間もなく急速に亜鉛粒子 が冷却されたためと考えられる。  [0095] Further, in order to confirm the possibility that the carrier gas reacted with zinc and was nitrided, the presence of nitrogen was adjusted, but nitrogen was not detected at all. This is thought to be because the zinc particles were rapidly cooled shortly before nitriding.
[0096] また、酸素が検出されたが、これはワイヤの酸化皮膜による持ち込みである可能性 が高い。  [0096] In addition, oxygen was detected, which is highly likely to be brought in by the oxide film of the wire.
[0097] 1-3ノズル長さの調節  [0097] 1-3 Nozzle length adjustment
なお、一つのスリット Tからノズル 2内にシールドガス SGsを供給しても、ある距離に ついてガスと粒子が移動すると、やがてはノズル 2内に少なからず存在する乱れによ つて粒子がノズル内壁 2k近くまで拡散してしまう。  Even if the shielding gas SGs is supplied into the nozzle 2 from one slit T, if the gas and particles move for a certain distance, the particles will eventually become 2k due to the turbulence present in the nozzle 2. It spreads close.
[0098] そこで、本実施形態の加速ノズル 1では、複数のリング状部品 2a〜¾を連結するこ とによってノズル 2を構成するとともに、リング状部品の各連結部分に形成されたスリツ ト Tからそれぞれシールドガス SGsを、ノズル中心軸と略平行な方向でノズル 2内に供 給しており、シールドガス SGsの供給動作を、粒子の加速に必要な長さまで繰り返し fiつている。  Therefore, in the accelerating nozzle 1 of the present embodiment, the nozzle 2 is configured by connecting a plurality of ring-shaped parts 2a to ¾, and from the slits T formed at the respective connecting portions of the ring-shaped parts. Each shield gas SGs is supplied into the nozzle 2 in a direction substantially parallel to the nozzle center axis, and the supply operation of the shield gas SGs is repeated to the length required for particle acceleration.
[0099] また、ノズル 2内にシールドガス SGsを供給する間隔は、リング状部品 2a 2iの厚 みによって決定される力 通常は 5 20mmの範囲内で選択することができる。 [0100] リング状部品 2a〜2iについて必要な厚さを事前に予測することは困難なため、各 種厚みのリング状部品を用意して微粒化を行い、試行錯誤によってリング状部品の 厚さを決定する。 [0099] The interval at which the shielding gas SGs is supplied into the nozzle 2 can be selected within the range of a force determined by the thickness of the ring-shaped part 2a 2i, usually 520 mm. [0100] Since it is difficult to predict the required thickness for ring-shaped parts 2a to 2i in advance, ring-shaped parts of various thicknesses are prepared and atomized, and the thickness of the ring-shaped parts is determined by trial and error. To decide.
[0101] 例えば、ノズル内壁に粒子の付着が見られた場合には厚みの薄いリング状部品に 交換し、粒子の付着がない場合にはリング状部品の厚さを増すといった厚み調整を 行う。  [0101] For example, when particle adhesion is observed on the inner wall of the nozzle, the thickness is changed to a ring-shaped component having a small thickness, and when there is no particle adhesion, the thickness of the ring-shaped component is increased.
[0102] また、粒子の加速に必要なノズル長さは、金属材料によって、また、金属材料の供 給方法 (溶解炉から融点以上の十分高レ、温度で材料を供給するか、材料をワイヤの 形態で供給し、アーク溶解させる力 によって、或いはまた、ノズル内ガス流速によつ て異なるため、リング状部品の連結枚数を変更することによってノズル長さを調節して いる。  [0102] Also, the nozzle length necessary for particle acceleration depends on the metal material and the method of supplying the metal material (the material is supplied from the melting furnace at a temperature sufficiently high above the melting point, or the material is wired. The nozzle length is adjusted by changing the number of connected ring-shaped parts, because it varies depending on the power supplied in this form and arc melting, or also depending on the gas flow velocity in the nozzle.
[0103] すわなち、ノズル 2を長くすると、粒子の速度は増加するが、粒子の温度はガスによ つて冷却され低下する。  [0103] That is, when nozzle 2 is lengthened, the velocity of the particles increases, but the temperature of the particles is cooled and lowered by the gas.
[0104] 溶射では付着する歩留まりと気孔率、スプレーフォーミングと 3次元造形では堆積 する歩留まりと密度に関係するため、ノズル長さは重要なパラメータである。 [0104] The nozzle length is an important parameter because it is related to the yield and porosity that adheres in thermal spraying, and the yield and density that accumulates in spray forming and 3D modeling.
[0105] 本実施形態ではそのノズル長さを、リング状部品の連結枚数を変えるという簡単な 方法で調整できるようにしているため、ノズル 2全体を製作し直すことなくノズル長さを 変更することが可能になっている。 [0105] In this embodiment, the nozzle length can be adjusted by a simple method of changing the number of connected ring-shaped parts, so that the nozzle length can be changed without remanufacturing the entire nozzle 2. Is possible.
[0106] また、微粒化作業の後には必ず、ノズル 2の分解清掃が必要になる力 本実施形態 のリング状部品 2a〜¾はどの部位にも指が届くように構成されているため、メンテナン スが簡便に行え、メンテナンスに要する時間を大幅に短縮することが可能になってい [0106] In addition, the force required to disassemble and clean the nozzle 2 after the atomization work is ensured because the ring-shaped parts 2a to ¾ of this embodiment are configured so that fingers can reach any part. Can be performed easily and the time required for maintenance can be greatly reduced.
[0107] 1-4シールドガスの供給方法 [0107] 1-4 Shielding gas supply method
次に、主流ガス Gsの流速にシールドガス SGsの流速を一致させてそのシールドガ ス SGsをノズル 2内に供給する方法について説明する。  Next, a method for supplying the shield gas SGs into the nozzle 2 by matching the flow rate of the shield gas SGs with the flow rate of the mainstream gas Gs will be described.
[0108] 亜音速の流れについても超音速の流れについても、流速を音速で割って無次元化 したマッハ数によってガス流れの速度を表すことができるため、ここではマッハ数 Mを 用いて流速を説明する。 [0109] 図 1に示したスロート部 4を経てノズル 2内に噴射される主流ガス Gsも、各スリット Tを 経てノズル 2内に噴射されたシールドガス SGsも、ノズル 2内で圧力(静圧)が釣り合う 状態になるまで膨張する。なお、超音速流れの場合には圧力波がノズル 2内で複雑 に反射することになる力 この影響は無視する。 [0108] For both subsonic and supersonic flows, the velocity of the gas flow can be expressed by the Mach number obtained by dividing the flow velocity by the velocity of sound and making it dimensionless. Here, the flow velocity is expressed using the Mach number M. explain. [0109] Both the mainstream gas Gs injected into the nozzle 2 through the throat section 4 shown in Fig. 1 and the shield gas SGs injected into the nozzle 2 through each slit T are pressure (static pressure) in the nozzle 2. ) Expands until balanced. In the case of supersonic flow, the force that causes the pressure wave to be reflected in a complex manner within the nozzle 2 is ignored.
[0110] もし、スロート部 4からの主流ガス Gsも各スリット Tからのシールドガス SGsも同じ全 圧 (淀み点圧力)と全温を持つのであれば、両ガスの流速が一致する条件は、マツノ、 数 Mがー致することである。この時、同時にスロート部 4からの流れも各スリット丁から の流れも同一の圧力(静圧)を持つことになり、ノズル 2内で釣り合った状態とすること ができる。  [0110] If the main gas Gs from the throat section 4 and the shield gas SGs from each slit T have the same total pressure (stagnation point pressure) and total temperature, the conditions for the flow rates of both gases to coincide are Matsuno, the number M matches. At this time, the flow from the throat section 4 and the flow from each slit have the same pressure (static pressure), and the nozzle 2 can be balanced.
[0111] これを最も簡単に実現する方法として、図 1に示したように、同一箇所の亜音速部( スロート部 4の上流側)よりガスを取り出すことにより、主流ガス Gsおよびシールドガス SGsを含むすべてのガスの全圧と全温を等しくすることができる。  [0111] The simplest way to achieve this is to extract the mainstream gas Gs and shield gas SGs from the subsonic speed section (upstream of the throat section 4) at the same location as shown in Fig. 1. The total pressure and temperature of all the gases it contains can be made equal.
[0112] 具体的には、リング状部品 2aのスロート部 4上流側から各リング状部品 2a〜2iを貫 通するようにしてシールドガス供給路 6を穿設することによってシールドガス SGsを分 岐すればよい。  [0112] Specifically, the shield gas SGs is divided by drilling the shield gas supply passage 6 from the upstream side of the ring-shaped part 2a through the ring-shaped parts 2a to 2i from the upstream side. do it.
[0113] 図 4はノズル内ガス流れをモデル化したものである。  [0113] Fig. 4 is a model of the gas flow in the nozzle.
[0114] なお、説明を簡単にするため、リング状部品の連結数を 6段とし、スリット T1〜T5と する。  [0114] To simplify the description, the number of ring-shaped parts connected is six, and the slits are T1 to T5.
[0115] 同図に示すように、スロート部 4からのガス流れ G0、およびスリット T1〜T5からのガ ス流れ G1〜G5がそれぞれ同一のマッハ数になって噴出しているとし、さらにそのま まマッハ数が変わらずにノズル 2内を平行に流れ、ノズル 2内に円筒状のガス流れを 形成すると考える。  [0115] As shown in the figure, it is assumed that the gas flow G0 from the throat section 4 and the gas flows G1 to G5 from the slits T1 to T5 are ejected at the same Mach number, respectively. It is assumed that the Mach number does not change and flows in the nozzle 2 in parallel, forming a cylindrical gas flow in the nozzle 2.
[0116] 実際にはノズル 2内の乱れによってガスは拡散しょうとする力 S、 G0〜G5間で圧力が 平衡状態になっているならば各スリット T1〜T5からの噴射されるガスは膨張すること も、また、収縮することもないため、各スリットから噴射されるガスが占有する断面積が 変わらず、ノズルの断面積を決めるためには妥当な仮定である。  [0116] Actually, the force of the gas to diffuse due to the turbulence in the nozzle 2 If the pressure is in an equilibrium state between S and G0 to G5, the gas injected from each slit T1 to T5 expands In addition, since it does not shrink, the cross-sectional area occupied by the gas injected from each slit does not change, and this is a reasonable assumption for determining the cross-sectional area of the nozzle.
[0117] 通常、マッハ数を一定に維持するためのノズルは、 GOで表されるほぼ直管からなる 長いノズルであるのに対し、本発明の加速ノズルでは、シールドガス SGsを G1〜G5 で示されるように段階的に噴射するように構成しているため、ノズル内壁面をノズル中 心軸から段階的に遠ざけることが可能であり、粒子の付着を防止する上で有効である [0117] Normally, the nozzle for maintaining a constant Mach number is a long nozzle composed of a substantially straight pipe represented by GO, whereas in the acceleration nozzle of the present invention, the shielding gas SGs is set to G1 to G5. As shown in Fig. 4, the nozzle inner wall surface can be moved stepwise away from the nozzle center axis, which is effective in preventing particle adhesion.
[0118] 次に、スロート部 4および各スリット T1〜T5から同一のマッハ数でガスを噴射させる ための条件について図 5を参照しながら説明する。 Next, conditions for injecting gas at the same Mach number from the throat portion 4 and the slits T1 to T5 will be described with reference to FIG.
[0119] スロート最狭部の面積を A *、スロート出口の面積を Aとすると、スロート出口での  [0119] If the area of the narrowest part of the throat is A * and the area of the throat outlet is A,
0 0  0 0
マッハ数 Mは、式 (2)で表される。  Mach number M is expressed by equation (2).
0  0
[0120] [数 2]  [0120] [Equation 2]
'(2) '(2)
κ + l ただし、 κは比熱比である。 κ + l where κ is the specific heat ratio.
[0121] 同様に、スリット最狭部 2mの面積を *、 出口での面積を Aとすると、  [0121] Similarly, if the area of the narrowest slit 2m is * and the area at the exit is A,
出口でのマッハ数 Mは、式 (3)で表される。  The Mach number M at the exit is expressed by equation (3).
[0122] [数 3]  [0122] [Equation 3]
At 1 («r - 1» 2 2(^-1) A t 1 («r-1» 2 2 (^-1)
■C3)  ■ C3)
A ' _ Mt ΑΓ + 1 ここで、 i= l , 2, 3……。 A '_ M t ΑΓ + 1 where i = l, 2, 3 …….
[0123] スロート部 4およびスリット Tl , T2, T3……の出口におけるマッハ数が等しいため には、  [0123] To have the same Mach number at the exit of the throat 4 and slits Tl, T2, T3 ...
[0124] [数 4]  [0124] [Equation 4]
■(4) ■ (4)
4  Four
が成り立つ必要があり、すなわち、最狭部と出口における面積比がスロート部 4およ び各スリット T1〜T5について等しくすればよい。  In other words, the area ratio between the narrowest part and the outlet should be equal for the throat part 4 and the slits T1 to T5.
[0125] それにより、主流ガス Gsの流速とシールドガス SGsの流速を一致させることができる  [0125] Thereby, the flow velocity of the main gas Gs and the flow velocity of the shield gas SGs can be matched.
[0126] 図 6は、主流ガス Gsと、リング状部品 2aとリング状部品 2bの連結部分に形成された スリット Tから噴射されたシールドガス SGsの速度ベクトルを代表的に示したものであ [0127] 同図に示されるように、シールドガス SGsは主流ガス Gsと平行に流れ、流速が略一 致していることがわ力、る。 [0126] Fig. 6 representatively shows the velocity vector of the mainstream gas Gs and the shielding gas SGs injected from the slit T formed at the connecting portion of the ring-shaped part 2a and the ring-shaped part 2b. [0127] As shown in the figure, the shielding gas SGs flows in parallel with the mainstream gas Gs, and the flow velocity is substantially the same.
[0128] 2加速ノズルの種類  [0128] Types of 2-acceleration nozzle
図 7〜図 12は本発明に係る加速ノズルの他の実施形態を示す原理図である。  7 to 12 are principle diagrams showing other embodiments of the acceleration nozzle according to the present invention.
[0129] まず、図 7に示す加速ノズル 20は、最上流側に配置されたリング状部品 21aに形成 されているスロート部 21d上流側近傍に、溶射材料としてのワイヤを供給するワイヤガ イド 22, 23を配設し、これらのワイヤガイド 22, 23を通して陽極と陰極の電極を兼用 するワイヤ 24, 25をノズル 26内に供給し、スロート部 21dの上流側で溶解させるよう に構成したものである。  First, the acceleration nozzle 20 shown in FIG. 7 is a wire guide 22 for supplying a wire as a thermal spray material in the vicinity of the upstream side of the throat portion 21d formed in the ring-shaped component 21a arranged on the most upstream side. 23, and wires 24 and 25 that serve as anode and cathode electrodes are supplied into the nozzle 26 through these wire guides 22 and 23, and are melted on the upstream side of the throat portion 21d. .
[0130] 図 8に示す加速ノズル 30は、最上流側に配置されるリング状部材 31aをセラミックス で構成し、このリング状部材 31aに、溶射材料としてのワイヤを供給するワイヤガイド 3 2, 33を揷通し、これらのワイヤガイド 32, 33を通した、陽極と陰極の電極を兼用する ワイヤ 34, 35をノズル 36内に供給し、スロート部 31dの下流側で溶解させるように構 成したものである。  [0130] In the acceleration nozzle 30 shown in Fig. 8, the ring-shaped member 31a disposed on the most upstream side is made of ceramics, and wire guides 3 and 33 for supplying a wire as a thermal spray material to the ring-shaped member 31a. The wires 34 and 35 that serve as the anode and cathode electrodes that pass through these wire guides 32 and 33 are supplied into the nozzle 36 and melted downstream of the throat 31d. It is.
[0131] 図 9および図 10は、図 8に示した加速ノズル 30の変形例を示したものである。  FIG. 9 and FIG. 10 show a modification of the acceleration nozzle 30 shown in FIG.
[0132] 図 9に示す加速ノズル 37は、アーク点の上流側ノズル孔を絞る(例えば、図 8に示し たスロート部 31 dの孔径カ φ 3. 5mmとすると、スロート部 31fの孔径を φ 1. 3mmに 絞る)ことによりそのノズル内を流れる気流を亜音速に加速できるようにしたものである [0132] The acceleration nozzle 37 shown in Fig. 9 narrows the nozzle hole upstream of the arc point (for example, assuming that the hole diameter of the throat portion 31d shown in Fig. 8 is 3.5mm, the hole diameter of the throat portion 31f is φ 1. It is designed to accelerate the airflow flowing through the nozzle to subsonic speed by reducing it to 3mm.
[0133] また、図 10に示す加速ノズル 38は、アーク点の上流側近傍まで細径のノズル通路 31§ ( 1. 3mm)とすることにより、亜音速の気流をアーク点近傍で噴射するようにし たものである。 Further, the acceleration nozzle 38 shown in FIG. 10 has a small diameter nozzle passage 31 § (1.3 mm) up to the vicinity of the upstream side of the arc point so as to inject subsonic airflow in the vicinity of the arc point. It is a thing.
[0134] 図 9に示した加速ノズル 37の構成によれば、超音速気流によってアークが吹き飛ば されたり、あるいはワイヤ 34, 35が A1等の比較的軟らかい素材で構成され超音速気 流を受けて振動することによってアークが不安定になるような場合にアークを安定さ せる効果がある。  [0134] According to the configuration of the acceleration nozzle 37 shown in Fig. 9, the arc is blown away by the supersonic air flow, or the wires 34 and 35 are made of a relatively soft material such as A1 and receive the supersonic air flow. It has the effect of stabilizing the arc when it becomes unstable due to vibration.
[0135] また、図 10に示した加速ノズル 38によれば、アーク点に近づけて亜音速の気流を 噴射することができるため、図 9の加速ノズル 37に比べ、アークをより安定させること ができる。 [0135] Further, according to the acceleration nozzle 38 shown in Fig. 10, the subsonic air flow is brought close to the arc point. Since the injection can be performed, the arc can be stabilized more than the acceleration nozzle 37 of FIG.
[0136] 上記加速ノズル 37, 38によれば、細く且つエネルギ密度の高いスプレーを実現す ること力 Sでさる。  [0136] According to the acceleration nozzles 37 and 38, the force S can be achieved to realize a narrow and high energy density spray.
[0137] 図 11に示す加速ノズル 40は、最上流側に配置されたリング状部材 41aをセラミック スで構成し、このリング状部材 41aに、ワイヤガイドからノズルのスロート部 41dを通し て供給されたワイヤ 42との間でアーク溶解を行うための固定電極 43, 44を配設した ものである。  In the acceleration nozzle 40 shown in FIG. 11, the ring-shaped member 41a arranged on the most upstream side is made of ceramics, and supplied to the ring-shaped member 41a from the wire guide through the nozzle throat portion 41d. The fixed electrodes 43 and 44 for arc melting with the wire 42 are arranged.
[0138] 図 12に示す加速ノズル 50は、垂直方向に配列されたリング状部材 51a〜51cから なるノズル 52を有し、金属材料をそのノズル 52内に供給する手段として、ノズル 52の スロート部 51dを通して、溶湯を供給する溶湯ノズル 53を設けたものである。  The acceleration nozzle 50 shown in FIG. 12 has a nozzle 52 composed of ring-shaped members 51a to 51c arranged in the vertical direction, and serves as a means for supplying a metal material into the nozzle 52. A melt nozzle 53 for supplying a melt through 51d is provided.
[0139] 図 13に示すカロ速ノズル 60は、水平方向に配列されたリング状部材 61a〜61cから なるノズル 62を有し、金属材料をそのノズル 62内に供給する手段として、スロート部 61 dの下流側近傍に配置されているリング状部材 61bを貫通して溶湯ノズル 63を、 主流ガス Gsの流れと略直交する方向(下向きに)から挿入し、その溶湯ノズル 63から ノズル 62内の高速ガス流に対して溶湯を供給するようにしたものである。  13 has a nozzle 62 composed of ring-shaped members 61a to 61c arranged in the horizontal direction, and serves as a means for supplying a metal material into the nozzle 62 as a throat portion 61d. The molten metal nozzle 63 is inserted through the ring-shaped member 61b disposed in the vicinity of the downstream side of the gas from the direction substantially perpendicular to the flow of the mainstream gas Gs (downward), and from the molten nozzle 63 to the high speed in the nozzle 62 The molten metal is supplied to the gas flow.
[0140] なお、加速ノズルは上記した垂直方向、水平方向姿勢で配置する場合に限らず、 傾斜姿勢で配置することもできる。  [0140] Note that the acceleration nozzle is not limited to being arranged in the vertical and horizontal orientations described above, but may be arranged in an inclined posture.
[0141] 3加速ノズルを用いた噴射ノズル装置  [0141] Injection nozzle device using 3 acceleration nozzles
次に、溶射材に応じた噴射ノズル装置の構成につ!、て説明する。  Next, the configuration of the spray nozzle device corresponding to the thermal spray material will be described.
[0142] 3-1亜鉛用噴射ノズル装置  [0142] 3-1 Zinc injection nozzle device
Znは融点が低い(692. 7K)ため、 400m/sまで十分に加速できれば、衝突時の 塑性変形熱で表面が溶け、基材上に付着させることができる。したがって、この場合 、図 14に示すように加速を重視した長いノズルを使用する。また、ガス圧力は 1. 2M Pa、ガス温度は常温とした。  Since Zn has a low melting point (692.7 K), if it can be sufficiently accelerated up to 400 m / s, its surface can be melted by the heat of plastic deformation at the time of collision and deposited on the substrate. Therefore, in this case, as shown in FIG. 14, a long nozzle that emphasizes acceleration is used. The gas pressure was 1.2 MPa and the gas temperature was room temperature.
[0143] 同図 (a)は噴射ノズル装置 10の全体平面図を断面で表したものであり、同図 (b)はそ の正面図を断面図で示したものである。  [0143] Fig. 10 (a) is a cross-sectional view of the entire injection nozzle device 10, and Fig. 10 (b) is a cross-sectional view of the front view thereof.
[0144] 両図において、噴射ノズル装置 10は、本体部 11と、この本体部 11から突出して設 けられるノズノレ 12とを有している。 [0144] In both figures, the injection nozzle device 10 is provided with a main body 11 and a projection protruding from the main body 11. Noznore 12 is available.
[0145] 本体部 11内にはノズル 12に向けて主流ガス Gsを流すためのガス通路 13が形成さ れている。このガス通路 13は平面から見ると下流側に向けて先細形状に構成されて おり、また、左右方向からガスを供給するためのガス供給路 13aと連通している。  [0145] In the main body 11, a gas passage 13 for flowing the mainstream gas Gs toward the nozzle 12 is formed. The gas passage 13 has a tapered shape toward the downstream side when viewed from the plane, and communicates with a gas supply passage 13a for supplying gas from the left-right direction.
[0146] 上記ガス通路 13内には一対のワイヤガイド 14, 14が鋭角(下流側に向けて)に配 置されており、これらのワイヤガイド 14, 14から送り出されるワイヤ 15, 15は、リング 状部品 12aに形成されているガイド孔を通過してノズル部 12内に突出し、突出した各 先端は、スロート部 12mの下流側で互いに接触するようになっている。  [0146] A pair of wire guides 14 and 14 are disposed in the gas passage 13 at an acute angle (toward the downstream side), and the wires 15 and 15 fed from these wire guides 14 and 14 are ring-shaped. Through the guide hole formed in the shaped part 12a, it protrudes into the nozzle part 12, and the protruding tips contact each other on the downstream side of the throat part 12m.
[0147] 上記ワイヤ 15, 15の先端は、陽極と陰極を兼用しており電荷が付加されることによ つてアーク溶解されるようになっている。  [0147] The ends of the wires 15, 15 serve as both an anode and a cathode, and are arc-melted by the addition of electric charge.
[0148] ノズル 12は、複数のリング状部品 12a〜12kをノズル中心軸方向に連結することに よって構成されている。  The nozzle 12 is configured by connecting a plurality of ring-shaped parts 12a to 12k in the nozzle central axis direction.
[0149] 図 15はノズル 12の基端を構成しているリング状部品 12aの構成を示したものであり 、同図 (a)は平面断面図、同図 (b)は右側面図、同図 (c)は図 15(b)の E-E矢視断面図 である。  FIG. 15 shows the configuration of the ring-shaped part 12a constituting the base end of the nozzle 12. FIG. 15 (a) is a plan sectional view, FIG. 15 (b) is a right side view, and FIG. Figure (c) is a cross-sectional view taken along the line EE in Figure 15 (b).
[0150] リング状部品 12aの中心部には主流ガス Gsの流れるガス流路 12ηが形成され、こ のガス流路 12ηの途中にスロート部 12mが形成されている。  [0150] A gas flow path 12η through which the mainstream gas Gs flows is formed at the center of the ring-shaped part 12a, and a throat portion 12m is formed in the middle of the gas flow path 12η.
[0151] このスロート部 12mの下流側近傍には、ワイヤを供給するためのガイド孔 12p, 12p が開口し、ガス流路 12ηの下流側端部は筒状に突出するガス流偏向部 12qが形成さ れ、シールドガス SGsの流れを主流ガス Gsの流れと略平行にするようになつている。  [0151] In the vicinity of the downstream side of the throat portion 12m, guide holes 12p, 12p for supplying wires are opened, and the downstream end of the gas flow path 12η has a gas flow deflecting portion 12q protruding in a cylindrical shape. Thus, the flow of the shielding gas SGs is made substantially parallel to the flow of the mainstream gas Gs.
[0152] このガス流偏向部 12qの周囲には凹溝 12rが環状に形成されており、この凹溝 12r とリング状部品下流側端面 12sとの間には凹溝 12rよりも大径に形成された係合凹部 12tが環状に形成されている。  [0152] A concave groove 12r is formed around the gas flow deflecting portion 12q in an annular shape, and a larger diameter than the concave groove 12r is formed between the concave groove 12r and the downstream end surface 12s of the ring-shaped part. The engaged recess 12t is formed in an annular shape.
[0153] また、凹溝 12rにはシールドガス SGsを供給するためのシールドガス供給路 12uが 円周上に等間隔に配設されており、各シールドガス供給路 12uから供給されたシー ノレドガス SGsは、凹溝 12rで合流し、ガス流偏向部 12rの外壁に沿って筒状の流れを 形成するようになってレ、る(図 15(c)のシールドガス流 SGs参照)。  [0153] In addition, shield gas supply passages 12u for supplying the shield gas SGs are arranged at equal intervals on the circumference in the concave groove 12r, and the sheathed gas SGs supplied from each shield gas supply passage 12u. Is joined at the concave groove 12r to form a cylindrical flow along the outer wall of the gas flow deflector 12r (see shield gas flow SGs in FIG. 15 (c)).
[0154] なお、図中、 12vはスタック用ボルトを通すための孔部である。 [0155] 図 16は上記リング状部品 12aの下流側に連結されるリング状部品 12bの構成を示 したものであり、同図 (a)は平面断面図、同図 (b)は右側面図である。 [0154] In the figure, 12v is a hole for passing the stacking bolt. FIG. 16 shows the configuration of the ring-shaped component 12b connected to the downstream side of the ring-shaped component 12a. FIG. 16 (a) is a plan sectional view, and FIG. 16 (b) is a right side view. It is.
[0156] なお、リング状部品 12b〜l ¾についてはガス流路 12ηの内径が順次拡大される点 を除いては基本的に同じ構成であるため、上記リング状部品 12bを代表してそれらの 構成を説明する。  [0156] Since the ring-shaped parts 12b to l¾ are basically the same except that the inner diameter of the gas flow path 12η is sequentially expanded, the ring-shaped parts 12b are representative of those. The configuration will be described.
[0157] リング状部品 12bにおける上流側端面 12wの中心部には筒状の係合凸部 12xが 形成されており、この係合凸部 12xは上記したリング状部品 12aの係合凹部 12tと嵌 合するようになつている。  [0157] A cylindrical engaging convex portion 12x is formed at the center of the upstream end face 12w of the ring-shaped component 12b. The engaging convex portion 12x is connected to the engaging concave portion 12t of the ring-shaped component 12a. It comes to fit.
[0158] また、リング状部品 12bにおけるガス流路 12ηの内径 d2〉リング状部品 12aのガス 流偏向部 12qにおける外径 dlとなっている。 [0158] Further, the inner diameter d2 of the gas flow path 12η in the ring-shaped part 12b is greater than the outer diameter dl in the gas flow deflection section 12q of the ring-shaped part 12a.
[0159] なお、環状溝 12yにはシール材としての Oリングが装着される。また、図中、 12q' はガス流偏向部、 12 は環状の凹溝、 121' はさらに下流側に連結されるリング状 部品の係合凸部が嵌合される係合凹部である。 [0159] An O-ring as a sealing material is attached to the annular groove 12y. In the figure, 12q ′ is a gas flow deflecting portion, 12 is an annular concave groove, and 121 ′ is an engaging concave portion into which an engaging convex portion of a ring-shaped component connected further downstream is fitted.
[0160] 図 17は、ノズル 12の先端に配置されるリング状部品 12kの構成を示したものでありFIG. 17 shows the configuration of the ring-shaped part 12k arranged at the tip of the nozzle 12.
、同図 (a)は平面断面図、同図 (b)は右側面図である。 (A) is a plan sectional view, and (b) is a right side view.
[0161] リング状部品 12kはその中心部にガス流路 12ηが形成され、上流側端面 12 に 係合凸部 12 が形成されている。リング状部品 12aから段階的に拡大されたガス 流路 12ηの内径 dは、最終的にこのリング状部品 12kの内径、本実施形態では 15m mとなっている。 [0161] The ring-shaped part 12k has a gas flow path 12η formed at the center thereof, and an engaging convex part 12 formed on the upstream end face 12. The inner diameter d of the gas flow path 12η expanded stepwise from the ring-shaped part 12a is finally the inner diameter of the ring-shaped part 12k, which is 15 mm in this embodiment.
[0162] 3-2チタン用噴射ノズル装置 [0162] Injection nozzle device for 3-2 titanium
Tiは融点が高い(1953K)ため、粒子が冷え過ぎた場合 700m/s程度まで加速し なレ、と衝突時の塑性変形熱による熱で表面を溶力、し付着させることができな!/、。この 粒子の加速に必要なガス圧力は、空気の場合、 50MPaを超えることになる。したが つて、 Tiの溶射では粒子が冷え過ぎないように短いノズルを使用する。また、ガス圧 力は 1. 8MPa、ガス温度は常温とした。  Ti has a high melting point (1953K), so if the particles get too cold, it will not accelerate to about 700m / s, and the surface will not melt and adhere with heat due to the plastic deformation heat at the time of collision! / ,. The gas pressure required to accelerate these particles will exceed 50 MPa in the case of air. Therefore, use a short nozzle to prevent particles from getting too cold during Ti spraying. The gas pressure was 1.8 MPa and the gas temperature was room temperature.
[0163] 図 18(a)は噴射ノズル装置 10' の全体平面図を、同図 (b)はその正面図をそれぞ れ断面図で示したものである。 [0163] Fig. 18 (a) is an overall plan view of the injection nozzle device 10 ', and Fig. 18 (b) is a cross-sectional view of the front view thereof.
[0164] 両図において、噴射ノズル装置 10' は、本体部 16と、この本体部 16から突出して 設けられるノズル部 17とを有している。 [0164] In both figures, the injection nozzle device 10 'is protruded from the main body portion 16 and the main body portion 16. And a nozzle portion 17 provided.
[0165] 本体部 16内にはノズル部 17に向けて主流ガスを流すためのガス通路 18が形成さ れており、このガス通路 18に対して左右方向からガスを供給するガス供給路 18aが 形成されている。 [0165] A gas passage 18 for flowing mainstream gas toward the nozzle portion 17 is formed in the main body portion 16, and a gas supply passage 18a for supplying gas from the left and right directions to the gas passage 18 is provided. Is formed.
[0166] このガス通路 18内には一対のワイヤガイド 19, 19が鋭角に配置されており、これら のワイヤガイド 19, 19から送り出されるワイヤ 19a, 19aはリング状部品 12aに形成さ れているガイド孔を通過してノズル部 17内に突出し、突出した各先端は、スロート部 1 7iの下流側で互いに接触するようになって!/、る。  [0166] A pair of wire guides 19 and 19 are disposed at an acute angle in the gas passage 18, and the wires 19a and 19a fed from the wire guides 19 and 19 are formed in the ring-shaped part 12a. After passing through the guide hole, it protrudes into the nozzle portion 17, and the protruding tips come into contact with each other on the downstream side of the throat portion 17i!
[0167] ノズル部 17は、各リング状部品 17a〜17hを筒軸方向に連結することによって構成 されており、各リング状部品 17a〜; 17hにおける連結部分に形成されているスリットか らシールドガス SGsがノズル 17内に向け、主流ガス Gsの流れと平行に噴射されるよう になっている。  [0167] The nozzle portion 17 is configured by connecting the ring-shaped components 17a to 17h in the cylinder axis direction, and the shield gas from the slits formed in the connecting portions of the ring-shaped components 17a to 17h. SGs is injected into the nozzle 17 in parallel with the flow of the mainstream gas Gs.
[0168] なお、上記実施形態では溶射材として Znと Tiを例に取り説明した力 溶射材として はこれ以外に、 Al, Cu, SUS鋼等の金属/合金,セラミックス,サーメット等を使用 することあでさる。  [0168] In the above embodiment, Zn and Ti are explained as examples of the thermal spraying material. In addition, metals / alloys such as Al, Cu, SUS steel, ceramics, cermet, etc. should be used as the thermal spraying material. Tomorrow.
[0169] また、上記実施形態では同じ厚さのリング状部品を複数枚連結することによってノ ズノレを構成した力 異なる厚さのものを混在させて連結することもできる。  [0169] Further, in the above-described embodiment, a plurality of ring-shaped parts having the same thickness can be connected, and the parts that have different thicknesses can be connected together.
[0170] また、上記実施形態では上記ノズルを上記スロート部からノズル出口に向けて内径 が段階的に拡大する末広ノズルで構成した力 連続的に拡大する末広ノズルで構成 することもできる。この場合、ノズル内壁円周位置に噴射口を多数配列することによつ てノズル中心軸と略平行に且つ下流側に向けてシールドガスを噴射することになる。  [0170] Further, in the above embodiment, the nozzle may be constituted by a divergent nozzle that continuously expands with a force constituted by a divergent nozzle whose inner diameter gradually increases from the throat portion toward the nozzle outlet. In this case, by arranging a large number of injection ports at the circumferential position of the inner wall of the nozzle, the shielding gas is injected toward the downstream side substantially parallel to the nozzle central axis.
[0171] 3-3溶射性能  [0171] 3-3 Thermal spray performance
図 19に示すグラフは、異なる溶射材を使用した場合の溶射性能を比較したもので あり、(a)のグラフは溶射によって形成された皮膜の密度を、(b)のグラフは皮膜の歩留 まりをそれぞれ示している。  The graph shown in Fig. 19 compares the thermal spray performance when different thermal spray materials are used. The graph (a) shows the density of the coating formed by thermal spraying, and the graph (b) shows the yield of the coating. Each of them is shown.
[0172] テストピースとして使用した溶射材は、 Al, Cu, Ti, SUS304である。なお、溶射試 験に際してはリング状部品の連結枚数を変更することにより、溶射材毎にノズル長さ を調節した。具体的には、融点が低い溶射材については加速を重視した長いノズル 、例えば Al, Cuについては 200mm長さのノズルを使用した。一方、融点の高い溶 射材につ!/、ては粒子が冷え過ぎな!/ヽように短!/ゾズル、例えば Tiにつ!/ヽては 40mm[0172] The thermal spray materials used as test pieces are Al, Cu, Ti, and SUS304. In the thermal spray test, the nozzle length was adjusted for each thermal spray material by changing the number of ring-shaped parts connected. Specifically, for thermal spray materials with low melting points, long nozzles that emphasize acceleration For example, for Al and Cu, a 200 mm long nozzle was used. On the other hand, it is a spray material with a high melting point! / The particles are too cold! / Short as short! / Zozul, such as Ti! / 40mm
、 SUS304については 70mmを使用した。 For SUS304, 70mm was used.
[0173] (a)のグラフに示すように、各溶射材によって得られた皮膜密度は 90〜94%と高密 度であり良好な成膜状態が確認できた。 [0173] As shown in the graph of (a), the coating density obtained with each thermal spray material was as high as 90 to 94%, and a good film formation state was confirmed.
[0174] また、(b)のグラフに示すように、ノズル長さを 40〜200mmの範囲で変更し、皮膜 の歩留まりを調べた。その結果、ノズル長さが長くするにつれて各溶射材ともに、歩 留まりが低下する傾向が確認された。これは、飛行中の粒子が冷え過ぎると基材に 付着しに《なるからであると考えられる。 [0174] In addition, as shown in the graph of (b), the nozzle length was changed in the range of 40 to 200 mm, and the film yield was examined. As a result, it was confirmed that the yield decreased for each sprayed material as the nozzle length increased. This is thought to be because if the particles in flight are too cold, they adhere to the substrate.
[0175] なお、 A1についてはノズル長さを 200mmとしても 40%程度の歩留まりが得られる 、 Cuついては 15%程度、 SUS304や Tiについては 5〜; 10%程度の歩留まりし力、 得られない。このことから、溶射材に融点の低い材料を使用する場合は長さ 200mm までのノズルを使用することができる力 融点の高レ、材料を使用する場合はノズル長 さの上限を 70mm以下に設定することが好ましい。より好ましくは 40mm程度である。 [0175] For A1, a yield of about 40% can be obtained even with a nozzle length of 200 mm. However, a yield of about 15% for Cu, 5 to 10% for SUS304 and Ti, and a yield of about 10% cannot be obtained. Therefore, when using a material with a low melting point for the thermal spray material, it is possible to use a nozzle with a length of up to 200 mm.When using a material with a high melting point, the upper limit of the nozzle length is set to 70 mm or less. It is preferable to do. More preferably, it is about 40 mm.
[0176] 図 20に示すグラフは、 40mm長さのノズルを用いて成膜された Ti溶射皮膜を EPM[0176] The graph shown in Fig. 20 shows an EPM of a Ti sprayed coating formed using a 40 mm long nozzle.
Aによって φ ί μ m程度の点について成分分析したものであり、横軸はエネルギ、縦 軸は X線強度を示して!/、る。 This is a component analysis of a point of approximately φ ί μm by A. The horizontal axis indicates energy and the vertical axis indicates X-ray intensity!
[0177] 同グラフから分力、るように、溶射皮膜を構成している元素として Tiが検出されている[0177] Ti is detected as an element of the thermal spray coating, as shown by the component force from the graph.
。分析結果に酸素は検出されておらず、それにより、酸化のない状態で Ti皮膜を形 成できることが実証された。 . The analysis results indicate that no oxygen was detected, thereby demonstrating that a Ti film can be formed without oxidation.
[0178] なお、 Nおよび Cも極めて僅かな量、検出されているが、 Nはキャリアガスとしての窒 素が検出されたものであり、 Cはテストピースを成形するための樹脂が成分として検出 されたものであり、無視すること力 Sできる。 [0178] Note that N and C were also detected in very small amounts, but N was detected as nitrogen as the carrier gas, and C was detected as a resin for molding the test piece. It can be ignored.
[0179] 4コーノレドスプレー [0179] 4 Cono Red Spray
次に、本発明の加速ノズルをコールドスプレーに適用する場合の構成について説 明する。  Next, a configuration when the acceleration nozzle of the present invention is applied to cold spray will be described.
[0180] コールドスプレーは、溶射材の融点よりも低い温度の超音速ガス流に粉末状態の 溶射材を投入し、固相状態のままその溶射材を基材に衝突させて皮膜を形成する方 法である。 [0180] Cold spray is a method in which a thermal spray gas powder having a temperature lower than the melting point of the thermal spray material is injected with the powder thermal spray material, and the thermal spray material collides with the substrate in the solid state to form a coating. Is the law.
[0181] 溶射材としては、金属、合金、サーメット、セラミックス等を使用すること力 Sできる。ま た、溶射材の粒径は、一般的に、;!〜 50 mのものを使用すること力 Sできる。  [0181] The use of metal, alloy, cermet, ceramics, etc. as the thermal spraying material is possible. In addition, the particle size of the thermal spray material can generally be as follows;
[0182] 図 21に示すように、コールドスプレー用の噴射ノズル装置 70は、本体部 71と、この 本体部 71の先端に接続される加速ノズル 72とから主として構成されている。  As shown in FIG. 21, an injection nozzle device 70 for cold spray mainly includes a main body 71 and an acceleration nozzle 72 connected to the tip of the main body 71.
[0183] 上記本体部 71は中空室 71aを有し、この中空室 71aのスプレー方向前側には先細 部 71bが形成されている。また、中空室 71aには高圧ガスを供給する第 1供給孔 71c と、高圧ガスと粉体とを供給する第 2供給孔 71dがそれぞれ連通しており、各高圧ガ スは共通のガス源(窒素、ヘリウム、空気等)から分岐させて供給するようになってい  The main body 71 has a hollow chamber 71a, and a tapered portion 71b is formed on the front side in the spray direction of the hollow chamber 71a. The hollow chamber 71a communicates with a first supply hole 71c for supplying high-pressure gas and a second supply hole 71d for supplying high-pressure gas and powder, and each high-pressure gas has a common gas source ( Nitrogen, helium, air, etc.)
[0184] 上記加速ノズル 72の構成は、図 1に示した加速ノズル 1の構成と基本的に同じもの であり、ノズル内を飛行する溶射材に対しその周囲に筒状のシールドガスを形成する こと力 Sでさるように構成されて!/、る。 [0184] The configuration of the acceleration nozzle 72 is basically the same as the configuration of the acceleration nozzle 1 shown in FIG. 1, and a cylindrical shield gas is formed around the sprayed material flying in the nozzle. It is structured so that it can be driven by force S!
[0185] 上記噴射ノズル装置 70によれば、第 1供給孔 71cを通じて供給される高圧ガスと第[0185] According to the injection nozzle device 70, the high pressure gas supplied through the first supply hole 71c and the
2供給孔 71dを通じて供給される溶射材を含む高圧ガスとが中空室 71a内で合流し、 先細部 71bを通過することによって超音速流となる。 2 The high-pressure gas containing the thermal spray material supplied through the supply hole 71d merges in the hollow chamber 71a and passes through the tapered portion 71b to become supersonic flow.
[0186] 加速ノズル 72を構成している各リング状部品 72a〜72kの各スリット Tからはその内 壁に沿ってガスが順次噴射され略筒状のガス流を形成している、それにより、加速ノ ズル 72内を飛行する溶射材は、略筒状に流れるガス流によってシールドされる。 [0186] From each slit T of each ring-shaped part 72a to 72k constituting the accelerating nozzle 72, gas is sequentially ejected along its inner wall to form a substantially cylindrical gas flow. The thermal spray material flying in the acceleration nozzle 72 is shielded by a gas flow that flows in a substantially cylindrical shape.
[0187] それにより、本体部 71から超音速で噴射された溶射材は、加速ノズル 72の内壁に 接触することなぐすなわち、内壁に堆積することなく加速され、基材に衝突し、その 結果、皮膜が形成される。 [0187] As a result, the sprayed material sprayed from the main body 71 at supersonic speed is accelerated without contacting the inner wall of the acceleration nozzle 72, that is, without being deposited on the inner wall, and collides with the base material. A film is formed.
[0188] 上記噴射ノズル装置 70によれば、例えば部品の必要範囲にだけを狙って部分加 ェを行なうことが可能になるとともに、緻密な皮膜を形成することができる。 [0188] According to the injection nozzle device 70, for example, it is possible to perform partial application only aiming at a necessary range of parts, and it is possible to form a dense film.
[0189] 5高速フレーム溶射 [0189] 5 high speed flame spraying
図 22は、本発明の加速ノズルを高速フレーム溶射に適用する場合の構成を示した ものである。  FIG. 22 shows a configuration when the acceleration nozzle of the present invention is applied to high-speed flame spraying.
[0190] 同図に示すように、高速フレーム溶射装置の溶射ガン 80は、燃焼チャンバ 80aとノ ズノレ咅 80bとノ レノレ咅 80cと力、らなっている。 [0190] As shown in the figure, the spray gun 80 of the high-speed flame spraying device is connected to the combustion chamber 80a. It has the power of Zunole 80b and Norenole 80c.
[0191] 燃焼チャンバ 80aで燃料と酸素が混合、着火されることにより燃焼炎(フレーム)が 発生し、この燃焼炎はノズル部 80bに形成されたスロート部 80dで一旦、絞られること により高速流となり、さらにバレル部 80cを通過する。 [0191] Fuel and oxygen are mixed and ignited in the combustion chamber 80a, and a combustion flame (frame) is generated. This combustion flame is once squeezed by the throat part 80d formed in the nozzle part 80b, thereby causing a high-speed flow. And pass through the barrel 80c.
[0192] 関連技術としての高速フレーム溶射では、一般的に粉末溶射材を供給するようにな つており、バレル部 80cの長さは長い方が粒子を加速させることができ、基材に堆積 される皮膜中の気孔を減らす上で有利である。し力、しながら、バレル部 80cを長くする と、燃焼炎中を加速中の粒子はその火炎熱によって溶融し始め、やがてバレル部 80 cの内壁に付着してしまう。 [0192] In high-speed flame spraying as a related technology, powder spraying material is generally supplied, and the longer the barrel portion 80c, the faster the particles can be accelerated and deposited on the substrate. This is advantageous in reducing pores in the coating film. However, if the barrel portion 80c is lengthened, the particles that are accelerating in the combustion flame start to melt by the flame heat and eventually adhere to the inner wall of the barrel portion 80c.
[0193] そこで、図 22に示した高速フレーム溶射装置では、バレル部 80cの先端に、さらに[0193] Therefore, in the high-speed flame spraying apparatus shown in Fig. 22, at the tip of the barrel portion 80c,
、図 1に示した加速ノズル 1の構成と基本的に同じ構成からなる加速ノズル 81を接続 している。 The acceleration nozzle 81 having basically the same configuration as that of the acceleration nozzle 1 shown in FIG. 1 is connected.
[0194] 上記加速ノズル 81をバレル部 80cの先端に接続することにより、粒子が溶融を開始 してからもノズル内で粒子の加速を維持することが可能になる。その結果、粒子がバ レル内壁に付着するという関連技術の高速フレーム溶射の問題点を解消することが できる。  [0194] By connecting the acceleration nozzle 81 to the tip of the barrel portion 80c, the acceleration of the particles can be maintained in the nozzle even after the particles start to melt. As a result, the problem of the high-speed flame spraying of the related technology in which particles adhere to the inner wall of the barrel can be solved.
[0195] なお、本発明の加速ノズルは、上記した高速フレーム溶射に限らず、プラズマ溶射 等、高温ガスによって粒子を溶解させるタイプの溶射装置の後段に接続することも可 能であり、ノズル内での加速を維持させてノズル内壁への粒子の付着を解消すること ができる。  [0195] The acceleration nozzle of the present invention is not limited to the above-described high-speed flame spraying, and can be connected to a subsequent stage of a thermal spraying apparatus that melts particles with a high-temperature gas such as plasma spraying. It is possible to eliminate the adhesion of particles to the inner wall of the nozzle by maintaining the acceleration at this point.
[0196] なお、図中、 82は溶射粒子、 83は基材、 84はその基材 83上に堆積される溶射皮 膜を示している。  [0196] In the figure, reference numeral 82 denotes thermal spray particles, 83 denotes a base material, and 84 denotes a thermal spray coating deposited on the base material 83.
[0197] 6微粒化装置 [0197] 6 atomizer
図 23は、溶融金属流を微細化することにより金属粉を製造する微粒化装置に、本 発明の加速ノズルを適用する場合の構成を示したものである。  FIG. 23 shows a configuration in which the acceleration nozzle of the present invention is applied to a pulverizing apparatus for producing metal powder by refining a molten metal flow.
[0198] 同図において、微粒化装置 90は、溶解炉 91の下方に配置されたハウジング 92内 に収納されている。 In the same figure, the atomizer 90 is housed in a housing 92 disposed below the melting furnace 91.
[0199] 微粒化装置 90は、中空の環状部 90aと、その外周壁から直径方向に延設された支 持体 90bおよび 90cを有し、一方の支持体 90cは中空からなり、環状部 90aに連通し て高圧ガスの供給路として機能するようになって!/、る。 [0199] The atomizer 90 includes a hollow annular portion 90a and a support extending in the diameter direction from the outer peripheral wall. One support 90c is hollow and communicates with the annular portion 90a to function as a high-pressure gas supply path! /.
[0200] また、支持体 90b, 90cはそれらの軸まわりに回動するようになっており、それにより[0200] Further, the supports 90b and 90c are adapted to rotate around their axes, thereby
、環状部 90aを紙面厚さ方向に揺動させることができる。 The annular portion 90a can be swung in the thickness direction of the paper.
[0201] 環状部 90aの底面には、図 1に示した加速ノズル 1の構成と基本的に同じ構成から なる加速ノズル 93が垂設されて!/、る。 [0201] On the bottom surface of the annular portion 90a, an acceleration nozzle 93 having basically the same configuration as that of the acceleration nozzle 1 shown in FIG.
[0202] 上記構成において、支持体 90cを通じて環状部 90aに供給された高圧ガスは、噴 射ノズル装置 93の各リング部品 93a〜93hのスリット Tからも噴射されるようになって いる。 [0202] In the above configuration, the high-pressure gas supplied to the annular portion 90a through the support 90c is also injected from the slits T of the ring components 93a to 93h of the injection nozzle device 93.
[0203] なお、上記環状部 90aが揺動動作する微粒化装置では、微粒化装置 90が溶解炉 [0203] In the atomization apparatus in which the annular portion 90a swings, the atomization apparatus 90 is a melting furnace.
91に固定されない構造上、溶解炉 91とその微粒化装置 90との間には空間 94が存 在しており、この空間 94は通常、ほぼ大気圧となっている。 Due to the structure that is not fixed to 91, a space 94 exists between the melting furnace 91 and its atomizer 90, and this space 94 is usually at almost atmospheric pressure.
[0204] 上記構成を有する微粒化装置 90において、溶湯ノズル 9 laから吐出された溶湯 9[0204] In the atomization apparatus 90 having the above-described configuration, the molten metal 9 discharged from the molten metal nozzle 9 la.
5は、重力によって鉛直方向に流下し、環状部 90aの中心を通過する際に、高圧ガス5 is a high-pressure gas that flows down in the vertical direction due to gravity and passes through the center of the annular portion 90a.
(アトマイズガス) AGsによって微粒化される。 (Atomized gas) Atomized by AGs.
[0205] 微粒化された粒子はさらに加速ノズル 93内を通過する際にスリット Tから噴射される 高圧ガスによって加速され、基材に衝突する衝突速度が高められる。 [0205] The atomized particles are further accelerated by the high-pressure gas injected from the slit T when passing through the acceleration nozzle 93, and the collision speed of colliding with the base material is increased.
[0206] 基材上に粒子が堆積して形成されたビレットの密度は、粒子の衝突速度にほぼ比 例するため、粒子を加速させることができる上記加速ノズル 93を付加することにより、 密度の高レ、ビレットを成形することができる。 [0206] Since the density of the billet formed by the deposition of particles on the substrate is almost proportional to the collision speed of the particles, the density of the billet can be increased by adding the acceleration nozzle 93 that can accelerate the particles. Can form high billets and billets.
[0207] なお、上記構成では空間 94が加速ノズル 93のノズル中央に連通しているため、加 速ノズル 93は、ノズル中央から大気圧のガスを吸い込んで粒子とともに加速すること になる。したがって、ノズル中央に高圧ガスを導入する場合と比較すると、粒子をカロ 速する能率は低くなる。 [0207] In the above configuration, since the space 94 communicates with the center of the acceleration nozzle 93, the acceleration nozzle 93 sucks in atmospheric gas from the center of the nozzle and accelerates together with the particles. Therefore, compared with the case where high-pressure gas is introduced into the center of the nozzle, the efficiency of speeding particles is low.
[0208] そこで、ノズル内の粒子速度とガスマッハ数を実験により測定すると、例えば 0. 6M Paのガスをリング状部品の各スリット Tから噴射した場合、ノズル中央を飛行する粒子 の速度は 300m/s (ノズル中央に高圧ガスを供給した場合は 400m/s)となり、ガス のマッハ数は 1. 0〜; 1. 5程度まで加速することができた。それにより、実用上、満足 できる加速効果の得られることが確認された。 [0208] Therefore, when the particle velocity and gas Mach number in the nozzle are measured by experiment, for example, when 0.6 MPa gas is injected from each slit T of the ring-shaped part, the velocity of the particles flying in the center of the nozzle is 300 m / s (400 m / s when high-pressure gas is supplied to the center of the nozzle), and the gas Mach number could be accelerated from 1.0 to about 1.5. As a result, practically satisfied It was confirmed that the acceleration effect that can be obtained is obtained.
[0209] 7水実験モデルを用いた粒子速度測定 [0209] Particle velocity measurement using 7 water experimental model
図 24は加速ノズル内を飛行する粒子の速度および速度分布を測定するために構 成された水実験モデルである。  Figure 24 shows a water experiment model configured to measure the velocity and velocity distribution of particles flying in the acceleration nozzle.
[0210] 同図において、水タンク 91' は図 23に示した溶解炉 91に相当し、環状部 90a' は同じく環状部 90aに相当し、加速ノズル 93' は加速ノズル 93に相当する。 96は水 タンク 91' 力も垂下されたノズノレである。また、中空の環状部 90a' 力も高圧ガスを 供給した。 [0210] In the figure, the water tank 91 'corresponds to the melting furnace 91 shown in FIG. 23, the annular portion 90a' corresponds to the annular portion 90a, and the acceleration nozzle 93 'corresponds to the acceleration nozzle 93. 96 is a water tank 91 'nozure which drooped. The hollow annular portion 90a 'force also supplied high pressure gas.
[0211] なお、図 24に示した水実験モデルは、図 23に示した微粒化装置を高圧ガス供給 方向から見た配置となっている。したがって、加速ノズル 93' は左右方向に揺動動 作する。  [0211] The water experiment model shown in Fig. 24 is an arrangement in which the atomizer shown in Fig. 23 is viewed from the high-pressure gas supply direction. Therefore, the acceleration nozzle 93 'swings in the left-right direction.
[0212] 図 25の示すグラフは上記水実験モデルを用い、スプレー方向と直交する方向の粒 子速度分布を測定したものである。  [0212] The graph shown in FIG. 25 is obtained by measuring the particle velocity distribution in the direction orthogonal to the spray direction using the water experimental model.
[0213] 同グラフにおいて、横軸はスプレー中心 Sからの距離を示し、縦軸は粒子速度を示 して!/、る。なお、本水実験モデルで使用した加速ノズル 93' のノズル出口の孔径は φ 16mmで ¾>る。 [0213] In the graph, the horizontal axis indicates the distance from the spray center S, and the vertical axis indicates the particle velocity! /. Note that the hole diameter of the nozzle outlet of the acceleration nozzle 93 ′ used in this water experimental model is φ16 mm.
[0214] グラフ中、特性 Mlはノズル出口力、ら 25mmの距離において粒子速度を測定したも のであり、ノズル内壁に近いスプレー周辺部では粒子速度が速く(350m/s)、スプ レー中心部では粒子速度が遅くなる(250m/s)という速度分布が得られた。これは 、スプレー中心部では大気圧のガスを吸い込みながら加速しなければならないことに よって生じた遅れと考えれる。  [0214] In the graph, the characteristic Ml is the measured nozzle velocity at a distance of 25 mm from the nozzle outlet force. The particle velocity is fast (350 m / s) at the spray periphery near the nozzle inner wall, and at the spray center. A velocity distribution was obtained in which the particle velocity was slow (250 m / s). This is considered to be a delay caused by having to accelerate while sucking atmospheric gas in the center of the spray.
[0215] 特性 M2は、ノズル出口から 250mmの距離において粒子速度を測定したものであ り、スプレー中心部の粒子速度が特性 Mlに比べて加速される一方でスプレー周辺 部についてはスプレー中心からの距離が拡がるとともに粒子速度も減衰していく。  [0215] Characteristic M2 is a measurement of the particle velocity at a distance of 250 mm from the nozzle outlet. The particle velocity at the spray center is accelerated compared to the characteristic Ml, while the spray periphery is from the spray center. As the distance increases, so does the particle velocity.
[0216] 特性 M3は、ノズル出口から 550mmの距離において粒子速度を測定したものであ る。上記特性 M2と比較し、スプレー中心部の粒子速度はやや減衰し、スプレーがさ らに裾拡がりとなる。  [0216] Characteristic M3 is obtained by measuring the particle velocity at a distance of 550 mm from the nozzle outlet. Compared to the above characteristic M2, the particle velocity at the center of the spray is slightly attenuated, and the spray further spreads out.
[0217] 図 26に示すグラフは、スプレー方向における粒子速度分布を測定したものである。 [0218] 同グラフにおいて、横軸はスプレー高さを、左縦軸は粒子速度を、右縦軸は粒子径 をそれぞれ示している。 [0217] The graph shown in Fig. 26 is obtained by measuring the particle velocity distribution in the spray direction. [0218] In the graph, the horizontal axis represents the spray height, the left vertical axis represents the particle velocity, and the right vertical axis represents the particle diameter.
[0219] 特性 N1はスプレー高さ 60〜1250mmの範囲で粒子速度の変化を測定したもので あり、スプレー高さが約 300mmまでは粒子は加速途中であるため、 310m/s程度 まで速度が増加する力 それ以後は徐々に減衰していく。  [0219] Characteristic N1 is a measurement of the change in particle velocity in the spray height range of 60 to 1250 mm. Since the particle is being accelerated up to a spray height of about 300 mm, the velocity increases to about 310 m / s. After that, it gradually attenuates.
[0220] また、粒子径については、スプレー高さ 500mmまでは 21 μ m前後で安定するが、 スプレー高さ 500mmを超えるとやや粒子径が大きくなる傾向がある。これは飛行す る粒子同士が合体することによるものと推定される。 [0220] The particle size is stable at around 21 μm up to a spray height of 500 mm, but the particle size tends to increase slightly when the spray height exceeds 500 mm. This is presumably due to the coalescence of flying particles.
[0221] また、水実験モデルにおける水を塗料に変更すれば、本発明の加速ノズルを塗装 にあ禾 IJ用することカでさるようになる。 [0221] Further, if the water in the water experiment model is changed to paint, the acceleration nozzle of the present invention can be used for painting in an IJ.
[0222] 上記各実施形態を用いて説明したように、本発明の加速ノズルは、微粉製造、スプ レーフォーミング、溶射、成膜、 3次元造形、塗装等のいずれの分野にも幅広く適用 すること力 Sでさる。 [0222] As described using the above embodiments, the accelerating nozzle of the present invention can be widely applied to all fields such as fine powder production, spray forming, thermal spraying, film formation, three-dimensional modeling, and painting. Touch with force S.
[0223] なお、上述した各実施形態では円筒状加速ノズルを例に取り説明したが、加速ノズ ルは上記円筒形に限らず、例えば図 27に示すように、角型部品 100a〜; !OOdを接 続した角筒状ノズル 100であってもよい。角筒状ノズル 100に構成する場合、ノズノレ 孔 100eの開口形状は偏平な矩形であってもよぐまた、正方形であってもよい。なお 、図中 100fは、スロート部である。  [0223] In the above-described embodiments, the cylindrical acceleration nozzle has been described as an example. However, the acceleration nozzle is not limited to the cylindrical shape described above. For example, as shown in FIG. The rectangular tube nozzle 100 may be connected. When the rectangular tube nozzle 100 is configured, the opening shape of the nozzle hole 100e may be a flat rectangle or a square. In the figure, 100f is a throat part.
産業上の利用可能性  Industrial applicability
[0224] 本発明は、加速ノズルおよびその加速ノズルを備えた噴射ノズル装置に利用可能 である。 [0224] The present invention can be used in an acceleration nozzle and an injection nozzle apparatus including the acceleration nozzle.

Claims

請求の範囲 The scope of the claims
[1] 先端に向けて内径が連続的または段階的に拡大するノズル孔を有し、  [1] It has a nozzle hole whose inner diameter continuously or gradually expands toward the tip,
高速ガス流を該先端に向けて略筒状に噴射するための噴射口が上記ノズル孔に おける周方向内壁に形成され、  An injection port for injecting a high-speed gas flow toward the tip in a substantially cylindrical shape is formed on the inner circumferential wall of the nozzle hole,
この噴射口が上記ノズル孔の筒軸方向に複数段設けられている加速ノズル。  An accelerating nozzle in which a plurality of nozzles are provided in the nozzle axis direction of the nozzle hole.
[2] 内径が異なる複数のリング状部品を筒状に連結し、  [2] Connecting a plurality of ring-shaped parts with different inner diameters in a cylindrical shape,
連結された上流側および下流側リング状部品の内壁段差部分に向かって上記噴 射口が環状に開口して!/、る請求項 1記載の加速ノズル。  2. The accelerating nozzle according to claim 1, wherein the injection port is annularly opened toward the inner wall step portion of the connected upstream and downstream ring-shaped parts.
[3] 先端の上記リング状部品を除く各リング状部品を貫通して、上記高速ガス流形成用 のガスを供給するガス供給路が設けられ、 [3] A gas supply path for supplying the gas for forming the high-speed gas flow is provided through each ring-shaped component excluding the ring-shaped component at the tip,
このガス供給路から、上記各段の噴射口に上記ガスを個別に供給するためのガス 通路が形成されている請求項 2記載の加速ノズル。  3. The acceleration nozzle according to claim 2, wherein a gas passage for individually supplying the gas from the gas supply path to the injection port of each stage is formed.
[4] 上記ガス通路が、連結された上流側および下流側リング状部品の間に間隙を設け ることによって形成され、 [4] The gas passage is formed by providing a gap between the connected upstream and downstream ring-shaped parts,
このガス通路における上記噴射口近傍に、ガス通路の幅を絞って上記高速ガス流 を形成する高速ガス流形成部が形成されている請求項 3記載の加速ノズル。  4. The acceleration nozzle according to claim 3, wherein a high-speed gas flow forming portion that forms the high-speed gas flow by narrowing the width of the gas passage is formed near the injection port in the gas passage.
[5] 溶射装置のノズル出口に、請求項 1〜4のいずれ力、 1項に記載の加速ノズルを接続 するように構成された溶射装置用加速ノズル。 [5] An acceleration nozzle for a thermal spraying apparatus configured to connect the acceleration nozzle according to any one of claims 1 to 4 to the nozzle outlet of the thermal spraying apparatus.
[6] 微粉製造装置のノズル出口に、請求項 1〜4のいずれ力、 1項に記載の加速ノズルを 接続するように構成された微粉製造装置用加速ノズル。 [6] An acceleration nozzle for a fine powder production apparatus configured to connect the acceleration nozzle according to any one of claims 1 to 4 to the nozzle outlet of the fine powder production apparatus.
[7] コールドスプレー装置のノズル出口に、請求項;!〜 4のいずれか 1項に記載の加速 ノズルを接続するように構成されたコールドスプレー用加速ノズル。 [7] A cold spray acceleration nozzle configured to connect the acceleration nozzle according to any one of claims ;! to 4 to a nozzle outlet of the cold spray device.
[8] ノズルの入口側に導入したキャリアガスを、上記ノズル内のスロート部を通過させる ことにより高速ガス流とし、ノズル内で溶融状態にある材料をその高速ガス流によって 微粒化し、微粒化した材料をノズルの出口側から噴射する噴射ノズル装置において 上記スロート部の下流側の周方向内壁に、ノズルの中心軸と略平行に且つ下流側 に向けてシールドガスを噴射する噴射口を有し、 上記高速ガス流の周囲に筒状のシールドガスの流れを形成するシールドガス供給 部を備えてなる噴射ノズル装置。 [8] The carrier gas introduced to the inlet side of the nozzle is passed through the throat portion in the nozzle to make a high-speed gas flow, and the material in a molten state in the nozzle is atomized by the high-speed gas flow and atomized. In the injection nozzle device for injecting material from the outlet side of the nozzle, the peripheral inner wall on the downstream side of the throat portion has an injection port for injecting shield gas toward the downstream side substantially parallel to the central axis of the nozzle, An injection nozzle device comprising a shield gas supply unit that forms a cylindrical shield gas flow around the high-speed gas flow.
[9] 上記ノズルは、上記スロート部から該出口に向けて内径が連続的または段階的に 拡大する請求項 8記載の噴射ノズル装置。 9. The injection nozzle device according to claim 8, wherein the nozzle has an inner diameter that continuously or stepwise expands from the throat portion toward the outlet.
[10] 上記ノズルは、複数のリング状部品をリング中心軸方向に連結した集合体から構成 されて!/、る請求項 8記載の噴射ノズル装置。 [10] The injection nozzle device according to claim 8, wherein the nozzle is constituted by an assembly in which a plurality of ring-shaped parts are connected in the ring central axis direction!
[11] 上記ノズルは、上記スロート部から該出口に向けて内径が段階的に拡大し、 [11] The nozzle has an inner diameter that gradually increases from the throat portion toward the outlet,
連結されたリング状部品における各隣り合った内壁段差部分に、上記噴射口として のスリットが環状に形成されている請求項 10記載の噴射ノズル装置。  11. The injection nozzle device according to claim 10, wherein a slit as the injection port is formed in an annular shape at each adjacent inner wall step portion in the connected ring-shaped part.
[12] 上記スリット上流側のシールドガス供給路に、シールドガスの流速を上記高速ガス 流の流速に揃えるためのシールドガス用スロート部が形成されている請求項 11記載 の噴射ノズル装置。 12. The injection nozzle device according to claim 11, wherein a shield gas throat portion is formed in the shield gas supply path upstream of the slit to make the flow rate of the shield gas equal to the flow rate of the high-speed gas flow.
[13] 上記リング状部品の下流側内周縁部に、上記シールドガスの流れを上記ノズルの 中心軸と略平行に且つ下流側に向けて揃えるためのガス流偏向部を有する請求項 1 0に記載の噴射ノズル装置。  [13] The gas flow deflector for aligning the flow of the shield gas toward the downstream side substantially parallel to the central axis of the nozzle at the downstream inner peripheral edge of the ring-shaped component. The injection nozzle device described.
[14] 上記ノズルのスロート部近傍に、溶射材料をワイヤの形態で供給する一対のワイヤ ガイドが配設され、  [14] In the vicinity of the throat portion of the nozzle, a pair of wire guides for supplying the thermal spray material in the form of a wire is disposed,
これらのワイヤガイドの先端からノズル内に突出した一対のワイヤに対し、陽極と陰 極の各電極として電荷を印加するように構成されて!/、る請求項 8〜; 13の!/、ずれか 1 項に記載の噴射ノズル装置。  14. A structure configured to apply a charge as a positive electrode and a negative electrode to a pair of wires protruding from the tip of the wire guide into the nozzle. The spray nozzle device according to claim 1.
[15] 上記高速ガス流の流れ方向において最上流側に配置される上記リング状部品をセ ラミックスで構成し、 [15] The ring-shaped part arranged on the most upstream side in the flow direction of the high-speed gas flow is composed of ceramics,
このセラミックスに、溶射材料としてのワイヤを供給する一対のワイヤガイドを揷通し これらのワイヤガイドの先端からノズル内に突出した一対のワイヤに対し、陽極と陰 極の各電極として電荷を印加するように構成されて!/、る請求項 10〜; 13の!/、ずれか 1 項に記載の噴射ノズル装置。  A pair of wire guides for supplying a wire as a thermal spray material is passed through the ceramics, and a charge is applied as a positive electrode and a negative electrode to the pair of wires protruding into the nozzle from the tips of these wire guides. 14. The injection nozzle device according to claim 10, wherein the injection nozzle device is configured as follows.
[16] 上記高速ガス流の流れ方向において最上流側に配置される上記リング状部品をセ ラミックスで構成し、 [16] The ring-shaped part arranged on the most upstream side in the flow direction of the high-speed gas flow Composed of ramix,
このリング状部品に、ワイヤガイドから上記スロート部を通して供給されたワイヤとの 間でアーク溶解を行うための固定電極が配設されている請求項 10〜; 13のいずれか The fixed electrode for performing arc melting between the ring-shaped part and a wire supplied from the wire guide through the throat portion is disposed.
1項に記載の噴射ノズル装置。 The injection nozzle device according to item 1.
[17] 上記スロート部を通して、上記ノズルの中心軸上に溶湯を供給する溶湯ノズルが設 けられて!/、る請求項 8記載の噴射ノズル装置。 17. The injection nozzle device according to claim 8, wherein a melt nozzle for supplying a melt is provided on the central axis of the nozzle through the throat portion!
[ 18] 上記リング状部品を貫通して設けられた溶湯ノズルから上記ノズル内の高速ガス流 に対して交差する方向から溶湯を供給するように構成されている請求項 10〜; 13のい ずれか 1項に記載の噴射ノズル装置。 18. The method according to any one of claims 10 to 13, wherein the molten metal is supplied from a direction intersecting with a high-speed gas flow in the nozzle from a molten nozzle provided through the ring-shaped component. The spray nozzle device according to claim 1.
PCT/JP2007/066199 2006-09-01 2007-08-21 Acceleration nozzle and ejection nozzle device WO2008026479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200780023670.3A CN101479046B (en) 2006-09-01 2007-08-21 Acceleration nozzle and injection nozzle apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-238124 2006-09-01
JP2006238124 2006-09-01
JP2007-024715 2007-02-02
JP2007024715A JP4268193B2 (en) 2006-09-01 2007-02-02 Acceleration nozzle

Publications (1)

Publication Number Publication Date
WO2008026479A1 true WO2008026479A1 (en) 2008-03-06

Family

ID=39135762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066199 WO2008026479A1 (en) 2006-09-01 2007-08-21 Acceleration nozzle and ejection nozzle device

Country Status (3)

Country Link
JP (1) JP4268193B2 (en)
TW (1) TW200824794A (en)
WO (1) WO2008026479A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936964A1 (en) * 2008-10-10 2010-04-16 Hamid Hammouche Powder injector present in the form of a cylindrical carrier for high velocity oxy fuel type thermal projection device, comprises two sections connected by a chamfer
WO2016181939A1 (en) * 2015-05-11 2016-11-17 株式会社中山アモルファス High velocity oxy-fuel spraying device
WO2020004190A1 (en) * 2018-06-26 2020-01-02 東京エレクトロン株式会社 Thermal spraying device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284774B2 (en) * 2008-12-26 2013-09-11 トーカロ株式会社 Plasma spraying device with particle acceleration nozzle and plasma spraying method
JP4695701B2 (en) * 2009-07-24 2011-06-08 黒崎播磨株式会社 Molten metal discharge nozzle
US9481933B2 (en) 2009-12-04 2016-11-01 The Regents Of The University Of Michigan Coaxial laser assisted cold spray nozzle
US10119195B2 (en) 2009-12-04 2018-11-06 The Regents Of The University Of Michigan Multichannel cold spray apparatus
KR100976160B1 (en) * 2010-03-17 2010-08-16 김재우 Distilled liquor using whole ginseng
JP5852829B2 (en) * 2011-09-26 2016-02-03 トーカロ株式会社 Plasma spraying device with acceleration nozzle
WO2020008637A1 (en) * 2018-07-06 2020-01-09 日産自動車株式会社 Cold spray nozzle and cold spray device
JP2023120687A (en) 2022-02-18 2023-08-30 株式会社荏原製作所 Fusion-spraying device, method for sensing molten deposit in fusion-spraying device, and electrode for fusion-spraying device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100065U (en) * 1981-12-25 1983-07-07 日本酸素株式会社 Burner for flame spraying
JPS6173871A (en) * 1984-09-17 1986-04-16 Ryoichi Kasagi Method for spraying thermally metal at lower temperature by double ejector type
JPS62210067A (en) * 1986-03-09 1987-09-16 Ryoichi Kasagi Lower temperature thermal spraying device of double ejector system for metal
JPH1094743A (en) * 1996-09-24 1998-04-14 Ryobi Ltd Powder device
JP2004503385A (en) * 2000-06-12 2004-02-05 ベクテル ビーダブリューエックスティー アイダホ エルエルシー Rapid agglomeration processing system for producing molds, dies and related tools

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100065U (en) * 1981-12-25 1983-07-07 日本酸素株式会社 Burner for flame spraying
JPS6173871A (en) * 1984-09-17 1986-04-16 Ryoichi Kasagi Method for spraying thermally metal at lower temperature by double ejector type
JPS62210067A (en) * 1986-03-09 1987-09-16 Ryoichi Kasagi Lower temperature thermal spraying device of double ejector system for metal
JPH1094743A (en) * 1996-09-24 1998-04-14 Ryobi Ltd Powder device
JP2004503385A (en) * 2000-06-12 2004-02-05 ベクテル ビーダブリューエックスティー アイダホ エルエルシー Rapid agglomeration processing system for producing molds, dies and related tools

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936964A1 (en) * 2008-10-10 2010-04-16 Hamid Hammouche Powder injector present in the form of a cylindrical carrier for high velocity oxy fuel type thermal projection device, comprises two sections connected by a chamfer
WO2016181939A1 (en) * 2015-05-11 2016-11-17 株式会社中山アモルファス High velocity oxy-fuel spraying device
WO2020004190A1 (en) * 2018-06-26 2020-01-02 東京エレクトロン株式会社 Thermal spraying device

Also Published As

Publication number Publication date
JP2008080323A (en) 2008-04-10
TW200824794A (en) 2008-06-16
JP4268193B2 (en) 2009-05-27
TWI323188B (en) 2010-04-11

Similar Documents

Publication Publication Date Title
JP4897001B2 (en) Injection nozzle device
WO2008026479A1 (en) Acceleration nozzle and ejection nozzle device
US9168546B2 (en) Cold gas dynamic spray apparatus, system and method
US20110237421A1 (en) Method and system for producing coatings from liquid feedstock using axial feed
KR101770576B1 (en) Coaxial Laser Assisted Cold Spray Nozzle
JP4989859B2 (en) Cold spray nozzle and cold spray apparatus and method using the same
JP5260910B2 (en) Plasma spray device and method for introducing a liquid precursor into a plasma gas stream
KR100776194B1 (en) Nozzle for cold spray and cold spray apparatus using the same
EP2110178A1 (en) Cold gas-dynamic spray nozzle
US7989023B2 (en) Method of improving mixing of axial injection in thermal spray guns
US9834844B2 (en) Nozzle for a thermal spray gun and method of thermal spraying
US20150165457A1 (en) Cold gas spraying gun with powder injector
JPH05138084A (en) High speed thermal spray device and method for forming flame coating
JP5228149B2 (en) Nozzle for film formation, film formation method, and film formation member
WO2013105613A1 (en) Device for forming amorphous film and method for forming same
CN115210405A (en) Spray nozzle, nozzle tip, and spray device
CN216378348U (en) Thermal spraying equipment
JP6879878B2 (en) Thermal spray nozzle and plasma spraying device
US20170335441A1 (en) Nozzle for thermal spray gun and method of thermal spraying
CN114262860A (en) Thermal spraying equipment
LT6827B (en) Laser metal deposition head

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023670.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792799

Country of ref document: EP

Kind code of ref document: A1