WO2008026304A1 - Carbon nanomaterial, method for producing the same, electronic member and electronic device - Google Patents

Carbon nanomaterial, method for producing the same, electronic member and electronic device Download PDF

Info

Publication number
WO2008026304A1
WO2008026304A1 PCT/JP2007/000825 JP2007000825W WO2008026304A1 WO 2008026304 A1 WO2008026304 A1 WO 2008026304A1 JP 2007000825 W JP2007000825 W JP 2007000825W WO 2008026304 A1 WO2008026304 A1 WO 2008026304A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
substance
based nanomaterial
nanomaterial
modified
Prior art date
Application number
PCT/JP2007/000825
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Asano
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Publication of WO2008026304A1 publication Critical patent/WO2008026304A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Carbon-based nanomaterial manufacturing method thereof, electronic member and electronic device
  • the present invention relates to a surface modification technique for a carbon-based nanomaterial.
  • CNTs carbon nanotubes
  • CNT has various characteristics such as excellent chemical stability and unique physical and electrical properties, and has attracted attention as a material for forming semiconductor devices.
  • sheath length control various studies are ongoing, such as formation position control and chirality control.
  • Specific applications include electromagnetic shielding members for electronic equipment, cooling bump materials for high-performance electronic devices such as VLSI, wiring via structure members for semiconductor devices, semiconductor element components (eg, transistor gates) Electrode, source electrode, drain electrode, channel electrode, etc.) are attracting attention.
  • CNTs are grown on a semiconductor process substrate with high density by utilizing the property of extremely high thermal conductivity, and this is an electronic device mounted on a part of a conductive circuit or on a process substrate ( Applications such as the bonding part structure from the semiconductor device) and the exhaust heat path (so-called “bump structure”) for device heat generation from the structure part are conceivable.
  • FIG. 5 shows an example of a structure (see, for example, Non-Patent Document 1) used as a cooling bump material for such a high-performance electronic device using CNTs.
  • the cooling bump structure of such a high-performance electronic device is For example, a catalytic metal supporting film (eg, TiN film) and a catalytic metal film (Co, etc.) (both of which are indicated by numeral 53) are sputtered on an electrode 52 on an aluminum nitride (AIN, alumina, etc.) 51. Then, CN T 54 is grown by thermal CVD method (thermochemical vapor deposition method) using hydrocarbon gas (CH 4 , C 2 H 2, etc.).
  • a catalytic metal supporting film eg, TiN film
  • a catalytic metal film Co, etc.
  • CN T 54 is grown by thermal CVD method (thermochemical vapor deposition method) using hydrocarbon gas (CH 4 , C 2 H 2, etc.).
  • a CNT bump structure can be fabricated by attaching a conductive substance (such as Cu, AI, etc.) to the CNT part of the substrate with a metal plate (wet processing) or the like.
  • the electronic device can be thermocompression-bonded (preferably about 250 to 450 ° C) to produce a highly thermally conductive electronic device.
  • FIG. 1 shows an example of a wiring via structure using the above-described CNT (see, for example, Patent Document 1 and Non-Patent Document 2).
  • a via structure as shown in FIG. 1, for example, a base layer 2 and a Cu wiring layer 3 are provided on a substrate 1, and a barrier film that prevents diffusion of Cu on the Cu wiring layer 3 ( (Ta film, etc.) 4 is deposited, insulating layer 5 is provided thereon, via holes are formed, catalyst metal supporting film (eg, Ti film) 6 and catalyst metal film such as Co (or catalyst fine particle layer) 7 is then deposited using a spatter, and then CN T 8 is grown by thermal CVD (thermochemical vapor deposition) using a hydrocarbon gas (CH 4 , C 2 H 2, etc.). Thereafter, it can be produced by forming an upper wiring.
  • FIG. 1 also shows a filling resin 9 for fixing CNT 8.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002_329723 (Claims)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004_168570 (Claims)
  • Non-Patent Document 1 Fujitsu Limited, Fujitsu Laboratories Ltd., “The world's first! Utilizing carbon nanotubes as a heat dissipation substrate for semiconductor chips” December 5, 2005, [200
  • Non-Patent Document 2 Nibobe et al., “Japanese Journal of Applied Physics”, 2005, 44, p. 1 626 Disclosure of the Invention Problems to be Solved by the Invention
  • CNT is manufactured by a conventional manufacturing method (laser abrasion, chemical vapor phase growth (CVD), Hi PCO (high es su er c ar bon mon xo ide) method, etc.).
  • the surface properties of CNT produced by these methods depend on the graphite-like surface molecular structure, that is, the nature of the electronic superconjugated structure in which the benzene rings are connected.
  • the property also shows properties such as graph eye ⁇ . That is, as-manufactured (for example, powdery) molecular surfaces are usually poorly dispersible in any solvent and are treated under certain conditions (for example, sonicated with ethanol). It was the limit that a dispersed state of several weeks at most could be obtained.
  • the decrease in electrical properties means, for example, an increase in specific resistance, a decrease in reliability of maintaining medium- to long-term electrical properties, an increase in specific resistance per weight and a deterioration in electromagnetic shielding performance, and Say decline.
  • a decrease in mechanical strength refers to a decrease in rigidity, fracture strength, and deterioration of their long-term performance.
  • deterioration of chemical properties refers to deterioration of material properties (for example, hygroscopicity, solvent resistance, oxidation by oxygen in the air) due to the environment.
  • CMP chemical Mechanical Polishing
  • the present invention solves the above problems and improves the affinity when in contact with other materials.
  • the object is to provide a monolithic nanomaterial including the above-mentioned carbon nanotube-based material and graphene sheet-based material. Still other objects and advantages of the present invention will become apparent from the following description.
  • a method for producing a single-pound nanomaterial having a modified surface and comprising at least one of a carbon nanotube-based material and a graph ensheet-based material comprising at least one of a carbon nanotube-based material and a graphene sheet material.
  • a method for producing a surface-modified carbon-based nanomaterial is provided.
  • a novel carbon-based nanomaterial having improved affinity when in contact with another material can be obtained.
  • a surface-modified carbon-based nanomaterial produced by a method including the above is provided.
  • novel carbon-based nanomaterial having improved affinity when in contact with other materials obtained according to the present invention is suitably used for electronic components such as electronic components and the like. be able to.
  • the material capable of modifying the surface of the carbon-based nanomaterial is activated by vacuum ultraviolet rays to generate chemically active species such as radicals.
  • the carbon-based nanomaterial whose surface is to be modified is produced by a CVD method, and the carbon-based nanomaterial whose surface is to be modified is grown on a substrate.
  • a chemically active species such as the radical is an electron-withdrawing group and a chemically active species such as a radical of an electron-donating group.
  • a substance capable of modifying the surface of the carbon-based nanomaterial includes oxygen, amines, alkyl halides, alcohols, and the like. Including at least one substance selected from the group consisting of ethers and mixtures thereof, and even if the substance capable of modifying the surface of the carbon-based nanomaterial is irradiated with the vacuum ultraviolet rays, It is preferable that the surface of the bon-based nanomaterial is diluted with an inert substance that does not modify the surface.
  • an electronic member comprising the surface-modified carbon-based nanomaterial, particularly a via, a heat dissipation bump, a conductive sheet, an electromagnetic shielding material sheet,
  • an electronic device including the prepreg for producing these sheets and the surface-modified carbon-based nanomaterial.
  • a novel carbon-based nanomaterial having improved affinity when in contact with other materials can be obtained.
  • Such a material can be suitably used for an electronic device or an electronic member.
  • FIG. 1 is a schematic cross-sectional view of a wiring via structure using C N T.
  • FIG. 2 The main part of the device for irradiating VUV and supplying specific substances according to the present invention It is a schematic diagram which shows minutes.
  • FIG. 3 is another schematic diagram showing the main part of an apparatus for irradiating V U V according to the present invention and supplying a specific substance.
  • FIG. 4 is a cross-sectional view schematically showing a semiconductor integrated circuit device using a carbon nanotube material according to the present invention for vias.
  • FIG. 5 is a schematic diagram showing an example of an outline of the structure of an electronic device including a high thermal conductive bump in which a carbon tube material is applied as a cooling bump material for a high-performance electronic device.
  • FIG. 6 is a schematic diagram showing an outline of an example of a manufacturing method when the carbon tube material according to the present invention is applied to a high-performance electromagnetic shielding material.
  • FIG. 7 is a schematic cross-sectional view of an unprocessed graph entry sheet.
  • FIG. 8 is a schematic cross-sectional view of a graphene sheet after processing according to the present invention.
  • the present invention may be applicable to a graph-en-sheet material having a similar nona structure and having similar problems such as wettability in addition to a strong bonbon nanotube-based material. found. Therefore, we decided to collectively call the bonbon nanotube-based materials and the graph-en-sheet-based materials as “carbon-based nanomaterials”.
  • the surface-modified carbon-based nanomaterial according to the present invention irradiates the carbon-based nanomaterial with vacuum ultraviolet (VUV), and the carbon-based nanomaterial is combined with the VUV.
  • VUV vacuum ultraviolet
  • Manufactured by a method that includes supplying substances that can modify the surface of nanomaterials ("substances that can modify the surface of carbon-based nanomaterials in combination with VUV", hereinafter also referred to as "specific substances") can do.
  • the surface of the carbon-based nanomaterial is probably modified by irradiating the carbon-based nanomaterial with VUV and supplying this specific substance. This substance is probably activated by VUV. This is thought to be due to the generation of chemically active species such as radicals, which act on the surface of carbon-based nanomaterials.
  • the nanotubes are not directly chemically bonded, but chemically active species such as radicals react and recombine, resulting in a product with a higher boiling point (low volatility). Is the mechanism by which the nanotube molecules are adsorbed on the surface of the graphene.
  • this substance or a part thereof is adsorbed on the surface of the force-based nanomaterial, and does not pass through chemically active species such as radicals by the action of VUV.
  • chemically active species such as radicals by the action of VUV.
  • Other mechanisms may exist, such as acting on the surface of carbon-based nanomaterials.
  • the above action is mainly a chemical bond, but physical adsorption may also exist.
  • these mechanisms and modes of action are not related to the essence of the present invention.
  • the substance is a specific substance in the present invention can be confirmed by modifying the surface of the carbon-based nanomaterial for some reason after irradiation with VUV. If surface modification of carbon-based nanomaterial occurs even when a specific substance is brought into contact with carbon-based nanomaterial without using VUV, the degree of surface modification is reduced. It can be known as the degree becomes larger.
  • such surface modification may include changes in surface tension, wettability to a specific solvent, and specific groups (for example, polar groups) on the surface of the carbon-based nanomaterial.
  • specific groups for example, polar groups
  • a substance that can generate a chemically active species such as a radical by VUV often corresponds to a specific substance.
  • Substances that can generate chemically active species such as may be considered as specific substances. This is because if chemically active species such as radicals are generated, it is a harm that logically causes some change on the surface of the carbon-based nanomaterial.
  • Chemically active species such as radicals include chemically active species such as radicals of electron donating groups and chemically active species such as radicals of electron withdrawing groups. It is preferable that at least one of them is included.
  • chemically active species such as radicals are involved, a polar group is introduced into the carbon-based nanomaterial, and the affinity with a polar substance is improved.
  • surface means a surface in so-called surface modification, and may include not only the outermost surface of the carbon-based nanomaterial but also a recessed surface and an inner surface. In particular, it is not important where the carbon-based nanomaterial has been modified.
  • the specific substance in the present invention is not particularly limited, and can be selected from arbitrary substances. Specifically, it is preferable to select according to what kind of surface modification is desired. For example, in order to improve the affinity for a polar solvent, a substance capable of introducing a polar group on the surface of the carbon-based nanomaterial is preferable. In order to improve the affinity for a solvent having a specific structure, a substance that can introduce the specific chemical structure or a chemical structure close to it onto the surface of the carbon-based nanomaterial is preferred. Good. It may be possible to adjust the degree of hydrophilicity and lipophilicity of force-based nanomaterials by adjusting the type and amount of hydrophilic groups and lipophilic groups.
  • it preferably contains at least one substance selected from the group consisting of oxygen, amines, alkyl halides, alcohols, ethers, and mixtures thereof.
  • at least one substance selected from the group consisting of oxygen, amines, alkyl halides, alcohols, ethers, and mixtures thereof.
  • the specific substance is supplied in order to bring the specific substance into contact with the carbon-based nanomaterial. This supply is performed in the gas phase.
  • a specific substance as a vapor
  • the specific substance itself does not necessarily have to be vapor. Therefore, it may be useful to supply a specific substance suspended in another gas by spraying. In this case, the suspended specific substance may contribute to the modification of the carbon-based nanomaterial in the liquid state.
  • the characteristics and degree of modification of carbon-based nanomaterials are affected by the type of specific substance supplied. For example, when a large number of hydroxyl groups are introduced on the surface of a striking bon-based nanomaterial, the affinity for alcohol solvents such as ethanol, ethylene glycol (diol-based) glycerin (triol-based) is improved. In addition, when an amino group is introduced or an amino group or an amino group-containing compound is adsorbed, the affinity for a solvent having an amino group-based functional group such as dimethylformamide (DMF) is improved. There is a tendency to. As a result of the experiment, the nanotubes on the Si substrate filled with triethylamine or a mixed gas of ammonia and N 2 showed that amino groups were introduced by VUV irradiation.
  • DMF dimethylformamide
  • a thiol (_SH) group or a plurality of functional groups containing the same When a compound is introduced or adsorbed, the affinity for each solvent is improved. Further, for example, if an amino group and a hydroxyl group are introduced simultaneously, the affinity with TMAH (tetramethylammonium hydroxide; a developer such as a resist) is greatly improved.
  • TMAH tetramethylammonium hydroxide
  • UV light has a wavelength of more than 315 nm, UV_A in the range of 400 nm or less, wavelength of more than 280 nm, U V_ ⁇ in the range of less than 315 nm, wavelength of more than 200 nm, 280
  • UV_C in the range of nm or less
  • VUV in the wavelength range of 10 to 200 nm
  • the bonbon nanomaterials in the present invention generally have surface stability (chemical stability). Etc.), and UV_A to UV_C UV irradiation cannot sufficiently modify the surface or the modification reaction rate is very slow.
  • the means for obtaining VUV is not particularly limited.
  • a Xe excimer UV lamp having a narrow width and a center wavelength of 172 n can be preferably exemplified.
  • an Xe-encapsulated excimer UV lamp showing a wavelength distribution of about 160 to 200 nm is preferable, but it is not necessarily limited thereto.
  • the bond breaking energy of organic compounds is directly related to the wavelength of VUV, it is also useful to restrict the wavelength range of V U V depending on the purpose when it is desired to eliminate specific bond breaking.
  • VUV output of VUV
  • a commercially available output of about several tens of mW / cm 2 can be preferably used.
  • VUV excimer UV lamp, etc.
  • use a higher power equipment or arrange multiple UV lamps in close proximity and the actual irradiation dose per surface Increasing the productivity may lead to improved productivity.
  • VUV is generally used in a vacuum or under reduced pressure, but in the present invention, this is not necessarily the case, and it is possible even under normal pressure. That is, the VUV irradiation in the present invention is performed on a carbon-based nanomaterial placed in a reduced pressure or normal pressure atmosphere.
  • the specific substance in a normal pressure state, is preferably diluted between 0.001 and 50% by volume, more preferably between 0.01 and 10% by volume.
  • the inactive substance is not particularly limited, but since the environment of the present invention is a gas phase, generally a gaseous substance or a volatile substance is appropriate.
  • Preferred examples include an inert gas such as neon and argon, and a nitrogen gas.
  • the distance between the carbon-based nanomaterial to be irradiated and the VUV irradiation source it is often preferable that the distance is small because VUV is easily absorbed.
  • this distance is, for example, 0.1 to 10 Omm is preferred.
  • this distance is, for example, about 0.2 mm to several cm is preferable in many cases.
  • VUV irradiation There is no particular limitation on the method of VUV irradiation. It may not be necessary to supply the specific substance at the same time. Continuous supply of specific substances to carbon-based nanomaterials and continuous VUV irradiation, intermittent supply of specific substances to carbon-based nanomaterials, and intermittent VUV irradiation in accordance with the supply And a method in which a specific substance is intermittently supplied to the carbon-based nanomaterial, and VUV irradiation is intermittently performed so as to match the supply time and continue for a certain time thereafter.
  • the "carbon-based nanomaterial” in the present invention is composed of at least one of a carbon nanotube-based material and a graphene sheet-based material. That is, the case where only one of them is included and the case where both are included are also included.
  • the "graph en-sheet-based material” means a graph en-sheet or a material in which a graph is modified in some way.
  • the graph ensheet is a material simply called graphene or graphene nanolipon, and typically has a nano-sized thickness (for example, 0.3 to several hundred nm) Larger sizes may be used depending on the industrial application field.
  • the graph ensheet is a sheet, consisting of a single layer or multiple layers of carbon at the apex of each hexagon in the shape of a beehive, and can be rolled into a cylinder. If it can be rolled and its ends can be joined, it will have a nanotube structure.
  • the graph sheet may be produced by any method.
  • a graph ensheet material particularly a graph ensheet, has unique properties in terms of a high surface area per unit amount, conductivity, anisotropy in conductivity, and the like.
  • the number of layers of the graph ensheet material is too large, it approaches the graph eye structure, and the anisotropy characteristic of the graph entity is reduced.
  • the number of layers in the thickness direction is about 1 to 10 and is often called graphency ⁇ .
  • the length and width size with respect to the thickness are not particularly limited and can be appropriately selected depending on the application, but in general, each is in the range of 0.3 nm to several hundred nm.
  • Short Bonn nanotube-based material means C N T, or a material in which C N T is modified in any way.
  • CNT is a carbon tube having a nano-sized cross section (for example, a cross-sectional diameter of 0.3 to 20 nm). The length is preferably from several tens of nanometers to several tens of millimeters, but is not particularly limited.
  • Some CNTs have a band structure that satisfies the conditions for exhibiting metallic properties, while others have a band structure that satisfies the conditions for exhibiting semiconducting (semi-metallic) properties.
  • any of those showing metallic properties and those showing semiconductor properties may be used.
  • graphenci- ⁇ unmodified ones are said to exhibit metallic or semi-metallic properties.
  • the "carbon nanotube-based material” in the present invention is a so-called peapod in which CNTs are packed with nanostructures other than nanotubes that exhibit metallic properties as a whole, such as fullerene encapsulating metal. Also included are structured nanotubes. That is, “modification” in the above includes such cases.
  • a peapod-structured nanotube including such another nanostructure for example, it may be possible to enhance the electrical conductivity characteristics or mechanical strength of the via.
  • the charge of the encapsulated metal appears outside the fullerene and further appears outside the nanotube. This is known from first-principles calculations, which can improve the electrical conduction characteristics of vias.
  • C N T carbon nanotube-based materials
  • plasma CVD plasma chemical vapor deposition
  • thermal CVD thermal CVD
  • C V D formation method using C V D is expected to be applied to the manufacture of integrated circuits because nanotubes can be formed directly on the substrate.
  • the present invention is not limited to the production method of C N T used.
  • the carbon nanotube-based material according to the present invention is preferably produced by CVD. In that case, a carbon nanotube-based material is generated on the substrate.
  • the formation of the carbon nanotube-based material on the substrate itself is not an essential requirement of the present invention.
  • direct irradiation with VUV is easy as described above.
  • the material for forming the substrate is not particularly limited and can be appropriately selected from known materials. In order to obtain thermal conductivity, it is preferable to select one having good thermal conductivity.
  • an apparatus for irradiating a carbon-based nanomaterial with VUV and supplying a specific substance there is no particular limitation on an apparatus for irradiating a carbon-based nanomaterial with VUV and supplying a specific substance.
  • an apparatus having the structure shown in FIGS. In Figure 2, under VUV source 2 1 There is a supply path 2 3 for gas 2 2 in which a specific substance is diluted with an inert substance 2 3 and a blowout port 2 4 for a specific substance.
  • the VUV source 21 is cooled by a cooling medium 25.
  • FIG. 3 is the same as FIG.
  • a vertically aligned bundle of CNTs 26 can be realized, for example, as a bundle of CNTs grown in a via hole.
  • the arrows with solid lines in Figs. 2 and 3 indicate the flow of gas 22 and cooling medium 25 in which a specific substance is diluted with an inert substance, and the arrows with wavy lines indicate VUV irradiation.
  • a novel carbon-based nanomaterial having improved affinity when in contact with other materials can be obtained.
  • Such a material can be suitably used for an electronic member.
  • “Improvement of affinity” means improvement of surface tension, contact with other substances, improvement of wettability, improvement of adhesion, increase of adsorption amount, and other substances. It means the reduction of foreign matter (moisture, etc.) and cavities (micro space) entering between layers.
  • the “other substance” is at least one substance selected from the group consisting of a conductive substance, an insulating substance, a hydrophilic substance, a lipophilic substance, and a substance having a specific group. preferable.
  • Examples of such conductive materials include copper, aluminum, and other electrically conductive materials such as metals generally used in electronic wiring sections as insulating materials.
  • Insulating resins for sealing semiconductors such as SOG, TEOS (tetraethoxysilane) and polyimide resin, or the so-called “Low_k resin” with or without micropores, which is frequently used recently.
  • electrically insulating materials suitable for water, and hydrophilic substances include water, ethanol, methanol, phenol, dioxanes, alcohol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, and glycerin.
  • oily substances include petroleum ether, n-hexane, and araffine solvents such as cyclohexane, benzene, toluene, xylene, and cresol.
  • Group solvents or THF (tetrahydrofuran), DMF (dimethylformamide), DMSO (dimethylsulfoxide), dimethylacetamide, jetyl ketone, MI BK (methyl isobutyl ketone), etc.
  • Examples include polar solvents containing heteroelements (elements other than G, 0, and H) such as ketones, n_methylpyrrolidone, dichloroethane, dichloroethane, pyridine, and the like.
  • a substance having a specific group basically, it is a substance (preferably a low-viscosity gas or liquid) containing a functional group that is abundant in the above-mentioned insulating substances, hydrophilic substances, and lipophilic substances.
  • a typical example can include any of the following:
  • a substance having at least one of _OH, _COOH, _COOR, _N H 2 , _N R 2 (R is an aliphatic, aromatic alkyl group or derivative thereof), _CO_, _c o, an imide bond and an ether bond Ie, alcohols and phenols, carboxylic acids, amines, ketones and quinones, etc.
  • the carbon-based nanomaterial according to the present invention is used for any application where the carbon-based nanomaterial is used or is likely to be used, such as an electrical product, an electronic product, and a mechanical product, depending on needs.
  • an electrical product such as an electrical product, an electronic product, and a mechanical product, depending on needs.
  • an electrical product such as an electrical product, an electronic product, and a mechanical product, depending on needs.
  • an electrical product such as an electrical product, an electronic product, and a mechanical product, depending on needs.
  • space-use or portable electronic devices including portable electronic device terminals such as mobile phones and personal computers
  • electronic components and electronic devices for example, semiconductor integrated circuits including semiconductor devices and printed wiring boards
  • the present invention is not limited to the above-described electronic component, electronic device element, or the like.
  • an aerospace (planar or curved) space aviation that requires high electrical conductivity and heat conductivity is preferable.
  • Electronic devices, medical devices, or electronic devices that generate electromagnetic waves, including cellular phones, personal computers, etc., conductive sheets, high-frequency electromagnetic wave shielding materials for electronic terminals, and precursors for producing these members (so-called prepregs) Can be included).
  • FIG. 4 is a cross-sectional view schematically showing a semiconductor integrated circuit device using the carbon nanotube material according to the present invention for an LSI wiring via.
  • a plurality of elements such as the transistor 4 2 are formed on the silicon substrate 41, and a plurality of insulating layers (interlayer insulating films) 4 3 a to 4 3 f are formed so as to cover them.
  • the wiring layer is located across the insulating layer, and the wiring 45 of the predetermined wiring layer is connected to the wiring 45 of another layer by a via 46 formed so as to penetrate the insulating layer.
  • 4 7 represents a contact connected to the wiring 45 connecting the elements.
  • the uppermost wiring layer is covered with a protective layer 48.
  • the carbon nanotube-based material according to the present invention is applied to the via 46, and this nanotube is dissolved in a specific solvent by improving the wettability with respect to a specific solvent.
  • the upper end of the carbon nanotube-based material grown in the beer is improved by closing the cavity around the CNT and fixing the CNT bundle. Good scraping by CMP Therefore, good electrical connection with the wiring portion can be realized.
  • FIG. 5 is a schematic diagram showing an example of an outline of the structure of an electronic device including a high thermal conductive bump in which a carbon nanotube-based material is applied to a cooling bump material of a high-performance electronic device.
  • the carbon-based nanomaterial according to the present invention can be applied to a cooling bump material for a high-performance electronic device.
  • the substrate with CNT in Fig. 5 is subjected to VUV treatment in the presence of a gas in which oxygen is diluted with nitrogen or a gas in which oxygen and a small amount of water are diluted with nitrogen.
  • a so-called CN T hybrid bump that sufficiently penetrates the space between the CN T chains with heat and electrical conductive substances (metal such as Cu, AI, etc.) by plating (wet treatment) in the CN T section A structure can be made.
  • an electronic device is thermocompression-bonded (preferably about 250 to 450 ° C) on the treated substrate, and a highly heat-conductive electronic device / container using CN T bumps infiltrated with metal or the like is used. Can be produced.
  • FIG. 6 is a schematic diagram showing an electromagnetic shielding sheet or prepreg according to the present invention. That is, an electromagnetic shielding sheet or a prepreg thereof can be obtained by spraying CNT on a resin sheet and pasting this sheet on another resin sheet.
  • a Si wafer ⁇ p-type, (100) plane ⁇ with Ni formed to a thickness of 25 nm by sputtering, and using acetylene gas as a raw material by a filament CVD method, 650 At ° C, a multi-wall force one-punch nanotube was grown to a length of about 1.5 m. When the surface density of the nanotubes was measured, it was about 5 ⁇ 10 11 / cm 2 .
  • Example 2 The same specific material as in Example 1 was used, and the sample was a Si wafer ⁇ type,
  • Example 1 The same processing as in Example 1 was performed. However, the processing time was set to 10% in Example 1.
  • a cylindrical hole pattern with a diameter of 100 nm and a depth of 1 000 nm was formed on the Si substrate, and a Ti thin film of 10 nm was formed on the entire wafer surface including the bottom surface by sputtering. 0 nm Co fine particles were sprinkled on the entire wafer surface including the bottom using DMA (Fine Particle Generator), and multi-carbon carbon nanotubes with a length of 1 500 nm were grown above this hole by CVD. . When the surface density of the nanotube was measured, it was about 3 ⁇ 10 11 / cm 2 .
  • Example 1 For this sample, the same apparatus as in Example 1 was used, and the same identification as in Example 1 was made. The material was supplied as in Example 1 and irradiated with VUV as in Example 1.
  • 1% aqueous ammonia was added dropwise to the treated sample, and after a while, it was thoroughly dried on a hot plate and observed with a scanning electron microscope (SEM). It was confirmed that it was bundled. This is considered to be a trace of the penetration of ammonia water. That is, since the wettability with respect to the ammonia water is good, it can be considered that the ammonia water is wetted on the surface of the nanotubes, and the nanotubes are bundled together with the ammonia water and then the ammonia water is evaporated.
  • the nanotubes were scraped from the sample before and after the treatment, and analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectra. It was confirmed that the bond was formed after processing.
  • the nanotubes are improved in hydrophilicity, and are expected to show good affinity for substances such as hydrophilic solvents and adhesives.
  • the wiring via structure of the transistor was formed in a simulated manner (when the surface density of the nanotube was measured, it was about 5 X 10 1 1 / cm 2 ). Multiwall Carbonylation and hydroxylation of carbon nanotubes were performed. However, instead of triethylamine, oxygen diluted with N 2 and H 2 0 were used as reactive substances. [0089] A cylindrical hole pattern with a diameter of 200 nm and a depth of 1 000 ⁇ m was formed on the Si substrate, and a Ti thin film of 10 nm was formed on the entire surface of the wafer including the bottom surface by sputtering.
  • a gas containing 0.2% by volume of pure oxygen and the balance of nitrogen was used as a gas containing a specific substance, and the flow rate of this gas was set at 3 L / min.
  • Example 1 The same apparatus as in Example 1 was used, and VUV was irradiated in the same manner as in Example 1. The reaction time was 15% of Example 1.
  • Ethanol, MI BK (methyl isobutyl ketone), and a 1: 1 (volume ratio) mixture of these were added dropwise to the treated samples, and after 10 minutes, they were thoroughly dried on a hot plate.
  • SEM scanning electron microscope
  • the percentage of bundled C N T was higher in the order of ethanol> 1 to 1 mixture> M I BK (methyl isobutyl ketone). This is considered to be a trace of penetration of each liquid mixture, as in the case of the ammonia water described above. That is, it was shown that the wettability to these media is good.
  • the same treatment was applied to the nanotube sample in the untreated hole pattern, only a small number of nanotubes were found to be bundled.
  • each nanotube was scraped and analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectrum.
  • XPS X-ray photoelectron spectroscopy
  • IR infrared absorption
  • the multi-wall carbon nano-tubes were prepared in the same manner as in Example 4 (Measurement of the surface density of the nanotubes was about 5 X 1 0 11 present / cm 2), carried out In the same manner as in Example 4, the VUV treatment was performed for 30% of the time of Example 1, and then immersed in an aqueous solution of Cu methoxide for 10 minutes. When this was observed with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope), and EDX, most of the CN T was bundled into a bundle, and a large amount of Cu was formed on the surface. Fine particles were attached.
  • the sample was immersed in an aqueous solution of Cu methoxide for 10 minutes without performing VUV treatment, and this was observed with an optical microscope. CNT was only partially bundled. It was observed that the seed solution was not uniformly infiltrated. Furthermore, when observed with SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope) and EDX, the Cu seed layer was adsorbed only on the bundled part. A uniform Cu metal layer could not be formed.
  • VUV treatment is performed, and then a CNT layer is bonded inside to form a planar or other shaped member.
  • CNT fusion bonding to ABS resin is shown here, the present invention can also be applied to a resin or a modified adhesive method.
  • VNT treatment may be performed by spraying CNT on a general prepreg with low shape retention.
  • the resin can be applied to anything including those that are thermosetting.
  • the molding method can be applied to a variety of materials as long as it does not flow during the CNT solidification process.
  • a graph ensheet (with 5 layers) prepared in the same manner as in Example 7 was used. Hydroxylation of the graph sheet was carried out in the same manner as in Example 7. However, instead of trytiamine, oxygen was applied at a volume fraction of 0.5% and 10 ppm of water vapor in a dry nitrogen gas atmosphere for 5 seconds.
  • the present invention can be suitably used in a field (for example, the electronic equipment field) in which a novel carbon-based nanomaterial with improved affinity when in contact with other materials can be used.

Abstract

Disclosed is a carbon nanomaterial which is composed of at least one of a carbon nanotube material and a graphene sheet material, and produced by a production method wherein the carbon nanomaterial is irradiated with vacuum ultraviolet light, while supplying thereto a substance which is capable of modifying the surface of the carbon nanomaterial in combination with the vacuum ultraviolet light. This novel carbon nanomaterial exhibits an improved affinity when in contact with another material.

Description

明 細 書  Specification
カーボン系ナノ材料、 その製造方法、 電子部材および電子装置 技術分野  Carbon-based nanomaterial, manufacturing method thereof, electronic member and electronic device
[0001 ] 本発明は、 カーボン系ナノ材料の表面改質技術に関する。  TECHNICAL FIELD [0001] The present invention relates to a surface modification technique for a carbon-based nanomaterial.
背景技術  Background art
[0002] 近年、 半導体装置やプリント配線基板等を含む半導体集積回路装置では、 導電体や熱伝導体の性質を持った電子部材に、 いわゆるカーボンナノチュー ブ (C N T ) を用いる検討がされている。  In recent years, semiconductor integrated circuit devices including semiconductor devices and printed wiring boards have been studied using so-called carbon nanotubes (CNTs) for electronic members having the properties of conductors and thermal conductors. .
[0003] 特に C N Tは、 化学的安定性に優れ、 また、 特異な物理的■電気的性質を 有する等、 様々な特性を有しており、 半導体装置の形成材料として注目され 、 たとえば、 その太さや長さの制御のほか、 形成位置制御やカイラリティ制 御等、 現在も様々な検討が続けられている。  [0003] In particular, CNT has various characteristics such as excellent chemical stability and unique physical and electrical properties, and has attracted attention as a material for forming semiconductor devices. In addition to sheath length control, various studies are ongoing, such as formation position control and chirality control.
[0004] 具体的な用途としては、 電子機器の電磁波しゃへい用部材、 超 L S I等の 高機能電子デバイスの冷却用バンプ材料、 および半導体装置の配線ビヤ構造 部材、 半導体素子の部品 (例えばトランジスタのゲート電極、 ソース電極、 ドレイン電極、 チャネル電極等) 等が注目を集めている。  [0004] Specific applications include electromagnetic shielding members for electronic equipment, cooling bump materials for high-performance electronic devices such as VLSI, wiring via structure members for semiconductor devices, semiconductor element components (eg, transistor gates) Electrode, source electrode, drain electrode, channel electrode, etc.) are attracting attention.
[0005] 例えば、 C N Tが極めて熱伝動性が高い性質を利用して、 C N Tを高密度 に半導体プロセス基板上に成長させ、 これを導電回路の一部やプロセス基板 上に搭載された電子デバイス (半導体装置) からの接着部構造、 およびその 構造部からのデバイス発熱の排熱パス (いわゆる 「バンプ構造」 ) として用 いるような応用が考えられる。  [0005] For example, CNTs are grown on a semiconductor process substrate with high density by utilizing the property of extremely high thermal conductivity, and this is an electronic device mounted on a part of a conductive circuit or on a process substrate ( Applications such as the bonding part structure from the semiconductor device) and the exhaust heat path (so-called “bump structure”) for device heat generation from the structure part are conceivable.
[0006] さらに、 C N Tの極めて高い電気伝導性を利用して、 超微細構造を持つ半 導体装置 (半導体デバイス) の高密度配線構造におけるビヤ配線構造体とし て用いる場合も応用として考えられる。  [0006] Further, the use of the extremely high electrical conductivity of CNT as a via wiring structure in a high-density wiring structure of a semiconductor device (semiconductor device) having an ultrafine structure is also considered as an application.
[0007] 図 5に、 そのような C N Tを利用した高機能電子デバイスの冷却用バンプ 材料として用いた構造 (たとえば非特許文献 1参照。 ) の一例を示す。 この ような高機能電子デバイスの冷却用バンプ構造は、 図 5に示すように、 たと えば、 基板 (窒化アルミニウム (A I N、 アルミナ等) 51上の電極 52上 に触媒金属担持膜 (例えば T i N膜) と触媒金属膜 (Co等) (両者を併せ て番号 53で示す) をスパッタ等により堆積し、 ついで、 炭化水素系ガス ( CH4、 C2H2等) を用いた熱 CVD法 (熱化学的気相成長法) 等で CN T 54 を成長させ、 その後、 この CN T付き基板の CN T部にメツキ (ウエット処 理) 等により伝導性物質 (C u、 A I等の金属、 等) を付着させ、 CN Tバ ンプ構造を作製することができる。 この後この基板上に、 電子デバイスを、 熱圧着 (250〜450°C程度が望ましい) し、 高熱伝導性電子デバイスを 作製することができる。 FIG. 5 shows an example of a structure (see, for example, Non-Patent Document 1) used as a cooling bump material for such a high-performance electronic device using CNTs. As shown in Fig. 5, the cooling bump structure of such a high-performance electronic device is For example, a catalytic metal supporting film (eg, TiN film) and a catalytic metal film (Co, etc.) (both of which are indicated by numeral 53) are sputtered on an electrode 52 on an aluminum nitride (AIN, alumina, etc.) 51. Then, CN T 54 is grown by thermal CVD method (thermochemical vapor deposition method) using hydrocarbon gas (CH 4 , C 2 H 2, etc.). A CNT bump structure can be fabricated by attaching a conductive substance (such as Cu, AI, etc.) to the CNT part of the substrate with a metal plate (wet processing) or the like. In addition, the electronic device can be thermocompression-bonded (preferably about 250 to 450 ° C) to produce a highly thermally conductive electronic device.
また、 図 1に、 上記の CN Tを利用した配線ビア構造 (たとえば特許文献 1および非特許文献 2参照。 ) の一例を示す。 このようなビア構造は、 図 1 に示すように、 たとえば、 基板 1上に、 下地層 2および C u配線層 3を設け 、 この C u配線層 3上に C uの拡散を防ぐバリア膜 (T a膜など) 4を堆積 し、 絶縁層 5をその上に設け、 ビアホールを設けた後、 触媒金属担持膜 (例 えば T i膜) 6と Co等の触媒金属膜 (あるいは触媒微粒子層) 7とをスパ ッタ等により堆積し、 ついで、 炭化水素系ガス (CH4、 C2H2等) を用いた熱 CVD法 (熱化学的気相成長法) 等で CN T 8を成長させ、 その後、 上部配 線を形成することで作製することができる。 図 1には CN T 8を固定するた めの充填樹脂 9も示されている。 FIG. 1 shows an example of a wiring via structure using the above-described CNT (see, for example, Patent Document 1 and Non-Patent Document 2). In such a via structure, as shown in FIG. 1, for example, a base layer 2 and a Cu wiring layer 3 are provided on a substrate 1, and a barrier film that prevents diffusion of Cu on the Cu wiring layer 3 ( (Ta film, etc.) 4 is deposited, insulating layer 5 is provided thereon, via holes are formed, catalyst metal supporting film (eg, Ti film) 6 and catalyst metal film such as Co (or catalyst fine particle layer) 7 is then deposited using a spatter, and then CN T 8 is grown by thermal CVD (thermochemical vapor deposition) using a hydrocarbon gas (CH 4 , C 2 H 2, etc.). Thereafter, it can be produced by forming an upper wiring. FIG. 1 also shows a filling resin 9 for fixing CNT 8.
特許文献 1 :特開 2002 _ 329723号公報 (特許請求の範囲) 特許文献 2:特開 2004 _ 1 68570号公報 (特許請求の範囲) 非特許文献 1 :富士通株式会社, 株式会社富士通研究所, 「世界初!カーボン ナノチューブを半導体チップの放熱基板に活用」 2005年 12月 5日, [200Patent Document 1: Japanese Patent Application Laid-Open No. 2002_329723 (Claims) Patent Document 2: Japanese Patent Application Laid-Open No. 2004_168570 (Claims) Non-Patent Document 1: Fujitsu Limited, Fujitsu Laboratories Ltd., “The world's first! Utilizing carbon nanotubes as a heat dissipation substrate for semiconductor chips” December 5, 2005, [200
6年 8月 1 8日検索] , インタ一ネット、 <URL: http: //pr . f u j i tsu. com/jp/n ews/2005/12/5. html> 6/18 1/8], Internet, <URL: http: // pr .fuj i tsu. Com / jp / n ews / 2005/12/5. Html>
非特許文献 2:二瓶ら, 「ジャパニーズ■ジャーナル■ォブ■アプライ ド■ フ インックス 、 J a p a n e s e J o u r n a l o f A p p l i e d P h y s i c s) 」 , 2005年, 第 44巻, p. 1 626 発明の開示 発明が解決しょうとする課題 Non-Patent Document 2: Nibobe et al., “Japanese Journal of Applied Physics”, 2005, 44, p. 1 626 Disclosure of the Invention Problems to be Solved by the Invention
[0009] しかしながら、 カーボンナノチューブ自体は優れた導電性、 半導体性、 熱 伝導性、 化学的安定性等を有するものの、 他の材料と接した場合に親和性が 充分ではなく、 接続部における導電性や熱伝導性が大幅に低下したり、 層間 における十分な接着性、 密着性が得られない場合があると言う問題が知られ ている。 この問題は、 S i基板上に、 一端を固定して CVDにより製造され るナノチューブを配線用途に用いる場合についても同様である。  [0009] However, although carbon nanotubes themselves have excellent electrical conductivity, semiconductivity, thermal conductivity, chemical stability, etc., they do not have sufficient affinity when in contact with other materials, and conductivity at the connection portion In addition, there are known problems that the thermal conductivity is greatly reduced and that sufficient adhesion and adhesion between layers may not be obtained. This problem also applies to the case where nanotubes manufactured by CVD with one end fixed on an Si substrate are used for wiring.
[0010] このような問題は、 部材の製造時に、 CN Tの周辺層との密着が完全に行 われることで実現可能と考えられる。 しかしながら、 他材料との界面の親和 性が乏しい現状の解決なしにはこのような密着を実現できないという問題が ある。 これは、 CN Tの全ての用途に共通の課題でもある。  [0010] It is considered that such a problem can be realized by completely adhering to the peripheral layer of CNT at the time of manufacturing the member. However, there is a problem that such adhesion cannot be realized without solving the current situation where the affinity of the interface with other materials is poor. This is a common issue for all applications of CNT.
[0011] 一般的に、 CN Tは、 従来の製造方法 {レーザアブレ一シヨン、 化学的気 相成長法 (CVD) 、 H i PCO (h i g h— p r e s s u r e c a r b o n mo n o x i d e) 法等 } で製造される。 これらの方法により製造さ れた CN Tの表面の性質は、 グラフアイ ト様の表面分子構造、 すなわち、 ベ ンゼン環のつながった電子的超共役構造の性質に依存し、 他の材料との濡れ 性もまた、 グラフアイ 卜のごとき性質を示す。 すなわち、 製造されたまま ( たとえば粉状) の分子表面では、 通常、 いずれの溶剤にも分散性が不良であ り、 特定の条件で処理した場合 (たとえばエタノールと共に超音波処理した 場合等) に、 高々数週間程度の分散状態が得られるのが限界であった。  [0011] In general, CNT is manufactured by a conventional manufacturing method (laser abrasion, chemical vapor phase growth (CVD), Hi PCO (high es su er c ar bon mon xo ide) method, etc.). The surface properties of CNT produced by these methods depend on the graphite-like surface molecular structure, that is, the nature of the electronic superconjugated structure in which the benzene rings are connected. The property also shows properties such as graph eye 卜. That is, as-manufactured (for example, powdery) molecular surfaces are usually poorly dispersible in any solvent and are treated under certain conditions (for example, sonicated with ethanol). It was the limit that a dispersed state of several weeks at most could be obtained.
[0012] この性質は、 上記のように、 CN Tの各種の工学的応用に大きな制約とな つていた。 すなわち、 製造された CN Tと他の材料とのハイブリッド材料、 例えば樹脂との機能性混合構造材を製造せんとする場合においては、 現状で は、 他の材料との混練等の操作によっても、 界面活性剤等の添加物なしでは 、 ミクロ的に相溶性の十分に良い複合材料の製造は困難であり、 また添加物 を加えると、 その材料の性質が複合材料に与える悪影響 (例えば電気的性質 の低下、 機械的強度の低下、 化学的性質の劣化) が逃れられない。 なお、 こ こで、 電気的性質の低下とは、 例えば、 比抵抗の増大、 中長期の電気的性質 の維持信頼性の低下、 重量あたりの比抵抗の増加および電磁波しゃへい性能 の劣化、 ならびに同信頼性の低下等を言う。 また、 機械的強度の低下とは、 剛性率、 破壊強度の低下、 およびそれらの長期性能の劣化等、 を言う。 また 、 化学的性質の劣化とは、 対環境による材料物性 (例えば、 吸湿性、 対溶剤 性、 空気中の酸素による酸化) の劣化等を言う。 [0012] As described above, this property has been a major limitation for various engineering applications of CNT. In other words, in the case of producing a hybrid material of manufactured CNT and other materials, for example, a functional mixed structural material with resin, at present, even by operations such as kneading with other materials, Without additives such as surfactants, it is difficult to produce a composite material that is sufficiently microscopically compatible, and when additives are added, the properties of the material adversely affect the composite material (for example, electrical properties) , Deterioration of mechanical strength, deterioration of chemical properties) cannot be escaped. Note that this Here, the decrease in electrical properties means, for example, an increase in specific resistance, a decrease in reliability of maintaining medium- to long-term electrical properties, an increase in specific resistance per weight and a deterioration in electromagnetic shielding performance, and Say decline. In addition, a decrease in mechanical strength refers to a decrease in rigidity, fracture strength, and deterioration of their long-term performance. In addition, deterioration of chemical properties refers to deterioration of material properties (for example, hygroscopicity, solvent resistance, oxidation by oxygen in the air) due to the environment.
[0013] たとえば、 一例として、 超 LS I等の高密度高機能電子装置のビヤ配線用 材料として CN Tを応用するためには、 ビヤ内に成長させた CN Tの上端を CM P (化学的機械的研磨法: C h em i c a l Me c h a n i c a l P o l i s h i n g) により削り取る必要がある。 このとき、 C N Tの束を 固定し、 あるいは CM P時に研磨材、 研磨液が C N T束内に流れ込んで C N T内部を汚染しないようにするため (あるいは、 もし流れ込んでも後から容 易に除去できるようにするため) 、 絶縁材料等で CN Tの束の周りを他の物 質で固める必要がある場合があるが、 この絶縁材料等との親和性が悪いと、 溶剤に溶かした樹脂をスピンコ一ト法等により塗布する方法を用いても、 真 空環境にて樹脂状物質を製膜する方法を用いても、 CN Tの束の間にこの絶 縁材料等が十分満たされず、 そのため C N T束の周りに細かな体積のため、 CN Tの束に他物質がうまく入らないことがある。  [0013] For example, in order to apply CNT as a material for via wiring in high-density and high-performance electronic devices such as ultra LS I, for example, the upper end of CNT grown in the via is connected to CMP (chemically It is necessary to scrape by mechanical polishing method (Chemical Mechanical Polishing). At this time, to fix the bundle of CNTs, or to prevent the abrasives and polishing liquid from flowing into the CNT bundle during CMP, so that the inside of the CNT is not contaminated (or even if it flows, it can be easily removed later) In some cases, it may be necessary to harden the CNT bundle with other materials using an insulating material. If the affinity with the insulating material is poor, spin-coating resin dissolved in a solvent is necessary. This insulation material is not sufficiently filled between the CNT bundles, regardless of whether it is applied by a method such as coating or a method of forming a resinous material in a vacuum environment. Due to its small volume, other substances may not enter the CNT bundle.
[0014] このような問題に対しいくつかの解決策が提案されているが (特許文献 2 参照) 、 十分ではない。  [0014] Several solutions have been proposed for such problems (see Patent Document 2), but this is not sufficient.
[0015] なお、 上記はカーボンナノチューブについてのみ説明したが、 上記のよう な力一ボンナノチューブについての特性や限界は、 力一ボンナノチューブの 筒を長さ方向に切り開いて得られる構造を有するグラフエンシートを用いた 電子デバイス部材に適用する場合にも同様に適用して考えることができる。 すなわち、 グラフエンシート表面は他の物質に非常に濡れにくく、 これを利 用して電子デバイス等を作製した場合にすぐ隣の構造を形成しょうとすると そのままではポイ ド (空房) 等が形成されてしまう可能性が高い。  [0015] Although the above description has been made only on carbon nanotubes, the characteristics and limitations of force-bonn nanotubes as described above are the graphene having a structure obtained by opening a tube of force-bonn nanotubes in the length direction. The same applies to the case of applying to an electronic device member using a sheet. In other words, the surface of the graph sheet is very difficult to wet with other substances. When an electronic device or the like is produced using this, an attempt is made to form a neighboring structure. There is a high possibility that
[0016] そこで、 本発明は上記問題を解決し、 他の材料と接した場合に親和性の向 上した、 カーボンナノチューブ系材料ゃグラフヱンシート系材料を含む力一 ボン系ナノ材料を提供することを目的としている。 本発明のさらに他の目的 および利点は、 以下の説明から明らかになるであろう。 [0016] Therefore, the present invention solves the above problems and improves the affinity when in contact with other materials. The object is to provide a monolithic nanomaterial including the above-mentioned carbon nanotube-based material and graphene sheet-based material. Still other objects and advantages of the present invention will become apparent from the following description.
課題を解決するための手段  Means for solving the problem
[001 7] 本発明の一態様によれば、 表面の改質された、 カーボンナノチューブ系材 料とグラフエンシート系材料との少なくともいずれか一方よりなる力一ポン 系ナノ材料の製造方法であって、 カーボンナノチューブ系材料とグラフェン シ一ト系材料との少なくともいずれか一方よりなるカーボン系ナノ材料に対 し、  [001 7] According to one aspect of the present invention, there is provided a method for producing a single-pound nanomaterial having a modified surface and comprising at least one of a carbon nanotube-based material and a graph ensheet-based material. A carbon nanomaterial comprising at least one of a carbon nanotube material and a graphene sheet material,
真空紫外線を照射し、  Irradiate vacuum ultraviolet rays,
当該真空紫外線との組合せにより当該カーボン系ナノ材料の表面を改質し 得る物質を供給する  Supplying substances that can modify the surface of the carbon nanomaterials in combination with the vacuum ultraviolet light
ことを含む、 表面改質カーボン系ナノ材料の製造方法が提供される。  A method for producing a surface-modified carbon-based nanomaterial is provided.
[0018] 本発明態様により、 他の材料と接した場合に親和性の向上した新規なカー ボン系ナノ材料が得られる。 [0018] According to the embodiment of the present invention, a novel carbon-based nanomaterial having improved affinity when in contact with another material can be obtained.
[001 9] 本発明の他の一態様によれば、 カーボンナノチューブ系材料とグラフェン シ一ト系材料との少なくともいずれか一方よりなるカーボン系ナノ材料に対 し、 [001 9] According to another aspect of the present invention, for a carbon-based nanomaterial made of at least one of a carbon nanotube-based material and a graphene sheet-based material,
真空紫外線を照射し、  Irradiate vacuum ultraviolet rays,
当該真空紫外線との組合せにより当該カーボン系ナノ材料の表面を改質し 得る物質を供給する  Supplying substances that can modify the surface of the carbon nanomaterials in combination with the vacuum ultraviolet light
ことを含む方法により製造された表面改質カーボン系ナノ材料が提供され る。  A surface-modified carbon-based nanomaterial produced by a method including the above is provided.
[0020] 本発明態様により得られる、 他の材料と接した場合に親和性の向上した新 規なカーボン系ナノ材料は、 電子工業用部材等、 電子部品等の電子部材全般 に好適に利用することができる。  [0020] The novel carbon-based nanomaterial having improved affinity when in contact with other materials obtained according to the present invention is suitably used for electronic components such as electronic components and the like. be able to.
[0021 ] 上記二つの態様について、 前記カーボン系ナノ材料の表面を改質し得る物 質が、 真空紫外線により活性化されてラジカル等の化学的に活性な種を発生 し得る物質であること、 前記の表面を改質すべきカーボン系ナノ材料が C V D法によって作製されたものであること、 前記の表面を改質すべきカーボン 系ナノ材料が基板上で成長させたものであること、 導電性物質、 絶縁性物質 、 親水性物質、 親油性物質および特定の基を有する物質からなる群から選ば れた少なくとも一つの物質と接した場合に、 表面改質カーボン系ナノ材料が 、 前記表面改質前に比べ親和性が向上したものであること、 前記ラジカル等 の化学的に活性な種が、 電子供与性基のラジカル等の化学的に活性な種と電 子吸引性基のラジカル等の化学的に活性な種との少なくともいずれか一方を 含むこと、 前記カーボン系ナノ材料の表面を改質し得る物質が、 酸素、 アミ ン類、 ハロゲン化アルキル類、 アルコール類、 エーテル類およびこれらの混 合物からなる群から選ばれた少なくとも一つの物質を含むこと、 前記カーボ ン系ナノ材料の表面を改質し得る物質が前記真空紫外線を照射しても、 前記 力一ボン系ナノ材料の表面を改質しない不活性物質で希釈されたものである こと、 が好ましい。 [0021] In the above two embodiments, the material capable of modifying the surface of the carbon-based nanomaterial is activated by vacuum ultraviolet rays to generate chemically active species such as radicals. The carbon-based nanomaterial whose surface is to be modified is produced by a CVD method, and the carbon-based nanomaterial whose surface is to be modified is grown on a substrate. When the surface-modified carbon-based nanomaterial is in contact with at least one substance selected from the group consisting of a conductive substance, an insulating substance, a hydrophilic substance, a lipophilic substance, and a substance having a specific group, A chemically active species such as the radical is an electron-withdrawing group and a chemically active species such as a radical of an electron-donating group. A substance capable of modifying the surface of the carbon-based nanomaterial includes oxygen, amines, alkyl halides, alcohols, and the like. Including at least one substance selected from the group consisting of ethers and mixtures thereof, and even if the substance capable of modifying the surface of the carbon-based nanomaterial is irradiated with the vacuum ultraviolet rays, It is preferable that the surface of the bon-based nanomaterial is diluted with an inert substance that does not modify the surface.
[0022] 本発明の更に他の態様によれば、 上記の表面改質カーボン系ナノ材料を含 んでなる電子部材、 特に、 ビア、 放熱用バンプ、 や、 導電性シート、 電磁波 しゃへい材用シート、 これらのシートを製造するためのプリプレグ等、 およ び、 上記の表面改質カーボン系ナノ材料を含んでなる電子装置が提供される  [0022] According to still another aspect of the present invention, an electronic member comprising the surface-modified carbon-based nanomaterial, particularly a via, a heat dissipation bump, a conductive sheet, an electromagnetic shielding material sheet, Provided is an electronic device including the prepreg for producing these sheets and the surface-modified carbon-based nanomaterial.
[0023] これら二つの本発明態様により、 カーボン系ナノ材料の優れた特性を活か した電子機器や電子部材等を実現することができる。 [0023] According to these two aspects of the present invention, it is possible to realize an electronic device, an electronic member, and the like that make use of the excellent characteristics of the carbon-based nanomaterial.
発明の効果  The invention's effect
[0024] 本発明により、 他の材料と接した場合に親和性の向上した新規なカーボン 系ナノ材料が得られる。 このような材料は電子機器や電子部材等に好適に利 用することができる。  [0024] According to the present invention, a novel carbon-based nanomaterial having improved affinity when in contact with other materials can be obtained. Such a material can be suitably used for an electronic device or an electronic member.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1 ] C N Tを利用した配線ビア構造の模式的横断面図である。  FIG. 1 is a schematic cross-sectional view of a wiring via structure using C N T.
[図 2]本発明に係る V U Vを照射し、 特定物質を供給するための装置の主要部 分を示す模式図である。 [Fig. 2] The main part of the device for irradiating VUV and supplying specific substances according to the present invention It is a schematic diagram which shows minutes.
[図 3]本発明に係る V U Vを照射し、 特定物質を供給するための装置の主要部 分を示す他の模式図である。  FIG. 3 is another schematic diagram showing the main part of an apparatus for irradiating V U V according to the present invention and supplying a specific substance.
[図 4]本発明に係るカーボンナノチューブ系材料をビアに利用した半導体集積 回路装置を模式的に示す断面図である。  FIG. 4 is a cross-sectional view schematically showing a semiconductor integrated circuit device using a carbon nanotube material according to the present invention for vias.
[図 5]カーボンチューブ系材料を高機能電子デバイスの冷却用バンプ材料に適 用した、 高熱伝導バンプを含む電子デバイスの構造の概要の例を示す模式図 である。  FIG. 5 is a schematic diagram showing an example of an outline of the structure of an electronic device including a high thermal conductive bump in which a carbon tube material is applied as a cooling bump material for a high-performance electronic device.
[図 6]本発明に係るカーボンチューブ系材料を高機能電磁波しゃへい材に適用 した場合の製法例の概要を示す模式図である。  FIG. 6 is a schematic diagram showing an outline of an example of a manufacturing method when the carbon tube material according to the present invention is applied to a high-performance electromagnetic shielding material.
[図 7]未処理のグラフエンシートの模式的断面図である。  FIG. 7 is a schematic cross-sectional view of an unprocessed graph entry sheet.
[図 8]本発明に係る処理後のグラフェンシ一トの模式的断面図である。  FIG. 8 is a schematic cross-sectional view of a graphene sheet after processing according to the present invention.
符号の説明 Explanation of symbols
1 基板  1 Board
2 下地層  2 Underlayer
3 C u配線層  3 Cu wiring layer
4 T a膜  4 Ta membrane
5 絶縁層  5 Insulation layer
6 T i膜  6 Ti membrane
7 触媒金属膜  7 Catalytic metal membrane
8 C N T  8 C N T
9 充填樹脂  9 Filling resin
2 1 V U V源  2 1 V U V source
2 2 特定物質を不活性物質で希釈したガス  2 2 Gas obtained by diluting a specific substance with an inert substance
2 3 供給経路  2 3 Supply route
2 4 吹き出し口  2 4 Outlet
2 5 冷却用媒体  2 5 Cooling medium
2 6 C N Tの束 2 7 基板 2 6 CNT bundle 2 7 PCB
3 1 水冷ダク ト  3 1 Water-cooled duct
4 1 シリコン基板  4 1 Silicon substrate
4 2 トランジスタ  4 2 transistors
4 3 a〜4 3 f  4 3 a to 4 3 f
層間絶縁膜  Interlayer insulation film
4 5 配線  4 5 Wiring
4 6 ビア  4 6 Via
4 7 コンタク ト  4 7 Contact
4 8 保護層  4 8 Protective layer
5 1 基板  5 1 Board
5 2 電極  5 2 electrodes
5 3 触媒金属担持膜と触媒金属膜  5 3 Catalytic metal support film and catalytic metal film
5 4 C N T  5 4 C N T
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、 図面に従って本発明の実施の形態を説明する。 しかしながら、 本発 明の技術的範囲は、 以下の実施の形態に限定されず、 特許請求の範囲に記載 された発明とその均等物まで及ぶものである。 なお、 上記のごとく、 本発明 は、 力一ボンナノチューブ系材料に加えて、 同様のノナ構造を有し、 同様の 濡れ性等の問題を抱えるグラフエンシート系材料にも適用可能であることが 判明した。 そこで、 力一ボンナノチューブ系材料とグラフエンシート系材料 とを纏めて 「カーボン系ナノ材料」 と呼称することとした。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to the following embodiments, but extends to the invention described in the claims and equivalents thereof. As described above, the present invention may be applicable to a graph-en-sheet material having a similar nona structure and having similar problems such as wettability in addition to a strong bonbon nanotube-based material. found. Therefore, we decided to collectively call the bonbon nanotube-based materials and the graph-en-sheet-based materials as “carbon-based nanomaterials”.
[0028] 本発明に係る表面改質カーボン系ナノ材料は、 カーボン系ナノ材料に対し 、 真空紫外線 (V U V ; Vacuum U l tra V i o l et rays) を照射し、 当該 V U V との組合せにより当該カーボン系ナノ材料の表面を改質し得る物質 ( 「V U Vとの組合せによりカーボン系ナノ材料の表面を改質し得る物質」 を、 以下 、 「特定物質」 ともいう) を供給することを含む方法で製造することができ る。 [0029] カーボン系ナノ材料に対し、 V U Vを照射し、 この特定物質を供給するこ とで、 このカーボン系ナノ材料の表面が改質されるのは、 恐らく、 この物質 が V U Vによって活性化されてラジカル等の化学的に活性な種を発生し、 そ の化学種がカーボン系ナノ材料表面に作用するためであろうと考えられてい る。 [0028] The surface-modified carbon-based nanomaterial according to the present invention irradiates the carbon-based nanomaterial with vacuum ultraviolet (VUV), and the carbon-based nanomaterial is combined with the VUV. Manufactured by a method that includes supplying substances that can modify the surface of nanomaterials ("substances that can modify the surface of carbon-based nanomaterials in combination with VUV", hereinafter also referred to as "specific substances") can do. [0029] The surface of the carbon-based nanomaterial is probably modified by irradiating the carbon-based nanomaterial with VUV and supplying this specific substance. This substance is probably activated by VUV. This is thought to be due to the generation of chemically active species such as radicals, which act on the surface of carbon-based nanomaterials.
[0030] そのメカニズムはたとえば次のようなものであろうと推察されている (た だし、 その是非は本発明の本質とは無関係である) 。 すなわち、 V U V照射 を受けて、 ナノチューブ分子やグラフエンシー卜の近傍に浮遊した状態の特 定物質の結合が開裂し、 一重項酸素等の活性酸素、 ァミノラジカル、 アルキ ルラジカル、 アルコキシラジカル等の化学種が発生する。 これらのラジカル は不安定で反応性が高いため、 近傍のナノチューブやグラフエンシート上の 比較的反応性の高い欠陥部分 (五員環、 七員環部分、 通常ダングリングボン ドと呼ばれる不安定結合状態部等) またはグラフエンシー卜の端部の化学的 に活性な部分に、 速やかに結合し、 共有結合を形成する。 あるいは、 ナノチ ユーブゃグラフヱンシー卜には直接化学結合せず、 ラジカル等の化学的に活 性な種同士が反応し再結合するなどして、 より高沸点 (低揮発性) の生成物 となり、 それがナノチューブ分子ゃグラフェンシ一卜の表面に吸着するとい うメカニズムである。  [0030] It is presumed that the mechanism is as follows (however, the right or wrong is not related to the essence of the present invention). In other words, the bond of a specific substance floating in the vicinity of nanotube molecules and graphency cleaves upon irradiation with VUV, and chemical species such as active oxygen such as singlet oxygen, amino radical, alkyl radical, and alkoxy radical Occurs. Because these radicals are unstable and highly reactive, they have relatively reactive defects on nearby nanotubes and graph sheets (five-membered, seven-membered, usually unstable bonds called dangling bonds). It immediately binds to a chemically active part at the end of the graph part or the like and forms a covalent bond. Alternatively, the nanotubes are not directly chemically bonded, but chemically active species such as radicals react and recombine, resulting in a product with a higher boiling point (low volatility). Is the mechanism by which the nanotube molecules are adsorbed on the surface of the graphene.
[0031 ] しかしながら、 このほかに、 たとえば、 この物質またはその一部が、 力一 ボン系ナノ材料の表面上に吸着され、 V U Vによる作用により、 ラジカル等 の化学的に活性な種を経ないでカーボン系ナノ材料表面に作用する等、 他の メカニズムも存在するかも知れない。 更に上記作用としては恐らく化学結合 が主体であろうと考えられるが、 物理的吸着等も存在しているかも知れない 。 ただし、 これらのメカニズムや作用形態は本発明の本質とは関係しない。  [0031] However, in addition to this, for example, this substance or a part thereof is adsorbed on the surface of the force-based nanomaterial, and does not pass through chemically active species such as radicals by the action of VUV. Other mechanisms may exist, such as acting on the surface of carbon-based nanomaterials. Furthermore, it is thought that the above action is mainly a chemical bond, but physical adsorption may also exist. However, these mechanisms and modes of action are not related to the essence of the present invention.
[0032] 本発明における特定物質であるかどうかは、 V U Vの照射後に何らかの意 味でカーボン系ナノ材料の表面が改質されたことで確認することができる。 また、 V U Vを使用しないで特定物質をカーボン系ナノ材料と接触させたと きにもカーボン系ナノ材料の表面改質が起こる場合には、 その表面改質の程 度がより大きくなることで知ることができる。 [0032] Whether or not the substance is a specific substance in the present invention can be confirmed by modifying the surface of the carbon-based nanomaterial for some reason after irradiation with VUV. If surface modification of carbon-based nanomaterial occurs even when a specific substance is brought into contact with carbon-based nanomaterial without using VUV, the degree of surface modification is reduced. It can be known as the degree becomes larger.
[0033] このような表面改質は、 具体的には、 表面張力の変化、 特定の溶媒への濡 れ性の変化、 カーボン系ナノ材料の表面上への特定の基 (たとえば極性基) の導入、 特定の材料との接着性の変化、 特定の物質の吸着量の変化等によつ て、 何らかの意味でカーボン系ナノ材料の表面が改質され、 またはその改質 が V U Vを使用しないときに比べ改善されたことで確認することができる。 このような改質の結果、 他の物質との親和性が向上する。  [0033] Specifically, such surface modification may include changes in surface tension, wettability to a specific solvent, and specific groups (for example, polar groups) on the surface of the carbon-based nanomaterial. When the surface of the carbon-based nanomaterial is modified for some reason, such as by introduction, change in adhesion with a specific material, change in adsorption amount of a specific substance, etc., or when the modification does not use VUV This can be confirmed by the improvement. As a result of such modification, the affinity with other substances is improved.
[0034] あるいは、 上記のごとく、 V U Vによってラジカル等の化学的に活性な種 を発生し得る物質が特定物質に該当する場合が多いので、 上記のような具体 的変化によらず、 V U Vによってラジカル等の化学的に活性な種を発生し得 る物質を特定物質と考えてもよい。 これは、 ラジカル等の化学的に活性な種 が発生すれば、 論理的に何らかの変化がカーボン系ナノ材料の表面に生じて いる害であるからである。  [0034] Alternatively, as described above, a substance that can generate a chemically active species such as a radical by VUV often corresponds to a specific substance. Substances that can generate chemically active species such as may be considered as specific substances. This is because if chemically active species such as radicals are generated, it is a harm that logically causes some change on the surface of the carbon-based nanomaterial.
[0035] このようなラジカル等の化学的に活性な種としては、 電子供与性基のラジ カル等の化学的に活性な種と電子吸引性基のラジカル等の化学的に活性な種 との少なくともいずれか一方を含むものであることが好ましい。 このような ラジカル等の化学的に活性な種が関与する場合には、 カーボン系ナノ材料に 極性基が導入されることになり、 極性を有する物質との親和性が向上する。  [0035] Chemically active species such as radicals include chemically active species such as radicals of electron donating groups and chemically active species such as radicals of electron withdrawing groups. It is preferable that at least one of them is included. When chemically active species such as radicals are involved, a polar group is introduced into the carbon-based nanomaterial, and the affinity with a polar substance is improved.
[0036] なお、 本発明において 「表面」 は、 いわゆる表面改質における表面を意味 し、 カーボン系ナノ材料の最外面のみならずくぼんだ表面や内部表面も該当 し得るが、 本発明との関係においては、 具体的にカーボン系ナノ材料のどこ が改質されたかは重要ではない。  [0036] In the present invention, "surface" means a surface in so-called surface modification, and may include not only the outermost surface of the carbon-based nanomaterial but also a recessed surface and an inner surface. In particular, it is not important where the carbon-based nanomaterial has been modified.
[0037] 本発明における特定物質については特に制限はなく、 任意の物質から選択 することができる。 具体的には、 どのような表面改質を行いたいかに応じて 選択することが好ましい。 たとえば極性溶媒に対する親和性を向上させるに は、 カーボン系ナノ材料表面に極性基を導入できる物質が好ましい。 特定の 構造を持つ溶媒に対する親和性を向上させるには、 カーボン系ナノ材料表面 にその特定の化学構造、 あるいはそれに近い化学構造を導入できる物質が好 ましい。 親水性の基や親油性の基の種類や導入量を調節することにより、 力 一ボン系ナノ材料の親水性や親油性の度合いを調節することも可能であろう [0037] The specific substance in the present invention is not particularly limited, and can be selected from arbitrary substances. Specifically, it is preferable to select according to what kind of surface modification is desired. For example, in order to improve the affinity for a polar solvent, a substance capable of introducing a polar group on the surface of the carbon-based nanomaterial is preferable. In order to improve the affinity for a solvent having a specific structure, a substance that can introduce the specific chemical structure or a chemical structure close to it onto the surface of the carbon-based nanomaterial is preferred. Good. It may be possible to adjust the degree of hydrophilicity and lipophilicity of force-based nanomaterials by adjusting the type and amount of hydrophilic groups and lipophilic groups.
[0038] より具体的には、 酸素、 アミン類、 ハロゲン化アルキル類、 アルコール類 、 エーテル類およびこれらの混合物からなる群から選ばれた少なくとも一つ の物質を含むものであることが好ましい。 これらの物質を使用すると、 一般 的にはカーボン系ナノ材料表面の極性を向上させることができる。 [0038] More specifically, it preferably contains at least one substance selected from the group consisting of oxygen, amines, alkyl halides, alcohols, ethers, and mixtures thereof. When these substances are used, the polarity of the carbon-based nanomaterial surface can generally be improved.
[0039] 特定物質の供給は、 特定物質をカーボン系ナノ材料と接触させるために行 う。 この供給は気相で行われる。 特定物質を蒸気として供給する場合、 常圧 、 室温下では蒸気圧が低く、 または蒸発しにくいものもあるので、 後述のご とく減圧を採用したり、 後述の不活性物質で希釈することによりこの不活性 物質に同伴させたり、 特定物質を加熱したりすることが好ましい場合もある  [0039] The specific substance is supplied in order to bring the specific substance into contact with the carbon-based nanomaterial. This supply is performed in the gas phase. When supplying a specific substance as a vapor, there are those that have a low vapor pressure at normal pressure or room temperature, or are difficult to evaporate, so this can be achieved by adopting reduced pressure as described below or by diluting with an inert substance described later. It may be preferable to entrain with an inert substance or heat a specific substance
[0040] ただし、 特定物質自体は必ずしも蒸気になっている必要はない。 したがつ て、 噴霧により特定物質が他の気体中に浮遊している状態で供給することも 有用である場合がある。 この場合、 浮遊した特定物質が液状のままカーボン 系ナノ材料の改質に寄与することもあり得るかも知れない。 [0040] However, the specific substance itself does not necessarily have to be vapor. Therefore, it may be useful to supply a specific substance suspended in another gas by spraying. In this case, the suspended specific substance may contribute to the modification of the carbon-based nanomaterial in the liquid state.
[0041 ] カーボン系ナノ材料の改質の特性や度合いは、 供給される特定物質の種類 によって影響を受ける。 例えば、 力一ボン系ナノ材料の表面にヒドロキシル 基が多く導入された場合は、 エタノール、 エチレングリコール (ジオール系 ) グリセリン (トリオール系) 等のアルコール系溶媒に対する親和性が改善 される。 また、 ァミノ基が導入され、 またはアミノ基あるいはアミノ基を含 む化合物が吸着された場合には、 ジメチルホルムアミ ド (D M F ) 等のアミ ノ基系官能基を持つ溶媒に対する親和性が向上される傾向がある。 実験した ところ、 トリェチルァミンまたはアンモニアと N 2の混合ガスで満たした S i 基板上のナノチューブでは、 V U V照射によりァミノ基を導入される等の結 果が得られた。 [0041] The characteristics and degree of modification of carbon-based nanomaterials are affected by the type of specific substance supplied. For example, when a large number of hydroxyl groups are introduced on the surface of a striking bon-based nanomaterial, the affinity for alcohol solvents such as ethanol, ethylene glycol (diol-based) glycerin (triol-based) is improved. In addition, when an amino group is introduced or an amino group or an amino group-containing compound is adsorbed, the affinity for a solvent having an amino group-based functional group such as dimethylformamide (DMF) is improved. There is a tendency to. As a result of the experiment, the nanotubes on the Si substrate filled with triethylamine or a mixed gas of ammonia and N 2 showed that amino groups were introduced by VUV irradiation.
[0042] 同様にチオール (_ S H ) 基あるいはこれを含む複数の官能基あるいは化 合物が導入され、 または吸着された場合にはそれぞれの溶媒に対する親和性 が向上する。 更に、 例えば、 ァミノ基とヒドロキシル基とを同時に導入すれ ば、 TMAH (テトラメチルアンモニゥムヒドロキシド; レジスト等の現像 剤) との親和性が大幅に向上する。 [0042] Similarly, a thiol (_SH) group or a plurality of functional groups containing the same When a compound is introduced or adsorbed, the affinity for each solvent is improved. Further, for example, if an amino group and a hydroxyl group are introduced simultaneously, the affinity with TMAH (tetramethylammonium hydroxide; a developer such as a resist) is greatly improved.
[0043] 紫外線は、 波長が 31 5 n mを超え、 400 n m以下の範囲の U V _ A、 波長が 280 n mを超え、 31 5 n m以下の範囲の U V_ Β、 波長が 200 n mを超え、 280 n m以下の範囲の U V _ Cおよび波長が 1 0〜200 n mの範囲の V U Vに分類することができるが、 本発明における力一ボン系ナ ノ材料は一般的に表面の安定性 (化学安定性等) が高く、 UV_A〜UV_ Cの紫外線の照射では十分に表面の改質ができないまたは修飾反応速度が非 常に遅いのに対し、 V U Vと上記特定物質とを組み合わせた場合には可能で あることが見出された。  [0043] UV light has a wavelength of more than 315 nm, UV_A in the range of 400 nm or less, wavelength of more than 280 nm, U V_ の in the range of less than 315 nm, wavelength of more than 200 nm, 280 Although it can be classified into UV_C in the range of nm or less and VUV in the wavelength range of 10 to 200 nm, the bonbon nanomaterials in the present invention generally have surface stability (chemical stability). Etc.), and UV_A to UV_C UV irradiation cannot sufficiently modify the surface or the modification reaction rate is very slow. Was found.
[0044] V U Vを得る手段には特に制限はない。 幅が狭く中心波長が 1 72 n の X eエキシマ UVランプを好ましく例示できる。 通例、 1 60〜200 nm 程度の波長分布を示す X e封入エキシマ UVランプが好ましいが、 必ずしも これに限定されるものではない。 なお、 有機化合物の結合の切断エネルギー は VUVの波長に直接関係するので、 特定の結合の切断を排除したい場合に は、 V U Vの使用波長範囲を目的に応じて狭く制限することも有用である。  [0044] The means for obtaining VUV is not particularly limited. A Xe excimer UV lamp having a narrow width and a center wavelength of 172 n can be preferably exemplified. Usually, an Xe-encapsulated excimer UV lamp showing a wavelength distribution of about 160 to 200 nm is preferable, but it is not necessarily limited thereto. In addition, since the bond breaking energy of organic compounds is directly related to the wavelength of VUV, it is also useful to restrict the wavelength range of V U V depending on the purpose when it is desired to eliminate specific bond breaking.
[0045] VUVの出力についても制限はなく、 市販の数十 mW/ cm 2程度の出力の ものを好ましく使用できる。 ただし、 VUVを発生しうる装置 (エキシマ U Vランプ、 等) の冷却や配置に問題なければ、 より高出力の装置を用いるか 、 あるいは UVランプを近接して複数個並べて、 実際の面あたり照射量を增 やすことは、 生産性の向上につながることもありうる。 [0045] There is no limitation on the output of VUV, and a commercially available output of about several tens of mW / cm 2 can be preferably used. However, if there is no problem in cooling and arrangement of equipment that can generate VUV (excimer UV lamp, etc.), use a higher power equipment or arrange multiple UV lamps in close proximity, and the actual irradiation dose per surface Increasing the productivity may lead to improved productivity.
[0046] なお、 VUVはその名前が示すように真空中または減圧下で使用されるの が一般的であるが、 本発明においては必ずしもそうではなく、 常圧下におい ても可能である。 すなわち、 本発明における VUV照射は、 減圧または常圧 の雰囲気中におかれたカーボン系ナノ材料に対して行われる。  [0046] As indicated by the name, VUV is generally used in a vacuum or under reduced pressure, but in the present invention, this is not necessarily the case, and it is possible even under normal pressure. That is, the VUV irradiation in the present invention is performed on a carbon-based nanomaterial placed in a reduced pressure or normal pressure atmosphere.
[0047] VUVと特定物質との組合せ作用をコントルールする意味や VUVと力一 ボン系ナノ材料との間の距離を大きくできるという実用性上の意味からは、 カーボン系ナノ材料を取り囲む雰囲気中の特定物質の濃度をコントロールす ることが有用である場合が多い。 たとえば、 酸素を 20体積%含む空気では リ が1 cm以内でほぼすベて吸収されるというように、 特定物質は吸光 係数が大きいことが多く、 何らかの手段で特定物質の濃度 (または蒸気圧や 分圧でもよい) を低下させることが好ましい場合が多いからである。 これは 、 雰囲気の減圧度を調整することによって行うこともできるが、 VUVを照 射してもカーボン系ナノ材料の表面を改質しない物質である不活性物質で希 釈した特定物質を使用することも好ましい場合が多い。 具体的には、 常圧状 態で、 特定物質を 0. 001〜50体積%の間に希釈することが好ましく、 0. 01〜1 0体積%の間に希釈することがより好ましい。 なお、 この不活 性物質については特に制限はないが、 本発明の環境が気相であるので、 一般 的に、 気体物質または揮発性の物質が適切である。 ネオン、 アルゴン等の不 活性ガスや窒素ガスを好ましく例示できる。 [0047] Meaning of controlling the combined action of VUV and specific substances From the practical point of view that the distance between the bon-based nanomaterials can be increased, it is often useful to control the concentration of a specific substance in the atmosphere surrounding the carbon-based nanomaterial. For example, a specific substance often has a large extinction coefficient, such as that in air containing 20% by volume of oxygen, all of the water is absorbed within 1 cm, and the concentration (or vapor pressure or This is because it is often preferable to reduce the partial pressure). This can be done by adjusting the degree of decompression of the atmosphere, but it uses a specific substance diluted with an inert substance that does not modify the surface of the carbon-based nanomaterial even when irradiated with VUV. This is often preferable. Specifically, in a normal pressure state, the specific substance is preferably diluted between 0.001 and 50% by volume, more preferably between 0.01 and 10% by volume. The inactive substance is not particularly limited, but since the environment of the present invention is a gas phase, generally a gaseous substance or a volatile substance is appropriate. Preferred examples include an inert gas such as neon and argon, and a nitrogen gas.
[0048] 照射対象であるカーボン系ナノ材料と VUV照射源との間の距離について は、 VUVが吸収されやすいので、 小さい方が好ましい場合が多い。 力一ポ ン系ナノ材料と V U V照射源との間に存在する物質の種類および濃度 (また は蒸気圧あるいは分圧) にもよるが、 一般的には、 この距離はたとえば、 0 . 1〜 1 0 Ommが好ましい。 さらに言えば、 多くの場合、 0. 2 mmから 数 c m程度が好ましい場合が多い。  [0048] Regarding the distance between the carbon-based nanomaterial to be irradiated and the VUV irradiation source, it is often preferable that the distance is small because VUV is easily absorbed. Depending on the type and concentration (or vapor pressure or partial pressure) of the substance present between the force-sensitive nanomaterial and the VUV irradiation source, in general, this distance is, for example, 0.1 to 10 Omm is preferred. Furthermore, in many cases, about 0.2 mm to several cm is preferable in many cases.
[0049] VUV照射の仕方には特に制限はない。 特定物質の供給とは必ずしも同時 である必要はない場合もあり得る。 カーボン系ナノ材料に対し特定物質を連 続的に供給し、 VUV照射を連続的に行う方法、 カーボン系ナノ材料に対し 特定物質を断続的に供給し、 その供給時に合わせて VUV照射を断続的に行 う方法、 カーボン系ナノ材料に対し特定物質を断続的に供給し、 その供給時 に合わせかつその後ある時間継続するように VUV照射を断続的に行う方法 等を例示することができる。  [0049] There is no particular limitation on the method of VUV irradiation. It may not be necessary to supply the specific substance at the same time. Continuous supply of specific substances to carbon-based nanomaterials and continuous VUV irradiation, intermittent supply of specific substances to carbon-based nanomaterials, and intermittent VUV irradiation in accordance with the supply And a method in which a specific substance is intermittently supplied to the carbon-based nanomaterial, and VUV irradiation is intermittently performed so as to match the supply time and continue for a certain time thereafter.
[0050] カーボン系ナノ材料の表面改質が VUVに直接照射されている箇所のみに 生じているのかどうかは不明である。 たとえば生じたラジカル等の化学的に 活性な種の寿命が長い場合には、 V U Vに直接照射されていない箇所にも表 面改質が生じ得ると考えられる。 したがって、 カーボン系ナノ材料が全体と して V U Vに照射され、 結果として表面改質されていれば、 本発明の趣旨に 合致するが、 一般的には、 個々のカーボン系ナノ材料ができるだけ直接 V U Vに照射されるようになっていることが好ましい。 この意味では、 基板から カーボン系ナノ材料が立ち上がり、 並ぶ方向の揃った状態や、 基板上に分散 された状態、 あるいは基板上に平行に配置された状態が好ましいが、 これに 限定されるものではない。 [0050] Surface modification of carbon-based nanomaterials only at locations where VUV is directly irradiated Whether it has occurred is unknown. For example, if the lifetime of a chemically active species such as a radical generated is long, it is thought that surface modification can also occur in places not directly irradiated with VUV. Therefore, if the carbon-based nanomaterial is irradiated to the VUV as a whole and as a result surface-modified, it meets the gist of the present invention. It is preferable that the irradiation is performed. In this sense, it is preferable that the carbon-based nanomaterials rise from the substrate and are aligned in a line, dispersed on the substrate, or arranged in parallel on the substrate, but not limited thereto. Absent.
[0051 ] なお、 従来のリソグラフィ一技術等を応用して、 カーボン系ナノ材料の表 面の一部を覆った状態で上記処理を行うことで表面における改質箇所を限定 したり、 更には、 この操作を複数回行い、 場所によって異なった改質を行う ことも可能である。 これはバンプ作製時の基板上の異なった位置への異なつ た処理の場合等に有用である。  [0051] It should be noted that, by applying the above-mentioned treatment in a state where a part of the surface of the carbon-based nanomaterial is covered by applying a conventional lithography technique or the like, the modification site on the surface is limited, It is possible to carry out this operation multiple times and perform different reforms depending on the location. This is useful in the case of different treatments at different positions on the substrate during bump fabrication.
[0052] 本発明における 「カーボン系ナノ材料」 はカーボンナノチューブ系材料と グラフェンシ一ト系材料との少なくともいずれか一方よりなる。 すなわち、 いずれか一方のみからなる場合も、 両者を含む場合も包含される。  [0052] The "carbon-based nanomaterial" in the present invention is composed of at least one of a carbon nanotube-based material and a graphene sheet-based material. That is, the case where only one of them is included and the case where both are included are also included.
[0053] この 「グラフエンシート系材料」 は、 グラフエンシート、 またはグラフェ ンシ一卜が何らかの意味で修飾された材料を意味する。 グラフエンシートは 、 単にグラフェンと呼ばれたり、 グラフエンナノリポンと呼ばれたりする物 質で、 典型的には、 ナノサイズの厚さ (たとえば 0 . 3〜数百 n m ) を有す るが、 工業的利用分野によってはさらに大きなサイズのものが用いられるこ ともある。 グラフエンシートはシート状で、 炭素がミツバチの巣状の形状の 各六角形の頂点にある、 単層または複数の層よりなり、 巻いて筒状にするこ ともできる。 巻いてその巻き端を接合できればナノチューブの構造になる。 グラフエンシートは、 どのような方法で作製されてもよい。 最も簡易な方法 はグラフアイ 卜の劈開による方法であるが、 C V D等カーボンナノチューブ と同様の手法によっても生成する。 [0054] グラフエンシート系材料、 特にグラフエンシートは、 単位量あたりの高い 表面積、 導電性、 導電性における異方性等の点で独特の性質を有している。 グラフエンシート系材料は、 層数が大きすぎるとグラフアイ ト構造に近づき 、 グラフエンシー卜に特徴的な異方性が小さくなる。 一般的には、 厚さ方向 の層数が 1〜 1 0層程度のものがグラフエンシー卜と呼ばれることが多い。 厚さに対する長さおよび幅のサイズについては特に制限はなく、 用途に応じ て適宜選択することができるが、 一般的には、 それぞれ 0 . 3 n m〜数百 n mの範囲である。 [0053] The "graph en-sheet-based material" means a graph en-sheet or a material in which a graph is modified in some way. The graph ensheet is a material simply called graphene or graphene nanolipon, and typically has a nano-sized thickness (for example, 0.3 to several hundred nm) Larger sizes may be used depending on the industrial application field. The graph ensheet is a sheet, consisting of a single layer or multiple layers of carbon at the apex of each hexagon in the shape of a beehive, and can be rolled into a cylinder. If it can be rolled and its ends can be joined, it will have a nanotube structure. The graph sheet may be produced by any method. The simplest method is the method of cleaving the graph eye, but it can also be generated by the same method as carbon nanotubes such as CVD. [0054] A graph ensheet material, particularly a graph ensheet, has unique properties in terms of a high surface area per unit amount, conductivity, anisotropy in conductivity, and the like. When the number of layers of the graph ensheet material is too large, it approaches the graph eye structure, and the anisotropy characteristic of the graph entity is reduced. In general, the number of layers in the thickness direction is about 1 to 10 and is often called graphency 卜. The length and width size with respect to the thickness are not particularly limited and can be appropriately selected depending on the application, but in general, each is in the range of 0.3 nm to several hundred nm.
[0055] また、 「力一ボンナノチューブ系材料」 は、 C N T、 または C N Tが何ら かの意味で修飾された材料を意味する。 典型的には、 ナノサイズの断面 (た とえば断面直径が 0 . 3〜2 0 n m ) を有するカーボンチューブである C N Tである。 その長さについては数十 n m〜数十 m mのものを好ましく例示で きるが、 特に制限があるわけではない。  [0055] "Strong Bonn nanotube-based material" means C N T, or a material in which C N T is modified in any way. Typically, CNT is a carbon tube having a nano-sized cross section (for example, a cross-sectional diameter of 0.3 to 20 nm). The length is preferably from several tens of nanometers to several tens of millimeters, but is not particularly limited.
[0056] C N Tには、 金属的な性質を示すための条件を満たすバンド構造を取るも のと、 半導体的 (半金属的) な性質を示すための条件を満たすバンド構造を 取るものとがある。 本発明に係る C N Tとしては金属的な性質を示すものと 半導体的な性質を示すものとのいずれを使用してもよい。 またグラフェンシ -卜については、 無修飾のものについては金属的または半金属的な性質を示 すと言われている。  [0056] Some CNTs have a band structure that satisfies the conditions for exhibiting metallic properties, while others have a band structure that satisfies the conditions for exhibiting semiconducting (semi-metallic) properties. . As the CNT according to the present invention, any of those showing metallic properties and those showing semiconductor properties may be used. As for graphenci- 卜, unmodified ones are said to exhibit metallic or semi-metallic properties.
[0057] 本発明における 「カーボンナノチューブ系材料」 には、 金属を内包したフ ラーレンなどの、 全体として金属的性質を示す、 ナノチューブとは別のナノ 構造体が C N T内に詰まっている、 いわゆるピーポッド構造のナノチューブ も含まれる。 すなわち、 上記における 「修飾」 にはこのような場合も含まれ る。  [0057] The "carbon nanotube-based material" in the present invention is a so-called peapod in which CNTs are packed with nanostructures other than nanotubes that exhibit metallic properties as a whole, such as fullerene encapsulating metal. Also included are structured nanotubes. That is, “modification” in the above includes such cases.
[0058] このような別のナノ構造体を含むピーポッド構造のナノチューブを用いる ことにより、 たとえばビアの電気伝導特性あるいは機械的強度を増強するこ とも可能になり得る。 例えば、 金属内包フラーレンを含む C N Tの場合、 内 包された金属の電荷がフラーレン外側に現れ、 更にナノチューブ外側に現れ ることが、 第一原理計算から知られており、 それによつてビアの電気伝導特 性を向上させることができる。 [0058] By using a peapod-structured nanotube including such another nanostructure, for example, it may be possible to enhance the electrical conductivity characteristics or mechanical strength of the via. For example, in the case of a CNT containing metal-encapsulated fullerene, the charge of the encapsulated metal appears outside the fullerene and further appears outside the nanotube. This is known from first-principles calculations, which can improve the electrical conduction characteristics of vias.
[0059] 金属内包フラーレンのように全体として金属的性質を示す、 ナノチューブ とは別の構造体もしくは分子あるいは原子は、 ナノチューブ内ではなく、 一 つのビアを構成している隣接ナノチューブ間に存在していてもよい。 また、 内部に金属フラーレンを含む隣接ナノチューブ間に、 上記のナノチューブと は別の構造体もしくは分子あるいは原子を配置することも可能である。 この ようにして C N Tが修飾されている場合も、 本発明における 「カーボンナノ チューブ系材料」 に属する。  [0059] Structures, molecules, or atoms different from nanotubes that exhibit metallic properties as a whole, such as metal-encapsulated fullerenes, exist not between nanotubes but between adjacent nanotubes that form one via. May be. It is also possible to arrange a structure, molecule or atom different from the above nanotube between adjacent nanotubes containing metal fullerene inside. Even when CNT is modified in this way, it belongs to the “carbon nanotube material” in the present invention.
[0060] C N T等のカーボンナノチューブ系材料の形成には、 従来はアーク放電や レーザ一アブレ一シヨンが用いられてきたが、 現在ではプラズマ C V D (プ ラズマ化学的気相成長法) や熱 C V Dがよく用いられている。 C V Dによる 形成方法は、 ナノチューブを直接基板上に形成できることから、 集積回路の 製造への応用が期待されている。 もちろん本発明は使用される C N Tの製造 方法に限定されるものでない。  [0060] Conventionally, arc discharge and laser ablation have been used to form carbon nanotube-based materials such as CNT, but now plasma CVD (plasma chemical vapor deposition) and thermal CVD are used. It is often used. The formation method using C V D is expected to be applied to the manufacture of integrated circuits because nanotubes can be formed directly on the substrate. Of course, the present invention is not limited to the production method of C N T used.
[0061 ] 本発明に係るカーボンナノチューブ系材料は、 このように C V Dで作製す ることが好ましい場合が多い。 その場合には、 カーボンナノチューブ系材料 が基板上に生成する。 カーボンナノチューブ系材料が基板上に生成すること 自体は本発明の必須要件ではないが、 カーボンナノチューブ系材料が基板上 に生成している場合には、 先述したごとく、 V U Vの直接照射がし易く、 ま た、 基板との密着性が良好であるため、 好ましい場合が多い。  [0061] In many cases, the carbon nanotube-based material according to the present invention is preferably produced by CVD. In that case, a carbon nanotube-based material is generated on the substrate. The formation of the carbon nanotube-based material on the substrate itself is not an essential requirement of the present invention. However, when the carbon nanotube-based material is formed on the substrate, direct irradiation with VUV is easy as described above. In addition, it is often preferred because of its good adhesion to the substrate.
[0062] C V Dで本発明に係るカーボンナノチューブ系材料を作製する場合、 この 基板を形成する材料には特に制限はなく公知のものから適宜選択できるが、 導電性を得る場合には、 導電性のものを使用し、 熱伝導性を得る場合には熱 伝導性の良好なものを選択することが好ましい。  [0062] When the carbon nanotube-based material according to the present invention is produced by CVD, the material for forming the substrate is not particularly limited and can be appropriately selected from known materials. In order to obtain thermal conductivity, it is preferable to select one having good thermal conductivity.
[0063] 本発明において、 カーボン系ナノ材料に対し、 V U Vを照射し、 特定物質 を供給するための装置については特に制限はない。 たとえば図 2 , 3に示す 構造を持つ装置を例示することができる。 図 2において、 V U V源 2 1の下 に特定物質を不活性物質で希釈したガス 2 2の供給経路 2 3、 特定物質の吹 き出し口 2 4がある。 V U V源 2 1は冷却用媒体 2 5によって冷却されてい る。 そして、 吹き出し口 2 4の下には縦に並んだ C N Tの束 2 6を有する基 板 2 7が紙面の左から右に移動していくのである。 図 3は、 冷却媒体が水冷 ダク ト 3 1に代わり、 特定物質を不活性物質で希釈したガス 2 2の供給経路 2 3中で基板 2 7が移動する以外は図 2と同様である。 なお、 縦に並んだ C N Tの束 2 6は、 たとえばビアホール中で成長させた C N Tの束として実現 することができる。 図 2 , 3中実線付きの矢印は、 特定物質を不活性物質で 希釈したガス 2 2や冷却用媒体 2 5の流れを、 波線付きの矢印は V U Vの照 射を表している。 [0063] In the present invention, there is no particular limitation on an apparatus for irradiating a carbon-based nanomaterial with VUV and supplying a specific substance. For example, an apparatus having the structure shown in FIGS. In Figure 2, under VUV source 2 1 There is a supply path 2 3 for gas 2 2 in which a specific substance is diluted with an inert substance 2 3 and a blowout port 2 4 for a specific substance. The VUV source 21 is cooled by a cooling medium 25. Under the outlet 24, the substrate 27 having the CNT bundle 26 aligned vertically moves from the left to the right of the page. FIG. 3 is the same as FIG. 2 except that the substrate 27 is moved in the supply path 23 of the gas 22 in which the specific substance is diluted with an inert substance instead of the water-cooled duct 31. A vertically aligned bundle of CNTs 26 can be realized, for example, as a bundle of CNTs grown in a via hole. The arrows with solid lines in Figs. 2 and 3 indicate the flow of gas 22 and cooling medium 25 in which a specific substance is diluted with an inert substance, and the arrows with wavy lines indicate VUV irradiation.
[0064] 本発明により、 他の材料と接した場合に親和性の向上した新規なカーボン 系ナノ材料が得られる。 このような材料は電子部材に好適に利用することが できる。  [0064] According to the present invention, a novel carbon-based nanomaterial having improved affinity when in contact with other materials can be obtained. Such a material can be suitably used for an electronic member.
[0065] 本発明に係る 「親和性の向上」 は、 他の物質と接触させた場合における表 面張力の向上、 濡れ性の向上、 接着性の向上、 吸着量の増大、 他の物質との 層間に入り込む異物 (水分等) 、 空洞 (ミクロな空間) の減少等を意味する 。 この場合の 「他の物質」 としては、 導電性物質、 絶縁性物質、 親水性物質 、 親油性物質および特定の基を有する物質からなる群から選ばれた少なくと も一つの物質であることが好ましい。 電子装置等の部材としてカーボン系ナ ノ材料を使用する場合に、 共に使用される他の部材との電気的接続、 熱的接 続、 機械的結合、 溶媒や接着剤に対する濡れ等の向上が図れ、 長期使用にお ける剥がれ、 断線等の不具合を回避できるからである。 なお、 本発明および 明細書の記載を通じて、 「特定の基」 、 「特定の物質」 、 「特定の構造」 、 「特定の溶媒」 、 「特定の結合」 および 「特定の材料」 における 「特定の」 は、 固定的に決められたあるものを意味するものではなく、 実用上の要請に 応じて任意に決められるあるものを意味する。  [0065] "Improvement of affinity" according to the present invention means improvement of surface tension, contact with other substances, improvement of wettability, improvement of adhesion, increase of adsorption amount, and other substances. It means the reduction of foreign matter (moisture, etc.) and cavities (micro space) entering between layers. In this case, the “other substance” is at least one substance selected from the group consisting of a conductive substance, an insulating substance, a hydrophilic substance, a lipophilic substance, and a substance having a specific group. preferable. When carbon nanomaterials are used as components for electronic devices, etc., it is possible to improve electrical connection, thermal connection, mechanical connection, wetting with solvents and adhesives, etc. with other components used together. This is because problems such as peeling and disconnection during long-term use can be avoided. Through the description of the present invention and the specification, “specific group”, “specific substance”, “specific structure”, “specific solvent”, “specific bond” and “specific material” "" Does not mean something fixed, but something that can be arbitrarily decided according to practical requirements.
[0066] このような導電性物質としては、 電子配線部に使用される銅、 アルミニゥ ム、 その他の、 金属をはじめとする電気伝導性物質一般を、 絶縁性物質とし ては、 SOG、 T EOS (テトラエトキシシラン) 、 ポリイミ ド樹脂等の任 意の半導体封止用絶縁樹脂類、 あるいは最近多用される、 マイクロポアを含 むまたは含まない、 いわゆる 「L ow_ k樹脂」 類 (NCS、 S i LK、 M SQ等) (S i元素を含むことが多い) 、 あるいは、 P FA、 FEP、 テフ ロン (登録商標) 等のフッ素系樹脂等、 すなわち CN Tを固定するに好適な 電気絶縁性の材料一般を、 親水性物質としては、 水、 エタノール、 メタノー ル、 フエノール、 ジォキサン類、 エチレングリコール、 ジエチレングリコ一 ル、 トリエチレングリコール、 グリセリン等のアルコール系溶媒等を、 親油 性物質としては、 石油エーテル、 n—へキサン、 シクロへキサン等のバラフ イン系溶媒、 ベンゼン、 トルエン、 キシレン、 クレゾ一ル等、 の芳香族系溶 媒、 あるいは、 TH F (テトラヒドロフラン) 、 DMF (ジメチルホルムァ ミ ド) 、 DMSO (ジメチルスルホキシド) 、 ジメチルァセトアミ ド、 ある いはジェチルケトン、 M I BK (メチルイソブイチルケトン) 等のケトン、 n_メチルピロリ ドン、 ジクロロェタン、 ジクロロェタン、 ピリジン、 等の ヘテロ元素 (G、 0、 H以外の元素) を含む極性溶媒を挙げることができる。 また、 特定の基を有する物質としては、 基本的には、 前述した絶縁性物質、 親水性物質、 親油性物質に多く含まれる官能基を含む物質 (望ましくは低粘 度の気体または液体) ならいかなるものでもよいが、 典型的な例としては、 以下のものを挙げることができる : [0066] Examples of such conductive materials include copper, aluminum, and other electrically conductive materials such as metals generally used in electronic wiring sections as insulating materials. Insulating resins for sealing semiconductors such as SOG, TEOS (tetraethoxysilane) and polyimide resin, or the so-called “Low_k resin” with or without micropores, which is frequently used recently. ”(NCS, Si LK, M SQ, etc.) (often contains Si elements), or fluororesins such as PFA, FEP, Teflon (registered trademark), that is, fix CNT In general, electrically insulating materials suitable for water, and hydrophilic substances include water, ethanol, methanol, phenol, dioxanes, alcohol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, and glycerin. Examples of oily substances include petroleum ether, n-hexane, and araffine solvents such as cyclohexane, benzene, toluene, xylene, and cresol. Group solvents, or THF (tetrahydrofuran), DMF (dimethylformamide), DMSO (dimethylsulfoxide), dimethylacetamide, jetyl ketone, MI BK (methyl isobutyl ketone), etc. Examples include polar solvents containing heteroelements (elements other than G, 0, and H) such as ketones, n_methylpyrrolidone, dichloroethane, dichloroethane, pyridine, and the like. In addition, as a substance having a specific group, basically, it is a substance (preferably a low-viscosity gas or liquid) containing a functional group that is abundant in the above-mentioned insulating substances, hydrophilic substances, and lipophilic substances. A typical example can include any of the following:
_OH、 _COOH、 _COOR、 _N H2、 _N R2 (Rは脂肪族、 芳香族 アルキル基あるいはその誘導体) 、 _CO_、 _c = o、 イミ ド結合および エーテル結合の少なくともいずれか一つ以上を有する物質、 すなわち、 アル コールおよびフヱノール、 カルボン酸、 アミン類、 ケトン類およびキノン類 、 等。 A substance having at least one of _OH, _COOH, _COOR, _N H 2 , _N R 2 (R is an aliphatic, aromatic alkyl group or derivative thereof), _CO_, _c = o, an imide bond and an ether bond Ie, alcohols and phenols, carboxylic acids, amines, ketones and quinones, etc.
本発明に係るカーボン系ナノ材料は、 ニーズに応じて、 電気製品、 電子製 品、 機械品等、 カーボン系ナノ材料の使用されるあるいは使用される可能性 のあるどのような用途に使用されてもよいが、 カーボン系ナノ材料の優れた 電気的特性および熱的特性に鑑み、 特に、 電磁波を発生しうる医療用、 航空 宇宙用、 あるいは、 携帯性のある電子機器 (携帯電話、 パソコン等の携帯電 子機器端末を含む) 、 あるいは、 電子部材ゃ電子装置 (たとえば、 半導体装 置やプリント配線基板等を含む半導体集積回路装置) に好適に利用できる。 また、 長期使用における高性能で軽量、 劣化の少ない電子機器用に用いられ る導電性部材 (シート等) 、 電磁波しゃへい用部材 (シート等) 、 または、 剥がれ、 断線等の不具合の少ない電子部材ゃ電子装置を実現することも期待 できる。 なお、 このような電子部材としては、 電子デバイス実装用放熱用バ ンプ、 電子デバイス用等の配線ビア、 トランジスタ用のゲート電極、 ソース 電極、 ドレイン電極、 チャネル電極等を挙げることができる。 The carbon-based nanomaterial according to the present invention is used for any application where the carbon-based nanomaterial is used or is likely to be used, such as an electrical product, an electronic product, and a mechanical product, depending on needs. However, in view of the excellent electrical and thermal properties of carbon-based nanomaterials, especially for medical and aeronautics that can generate electromagnetic waves. Space-use or portable electronic devices (including portable electronic device terminals such as mobile phones and personal computers), or electronic components and electronic devices (for example, semiconductor integrated circuits including semiconductor devices and printed wiring boards) Device). In addition, high-performance, light-weight, low-degradation electronic components (sheets, etc.), electromagnetic shielding members (sheets, etc.) used for long-term use, or electronic components with few defects such as peeling and disconnection Realization of electronic devices can also be expected. Examples of such electronic members include heat dissipation bumps for mounting electronic devices, wiring vias for electronic devices, gate electrodes for transistors, source electrodes, drain electrodes, channel electrodes, and the like.
[0068] また本発明はさらに、 上記の電子部品や電子デバイス素子等に限らず、 例 えば、 対重量比の高い導電性と伝熱性を要求される、 (平面状あるいは曲面 状の) 宇宙航空用の電子機器、 医療機器、 あるいは、 携帯電話、 パソコン等 を含む、 電磁波を発生する電子機器、 導電性シート、 電子端末用の高周波電 磁波しゃへい材、 およびこれらの部材作製用前駆体 (いわゆるプリプレグを 含む) を挙げることができる。  [0068] Further, the present invention is not limited to the above-described electronic component, electronic device element, or the like. For example, an aerospace (planar or curved) space aviation that requires high electrical conductivity and heat conductivity is preferable. Electronic devices, medical devices, or electronic devices that generate electromagnetic waves, including cellular phones, personal computers, etc., conductive sheets, high-frequency electromagnetic wave shielding materials for electronic terminals, and precursors for producing these members (so-called prepregs) Can be included).
[0069] 図 4は、 本発明に係るカーボンナノチューブ系材料を L S I用配線ビアに 利用した半導体集積回路装置を模式的に示す断面図である。 図 4では、 シリ コン基板 4 1にトランジスタ 4 2等の素子が複数作りこまれ、 それらを覆つ て複数の絶縁層 (層間絶縁膜) 4 3 a〜4 3 f が形成されている。 絶縁層を 挟んで配線層が位置し、 所定の配線層の配線 4 5は絶縁層を貫通して形成さ れたビア 4 6により別の層の配線 4 5につながれている。 4 7は、 素子同士 をつなぐ配線 4 5に接続するコンタク トを表している。 一番上の配線層は保 護層 4 8で被覆されている。 この図に示した集積回路装置では、 ビア 4 6に 本発明に係るカーボンナノチューブ系材料を適用し、 このナノチューブを特 定の溶媒に対する濡れ性を良くすることにより、 これに溶解されている S O G等の絶縁性樹脂の C N T周りへの浸透性を向上させ、 結果的に、 C N T周 りの空洞を塞ぎ、 また C N T束を固定化することにより、 ビヤ内に成長させ たカーボンナノチューブ系材料の上端を C M Pにより良好に削り取ることが でき、 したがつて配線部分との良好な電気的接続を実現できる。 FIG. 4 is a cross-sectional view schematically showing a semiconductor integrated circuit device using the carbon nanotube material according to the present invention for an LSI wiring via. In FIG. 4, a plurality of elements such as the transistor 4 2 are formed on the silicon substrate 41, and a plurality of insulating layers (interlayer insulating films) 4 3 a to 4 3 f are formed so as to cover them. The wiring layer is located across the insulating layer, and the wiring 45 of the predetermined wiring layer is connected to the wiring 45 of another layer by a via 46 formed so as to penetrate the insulating layer. 4 7 represents a contact connected to the wiring 45 connecting the elements. The uppermost wiring layer is covered with a protective layer 48. In the integrated circuit device shown in this figure, the carbon nanotube-based material according to the present invention is applied to the via 46, and this nanotube is dissolved in a specific solvent by improving the wettability with respect to a specific solvent. As a result, the upper end of the carbon nanotube-based material grown in the beer is improved by closing the cavity around the CNT and fixing the CNT bundle. Good scraping by CMP Therefore, good electrical connection with the wiring portion can be realized.
[0070] 図 5は、 カーボンナノチューブ系材料を高機能電子デバイスの冷却用バン プ材料に適用した、 高熱伝導バンプを含む電子デバイスの構造の概要の例を 示す模式図であるが、 この場合にも本発明に係るカーボン系ナノ材料を高機 能電子デバイスの冷却用バンプ材料に適用することができる。 たとえば、 図 5の CN T付き基板に対し、 酸素を窒素で希釈したガスまたは酸素と微量の 水とを窒素で希釈したガスの存在下 V U V処理を行い、 続いてこの処理済み CN T付き基板の CN T部にメツキ (ウエット処理) により、 熱および電気 伝導性物質 (C u、 A I等の金属、 等) を、 CN T鎖の間の空間に、 十分に 浸透させたいわゆる CN Tハイプリッド■バンプ構造を作製することができ る。 この後この処理済み基板上に、 電子デバイスを、 熱圧着 (250〜45 0°C程度が望ましい) して、 金属等を浸透させた CN Tバンプを使用した高 熱伝道性電子デ /くィスを作製することができる。  [0070] FIG. 5 is a schematic diagram showing an example of an outline of the structure of an electronic device including a high thermal conductive bump in which a carbon nanotube-based material is applied to a cooling bump material of a high-performance electronic device. In addition, the carbon-based nanomaterial according to the present invention can be applied to a cooling bump material for a high-performance electronic device. For example, the substrate with CNT in Fig. 5 is subjected to VUV treatment in the presence of a gas in which oxygen is diluted with nitrogen or a gas in which oxygen and a small amount of water are diluted with nitrogen. A so-called CN T hybrid bump that sufficiently penetrates the space between the CN T chains with heat and electrical conductive substances (metal such as Cu, AI, etc.) by plating (wet treatment) in the CN T section A structure can be made. After this, an electronic device is thermocompression-bonded (preferably about 250 to 450 ° C) on the treated substrate, and a highly heat-conductive electronic device / container using CN T bumps infiltrated with metal or the like is used. Can be produced.
[0071] 図 6は、 本発明に係る電磁波しゃへい用シートまたはプリプレグを示す模 式図である。 すなわち、 樹脂シート上に CN Tを散布し、 このシートを他の 樹脂シートを貼り付けることにより電磁波しゃへい用シートまたはそのプリ プレグを得ることができる。  FIG. 6 is a schematic diagram showing an electromagnetic shielding sheet or prepreg according to the present invention. That is, an electromagnetic shielding sheet or a prepreg thereof can be obtained by spraying CNT on a resin sheet and pasting this sheet on another resin sheet.
実施例 1  Example 1
[0072] 基板として、 S i ウェハ { p型、 ( 1 00) 面 } 上に、 N i をスパッタリ ングにて 25 n m形成したものを用い、 フィラメント C V D法により、 ァセ チレンガスを原料として、 650°Cにて、 マルチウォール力一ポンナノチュ —ブを長さ約 1. 5 mまで成長させた。 ナノチューブの面密度を測定した ところ、 約 5 X 1 011本/ c m2であった。 [0072] As a substrate, a Si wafer {p-type, (100) plane} with Ni formed to a thickness of 25 nm by sputtering, and using acetylene gas as a raw material by a filament CVD method, 650 At ° C, a multi-wall force one-punch nanotube was grown to a length of about 1.5 m. When the surface density of the nanotubes was measured, it was about 5 × 10 11 / cm 2 .
[0073] あらかじめこの試料を清浄な空気中で 400°Cで 1 5分べ一クしてナノチ ユーブ表面の、 ナノチューブ以外の可燃性不純物を取り除いた後、 速やかに 、 本発明に係る処理装置に移し、 本発明に係る特定物質としてのトリエチル ァミン {N (CH2CH3) 3} を、 その蒸気圧が 1気圧濃度 5体積%程度となる よう純窒素で希釈したガスを使用した。 ガスの流量は毎分 1 Lとした。 [0074] この状態で、 X eエキシマ UVランプ (発生中心波長 λ = 1 72 n m) を 発生する出力 3 OmW/c m2 発光長 400 mmのエキシマ U Vランプを使 用して VUVを 1 0分間掛けて照射した。 装置の構造は図 2のものを使用し た。 [0073] This sample was pre-treated in clean air at 400 ° C for 15 minutes to remove flammable impurities other than nanotubes on the surface of the nanotube, and then immediately into the processing apparatus according to the present invention. Then, a gas obtained by diluting triethylamine {N (CH 2 CH 3 ) 3 } as a specific substance according to the present invention with pure nitrogen so that its vapor pressure becomes about 5% by volume at 1 atmospheric pressure was used. The gas flow rate was 1 L / min. [0074] In this state, Xe excimer UV lamp (generation center wavelength λ = 1 72 nm) is generated. Output 3 OmW / cm 2 Emission length 400 mm Excimer UV lamp is used for 10 minutes. And irradiated. The equipment structure shown in Fig. 2 was used.
[0075] 本処理前後の試料を XPS (X線光電子分光) および I R (赤外吸収) ス ぺク トルにて分析したところ、 処理前のナノチューブには存在しなかった炭 素窒素結合が処理後に形成されていることが確認された。  [0075] The samples before and after this treatment were analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectra. Carbon nitrogen bonds that were not present in the untreated nanotubes were observed after treatment. It was confirmed that it was formed.
[0076] なお、 VUVの照射を行わない以外は上記と同様の処理を行ったが、 処理 後にも炭素窒素結合は生じなかつた。  [0076] The same treatment as described above was performed except that no VUV irradiation was performed, but no carbon-nitrogen bond was formed after the treatment.
実施例 2  Example 2
[0077] 実施例 1 と同様の特定物質を使用し、 試料としては、 S i ウェハ ίρ型、  [0077] The same specific material as in Example 1 was used, and the sample was a Si wafer ίρ type,
(1 00) 面 } 上にシングルウォールカーボンナノチューブをアーク放電法 で生成させたものを使用した。  (1 00) face} A single-wall carbon nanotube formed on the (1 00) face by the arc discharge method was used.
[0078] 実施例 1 と同様の処理を行った。 ただし、 処理時間は、 実施例 1の 1 0% とした。 [0078] The same processing as in Example 1 was performed. However, the processing time was set to 10% in Example 1.
[0079] この試料を XPS (X線光電子分光) および I R (赤外吸収) スペク トル にて分析したところ、 処理前のナノチューブに存在しなかった炭素窒素結合 が処理後に形成されているのが確認された。  [0079] When this sample was analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectra, it was confirmed that carbon-nitrogen bonds that did not exist in the nanotubes before treatment were formed after treatment. It was done.
実施例 3  Example 3
[0080] 実施例 1 と同様の特定物質を使用し、 トランジスタのビヤ構造を模擬的に 形成したマルチウォール力一ボンナノチューブのアミノ化を試みた。  [0080] Using the same specific material as in Example 1, an attempt was made to amination of a multi-walled single-bonn nanotube in which the via structure of the transistor was simulated.
[0081] 直径 1 00 n m、 深さ 1 000 n mの円筒状の穴パターンを S i基板上に 形成し、 底面を含むウェハ全面に T i薄膜 1 0 nmをスパッタリングで形成 し、 平均粒径 1 0 n mの C o微粒子を DMA (微粒子発生器) にて、 底面を 含むウェハ全面に散布し、 これに C V D法で長さ 1 500 n mのマルチゥォ —ルカ一ボンナノチューブを穴の上方まで成長させた。 ナノチューブの面密 度を測定したところ、 約 3 X 1 011本/ c m2であった。 [0081] A cylindrical hole pattern with a diameter of 100 nm and a depth of 1 000 nm was formed on the Si substrate, and a Ti thin film of 10 nm was formed on the entire wafer surface including the bottom surface by sputtering. 0 nm Co fine particles were sprinkled on the entire wafer surface including the bottom using DMA (Fine Particle Generator), and multi-carbon carbon nanotubes with a length of 1 500 nm were grown above this hole by CVD. . When the surface density of the nanotube was measured, it was about 3 × 10 11 / cm 2 .
[0082] この試料に対し、 実施例 1 と同様の装置を使用し、 実施例 1 と同様の特定 物質を実施例 1 と同様に供給し、 実施例 1 と同様に V U Vを照射した。 [0082] For this sample, the same apparatus as in Example 1 was used, and the same identification as in Example 1 was made. The material was supplied as in Example 1 and irradiated with VUV as in Example 1.
[0083] 処理後の試料に対して 1 %アンモニア水を滴下し、 しばらくしてからホッ トプレートでよく乾燥し、 走査式電子顕微鏡 (S E M ) で観察したところ、 ナノチューブ同士が穴内で部分的に束状になっているのが確認できた。 これ はアンモニア水が浸透した跡であると考えられる。 すなわち、 アンモニア水 に対する濡れ性が良好であるため、 アンモニア水がナノチューブ表面で濡れ 、 ナノチューブ同士がアンモニア水によって束状に纏められた後アンモニア 水が蒸散した跡と考えることができる。 [0083] 1% aqueous ammonia was added dropwise to the treated sample, and after a while, it was thoroughly dried on a hot plate and observed with a scanning electron microscope (SEM). It was confirmed that it was bundled. This is considered to be a trace of the penetration of ammonia water. That is, since the wettability with respect to the ammonia water is good, it can be considered that the ammonia water is wetted on the surface of the nanotubes, and the nanotubes are bundled together with the ammonia water and then the ammonia water is evaporated.
[0084] これに対し、 無処理の穴パタン内ナノチューブ試料に同じ処理を施したと ころ、 処理前後で大きな変化はなく、 ナノチューブは、 ほとんど束状になら ず、 各々孤立したまま、 林立しているのが確認された。 すなわち、 処理前の ナノチューブはアンモニア水に対する濡れ性が不良であり、 アンモニア水が ナノチューブで弾かれてしまい、 その結果、 ナノチューブ同士がアンモニア 水によって束状に纏められることがなかったと考えられる。 [0084] On the other hand, when the same treatment was performed on the nanotube sample in the untreated hole pattern, there was no significant change before and after the treatment, and the nanotubes were not almost bundled, but were isolated from each other. It was confirmed that That is, it is considered that the nanotubes before treatment had poor wettability to the ammonia water, and the ammonia water was repelled by the nanotubes, and as a result, the nanotubes were not bundled together by the ammonia water.
[0085] その後、 処理前後の試料からそれぞれナノチューブを削り取り、 X P S ( X線光電子分光) および I R (赤外吸収) スぺク トルにて分析したところ、 処理前のナノチューブに存在しなかった炭素窒素結合が処理後に形成されて いるのが確認された。 [0085] Then, the nanotubes were scraped from the sample before and after the treatment, and analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectra. It was confirmed that the bond was formed after processing.
[0086] 以上の結果から、 本ナノチューブは親水性が向上しており、 親水性を有す る溶媒、 接着剤等の物質に対し良好な親和性を示すものと期待される。  [0086] From the above results, the nanotubes are improved in hydrophilicity, and are expected to show good affinity for substances such as hydrophilic solvents and adhesives.
[0087] さらに、 本実施例でアンモニア水によって束状になった C N T上面と下 ( 基板) 面との間の電気抵抗は、 2 Ω (オーム) と、 極く低い値となった。 実施例 4  [0087] Furthermore, the electrical resistance between the CNT upper surface and the lower (substrate) surface bundled with ammonia water in this example was 2 Ω (ohms), which was an extremely low value. Example 4
[0088] 実施例 1 と同様の処理系を使い、 トランジスタの配線ビヤ構造を模擬的に 形成した (ナノチューブの面密度を測定したところ、 約 5 X 1 0 1 1本/ c m 2 の) マルチウォールカーボンナノチューブのカルポニル化、 ヒドロキシル化 を行った。 ただし、 反応性物質としては、 トリェチルァミンの替わりに N 2で 希釈した酸素と H 20とを用いた。 [0089] 直径 200 n m、 深さ 1 000 η mの円筒状の穴パターンを S i基板上に 形成し、 底面を含むウェハ全面に T i薄膜 1 0 n mをスパッタリングで形成 し、 平均粒径が 7 n mの C o微粒子を DMA (微粒子発生器) にて底面を含 むウェハ全面に散布し、 これに C V D法で長さ 1 500 n mのマルチウォー ルカーボンナノチューブを穴の上方まで成長させた後、 この試料に実施例 1 と同様の方法と同様の手法でカルポニル化、 ヒドロキシル化を行った。 [0088] Using the same processing system as in Example 1, the wiring via structure of the transistor was formed in a simulated manner (when the surface density of the nanotube was measured, it was about 5 X 10 1 1 / cm 2 ). Multiwall Carbonylation and hydroxylation of carbon nanotubes were performed. However, instead of triethylamine, oxygen diluted with N 2 and H 2 0 were used as reactive substances. [0089] A cylindrical hole pattern with a diameter of 200 nm and a depth of 1 000 η m was formed on the Si substrate, and a Ti thin film of 10 nm was formed on the entire surface of the wafer including the bottom surface by sputtering. After spraying 7 nm of Co particles on the entire wafer surface including the bottom with a DMA (particle generator), multi-wall carbon nanotubes with a length of 1 500 nm were grown above this hole by CVD. This sample was subjected to carbonylation and hydroxylation in the same manner as in Example 1.
[0090] 純酸素が 0. 2体積%で残余が窒素であるガスを特定物質を含んだガスと して使用し、 このガスの流量を毎分 3 Lとして処理した。  [0090] A gas containing 0.2% by volume of pure oxygen and the balance of nitrogen was used as a gas containing a specific substance, and the flow rate of this gas was set at 3 L / min.
[0091] 装置としては実施例 1 と同様のものを使用し、 VUVも実施例 1 と同様に して照射した。 反応時間は実施例 1の 1 5%とした。  [0091] The same apparatus as in Example 1 was used, and VUV was irradiated in the same manner as in Example 1. The reaction time was 15% of Example 1.
[0092] 処理後の複数の試料に対して、 エタノール、 M I BK (メチルイソブチル ケトン) およびこれらの 1対 1 (体積比) 混合液を滴下し、 1 0分後、 ホッ トプレートでよく乾燥し、 走査式電子顕微鏡 (S EM) で観察したところ、 いずれの試料についても、 ナノチューブ同士が穴内で大部分が束状になって いるのが確認された。 バンドル化している C N Tの割合は、 エタノール > 1 対 1混合液 >M I BK (メチルイソブチルケトン) の順で多かった。 これは 、 上記のアンモニア水の場合と同様に、 各々の液体混合物が浸透した跡であ ると考えられる。 すなわち、 これらの媒体に対する濡れ性が良好であること が示された。 一方、 無処理の穴パタン内のナノチューブ試料に同じ処理を施 したところ、 ごく一部のナノチューブでバンドル化が認められたに過ぎなか つた。  [0092] Ethanol, MI BK (methyl isobutyl ketone), and a 1: 1 (volume ratio) mixture of these were added dropwise to the treated samples, and after 10 minutes, they were thoroughly dried on a hot plate. When observed with a scanning electron microscope (SEM), it was confirmed that for each sample, the nanotubes were mostly bundled in the hole. The percentage of bundled C N T was higher in the order of ethanol> 1 to 1 mixture> M I BK (methyl isobutyl ketone). This is considered to be a trace of penetration of each liquid mixture, as in the case of the ammonia water described above. That is, it was shown that the wettability to these media is good. On the other hand, when the same treatment was applied to the nanotube sample in the untreated hole pattern, only a small number of nanotubes were found to be bundled.
[0093] この後、 それぞれナノチューブを削り取り、 X P S (X線光電子分光) お よび I R (赤外吸収) スぺク トルにて分析したところ、 処理前のナノチュー ブにごく少量しか存在しなかった C = O結合および— O H結合が、 それぞれ 、 処理後に約 1 0倍の量 (結合モル数相当) 形成されているのが確認された  [0093] After that, each nanotube was scraped and analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectrum. = O bond and — OH bond were each confirmed to be formed about 10 times the amount after treatment (corresponding to the number of moles of bond)
[0094] 以上の結果から、 本ナノチューブは極性物質に対する親和性が向上してお り、 〇=0結合ゃ_01~1結合を有する溶媒、 接着剤等の物質に対し良好な親 和性を示すものと期待される。 [0094] From the above results, this nanotube has improved affinity for polar substances, and 〇 = 0 bond is a good parent to solvents, adhesives, and other substances having bonds _01 ~ 1. It is expected to show compatibility.
実施例 5  Example 5
[0095] 実施例 4と同様の VUV処理法により、 ナノチューブ表面に、 C = 0結合 や一 OH結合を導入した、 ビヤ構造を模擬的に形成した構造に対して、 銅メ ツキを施すにあたり、 前処理として、 メツキシード層形成用水溶液に浸漬処 理を行い、 C uシ一ド層を予めつけた。  [0095] By applying a copper plating to a structure in which a beer structure is simulated by introducing a C = 0 bond or a 1OH bond on the nanotube surface by the same VUV treatment method as in Example 4. As pretreatment, immersion treatment was performed in an aqueous solution for forming a seed layer, and a Cu seed layer was applied in advance.
[0096] 具体的には、 実施例 4と同様の方法で作製したマルチウォールカーボンナ ノチューブ (ナノチューブの面密度を測定したところ、 約 5 X 1 011本/ c m2であった) を、 実施例 4と全く同じ方法にて、 VUV処理を、 実施例 1の 30%の時間を掛けて行い、 その後に C uメツキシ一ド水溶液に 1 0分浸漬 した。 これを光学顕微鏡、 S EM (走査型電子顕微鏡) 、 T EM (透過電子 顕微鏡) および EDXにて観察したところ、 ほとんどの CN Tが束状にバン ドル化しており、 その表面に多量の C u微粒子が付着していた。 The [0096] Specifically, the multi-wall carbon nano-tubes were prepared in the same manner as in Example 4 (Measurement of the surface density of the nanotubes was about 5 X 1 0 11 present / cm 2), carried out In the same manner as in Example 4, the VUV treatment was performed for 30% of the time of Example 1, and then immersed in an aqueous solution of Cu methoxide for 10 minutes. When this was observed with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope), and EDX, most of the CN T was bundled into a bundle, and a large amount of Cu was formed on the surface. Fine particles were attached.
[0097] これに、 C u層を厚膜として成膜したところ、 〇!\1丁表面に〇リが吸着し た C N T _ C u複合体が形成された。  [0097] When a Cu layer was formed as a thick film, a C N T _ Cu complex with O adsorbed on the surface of O! \ 1 was formed.
[0098] —方、 比較例として、 V U V処理を行わずに C uメツキシ一ド水溶液に 1 0分浸潰し、 これを光学顕微鏡にて観察したところ、 CN Tは部分的にしか バンドル化せずシ一ド液の浸透が均一に行われていないことが伺われた。 さ らに S EM (走査型電子顕微鏡) 、 T EM (透過電子顕微鏡) および EDX にて観察したところ、 C uシ一ド層はバンドル化した部分にしか吸着してお らず、 この試料から均一な C uメタル層の形成はできなかった。  [0098] — On the other hand, as a comparative example, the sample was immersed in an aqueous solution of Cu methoxide for 10 minutes without performing VUV treatment, and this was observed with an optical microscope. CNT was only partially bundled. It was observed that the seed solution was not uniformly infiltrated. Furthermore, when observed with SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope) and EDX, the Cu seed layer was adsorbed only on the bundled part. A uniform Cu metal layer could not be formed.
実施例 6  Example 6
[0099] CN Tを樹脂面の一面に成長させたプリプレグを作製する際に、 VUV処 理を施した後に、 CN T層を内側にして接着し、 平面状、 その他形状の部材 を形成する。  [0099] When producing a prepreg in which CNT is grown on one surface of a resin surface, VUV treatment is performed, and then a CNT layer is bonded inside to form a planar or other shaped member.
[0100] 具体的には、 図 6の S 1に従って、 予め成長し、 清浄な空気中で 400°C で 1 5分べ一クしてナノチューブ表面の、 ナノチューブ以外の可燃性不純物 を取り除いた後に、 メタノールに入れて超音波処理を 2時間行なって十分に 分散した液を用意する。 これを、 平面状の A BS樹脂板 (厚さ 0. 5 mm) 上に、 1 mg/cm2の密度で分散散布し、 静かに、 60°Cで乾燥しメタノー ルを除く。 これを、 図 6の S 2に従って、 実施例 1で使用した VU V装置を 用いて N2で希釈した酸素ガス (0. 5体積%) 下で処理する。 ガス流量は 1 0 L/分とする。 [0100] Specifically, according to S1 in Fig. 6, after pre-growth and removing the flammable impurities other than nanotubes on the nanotube surface by cleaning for 15 minutes at 400 ° C in clean air Sonicate in methanol for 2 hours Prepare a dispersed liquid. This is dispersed and sprayed onto a flat ABS resin plate (thickness 0.5 mm) at a density of 1 mg / cm 2 and gently dried at 60 ° C to remove the methanol. This is treated under oxygen gas diluted with N 2 (0.5% by volume) using the VUV apparatus used in Example 1 according to S 2 in FIG. The gas flow rate is 10 L / min.
[0101] これを、 図 6の S 3に従って、 平面状の ABS樹脂板 (厚さ 0. 5mm) と静かに重ねてから、 この樹脂板の融点より 1 0°C低い温度にて 5分間程圧 着して一体化する。  [0101] According to S3 in Fig. 6, after gently overlapping with the flat ABS resin plate (thickness 0.5mm), the temperature is 10 ° C lower than the melting point of this resin plate for about 5 minutes. Compress and integrate.
[0102] このようにして導電性シ一トまたは電磁波遮蔽シ一卜のプリプレグを得る ことができる。  [0102] In this way, a prepreg having a conductive sheet or an electromagnetic shielding sheet can be obtained.
[0103] なお、 ここでは A BS樹脂への CN T融着の例を示したが、 樹脂や接着法 を変えたものにも応用できる。 たとえば、 形状保持性の小さい一般的なプリ プレグ状態のものに CN Tを散布し VU V処理を行つてもよい。 樹脂は熱硬 化性のものも含めてあらゆるものに適用できる。 また、 成形法も、 CN T固 化過程で流れなければ、 多様なものに適用できる。  [0103] Although an example of CNT fusion bonding to ABS resin is shown here, the present invention can also be applied to a resin or a modified adhesive method. For example, VNT treatment may be performed by spraying CNT on a general prepreg with low shape retention. The resin can be applied to anything including those that are thermosetting. In addition, the molding method can be applied to a variety of materials as long as it does not flow during the CNT solidification process.
実施例 7  Example 7
[0104] S i ウェハ上のナノチューブに代えて、 単層で、 縦 200 m、 横 800 mのグラフエンシートを使用し、 このシートを、 清浄な空気中で 400°C で 1 5分べ一クしてグラフエンシート表面の、 グラフエンシート以外の可燃 性不純物を取り除いた後、 速やかに、 本発明に係る処理装置に移し、 本発明 に係る特定物質としてのトリェチルァミン iN (CH2CH3) 3} を、 その蒸気 圧が 1気圧濃度 5体積%程度となるよう純窒素で希釈したガスを使用した。 ガスの流量は毎分 1 Lとした。 [0104] Instead of the nanotubes on the Si wafer, a single-layer, 200 m long, 800 m wide graph ensheet was used, which was placed in clean air at 400 ° C for 15 minutes. the click to graph ene sheet surface, after removal of the combustible impurities other than the graph ene sheet, immediately transferred to the processing apparatus according to the present invention, Toryechiruamin iN (CH 2 CH 3) as a specific substance according to the present invention 3 } was used as a gas diluted with pure nitrogen so that its vapor pressure would be about 5% by volume at 1 atmosphere. The gas flow rate was 1 L / min.
[0105] この状態で、 X eエキシマ UVランプ (発生中心波長 λ = 1 72 n m) を 発生する出力 3 OmW/c m2 発光長 400 mmのエキシマ U Vランプを使 用して VUVを 1 0秒間掛けて照射した。 装置の構造は図 2のものを使用し た。 [0105] In this state, an X e excimer UV lamp (generation center wavelength λ = 1 72 nm) is generated. Output 3 OmW / cm 2 Excitation length of 400 mm Excimer UV lamp is applied for 10 seconds. And irradiated. The equipment structure shown in Fig. 2 was used.
[0106] 本処理前後の試料を X P S (X線光電子分光) および I R (赤外吸収) ス ぺク トルにて分析したところ、 処理前のナノチューブには存在しなかった炭 素窒素結合が処理後に形成されていることが確認された。 [0106] Samples before and after this treatment were subjected to XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) scanning. Analysis by spectrum confirmed that carbon-nitrogen bonds that did not exist in the nanotubes before treatment were formed after treatment.
[0107] なお、 V U Vの照射を行わない以外は上記と同様の処理を行ったが、 処理 後にも炭素窒素結合は生じなかつた。  [0107] Note that the same treatment as described above was carried out except that V U V irradiation was not carried out, but no carbon-nitrogen bond was produced even after the treatment.
実施例 8  Example 8
[0108] 実施例 7と同様にして準備したグラフエンシート (ただし層数は 5層) を 用いた。 実施例 7と同様のやり方でグラフエンシートのヒドロキシル化を行 つた。 ただしトリェチアミンの代わりに体積分率 0 . 5 %の酸素と 1 0 p p mの水蒸気を乾燥窒素ガス雰囲気下にて V U V光を 5秒照射することにより 行った。  [0108] A graph ensheet (with 5 layers) prepared in the same manner as in Example 7 was used. Hydroxylation of the graph sheet was carried out in the same manner as in Example 7. However, instead of trytiamine, oxygen was applied at a volume fraction of 0.5% and 10 ppm of water vapor in a dry nitrogen gas atmosphere for 5 seconds.
[0109] これらの試料に対して、 エタノール、 M I B K (メチルイソブチルケトン ) 、 およびこの 1対 1混合液を滴下したところ、 U Vの照射有りと無しとで は、 濡れ性が全く異なり、 照射後は接触角が 5度以下になった一方、 未照射 のものでは濡れ性は未処理のグラフエンシート同様、 接触角は 1 3 0度以上 とまったく濡れなかった。  [0109] When ethanol, MIBK (methyl isobutyl ketone), and this 1: 1 mixture were dropped onto these samples, the wettability was completely different with and without UV irradiation, and after irradiation, While the contact angle was 5 degrees or less, the wettability of the unirradiated ones was not wet at all with a contact angle of 1 30 degrees or more, as in the untreated graph ensheet.
[01 10] この後、 それぞれグラフエンシートを削り取り、 X P S ( X線光電子分光 ) および I R (赤外吸収) スぺク トルにて分析したところ、 反応前のグラフ エンシー卜に存在が確認できなかった C = 0結合および— O H結合が、 反応 後に相当量形成されているのが確認された。  [01 10] After this, each graph sheet was scraped and analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectra. It was confirmed that a considerable amount of C = 0 bond and —OH bond were formed after the reaction.
実施例 9  Example 9
[01 1 1 ] 各種の物質を用いて、 実施例 8の方法に倣って処理を行うと、 図 7に模式 的に示す欠陥部に、 図 8に模式的に示すような各種の官能基が導入されるも のと思われる。 また、 これの物質の一つとして酸素を使用した場合には、 図 8に示すように新たな欠陥部が生じ、 そこにも各種の官能基が導入されるこ ともあり得る。  [01 1 1] When various substances are used in the same manner as in the method of Example 8, various functional groups as schematically shown in FIG. 8 are formed in the defect portion schematically shown in FIG. It seems that it will be introduced. In addition, when oxygen is used as one of these substances, a new defect occurs as shown in Fig. 8, and various functional groups may be introduced there.
産業上の利用可能性  Industrial applicability
[01 12] 本発明は、 他の材料と接した場合に親和性の向上した新規なカーボン系ナ ノ材料を利用できる分野 (たとえば電子機器分野) に好適に利用できる。  [0112] The present invention can be suitably used in a field (for example, the electronic equipment field) in which a novel carbon-based nanomaterial with improved affinity when in contact with other materials can be used.

Claims

請求の範囲 The scope of the claims
[1 ] 表面の改質された、 カーボンナノチューブ系材料とグラフエンシート系材 料との少なくともいずれか一方よりなるカーボン系ナノ材料の製造方法であ つて、 力一ボンナノチューブ系材料とグラフエンシート系材料との少なくと もいずれか一方よりなるカーボン系ナノ材料に対し、  [1] A method for producing a carbon-based nanomaterial whose surface is modified and comprising at least one of a carbon nanotube-based material and a graph ensheet material. For carbon-based nanomaterials consisting of at least one of
真空紫外線を照射し、  Irradiate vacuum ultraviolet rays,
当該真空紫外線との組合せにより当該カーボン系ナノ材料の表面を改質し 得る物質を供給する  Supplying substances that can modify the surface of the carbon nanomaterials in combination with the vacuum ultraviolet light
ことを含む、 表面改質カーボン系ナノ材料の製造方法。  A method for producing a surface-modified carbon-based nanomaterial.
[2] 前記カーボン系ナノ材料の表面を改質し得る物質が、 真空紫外線により活 性化されて化学的に活性な種を発生し得る物質である、 表面改質カーボン系 ナノ材料の製造方法。  [2] A method for producing a surface-modified carbon-based nanomaterial, wherein the material capable of modifying the surface of the carbon-based nanomaterial is a material that can be activated by vacuum ultraviolet rays to generate a chemically active species. .
[3] 前記の表面を改質すべきカーボン系ナノ材料が C V D法によって作製され たものである、 請求項 1または 2に記載の製造方法。  [3] The production method according to claim 1 or 2, wherein the carbon-based nanomaterial whose surface is to be modified is produced by a CVD method.
[4] 前記の表面を改質すべきカーボン系ナノ材料が基板上で成長させたもので ある、 請求項 1〜 3のいずれかに記載の製造方法。 [4] The production method according to any one of claims 1 to 3, wherein the carbon-based nanomaterial whose surface is to be modified is grown on a substrate.
[5] 前記化学的に活性な種が、 電子供与性基の化学的に活性な種と電子吸引性 基の化学的に活性な種との少なくともいずれか一方を含む、 請求項 2〜4の いずれかに記載の製造方法。 5. The chemically active species according to claim 2, wherein the chemically active species includes at least one of a chemically active species of an electron donating group and a chemically active species of an electron withdrawing group. The manufacturing method in any one.
[6] 前記カーボン系ナノ材料の表面を改質し得る物質が、 酸素、 アミン類、 ハ ロゲン化アルキル類、 アルコール類、 エーテル類およびこれらの混合物から なる群から選ばれた少なくとも一つの物質を含む、 請求項 1〜5のいずれか に記載の製造方法。 [6] The substance capable of modifying the surface of the carbon-based nanomaterial is at least one substance selected from the group consisting of oxygen, amines, alkyl halides, alcohols, ethers, and mixtures thereof. The manufacturing method according to any one of claims 1 to 5.
[7] 前記カーボン系ナノ材料の表面を改質し得る物質が前記真空紫外線を照射 しても、 前記カーボン系ナノ材料の表面を改質しない不活性物質で希釈され たものである、 請求項 1〜 6のいずれかに記載の製造方法。  [7] The substance capable of modifying the surface of the carbon-based nanomaterial is diluted with an inert substance that does not modify the surface of the carbon-based nanomaterial even when irradiated with the vacuum ultraviolet ray. The manufacturing method in any one of 1-6.
[8] 請求項 1〜7のいずれかに記載の製造方法により製造された表面改質カー ボン系ナノ材料。 [8] A surface-modified carbon-based nanomaterial produced by the production method according to any one of claims 1 to 7.
[9] 導電性物質、 絶縁性物質、 親水性物質、 親油性物質および特定の基を有す る物質からなる群から選ばれた少なくとも一つの物質と接した場合に、 前記 表面改質前に比べ親和性が向上した、 請求項 8に記載の表面改質カーボン系 ナノ材料。 [9] When contacting with at least one substance selected from the group consisting of a conductive substance, an insulating substance, a hydrophilic substance, a lipophilic substance, and a substance having a specific group, before the surface modification The surface-modified carbon-based nanomaterial according to claim 8, which has improved affinity.
[10] 請求項 8または 9に記載の表面改質カーボン系ナノ材料を含んでなる電子 部材。  [10] An electronic member comprising the surface-modified carbon-based nanomaterial according to claim 8 or 9.
[1 1 ] 前記電子部材が、 配線ビア、 電子デバイス放熱バンプ、 導電性シート、 電 磁波しゃへい材用シ一ト、 または当該シートを製造するためのプリプレダで ある、 請求項 1 0に記載の電子部材。  [1 1] The electronic device according to claim 10, wherein the electronic member is a wiring via, an electronic device heat radiation bump, a conductive sheet, a sheet for electromagnetic wave shielding material, or a pre-predder for manufacturing the sheet. Element.
[12] 請求項 8または 9に記載の表面改質カーボン系ナノ材料を含んでなる電子 装置。  [12] An electronic device comprising the surface-modified carbon-based nanomaterial according to claim 8 or 9.
PCT/JP2007/000825 2006-08-28 2007-07-31 Carbon nanomaterial, method for producing the same, electronic member and electronic device WO2008026304A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/316834 WO2008026237A1 (en) 2006-08-28 2006-08-28 Carbon nanotube materials, process for production thereof, and electronic components and devices
JPPCT/JP2006/316834 2006-08-28

Publications (1)

Publication Number Publication Date
WO2008026304A1 true WO2008026304A1 (en) 2008-03-06

Family

ID=39135529

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/316834 WO2008026237A1 (en) 2006-08-28 2006-08-28 Carbon nanotube materials, process for production thereof, and electronic components and devices
PCT/JP2007/000825 WO2008026304A1 (en) 2006-08-28 2007-07-31 Carbon nanomaterial, method for producing the same, electronic member and electronic device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316834 WO2008026237A1 (en) 2006-08-28 2006-08-28 Carbon nanotube materials, process for production thereof, and electronic components and devices

Country Status (1)

Country Link
WO (2) WO2008026237A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234815A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Method and apparatus for processing graphene sheet-based material
JP2009282865A (en) * 2008-05-24 2009-12-03 Kuraray Co Ltd Transparent electrode substrate for touch panel and touch panel
WO2010122635A1 (en) * 2009-04-21 2010-10-28 富士通株式会社 Method for processing graphene sheet material and method for manufacturing electronic device
JP2011063506A (en) * 2009-09-21 2011-03-31 Samsung Techwin Co Ltd Method for producing graphene, graphene produced by the method, conductive thin film comprising the graphene, transparent electrode comprising the graphene, and radiating or heating device comprising the graphene
JP2012036040A (en) * 2010-08-06 2012-02-23 Fujitsu Ltd Method for forming graphene sheet-based material and graphene sheet-based material
CN102796991A (en) * 2011-05-27 2012-11-28 清华大学 Method for preparing graphene carbon nanotube composite membrane structure
JP2013040097A (en) * 2012-09-27 2013-02-28 Fujitsu Ltd Method for treating graphene sheet material
JP2017064714A (en) * 2010-11-03 2017-04-06 マサチューセッツ インスティテュート オブ テクノロジー Composition comprising functionalized carbon-based nanostructure, and related method
JP2021034135A (en) * 2019-08-19 2021-03-01 国立研究開発法人産業技術総合研究所 Transmission electron microscope sample support, manufacturing method thereof, and sample preparation method using the same
US11505467B2 (en) 2017-11-06 2022-11-22 Massachusetts Institute Of Technology High functionalization density graphene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120032871A (en) * 2010-09-29 2012-04-06 삼성전기주식회사 Radiating substrate and method for manufacturing the radiating substrate, and luminous element package with the radiating structure
JP5921475B2 (en) * 2013-03-22 2016-05-24 株式会社東芝 Semiconductor device and manufacturing method thereof
CN105441711B (en) * 2015-12-28 2017-07-28 哈尔滨工业大学 A kind of preparation method of three-dimensional structure CNTs Reinforced Cu-Base Composites

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503204A (en) * 1996-03-06 2002-01-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized nanotubes
JP2005272184A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Method for manufacturing hydrophilic carbon nanotube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503204A (en) * 1996-03-06 2002-01-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized nanotubes
JP2005272184A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Method for manufacturing hydrophilic carbon nanotube

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASANO K. ET AL.: "Chemical Modification of Multi-walled Carbon Nanotubes (MWNTs) by Vacuum Ultra-violet (VUV) Irradiation Dry Process", DAI 30 KAI KINEN FULLERENE-NANOTUBES GENERAL SYMPOSIUM KOEN YOSHISHU, 7 January 2006 (2006-01-07), pages 90, XP003021252 *
ASANO K. ET AL.: "Chemical Modification of Multiwalled Carbon Nanotubes by Vacuum Ultraviolet Irradiation Dry Process", JOURNAL OF APPLIED PHYSICS, vol. 45, no. 4B, 30 April 2006 (2006-04-30), pages 3573 - 3576, XP003021247 *
ASANO K. ET AL.: "Kyokutan Hacho UV-ko ni yoru MWNT no Dry Process ni yoru Kagaku Shushoku", DAI 52 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKOSHU, vol. 1, 29 March 2005 (2005-03-29), pages 589 + ABSTR. NO. 7P-YF-9, XP003021251 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234815A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Method and apparatus for processing graphene sheet-based material
JP2009282865A (en) * 2008-05-24 2009-12-03 Kuraray Co Ltd Transparent electrode substrate for touch panel and touch panel
JP5299506B2 (en) * 2009-04-21 2013-09-25 富士通株式会社 Method for processing graphene sheet-based material and method for manufacturing electronic device
WO2010122635A1 (en) * 2009-04-21 2010-10-28 富士通株式会社 Method for processing graphene sheet material and method for manufacturing electronic device
US8465661B2 (en) 2009-04-21 2013-06-18 Fujtsu Limited Method of processing graphene sheet material and method of manufacturing electronic device
JP2011063506A (en) * 2009-09-21 2011-03-31 Samsung Techwin Co Ltd Method for producing graphene, graphene produced by the method, conductive thin film comprising the graphene, transparent electrode comprising the graphene, and radiating or heating device comprising the graphene
JP2012036040A (en) * 2010-08-06 2012-02-23 Fujitsu Ltd Method for forming graphene sheet-based material and graphene sheet-based material
JP2017064714A (en) * 2010-11-03 2017-04-06 マサチューセッツ インスティテュート オブ テクノロジー Composition comprising functionalized carbon-based nanostructure, and related method
CN102796991B (en) * 2011-05-27 2014-08-20 清华大学 Method for preparing graphene carbon nanotube composite membrane structure
CN102796991A (en) * 2011-05-27 2012-11-28 清华大学 Method for preparing graphene carbon nanotube composite membrane structure
JP2013040097A (en) * 2012-09-27 2013-02-28 Fujitsu Ltd Method for treating graphene sheet material
US11505467B2 (en) 2017-11-06 2022-11-22 Massachusetts Institute Of Technology High functionalization density graphene
JP2021034135A (en) * 2019-08-19 2021-03-01 国立研究開発法人産業技術総合研究所 Transmission electron microscope sample support, manufacturing method thereof, and sample preparation method using the same
JP7370042B2 (en) 2019-08-19 2023-10-27 国立研究開発法人産業技術総合研究所 Transmission electron microscope sample support, its manufacturing method, and sample preparation method using the same

Also Published As

Publication number Publication date
WO2008026237A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5364978B2 (en) Surface-modified carbon nanotube-based material, manufacturing method thereof, electronic member, and electronic device
WO2008026304A1 (en) Carbon nanomaterial, method for producing the same, electronic member and electronic device
Song et al. Graphene transfer: Paving the road for applications of chemical vapor deposition graphene
Zhuang et al. Ways to eliminate PMMA residues on graphene——superclean graphene
Kim et al. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate
Kim et al. Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons
Kanungo et al. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions
Eda et al. Partially oxidized graphene as a precursor to graphene
Choi et al. Plasma treatments to improve metal contacts in graphene field effect transistor
Yamamoto et al. Charge inhomogeneity determines oxidative reactivity of graphene on substrates
JP2009536911A (en) Modified carbon nanotube and method for forming carbon nanotube
US10875052B2 (en) Method and apparatus for producing large-area monolayer films of solution dispersed nanomaterials
JP2009528254A (en) Spatally arranged nanotubes and method of making nanotube arrays
EP2298697A1 (en) Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
JP2010510168A (en) Functionalized boron nitride nanotubes
JP2009193964A (en) Methods for preparing cnt film, cnt film with sandwich structure, anode including cnt film and organic light-emitting diode including anode and cnt device
Wan et al. Interface engineering for CVD graphene: current status and progress
Seo et al. Adhesion improvement of graphene/copper interface using UV/ozone treatments
Barberio et al. Laser-plasma driven Synthesis of Carbon-based Nanomaterials
Negishi et al. Turbostratic stacking effect in multilayer graphene on the electrical transport properties
JP6018584B2 (en) Method for producing injected self-assembled monolayers
Chand et al. Scalable Production of Ultrathin Boron Nanosheets from a Low‐Cost Precursor
Lin et al. Applications of carbon nanomaterials as electrical interconnects and thermal interface materials
Lu et al. Single-step direct growth of graphene on Cu ink toward flexible hybrid electronic applications by plasma-enhanced chemical vapor deposition
Zang et al. Metallo‐Hydrogel‐Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP