WO2008026237A1 - Carbon nanotube materials, process for production thereof, and electronic components and devices - Google Patents

Carbon nanotube materials, process for production thereof, and electronic components and devices Download PDF

Info

Publication number
WO2008026237A1
WO2008026237A1 PCT/JP2006/316834 JP2006316834W WO2008026237A1 WO 2008026237 A1 WO2008026237 A1 WO 2008026237A1 JP 2006316834 W JP2006316834 W JP 2006316834W WO 2008026237 A1 WO2008026237 A1 WO 2008026237A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
based material
substance
modified
active species
Prior art date
Application number
PCT/JP2006/316834
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Asano
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/316834 priority Critical patent/WO2008026237A1/en
Priority to PCT/JP2007/000825 priority patent/WO2008026304A1/en
Publication of WO2008026237A1 publication Critical patent/WO2008026237A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Carbon nanotube material manufacturing method thereof, electronic member and electronic device
  • the present invention relates to a surface modification technique for a carbon nanotube-based material.
  • CNTs have various characteristics such as excellent chemical stability and unique physical and electrical properties, and are attracting attention as a material for forming semiconductor devices.
  • sheath length control various studies are ongoing, such as formation position control and chirality control.
  • electromagnetic wave components for electronic devices As specific applications, electromagnetic wave components for electronic devices, components, cooling bump materials for high-performance electronic devices such as VLSI, and wiring via structure members for semiconductor devices have attracted attention. Yes.
  • CNTs have extremely high thermal conductivity, making use of their properties to grow CNTs on a semiconductor process substrate at high density, and this is mounted on a part of a conductive circuit or an electronic device mounted on the process substrate
  • Applications such as bonding structure from (semiconductor device) and exhaust heat path for device heat generation (so-called “bump structure”) can be considered.
  • FIG. 5 shows an example of a structure (see, for example, Non-Patent Document 1) used as a cooling bump material for a high-performance electronic device using such CNTs.
  • a cooling bump structure for a high-performance electronic device has a catalyst metal supporting film (eg, TiN film) on an electrode 52 on a substrate (aluminum nitride (A1N, alumina, etc.) 51).
  • catalytic metal film (Co etc.) both are indicated by the number 53 together) are deposited by sputtering etc.
  • CNT54 by thermal CVD method (thermochemical vapor deposition method) using elemental gas (CH, CH, etc.)
  • a conductive material metal such as Cu, A1, etc.
  • plating wet treatment
  • the electronic device can be thermocompression-bonded (desirably about 250 to 450 ° C.) on the substrate to produce a highly thermally conductive electronic device.
  • FIG. 1 shows an example of a wiring via structure using the above-mentioned CNT (for example, see Patent Document 1 and Non-Patent Document 2).
  • a via structure has a base layer 2 and a Cu wiring layer 3 provided on a substrate 1, and a barrier film (Ta film or the like) that prevents Cu diffusion on the Cu wiring layer 3. 4)
  • barrier film Ta film or the like
  • catalytic metal supporting film for example, Ti film
  • catalytic metal film such as Co (or catalyst fine particle layer)
  • Fig. 1 also shows a filled resin 9 for fixing CNT8.
  • Patent Document 1 JP 2002-329723 A (Claims)
  • Non-Patent Document 1 Fujitsu Limited, Fujitsu Laboratories Ltd., “World's First! Utilizing Carbon Nanotubes as a Heat Dissipation Substrate for Semiconductor Chips”, December 5, 2005, [Search August 18, 2006], Internet ⁇ URL: http: ⁇ pr.fojitsu.com/jp/news/2005/12/5.html ⁇
  • Non-patent literature 2 Nibe et al., "Japanese 'Journal' Ob 'Applied' Physics Physics;) ”, 2005, No. 44, p. 1626 Disclosure of the Invention
  • CNTs are produced by conventional production methods ⁇ laser abrasion, chemical vapor deposition (CVD), HiPCO (high-pressure carbon monoxide), etc. ⁇ .
  • the surface properties of CNTs produced by these methods depend on the graphite-like surface molecular structure, that is, the nature of the electronic superconjugated structure in which the benzene rings are connected, and wettability with other materials. Also shows properties like graphite. That is, as-manufactured (eg powdered) molecular surfaces are usually poorly dispersible in any solvent and when treated under specific conditions (eg sonicated with ethanol) The limit was that a dispersed state of several weeks at most could be obtained.
  • the decrease in electrical properties refers to, for example, an increase in specific resistance, a decrease in reliability of maintaining medium- and long-term electrical properties, an increase in specific resistance per weight and a deterioration in electromagnetic shielding performance, and the same reliability.
  • deterioration of mechanical strength refers to a decrease in rigidity, fracture strength, deterioration of their long-term performance, and the like.
  • deterioration of chemical properties refers to deterioration of material properties (for example, hygroscopicity, solvent resistance, oxidation by oxygen in the air) due to the environment.
  • CMP Chemical Mechanical Polishing
  • Xiao ij needs to be removed.
  • the bundle of CNTs is fixed, or it flows into the abrasive and polishing fluid CNT bundles during CMP to prevent contamination inside the CNTs.
  • a bundle of CNTs is used. This insulating material is not sufficiently filled, so the fine volume around the CNT bundle may prevent other substances from entering the CNT bundle.
  • An object of the present invention is to solve the above problems and provide a carbon nanotube-based material having improved affinity when in contact with other materials. Still other objects and advantages of the present invention will become apparent from the following description.
  • a surface-modified carbon nanotube-based material is produced.
  • carbon nanotube materials For carbon nanotube materials,
  • group material including this is provided.
  • a novel carbon nanotube-based material having improved affinity when in contact with other materials can be obtained.
  • novel carbon nanotube-based material having improved affinity when in contact with other materials obtained by the embodiment of the present invention is suitably used for all electronic members such as electronic parts and the like. can do.
  • the surface of the carbon nanotube-based material can be modified.
  • the substance is a substance that can be activated by vacuum ultraviolet rays to generate chemically active species such as radicals, and the carbon nanotube-based material whose surface should be modified is produced by the CVD method.
  • the carbon nanotube-based material whose surface is to be modified is grown on a substrate, and is composed of a conductive substance, an insulating substance, a hydrophilic substance, a lipophilic substance, and a substance having a specific group.
  • the surface-modified carbon nanotube-based material has improved affinity as compared with that before the surface modification when in contact with at least one substance selected from the group, and chemically active such as radicals.
  • Seed force including at least one of a chemically active species such as a radical of an electron-donating group and a chemically active species such as a radical of an electron-withdrawing group;
  • the material capable of modifying the surface of the base material contains oxygen, amines, halogenated alkyls, alcohols, ethers, and a mixture of these, and includes at least one selected material. It is preferable that the substance capable of modifying the surface of the carbon nanotube-based material is diluted with an inert substance that does not modify the surface of the carbon nanotube-based material even when irradiated with the vacuum ultraviolet rays.
  • an electronic member comprising the surface-modified carbon nanotube-based material described above, in particular, a via, a heat dissipation bump, a conductive sheet, an electromagnetic wave sheer material. Sheets, pre-preparers for producing these sheets, and electronic devices comprising the surface-modified carbon nanotube-based material are provided.
  • a novel carbon nanotube material having improved affinity when in contact with other materials can be obtained.
  • Such a material can be suitably used for an electronic device or an electronic member.
  • FIG. 1 is a schematic cross-sectional view of a wiring via structure using CNTs.
  • FIG. 2 is a schematic diagram showing the main part of an apparatus for irradiating VUV and supplying a specific substance according to the present invention.
  • ⁇ 3 Another schematic diagram showing the main part of the apparatus for irradiating VUV and supplying a specific substance according to the present invention.
  • FIG. 5 is a schematic diagram showing an example of an outline of the structure of an electronic device including a high thermal conductive bump, in which a carbon nanotube-based material is applied to a cooling bump material for a high-performance electronic device.
  • Carbon according to the present invention FIG. 5 is a schematic diagram showing an outline of a manufacturing method when a nanotube-based material is applied to a material with high-performance electromagnetic waves.
  • the surface-modified carbon nanotube material according to the present invention is different from the carbon nanotube material in vacuum ultraviolet (VUV).
  • VUV vacuum ultraviolet
  • a substance capable of modifying the surface of the carbon nanotube-based material by combination with the VUV (“substance capable of modifying the surface of the carbon nanotube-based material by combination with VUV”) (Hereinafter also referred to as “specific substances”).
  • this carbon nanotube-based material is modified by irradiating the carbon nanotube-based material with VUV and supplying this specific material. This material is probably activated by VUV. It is thought that this may be due to generation of chemically active species such as radicals that are trapped and the chemical species acting on the surface of the carbon nanotube material.
  • the mechanism is presumed to be as follows (however, the remedy is not related to the essence of the present invention). That is, upon receiving VUV irradiation, the bond of a specific substance floating in the vicinity of the nanotube molecule is cleaved, and active oxygen such as singlet oxygen, Chemical species such as amino radicals, alkyl radicals, and alkoxy radicals are generated. Because these radicals are unstable and highly reactive, they have relatively reactive defects on the graph nanotube sheet of nearby nanotubes (5-membered ring, 7-membered ring, usually called dangling bonds) To a binding state part or the like) to form a covalent bond. Alternatively, it does not directly bond to nanotubes, but chemically active species such as radicals react and recombine, resulting in higher boiling (low volatility) products. This is a mechanism that adsorbs to the surface of nanotube molecules.
  • this substance or a part thereof is adsorbed on the surface of the carbon nanotube material and is chemically active such as radicals by the action of VUV.
  • Other mechanisms may exist, such as acting on the surface of carbon nanotube materials without passing through seeds.
  • the force that is thought to be mainly composed of chemical bonds as the above action is not known. However, these mechanisms and modes of action are not related to the essence of the present invention.
  • Such surface modification specifically includes changes in surface tension, changes in wettability to a specific solvent, and introduction of specific groups (for example, polar groups) onto the surface of a carbon nanotube-based material.
  • specific groups for example, polar groups
  • the surface of the carbon nanotube-based material is modified in any way due to changes in the adhesion with a specific material, the amount of adsorption of a specific substance, etc., or when the modification does not use VUV This can be confirmed by the improvement.
  • the affinity with other substances is improved.
  • VUV since the substance that can generate chemically active species such as radicals by VUV as described above often corresponds to the specific substance, VUV does not depend on the specific change as described above. Substances that can generate chemically active species such as radicals may be considered as specific substances. This is because if a chemically active species such as a radical is generated, This is the force that is the answer that the change is occurring on the surface of the carbon nanotube material.
  • Chemically active species such as radicals include chemically active species such as radicals of electron-donating groups and chemically active species such as radicals of electron-absorbing group I. It is preferable that at least one of these is included.
  • a chemically active species such as a radical is involved, a polar group is introduced into the carbon nanotube material, and the affinity with a polar substance is improved.
  • surface means a surface in a so-called surface modification, and may include not only the outermost surface of a carbon nanotube-based material but also a recessed surface and an inner surface. In the context of the present invention, it is not important where the carbon nanotube-based material is specifically modified! /.
  • any substance force without particular limitation can be selected. Specifically, it is preferable to select according to what kind of surface modification is desired. For example, in order to improve the affinity for polar solvents, we prefer substances that can introduce polar groups onto the surface of carbon nanotube materials. In order to improve the affinity for a solvent having a specific structure, a substance capable of introducing the specific chemical structure or a chemical structure close to it onto the surface of the carbon nanotube material is preferable. It may be possible to adjust the degree of hydrophilicity or lipophilicity of the carbon nanotube-based material by adjusting the type or amount of hydrophilic group or lipophilic group.
  • the carbon nanotube-based material preferably contains at least one substance selected from the group power consisting of oxygen, amines, alkyl halides, alcohols, ethers and mixtures thereof. If these substances are used, the polarity of the surface of the carbon nanotube-based material can be generally improved.
  • the specific substance is supplied to bring the specific substance into contact with the carbon nanotube-based material. This supply is performed in the gas phase.
  • a specific substance as a vapor
  • some vapor pressures are low or difficult to evaporate at normal pressure and room temperature, so this can be avoided by adopting reduced pressure as described below or diluting with an inert substance described later. It may be preferable to entrain the active substance or heat a specific substance.
  • the specific substance itself is not necessarily vaporized. Therefore, spray It may be useful to supply a specific substance in a state of being suspended in another gas. In this case, it is also known that the suspended specific substance may contribute to the modification of the carbon nanotube-based material in the liquid state.
  • the modification characteristics and degree of the carbon nanotube-based material are affected by the type of the specific substance supplied. For example, when many hydroxyl groups are introduced on the surface of a carbon nanotube material, the affinity for alcohol solvents such as ethanol and ethylene glycol (diol) glycerin (triol) is improved. In addition, when an amino group is introduced or an amino group or a compound containing an amino group is adsorbed, the affinity for a solvent having an amino group functional group such as dimethylformamide (DMF) tends to be improved. .
  • DMF dimethylformamide
  • UV-A in the range of more than 315 nm and less than 400 nm
  • UV-B in the wavelength of more than 280 nm and in the range of 315 nm and less
  • UV-C in the wavelength of more than 200 nm and in the range of 280 nm and less
  • the carbon nanotube-based material in the present invention generally has high surface stability (chemical stability, etc.) of UV-A to UV-C. It was found that the surface could not be sufficiently modified by UV irradiation, but it was possible when VUV was combined with the above specific substances.
  • the means for obtaining VUV is not particularly limited.
  • a Xe excimer UV lamp having a narrow width and a center wavelength of 172 nm can be preferably exemplified.
  • an Xe-sealed excimer UV lamp showing a wavelength distribution of about 160 to 200 nm is preferable, but not necessarily limited thereto.
  • the bond energy of organic compound bonds is directly related to the wavelength of the VUV, so if you want to eliminate specific bond breaks, the wavelength range of the VUV can be narrowly limited depending on the purpose. It is also useful to do.
  • VUV There are no restrictions on the output of VUV, and commercially available ones with an output of about several tens of mWZcm 2 can be preferably used. However, if there is no problem with cooling or placement of equipment that can generate VUV (excimer UV lamp, etc.), use a higher power equipment, or place multiple UV lamps in close proximity, and the actual irradiation dose per surface. Increasing production can lead to improved productivity.
  • VUV is generally used in a vacuum or under reduced pressure, but in the present invention, it can be used under normal pressure. That is, the VUV irradiation in the present invention is performed on a single-bonn nanotube-based material placed in a reduced pressure or normal pressure atmosphere.
  • the inert substance is not particularly limited. However, since the environment of the present invention is a gas phase, a gas substance or a volatile substance is generally appropriate. An inert gas such as neon or argon or nitrogen gas is preferred.
  • VUV As the distance between the carbon nanotube material to be irradiated and the VUV irradiation source, VUV is easily absorbed, and therefore a smaller one is often preferable. Force depending on the type and concentration (or vapor pressure or partial pressure) of the substance existing between the carbon nanotube material and the VUV irradiation source Generally, this distance is, for example, 0.1 ⁇ : LOOmm Good. Furthermore, in many cases, a 0.2 mm force of about several centimeters is preferable.
  • VUV irradiation There is no particular limitation on the method of VUV irradiation. It may not be necessary to supply the specific substance at the same time.
  • the surface modification of the carbon nanotube-based material occurs only in the part where the VUV is directly irradiated. For example, when the lifetime of chemically active species such as the generated radicals is long, it is considered that surface modification can also occur at the site when directly irradiated to VUV. Therefore, if the carbon nanotube-based material is irradiated to the VUV as a whole and as a result surface-modified, it meets the gist of the present invention, but in general, individual carbon nanotube-based materials are directly applied to the VUV as much as possible. It is preferable to be irradiated. In this sense, it is preferable that the carbon nanotube-based material rises from the substrate and is aligned in the aligned direction or is dispersed on the substrate, but is not limited to this.
  • the "carbon nanotube-based material” in the present invention means CNT or a material in which CNT is modified in some sense.
  • CNT which is a carbon tube having a nano-sized cross section (for example, a cross-sectional diameter of 0.3 to 10 nm).
  • the length it is possible to preferably illustrate a length of several tens of nanometers to several millimeters. /.
  • CNTs have a band structure that satisfies the conditions for exhibiting metallic properties and a band structure that satisfies the conditions for exhibiting semiconducting (semimetallic) properties.
  • the CNTs according to the present invention it is possible to use a deviation between those showing metallic properties and those showing semiconductor properties!
  • the "carbon nanotube-based material” in the present invention has a so-called peapod structure in which CNTs are packed with nanostructures other than nanotubes that exhibit metallic properties as a whole, such as fullerene encapsulating metal. These nanotubes are also included. That is, “modification” in the above includes such cases.
  • a peapod-shaped nanotube including such another nanostructure By using a peapod-shaped nanotube including such another nanostructure, it may be possible to enhance, for example, electrical conductivity characteristics or mechanical strength of a via.
  • electrical conductivity characteristics or mechanical strength of a via For example, in the case of CNTs containing metal-encapsulated fullerenes, it is known from first-principles calculations that the charge of the encapsulated metal appears outside the fullerene and further outside the nanotube, which leads to the electrical conductivity of the via. Characteristics can be improved.
  • arc discharge and laser ablation have been used to form CNTs and other carbon nanotube-based materials.
  • plasma CVD plasma chemical vapor deposition
  • thermal CVD are often used. Yes.
  • the CVD method is expected to be applied to the manufacture of integrated circuits because nanotubes can be formed directly on the substrate.
  • the present invention is not limited to the CNT production method used.
  • the carbon nanotube-based material according to the present invention is often preferably produced by CVD in this way. In that case, a carbon nanotube-based material is generated on the substrate.
  • the formation of the carbon nanotube-based material on the substrate itself is not an essential requirement of the present invention, but when the carbon nanotube-based material is formed on the substrate, direct irradiation with VUV is easy as described above. In addition, it is often preferred because of its good adhesion to the substrate.
  • the material for forming this substrate is not particularly limited and can be appropriately selected. However, in order to obtain conductivity, the material is electrically conductive. In order to obtain thermal conductivity, it is preferable to select one having good thermal conductivity.
  • an apparatus for irradiating a carbon nanotube material with VUV and supplying a specific substance there is no particular limitation on an apparatus for irradiating a carbon nanotube material with VUV and supplying a specific substance.
  • a device having the structure shown in FIGS. In FIG. 2 there are a supply path 23 of a gas 22 obtained by diluting a specific substance with an inert substance under a VUV source 21, and a blowout opening 24 for the specific substance.
  • VUV source 21 is cooled by cooling medium 25.
  • a substrate 27 having a bundle 26 of CNTs arranged vertically below the outlet 24 moves to the left force right of the page.
  • FIG. 3 is the same as FIG.
  • the vertically aligned CNT bundle 26 can be realized, for example, as a CNT bundle grown in a via hole.
  • the arrows with solid lines in Figs. 2 and 3 indicate the flow of gas 22 and cooling medium 25 in which a specific substance is diluted with an inert substance, and the arrows with wavy lines indicate VUV irradiation.
  • a novel carbon nanotube material having improved affinity when in contact with other materials can be obtained.
  • Such a material can be suitably used for an electronic member.
  • “Improvement of affinity” means improvement of surface tension, contact with other substances, improvement of adhesiveness, increase of adsorption amount, interlayer between other substances. It means the reduction of foreign matter (moisture, etc.) and cavities (micro space).
  • the “other substances” are at least one substance selected from the group power that is also a conductive substance, an insulating substance, a hydrophilic substance, a lipophilic substance and a substance having a specific group. It is preferable.
  • carbon nanotube-based materials as components for electronic devices, etc., it is possible to improve electrical connection, thermal connection, mechanical coupling, wetting to solvents and adhesives, etc.
  • Examples of such conductive materials include copper, aluminum, and other electrically conductive materials such as metals used in electronic wiring sections
  • insulating materials include SOG, TEOS (tetra Insulating resin for sealing semiconductors such as ethoxysilane, polyimide resin, etc., or the so-called “Low-k resin” (NCS, SiLK, MSQ, etc.), or fluorine-based resin such as PFA, FEP, Teflon (registered trademark), that is, electrically insulating materials suitable for fixing CNTs in general
  • hydrophilic substances include water, ethanol, Alcohol solvents such as methanol, phenol, dioxanes, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, etc.
  • lipophilic substances include petroleum ether, n-hexane, Paraffinic solvents such as chlorohexane, aromatic solvents such as benzene, toluene, xylene and talesol, or THF
  • the substance having a specific group is basically a substance (preferably a low-viscosity gas or liquid) containing a functional group that is contained in a large amount in the above-mentioned insulating substance, hydrophilic substance, and lipophilic substance.
  • Typical examples include the following: — OH, —COOH, —NH 2, 1 NR (where R is an aliphatic, aromatic alkyl group or its
  • —CO—, —C 0, substances having at least one of an imide bond and an ether bond, that is, alcohols and phenols, carboxylic acids, amines, ketones and quinones, and the like.
  • the carbon nanotube-based material according to the present invention is used for any application where the carbon nanotube-based material is used or is likely to be used, such as an electric product, an electronic product, and a mechanical product, according to needs. Although it may be used, in view of the excellent electrical and thermal properties of carbon nanotube-based materials, it can be used especially for medical, aerospace, or portable electronic devices that can generate electromagnetic waves (cell phones, Including portable electronic device terminals such as personal computers) or electronic devices (for example, semiconductor devices and printed wiring boards) The semiconductor integrated circuit device can be suitably used.
  • conductive materials used for electronic devices with high performance, light weight and little deterioration in long-term use
  • electromagnetic wave-resistant members sheets, etc.
  • electronic devices with less problems such as peeling or disconnection It can be expected to realize electronic devices.
  • Examples of such electronic members include heat dissipation bumps for mounting electronic devices and wiring vias for electronic devices.
  • the present invention is not limited to the above-described electronic component, electronic device element, or the like.
  • Electronic devices that generate electromagnetic waves including electronic devices, medical devices, mobile phones, personal computers, etc., conductive sheets, high-frequency electromagnetic shielding materials for electronic terminals, and precursors for producing these components (so-called pre-preparers) Include).
  • FIG. 4 is a cross-sectional view schematically showing a semiconductor integrated circuit device using the carbon nanotube material according to the present invention for an LSI wiring via.
  • a plurality of elements such as the transistor 42 are formed on the silicon substrate 41, and a plurality of insulating layers (interlayer insulating films) 43a to 43f are formed so as to cover them.
  • a wiring layer is located across the insulating layer, and the wiring 45 of a predetermined wiring layer is connected to the wiring 45 of another layer by a via 46 formed through the insulating layer.
  • Reference numeral 47 denotes a contact connected to the wiring 45 that connects the elements.
  • the uppermost wiring layer is covered with a protective layer 48.
  • the carbon nanotube-based material according to the present invention is applied to the via 46, and the nanotube is dissolved in this by improving the wettability with respect to a specific solvent.
  • the upper end of the carbon nanotube-based material grown in the beer is improved by improving the permeability of CNTs around the CNT and, as a result, closing the cavity around the CNT and fixing the CNT bundle. Can be satisfactorily scraped off by CMP, and therefore a good electrical connection with the wiring part can be realized.
  • FIG. 5 is a schematic diagram showing an example of an outline of the structure of an electronic device including a high thermal conductive bump in which a carbon nanotube-based material is applied to a cooling bump material of a high-performance electronic device.
  • the carbon nanotube material according to the present invention can be applied to a cooling bump material for a high-performance electronic device.
  • the gas with oxygen diluted with nitrogen or the gas diluted with nitrogen with oxygen and a small amount of water is applied to the substrate with CNTs in Fig. 5.
  • VUV treatment is performed, followed by heat treatment and electrical conductive material (metal such as Cu, A1, etc.) on the CNT part of the substrate with CNT treated with metal (wet treatment).
  • a so-called CNT hybrid 'bump structure with sufficient penetration into the space between them can be produced.
  • an electronic device can be thermocompression-bonded (preferably about 250 to 450 ° C) on this treated substrate to produce a highly thermally conductive electronic device using CNT bumps infiltrated with metal or the like. .
  • FIG. 6 is a schematic diagram showing an electromagnetic shielding sheet or pre-preder according to the present invention. That is, by dispersing CNTs on a resin sheet and attaching this sheet to another resin sheet, an electromagnetic shielding sheet or its pre-preda can be obtained.
  • Example 1
  • a Si wafer ⁇ p-type, (100) surface ⁇ with Ni formed by sputtering to a thickness of 25 nm was used as a substrate.
  • thermal CVD using acetylene gas as a raw material at 650 ° C, Multiwall carbon nanotubes were grown to a length of about 1.5 m. When the surface density of the nanotube was measured, it was about 5 ⁇ 10 11 pieces Zcm 2 .
  • Example 2 A specific substance similar to that in Example 1 was used, and a sample obtained by generating single wall carbon nanotubes on a Si wafer ⁇ p-type, (100) plane ⁇ by an arc discharge method was used.
  • Example 1 The same treatment as in Example 1 was performed. However, the processing time was set to 10% of Example 1.
  • a cylindrical hole pattern with a diameter of 0.5 m and a depth of 1 m was formed on the Si substrate, a Ti thin film lOnm was formed by sputtering on the entire wafer surface including the bottom surface, and Ni fine particles with an average particle diameter lOnm were formed. Scattered over the entire surface of the wafer including the bottom, multi-wall carbon nanotubes with a length of 1500 nm were grown to the top of the holes by thermal CVD. When the surface density of the nanotube was measured, it was about 3 ⁇ 10 11 pieces Zcm 2 .
  • Example 1 The same apparatus as in Example 1 was used for this sample, the same specific material as in Example 1 was supplied in the same manner as in Example 1, and VUV was irradiated in the same manner as in Example 1.
  • the nanotubes are improved in hydrophilicity, and are expected to show a good affinity for substances such as hydrophilic solvents and adhesives.
  • the electrical resistance between the upper surface of the CNT bundled with ammonia water and the lower (substrate) surface in this example was 2 ⁇ (ohms), which was an extremely low value.
  • the wiring via structure of the transistor was formed in a simulated manner (when the surface density of the nanotube was measured, it was about 5 X 10 11 pieces Zcm 2 ). Nanotube carbonylation and hydroxylation were performed. However, as the reactive substance, oxygen diluted with N and HO were used in place of triethylamine.
  • a cylindrical hole pattern with a diameter of 0.5 m and a depth of lOOOnm was formed on the Si substrate, a Ti thin film lOnm was formed by sputtering on the entire wafer surface including the bottom surface, and Co fine particles with an average particle diameter of 7 nm.
  • Co fine particles with an average particle diameter of 7 nm was sprayed over the entire surface of the wafer including the bottom, and multiwall carbon nanotubes with a length of 1500 nm were grown above the holes by CVD, and then this sample was subjected to a carbolysis using the same method as in Example 1. -Fluorination and hydroxylation were performed.
  • a gas containing 0.5% by volume of oxygen, 0.1% by volume of H 2 O and the balance of nitrogen is included in the specific substance.
  • the gas was used as a gas and the flow rate of this gas was set at 5 L / min.
  • Example 1 The same apparatus as in Example 1 was used, and VUV was irradiated in the same manner as in Example 1. The reaction time was 15% of Example 1.
  • Ethanol, MIBK (methyl isobutyl ketone) and a 1: 1 (volume ratio) mixture of these were added dropwise to the treated samples, and after 10 minutes, they were thoroughly dried on a hot plate and scanned.
  • SEM electron microscope
  • the ratio of bundled CNTs was large in the order of ethanol> 1 to 1 mixture> MIBK (methyl isobutyl ketone). This is the same as the case of the ammonia water described above. It is thought that. That is, it was shown that the wettability with respect to these media was good.
  • the same treatment was applied to the nanotube sample in the untreated hole pattern, only a part of the nanotubes showed bundle defects.
  • a multi-wall carbon nano tube manufactured by the same method as in Example 4 (when the surface density of the nanotube was measured, it was about 5 X 10 11 Zcm 2 ).
  • VUV treatment was performed in exactly the same manner as in Example 4, taking 30% of the time of Example 1, and then immersed in an aqueous solution of Cu plating seed for 10 minutes. When this was observed with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope), and EDX, most of the CNTs were bundled and a large amount of Cu fine particles adhered to the surface. It was.
  • the CNT layer is bonded inside to form a planar or other shaped member.
  • resin can also be applied to a modified adhesive method.
  • CNT can be sprayed on a general pre-prepared material with low shape retention and VUV treatment can be performed!
  • the resin can be applied to anything including thermosetting.
  • the molding method can be applied to a variety of things if it does not flow during the CNT solidification process.
  • the present invention can be suitably used in a field (for example, the electronic equipment field) in which a novel carbon nanotube material having improved affinity when in contact with other materials can be used.

Abstract

Novel carbon nanotube materials according to the invention are produced by a process which comprises irradiating a carbon nanotube material with vacuum ultraviolet rays and feeding a substance which can modify the surface of the material in combination with vacuum ultraviolet rays. The novel carbon nanotube materials are improved in the affinity as observed when the materials come into contact with other materials.

Description

明 細 書  Specification
カーボンナノチューブ系材料、その製造方法、電子部材および電子装置 技術分野  Carbon nanotube material, manufacturing method thereof, electronic member and electronic device
[0001] 本発明は、カーボンナノチューブ系材料の表面改質技術に関する。  [0001] The present invention relates to a surface modification technique for a carbon nanotube-based material.
背景技術  Background art
[0002] 近年、半導体装置やプリント配線基板等を含む半導体集積回路装置では、導電体 や熱伝導体の性質を持った電子部材に、 V、わゆるカーボンナノチューブ (CNT)を 用いる検討がされている。  [0002] In recent years, in semiconductor integrated circuit devices including semiconductor devices and printed wiring boards, studies have been made on the use of V, so-called carbon nanotubes (CNT), as electronic members having the properties of conductors and thermal conductors. Yes.
[0003] 特に CNTは、化学的安定性に優れ、また、特異な物理的'電気的性質を有する等 、様々な特性を有しており、半導体装置の形成材料として注目され、たとえば、その 太さや長さの制御のほか、形成位置制御やカイラリティ制御等、現在も様々な検討が 続けられている。  [0003] In particular, CNTs have various characteristics such as excellent chemical stability and unique physical and electrical properties, and are attracting attention as a material for forming semiconductor devices. In addition to sheath length control, various studies are ongoing, such as formation position control and chirality control.
[0004] 具体的な用途としては、電子機器の電磁波しやヘ 、用部材、超 LSI等の高機能電 子デバイスの冷却用バンプ材料、および半導体装置の配線ビヤ構造部材等が注目 を集めている。  [0004] As specific applications, electromagnetic wave components for electronic devices, components, cooling bump materials for high-performance electronic devices such as VLSI, and wiring via structure members for semiconductor devices have attracted attention. Yes.
[0005] 例えば、 CNTが極めて熱伝動性が高 、性質を利用して、 CNTを高密度に半導体 プロセス基板上に成長させ、これを導電回路の一部やプロセス基板上に搭載された 電子デバイス(半導体装置)からの接着部構造、およびその構造部力ゝらのデバイス発 熱の排熱パス ( 、わゆる「バンプ構造」)として用いるような応用が考えられる。  [0005] For example, CNTs have extremely high thermal conductivity, making use of their properties to grow CNTs on a semiconductor process substrate at high density, and this is mounted on a part of a conductive circuit or an electronic device mounted on the process substrate Applications such as bonding structure from (semiconductor device) and exhaust heat path for device heat generation (so-called “bump structure”) can be considered.
[0006] さらに、 CNTの極めて高い電気伝導性を利用して、超微細構造を持つ半導体装置  [0006] Furthermore, a semiconductor device having an ultrafine structure utilizing the extremely high electrical conductivity of CNTs
(半導体デバイス)の高密度配線構造におけるビヤ配線構造体として用いる場合も応 用として考えられる。  The case where it is used as a via wiring structure in a high-density wiring structure of (semiconductor device) is also considered as an application.
[0007] 図 5に、そのような CNTを利用した高機能電子デバイスの冷却用バンプ材料として 用いた構造 (たとえば非特許文献 1参照。)の一例を示す。このような高機能電子デ バイスの冷却用バンプ構造は、図 5に示すように、たとえば、基板 (窒化アルミニウム( A1N、アルミナ等) 51上の電極 52上に触媒金属担持膜 (例えば TiN膜)と触媒金属 膜 (Co等)(両者を併せて番号 53で示す)をスパッタ等により堆積し、ついで、炭化水 素系ガス (CH、 C H等)を用いた熱 CVD法 (熱化学的気相成長法)等で CNT54を[0007] FIG. 5 shows an example of a structure (see, for example, Non-Patent Document 1) used as a cooling bump material for a high-performance electronic device using such CNTs. As shown in FIG. 5, for example, such a cooling bump structure for a high-performance electronic device has a catalyst metal supporting film (eg, TiN film) on an electrode 52 on a substrate (aluminum nitride (A1N, alumina, etc.) 51). And catalytic metal film (Co etc.) (both are indicated by the number 53 together) are deposited by sputtering etc. CNT54 by thermal CVD method (thermochemical vapor deposition method) using elemental gas (CH, CH, etc.)
4 2 2 4 2 2
成長させ、その後、この CNT付き基板の CNT部にメツキ(ウエット処理)等により伝導 性物質 (Cu、 A1等の金属、等)を付着させ、 CNTバンプ構造を作製することができる 。この後この基板上に、電子デバイスを、熱圧着(250〜450°C程度が望ましい)し、 高熱伝導性電子デバイスを作製することができる。  After that, a conductive material (metal such as Cu, A1, etc.) is attached to the CNT portion of this CNT-attached substrate by plating (wet treatment) or the like, and a CNT bump structure can be produced. Thereafter, the electronic device can be thermocompression-bonded (desirably about 250 to 450 ° C.) on the substrate to produce a highly thermally conductive electronic device.
[0008] また、図 1に、上記の CNTを利用した配線ビア構造 (たとえば特許文献 1および非 特許文献 2参照。)の一例を示す。このようなビア構造は、図 1に示すように、たとえば 、基板 1上に、下地層 2および Cu配線層 3を設け、この Cu配線層 3上に Cuの拡散を 防ぐバリア膜 (Ta膜など) 4を堆積し、絶縁層 5をその上に設け、ビアホールを設けた 後、触媒金属担持膜 (例えば Ti膜) 6と Co等の触媒金属膜 (あるいは触媒微粒子層) 7とをスパッタ等により堆積し、ついで、炭化水素系ガス (CH、 C H等)を用いた熱 C [0008] FIG. 1 shows an example of a wiring via structure using the above-mentioned CNT (for example, see Patent Document 1 and Non-Patent Document 2). As shown in FIG. 1, for example, such a via structure has a base layer 2 and a Cu wiring layer 3 provided on a substrate 1, and a barrier film (Ta film or the like) that prevents Cu diffusion on the Cu wiring layer 3. 4) After depositing 4 and providing insulating layer 5 thereon and via holes, catalytic metal supporting film (for example, Ti film) 6 and catalytic metal film such as Co (or catalyst fine particle layer) 7 are formed by sputtering or the like. Then, heat C using hydrocarbon gas (CH, CH, etc.)
4 2 2  4 2 2
VD法 (熱化学的気相成長法)等で CNT8を成長させ、その後、上部配線を形成する ことで作製することができる。図 1には CNT8を固定するための充填榭脂 9も示されて いる。  It can be fabricated by growing CNT8 by VD (thermochemical vapor deposition) or the like and then forming the upper wiring. Fig. 1 also shows a filled resin 9 for fixing CNT8.
特許文献 1:特開 2002— 329723号公報 (特許請求の範囲)  Patent Document 1: JP 2002-329723 A (Claims)
非特許文献 1 :富士通株式会社,株式会社富士通研究所, 「世界初!カーボンナノ チューブを半導体チップの放熱基板に活用」, 2005年 12月 5日, [2006年 8月 18日 検索] ,インターネット、〈URL:http:〃 pr.fojitsu.com/ jp/news/2005/12/5.html〉 非特許文献 2:二瓶ら, 「ジャパニーズ 'ジャーナル'ォブ 'アプライド 'フィジックス (Jap anese Journal of Applied Physics;)」, 2005年,第 44卷, p. 1626 発明の開示  Non-Patent Document 1: Fujitsu Limited, Fujitsu Laboratories Ltd., “World's First! Utilizing Carbon Nanotubes as a Heat Dissipation Substrate for Semiconductor Chips”, December 5, 2005, [Search August 18, 2006], Internet 〈〈 URL: http: 〃 pr.fojitsu.com/jp/news/2005/12/5.html〉 Non-patent literature 2: Nibe et al., "Japanese 'Journal' Ob 'Applied' Physics Physics;) ”, 2005, No. 44, p. 1626 Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] し力しながら、カーボンナノチューブ自体は優れた導電性、半導体性、熱伝導性、 化学的安定性等を有するものの、他の材料と接した場合に親和性が充分ではなぐ 接続部における導電性や熱伝導性が大幅に低下したり、層間における十分な接着 性、密着性が得られない場合があると言う問題が知られている。この問題は、 Si基板 上に、一端を固定して CVDにより製造されるナノチューブを配線用途に用いる場合 についても同様である。 [0010] このような問題は、部材の製造時に、 CNTの周辺層との密着が完全に行われること で実現可能と考えられる。し力しながら、他材料との界面の親和性が乏しい現状の解 決なしにはこのような密着を実現できないという問題がある。これは、 CNTの全ての 用途に共通の課題でもある。 However, although carbon nanotubes themselves have excellent conductivity, semiconductivity, thermal conductivity, chemical stability, etc., the affinity is not sufficient when in contact with other materials. There are known problems that the electrical conductivity and thermal conductivity are greatly reduced and sufficient adhesion and adhesion between layers may not be obtained. This problem also applies to the case where nanotubes manufactured by CVD with one end fixed on a Si substrate are used for wiring. [0010] It is considered that such a problem can be realized by completely adhering to the peripheral layer of the CNT at the time of manufacturing the member. However, there is a problem that such adhesion cannot be realized without solving the current situation where the affinity of the interface with other materials is poor. This is a common issue for all CNT applications.
[0011] 一般的に、 CNTは、従来の製造方法 {レーザアブレーシヨン、化学的気相成長法( CVD)、 HiPCO (high— pressure carbon monoxide)法等 }で製造される。これ らの方法により製造された CNTの表面の性質は、グラフアイト様の表面分子構造、す なわち、ベンゼン環のつながった電子的超共役構造の性質に依存し、他の材料との 濡れ性もまた、グラフアイトのごとき性質を示す。すなわち、製造されたまま (たとえば 粉状)の分子表面では、通常、いずれの溶剤にも分散性が不良であり、特定の条件 で処理した場合 (たとえばエタノールと共に超音波処理した場合等)に、高々数週間 程度の分散状態が得られるのが限界であった。  [0011] Generally, CNTs are produced by conventional production methods {laser abrasion, chemical vapor deposition (CVD), HiPCO (high-pressure carbon monoxide), etc.}. The surface properties of CNTs produced by these methods depend on the graphite-like surface molecular structure, that is, the nature of the electronic superconjugated structure in which the benzene rings are connected, and wettability with other materials. Also shows properties like graphite. That is, as-manufactured (eg powdered) molecular surfaces are usually poorly dispersible in any solvent and when treated under specific conditions (eg sonicated with ethanol) The limit was that a dispersed state of several weeks at most could be obtained.
[0012] この性質は、上記のように、 CNTの各種の工学的応用に大きな制約となって!/、た。  [0012] As described above, this property has been a major limitation for various engineering applications of CNTs!
すなわち、製造された CNTと他の材料とのハイブリッド材料、例えば榭脂との機能性 混合構造材を製造せんとする場合においては、現状では、他の材料との混練等の操 作によっても、界面活性剤等の添加物なしでは、ミクロ的に相溶性の十分に良い複 合材料の製造は困難であり、また添加物を加えると、その材料の性質が複合材料に 与える悪影響 (例えば電気的性質の低下、機械的強度の低下、化学的性質の劣化) が逃れられない。なお、ここで、電気的性質の低下とは、例えば、比抵抗の増大、中 長期の電気的性質の維持信頼性の低下、重量あたりの比抵抗の増加および電磁波 しゃへい性能の劣化、ならびに同信頼性の低下等を言う。また、機械的強度の低下 とは、剛性率、破壊強度の低下、およびそれらの長期性能の劣化等、を言う。また、 化学的性質の劣化とは、対環境による材料物性 (例えば、吸湿性、対溶剤性、空気 中の酸素による酸化)の劣化等を言う。  In other words, in the case of producing a hybrid mixed material of CNT and other materials, for example, a functional mixed structural material with rosin, at present, even by operations such as kneading with other materials, Without additives such as surfactants, it is difficult to produce composite materials that are sufficiently microscopically compatible, and when additives are added, the properties of the materials adversely affect the composite material (e.g., electrical Property degradation, mechanical strength degradation, chemical property degradation) cannot be escaped. Here, the decrease in electrical properties refers to, for example, an increase in specific resistance, a decrease in reliability of maintaining medium- and long-term electrical properties, an increase in specific resistance per weight and a deterioration in electromagnetic shielding performance, and the same reliability. This refers to a decline in sex. Further, the decrease in mechanical strength refers to a decrease in rigidity, fracture strength, deterioration of their long-term performance, and the like. In addition, deterioration of chemical properties refers to deterioration of material properties (for example, hygroscopicity, solvent resistance, oxidation by oxygen in the air) due to the environment.
[0013] たとえば、一例として、超 LSI等の高密度高機能電子装置のビヤ配線用材料として CNTを応用するためには、ビヤ内に成長させた CNTの上端を CMP (Chemical M echanical Polishing)により肖 ijり取る必要がある。このとき、 CNTの束を固定し、あ るいは CMP時に研磨材、研磨液力CNT束内に流れ込んで CNT内部を汚染しない ようにするため(あるいは、もし流れ込んでも後から容易に除去できるようにするため) 、絶縁材料等で CNTの束の周りを他の物質で固める必要がある場合がある力 この 絶縁材料等との親和性が悪 、と、溶剤に溶力した榭脂をスピンコート法等により塗布 する方法を用いても、真空環境にて榭脂状物質を製膜する方法を用いても、 CNTの 束の間にこの絶縁材料等が十分満たされず、そのため CNT束の周りに細かな体積 のため、 CNTの束に他物質がうまく入らないことがある。 [0013] For example, in order to apply CNT as a material for via wiring in high-density and high-performance electronic devices such as VLSI, for example, the upper end of CNT grown in the via is formed by CMP (Chemical Mechanical Polishing). Xiao ij needs to be removed. At this time, the bundle of CNTs is fixed, or it flows into the abrasive and polishing fluid CNT bundles during CMP to prevent contamination inside the CNTs. In order to make it (or to make it easy to remove it later even if it flows in), it may be necessary to harden the CNT bundle around with other materials with an insulating material, etc. Whether the affinity is poor and the method of applying a resin having a solvent strength in a solvent by a spin coating method or the like, or using a method of forming a resinous material in a vacuum environment, a bundle of CNTs is used. This insulating material is not sufficiently filled, so the fine volume around the CNT bundle may prevent other substances from entering the CNT bundle.
[0014] 本発明は上記問題を解決し、他の材料と接した場合に親和性の向上したカーボン ナノチューブ系材料を提供することを目的としている。本発明のさらに他の目的およ び利点は、以下の説明から明らかになるであろう。 [0014] An object of the present invention is to solve the above problems and provide a carbon nanotube-based material having improved affinity when in contact with other materials. Still other objects and advantages of the present invention will become apparent from the following description.
課題を解決するための手段  Means for solving the problem
[0015] 本発明の一態様によれば、表面の改質されたカーボンナノチューブ系材料の製造
Figure imgf000006_0001
、て、カーボンナノチューブ系材料に対し、
[0015] According to one aspect of the present invention, a surface-modified carbon nanotube-based material is produced.
Figure imgf000006_0001
For carbon nanotube materials,
真空紫外線を照射し、  Irradiate vacuum ultraviolet rays,
当該真空紫外線との組合せにより当該カーボンナノチューブ系材料の表面を改質 し得る物質を供給する  Supplying substances that can modify the surface of the carbon nanotube-based material in combination with the vacuum ultraviolet light
ことを含む、表面改質カーボンナノチューブ系材料の製造方法が提供される。  The manufacturing method of the surface modification carbon nanotube type | system | group material including this is provided.
[0016] 本発明態様により、他の材料と接した場合に親和性の向上した新規なカーボンナノ チューブ系材料が得られる。 [0016] According to the embodiment of the present invention, a novel carbon nanotube-based material having improved affinity when in contact with other materials can be obtained.
[0017] 本発明の他の一態様によれば、カーボンナノチューブ系材料に対し、 [0017] According to another aspect of the present invention, for a carbon nanotube-based material,
真空紫外線を照射し、  Irradiate vacuum ultraviolet rays,
当該真空紫外線との組合せにより当該カーボンナノチューブ系材料の表面を改質 し得る物質を供給する  Supplying substances that can modify the surface of the carbon nanotube-based material in combination with the vacuum ultraviolet light
ことを含む方法により製造された表面改質カーボンナノチューブ系材料が提供される  A surface-modified carbon nanotube-based material manufactured by a method including
[0018] 本発明態様により得られる、他の材料と接した場合に親和性の向上した新規なカー ボンナノチューブ系材料は、電子工業用部材等、電子部品等の電子部材全般に好 適に利用することができる。 [0018] The novel carbon nanotube-based material having improved affinity when in contact with other materials obtained by the embodiment of the present invention is suitably used for all electronic members such as electronic parts and the like. can do.
[0019] 上記二つの態様について、前記カーボンナノチューブ系材料の表面を改質し得る 物質が、真空紫外線により活性化されてラジカル等の化学的に活性な種を発生し得 る物質であること、前記の表面を改質すべきカーボンナノチューブ系材料が CVD法 によって作製されたものであること、前記の表面を改質すべきカーボンナノチューブ 系材料が基板上で成長させたものであること、導電性物質、絶縁性物質、親水性物 質、親油性物質および特定の基を有する物質からなる群から選ばれた少なくとも一 つの物質と接した場合に、表面改質カーボンナノチューブ系材料が、前記表面改質 前に比べ親和性が向上したものであること、前記ラジカル等の化学的に活性な種力 電子供与性基のラジカル等の化学的に活性な種と電子吸引性基のラジカル等の化 学的に活性な種との少なくともいずれか一方を含むこと、前記カーボンナノチューブ 系材料の表面を改質し得る物質が、酸素、アミン類、ハロゲンィ匕アルキル類、アルコ ール類、エーテル類およびこれらの混合物力 なる群力 選ばれた少なくとも一つの 物質を含むこと、前記カーボンナノチューブ系材料の表面を改質し得る物質が前記 真空紫外線を照射しても、前記カーボンナノチューブ系材料の表面を改質しない不 活性物質で希釈されたものであること、が好ましい。 [0019] With respect to the above two embodiments, the surface of the carbon nanotube-based material can be modified. The substance is a substance that can be activated by vacuum ultraviolet rays to generate chemically active species such as radicals, and the carbon nanotube-based material whose surface should be modified is produced by the CVD method. The carbon nanotube-based material whose surface is to be modified is grown on a substrate, and is composed of a conductive substance, an insulating substance, a hydrophilic substance, a lipophilic substance, and a substance having a specific group. The surface-modified carbon nanotube-based material has improved affinity as compared with that before the surface modification when in contact with at least one substance selected from the group, and chemically active such as radicals. Seed force including at least one of a chemically active species such as a radical of an electron-donating group and a chemically active species such as a radical of an electron-withdrawing group; The material capable of modifying the surface of the base material contains oxygen, amines, halogenated alkyls, alcohols, ethers, and a mixture of these, and includes at least one selected material. It is preferable that the substance capable of modifying the surface of the carbon nanotube-based material is diluted with an inert substance that does not modify the surface of the carbon nanotube-based material even when irradiated with the vacuum ultraviolet rays.
[0020] 本発明の更に他の態様によれば、上記の表面改質カーボンナノチューブ系材料を 含んでなる電子部材、特に、ビア、放熱用バンプ、や、導電性シート、電磁波しやへ ぃ材用シート、これらのシートを製造するためのプリプレダ等、および、上記の表面改 質カーボンナノチューブ系材料を含んでなる電子装置が提供される。  [0020] According to still another aspect of the present invention, an electronic member comprising the surface-modified carbon nanotube-based material described above, in particular, a via, a heat dissipation bump, a conductive sheet, an electromagnetic wave sheer material. Sheets, pre-preparers for producing these sheets, and electronic devices comprising the surface-modified carbon nanotube-based material are provided.
[0021] これら二つの本発明態様により、カーボンナノチューブ系材料の優れた特性を活か した電子機器や電子部材等を実現することができる。  [0021] With these two aspects of the present invention, it is possible to realize an electronic device, an electronic member, and the like that make use of the excellent characteristics of the carbon nanotube-based material.
発明の効果  The invention's effect
[0022] 本発明により、他の材料と接した場合に親和性の向上した新規なカーボンナノチュ ーブ系材料が得られる。このような材料は電子機器や電子部材等に好適に利用する ことができる。  [0022] According to the present invention, a novel carbon nanotube material having improved affinity when in contact with other materials can be obtained. Such a material can be suitably used for an electronic device or an electronic member.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]CNTを利用した配線ビア構造の模式的横断面図である。 FIG. 1 is a schematic cross-sectional view of a wiring via structure using CNTs.
[図 2]本発明に係る VUVを照射し、特定物質を供給するための装置の主要部分を示 す模式図である。 圆 3]本発明に係る VUVを照射し、特定物質を供給するための装置の主要部分を示 す他の模式図である。 FIG. 2 is a schematic diagram showing the main part of an apparatus for irradiating VUV and supplying a specific substance according to the present invention. 圆 3] Another schematic diagram showing the main part of the apparatus for irradiating VUV and supplying a specific substance according to the present invention.
圆 4]本発明に係るカーボンナノチューブ系材料をビアに利用した半導体集積回路 装置を模式的に示す断面図である。 4] A cross-sectional view schematically showing a semiconductor integrated circuit device using the carbon nanotube material according to the present invention as a via.
[図 5]カーボンナノチューブ系材料を高機能電子デバイスの冷却用バンプ材料に適 用した、高熱伝導バンプを含む電子デバイスの構造の概要の例を示す模式図である 圆 6]本発明に係るカーボンナノチューブ系材料を高機能電磁波しやヘ 、材に適用 した場合の製法例の概要を示す模式図である。  FIG. 5 is a schematic diagram showing an example of an outline of the structure of an electronic device including a high thermal conductive bump, in which a carbon nanotube-based material is applied to a cooling bump material for a high-performance electronic device. [6] Carbon according to the present invention FIG. 5 is a schematic diagram showing an outline of a manufacturing method when a nanotube-based material is applied to a material with high-performance electromagnetic waves.
符号の説明 Explanation of symbols
1 基板  1 Board
2 下地層  2 Underlayer
3 Cu配線層  3 Cu wiring layer
4 Ta膜  4 Ta membrane
5 絶縁層  5 Insulation layer
6 Ti膜  6 Ti film
7 触媒金属膜  7 Catalytic metal membrane
8 CNT  8 CNT
9 充填樹脂  9 Filling resin
21 VUV源  21 VUV source
22 特定物質を不活性物質で希釈したガス  22 Gas diluted with an inert substance
23 供給経路  23 Supply route
24 吹き出し口  24 Outlet
25 冷却用媒体  25 Cooling medium
26 CNTの束  26 CNT bundle
27 基板  27 Board
31 水冷ダクト  31 Water cooling duct
41 シリコン基板 42 トランジスタ 41 Silicon substrate 42 transistors
43a〜43f  43a-43f
層間絶縁膜  Interlayer insulation film
45 配線  45 Wiring
46 ビア  46 Via
47 コンタクト  47 Contacts
48 保護層  48 Protective layer
51 基板  51 PCB
52 電極  52 electrodes
53 触媒金属担持膜と触媒金属膜  53 Catalytic metal membrane and catalytic metal membrane
54 CNT  54 CNT
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、図面に従って本発明の実施の形態を説明する。し力しながら、本発明の技 術的範囲は、以下の実施の形態に限定されず、特許請求の範囲に記載された発明 とその均等物まで及ぶものである。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to the following embodiments, but extends to the invention described in the claims and equivalents thereof.
[0026] 本発明に係る表面改質カーボンナノチューブ系材料は、カーボンナノチューブ系 材料に対し、真空紫外線 (VUV; Vacuum  [0026] The surface-modified carbon nanotube material according to the present invention is different from the carbon nanotube material in vacuum ultraviolet (VUV).
Ultra Violet rays)を照射し、当該 VUVとの組合せにより当該カーボンナノチューブ 系材料の表面を改質し得る物質(「VUVとの組合せによりカーボンナノチューブ系材 料の表面を改質し得る物質」を、以下、「特定物質」ともいう)を供給することを含む方 法で製造することができる。  A substance capable of modifying the surface of the carbon nanotube-based material by combination with the VUV (“substance capable of modifying the surface of the carbon nanotube-based material by combination with VUV”) (Hereinafter also referred to as “specific substances”).
[0027] カーボンナノチューブ系材料に対し、 VUVを照射し、この特定物質を供給すること で、このカーボンナノチューブ系材料の表面が改質されるのは、恐らぐこの物質が V UVによって活性ィ匕されてラジカル等の化学的に活性な種を発生し、その化学種が カーボンナノチューブ系材料表面に作用するためであろうと考えられている。  [0027] The surface of this carbon nanotube-based material is modified by irradiating the carbon nanotube-based material with VUV and supplying this specific material. This material is probably activated by VUV. It is thought that this may be due to generation of chemically active species such as radicals that are trapped and the chemical species acting on the surface of the carbon nanotube material.
[0028] そのメカニズムはたとえば次のようなものであろうと推察されている(ただし、その是 非は本発明の本質とは無関係である)。すなわち、 VUV照射を受けて、ナノチューブ 分子近傍に浮遊した状態の特定物質の結合が開裂し、一重項酸素等の活性酸素、 ァミノラジカル、アルキルラジカル、アルコキシラジカル等の化学種が発生する。これ らのラジカルは不安定で反応性が高 、ため、近傍のナノチューブのグラフエンシート 上の比較的反応性の高い欠陥部分 (五員環、七員環部分、通常ダングリングボンドと 呼ばれる不安定結合状態部等)に、速やかに結合し、共有結合を形成する。あるい は、ナノチューブには直接ィ匕学結合せず、ラジカル等の化学的に活性な種同士が反 応し再結合するなどして、より高沸点 (低揮発性)の生成物となり、それがナノチュー ブ分子表面に吸着するというメカニズムである。 [0028] The mechanism is presumed to be as follows (however, the remedy is not related to the essence of the present invention). That is, upon receiving VUV irradiation, the bond of a specific substance floating in the vicinity of the nanotube molecule is cleaved, and active oxygen such as singlet oxygen, Chemical species such as amino radicals, alkyl radicals, and alkoxy radicals are generated. Because these radicals are unstable and highly reactive, they have relatively reactive defects on the graph nanotube sheet of nearby nanotubes (5-membered ring, 7-membered ring, usually called dangling bonds) To a binding state part or the like) to form a covalent bond. Alternatively, it does not directly bond to nanotubes, but chemically active species such as radicals react and recombine, resulting in higher boiling (low volatility) products. This is a mechanism that adsorbs to the surface of nanotube molecules.
[0029] し力しながら、このほかに、たとえば、この物質またはその一部が、カーボンナノチュ ーブ系材料の表面上に吸着され、 VUVによる作用により、ラジカル等の化学的に活 性な種を経な!ヽでカーボンナノチューブ系材料表面に作用する等、他のメカニズムも 存在するかも知れない。更に上記作用としては恐らく化学結合が主体であろうと考え られる力 物理的吸着等も存在している力も知れない。ただし、これらのメカニズムや 作用形態は本発明の本質とは関係しない。  [0029] However, in addition to this, for example, this substance or a part thereof is adsorbed on the surface of the carbon nanotube material and is chemically active such as radicals by the action of VUV. Other mechanisms may exist, such as acting on the surface of carbon nanotube materials without passing through seeds. Furthermore, the force that is thought to be mainly composed of chemical bonds as the above action is not known. However, these mechanisms and modes of action are not related to the essence of the present invention.
[0030] 本発明における特定物質であるかどうかは、 VUVの照射後に何らかの意味でカー ボンナノチューブ系材料の表面が改質されたことで確認することができる。また、 VU Vを使用しないで特定物質をカーボンナノチューブ系材料と接触させたときにもカー ボンナノチューブ系材料の表面改質が起こる場合には、その表面改質の程度がより 大きくなることで知ることができる。  [0030] Whether or not it is a specific substance in the present invention can be confirmed by modifying the surface of the carbon nanotube-based material for some reason after the VUV irradiation. In addition, if surface modification of carbon nanotube material occurs even when a specific substance is brought into contact with carbon nanotube material without using VUV, it will be known that the degree of surface modification will be greater be able to.
[0031] このような表面改質は、具体的には、表面張力の変化、特定の溶媒への濡れ性の 変化、カーボンナノチューブ系材料の表面上への特定の基 (たとえば極性基)の導 入、特定の材料との接着性の変化、特定の物質の吸着量の変化等によって、何らか の意味でカーボンナノチューブ系材料の表面が改質され、またはその改質が VUV を使用しないときに比べ改善されたことで確認することができる。このような改質の結 果、他の物質との親和性が向上する。  [0031] Such surface modification specifically includes changes in surface tension, changes in wettability to a specific solvent, and introduction of specific groups (for example, polar groups) onto the surface of a carbon nanotube-based material. When the surface of the carbon nanotube-based material is modified in any way due to changes in the adhesion with a specific material, the amount of adsorption of a specific substance, etc., or when the modification does not use VUV This can be confirmed by the improvement. As a result of such modification, the affinity with other substances is improved.
[0032] あるいは、上記のごとぐ VUVによってラジカル等の化学的に活性な種を発生し得 る物質が特定物質に該当する場合が多いので、上記のような具体的変化によらず、 VUVによってラジカル等の化学的に活性な種を発生し得る物質を特定物質と考え てもよい。これは、ラジカル等の化学的に活性な種が発生すれば、論理的に何らかの 変化がカーボンナノチューブ系材料の表面に生じている答である力 である。 [0032] Alternatively, since the substance that can generate chemically active species such as radicals by VUV as described above often corresponds to the specific substance, VUV does not depend on the specific change as described above. Substances that can generate chemically active species such as radicals may be considered as specific substances. This is because if a chemically active species such as a radical is generated, This is the force that is the answer that the change is occurring on the surface of the carbon nanotube material.
[0033] このようなラジカル等の化学的に活性な種としては、電子供与性基のラジカル等の 化学的に活性な種と電子吸弓 I性基のラジカル等の化学的に活性な種との少なくとも いずれか一方を含むものであることが好ましい。このようなラジカル等の化学的に活 性な種が関与する場合には、カーボンナノチューブ系材料に極性基が導入されるこ とになり、極性を有する物質との親和性が向上する。  [0033] Chemically active species such as radicals include chemically active species such as radicals of electron-donating groups and chemically active species such as radicals of electron-absorbing group I. It is preferable that at least one of these is included. When a chemically active species such as a radical is involved, a polar group is introduced into the carbon nanotube material, and the affinity with a polar substance is improved.
[0034] なお、本発明にお 、て「表面」は、 、わゆる表面改質における表面を意味し、カー ボンナノチューブ系材料の最外面のみならずくぼんだ表面や内部表面も該当し得る 1S 本発明との関係においては、具体的にカーボンナノチューブ系材料のどこが改 質されたかは重要ではな!/、。  [0034] In the present invention, "surface" means a surface in a so-called surface modification, and may include not only the outermost surface of a carbon nanotube-based material but also a recessed surface and an inner surface. In the context of the present invention, it is not important where the carbon nanotube-based material is specifically modified! /.
[0035] 本発明における特定物質については特に制限はなぐ任意の物質力 選択するこ とができる。具体的には、どのような表面改質を行いたいかに応じて選択することが好 ましい。たとえば極性溶媒に対する親和性を向上させるには、カーボンナノチューブ 系材料表面に極性基を導入できる物質が好ま 、。特定の構造を持つ溶媒に対す る親和性を向上させるには、カーボンナノチューブ系材料表面にその特定の化学構 造、あるいはそれに近い化学構造を導入できる物質が好ましい。親水性の基や親油 性の基の種類や導入量を調節することにより、カーボンナノチューブ系材料の親水 性や親油性の度合 、を調節することも可能であろう。  [0035] With regard to the specific substance in the present invention, any substance force without particular limitation can be selected. Specifically, it is preferable to select according to what kind of surface modification is desired. For example, in order to improve the affinity for polar solvents, we prefer substances that can introduce polar groups onto the surface of carbon nanotube materials. In order to improve the affinity for a solvent having a specific structure, a substance capable of introducing the specific chemical structure or a chemical structure close to it onto the surface of the carbon nanotube material is preferable. It may be possible to adjust the degree of hydrophilicity or lipophilicity of the carbon nanotube-based material by adjusting the type or amount of hydrophilic group or lipophilic group.
[0036] より具体的には、酸素、アミン類、ハロゲン化アルキル類、アルコール類、エーテル 類およびこれらの混合物からなる群力 選ばれた少なくとも一つの物質を含むもので あることが好ましい。これらの物質を使用すると、一般的にはカーボンナノチューブ系 材料表面の極性を向上させることができる。  More specifically, it preferably contains at least one substance selected from the group power consisting of oxygen, amines, alkyl halides, alcohols, ethers and mixtures thereof. If these substances are used, the polarity of the surface of the carbon nanotube-based material can be generally improved.
[0037] 特定物質の供給は、特定物質をカーボンナノチューブ系材料と接触させるために 行う。この供給は気相で行われる。特定物質を蒸気として供給する場合、常圧、室温 下では蒸気圧が低ぐまたは蒸発しにくいものもあるので、後述のごとく減圧を採用し たり、後述の不活性物質で希釈することによりこの不活性物質に同伴させたり、特定 物質を加熱したりすることが好ま U、場合もある。  [0037] The specific substance is supplied to bring the specific substance into contact with the carbon nanotube-based material. This supply is performed in the gas phase. When supplying a specific substance as a vapor, some vapor pressures are low or difficult to evaporate at normal pressure and room temperature, so this can be avoided by adopting reduced pressure as described below or diluting with an inert substance described later. It may be preferable to entrain the active substance or heat a specific substance.
[0038] ただし、特定物質自体は必ずしも蒸気になって 、る必要はな 、。したがって、噴霧 により特定物質が他の気体中に浮遊している状態で供給することも有用である場合 がある。この場合、浮遊した特定物質が液状のままカーボンナノチューブ系材料の改 質に寄与することもあり得る力も知れな 、。 [0038] However, the specific substance itself is not necessarily vaporized. Therefore, spray It may be useful to supply a specific substance in a state of being suspended in another gas. In this case, it is also known that the suspended specific substance may contribute to the modification of the carbon nanotube-based material in the liquid state.
[0039] カーボンナノチューブ系材料の改質の特性や度合いは、供給される特定物質の種 類によって影響を受ける。例えば、カーボンナノチューブ系材料の表面にヒドロキシ ル基が多く導入された場合は、エタノール、エチレングリコール (ジオール系)グリセリ ン(トリオール系)等のアルコール系溶媒に対する親和性が改善される。また、ァミノ 基が導入され、またはアミノ基あるいはアミノ基を含む化合物が吸着された場合には 、ジメチルホルムアミド (DMF)等のアミノ基系官能基を持つ溶媒に対する親和性が 向上される傾向がある。実験したところ、トリェチルァミンまたはアンモニアと Nの混合  [0039] The modification characteristics and degree of the carbon nanotube-based material are affected by the type of the specific substance supplied. For example, when many hydroxyl groups are introduced on the surface of a carbon nanotube material, the affinity for alcohol solvents such as ethanol and ethylene glycol (diol) glycerin (triol) is improved. In addition, when an amino group is introduced or an amino group or a compound containing an amino group is adsorbed, the affinity for a solvent having an amino group functional group such as dimethylformamide (DMF) tends to be improved. . Experiments have shown that triethylamine or a mixture of ammonia and N
2 ガスで満たした Si基板上のナノチューブでは、 VUV照射によりアミノ基を導入される 等の結果が得られた。  In the case of nanotubes on a Si substrate filled with two gases, amino groups were introduced by VUV irradiation.
[0040] 同様にチオール( SH)基ある 、はこれを含む複数の官能基ある 、は化合物が導 入され、または吸着された場合にはそれぞれの溶媒に対する親和性が向上する。更 に、例えば、ァミノ基とヒドロキシル基とを同時に導入すれば、 TMAH (テトラメチルァ ンモ-ゥムヒドロキシド;レジスト等の現像剤)との親和性が大幅に向上する。  [0040] Similarly, when there is a thiol (SH) group or a plurality of functional groups containing it, when a compound is introduced or adsorbed, the affinity for each solvent is improved. Furthermore, for example, if an amino group and a hydroxyl group are introduced at the same time, the affinity with TMAH (tetramethyl ammonium hydroxide; a developer such as a resist) is greatly improved.
[0041] 紫外線は、波長が 315nmを超え、 400nm以下の範囲の UV— A、波長が 280nm を超え、 315nm以下の範囲の UV—B、波長が 200nmを超え、 280nm以下の範囲 の UV—Cおよび波長が 10〜200nmの範囲の VUVに分類することができるが、本 発明におけるカーボンナノチューブ系材料は一般的に表面の安定性 (化学安定性 等)が高ぐ UV— A〜UV— Cの紫外線の照射では十分に表面の改質ができないの に対し、 VUVと上記特定物質とを組み合わせた場合には可能であることが見出され た。  [0041] Ultraviolet light has a wavelength of UV-A in the range of more than 315 nm and less than 400 nm, UV-B in the wavelength of more than 280 nm and in the range of 315 nm and less, and UV-C in the wavelength of more than 200 nm and in the range of 280 nm and less In addition, the carbon nanotube-based material in the present invention generally has high surface stability (chemical stability, etc.) of UV-A to UV-C. It was found that the surface could not be sufficiently modified by UV irradiation, but it was possible when VUV was combined with the above specific substances.
[0042] VUVを得る手段には特に制限はない。幅が狭く中心波長が 172nmの Xeエキシマ UVランプを好ましく例示できる。通例、 160〜200nm程度の波長分布を示す Xe封 入エキシマ UVランプが好ましいが、必ずしもこれに限定されるものではない。なお、 有機化合物の結合の切断エネルギーは VUVの波長に直接関係するので、特定の 結合の切断を排除したい場合には、 VUVの使用波長範囲を目的に応じて狭く制限 することも有用である。 [0042] The means for obtaining VUV is not particularly limited. A Xe excimer UV lamp having a narrow width and a center wavelength of 172 nm can be preferably exemplified. In general, an Xe-sealed excimer UV lamp showing a wavelength distribution of about 160 to 200 nm is preferable, but not necessarily limited thereto. Note that the bond energy of organic compound bonds is directly related to the wavelength of the VUV, so if you want to eliminate specific bond breaks, the wavelength range of the VUV can be narrowly limited depending on the purpose. It is also useful to do.
[0043] VUVの出力についても制限はなぐ市販の数十 mWZcm2程度の出力のものを好 ましく使用できる。ただし、 VUVを発生しうる装置 (エキシマ UVランプ、等)の冷却や 配置に問題なければ、より高出力の装置を用いるか、あるいは UVランプを近接して 複数個並べて、実際の面あたり照射量を増やすことは、生産性の向上につながること もありうる。 [0043] There are no restrictions on the output of VUV, and commercially available ones with an output of about several tens of mWZcm 2 can be preferably used. However, if there is no problem with cooling or placement of equipment that can generate VUV (excimer UV lamp, etc.), use a higher power equipment, or place multiple UV lamps in close proximity, and the actual irradiation dose per surface. Increasing production can lead to improved productivity.
[0044] なお、 VUVはその名前が示すように真空中または減圧下で使用されるのが一般的 であるが、本発明においては必ずしもそうではなぐ常圧下においても可能である。 すなわち、本発明における VUV照射は、減圧または常圧の雰囲気中におかれた力 一ボンナノチューブ系材料に対して行われる。  [0044] As indicated by the name, VUV is generally used in a vacuum or under reduced pressure, but in the present invention, it can be used under normal pressure. That is, the VUV irradiation in the present invention is performed on a single-bonn nanotube-based material placed in a reduced pressure or normal pressure atmosphere.
[0045] VUVと特定物質との組合せ作用をコントルールする意味や VUVとカーボンナノチ ユーブ系材料との間の距離を大きくできるという実用性上の意味力もは、カーボンナ ノチューブ系材料を取り囲む雰囲気中の特定物質の濃度をコントロールすることが有 用である場合が多い。たとえば、酸素を 20体積%含む空気では VUVが lcm以内で ほぼすベて吸収されるというように、特定物質は吸光係数が大きいことが多ぐ何らか の手段で特定物質の濃度 (または蒸気圧や分圧でもよ!/ヽ)を低下させることが好まし い場合が多いからである。これは、雰囲気の減圧度を調整することによって行うことも できるが、 VUVを照射してもカーボンナノチューブ系材料の表面を改質しな 、物質 である不活性物質で希釈した特定物質を使用することも好ま ヽ場合が多 ヽ。具体 的には、常圧状態で、特定物質を 0. 001〜50体積%の間に希釈することが好ましく 、 0. 01〜: LO体積%の間に希釈することがより好ましい。なお、この不活性物質につ いては特に制限はないが、本発明の環境が気相であるので、一般的に、気体物質ま たは揮発性の物質が適切である。ネオン、アルゴン等の不活性ガスや窒素ガスを好 ましく ί列示でさる。  [0045] The meaning of controlling the combined action of VUV and a specific substance and the practical meaning of being able to increase the distance between VUV and carbon nanotube material are also in the atmosphere surrounding the carbon nanotube material. It is often useful to control the concentration of certain substances. For example, a specific substance has a large extinction coefficient, such as VUV is almost absorbed within lcm in air containing 20% by volume of oxygen. This is because it is often preferable to reduce the partial pressure! This can be done by adjusting the degree of decompression of the atmosphere, but it does not modify the surface of the carbon nanotube material even when irradiated with VUV, and uses a specific substance diluted with an inert substance that is a substance. I also like it often. Specifically, it is preferable to dilute the specific substance between 0.001% and 50% by volume under normal pressure, and it is more preferable to dilute between 0.01% and LO volume%. The inert substance is not particularly limited. However, since the environment of the present invention is a gas phase, a gas substance or a volatile substance is generally appropriate. An inert gas such as neon or argon or nitrogen gas is preferred.
[0046] 照射対象であるカーボンナノチューブ系材料と VUV照射源との間の距離にっ 、て は、 VUVが吸収されやすいので、小さい方が好ましい場合が多い。カーボンナノチ ユーブ系材料と VUV照射源との間に存在する物質の種類および濃度 (または蒸気 圧あるいは分圧)にもよる力 一般的には、この距離はたとえば、 0. 1〜: LOOmmが好 ましい。さらに言えば、多くの場合、 0. 2mm力 数 cm程度が好ましい場合が多い。 [0046] As the distance between the carbon nanotube material to be irradiated and the VUV irradiation source, VUV is easily absorbed, and therefore a smaller one is often preferable. Force depending on the type and concentration (or vapor pressure or partial pressure) of the substance existing between the carbon nanotube material and the VUV irradiation source Generally, this distance is, for example, 0.1 ~: LOOmm Good. Furthermore, in many cases, a 0.2 mm force of about several centimeters is preferable.
[0047] VUV照射の仕方には特に制限はない。特定物質の供給とは必ずしも同時である 必要はな 、場合もあり得る。カーボンナノチューブ系材料に対し特定物質を連続的 に供給し、 VUV照射を連続的に行う方法、カーボンナノチューブ系材料に対し特定 物質を断続的に供給し、その供給時に合わせて VUV照射を断続的に行う方法、力 一ボンナノチューブ系材料に対し特定物質を断続的に供給し、その供給時に合わせ かつその後ある時間継続するように VUV照射を断続的に行う方法等を例示すること ができる。 [0047] There is no particular limitation on the method of VUV irradiation. It may not be necessary to supply the specific substance at the same time. A method in which a specific substance is continuously supplied to a carbon nanotube-based material and VUV irradiation is continuously performed, a specific substance is intermittently supplied to a carbon nanotube-based material, and VUV irradiation is intermittently adjusted according to the supply. Examples of the method and power to be used Examples include a method in which a specific substance is intermittently supplied to a single-bonn nanotube-based material, and VUV irradiation is intermittently performed so as to match the supply time and continue for a certain time thereafter.
[0048] カーボンナノチューブ系材料の表面改質が VUVに直接照射されて 、る箇所のみ に生じているのかどうかは不明である。たとえば生じたラジカル等の化学的に活性な 種の寿命が長 、場合には、 VUVに直接照射されて 、な 、箇所にも表面改質が生じ 得ると考えられる。したがって、カーボンナノチューブ系材料が全体として VUVに照 射され、結果として表面改質されていれば、本発明の趣旨に合致するが、一般的に は、個々のカーボンナノチューブ系材料ができるだけ直接 VUVに照射されるように なっていることが好ましい。この意味では、基板からカーボンナノチューブ系材料が 立ち上がり、並ぶ方向の揃った状態や、基板上に分散された状態が好ましいが、こ れに限定されるものではな 、。  [0048] It is unclear whether or not the surface modification of the carbon nanotube-based material occurs only in the part where the VUV is directly irradiated. For example, when the lifetime of chemically active species such as the generated radicals is long, it is considered that surface modification can also occur at the site when directly irradiated to VUV. Therefore, if the carbon nanotube-based material is irradiated to the VUV as a whole and as a result surface-modified, it meets the gist of the present invention, but in general, individual carbon nanotube-based materials are directly applied to the VUV as much as possible. It is preferable to be irradiated. In this sense, it is preferable that the carbon nanotube-based material rises from the substrate and is aligned in the aligned direction or is dispersed on the substrate, but is not limited to this.
[0049] なお、従来のリソグラフィー技術等を応用して、カーボンナノチューブ系材料の表面 の一部を覆った状態で上記処理を行うことで表面における改質箇所を限定したり、更 には、この操作を複数回行い、場所によって異なった改質を行うことも可能である。こ れはバンプ作製時の基板上の異なった位置への異なった処理の場合等に有用であ る。  [0049] It is to be noted that, by applying the above-mentioned treatment in a state where a part of the surface of the carbon nanotube-based material is covered by applying a conventional lithography technique or the like, the modified portion on the surface is limited, and further, It is possible to carry out the operation a plurality of times and to perform different modification depending on the location. This is useful, for example, in the case of different treatments at different locations on the substrate during bump fabrication.
[0050] 本発明における「カーボンナノチューブ系材料」は、 CNTまたは CNTが何らかの意 味で修飾された材料を意味する。典型的には、ナノサイズの断面 (たとえば断面直径 が 0. 3〜10nm)を有するカーボンチューブである CNTである。その長さについては 数十 nm〜数 mmのものを好ましく例示できる力 特に制限があるわけではな!/、。  [0050] The "carbon nanotube-based material" in the present invention means CNT or a material in which CNT is modified in some sense. Typically, CNT, which is a carbon tube having a nano-sized cross section (for example, a cross-sectional diameter of 0.3 to 10 nm). Regarding the length, it is possible to preferably illustrate a length of several tens of nanometers to several millimeters. /.
[0051] CNTには、金属的な性質を示すための条件を満たすバンド構造を取るものと、半 導体的(半金属的)な性質を示すための条件を満たすバンド構造を取るものとがある 。本発明に係る CNTとしては金属的な性質を示すものと半導体的な性質を示すもの との 、ずれを使用してもよ!、。 [0051] CNTs have a band structure that satisfies the conditions for exhibiting metallic properties and a band structure that satisfies the conditions for exhibiting semiconducting (semimetallic) properties. . As the CNTs according to the present invention, it is possible to use a deviation between those showing metallic properties and those showing semiconductor properties!
[0052] 本発明における「カーボンナノチューブ系材料」には、金属を内包したフラーレンな どの、全体として金属的性質を示す、ナノチューブとは別のナノ構造体が CNT内に 詰まっている、いわゆるピーポッド構造のナノチューブも含まれる。すなわち、上記に おける「修飾」にはこのような場合も含まれる。  [0052] The "carbon nanotube-based material" in the present invention has a so-called peapod structure in which CNTs are packed with nanostructures other than nanotubes that exhibit metallic properties as a whole, such as fullerene encapsulating metal. These nanotubes are also included. That is, “modification” in the above includes such cases.
[0053] このような別のナノ構造体を含むピーポッド構造のナノチューブを用いることにより、 たとえばビアの電気伝導特性あるいは機械的強度を増強することも可能になり得る。 例えば、金属内包フラーレンを含む CNTの場合、内包された金属の電荷がフラーレ ン外側に現れ、更にナノチューブ外側に現れることが、第一原理計算から知られてお り、それによつてビアの電気伝導特性を向上させることができる。  [0053] By using a peapod-shaped nanotube including such another nanostructure, it may be possible to enhance, for example, electrical conductivity characteristics or mechanical strength of a via. For example, in the case of CNTs containing metal-encapsulated fullerenes, it is known from first-principles calculations that the charge of the encapsulated metal appears outside the fullerene and further outside the nanotube, which leads to the electrical conductivity of the via. Characteristics can be improved.
[0054] 金属内包フラーレンのように全体として金属的性質を示す、ナノチューブとは別の 構造体もしくは分子あるいは原子は、ナノチューブ内ではなぐ一つのビアを構成し ている隣接ナノチューブ間に存在していてもよい。また、内部に金属フラーレンを含 む隣接ナノチューブ間に、上記のナノチューブとは別の構造体もしくは分子あるいは 原子を配置することも可能である。このようにして CNTが修飾されている場合も、本発 明における「カーボンナノチューブ系材料」に属する。  [0054] A structure or molecule or atom different from the nanotube, which exhibits metallic properties as a whole, such as a metal-encapsulated fullerene, exists between adjacent nanotubes that constitute one via in the nanotube. Also good. Further, it is also possible to arrange a structure, molecule or atom different from the above nanotube between adjacent nanotubes containing metal fullerene. Even when CNT is modified in this way, it belongs to the “carbon nanotube-based material” in the present invention.
[0055] CNT等のカーボンナノチューブ系材料の形成には、従来はアーク放電やレーザー アブレーシヨンが用いられてきた力 現在ではプラズマ CVD (プラズマ化学的気相成 長法)や熱 CVDがよく用いられている。 CVDによる形成方法は、ナノチューブを直接 基板上に形成できることから、集積回路の製造への応用が期待されている。もちろん 本発明は使用される CNTの製造方法に限定されるものでない。  [0055] Conventionally, arc discharge and laser ablation have been used to form CNTs and other carbon nanotube-based materials. Currently, plasma CVD (plasma chemical vapor deposition) and thermal CVD are often used. Yes. The CVD method is expected to be applied to the manufacture of integrated circuits because nanotubes can be formed directly on the substrate. Of course, the present invention is not limited to the CNT production method used.
[0056] 本発明に係るカーボンナノチューブ系材料は、このように CVDで作製することが好 ましい場合が多い。その場合には、カーボンナノチューブ系材料が基板上に生成す る。カーボンナノチューブ系材料が基板上に生成すること自体は本発明の必須要件 ではないが、カーボンナノチューブ系材料が基板上に生成している場合には、先述 したごとぐ VUVの直接照射がし易ぐまた、基板との密着性が良好であるため、好ま しい場合が多い。 [0057] CVDで本発明に係るカーボンナノチューブ系材料を作製する場合、この基板を形 成する材料には特に制限はなく公知のもの力 適宜選択できるが、導電性を得る場 合には、導電性のものを使用し、熱伝導性を得る場合には熱伝導性の良好なものを 選択することが好ましい。 [0056] The carbon nanotube-based material according to the present invention is often preferably produced by CVD in this way. In that case, a carbon nanotube-based material is generated on the substrate. The formation of the carbon nanotube-based material on the substrate itself is not an essential requirement of the present invention, but when the carbon nanotube-based material is formed on the substrate, direct irradiation with VUV is easy as described above. In addition, it is often preferred because of its good adhesion to the substrate. [0057] When the carbon nanotube-based material according to the present invention is produced by CVD, the material for forming this substrate is not particularly limited and can be appropriately selected. However, in order to obtain conductivity, the material is electrically conductive. In order to obtain thermal conductivity, it is preferable to select one having good thermal conductivity.
[0058] 本発明にお 、て、カーボンナノチューブ系材料に対し、 VUVを照射し、特定物質 を供給するための装置については特に制限はない。たとえば図 2, 3に示す構造を持 つ装置を例示することができる。図 2において、 VUV源 21の下に特定物質を不活性 物質で希釈したガス 22の供給経路 23、特定物質の吹き出し口 24がある。 VUV源 2 1は冷却用媒体 25によって冷却されている。そして、吹き出し口 24の下には縦に並 んだ CNTの束 26を有する基板 27が紙面の左力 右に移動していくのである。図 3は 、冷却媒体が水冷ダクト 31に代わり、特定物質を不活性物質で希釈したガス 22の供 給経路 23中で基板 27が移動する以外は図 2と同様である。なお、縦に並んだ CNT の束 26は、たとえばビアホール中で成長させた CNTの束として実現することができる 。図 2, 3中実線付きの矢印は、特定物質を不活性物質で希釈したガス 22や冷却用 媒体 25の流れを、波線付きの矢印は VUVの照射を表している。  [0058] In the present invention, there is no particular limitation on an apparatus for irradiating a carbon nanotube material with VUV and supplying a specific substance. For example, a device having the structure shown in FIGS. In FIG. 2, there are a supply path 23 of a gas 22 obtained by diluting a specific substance with an inert substance under a VUV source 21, and a blowout opening 24 for the specific substance. VUV source 21 is cooled by cooling medium 25. Then, a substrate 27 having a bundle 26 of CNTs arranged vertically below the outlet 24 moves to the left force right of the page. FIG. 3 is the same as FIG. 2 except that the substrate 27 moves in the supply path 23 of the gas 22 in which a specific substance is diluted with an inert substance instead of the water cooling duct 31. The vertically aligned CNT bundle 26 can be realized, for example, as a CNT bundle grown in a via hole. The arrows with solid lines in Figs. 2 and 3 indicate the flow of gas 22 and cooling medium 25 in which a specific substance is diluted with an inert substance, and the arrows with wavy lines indicate VUV irradiation.
[0059] 本発明により、他の材料と接した場合に親和性の向上した新規なカーボンナノチュ ーブ系材料が得られる。このような材料は電子部材に好適に利用することができる。  [0059] According to the present invention, a novel carbon nanotube material having improved affinity when in contact with other materials can be obtained. Such a material can be suitably used for an electronic member.
[0060] 本発明に係る「親和性の向上」は、他の物質と接触させた場合における表面張力の 向上、濡れ性の向上、接着性の向上、吸着量の増大、他の物質との層間に入り込む 異物(水分等)、空洞(ミクロな空間)の減少等を意味する。この場合の「他の物質」と しては、導電性物質、絶縁性物質、親水性物質、親油性物質および特定の基を有す る物質力もなる群力 選ばれた少なくとも一つの物質であることが好ましい。電子装 置等の部材としてカーボンナノチューブ系材料を使用する場合に、共に使用される 他の部材との電気的接続、熱的接続、機械的結合、溶媒や接着剤に対する濡れ等 の向上が図れ、長期使用における剥がれ、断線等の不具合を回避できる力 である 。なお、本発明および明細書の記載を通じて、「特定の基」、「特定の物質」、「特定の 構造」、「特定の溶媒」、「特定の結合」および「特定の材料」における「特定の」は、固 定的に決められたあるものを意味するものではなぐ実用上の要請に応じて任意に決 められるあるものを意味する。 [0060] "Improvement of affinity" according to the present invention means improvement of surface tension, contact with other substances, improvement of adhesiveness, increase of adsorption amount, interlayer between other substances. It means the reduction of foreign matter (moisture, etc.) and cavities (micro space). In this case, the “other substances” are at least one substance selected from the group power that is also a conductive substance, an insulating substance, a hydrophilic substance, a lipophilic substance and a substance having a specific group. It is preferable. When using carbon nanotube-based materials as components for electronic devices, etc., it is possible to improve electrical connection, thermal connection, mechanical coupling, wetting to solvents and adhesives, etc. with other components used together, This is a force that can avoid problems such as peeling and disconnection during long-term use. Through the description of the present invention and the specification, “specific group”, “specific substance”, “specific structure”, “specific solvent”, “specific bond” and “specific material” ”Means something that is fixedly determined, and is arbitrarily determined according to practical requirements. It means something that can be saved.
[0061] このような導電性物質としては、電子配線部に使用される銅、アルミニウム、その他 の、金属をはじめとする電気伝導性物質一般を、絶縁性物質としては、 SOG、 TEO S (テトラエトキシシラン)、ポリイミド榭脂等の任意の半導体封止用絶縁榭脂類、ある いは最近多用される、マイクロポアを含むまたは含まない、いわゆる「Low—k榭脂」 類(NCS、 SiLK、 MSQ等)、あるいは、 PFA、 FEP、テフロン(登録商標)等のフッ 素系榭脂等、すなわち CNTを固定するに好適な電気絶縁性の材料一般を、親水性 物質としては、水、エタノール、メタノール、フエノール、ジォキサン類、エチレングリコ ール、ジエチレングリコール、トリエチレングリコール、グリセリン等のアルコール系溶 媒等を、親油性物質としては、石油エーテル、 n—へキサン、シクロへキサン等のパラ フィン系溶媒、ベンゼン、トルエン、キシレン、タレゾール等、の芳香族系溶媒、あるい は、 THF (テトラヒドロフラン)、 DMF (ジメチルホルムアミド)、 DMSO (ジメチルスル ホキシド)、ジメチルァセトアミド、あるいはジェチルケトン、 MIBK (メチルイソブイチル ケトン)等のケトン、 n—メチルピロリドン、ジクロロエタン、ジクロロエタン、ピリジン、等 のへテロ元素(C、 0、 H以外の元素)を含む極性溶媒を挙げることができる。また、特 定の基を有する物質としては、基本的には、前述した絶縁性物質、親水性物質、親 油性物質に多く含まれる官能基を含む物質 (望ましくは低粘度の気体または液体)な らいかなるものでもよいが、典型的な例としては、以下のものを挙げることができる: — OH、—COOH、—NH 、 一 NR (Rは脂肪族、芳香族アルキル基あるいはその [0061] Examples of such conductive materials include copper, aluminum, and other electrically conductive materials such as metals used in electronic wiring sections, and examples of insulating materials include SOG, TEOS (tetra Insulating resin for sealing semiconductors such as ethoxysilane, polyimide resin, etc., or the so-called “Low-k resin” (NCS, SiLK, MSQ, etc.), or fluorine-based resin such as PFA, FEP, Teflon (registered trademark), that is, electrically insulating materials suitable for fixing CNTs in general, and hydrophilic substances include water, ethanol, Alcohol solvents such as methanol, phenol, dioxanes, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, etc., and lipophilic substances include petroleum ether, n-hexane, Paraffinic solvents such as chlorohexane, aromatic solvents such as benzene, toluene, xylene and talesol, or THF (tetrahydrofuran), DMF (dimethylformamide), DMSO (dimethylsulfoxide), dimethylacetamide Or polar solvents containing heteroelements (elements other than C, 0, H) such as n -methylpyrrolidone, dichloroethane, dichloroethane, pyridine, etc. it can. In addition, the substance having a specific group is basically a substance (preferably a low-viscosity gas or liquid) containing a functional group that is contained in a large amount in the above-mentioned insulating substance, hydrophilic substance, and lipophilic substance. Typical examples include the following: — OH, —COOH, —NH 2, 1 NR (where R is an aliphatic, aromatic alkyl group or its
2 2  twenty two
誘導体)、— CO—、—C=0、イミド結合およびエーテル結合の少なくともいずれか一 つ以上を有する物質、すなわち、アルコールおよびフエノール、カルボン酸、アミン類 、ケトン類およびキノン類、等。  Derivatives), —CO—, —C = 0, substances having at least one of an imide bond and an ether bond, that is, alcohols and phenols, carboxylic acids, amines, ketones and quinones, and the like.
[0062] 本発明に係るカーボンナノチューブ系材料は、ニーズに応じて、電気製品、電子製 品、機械品等、カーボンナノチューブ系材料の使用されるあるいは使用される可能 性のあるどのような用途に使用されてもよいが、カーボンナノチューブ系材料の優れ た電気的特性および熱的特性に鑑み、特に、電磁波を発生しうる医療用、航空宇宙 用、あるいは、携帯性のある電子機器 (携帯電話、パソコン等の携帯電子機器端末を 含む)、あるいは、電子部材ゃ電子装置 (たとえば、半導体装置やプリント配線基板 等を含む半導体集積回路装置)に好適に利用できる。また、長期使用における高性 能で軽量、劣化の少ない電子機器用に用いられる導電性部材 (シート等)、電磁波し やへい用部材 (シート等)、または、剥がれ、断線等の不具合の少ない電子部材ゃ電 子装置を実現することも期待できる。なお、このような電子部材としては、電子デバィ ス実装用放熱用バンプ、電子デバイス用等の配線ビアを挙げることができる。 [0062] The carbon nanotube-based material according to the present invention is used for any application where the carbon nanotube-based material is used or is likely to be used, such as an electric product, an electronic product, and a mechanical product, according to needs. Although it may be used, in view of the excellent electrical and thermal properties of carbon nanotube-based materials, it can be used especially for medical, aerospace, or portable electronic devices that can generate electromagnetic waves (cell phones, Including portable electronic device terminals such as personal computers) or electronic devices (for example, semiconductor devices and printed wiring boards) The semiconductor integrated circuit device can be suitably used. In addition, conductive materials (sheets, etc.) used for electronic devices with high performance, light weight and little deterioration in long-term use, electromagnetic wave-resistant members (sheets, etc.), or electronic devices with less problems such as peeling or disconnection It can be expected to realize electronic devices. Examples of such electronic members include heat dissipation bumps for mounting electronic devices and wiring vias for electronic devices.
[0063] また本発明はさらに、上記の電子部品や電子デバイス素子等に限らず、例えば、対 重量比の導電性と伝熱性を要求される、(平面状あるいは曲面状の)宇宙航空用の 電子機器、医療機器、あるいは、携帯電話、パソコン等を含む、電磁波を発生する電 子機器、導電性シート、電子端末用の高周波電磁波しゃへい材、およびこれらの部 材作製用前駆体 (いわゆるプリプレダを含む)を挙げることができる。  [0063] Further, the present invention is not limited to the above-described electronic component, electronic device element, or the like. Electronic devices that generate electromagnetic waves, including electronic devices, medical devices, mobile phones, personal computers, etc., conductive sheets, high-frequency electromagnetic shielding materials for electronic terminals, and precursors for producing these components (so-called pre-preparers) Include).
[0064] 図 4は、本発明に係るカーボンナノチューブ系材料を LSI用配線ビアに利用した半 導体集積回路装置を模式的に示す断面図である。図 4では、シリコン基板 41にトラン ジスタ 42等の素子が複数作りこまれ、それらを覆って複数の絶縁層 (層間絶縁膜) 4 3a〜43fが形成されている。絶縁層を挟んで配線層が位置し、所定の配線層の配線 45は絶縁層を貫通して形成されたビア 46により別の層の配線 45につながれて 、る 。 47は、素子同士をつなぐ配線 45に接続するコンタクトを表している。一番上の配線 層は保護層 48で被覆されている。この図に示した集積回路装置では、ビア 46に本 発明に係るカーボンナノチューブ系材料を適用し、このナノチューブを特定の溶媒に 対する濡れ性を良くすることにより、これに溶解さられている SOG等の絶縁性榭脂の CNT周りへの浸透性を向上させ、結果的に、 CNT周りの空洞を塞ぎ、また CNT束 を固定ィ匕することにより、ビヤ内に成長させたカーボンナノチューブ系材料の上端を CMPにより良好に削り取ることができ、したがって配線部分との良好な電気的接続を 実現できる。  FIG. 4 is a cross-sectional view schematically showing a semiconductor integrated circuit device using the carbon nanotube material according to the present invention for an LSI wiring via. In FIG. 4, a plurality of elements such as the transistor 42 are formed on the silicon substrate 41, and a plurality of insulating layers (interlayer insulating films) 43a to 43f are formed so as to cover them. A wiring layer is located across the insulating layer, and the wiring 45 of a predetermined wiring layer is connected to the wiring 45 of another layer by a via 46 formed through the insulating layer. Reference numeral 47 denotes a contact connected to the wiring 45 that connects the elements. The uppermost wiring layer is covered with a protective layer 48. In the integrated circuit device shown in this figure, the carbon nanotube-based material according to the present invention is applied to the via 46, and the nanotube is dissolved in this by improving the wettability with respect to a specific solvent. As a result, the upper end of the carbon nanotube-based material grown in the beer is improved by improving the permeability of CNTs around the CNT and, as a result, closing the cavity around the CNT and fixing the CNT bundle. Can be satisfactorily scraped off by CMP, and therefore a good electrical connection with the wiring part can be realized.
[0065] 図 5は、カーボンナノチューブ系材料を高機能電子デバイスの冷却用バンプ材料 に適用した、高熱伝導バンプを含む電子デバイスの構造の概要の例を示す模式図 であるが、この場合にも本発明に係るカーボンナノチューブ系材料を高機能電子デ バイスの冷却用バンプ材料に適用することができる。たとえば、図 5の CNT付き基板 に対し、酸素を窒素で希釈したガスまたは酸素と微量の水とを窒素で希釈したガスの 存在下 VUV処理を行 、、続、てこの処理済み CNT付き基板の CNT部にメツキ(ゥ エツト処理)により、熱および電気伝導性物質 (Cu、 A1等の金属、等)を、 CNT鎖の 間の空間に、十分に浸透させたいわゆる CNTハイブリッド 'バンプ構造を作製するこ とができる。この後この処理済み基板上に、電子デバイスを、熱圧着(250〜450°C 程度が望ましい)して、金属等を浸透させた CNTバンプを使用した高熱伝道性電子 デバイスを作製することができる。 FIG. 5 is a schematic diagram showing an example of an outline of the structure of an electronic device including a high thermal conductive bump in which a carbon nanotube-based material is applied to a cooling bump material of a high-performance electronic device. The carbon nanotube material according to the present invention can be applied to a cooling bump material for a high-performance electronic device. For example, the gas with oxygen diluted with nitrogen or the gas diluted with nitrogen with oxygen and a small amount of water is applied to the substrate with CNTs in Fig. 5. In the presence, VUV treatment is performed, followed by heat treatment and electrical conductive material (metal such as Cu, A1, etc.) on the CNT part of the substrate with CNT treated with metal (wet treatment). A so-called CNT hybrid 'bump structure with sufficient penetration into the space between them can be produced. After this, an electronic device can be thermocompression-bonded (preferably about 250 to 450 ° C) on this treated substrate to produce a highly thermally conductive electronic device using CNT bumps infiltrated with metal or the like. .
[0066] 図 6は、本発明に係る電磁波しゃへい用シートまたはプリプレダを示す模式図であ る。すなわち、榭脂シート上に CNTを散布し、このシートを他の榭脂シートを貼り付け ることにより電磁波しゃへい用シートまたはそのまたはプリプレダを得ることができる。 実施例 1 FIG. 6 is a schematic diagram showing an electromagnetic shielding sheet or pre-preder according to the present invention. That is, by dispersing CNTs on a resin sheet and attaching this sheet to another resin sheet, an electromagnetic shielding sheet or its pre-preda can be obtained. Example 1
[0067] 基板として、 Siウェハ {p型、(100)面 }上に、 Niをスパッタリングにて 25nm形成し たものを用い、熱 CVD法により、アセチレンガスを原料として、 650°Cにて、マルチウ オールカーボンナノチューブを長さ約 1. 5 mまで成長させた。ナノチューブの面密 度を測定したところ、約 5 X 1011本 Zcm2であった。 [0067] As a substrate, a Si wafer {p-type, (100) surface} with Ni formed by sputtering to a thickness of 25 nm was used. By thermal CVD, using acetylene gas as a raw material at 650 ° C, Multiwall carbon nanotubes were grown to a length of about 1.5 m. When the surface density of the nanotube was measured, it was about 5 × 10 11 pieces Zcm 2 .
[0068] あらかじめこの試料を清浄な空気中で 400°Cで 15分ベータしてナノチューブ表面 の、ナノチューブ以外の可燃性不純物を取り除いた後、速やかに、本発明の処理装 置に移し、本発明に係る特定物質としてのトリェチルァミン {N (CH CH ) }を、その  [0068] This sample was beta-treated at 400 ° C for 15 minutes in clean air in advance to remove flammable impurities other than nanotubes on the surface of the nanotubes, and immediately transferred to the treatment apparatus of the present invention. Triethylamine {N (CH 2 CH 3)} as a specific substance related to
2 3 3 蒸気圧が 1気圧濃度 5体積%程度となるよう純窒素で希釈したガスを使用した。ガス の流量は毎分 1Lとした。  2 3 3 A gas diluted with pure nitrogen was used so that the vapor pressure was 1 atm concentration of about 5% by volume. The gas flow rate was 1 liter per minute.
[0069] この状態で、 Xeエキシマ UVランプ (発生中心波長 λ = 172nm)を発生する出力 3[0069] In this state, Xe excimer UV lamp (generation center wavelength λ = 172nm) output 3
OmWZcm2のエキシマ UVランプを使用して VUVを 10分間掛けて照射した。装置 の構造は図 2のものを使用した。 Using an OmWZcm 2 excimer UV lamp, VUV was applied for 10 minutes. The equipment structure shown in Fig. 2 was used.
[0070] 本処理前後の試料を XPS (X線光電子分光)および IR (赤外吸収)スペクトルにて 分析したところ、処理前のナノチューブには存在しな力つた炭素窒素結合が処理後 に形成されて ヽることが確認された。 [0070] When the samples before and after this treatment were analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectra, strong carbon-nitrogen bonds that did not exist in the untreated nanotubes were formed after the treatment. It was confirmed that he would come back.
[0071] なお、 VUVの照射を行わない以外は上記と同様の処理を行った力 処理後にも炭 素窒素結合は生じなかった。 [0071] Carbon-nitrogen bonds did not occur even after force treatment in which treatment similar to the above was performed except that VUV irradiation was not performed.
実施例 2 [0072] 実施例 1と同様の特定物質を使用し、試料としては、 Siウェハ {p型、(100)面 }上 にシングルウォールカーボンナノチューブをアーク放電法で生成させたものを使用し た。 Example 2 [0072] A specific substance similar to that in Example 1 was used, and a sample obtained by generating single wall carbon nanotubes on a Si wafer {p-type, (100) plane} by an arc discharge method was used.
[0073] 実施例 1と同様の処理を行った。ただし、処理時間は、実施例 1の 10%とした。  [0073] The same treatment as in Example 1 was performed. However, the processing time was set to 10% of Example 1.
[0074] この試料を XPS (X線光電子分光)および IR (赤外吸収)スペクトルにて分析したと ころ、処理前のナノチューブに存在しな力つた炭素窒素結合が処理後に形成されて いるのが確認された。 [0074] When this sample was analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectrum, it was found that strong carbon-nitrogen bonds that existed in the nanotubes before the treatment were formed after the treatment. confirmed.
実施例 3  Example 3
[0075] 実施例 1と同様の特定物質を使用し、トランジスタのビヤ構造を模擬的に形成した マルチウォールカーボンナノチューブのアミノ化を試みた。  [0075] Using the same specific material as in Example 1, an attempt was made to aminate a multi-wall carbon nanotube in which the via structure of a transistor was simulated.
[0076] 直径 0. 5 m、深さ 1 mの円筒状の穴パターンを Si基板上に形成し、底面を含む ウェハ全面に Ti薄膜 lOnmをスパッタリングで形成し、平均粒径 lOnmの Ni微粒子 を底面を含むウェハ全面に散布し、これに熱 CVD法で長さ 1500nmのマルチゥォ ールカーボンナノチューブを穴の上方まで成長させた。ナノチューブの面密度を測 定したところ、約 3 X 1011本 Zcm2であった。 [0076] A cylindrical hole pattern with a diameter of 0.5 m and a depth of 1 m was formed on the Si substrate, a Ti thin film lOnm was formed by sputtering on the entire wafer surface including the bottom surface, and Ni fine particles with an average particle diameter lOnm were formed. Scattered over the entire surface of the wafer including the bottom, multi-wall carbon nanotubes with a length of 1500 nm were grown to the top of the holes by thermal CVD. When the surface density of the nanotube was measured, it was about 3 × 10 11 pieces Zcm 2 .
[0077] この試料に対し、実施例 1と同様の装置を使用し、実施例 1と同様の特定物質を実 施例 1と同様に供給し、実施例 1と同様に VUVを照射した。  [0077] The same apparatus as in Example 1 was used for this sample, the same specific material as in Example 1 was supplied in the same manner as in Example 1, and VUV was irradiated in the same manner as in Example 1.
[0078] 処理後の試料に対して 5%アンモニア水を滴下し、しばらくして力もホットプレートで よく乾燥し、走査式電子顕微鏡 (SEM)で観察したところ、ナノチューブ同士が穴内 で部分的に束状になって 、るのが確認できた。これはアンモニア水が浸透した跡で あると考えられる。すなわち、アンモニア水に対する濡れ性が良好であるため、アンモ ユア水がナノチューブ表面で濡れ、ナノチューブ同士がアンモニア水によって束状 に纏められた後アンモニア水が蒸散した跡と考えることができる。  [0078] 5% ammonia water was dropped onto the treated sample, and after a while, the force was also well dried on a hot plate and observed with a scanning electron microscope (SEM). As a result, the nanotubes were partially bundled in the hole. I was able to confirm that it was in the shape. This is thought to be a trace of the penetration of ammonia water. That is, since the wettability with respect to the ammonia water is good, it can be considered that the ammonia water is wetted on the nanotube surface and the ammonia water is evaporated after the nanotubes are bundled together with the ammonia water.
[0079] これに対し、無処理の穴パタン内ナノチューブ試料に同じ処理を施したところ、処 理前後で大きな変化なぐナノチューブは、ほとんど束状にならず、各々孤立したまま 、林立しているのが確認された。すなわち、処理前のナノチューブはアンモニア水に 対する濡れ性が不良であり、アンモニア水がナノチューブで弾かれてしまい、その結 果、ナノチューブ同士がアンモニア水によって束状に纏められることがな力つたと考 えられる。 [0079] On the other hand, when the same treatment was performed on the nanotube sample in the untreated hole pattern, the nanotubes that changed greatly before and after the treatment were not almost bundled, and they were isolated and forested. Was confirmed. In other words, the nanotubes before treatment had poor wettability with respect to the ammonia water, and the ammonia water was repelled by the nanotubes. As a result, it was thought that the nanotubes were bundled together by the ammonia water. available.
[0080] その後、処理前後の試料力 それぞれナノチューブを削り取り、 XPS (X線光電子 分光)および IR (赤外吸収)スペクトルにて分析したところ、処理前のナノチューブに 存在しなカゝつた炭素窒素結合が処理後に形成されて!ヽるのが確認された。  [0080] After that, the sample force before and after the treatment was scraped off and analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectra. Was formed after processing!
[0081] 以上の結果から、本ナノチューブは親水性が向上しており、親水性を有する溶媒、 接着剤等の物質に対し良好な親和性を示すものと期待される。  [0081] From the above results, the nanotubes are improved in hydrophilicity, and are expected to show a good affinity for substances such as hydrophilic solvents and adhesives.
[0082] さらに、本実施例でアンモニア水によって束状になった CNT上面と下 (基板)面と の間の電気抵抗は、 2 Ω (オーム)と、極く低い値となった。  [0082] Furthermore, the electrical resistance between the upper surface of the CNT bundled with ammonia water and the lower (substrate) surface in this example was 2 Ω (ohms), which was an extremely low value.
実施例 4  Example 4
[0083] 実施例 1と同様の処理系を使い、トランジスタの配線ビヤ構造を模擬的に形成した( ナノチューブの面密度を測定したところ、約 5 X 1011本 Zcm2の)マルチウォール力 一ボンナノチューブのカルボニル化、ヒドロキシルイ匕を行った。ただし、反応性物質と しては、トリァチルァミンの替わりに Nで希釈した酸素と H Oとを用いた。 [0083] Using the same processing system as in Example 1, the wiring via structure of the transistor was formed in a simulated manner (when the surface density of the nanotube was measured, it was about 5 X 10 11 pieces Zcm 2 ). Nanotube carbonylation and hydroxylation were performed. However, as the reactive substance, oxygen diluted with N and HO were used in place of triethylamine.
2 2  twenty two
[0084] 直径 0. 5 m、深さ lOOOnmの円筒状の穴パターンを Si基板上に形成し、底面を 含むウェハ全面に Ti薄膜 lOnmをスパッタリングで形成し、平均粒径が 7nmの Co微 粒子を底面を含むウェハ全面に散布し、これに CVD法で長さ 1500nmのマルチウ オールカーボンナノチューブを穴の上方まで成長させた後、この試料に実施例 1と同 様の方法と同様の手法でカルボ-ル化、ヒドロキシル化を行った。  [0084] A cylindrical hole pattern with a diameter of 0.5 m and a depth of lOOOnm was formed on the Si substrate, a Ti thin film lOnm was formed by sputtering on the entire wafer surface including the bottom surface, and Co fine particles with an average particle diameter of 7 nm. Was sprayed over the entire surface of the wafer including the bottom, and multiwall carbon nanotubes with a length of 1500 nm were grown above the holes by CVD, and then this sample was subjected to a carbolysis using the same method as in Example 1. -Fluorination and hydroxylation were performed.
[0085] 酸素が 0. 5体積%、 H Oが 0. 1体積%で残余が窒素であるガスを特定物質を含ん  [0085] A gas containing 0.5% by volume of oxygen, 0.1% by volume of H 2 O and the balance of nitrogen is included in the specific substance.
2  2
だガスとして使用し、このガスの流量を毎分 5Lとして処理した。  The gas was used as a gas and the flow rate of this gas was set at 5 L / min.
[0086] 装置としては実施例 1と同様のものを使用し、 VUVも実施例 1と同様にして照射し た。反応時間は実施例 1の 15%とした。 [0086] The same apparatus as in Example 1 was used, and VUV was irradiated in the same manner as in Example 1. The reaction time was 15% of Example 1.
[0087] 処理後の複数の試料に対して、エタノール、 MIBK (メチルイソブチルケトン)および これらの 1対 1 (体積比)混合液を滴下し、 10分後、ホットプレートでよく乾燥し、走査 式電子顕微鏡 (SEM)で観察したところ、いずれの試料についても、ナノチューブ同 士が穴内で大部分が束状になっているのが確認された。バンドルイ匕している CNTの 割合は、エタノール > 1対 1混合液 >MIBK (メチルイソブチルケトン)の順で多かつ た。これは、上記のアンモニア水の場合と同様に、各々の液体混合物が浸透した跡 であると考えられる。すなわち、これらの媒体に対する濡れ性が良好であることが示さ れた。一方、無処理の穴パタン内のナノチューブ試料に同じ処理を施したところ、ごく 一部のナノチューブでバンドルイ匕が認められたに過ぎなかった。 [0087] Ethanol, MIBK (methyl isobutyl ketone) and a 1: 1 (volume ratio) mixture of these were added dropwise to the treated samples, and after 10 minutes, they were thoroughly dried on a hot plate and scanned. When observed with an electron microscope (SEM), it was confirmed that the nanotubes were mostly bundled in the hole for each sample. The ratio of bundled CNTs was large in the order of ethanol> 1 to 1 mixture> MIBK (methyl isobutyl ketone). This is the same as the case of the ammonia water described above. It is thought that. That is, it was shown that the wettability with respect to these media was good. On the other hand, when the same treatment was applied to the nanotube sample in the untreated hole pattern, only a part of the nanotubes showed bundle defects.
[0088] この後、それぞれナノチューブを削り取り、 XPS (X線光電子分光)および IR (赤外 吸収)スペクトルにて分析したところ、処理前のナノチューブにごく少量しか存在しな 力つた C = 0結合および OH結合力 それぞれ、処理後に約 20倍以上の量 (結合 モル数相当)形成されて ヽるのが確認された。  [0088] After that, each nanotube was scraped and analyzed by XPS (X-ray photoelectron spectroscopy) and IR (infrared absorption) spectrum. As a result, only a small amount of C = 0 bonds and It was confirmed that the amount of OH binding force formed after treatment was approximately 20 times or more (corresponding to the number of moles of bonding).
[0089] 以上の結果から、本ナノチューブは極性物質に対する親和性が向上しており、 C = O結合や OH結合を有する溶媒、接着剤等の物質に対し良好な親和性を示すも のと期待される。  [0089] From the above results, this nanotube has improved affinity for polar substances, and is expected to show good affinity for substances such as solvents and adhesives having C = O bonds or OH bonds. Is done.
実施例 5  Example 5
[0090] 実施例 4と同様の VUV処理法により、ナノチューブ表面に、 C = 0結合や OH結 合を導入した、ビヤ構造を模擬的に形成した構造に対して、銅メツキを施すにあたり、 前処理として、メツキシード層形成用水溶液に浸漬処理を行い、 Cuシード層を予め つけた。  [0090] When applying a copper plating to a structure formed by simulating a beer structure in which a C = 0 bond or an OH bond was introduced on the nanotube surface by the same VUV treatment method as in Example 4, As a treatment, immersion treatment was performed in an aqueous solution for forming a seed layer, and a Cu seed layer was applied in advance.
[0091] 具体的には、実施例 4と同様の方法で作製したマルチウォールカーボンナノチュー ブ (ナノチューブの面密度を測定したところ、約 5 X 1011本 Zcm2であった)を、実施 例 4と全く同じ方法にて、 VUV処理を、実施例 1の 30%の時間を掛けて行い、その 後に Cuメツキシード水溶液に 10分浸漬した。これを光学顕微鏡、 SEM (走査型電子 顕微鏡)、 TEM (透過電子顕微鏡)および EDXにて観察したところ、ほとんどの CNT が束状にバンドルイ匕しており、その表面に多量の Cu微粒子付着していた。 [0091] Specifically, a multi-wall carbon nano tube manufactured by the same method as in Example 4 (when the surface density of the nanotube was measured, it was about 5 X 10 11 Zcm 2 ). VUV treatment was performed in exactly the same manner as in Example 4, taking 30% of the time of Example 1, and then immersed in an aqueous solution of Cu plating seed for 10 minutes. When this was observed with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope), and EDX, most of the CNTs were bundled and a large amount of Cu fine particles adhered to the surface. It was.
[0092] これに、 Cu層を厚膜として成膜したところ、 CNT表面に Cuが吸着した CNT—Cu 複合体が形成された。  [0092] When a Cu layer was formed as a thick film, a CNT-Cu composite with Cu adsorbed on the CNT surface was formed.
[0093] 一方、比較例として、 VUV処理を行わずに Cuメツキシード水溶液に 10分浸漬し、 これを光学顕微鏡にて観察したところ、 CNTは部分的にし力バンドルイ匕せずシード 液の浸透が均一に行われていないことが伺われた。さらに SEM (走査型電子顕微鏡 ;)、 TEM (透過電子顕微鏡)および EDXにて観察したところ、 Cuシード層はバンドル 化した部分にしか吸着しておらず、この試料力 均一な Cuメタル層の形成はできな かった。 [0093] On the other hand, as a comparative example, when immersed in a Cu plating seed aqueous solution without VUV treatment for 10 minutes and observed with an optical microscope, the CNTs were partially broken and the seed solution penetrated uniformly without force bundling. I was told that it was not done. Furthermore, when observed with SEM (Scanning Electron Microscope;), TEM (Transmission Electron Microscope) and EDX, the Cu seed layer was adsorbed only in the bundled part, and this sample force formed a uniform Cu metal layer. Can't won.
実施例 6  Example 6
[0094] CNTを榭脂面、一面に成長させたプリプレダを作製する際に、 VUV処理を施した 後に、 CNT層を内側にして接着し、平面状、その他形状の部材を形成する。  [0094] When preparing a pre-predator having CNTs grown on the entire surface, after applying the VUV treatment, the CNT layer is bonded inside to form a planar or other shaped member.
[0095] 具体的には、図 6の S1に従って、予め成長し、清浄な空気中で 400°Cで 15分べ一 クしてナノチューブ表面の、ナノチューブ以外の可燃性不純物を取り除いた後に、メ タノールに入れて超音波処理を 2時間行なって十分に分散した液を用意する。これ を、平面状の ABS榭脂板 (厚さ 0. 5mm)上に、 lmg/cm2の密度で分散散布し、静 力に、 60°Cで乾燥しメタノールを除く。これを、図 6の S2に従って、実施例 1で使用し た VUV装置を用いて Nで希釈した酸素ガス (0. 5体積%)下で処理する。ガス流量 [0095] Specifically, in accordance with S1 in FIG. 6, after growing in advance in clean air at 400 ° C for 15 minutes to remove combustible impurities other than nanotubes on the nanotube surface, Prepare a well-dispersed solution by sonicating in ethanol for 2 hours. This is dispersed and sprayed onto a flat ABS grease plate (thickness 0.5 mm) at a density of lmg / cm 2 and dried at 60 ° C to remove methanol. This is treated under oxygen gas diluted with N (0.5% by volume) using the VUV apparatus used in Example 1 according to S2 in FIG. Gas flow rate
2  2
は 10LZ分とする。  Is 10LZ.
[0096] これを、図 6の S3に従って、平面状の ABS榭脂板 (厚さ 0. 5mm)と静かに重ねて から、この榭脂板の融点より 10°C低い温度にて 5分間程圧着して一体ィ匕する。  [0096] In accordance with S3 in Fig. 6, this is gently overlapped with a flat ABS grease plate (thickness 0.5mm), and then at a temperature 10 ° C lower than the melting point of this grease plate for about 5 minutes. Crimp and unite.
[0097] このようにして導電性シートまたは電磁波遮蔽シートのプリプレダを得ることができる [0097] In this way, a pre-preparator of a conductive sheet or an electromagnetic wave shielding sheet can be obtained.
[0098] なお、ここでは ABS榭脂への CNT融着の例を示したが、榭脂ゃ接着法を変えたも のにも応用できる。たとえば、形状保持性の小さい一般的なプリプレダ状態のものに CNTを散布し VUV処理を行ってもよ!、。榭脂は熱硬化性のものも含めてあらゆるも のに適用できる。また、成形法も、 CNT固化過程で流れなければ、多様なものに適 用できる。 [0098] Although an example of CNT fusion to ABS resin is shown here, resin can also be applied to a modified adhesive method. For example, CNT can be sprayed on a general pre-prepared material with low shape retention and VUV treatment can be performed! The resin can be applied to anything including thermosetting. In addition, the molding method can be applied to a variety of things if it does not flow during the CNT solidification process.
産業上の利用可能性  Industrial applicability
[0099] 本発明は、他の材料と接した場合に親和性の向上した新規なカーボンナノチュー ブ系材料を利用できる分野 (たとえば電子機器分野)に好適に利用できる。 [0099] The present invention can be suitably used in a field (for example, the electronic equipment field) in which a novel carbon nanotube material having improved affinity when in contact with other materials can be used.

Claims

請求の範囲 The scope of the claims
[1] 表面の改質されたカーボンナノチューブ系材料の製造方法において、カーボンナ ノチューブ系材料に対し、  [1] In a method for producing a carbon nanotube-based material with a modified surface,
真空紫外線を照射し、  Irradiate vacuum ultraviolet rays,
当該真空紫外線との組合せにより当該カーボンナノチューブ系材料の表面を改質 し得る物質を供給する  Supplying substances that can modify the surface of the carbon nanotube-based material in combination with the vacuum ultraviolet light
ことを含む、表面改質カーボンナノチューブ系材料の製造方法。  A method for producing a surface-modified carbon nanotube-based material.
[2] 前記カーボンナノチューブ系材料の表面を改質し得る物質が、真空紫外線により 活性化されて化学的に活性な種を発生し得る物質である、表面改質カーボンナノチ ユーブ系材料の製造方法。  [2] A method for producing a surface-modified carbon nanotube material, wherein the substance capable of modifying the surface of the carbon nanotube-based material is a substance that can be activated by vacuum ultraviolet rays to generate a chemically active species. .
[3] 前記の表面を改質すべきカーボンナノチューブ系材料が CVD法によって作製され たものである、請求項 1または 2に記載の製造方法。 [3] The production method according to claim 1 or 2, wherein the carbon nanotube material whose surface is to be modified is produced by a CVD method.
[4] 前記の表面を改質すべきカーボンナノチューブ系材料が基板上で成長させたもの である、請求項 1〜3のいずれかに記載の製造方法。 [4] The production method according to any one of claims 1 to 3, wherein the carbon nanotube-based material whose surface is to be modified is grown on a substrate.
[5] 前記化学的に活性な種が、電子供与性基の化学的に活性な種と電子吸弓 I性基の 化学的に活性な種との少なくとも ヽずれか一方を含む、請求項 2〜4の!ヽずれかに記 載の製造方法。 5. The chemically active species includes at least one of a chemically active species of an electron donating group and a chemically active species of an electron-absorbing I-group. A manufacturing method as described in ~ 4!
[6] 前記カーボンナノチューブ系材料の表面を改質し得る物質力 酸素、アミン類、ハ ロゲン化アルキル類、アルコール類、エーテル類およびこれらの混合物からなる群か ら選ばれた少なくとも一つの物質を含む、請求項 1〜5のいずれかに記載の製造方 法。  [6] Material power capable of modifying the surface of the carbon nanotube-based material At least one substance selected from the group consisting of oxygen, amines, alkyl halides, alcohols, ethers and mixtures thereof The production method according to claim 1, comprising:
[7] 前記カーボンナノチューブ系材料の表面を改質し得る物質が前記真空紫外線を照 射しても、前記カーボンナノチューブ系材料の表面を改質しな!/、不活性物質で希釈 されたものである、請求項 1〜6のいずれかに記載の製造方法。  [7] Even if the substance capable of modifying the surface of the carbon nanotube-based material is irradiated with the vacuum ultraviolet rays, the surface of the carbon nanotube-based material is not modified! /, Diluted with an inert substance The production method according to any one of claims 1 to 6, wherein
[8] カーボンナノチューブ系材料に対し、  [8] For carbon nanotube materials,
真空紫外線を照射し、  Irradiate vacuum ultraviolet rays,
当該真空紫外線との組合せにより当該カーボンナノチューブ系材料の表面を改質 し得る物質を供給する ことを含む方法により製造された表面改質カーボンナノチューブ系材料。 Supplying substances that can modify the surface of the carbon nanotube-based material in combination with the vacuum ultraviolet light Surface-modified carbon nanotube-based material produced by a method including the above.
[9] 前記カーボンナノチューブ系材料の表面を改質し得る物質が、真空紫外線により 活性ィ匕されて化学的に活性な種を発生し得る物質である、請求項 8に記載の表面改 質カーボンナノチューブ系材料。  [9] The surface-modified carbon according to claim 8, wherein the substance capable of modifying the surface of the carbon nanotube-based material is a substance that can be activated by vacuum ultraviolet rays to generate a chemically active species. Nanotube materials.
[10] 前記の表面を改質すべきカーボンナノチューブ系材料が CVD法によって作製され たものである、請求項 8または 9に記載の表面改質カーボンナノチューブ系材料。 10. The surface modified carbon nanotube material according to claim 8 or 9, wherein the carbon nanotube material whose surface is to be modified is produced by a CVD method.
[11] 前記の表面を改質すべきカーボンナノチューブ系材料が基板上で成長させたもの である、請求項 8〜 10のいずれかに記載の表面改質カーボンナノチューブ系材料。 [11] The surface-modified carbon nanotube material according to any one of claims 8 to 10, wherein the carbon nanotube-based material whose surface is to be modified is grown on a substrate.
[12] 導電性物質、絶縁性物質、親水性物質、親油性物質および特定の基を有する物 質力 なる群力 選ばれた少なくとも一つの物質と接した場合に、前記表面改質前に 比べ親和性が向上した、請求項 8〜: L 1のいずれかに記載の表面改質カーボンナノ チューブ系材料。 [12] Conductive substance, insulating substance, hydrophilic substance, lipophilic substance, and physical strength having specific groups Group strength as compared with the case before contact with at least one selected substance The surface-modified carbon nanotube material according to any one of claims 8 to 8, wherein the affinity is improved.
[13] 前記化学的に活性な種が、電子供与性基の化学的に活性な種と電子吸弓 I性基の 化学的に活性な種との少なくとも 、ずれか一方を含む、請求項 9〜 12の 、ずれかに 記載の表面改質カーボンナノチューブ系材料。  13. The chemically active species includes at least one of a chemically active species of an electron donating group and a chemically active species of an electron-absorbing I-group. The surface-modified carbon nanotube material according to any one of 12 to 12.
[14] 前記カーボンナノチューブ系材料の表面を改質し得る物質が、酸素、アミン類、ハ ロゲン化アルキル類、アルコール類、エーテル類およびこれらの混合物からなる群か ら選ばれた少なくとも一つの物質を含む、請求項 8〜 13のいずれかに記載の改質カ 一ボンナノチューブ系材料。  [14] The substance capable of modifying the surface of the carbon nanotube-based material is at least one substance selected from the group consisting of oxygen, amines, alkyl halides, alcohols, ethers, and mixtures thereof. The modified carbon nanotube-based material according to claim 8, comprising:
[15] 前記カーボンナノチューブ系材料の表面を改質し得る物質が前記真空紫外線を照 射しても、前記カーボンナノチューブ系材料の表面を改質しな!/、不活性物質で希釈 されたものである、請求項 8〜14のいずれかに記載の改質カーボンナノチューブ系 材料。  [15] The substance capable of modifying the surface of the carbon nanotube-based material does not modify the surface of the carbon nanotube-based material even when irradiated with the vacuum ultraviolet rays! /, Diluted with an inert substance The modified carbon nanotube material according to any one of claims 8 to 14, wherein
[16] 請求項 8〜 15のいずれかに記載の表面改質カーボンナノチューブ系材料を含ん でなる電子部材。  [16] An electronic member comprising the surface-modified carbon nanotube-based material according to any one of [8] to [15].
[17] 前記電子部材が、配線ビア、電子デバイス放熱バンプ、導電性シート、電磁波しや へい材用シート、または当該シートを製造するためのプリプレダである、請求項 16に 記載の電子部材。 請求項 8〜 15のいずれかに記載の表面改質カーボンナノチューブ系材料を含ん でなる電子装置。 17. The electronic member according to claim 16, wherein the electronic member is a wiring via, an electronic device heat radiation bump, a conductive sheet, an electromagnetic wave proofing material sheet, or a pre-predder for producing the sheet. An electronic device comprising the surface-modified carbon nanotube-based material according to any one of claims 8 to 15.
PCT/JP2006/316834 2006-08-28 2006-08-28 Carbon nanotube materials, process for production thereof, and electronic components and devices WO2008026237A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/316834 WO2008026237A1 (en) 2006-08-28 2006-08-28 Carbon nanotube materials, process for production thereof, and electronic components and devices
PCT/JP2007/000825 WO2008026304A1 (en) 2006-08-28 2007-07-31 Carbon nanomaterial, method for producing the same, electronic member and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316834 WO2008026237A1 (en) 2006-08-28 2006-08-28 Carbon nanotube materials, process for production thereof, and electronic components and devices

Publications (1)

Publication Number Publication Date
WO2008026237A1 true WO2008026237A1 (en) 2008-03-06

Family

ID=39135529

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/316834 WO2008026237A1 (en) 2006-08-28 2006-08-28 Carbon nanotube materials, process for production thereof, and electronic components and devices
PCT/JP2007/000825 WO2008026304A1 (en) 2006-08-28 2007-07-31 Carbon nanomaterial, method for producing the same, electronic member and electronic device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000825 WO2008026304A1 (en) 2006-08-28 2007-07-31 Carbon nanomaterial, method for producing the same, electronic member and electronic device

Country Status (1)

Country Link
WO (2) WO2008026237A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074703A (en) * 2010-09-29 2012-04-12 Samsung Electro-Mechanics Co Ltd Heat dissipation substrate, manufacturing method therefor, and light-emitting element package including the heat dissipation substrate
JP2014187161A (en) * 2013-03-22 2014-10-02 Toshiba Corp Semiconductor device and manufacturing method of the same
CN105441711A (en) * 2015-12-28 2016-03-30 哈尔滨工业大学 Preparation method of three-dimensional structure CNTs reinforced Cu-based composite

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234815A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Method and apparatus for processing graphene sheet-based material
JP2009282865A (en) * 2008-05-24 2009-12-03 Kuraray Co Ltd Transparent electrode substrate for touch panel and touch panel
JP5299506B2 (en) 2009-04-21 2013-09-25 富士通株式会社 Method for processing graphene sheet-based material and method for manufacturing electronic device
KR101736462B1 (en) * 2009-09-21 2017-05-16 한화테크윈 주식회사 Method for manufacturing graphene
JP2012036040A (en) * 2010-08-06 2012-02-23 Fujitsu Ltd Method for forming graphene sheet-based material and graphene sheet-based material
WO2012061607A2 (en) * 2010-11-03 2012-05-10 Massachusetts Institute Of Technology Compositions comprising functionalized carbon-based nanostructures and related methods
CN102796991B (en) * 2011-05-27 2014-08-20 清华大学 Method for preparing graphene carbon nanotube composite membrane structure
JP5510522B2 (en) * 2012-09-27 2014-06-04 富士通株式会社 Method for processing graphene sheet material
US11505467B2 (en) 2017-11-06 2022-11-22 Massachusetts Institute Of Technology High functionalization density graphene
JP7370042B2 (en) * 2019-08-19 2023-10-27 国立研究開発法人産業技術総合研究所 Transmission electron microscope sample support, its manufacturing method, and sample preparation method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503204A (en) * 1996-03-06 2002-01-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized nanotubes
JP2005272184A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Method for manufacturing hydrophilic carbon nanotube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503204A (en) * 1996-03-06 2002-01-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized nanotubes
JP2005272184A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Method for manufacturing hydrophilic carbon nanotube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASANO K. ET AL.: "Chemical modification of multiwalled carbon nanotubes by vacuum ultraviolet irradiation dry process", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 45, no. 4B, April 2006 (2006-04-01), pages 3573 - 3576, XP003021247 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074703A (en) * 2010-09-29 2012-04-12 Samsung Electro-Mechanics Co Ltd Heat dissipation substrate, manufacturing method therefor, and light-emitting element package including the heat dissipation substrate
JP2014187161A (en) * 2013-03-22 2014-10-02 Toshiba Corp Semiconductor device and manufacturing method of the same
CN105441711A (en) * 2015-12-28 2016-03-30 哈尔滨工业大学 Preparation method of three-dimensional structure CNTs reinforced Cu-based composite

Also Published As

Publication number Publication date
WO2008026304A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
KR101050128B1 (en) Surface-Modified Carbon Nanotube-Based Materials, Methods for Manufacturing the Same, Electronic Members, and Electronic Devices
WO2008026237A1 (en) Carbon nanotube materials, process for production thereof, and electronic components and devices
US8702897B2 (en) Structures including carbon nanotubes, methods of making structures, and methods of using structures
US8951609B2 (en) CNT devices, low-temperature fabrication of CNT and CNT photo-resists
Kim et al. Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons
Zhao et al. Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates
US20210060603A1 (en) Method for producing large-area monolayer films of solution dispersed nanomaterials
JP2010510168A (en) Functionalized boron nitride nanotubes
WO2006120449A1 (en) Nanostructure production methods and apparatus
CN102026918A (en) Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
Li et al. Graphene: preparation, tailoring, and modification
Lu et al. Single-step direct growth of graphene on Cu ink toward flexible hybrid electronic applications by plasma-enhanced chemical vapor deposition
Chand et al. Scalable Production of Ultrathin Boron Nanosheets from a Low‐Cost Precursor
Zang et al. Metallo‐Hydrogel‐Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides
JP2014511022A (en) Method for producing injected self-assembled monolayers
Lin et al. Applications of carbon nanomaterials as electrical interconnects and thermal interface materials
US20160118608A1 (en) Single electron transistor having nanoparticles of uniform pattern arrangement and method for fabricating the same
EP2674996A1 (en) Method for growing nanostructures in recessed structures
Chauhan et al. N2‐Plasma‐Assisted One‐Step Alignment and Patterning of Graphene Oxide on a SiO2/Si Substrate Via the Langmuir–Blodgett Technique
TW200815282A (en) Carbon nanomaterial, manufacturing method therefor, electronic element and electronic device
Chen et al. A self-assembled synthesis of carbon nanotubes for interconnects
KR102218068B1 (en) Graphene laminate including flexible substrate, method for preparing the same, and organic electronic device comprising the same
EP2412019A1 (en) Method for producing electrical interconnections made of carbon nanotubes
da Silva et al. A simple visible light photo-assisted method for assembling and curing multilayer GO thin films
CA3027132C (en) Method and apparatus for producing large-area monolayer films of solution dispersed nanomaterials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06796868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06796868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP