WO2008018429A1 - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
WO2008018429A1
WO2008018429A1 PCT/JP2007/065399 JP2007065399W WO2008018429A1 WO 2008018429 A1 WO2008018429 A1 WO 2008018429A1 JP 2007065399 W JP2007065399 W JP 2007065399W WO 2008018429 A1 WO2008018429 A1 WO 2008018429A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
evaporator
heat
gas
liquid separation
Prior art date
Application number
PCT/JP2007/065399
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Agata
Original Assignee
Takahiro Agata
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahiro Agata filed Critical Takahiro Agata
Priority to JP2007551500A priority Critical patent/JP4917048B2/en
Publication of WO2008018429A1 publication Critical patent/WO2008018429A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0041Use of fluids
    • B01D1/0047Use of fluids in a closed circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • the present invention relates to an evaporator, and more particularly to an evaporator that can generate a vapor of the working fluid by heating the working fluid with a heat source and can be used in various situations.
  • Patent Document 1 shows an evaporator used in a thermoelectric generator.
  • Patent Document 2 shows an evaporator for cooling a stack of a solid polymer electrolyte fuel cell
  • Patent Document 3 describes evaporation as a component of a heat exchange device.
  • a vessel is shown.
  • Patent Document 4 shows an evaporator as a stacked heat exchanger
  • Patent Document 5 is used as a heat sink for a power semiconductor element by being incorporated in a stack assembly of a semiconductor device.
  • An evaporator as a boiling cooling body is shown.
  • nucleate boiling As the steam generation mode of the evaporator, nucleate boiling, which has the potential to greatly increase the heat transfer rate from the heat transfer surface to the working fluid, has been conventionally used (Patent Documents 1 to 5). If nucleate boiling can be used, it depends greatly on the state of occurrence of nucleate boiling, but it is possible to achieve a heat transfer coefficient that is approximately 10 to 100 times that of forced convection water flow. Yes.
  • the bubble nuclei formed on the basis of minute scratches and cavities on the heat transfer surface become the foaming points (boiling nuclei), from which the growth and separation of vapor bubbles occur. It happens by being repeated.
  • the size of bubble nuclei will increase, and nucleate boiling will start and be sustained even if the degree of superheat, which is the difference between the surface temperature of the heat transfer surface and the saturation temperature of the working fluid, is small. .
  • the heat transfer surface is lined with a sintered metal, the protrusion is formed, the minute recess is formed, the reinforcing rib It has been shown that the bottom shape of the tube is made V-shaped to facilitate nucleate boiling.
  • a vertical plane such as a machine or device is directly used as a heat transfer surface to transfer heat.
  • a smooth heat transfer surface is required. It will cause nucleate boiling, and the superheating degree at the boiling start point will be as high as 10 ° C. For this reason, the evaporation temperature of the working fluid is 10 ° C or more lower than the heat source temperature. If the temperature of the heat source to be used is 100 ° C or less, the heat utilization efficiency and the heat dissipation efficiency will be reduced! there were.
  • the volume and shape of the evaporator are limited due to the spatial restrictions of the installation location, and the critical heat flux phenomenon may occur before nucleate boiling reaches the interference region.
  • the heat flux increases rapidly with a slight increase in superheat, so the number of foaming points increases rapidly, generating steam bubbles.
  • the withdrawal cycle is also very fast.
  • the heat transfer surface may be covered. As a result, supply of the working fluid to the heat transfer surface may be delayed, causing intermittent and local dryout, resulting in a decrease or fluctuation in heat flux.
  • the heat source temperature is 100 ° C or lower, it is desirable to use water as a working fluid from the viewpoints of cost, safety, ease of maintenance, and the like.
  • the working fluid depth in the evaporator has a problem of suppressing nucleate boiling.
  • the heat source temperature is 30 ° C
  • the working fluid is water and boiling at 25 ° C, its saturated vapor pressure is 3168 Pascals (Pa).
  • the water depth is 10cm, it will boil at a temperature that makes about 4200Pa saturated vapor pressure by adding about lOOOPa as water pressure.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-24132
  • Patent Document 2 JP-A-2005-190725
  • Patent Document 3 Japanese Patent Laid-Open No. 5-52491
  • Patent Document 4 Japanese Patent Laid-Open No. 7-127987
  • Patent Document 5 JP 2000-77586 Koyuki
  • the present invention has been made in view of the above problems, and does not cause intermittent and local dryout, and the supply of the working fluid to the heat transfer surface does not stagnate, so that the heat flux increases.
  • the evaporator is not required to be large and water is used as the working fluid and the heat source temperature is 100 ° C or less, only a slight temperature difference from the heat source can be used effectively.
  • the goal is to provide an evaporator that will be revolutionary eco-technologies!
  • an evaporator (1) has a nucleation member that forms boiling nuclei between two planes arranged opposite to each other. One of these two planes or two planes are sandwiched and constitute a heat transfer surface that transfers heat from the heat source to the working fluid.
  • the structure of the nucleation member is not particularly limited as long as it can form boiling nuclei at an appropriate density by contacting the flat surface at an appropriate ratio.
  • an expanded metal is sufficient.
  • the material that is desired to have space There is no particular limitation on the material that is desired to have space.
  • the nucleation member that forms the boiling nuclei is sandwiched between the two planes arranged opposite to each other.
  • Nucleate boiling which can maximize the heat transfer coefficient, can be generated and maintained very reliably and efficiently.
  • it takes time and effort to increase the cost such as lining sintered metal on the heat transfer surface, forming protrusions, forming minute recesses, and making the bottom shape of the reinforcing rib V-shaped. It is possible to provide a small, revolutionary, high-performance evaporator at a low cost that does not require a manufacturing process.
  • the thickness of the nucleation member may be 2 mm or less, whereas the evaporation part depth may be several hundred mm or more, which makes it extremely thin and has a wide area. Can provide you with an evaporator. In conventional evaporators, the shape of such a thin evaporation section could not eliminate the gravitational action (buoyancy) that lifts and raises the vapor bubbles from the foaming point, and the critical heat flux could not be very low.
  • the heat transfer is performed at a stage of relatively small heat flux.
  • the surface of the heat transfer surface can be covered with a steam flow, and the heat transferred from the heat transfer surface is transferred to the gas-liquid interface in contact with the steam flow through heat conduction, where the saturated vapor pressure 'temperature It becomes an efficient form to continuously evaporate the steam.
  • This efficient evaporation form not involving convection heat transfer is the same as the vapor mass generation seen in the interference region of nucleate boiling. Select a working fluid that has a high saturation pressure and does not cause low-pressure boiling.
  • the two planes sandwiching the nucleation member may be inclined rather than substantially vertical.
  • the evaporator (2) according to the present invention is characterized in that the two planes are arranged substantially vertically.
  • the installation area of the evaporator can be minimized.
  • the evaporator (3) according to the present invention is characterized in that the two planes are arranged to be inclined with respect to a vertical plane.
  • the evaporator (3) can be stably mounted on the roof or the like according to the inclination angle of the mounting surface such as the roof.
  • the evaporator (4) according to the present invention is exposed above the gas-liquid separation interface of the nucleation member working fluid in any of the evaporators (1) to (3).
  • the special feature is that it is structured as follows.
  • the evaporator (4) even if the vapor ejected from the heat transfer surface violently boiles the gas-liquid separation interface, the upper end of the nucleation member is completely encased in the vapor and causes dryout.
  • the working fluid can always be maintained in a state where it flows down the nucleation member and heat transfer efficiency can be improved.
  • the evaporator (5) according to the present invention is characterized in that in any of the evaporators (1) to (4), the nucleation member is formed of an expanded metal! As! /
  • Expanded metal is widely used, and various types can be obtained at low cost. Therefore, according to the evaporator (5), it is possible to form the nucleation member at a low cost, and to optimize the force according to the situation, and to provide a high-performance evaporator at a low cost. It will be defeated with force S.
  • a gas-liquid separation header is continuously provided above the two planes. It is a feature.
  • the plane is covered with the vapor flow, so that the working liquid filling the evaporator is pushed out and flows out from the evaporator to the condenser in a gas-liquid mixed flow state.
  • Gas-liquid separation is performed to prevent the occurrence of dryout, and the working fluid can always be stably supplied between the nucleation member and the flat surface, and more reliably preventing the occurrence of dryout and increasing the heat transfer efficiency. be able to.
  • a liquid reservoir is connected to a lower portion of the two planes, and the liquid reservoir and the gas-liquid separation header are connected to each other.
  • the conveying means connected via the connecting means and sending the working fluid accumulated in the liquid reservoir to the gas-liquid separation header is interposed in the connecting means.
  • the evaporator (7) when the working fluid flows, when the saturated vapor pressure is in a low pressure region, the bubble nuclei formed at the contact point between the nucleation member and the two planes become the working fluid.
  • An amount of working fluid is circulated between the gas-liquid separation header and the liquid reservoir so as not to be immersed and capable of maintaining a liquid flow flowing down the nucleation member. Regardless of the vertical distance of the heat transfer surface, it is possible to cause nucleate boiling with the entire surface of the heat transfer surface covered with steam flow.
  • a nucleation member is sandwiched between two heat transfer plates to constitute one unit
  • a through hole is formed in the opposite location of the upper part of the two heat transfer plates,
  • a through hole is formed at a location facing the through hole of the upper separator
  • a gas-liquid separation header is constituted by the upper separator and the through holes of the two heat transfer plates, while a space formed by two adjacent heat transfer plates and the upper and lower separators is a heat source flow portion.
  • the evaporator (8) an extremely thin and extremely high performance evaporator can be realized. Also, since the heat source flow part is surrounded by a flat surface, Teflon (registered trademark) Coating such as processing can be easily performed, and it can be applied regardless of the type of heat source, and it can be made suitable for exhaust heat use of hot springs, which are usually difficult to use due to scale problems.
  • Teflon registered trademark
  • an evaporator as a cooling device for a solid polymer electrolyte fuel cell stack and an evaporation as a boiling type cooling body used as a heat sink for a power semiconductor element incorporated in a stack assembly of a semiconductor device. If the evaporator (8) is used in a vacuum vessel, etc., it is possible to provide a high performance, excellent workability, inexpensive, thin, and space-saving evaporator.
  • a nucleation member is sandwiched between two heat transfer plates to constitute one unit
  • Through-holes are formed at opposite locations of the upper and lower portions of the two heat transfer plates, and these units are stacked horizontally via two upper and lower separators,
  • a through-hole is formed at a location facing the through-hole of the upper and lower separators, and a gas-liquid separation header and a liquid reservoir are configured by the through-holes of the upper and lower separators and the two heat transfer plates,
  • the liquid reservoir and the gas-liquid separation header are connected via a connecting means,
  • the space formed by the two adjacent heat transfer plates and the upper and lower separators serves as a flow path for the heat source.
  • the evaporator (9) even when the saturated vapor pressure is in a low pressure region during operation of the working fluid, the entire surface of the heat transfer plate is covered regardless of the vertical distance of the heat transfer plate. Thus, it is possible to cause nucleate boiling at substantially the same saturation temperature to occur at the foaming point formed at the contact point between the heat transfer plate and the nucleation member. Therefore, it is possible to provide a high-performance evaporator that makes the best use of nucleate boiling even with a heat exchange system that uses only a small temperature difference.
  • FIG. 1 is an exploded perspective view showing an evaporator according to a first embodiment of the present invention.
  • FIG. 2 is an assembled perspective view showing the evaporator according to the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view taken along line m- ⁇ in FIG. 2 showing the evaporator according to the first embodiment.
  • FIG. 4 is an exploded perspective view showing an evaporator according to a second embodiment of the present invention.
  • FIG. 5 is an assembled perspective view showing an evaporator according to a second embodiment.
  • FIG. 6 is an enlarged sectional view taken along line VI-VI in FIG. 5 showing an evaporator according to a second embodiment.
  • FIG. 7 is an assembled perspective view showing an evaporator according to a third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line vm-vm in FIG. 7, showing an evaporator according to a third embodiment.
  • FIG. 9 is a partially exploded perspective view showing an evaporator according to a fourth embodiment of the present invention.
  • FIG. 10 is an exploded perspective view showing an evaporation plate unit according to a fourth embodiment.
  • FIG. 11 is a cross-sectional view of the ⁇ -Xl spring assembly in FIG.
  • FIG. 12 is a partially exploded perspective view showing an evaporator according to a fifth embodiment of the present invention.
  • FIG. 13 is an exploded perspective view showing an evaporation plate unit according to a fifth embodiment.
  • FIG. 14 is a sectional view taken along line XIV-XIV in FIG.
  • FIG. 1 is an exploded perspective view showing an evaporator according to a first embodiment of the present invention
  • FIG. 2 is an assembled perspective view
  • FIG. 3 is an enlarged sectional view taken along the line in FIG.
  • Evaporator 1 indicates an evaporator.
  • Evaporator 1 includes two rectangular metal heat transfer plates 2, and stainless steel expanded metal 3 4 as a nucleation member cut into a rectangular shape. It includes a stainless steel frame 4 with the upper side removed, and a heat transfer plate 2, expanded metal 3, and a stainless steel gas-liquid separation header 5 connected to the top of the frame 4. It is made.
  • the gas-liquid separation header 5 is connected to a metal condensate pipe LP and a metal steam pipe VP.
  • the working fluid liquefied by a condenser (not shown) is condensed into the condensate pipe LP.
  • the working fluid receives heat from a heat source (not shown) via the heat transfer surface 2a of the heat transfer plate 2, and evaporates to the boiling point. I will do it.
  • the heat source side plane of the heat transfer plate 2 is processed with Teflon (registered trademark), and even if the heat source has a scale problem such as hot spring water, it is configured to be maintenance-free.
  • the expanded metal 3 and the heat transfer surface are formed on the upper layer portion of the heat transfer plate 2 in contact with the heat source (not shown).
  • the heat source not shown.
  • Contact with 2a Weak nucleate boiling occurred at BP as the foaming point, and the separated vapor bubbles rose as if they were sewed between the expanded metals 3.
  • the heat transfer plate 2 has a simple configuration in which the expanded metal 3 that forms boiling nuclei is sandwiched between the heat transfer plates 2 that are arranged substantially opposite to each other. It was possible to generate nucleate boiling with extremely high heat transfer rate from the working fluid to the working fluid very reliably and efficiently. In addition, the cost increases such as lining the sintered metal on the heat transfer surface 2a, forming protrusions, forming minute recesses, and making the bottom shape of the reinforcing rib V-shaped. It was possible to provide a low-cost, extremely high-performance evaporator that did not require time-consuming manufacturing processes.
  • the expanded metal 3 is configured to be exposed above the gas-liquid separation interface Ld of the working fluid, the steam ejected from the heat transfer plate 2 violently boils the gas-liquid separation interface Ld. Even if it is erected, the working fluid can be maintained in a state where the upper end of the expanded metal 3 is completely encased in steam and does not dry out. did it.
  • the expanded metal 3 is widely used, and it is possible to obtain various types at low cost. Therefore, it is possible to form the nucleation member at a low cost and with an optimum force according to the situation, and to provide a high-performance evaporator at a low cost.
  • the gas-liquid separation header 5 is connected to the upper part of the heat transfer plate 2, the working fluid can always be stably supplied between the expanded metal 3 and the heat transfer plate 2. Therefore, it is possible to reliably prevent the occurrence of dryout and increase the heat transfer efficiency.
  • the expanded metal 3 cannot be sandwiched between the heat transfer plates 2 if the internal pressure becomes larger than the external pressure. Therefore, it is necessary to select a working fluid having an appropriate saturated vapor pressure in which the internal pressure is smaller than the external pressure in accordance with the heat source temperature.
  • FIG. 4 to 6 show an evaporator 1A according to the second embodiment of the present invention.
  • FIG. 4 is an exploded perspective view
  • FIG. 5 is an assembled perspective view
  • FIG. An enlarged cross-sectional view of line VI is shown.
  • the evaporator 1A force according to the second embodiment shown in FIGS. 4 to 6 is different from the evaporator 1 according to the first embodiment shown in FIGS.
  • the shape of the gas-liquid separation header 5A is the same as that of the gas-liquid separation header 5 of the first embodiment. In addition, it has a rectangular parallelepiped shape rather than a cylindrical shape, and is designed to reduce costs based on ease of manufacture.
  • Gas-liquid separation header 5A is attached to the upper side of heat transfer plate 2A.
  • the supply ports 5b and 2b for supplying the working fluid stored in the gas-liquid separation header 5A between the heat transfer plates 2 and 2A are formed in the gas-liquid separation header 5A and the heat transfer plate 2A.
  • the force S can provide a cheaper and higher performance evaporator.
  • FIG. 7 and 8 show an evaporator according to a third embodiment of the present invention.
  • FIG. 7 is an assembled perspective view
  • FIG. 8 is a sectional view taken along the line vm-vm in FIG. Show.
  • a liquid reservoir header 6 is connected to the lower part of the hot plates 2 and 2, and the liquid reservoir header 6 and the gas-liquid separation header 5 are connected via a pipe 7, and the working fluid accumulated in the liquid reservoir header 6 is gas-liquid.
  • a pump 8 as a conveying means to be sent to the separation header 5 is interposed near the liquid reservoir header 6 of the pipe 7. Since the other points are the same as those of the evaporator 1 according to the first embodiment, a detailed description thereof is omitted here.
  • the evaporator 1B According to the evaporator 1B according to the third embodiment, even when the saturated vapor pressure is in the low pressure region during operation of the working fluid, regardless of the vertical distance between the heat transfer plates 2 and 2, Over the entire surface of the heat transfer plates 2 and 2, nucleate boiling at substantially the same saturation temperature can be caused at the foaming points formed at the contact points between the heat transfer plates 2 and 2 and the expanded metal 3. Therefore, even with a heat exchange system that uses only a small temperature difference, it is possible to provide a high-performance evaporator that makes the most of nucleate boiling.
  • a solar heat collector using sunlight as a heat source may be incorporated as a heat collection medium heater (evaporator).
  • a solar heat collector is installed on the south side wall of the building, and in winter heat collection at low solar altitude, a low boiling point working fluid is used, so there is a concern about freezing even in sub-freezing environments. It can collect heat as a heat source of a heat pump for heating.
  • FIGS. 9 to 11 show a stack type evaporator according to a fourth embodiment of the present invention
  • FIG. 9 is a partially exploded perspective view
  • FIG. 10 is an exploded perspective view showing an evaporation plate unit.
  • FIG. 11 shows a sectional view taken along line X-XI in FIG.
  • evaporator 1C In the evaporator 1C according to the fourth embodiment shown in Figs. 9 to 11, two heat transfer plates 2B, Expanded metal 3 as a nucleation member is sandwiched between 2B to constitute one unit of evaporation plate 20.
  • Through-holes 2c and 2c constituting the gas-liquid separation header 5B are formed at opposite positions on the top of the two heat transfer plates 2B and 2B.
  • These evaporation plates 20 are connected via two upper and lower separators 9 and 10, respectively. They are stacked horizontally.
  • a through hole 9a is formed at a position facing the through hole 2c of the upper separator 9, and a gas-liquid separation header 5B is configured by the upper separator 9 and the through holes 2c and 2c of the two heat transfer plates 2B and 2B.
  • the space formed by the two adjacent heat transfer plates 2B and 2B and the upper and lower separators 9 and 10 serves as a heat source flow passage 15.
  • the evaporation plate 20 includes two heat transfer plates 2B and 2B each having a rectangular shape, an expanded metal 3 cut into a rectangular shape, and a frame 4B having four sides. A large number of these evaporation plates 20 are stacked horizontally between the end plates 11 and 11 via two upper and lower separators 9 and 10, supported by a large number of tie rods 12, and fastened and fixed by bolts 13. ing.
  • a condensate pipe LP and a steam pipe VP are connected to the gas-liquid separation header 5B via an end plate 11, and the working fluid liquefied by a condenser (not shown) is connected to the condensate pipe LP.
  • the working fluid receives heat from the heat source (not shown) via the heat transfer surface 2a of the heat transfer plates 2B and 2B, and evaporates to the boiling point.
  • the evaporator 1C According to the evaporator 1C according to the fourth embodiment, an extremely thin and extremely high performance evaporator can be realized.
  • the heat source flow portion 15 is formed by being surrounded by a flat surface, coating such as Teflon (registered trademark) processing can be easily performed, and it can be applied regardless of the type of heat source.
  • the power S is suitable for the use of exhaust heat from hot springs that are difficult to use.
  • an evaporator as a cooling device for a stack of a solid polymer electrolyte fuel cell and an evaporation as a boiling type cooling body used as a heat sink for a power semiconductor element incorporated in a stack assembly of a semiconductor device.
  • Extremely thin and extremely high performance evaporator Can be realized.
  • coating such as Teflon (registered trademark) processing can be performed easily, and it can be applied regardless of the type of heat source. Power that is suitable for the use of exhaust heat from hot springs that are difficult to use.
  • an evaporator as a cooling device for a solid polymer electrolyte fuel cell stack, and an evaporation as a boiling type cooling device used as a heat sink for a power semiconductor element incorporated in a stack assembly of a semiconductor device. If the evaporator 1C is applied to an evaporator, etc., it is possible to provide an evaporator that has high performance, excellent workability, is inexpensive, thin, and does not require installation space.
  • FIGS. 12 to 14 show a stack type evaporator according to a fifth embodiment of the present invention
  • FIG. 12 is a partially exploded perspective view
  • FIG. 13 is an exploded view showing an evaporation plate unit.
  • a perspective view, FIG. 14 shows a sectional view taken along line XIV-XIV in FIG.
  • the expanded metal 3 as a nucleation member is sandwiched between the two heat transfer plates 2C, 2C, and the evaporation plate One unit of 20A is configured.
  • Through holes 2c, 2c, 2d, and 2d constituting the gas-liquid separation header 5B and the liquid reservoir header 6B are formed at the opposite locations of the upper and lower portions of the two heat transfer plates 2C and 2C. They are stacked in the horizontal direction via two separators 9 and 10A.
  • a through hole 9a is formed at a position facing the through hole 2c of the upper separator 9, and gas-liquid separation is performed by the through hole 9a of the upper separator 9 and the through holes 2c and 2c of the two heat transfer plates 2C and 2C.
  • a through hole 10d is formed at a position facing the through hole 2d of the lower separator 10A, and the through hole 10 (one and two heat transfer plates 2 (:, 2) of the lower separator 10 8 is formed.
  • Through-hole 2 (1, 2 (1) The reservoir 6B is formed, and the space surrounded by the two adjacent heat transfer plates 2C, 2C and the upper and lower separators 9, 10A is the heat source. It is a convection section 15.
  • the evaporation plate 20A includes two rectangular heat transfer plates 2C and 2C, an expanded metal 3 cut into a rectangular shape, and a frame 4B composed of four sides. A large number of these evaporation plates 20A are stacked in a horizontal direction between the end plates 11 and 11 via two separators 9 and 10A, and are supported by a large number of tie rods 12 and bolts. Tightened and fixed by 13
  • a condensate pipe LP and a steam pipe VP are connected to the gas-liquid separation header 5B via an end plate 11, and the working fluid liquefied by a condenser (not shown) is connected to the condensate pipe LP.
  • the working fluid receives heat from a heat source (not shown) via the heat transfer surface 2a of the heat transfer plates 2C and 2C, and evaporates to the boiling point.
  • liquid reservoir header 6B and the gas-liquid separation header 5B are connected via the pipe 7, and a pump as a conveying means for sending the working fluid accumulated in the liquid reservoir header 6B to the gas-liquid separation header 5B.
  • 8 is installed near the reservoir header 6B of the pipe 7. Since the other points are the same as those of the evaporator 1C according to the fourth embodiment, detailed description thereof is omitted here.
  • the saturated vapor pressure is in the low pressure region when the working fluid is operated.
  • the nucleate boiling at substantially the same saturation temperature occurs over the entire surface of the heat transfer plates 2C and 2C, and the heat transfer plates 2C and 2C and the expanded metal 3 It can be caused to occur at the foaming point formed at the contact. Therefore, it is possible to provide a high-performance evaporator that makes the best use of nucleate boiling even with a heat exchange system that uses only a small temperature difference.
  • the heat transfer plate 2 and the like are arranged substantially vertically.
  • the heat transfer plate and the like are inclined with respect to the vertical plane. May be arranged.
  • the evaporator can be stably mounted on the roof according to the inclination angle of the mounting surface such as the roof.
  • the evaporator according to the present invention is, for example, used in a thermoelectric generator, for cooling a stack of solid polymer electrolyte fuel cells, as a component of a heat exchange device, or as a heat sink of a power semiconductor element. As such, it can be used industrially in various situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

It is possible to provide an evaporator which does not cause an intermittent, local dry out or interruption of supply of a working fluid to a heat conductive plane. Accordingly, even if the heat flux increases, the size of the evaporator need not be increased. The evaporator uses water as a working fluid. Even if the heat source temperature is below 100 degrees C, the evaporator can effectively use a slight temperature difference from the heat source. Two heat conducting plates (2) arranged to oppose to each other sandwich an expand metal (3) as a nucleus forming member forming a boiling nucleus between the heat conducting plates (2).

Description

明 細 書 技術分野  Technical field
[0001] 本発明は蒸発器に関し、より詳細には、熱源により作動流体を加熱することにより、 この作動流体の蒸気を生成させることができ、種々の場面に利用可能な蒸発器に関 する。  The present invention relates to an evaporator, and more particularly to an evaporator that can generate a vapor of the working fluid by heating the working fluid with a heat source and can be used in various situations.
背景技術  Background art
[0002] 蒸発器は、近年、種々の場面で利用されており、例えば下記の特許文献 1には、 熱電発電装置に利用される蒸発器が示されている。下記の特許文献 2には、固体高 分子電解質型燃料電池のスタックの冷却用としての蒸発器が示されており、また、下 記の特許文献 3には、熱交換装置の構成要素としての蒸発器が示されている。さらに 、下記の特許文献 4には、積層型熱交換器としての蒸発器が示されており、下記の 特許文献 5には、パワー半導体素子のヒートシンクとして、半導体デバイスのスタック 組立体に組み込んで使用される沸騰式冷却体としての蒸発器が示されている。 蒸発器の蒸気発生様式としては、伝熱面から作動流体への熱伝達率を非常に大きく できる可能性のある核沸騰が従来から利用されている(特許文献 1〜5)。核沸騰を利 用できると、核沸騰の発生状況にも大きく左右されるが、強制対流の水流による場合 と比べて、約 10倍〜 100倍の熱伝達率を実現することが可能とされている。  In recent years, an evaporator has been used in various scenes. For example, Patent Document 1 below shows an evaporator used in a thermoelectric generator. Patent Document 2 below shows an evaporator for cooling a stack of a solid polymer electrolyte fuel cell, and Patent Document 3 below describes evaporation as a component of a heat exchange device. A vessel is shown. Furthermore, the following Patent Document 4 shows an evaporator as a stacked heat exchanger, and the following Patent Document 5 is used as a heat sink for a power semiconductor element by being incorporated in a stack assembly of a semiconductor device. An evaporator as a boiling cooling body is shown. As the steam generation mode of the evaporator, nucleate boiling, which has the potential to greatly increase the heat transfer rate from the heat transfer surface to the working fluid, has been conventionally used (Patent Documents 1 to 5). If nucleate boiling can be used, it depends greatly on the state of occurrence of nucleate boiling, but it is possible to achieve a heat transfer coefficient that is approximately 10 to 100 times that of forced convection water flow. Yes.
[0003] 伝熱面からの核沸騰は、伝熱面に存在する微小な傷やキヤビティを基に形成され る気泡核のところが発泡点 (沸騰核)となり、そこから蒸気泡の成長、離脱が繰り返さ れることにより起こる。また、伝熱面が粗いと気泡核の大きさが大きくなり、伝熱面の表 面温度と作動流体の飽和温度との差である過熱度が小さくても核沸騰は開始され、 持続される。特許文献 3〜5に記載の蒸発器においては、この特性を利用し、伝熱面 に焼結金属を内張りしたものや、突起を形成したものや、微細な凹部を形成したもの や、補強リブの底面形状を V字形状にすることにより、核沸騰を起こり易くしたものが 示されている。  [0003] In nucleate boiling from the heat transfer surface, the bubble nuclei formed on the basis of minute scratches and cavities on the heat transfer surface become the foaming points (boiling nuclei), from which the growth and separation of vapor bubbles occur. It happens by being repeated. In addition, if the heat transfer surface is rough, the size of bubble nuclei will increase, and nucleate boiling will start and be sustained even if the degree of superheat, which is the difference between the surface temperature of the heat transfer surface and the saturation temperature of the working fluid, is small. . In the evaporators described in Patent Documents 3 to 5, using this characteristic, the heat transfer surface is lined with a sintered metal, the protrusion is formed, the minute recess is formed, the reinforcing rib It has been shown that the bottom shape of the tube is made V-shaped to facilitate nucleate boiling.
[0004] しかしながら、機械、装置類などの垂直な平面を直接的に伝熱面として利用し、伝 熱面を作動流体に浸漬することで作動流体を沸騰させ、熱交換を行うものなど、伝熱 面表面への粗面加工を施しにくい場合(特許文献 2)においては、滑らかな伝熱面で 核沸騰を行わせることになり、沸騰開始点の過熱度が 10°C程度と高くなる。このため 、作動流体の蒸発温度は熱源温度より 10°C以上低い温度となり、利用対象熱源の 温度が 100°C以下の場合では、熱利用効率や、放熱効率が低くなると!/、つた課題が あった。 However, a vertical plane such as a machine or device is directly used as a heat transfer surface to transfer heat. In cases where it is difficult to roughen the surface of the heat transfer surface, such as when the working fluid is boiled by immersing the hot surface in the working fluid and heat exchange is performed (Patent Document 2), a smooth heat transfer surface is required. It will cause nucleate boiling, and the superheating degree at the boiling start point will be as high as 10 ° C. For this reason, the evaporation temperature of the working fluid is 10 ° C or more lower than the heat source temperature.If the temperature of the heat source to be used is 100 ° C or less, the heat utilization efficiency and the heat dissipation efficiency will be reduced! there were.
[0005] 他方、特許文献 3〜5に記載の蒸発器では、伝熱面に焼結金属を内張りし、突起を 形成し、微細な凹部を形成し、補強リブの底面形状を V字形状に加工したりする工程 にかなりの手間を要し、製作コストが高くつくといった課題があった。  [0005] On the other hand, in the evaporators described in Patent Documents 3 to 5, the sintered metal is lined on the heat transfer surface, the protrusions are formed, the fine recesses are formed, and the bottom shape of the reinforcing rib is V-shaped. There was a problem that the manufacturing process required considerable labor and the production cost was high.
[0006] また、上記した核沸騰を利用する!/、ずれの蒸発器にあっても、成長した蒸気泡は作 動流体の自然対流、浮力によって伝熱面から素早く離脱するので、 自然対流が円滑 に行われるのに十分な空間を確保する必要があり、熱流束の増大とともに蒸発器を 大形化しなければならなレ、とレ、つた課題があった。  [0006] Further, even in the above-described nucleate boiling! /, Even in the case of a misaligned evaporator, the grown vapor bubbles quickly detach from the heat transfer surface due to the natural convection and buoyancy of the working fluid. There was a problem that it was necessary to secure sufficient space for smooth operation, and the evaporator had to be enlarged with increasing heat flux.
[0007] また、プール沸騰における核沸騰では伝熱面の温度が上昇し、過熱度がある値に なると大きな気泡核力 発泡点となって蒸気泡の成長、離脱が始まる。過熱度が上昇 するに従い、小さな気泡核も発泡点となって発泡点の数が増え、発泡点からは蒸気 泡が連続した列を作って立ち上がるようになる。この弱い核沸騰の領域のことを孤立 気泡領域という。  [0007] Further, in nucleate boiling in pool boiling, the temperature of the heat transfer surface rises, and when the degree of superheat reaches a certain value, the bubble bubble grows and begins to grow as a large bubble nucleation point. As the degree of superheat increases, small bubble nuclei also become foaming points and the number of foaming points increases, and from the foaming point, a series of vapor bubbles starts up. This weak nucleate boiling region is called an isolated bubble region.
[0008] さらに過熱度を上げていくと、伝熱面の発泡点密度が大きくなり、発生、浮上する多 くの気泡も込み合ってくる。やがて、発泡点から連続する蒸気泡が前後につながる形 で細い連続気泡柱に見えるものができたり、伝熱面から少し離れたところで浮上中の 気泡同士がいろいろに合体したりするようになる。  [0008] When the degree of superheat is further increased, the foaming point density on the heat transfer surface increases, and many bubbles that are generated and floated are also crowded. Eventually, steam bubbles that continue from the foaming point are connected to the front and back, creating what appears to be a thin open-cell column, or the bubbles that are floating are united with each other at a distance from the heat transfer surface.
[0009] もっと伝熱面温度が上がると、沸騰はこれまでとはまるで違った様相を呈し、かなり 大きな蒸気塊が伝熱面を覆い、成長と離脱を繰り返すようになる。伝熱面と蒸気塊に はさまれて存在する薄い液層は伝熱面からの熱を受け、その液量を減じながら蒸気 塊に蒸気を供給する。伝熱面上でいつまでも沸騰が続くためには、蒸気塊が離脱し た瞬間に薄い液層に液体が補給されており、伝熱面からの熱流束に応じた蒸発量と 液体補給量とのバランスがとれてレ、ること力必要となる。この強レ、核沸騰の領域を干 渉領域とレ、い、極めて大きな熱伝達率が実現される。 [0009] When the temperature of the heat transfer surface rises further, the boiling appears to be different from the past, and a considerably large vapor mass covers the heat transfer surface and repeats growth and separation. A thin liquid layer sandwiched between the heat transfer surface and the vapor block receives heat from the heat transfer surface and supplies steam to the vapor block while reducing the amount of liquid. In order for boiling to continue on the heat transfer surface forever, the thin liquid layer is replenished with liquid at the moment when the vapor mass breaks off, and the amount of evaporation corresponding to the heat flux from the heat transfer surface You need to be balanced and have the power to do it. This strong, nucleate boiling area A very large heat transfer coefficient is realized.
[0010] この干渉領域は極めて熱伝達性能にすぐれて!/、る力、熱流束がある限界値を超え ると上記バランスが崩れ、伝熱面が過熱蒸気に覆われ、伝熱性能が急激に低下する 限界熱流束現象が出現する。 [0010] This interference region is extremely excellent in heat transfer performance! / When the force and heat flux exceed a certain limit value, the balance is lost, the heat transfer surface is covered with superheated steam, and the heat transfer performance is abrupt. The critical heat flux phenomenon appears.
[0011] 実用の蒸発器では、設置場所の空間的制約などから蒸発器の容積、形状が制限さ れ、核沸騰が干渉領域に至る前に限界熱流束現象を起こすことがある。すなわち、 粗面加工が施された伝熱面での核沸騰では、僅かな過熱度の上昇で、熱流束が急 激に増大するので、発泡点の数が急激に増大し、蒸気泡の生成、離脱のサイクルも 極めて早くなる。蒸気泡が増大すると自然対流が加速され、局所的な下降流などの 不規則な流れが生じることがあり、離脱を阻害された蒸気泡同士が合体して大きな蒸 気塊となって局所的に伝熱面を覆うようになることがある。これにより、伝熱面への作 動流体の供給が滞り、間欠的、局所的なドライアウトが発生し、熱流束の減少、変動 をきたすことがある。 [0011] In practical evaporators, the volume and shape of the evaporator are limited due to the spatial restrictions of the installation location, and the critical heat flux phenomenon may occur before nucleate boiling reaches the interference region. In other words, in nucleate boiling on a heat-transfer surface that has been roughened, the heat flux increases rapidly with a slight increase in superheat, so the number of foaming points increases rapidly, generating steam bubbles. The withdrawal cycle is also very fast. When the steam bubbles increase, natural convection is accelerated and irregular flows such as local downflows may occur, and the steam bubbles that have been blocked from separating coalesce to form a large steam mass locally. The heat transfer surface may be covered. As a result, supply of the working fluid to the heat transfer surface may be delayed, causing intermittent and local dryout, resulting in a decrease or fluctuation in heat flux.
[0012] 尚、上記した干渉領域の核沸騰にお!/、て、限界熱流束に近!/、状態の伝熱面の上 に、たとえば注射針のように細い管を使って液体を人工的に補給してやると、核沸騰 をもっと高い熱流束まで容易にあげていくことができるということが、実験的事実として 知られている。  [0012] It should be noted that due to nucleate boiling in the above-mentioned interference region! /, Close to the critical heat flux! /, A liquid is artificially formed on the heat transfer surface in a state using, for example, a thin tube like an injection needle. It is known as an experimental fact that nucleate boiling can be easily increased to a higher heat flux if replenished periodically.
[0013] また、熱源温度が 100°C以下であれば、水を作動流体とするのが、コスト面、安全 性、メンテナンス容易性などの観点から望ましい。し力、しながら、熱源温度が低い場 合、すなわち作動流体蒸気の飽和圧力が非常に低い低圧沸騰の場合、蒸発器内の 作動流体深さが核沸騰を抑制する問題がある。例えば、熱源温度が 30°Cで、作動 流体が水で、 25°Cで沸騰している場合、その飽和蒸気圧は 3168パスカル (Pa)であ る。そして、水深が 10cmの所では、水圧として約 lOOOPaが加わることで、約 4200P aを飽和蒸気圧とする温度で沸騰することになる。その温度は約 30°Cである。すなわ ち、この例では水深が 10cmを超える所では沸騰が起こらなくなることを意味する。従 つて、ほんの僅かの温度差を利用するような熱交換方式 (例えば、温泉排熱の利用) では、従来の核沸騰を利用した蒸発器を使用することは水深の点から不可能になる といった課題があった。 特許文献 1 :特開 2005— 24132号公報 [0013] If the heat source temperature is 100 ° C or lower, it is desirable to use water as a working fluid from the viewpoints of cost, safety, ease of maintenance, and the like. However, when the heat source temperature is low, that is, in the case of low-pressure boiling where the saturation pressure of the working fluid vapor is very low, the working fluid depth in the evaporator has a problem of suppressing nucleate boiling. For example, if the heat source temperature is 30 ° C, the working fluid is water and boiling at 25 ° C, its saturated vapor pressure is 3168 Pascals (Pa). And when the water depth is 10cm, it will boil at a temperature that makes about 4200Pa saturated vapor pressure by adding about lOOOPa as water pressure. Its temperature is about 30 ° C. In other words, in this example, it means that boiling does not occur where the water depth exceeds 10 cm. Therefore, in heat exchange systems that use only a slight temperature difference (for example, use of hot spring exhaust heat), it is impossible to use conventional evaporators that use nucleate boiling from the viewpoint of water depth. There was a problem. Patent Document 1: Japanese Patent Laid-Open No. 2005-24132
特許文献 2:特開 2005 _ 190725号公報  Patent Document 2: JP-A-2005-190725
特許文献 3:特開平 5 - 52491号公報  Patent Document 3: Japanese Patent Laid-Open No. 5-52491
特許文献 4:特開平 7— 127987号公報  Patent Document 4: Japanese Patent Laid-Open No. 7-127987
特許文献 5:特開 2000— 77586号公幸  Patent Document 5: JP 2000-77586 Koyuki
発明の開示  Disclosure of the invention
[0014] 本発明は上記課題に鑑みなされたものであって、間欠的、局所的なドライアウトを 発生させず、伝熱面への作動流体の供給が滞ることがなぐ従って、熱流束が増大し ても蒸発器を大形化する必要のない、水を作動流体とし、熱源温度が 100°C以下で あつたとしても、熱源とのほんの僅かの温度差を画期的に有効に利用することができ 、革命的ェコ技術となる蒸発器を提供することを目的として!/、る。  [0014] The present invention has been made in view of the above problems, and does not cause intermittent and local dryout, and the supply of the working fluid to the heat transfer surface does not stagnate, so that the heat flux increases. However, even if the evaporator is not required to be large and water is used as the working fluid and the heat source temperature is 100 ° C or less, only a slight temperature difference from the heat source can be used effectively. The goal is to provide an evaporator that will be revolutionary eco-technologies!
[0015] 上記目的を達成するために、本発明に係る蒸発器(1)は、対向して配置された 2平 面の間に、これら平面との間で沸騰核を形成する核形成部材が挟持され、これら 2平 面のうちの 1平面もしくは 2平面が熱源の熱を作動流体に伝える伝熱面を構成するこ とを特徴としている。  [0015] In order to achieve the above object, an evaporator (1) according to the present invention has a nucleation member that forms boiling nuclei between two planes arranged opposite to each other. One of these two planes or two planes are sandwiched and constitute a heat transfer surface that transfers heat from the heat source to the working fluid.
[0016] 前記核形成部材の構造は特に限定されるものではなぐ前記平面と適切な割合で 接触して適切な密度で沸騰核を形成できればよぐ例えば、エキスパンドメタルのよう に、内部に十分なスペースを確保できているものが望ましぐ材質も特に限定されるも のではない。  [0016] The structure of the nucleation member is not particularly limited as long as it can form boiling nuclei at an appropriate density by contacting the flat surface at an appropriate ratio. For example, an expanded metal is sufficient. There is no particular limitation on the material that is desired to have space.
[0017] 上記蒸発器(1)によれば、熱流束が極めて小さな段階では、熱源からの熱を伝える 前記平面で、前記核形成部材と前記平面との接点に形成される気泡核の一部を発 泡点とする弱い核沸騰が生じ、離脱した蒸気泡は前記核形成部材の間を縫うように して上昇していく。  [0017] According to the evaporator (1), when the heat flux is extremely small, a part of bubble nuclei formed at the contact point between the nucleation member and the plane in the plane that transmits heat from a heat source. Weak nucleate boiling occurs at the bubble point, and the separated vapor bubble rises as if it were sewn between the nucleation members.
[0018] 熱流束が少し大きくなると、伝熱面上の発泡点密度が増し、連続した蒸気泡の上昇 を生じる。  [0018] When the heat flux is slightly increased, the foaming point density on the heat transfer surface is increased, and a continuous rise of vapor bubbles occurs.
[0019] さらに熱流束が大きくなると、上層部に蒸気で包まれた空間が発生する。しかし、こ の空間は蒸気泡が合体した蒸気塊ではなぐ内部には上昇する蒸気流が存在し、気 液界面から噴出している。 さらに熱流束が大きくなると、下層部を除き、前記平面のほとんどが蒸気で満たされ た状態となる。しかし、最上層部でも蒸気流により激しく撹乱されながらも、液体が存 在し、前記平面の一部分には気液混合状態の断続的な上昇流が生じる。 [0019] When the heat flux is further increased, a space surrounded by steam is generated in the upper layer portion. However, in this space, there is an ascending vapor flow inside the vapor mass that is a combination of vapor bubbles, and it is ejected from the gas-liquid interface. When the heat flux is further increased, most of the plane is filled with steam except for the lower layer. However, even though the uppermost layer is vigorously disturbed by the vapor flow, the liquid exists and an intermittent upward flow of gas-liquid mixing occurs in a part of the plane.
[0020] 蒸気で満たされた前記平面でも前記核形成部材を伝って流れ落ちる液流が存在し 、前記核形成部材と前記平面との接点を発泡点とする核沸騰が維持される。そこで は、蒸気泡は大きく成長することはなぐ小さな蒸気泡が次々と破裂する形で核沸騰 力起きる。また、前記核形成部材を伝って流れ落ちる液流の一部は前記平面へと流 れ、薄い液膜となって前記平面を覆っており、前記平面から伝わる熱は、この薄い液 膜の液体部分を熱伝導で蒸気流と接する気液界面まで伝わって、そこで、飽和蒸気 圧 ·温度の蒸気を連続的に蒸発させる。  [0020] Even in the plane filled with steam, there is a liquid flow that flows down through the nucleation member, and nucleate boiling using the contact point between the nucleation member and the plane as a foaming point is maintained. There, the nucleate boiling force is generated in the form of bursting of small vapor bubbles that do not grow large. In addition, a part of the liquid flow that flows down through the nucleation member flows to the flat surface and forms a thin liquid film covering the flat surface, and the heat transmitted from the flat surface is a liquid portion of the thin liquid film. Is transferred to the gas-liquid interface in contact with the vapor flow through heat conduction, where the vapor with saturated vapor pressure and temperature is continuously evaporated.
[0021] 上記蒸発器(1)によれば、対向して配置された 2平面の間に、沸騰核を形成する核 形成部材を挟持させただけの簡単な構成で、前記平面から作動流体への熱伝達率 を最大限大きくできる核沸騰を、極めて確実に効率的に発生させ維持させることがで きる。し力、も伝熱面に焼結金属を内張りしたり、突起を形成したり、微細な凹部を形成 したり、補強リブの底面形状を V字形状にしたりといったコスト高を招ぐ手間を要する 製作工程を入れる必要がなぐ小形で革命的に高性能な蒸発器を安価に提供するこ と力 Sできる。  [0021] According to the evaporator (1), from the plane to the working fluid, the nucleation member that forms the boiling nuclei is sandwiched between the two planes arranged opposite to each other. Nucleate boiling, which can maximize the heat transfer coefficient, can be generated and maintained very reliably and efficiently. However, it takes time and effort to increase the cost, such as lining sintered metal on the heat transfer surface, forming protrusions, forming minute recesses, and making the bottom shape of the reinforcing rib V-shaped. It is possible to provide a small, revolutionary, high-performance evaporator at a low cost that does not require a manufacturing process.
[0022] 前記核形成部材の厚さは 2mm以下とすることも可能で、これに対し、蒸発部深さを 数百 mm以上とすることも可能で、そうすることにより極めて薄くて、広い面積の蒸発器 を提供すること力できる。従来の蒸発器では、このように薄い蒸発部の形状は発泡点 から蒸気泡を離脱、浮上させる重力作用(浮力)を打ち消し、限界熱流束が極めて低 くなる可能性がありできなかった。  [0022] The thickness of the nucleation member may be 2 mm or less, whereas the evaporation part depth may be several hundred mm or more, which makes it extremely thin and has a wide area. Can provide you with an evaporator. In conventional evaporators, the shape of such a thin evaporation section could not eliminate the gravitational action (buoyancy) that lifts and raises the vapor bubbles from the foaming point, and the critical heat flux could not be very low.
[0023] 従来の蒸発器における核沸騰の孤立気泡領域の場合、伝熱面からの伝熱量のうち 、伝熱面上の蒸気泡の生成に使われる割合は比較的に少なぐかなりの熱量が、伝 熱面に接する飽和温度よりも高い過熱液層を形成するのに費やされ、この過熱液層 力 の対流伝熱により、蒸発器内の液体が全体的に飽和温度よりやや高く過熱され 、浮上中の蒸気泡の成長と液体上部の自由液面からの蒸発が起こっていた。  [0023] In the case of an isolated bubble region of nucleate boiling in a conventional evaporator, the amount of heat transferred from the heat transfer surface is relatively small, and a considerable amount of heat is used to generate steam bubbles on the heat transfer surface. Therefore, the superheated liquid layer that is higher than the saturation temperature in contact with the heat transfer surface is spent, and the convection heat transfer of this superheated liquid layer force causes the liquid in the evaporator to be superheated slightly above the saturation temperature as a whole. The growth of vapor bubbles during levitation and evaporation from the free liquid surface above the liquid occurred.
[0024] これに対して、本発明に係る蒸発器では、比較的小さな熱流束の段階で前記伝熱 面を蒸気流が覆うようにすることができ、前記伝熱面から伝わる熱は、薄い液膜の液 体部分を熱伝導で蒸気流と接する気液界面まで伝わり、そこで、飽和蒸気圧 '温度 の蒸気を連続的に蒸発させる効率の良い形態となる。この対流伝熱を介さない効率 の良い蒸発形態は核沸騰の干渉領域において見られる蒸気塊生成と同じ様式であ 尚、作動流体は水に限定されるものではなぐ熱源温度に対応させて、蒸気の飽和 圧力が高ぐ低圧沸騰とならない作動流体を選定すればよい。 On the other hand, in the evaporator according to the present invention, the heat transfer is performed at a stage of relatively small heat flux. The surface of the heat transfer surface can be covered with a steam flow, and the heat transferred from the heat transfer surface is transferred to the gas-liquid interface in contact with the steam flow through heat conduction, where the saturated vapor pressure 'temperature It becomes an efficient form to continuously evaporate the steam. This efficient evaporation form not involving convection heat transfer is the same as the vapor mass generation seen in the interference region of nucleate boiling. Select a working fluid that has a high saturation pressure and does not cause low-pressure boiling.
[0025] また、伝熱平面の一部が断続的に蒸気流に覆われる程度で、熱流束が大きくない 場合、核形成部材を挟持する 2平面を略垂直とせず、傾斜させても構わない。  [0025] If the heat flux is not so large that a part of the heat transfer plane is intermittently covered with the steam flow, the two planes sandwiching the nucleation member may be inclined rather than substantially vertical. .
[0026] また、本発明に係る蒸発器(2)は、前記 2平面が略垂直に配置されていることを特 徴としている。  [0026] Further, the evaporator (2) according to the present invention is characterized in that the two planes are arranged substantially vertically.
上記蒸発器 (2)によれば、蒸発器の設置面積を最小化することができる。  According to the evaporator (2), the installation area of the evaporator can be minimized.
[0027] また、本発明に係る蒸発器(3)は、前記 2平面が垂直面に対して傾斜して配置され ていることを特 ί毁としている。 [0027] Further, the evaporator (3) according to the present invention is characterized in that the two planes are arranged to be inclined with respect to a vertical plane.
[0028] 上記蒸発器 (3)によれば、蒸発器を屋根などの取り付け面の傾斜角に合わせて屋 根の上などにも安定的に取り付けることができる。 [0028] According to the evaporator (3), the evaporator can be stably mounted on the roof or the like according to the inclination angle of the mounting surface such as the roof.
[0029] また、本発明に係る蒸発器 (4)は、上記蒸発器(1)〜(3)のいずれかにおいて、前 記核形成部材カ 作動流体の気液分離界面より上方に露出するように構成されてい ることを特 ί毁としている。 [0029] In addition, the evaporator (4) according to the present invention is exposed above the gas-liquid separation interface of the nucleation member working fluid in any of the evaporators (1) to (3). The special feature is that it is structured as follows.
[0030] 上記蒸発器 (4)によれば、伝熱面から噴出する蒸気が気液分離界面を激しく沸き 立たせても前記核形成部材の上端が完全に蒸気に包み込まれてドライアウトを起こ すといったことを阻止して作動流体が常に前記核形成部材を伝い流れ落ちる状態に 維持することができ、伝熱効率を高めることができる。 [0030] According to the evaporator (4), even if the vapor ejected from the heat transfer surface violently boiles the gas-liquid separation interface, the upper end of the nucleation member is completely encased in the vapor and causes dryout. The working fluid can always be maintained in a state where it flows down the nucleation member and heat transfer efficiency can be improved.
[0031] また、本発明に係る蒸発器(5)は、上記蒸発器(1)〜(4)のいずれかにおいて、前 記核形成部材がエキスパンドメタルで形成されて!/、ることを特徴として!/、る。 [0031] Further, the evaporator (5) according to the present invention is characterized in that in any of the evaporators (1) to (4), the nucleation member is formed of an expanded metal! As! /
[0032] エキスパンドメタルは汎用されており、種々のタイプのものを安価に手に入れること ができる。従って、上記蒸発器(5)によれば、核形成部材を安価に、し力、も状況に合 わせた最適なものとして形成することができ、高性能な蒸発器を安価に提供すること 力 Sでさることとなる。 [0032] Expanded metal is widely used, and various types can be obtained at low cost. Therefore, according to the evaporator (5), it is possible to form the nucleation member at a low cost, and to optimize the force according to the situation, and to provide a high-performance evaporator at a low cost. It will be defeated with force S.
[0033] また、本発明に係る蒸発器(6)は、上記蒸発器(1)〜(5)のいずれかにおいて、前 記 2平面の上部に気液分離ヘッダーが連設されていることを特徴としている。  [0033] Further, in the evaporator (6) according to the present invention, in any one of the evaporators (1) to (5), a gas-liquid separation header is continuously provided above the two planes. It is a feature.
上記蒸発器(6)によれば、前記平面が蒸気流で覆われることにより、蒸発器内部を 満たしていた作動液が押し出され、気液混合流の状態で蒸発器から凝縮器へ流出 するのを避けるための気液分離が行われ、前記核形成部材と前記平面との間に常に 作動流体を安定的に供給することができ、より確実にドライアウトの発生を阻止して伝 熱効率を高めることができる。  According to the evaporator (6), the plane is covered with the vapor flow, so that the working liquid filling the evaporator is pushed out and flows out from the evaporator to the condenser in a gas-liquid mixed flow state. Gas-liquid separation is performed to prevent the occurrence of dryout, and the working fluid can always be stably supplied between the nucleation member and the flat surface, and more reliably preventing the occurrence of dryout and increasing the heat transfer efficiency. be able to.
[0034] また、本発明に係る蒸発器(7)は、上記蒸発器 (6)において、前記 2平面の下部に 液溜部が連設され、該液溜部と前記気液分離ヘッダーとが連結手段を介して接続さ れ、前記液溜部内に溜まった作動流体を前記気液分離ヘッダーに送る搬送手段が 前記連結手段に介装されてレ、ることを特徴として!/、る。  [0034] Further, in the evaporator (7) according to the present invention, in the evaporator (6), a liquid reservoir is connected to a lower portion of the two planes, and the liquid reservoir and the gas-liquid separation header are connected to each other. The conveying means connected via the connecting means and sending the working fluid accumulated in the liquid reservoir to the gas-liquid separation header is interposed in the connecting means.
[0035] 上記蒸発器(7)によれば作動流体の通流時に、飽和蒸気圧が低圧域であるとき、 前記核形成部材と前記 2平面との接点に形成される気泡核が作動流体に浸漬される ことがないようにしながら、かつ前記核形成部材を伝って流れ落ちる液流を維持する ことができる量の作動流体を、前記気液分離ヘッダーと前記液溜部との間で循環さ せること力 Sでき、伝熱面の垂直距離の大小にかかわらず、伝熱面の全面を蒸気流で 覆われた形で核沸騰を起こさせることができる。  [0035] According to the evaporator (7), when the working fluid flows, when the saturated vapor pressure is in a low pressure region, the bubble nuclei formed at the contact point between the nucleation member and the two planes become the working fluid. An amount of working fluid is circulated between the gas-liquid separation header and the liquid reservoir so as not to be immersed and capable of maintaining a liquid flow flowing down the nucleation member. Regardless of the vertical distance of the heat transfer surface, it is possible to cause nucleate boiling with the entire surface of the heat transfer surface covered with steam flow.
[0036] また、本発明に係る蒸発器 (8)は、 2枚の伝熱板の間に核形成部材が挟持されて 1 ユニットが構成され、  [0036] In the evaporator (8) according to the present invention, a nucleation member is sandwiched between two heat transfer plates to constitute one unit,
前記 2枚の伝熱板の上部の対向する箇所に透孔が形成され、  A through hole is formed in the opposite location of the upper part of the two heat transfer plates,
これらユニットが上下 2個のセパレータを介して水平方向に積層され、  These units are stacked horizontally via two upper and lower separators,
前記上セパレータの前記透孔に対向する箇所には透孔が形成され、  A through hole is formed at a location facing the through hole of the upper separator,
前記上セパレータ及び前記 2枚の伝熱板の透孔により気液分離ヘッダーが構成さ れる一方、隣り合う 2枚の伝熱板及び前記上下セパレータにより形成される空間が熱 源の通流部となってレ、ることを特徴として!/、る。  A gas-liquid separation header is constituted by the upper separator and the through holes of the two heat transfer plates, while a space formed by two adjacent heat transfer plates and the upper and lower separators is a heat source flow portion. As a feature, it becomes!
上記蒸発器(8)によれば、極めて薄型の極めて高性能な蒸発器を実現することが できる。また、熱源の通流部は平面に囲まれて形成されるため、テフロン(登録商標) 加工などのコーティングも容易に行うことができ、熱源の種類を問わず適用でき、通 常スケールの問題などから利用が困難な温泉の排熱利用にも適したものとすることが できる。 According to the evaporator (8), an extremely thin and extremely high performance evaporator can be realized. Also, since the heat source flow part is surrounded by a flat surface, Teflon (registered trademark) Coating such as processing can be easily performed, and it can be applied regardless of the type of heat source, and it can be made suitable for exhaust heat use of hot springs, which are usually difficult to use due to scale problems.
[0037] また、固体高分子電解質型燃料電池のスタックの冷却用としての蒸発器や、パワー 半導体素子のヒートシンクとして、半導体デバイスのスタック組立体に組み込んで使 用される沸騰式冷却体としての蒸発器などに上記蒸発器 (8)を使用すれば、高性能 で、加工性に優れ、安価で、薄型で、設置スペースを取らない蒸発器を提供すること ができる。  [0037] Further, an evaporator as a cooling device for a solid polymer electrolyte fuel cell stack and an evaporation as a boiling type cooling body used as a heat sink for a power semiconductor element incorporated in a stack assembly of a semiconductor device. If the evaporator (8) is used in a vacuum vessel, etc., it is possible to provide a high performance, excellent workability, inexpensive, thin, and space-saving evaporator.
[0038] また、本発明に係る蒸発器 (9)は、 2枚の伝熱板の間に核形成部材が挟持されて 1 ユニットが構成され、  [0038] In the evaporator (9) according to the present invention, a nucleation member is sandwiched between two heat transfer plates to constitute one unit,
前記 2枚の伝熱板の上部及び下部の対向する箇所に透孔が形成され、 これらユニットが上下 2個のセパレータを介して水平方向に積層され、  Through-holes are formed at opposite locations of the upper and lower portions of the two heat transfer plates, and these units are stacked horizontally via two upper and lower separators,
前記上下セパレータの前記透孔に対向する箇所には透孔が形成され、 前記上下セパレータ及び前記 2枚の伝熱板の透孔により気液分離ヘッダー及び液 溜部が構成され、  A through-hole is formed at a location facing the through-hole of the upper and lower separators, and a gas-liquid separation header and a liquid reservoir are configured by the through-holes of the upper and lower separators and the two heat transfer plates,
該液溜部と前記気液分離ヘッダーとが連結手段を介して接続され、  The liquid reservoir and the gas-liquid separation header are connected via a connecting means,
前記液溜部内に溜まった作動流体を前記気液分離ヘッダーに送る搬送手段が前 記連結手段に介装される一方、  While the conveying means for sending the working fluid accumulated in the liquid reservoir to the gas-liquid separation header is interposed in the connecting means,
隣り合う 2枚の伝熱板及び前記上下セパレータにより形成される空間が熱源の通流 となって!/、ることを特 ί毁として!/、る。  Specially, the space formed by the two adjacent heat transfer plates and the upper and lower separators serves as a flow path for the heat source.
[0039] 上記蒸発器(9)によれば、作動流体の作動時に、飽和蒸気圧が低圧域にあっても 、伝熱板の垂直距離の大小にかかわらず、前記伝熱板の全面に渡って、略等しい飽 和温度の核沸騰を、前記伝熱板と前記核形成部材との接点に形成された発泡点に 起こさせること力 Sできる。従って、ほんの少しの温度差を利用するような熱交換方式で あっても、核沸騰を最大限利用した高性能な蒸発器を提供することができる。 [0039] According to the evaporator (9), even when the saturated vapor pressure is in a low pressure region during operation of the working fluid, the entire surface of the heat transfer plate is covered regardless of the vertical distance of the heat transfer plate. Thus, it is possible to cause nucleate boiling at substantially the same saturation temperature to occur at the foaming point formed at the contact point between the heat transfer plate and the nucleation member. Therefore, it is possible to provide a high-performance evaporator that makes the best use of nucleate boiling even with a heat exchange system that uses only a small temperature difference.
図面の簡単な説明  Brief Description of Drawings
[0040] [図 1]本発明の第 1の実施の形態に係る蒸発器を示す分解斜視図である。  FIG. 1 is an exploded perspective view showing an evaporator according to a first embodiment of the present invention.
[図 2]第 1の実施の形態に係る蒸発器を示す組み立て斜視図である。 [図 3]第 1の実施の形態に係る蒸発器を示す図 2における m-πι線拡大断面図である FIG. 2 is an assembled perspective view showing the evaporator according to the first embodiment. FIG. 3 is an enlarged cross-sectional view taken along line m-πι in FIG. 2 showing the evaporator according to the first embodiment.
[図 4]本発明の第 2の実施の形態に係る蒸発器を示す分解斜視図である。 FIG. 4 is an exploded perspective view showing an evaporator according to a second embodiment of the present invention.
[図 5]第 2の実施の形態に係る蒸発器を示す組み立て斜視図である。  FIG. 5 is an assembled perspective view showing an evaporator according to a second embodiment.
[図 6]第 2の実施の形態に係る蒸発器を示す図 5における VI-VI線拡大断面図である  FIG. 6 is an enlarged sectional view taken along line VI-VI in FIG. 5 showing an evaporator according to a second embodiment.
[図 7]本発明の第 3の実施の形態に係る蒸発器を示す組み立て斜視図である。 FIG. 7 is an assembled perspective view showing an evaporator according to a third embodiment of the present invention.
[図 8]第 3の実施の形態に係る蒸発器を示す図 7における vm-vm線断面図である。  FIG. 8 is a cross-sectional view taken along the line vm-vm in FIG. 7, showing an evaporator according to a third embodiment.
[図 9]本発明の第 4の実施の形態に係る蒸発器を示す部分分解斜視図である。  FIG. 9 is a partially exploded perspective view showing an evaporator according to a fourth embodiment of the present invention.
[図 10]第 4の実施の形態に係る蒸発プレートユニットを示す分解斜視図である。  FIG. 10 is an exploded perspective view showing an evaporation plate unit according to a fourth embodiment.
[図 11]図 9における ΧΙ-Xl泉組み立て断面図である。  FIG. 11 is a cross-sectional view of the ΧΙ-Xl spring assembly in FIG.
[図 12]本発明の第 5の実施の形態に係る蒸発器を示す部分分解斜視図である。  FIG. 12 is a partially exploded perspective view showing an evaporator according to a fifth embodiment of the present invention.
[図 13]第 5の実施の形態に係る蒸発プレートユニットを示す分解斜視図である。  FIG. 13 is an exploded perspective view showing an evaporation plate unit according to a fifth embodiment.
[図 14]図 12における XIV-XIV線組み立て断面図である。  FIG. 14 is a sectional view taken along line XIV-XIV in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 図 1は、本発明の第 1の実施の形態に係る蒸発器を示す分解斜視図、図 2は組み 立て斜視図、図 3は図 2における ΠΗΠ線拡大断面図を示している。図中 1は蒸発器 を示しており、蒸発器 1は、 2枚の長方形形状をした金属製の伝熱板 2、長方形形状 に切断加工された核形成部材としてのステンレス製のエキスパンドメタル 3 4辺のう ち上辺が除去された形状のステンレス製の枠体 4、及びこれら伝熱板 2、エキスパンド メタル 3、枠体 4の上部に連結されるステンレス製の気液分離ヘッダー 5を含んで構 成されている。 FIG. 1 is an exploded perspective view showing an evaporator according to a first embodiment of the present invention, FIG. 2 is an assembled perspective view, and FIG. 3 is an enlarged sectional view taken along the line in FIG. In the figure, 1 indicates an evaporator. Evaporator 1 includes two rectangular metal heat transfer plates 2, and stainless steel expanded metal 3 4 as a nucleation member cut into a rectangular shape. It includes a stainless steel frame 4 with the upper side removed, and a heat transfer plate 2, expanded metal 3, and a stainless steel gas-liquid separation header 5 connected to the top of the frame 4. It is made.
[0042] 気液分離ヘッダー 5には金属製の凝縮液管 LPと金属製の蒸気配管 VPとが接続さ れており、凝縮器(図示せず)で液化された作動流体は凝縮液管 LPを通って気液分 離ヘッダー 5へと流れ込み、気液分離ヘッダー 5内で貯留され、気液分離液面 Ldを 形成するとともに 2枚の伝熱板 2の間に流れ込み、エキスパンドメタル 3に導かれてェ キスパンドメタル 3と 2枚の伝熱板 2との間を下方へと流下する。この流下の間にも作 動流体は伝熱板 2の伝熱面 2aを介して熱源(図示せず)からの熱を受け、沸騰蒸発 してゆく。伝熱板 2の熱源側平面にはテフロン (登録商標)加工が施されており、熱源 が温泉水のようなスケールの問題を有するものであっても、メンテナンスフリーに構成 されている。 [0042] The gas-liquid separation header 5 is connected to a metal condensate pipe LP and a metal steam pipe VP. The working fluid liquefied by a condenser (not shown) is condensed into the condensate pipe LP. Flows into the gas-liquid separation header 5 and is stored in the gas-liquid separation header 5 to form a gas-liquid separation liquid level Ld and flows between the two heat transfer plates 2 to be introduced into the expanded metal 3. As a result, it flows down between the expanded metal 3 and the two heat transfer plates 2. During this flow, the working fluid receives heat from a heat source (not shown) via the heat transfer surface 2a of the heat transfer plate 2, and evaporates to the boiling point. I will do it. The heat source side plane of the heat transfer plate 2 is processed with Teflon (registered trademark), and even if the heat source has a scale problem such as hot spring water, it is configured to be maintenance-free.
[0043] 第 1の実施の形態に係る蒸発器 1によれば、熱流束が極めて小さな段階においても 、熱源(図示せず)に接する伝熱板 2の上層部でエキスパンドメタル 3と伝熱面 2aとの 接点 BPを発泡点とする弱い核沸騰が生じ、離脱した蒸気泡はエキスパンドメタル 3の 間を縫うようにして上昇していった。  [0043] According to the evaporator 1 according to the first embodiment, even when the heat flux is extremely small, the expanded metal 3 and the heat transfer surface are formed on the upper layer portion of the heat transfer plate 2 in contact with the heat source (not shown). Contact with 2a Weak nucleate boiling occurred at BP as the foaming point, and the separated vapor bubbles rose as if they were sewed between the expanded metals 3.
[0044] 熱流束が少し大きくなると、伝熱面上の発泡点密度が増し、連続した蒸気泡の上昇 が生じた。  [0044] When the heat flux was slightly increased, the foaming point density on the heat transfer surface increased, and a continuous increase in vapor bubbles occurred.
[0045] さらに熱流束が大きくなると、上層部に蒸気で包まれた空間が発生した。しかし、こ の空間は蒸気泡が合体した蒸気塊ではなぐ内部には上昇する蒸気流が存在し、気 液界面から噴出している。  [0045] When the heat flux was further increased, a space surrounded by steam was generated in the upper layer portion. However, in this space, there is an ascending vapor flow inside the vapor mass that is a combination of vapor bubbles, and it is ejected from the gas-liquid interface.
さらに熱流束が大きくなると、下層部を除き、伝熱板 2の伝熱面 2aのほとんどが蒸気 で満たされた状態となる。しかし、最上層部でも蒸気流により激しく撹乱されながらも 、液体が存在し、伝熱面 2aの一部分には気液混合状態の断続的な上昇流が生じた  When the heat flux further increases, most of the heat transfer surface 2a of the heat transfer plate 2 is filled with steam except for the lower layer. However, although the uppermost layer was severely disturbed by the vapor flow, liquid was present, and an intermittent upward flow of gas-liquid mixture occurred in a part of the heat transfer surface 2a.
[0046] 蒸気で満たされた伝熱面 2aでもエキスパンドメタル 3を伝って流れ落ちる皿が存 在し、エキスパンドメタル 3と伝熱面 2aの接点を発泡点とする核沸騰が維持された。そ こでは、蒸気泡は大きく成長することはなぐ小さな蒸気泡が次々と破裂する形で核 沸騰が起きていた。また、エキスパンドメタル 3を伝って流れ落ちる液流の一部は伝 熱面 2aへと流れ、薄い液膜となって伝熱面 2aを覆っており、伝熱面 2aから伝わる熱 は、この薄い液膜の液体部分を熱伝導で蒸気流と接する気液界面まで伝わって、そ こで、飽和蒸気圧 ·温度の蒸気を連続的に蒸発させる。 [0046] Even on the heat transfer surface 2a filled with steam, there was a dish flowing down through the expanded metal 3, and nucleate boiling with the contact point between the expanded metal 3 and the heat transfer surface 2a maintained as a foaming point. There, nucleate boiling occurred in the form of rupture of small vapor bubbles, one after the other, where the vapor bubbles do not grow large. In addition, a part of the liquid flow that flows down through the expanded metal 3 flows to the heat transfer surface 2a and forms a thin liquid film covering the heat transfer surface 2a, and the heat transferred from the heat transfer surface 2a is the thin liquid. The liquid part of the membrane is transferred by heat conduction to the gas-liquid interface in contact with the vapor stream, where the vapor with saturated vapor pressure and temperature is continuously evaporated.
[0047] 蒸発器 1によれば、対向して略垂直に配置された伝熱板 2の間に、沸騰核を形成 するエキスパンドメタル 3を挟持させただけの簡単な構成で、伝熱板 2から作動流体 への熱伝達率を非常に大きくできる核沸騰を、極めて確実に効率的に発生させるこ とができた。し力、も伝熱面 2aに焼結金属を内張りしたり、突起を形成したり、微細な凹 部を形成したり、補強リブの底面形状を V字形状にしたりといったコスト高を招ぐ手 間を要する製作工程を入れる必要がなぐ薄型で極めて高性能な蒸発器を安価に提 供すること力 Sできることとなった。 [0047] According to the evaporator 1, the heat transfer plate 2 has a simple configuration in which the expanded metal 3 that forms boiling nuclei is sandwiched between the heat transfer plates 2 that are arranged substantially opposite to each other. It was possible to generate nucleate boiling with extremely high heat transfer rate from the working fluid to the working fluid very reliably and efficiently. In addition, the cost increases such as lining the sintered metal on the heat transfer surface 2a, forming protrusions, forming minute recesses, and making the bottom shape of the reinforcing rib V-shaped. It was possible to provide a low-cost, extremely high-performance evaporator that did not require time-consuming manufacturing processes.
[0048] また、エキスパンドメタル 3が、作動流体の気液分離界面 Ldより上方に露出するよう に構成されてレ、るので、伝熱板 2から噴出す蒸気が気液分離界面 Ldを激しく沸き立 たせてもエキスパンドメタル 3の上端が完全に蒸気に包み込まれてドライアウトを起こ すといったことがなぐ作動流体が常にエキスパンドメタル 3を伝い流れ落ちる状態に 維持することができ、伝熱効率を高めることができた。  [0048] Further, since the expanded metal 3 is configured to be exposed above the gas-liquid separation interface Ld of the working fluid, the steam ejected from the heat transfer plate 2 violently boils the gas-liquid separation interface Ld. Even if it is erected, the working fluid can be maintained in a state where the upper end of the expanded metal 3 is completely encased in steam and does not dry out. did it.
[0049] また、エキスパンドメタル 3は汎用されており、種々のタイプのものを安価に手に入 れること力 Sできる。従って、核形成部材を安価に、し力、も状況に合わせた最適なものと して形成することができ、高性能な蒸発器を安価に提供することができる。  [0049] In addition, the expanded metal 3 is widely used, and it is possible to obtain various types at low cost. Therefore, it is possible to form the nucleation member at a low cost and with an optimum force according to the situation, and to provide a high-performance evaporator at a low cost.
[0050] また、伝熱板 2の上部に気液分離ヘッダー 5が連設されているので、エキスパンドメ タル 3と伝熱板 2との間に常に作動流体を安定的に供給することができ、確実にドライ アウトの発生を阻止して伝熱効率を高めることができる。  [0050] Since the gas-liquid separation header 5 is connected to the upper part of the heat transfer plate 2, the working fluid can always be stably supplied between the expanded metal 3 and the heat transfer plate 2. Therefore, it is possible to reliably prevent the occurrence of dryout and increase the heat transfer efficiency.
[0051] 尚、本実施例のように、蒸発器 1が平板状であるとき、内圧が外圧より大きくなると、 エキスパンドメタル 3を伝熱板 2により挟持することができなくなる。従って、熱源温度 に対応させて、内圧が外圧より小さくなる適切な飽和蒸気圧を有する作動流体を選 定する必要がある。  It should be noted that, as in the present embodiment, when the evaporator 1 has a flat plate shape, the expanded metal 3 cannot be sandwiched between the heat transfer plates 2 if the internal pressure becomes larger than the external pressure. Therefore, it is necessary to select a working fluid having an appropriate saturated vapor pressure in which the internal pressure is smaller than the external pressure in accordance with the heat source temperature.
[0052] 図 4乃至図 6は、本発明の第 2の実施の形態に係る蒸発器 1Aを示しており、図 4は 分解斜視図、図 5は組み立て斜視図、図 6は図 5における VI-VI線拡大断面図を示し ている。  4 to 6 show an evaporator 1A according to the second embodiment of the present invention. FIG. 4 is an exploded perspective view, FIG. 5 is an assembled perspective view, and FIG. An enlarged cross-sectional view of line VI is shown.
[0053] 図 4乃至図 6に示した第 2の実施の形態に係る蒸発器 1A力 図 1乃至図 3に示した 第 1の実施の形態に係る蒸発器 1と相違する点は気液分離ヘッダー 5Aの構造及び 気液分離ヘッダー 5Aと伝熱板 2Aとの接続形態にある。その他の点は第 1の実施の 形態に係る蒸発器と同様であるので、ここではその詳しい説明を省略する。  [0053] The evaporator 1A force according to the second embodiment shown in FIGS. 4 to 6 is different from the evaporator 1 according to the first embodiment shown in FIGS. The structure of the header 5A and the connection form between the gas-liquid separation header 5A and the heat transfer plate 2A. Since the other points are the same as those of the evaporator according to the first embodiment, detailed description thereof is omitted here.
[0054] 図 4乃至図 6に示したように、第 2の実施の形態に係る蒸発器 1Aでは、気液分離へ ッダー 5Aの形状が第 1の実施の形態の気液分離ヘッダー 5のように円筒形状ではな ぐ直方体形状をしており、製作の容易性に基づくコストダウンが考慮された構成とな つている。また、気液分離ヘッダー 5Aが伝熱板 2Aの上部側方に取り付けられており 、気液分離ヘッダー 5Aに貯留される作動流体を伝熱板 2、 2A間に供給するための 供給口 5b、 2bが気液分離ヘッダー 5A及び伝熱板 2Aに形成されている。 As shown in FIGS. 4 to 6, in the evaporator 1A according to the second embodiment, the shape of the gas-liquid separation header 5A is the same as that of the gas-liquid separation header 5 of the first embodiment. In addition, it has a rectangular parallelepiped shape rather than a cylindrical shape, and is designed to reduce costs based on ease of manufacture. Gas-liquid separation header 5A is attached to the upper side of heat transfer plate 2A. The supply ports 5b and 2b for supplying the working fluid stored in the gas-liquid separation header 5A between the heat transfer plates 2 and 2A are formed in the gas-liquid separation header 5A and the heat transfer plate 2A.
[0055] 第 2の実施の形態に係る蒸発器 1Aによれば、さらに安価で高性能な蒸発器を提供 すること力 Sでさる。 [0055] According to the evaporator 1A according to the second embodiment, the force S can provide a cheaper and higher performance evaporator.
[0056] 図 7及び図 8は、本発明の第 3の実施の形態に係る蒸発器を示しており、図 7は組 み立て斜視図、図 8は図 7における vm-vm線断面図を示している。  7 and 8 show an evaporator according to a third embodiment of the present invention. FIG. 7 is an assembled perspective view, and FIG. 8 is a sectional view taken along the line vm-vm in FIG. Show.
[0057] 図 7及び図 8に示した第 3の実施の形態に係る蒸発器 1Bが、図 1乃至図 3に示した 第 1の実施の形態に係る蒸発器 1と相違する点は、伝熱板 2、 2の下部に液溜ヘッダ 一 6が接続され、液溜ヘッダー 6と気液分離ヘッダー 5とが配管 7を介して接続され、 液溜ヘッダー 6内に溜まった作動流体を気液分離ヘッダー 5に送る搬送手段として のポンプ 8が配管 7の液溜ヘッダー 6の近くに介装されている点である。その他の点 は第 1の実施の形態に係る蒸発器 1と同様であるので、ここではその詳しい説明を省 略する。  The difference between the evaporator 1B according to the third embodiment shown in FIG. 7 and FIG. 8 and the evaporator 1 according to the first embodiment shown in FIG. 1 to FIG. A liquid reservoir header 6 is connected to the lower part of the hot plates 2 and 2, and the liquid reservoir header 6 and the gas-liquid separation header 5 are connected via a pipe 7, and the working fluid accumulated in the liquid reservoir header 6 is gas-liquid. A pump 8 as a conveying means to be sent to the separation header 5 is interposed near the liquid reservoir header 6 of the pipe 7. Since the other points are the same as those of the evaporator 1 according to the first embodiment, a detailed description thereof is omitted here.
[0058] 第 3の実施の形態に係る蒸発器 1Bによれば、作動流体の作動時に、飽和蒸気圧 が低圧域にあっても、伝熱板 2, 2の垂直距離の大小にかかわらず、伝熱板 2, 2の全 面に渡って、略等しい飽和温度の核沸騰を、伝熱板 2, 2とエキスパンドメタル 3との 接点に形成された発泡点に起こさせることができる。従って、ほんの少しの温度差を 利用するような熱交換方式であっても、核沸騰を最大限利用した高性能な蒸発器を 提供すること力でさる。  [0058] According to the evaporator 1B according to the third embodiment, even when the saturated vapor pressure is in the low pressure region during operation of the working fluid, regardless of the vertical distance between the heat transfer plates 2 and 2, Over the entire surface of the heat transfer plates 2 and 2, nucleate boiling at substantially the same saturation temperature can be caused at the foaming points formed at the contact points between the heat transfer plates 2 and 2 and the expanded metal 3. Therefore, even with a heat exchange system that uses only a small temperature difference, it is possible to provide a high-performance evaporator that makes the most of nucleate boiling.
[0059] 本実施の形態に係る蒸発器の用途として、太陽光を熱源とする太陽熱集熱器に、 集熱媒体加熱器 (蒸発器)として組み込むことが挙げられる。本用途例では、建物南 側壁面に太陽熱集熱器を設置し、太陽高度が低い冬季の集熱において、低沸点の 作動流体を使用することにより、氷点下の環境の下でも凍結の心配をすることなぐ 暖房用ヒートポンプの熱源等として集熱することができる。  [0059] As an application of the evaporator according to the present embodiment, a solar heat collector using sunlight as a heat source may be incorporated as a heat collection medium heater (evaporator). In this application example, a solar heat collector is installed on the south side wall of the building, and in winter heat collection at low solar altitude, a low boiling point working fluid is used, so there is a concern about freezing even in sub-freezing environments. It can collect heat as a heat source of a heat pump for heating.
[0060] 図 9乃至図 11は、本発明の第 4の実施の形態に係るスタック形蒸発器を示しており 、図 9は部分分解組み立て斜視図、図 10は蒸発プレートユニットを示す分解斜視図 、図 11は図 9における Xト XI線組み立て断面図を示している。  FIGS. 9 to 11 show a stack type evaporator according to a fourth embodiment of the present invention, FIG. 9 is a partially exploded perspective view, and FIG. 10 is an exploded perspective view showing an evaporation plate unit. FIG. 11 shows a sectional view taken along line X-XI in FIG.
[0061] 図 9乃至図 11に示した第 4の実施の形態に係る蒸発器 1Cでは、 2枚の伝熱板 2B, 2Bの間に核形成部材としてのエキスパンドメタル 3が挟持されて蒸発プレート 20の 1 ユニットが構成されてレ、る。 2枚の伝熱板 2B,2Bの上部の対向する箇所に気液分離 ヘッダー 5Bを構成する透孔 2c,2cが形成され、これら蒸発プレート 20が上下 2個のセ パレータ 9, 10を介して水平方向に積層されている。 [0061] In the evaporator 1C according to the fourth embodiment shown in Figs. 9 to 11, two heat transfer plates 2B, Expanded metal 3 as a nucleation member is sandwiched between 2B to constitute one unit of evaporation plate 20. Through-holes 2c and 2c constituting the gas-liquid separation header 5B are formed at opposite positions on the top of the two heat transfer plates 2B and 2B. These evaporation plates 20 are connected via two upper and lower separators 9 and 10, respectively. They are stacked horizontally.
[0062] 上セパレータ 9の透孔 2cに対向する箇所には透孔 9aが形成され、上セパレータ 9 及び 2枚の伝熱板 2B,2Bの透孔 2c,2cにより気液分離ヘッダー 5Bが構成される一方 、隣り合う 2枚の伝熱板 2B,2B及び上下セパレータ 9, 10により形成される空間が熱 源の通流部 15となっている。  [0062] A through hole 9a is formed at a position facing the through hole 2c of the upper separator 9, and a gas-liquid separation header 5B is configured by the upper separator 9 and the through holes 2c and 2c of the two heat transfer plates 2B and 2B. On the other hand, the space formed by the two adjacent heat transfer plates 2B and 2B and the upper and lower separators 9 and 10 serves as a heat source flow passage 15.
[0063] 蒸発プレート 20は、 2枚の長方形形状をした伝熱板 2B,2B、長方形形状に切断カロ ェされたエキスパンドメタル 3、 4辺からなる枠体 4Bを含んで構成されている。これら 多数の蒸発プレート 20がそれぞれ上下 2個のセパレータ 9, 10を介してエンドプレー ト 11 , 11の間に水平方向に積層され、多数のタイロッド 12に支持され、ボルト 13によ り締め付け固定されている。  [0063] The evaporation plate 20 includes two heat transfer plates 2B and 2B each having a rectangular shape, an expanded metal 3 cut into a rectangular shape, and a frame 4B having four sides. A large number of these evaporation plates 20 are stacked horizontally between the end plates 11 and 11 via two upper and lower separators 9 and 10, supported by a large number of tie rods 12, and fastened and fixed by bolts 13. ing.
[0064] 気液分離ヘッダー 5Bには凝縮液管 LPと蒸気配管 VPとがエンドプレート 11を介して 接続されており、凝縮器(図示せず)で液化された作動流体は凝縮液管 LPを通って 気液分離ヘッダー 5Bへと流れ込み、気液分離ヘッダー 5B内で貯留され、気液分離 液面 Ldを形成するとともに 2枚の伝熱板 2B,2Bの間に流れ込み、エキスパンドメタル 3に導かれてエキスパンドメタル 3と 2枚の伝熱板 2B,2Bの間を下方へと流下する。こ の流下の間にも作動流体は伝熱板 2B,2Bの伝熱面 2aを介して熱源(図示せず)から の熱を受け、沸騰蒸発してゆく。  [0064] A condensate pipe LP and a steam pipe VP are connected to the gas-liquid separation header 5B via an end plate 11, and the working fluid liquefied by a condenser (not shown) is connected to the condensate pipe LP. Flows into the gas-liquid separation header 5B and is stored in the gas-liquid separation header 5B, forms the gas-liquid separation liquid level Ld, flows between the two heat transfer plates 2B, 2B, and is led to the expanded metal 3. As a result, it flows down between the expanded metal 3 and the two heat transfer plates 2B, 2B. During this flow, the working fluid receives heat from the heat source (not shown) via the heat transfer surface 2a of the heat transfer plates 2B and 2B, and evaporates to the boiling point.
[0065] 第 4の実施の形態に係る蒸発器 1Cによれば、極めて薄型の極めて高性能な蒸発 器を実現すること力できる。また、熱源の通流部 15は平面に囲まれて形成されるため 、テフロン (登録商標)加工などのコーティングも容易に行うことができ、熱源の種類を 問わず適用でき、通常スケールの問題など力も利用が困難な温泉の排熱利用にも適 したあのとすること力 Sでさる。  [0065] According to the evaporator 1C according to the fourth embodiment, an extremely thin and extremely high performance evaporator can be realized. In addition, since the heat source flow portion 15 is formed by being surrounded by a flat surface, coating such as Teflon (registered trademark) processing can be easily performed, and it can be applied regardless of the type of heat source. The power S is suitable for the use of exhaust heat from hot springs that are difficult to use.
[0066] また、固体高分子電解質型燃料電池のスタックの冷却用としての蒸発器や、パワー 半導体素子のヒートシンクとして、半導体デバイスのスタック組立体に組み込んで使 用される沸騰式冷却体としての蒸発器などに極めて薄型の極めて高性能な蒸発器 を実現すること力できる。また、熱源の通流部は平面に囲まれて形成されるため、テ フロン (登録商標)加工などのコーティングも容易に行うことができ、熱源の種類を問 わず適用でき、通常スケールの問題など力 利用が困難な温泉の排熱利用にも適し たあのとすること力 Sでさる。 [0066] Further, an evaporator as a cooling device for a stack of a solid polymer electrolyte fuel cell and an evaporation as a boiling type cooling body used as a heat sink for a power semiconductor element incorporated in a stack assembly of a semiconductor device. Extremely thin and extremely high performance evaporator Can be realized. In addition, since the flow path of the heat source is surrounded by a flat surface, coating such as Teflon (registered trademark) processing can be performed easily, and it can be applied regardless of the type of heat source. Power that is suitable for the use of exhaust heat from hot springs that are difficult to use.
[0067] また、固体高分子電解質型燃料電池のスタックの冷却用としての蒸発器や、パワー 半導体素子のヒートシンクとして、半導体デバイスのスタック組立体に組み込んで使 用される沸騰式冷却体としての蒸発器などに蒸発器 1Cを適用すれば、高性能で、 加工性に優れ、安価で、薄型で、設置スペースを取らない蒸発器を提供することがで きる。 [0067] In addition, an evaporator as a cooling device for a solid polymer electrolyte fuel cell stack, and an evaporation as a boiling type cooling device used as a heat sink for a power semiconductor element incorporated in a stack assembly of a semiconductor device. If the evaporator 1C is applied to an evaporator, etc., it is possible to provide an evaporator that has high performance, excellent workability, is inexpensive, thin, and does not require installation space.
[0068] 図 12乃至図 14は、本発明の第 5の実施の形態に係るスタック形蒸発器を示してお り、図 12は部分分解組み立て斜視図、図 13は蒸発プレートユニットを示す分解組斜 視図、図 14は図 12における XIV-XIV線組み立て断面図を示している。  FIGS. 12 to 14 show a stack type evaporator according to a fifth embodiment of the present invention, FIG. 12 is a partially exploded perspective view, and FIG. 13 is an exploded view showing an evaporation plate unit. A perspective view, FIG. 14 shows a sectional view taken along line XIV-XIV in FIG.
[0069] 図 12乃至図 14に示した第 5の実施の形態に係る蒸発器 1Dでは、 2枚の伝熱板 2C ,2Cの間に核形成部材としてのエキスパンドメタル 3が挟持されて蒸発プレート 20Aの 1ユニットが構成されてレ、る。 2枚の伝熱板 2C,2Cの上部及び下部の対向する箇所に 気液分離ヘッダー 5B及び液溜ヘッダー 6Bを構成する透孔 2c,2c、 2d, 2dが形成さ れ、これら蒸発プレート 20Aがそれぞれ上下 2個のセパレータ 9, 10Aを介して水平 方向に積層されている。  In the evaporator 1D according to the fifth embodiment shown in FIGS. 12 to 14, the expanded metal 3 as a nucleation member is sandwiched between the two heat transfer plates 2C, 2C, and the evaporation plate One unit of 20A is configured. Through holes 2c, 2c, 2d, and 2d constituting the gas-liquid separation header 5B and the liquid reservoir header 6B are formed at the opposite locations of the upper and lower portions of the two heat transfer plates 2C and 2C. They are stacked in the horizontal direction via two separators 9 and 10A.
[0070] 上セパレータ 9の透孔 2cに対向する箇所には透孔 9aが形成され、上セパレータ 9 の透孔 9a及び 2枚の伝熱板 2C,2Cの透孔 2c,2cにより気液分離ヘッダー 5Bが構成さ れる一方、下セパレータ 10Aの透孔 2dに対向する箇所には透孔 10dが形成され、下 セパレータ10八の透孔10(1及び2枚の伝熱板2(:,2(:の透孔2(1,2(1にょり液溜へッダー 6Bが構成され、隣り合う 2枚の伝熱板 2C,2C及び上下セパレータ 9, 10Aにより囲ま れ形成される空間が熱源の通流部 15となっている。  [0070] A through hole 9a is formed at a position facing the through hole 2c of the upper separator 9, and gas-liquid separation is performed by the through hole 9a of the upper separator 9 and the through holes 2c and 2c of the two heat transfer plates 2C and 2C. While the header 5B is formed, a through hole 10d is formed at a position facing the through hole 2d of the lower separator 10A, and the through hole 10 (one and two heat transfer plates 2 (:, 2) of the lower separator 10 8 is formed. (: Through-hole 2 (1, 2 (1) The reservoir 6B is formed, and the space surrounded by the two adjacent heat transfer plates 2C, 2C and the upper and lower separators 9, 10A is the heat source. It is a convection section 15.
[0071] 蒸発プレート 20Aは、 2枚の長方形形状をした伝熱板 2C,2C、長方形形状に切断 加工されたエキスパンドメタル 3、 4辺からなる枠体 4Bを含んで構成されている。これ ら多数の蒸発プレート 20Aがそれぞれ上下 2個のセパレータ 9, 10Aを介してエンド プレート 11 , 11の間に水平方向に積層され、多数のタイロッド 12に支持され、ボルト 13により締め付け固定されている。 [0071] The evaporation plate 20A includes two rectangular heat transfer plates 2C and 2C, an expanded metal 3 cut into a rectangular shape, and a frame 4B composed of four sides. A large number of these evaporation plates 20A are stacked in a horizontal direction between the end plates 11 and 11 via two separators 9 and 10A, and are supported by a large number of tie rods 12 and bolts. Tightened and fixed by 13
[0072] 気液分離ヘッダー 5Bには凝縮液管 LPと蒸気配管 VPとがエンドプレート 11を介して 接続されており、凝縮器(図示せず)で液化された作動流体は凝縮液管 LPを通って 気液分離ヘッダー 5Bへと流れ込み、気液分離ヘッダー 5B内で貯留され、気液分離 液面 Ldを形成するとともに 2枚の伝熱板 2C,2Cの間に流れ込み、エキスパンドメタノレ 3に導かれてエキスパンドメタル 3と 2枚の伝熱板 2C,2Cとの間を下方へと流下する。 この流下の間にも作動流体は伝熱板 2C,2Cの伝熱面 2aを介して熱源(図示せず)か らの熱を受け、沸騰蒸発してゆく。  [0072] A condensate pipe LP and a steam pipe VP are connected to the gas-liquid separation header 5B via an end plate 11, and the working fluid liquefied by a condenser (not shown) is connected to the condensate pipe LP. Flows into the gas-liquid separation header 5B, and is stored in the gas-liquid separation header 5B, forms the gas-liquid separation liquid level Ld, and flows between the two heat transfer plates 2C and 2C to the expanded methanol 3 It is led down and flows down between the expanded metal 3 and the two heat transfer plates 2C and 2C. During this flow, the working fluid receives heat from a heat source (not shown) via the heat transfer surface 2a of the heat transfer plates 2C and 2C, and evaporates to the boiling point.
[0073] また、液溜ヘッダー 6Bと気液分離ヘッダー 5Bとが配管 7を介して接続され、液溜へ ッダー 6B内に溜まった作動流体を気液分離ヘッダー 5Bに送る搬送手段としてのポ ンプ 8が配管 7の液溜ヘッダー 6Bの近くに介装されている。その他の点は第 4の実施 の形態に係る蒸発器 1Cと同様であるので、ここではその詳しい説明を省略する。  [0073] Further, the liquid reservoir header 6B and the gas-liquid separation header 5B are connected via the pipe 7, and a pump as a conveying means for sending the working fluid accumulated in the liquid reservoir header 6B to the gas-liquid separation header 5B. 8 is installed near the reservoir header 6B of the pipe 7. Since the other points are the same as those of the evaporator 1C according to the fourth embodiment, detailed description thereof is omitted here.
[0074] 第 5の実施の形態に係る蒸発器 1Dによれば、第 4の実施の形態に係る蒸発器 1C により得られる効果に加え、作動流体の作動時に、飽和蒸気圧が低圧域にあっても、 伝熱板 2C,2Cの垂直距離の大小にかかわらず、伝熱板 2C,2Cの全面に渡って、略 等しい飽和温度の核沸騰を、伝熱板 2C,2Cとエキスパンドメタル 3との接点に形成さ れた発泡点に起こさせることができる。従って、ほんの少しの温度差を利用するような 熱交換方式であっても、核沸騰を最大限利用した高性能な蒸発器を提供することが できる。  [0074] According to the evaporator 1D according to the fifth embodiment, in addition to the effect obtained by the evaporator 1C according to the fourth embodiment, the saturated vapor pressure is in the low pressure region when the working fluid is operated. However, regardless of the vertical distance between the heat transfer plates 2C and 2C, the nucleate boiling at substantially the same saturation temperature occurs over the entire surface of the heat transfer plates 2C and 2C, and the heat transfer plates 2C and 2C and the expanded metal 3 It can be caused to occur at the foaming point formed at the contact. Therefore, it is possible to provide a high-performance evaporator that makes the best use of nucleate boiling even with a heat exchange system that uses only a small temperature difference.
[0075] また、上記いずれの実施の形態においても伝熱板 2などが略垂直に配置された場 合を示したが、別の実施の形態では、伝熱板などが垂直面に対して傾斜して配置さ れていても良い。力、かる実施の形態によれば、蒸発器を屋根などの取り付け面の傾 斜角に合わせて屋根の上などにも安定的に取り付けることができることとなる。  [0075] In each of the above embodiments, the case where the heat transfer plate 2 and the like are arranged substantially vertically is shown. However, in another embodiment, the heat transfer plate and the like are inclined with respect to the vertical plane. May be arranged. According to the embodiment, the evaporator can be stably mounted on the roof according to the inclination angle of the mounting surface such as the roof.
産業上の利用可能性  Industrial applicability
[0076] 本発明に係る蒸発器は、例えば、熱電発電装置に、固体高分子電解質型燃料電 池のスタックの冷却用として、熱交換装置の構成要素として、あるいは、パワー半導 体素子のヒートシンクとして等、種々の場面で産業上の利用が可能である。 [0076] The evaporator according to the present invention is, for example, used in a thermoelectric generator, for cooling a stack of solid polymer electrolyte fuel cells, as a component of a heat exchange device, or as a heat sink of a power semiconductor element. As such, it can be used industrially in various situations.

Claims

請求の範囲 The scope of the claims
[1] 対向して配置された 2平面の間に、これら平面との間で沸騰核を形成する核形成部 材が挟持され、これら 2平面のうちの 1平面もしくは 2平面が熱源の熱を作動流体に 伝える伝熱面を構成することを特徴とする蒸発器。  [1] A nucleation member that forms boiling nuclei between these two planes is sandwiched between two planes. One or two planes of these two planes heat the heat from the heat source. An evaporator, characterized in that it constitutes a heat transfer surface that transmits to the working fluid.
[2] 前記 2平面が略垂直に配置されて!/、ることを特徴とする請求項 1記載の蒸発器。 2. The evaporator according to claim 1, wherein the two planes are arranged substantially vertically! /.
[3] 前記 2平面が垂直面に対して傾斜して配置されていることを特徴とする請求項 1記 載の蒸発器。 [3] The evaporator according to [1], wherein the two planes are arranged to be inclined with respect to a vertical plane.
[4] 前記核形成部材が、作動流体の気液分離界面より上方に露出するように構成され ていることを特徴とする請求項 1〜3のいずれかの項に記載の蒸発器。  [4] The evaporator according to any one of claims 1 to 3, wherein the nucleation member is configured to be exposed above a gas-liquid separation interface of the working fluid.
[5] 前記核形成部材がエキスパンドメタルで形成されていることを特徴とする請求項 1 〜4の!/、ずれかの項に記載の蒸発器。  [5] The evaporator according to any one of [1] to [4], wherein the nucleation member is formed of an expanded metal.
[6] 前記 2平面の上部に気液分離ヘッダーが連設されていることを特徴とする請求項 1 〜5のいずれかの項に記載の蒸発器。  [6] The evaporator according to any one of [1] to [5], wherein a gas-liquid separation header is continuously provided above the two planes.
[7] 前記 2平面の下部に液溜部が連設され、該液溜部と前記気液分離ヘッダーとが連 結手段を介して接続され、前記液溜部内に溜まった作動流体を前記気液分離へッ ダ一に送る搬送手段が前記連結手段に介装されていることを特徴とする請求項 6記 載の蒸発器。  [7] A liquid reservoir is connected to the lower part of the two planes, the liquid reservoir and the gas-liquid separation header are connected via a connecting means, and the working fluid accumulated in the liquid reservoir is discharged from the gas reservoir. 7. The evaporator according to claim 6, wherein a conveying means for sending to the liquid separation header is interposed in the connecting means.
[8] 2枚の伝熱板の間に核形成部材が挟持されて 1ユニットが構成され、  [8] A nucleation member is sandwiched between two heat transfer plates to form one unit,
前記 2枚の伝熱板の上部の対向する箇所に透孔が形成され、  A through hole is formed in the opposite location of the upper part of the two heat transfer plates,
これらユニットが上下 2個のセパレータを介して水平方向に積層され、  These units are stacked horizontally via two upper and lower separators,
前記上セパレータの前記透孔に対向する箇所には透孔が形成され、  A through hole is formed at a location facing the through hole of the upper separator,
前記上セパレータ及び前記 2枚の伝熱板の透孔により気液分離ヘッダーが構成さ れる一方、隣り合う 2枚の伝熱板及び前記上下セパレータにより形成される空間が熱 源の通流部となって!/、ることを特徴とする蒸発器。  A gas-liquid separation header is constituted by the upper separator and the through holes of the two heat transfer plates, while a space formed by two adjacent heat transfer plates and the upper and lower separators is a heat source flow portion. An evaporator characterized by becoming! /.
[9] 2枚の伝熱板の間に核形成部材が挟持されて 1ユニットが構成され、  [9] A nucleation member is sandwiched between two heat transfer plates to form one unit,
前記 2枚の伝熱板の上部及び下部の対向する箇所に透孔が形成され、 これらユニットが上下 2個のセパレータを介して水平方向に積層され、  Through-holes are formed at opposite locations of the upper and lower portions of the two heat transfer plates, and these units are stacked horizontally via two upper and lower separators,
前記上下セパレータの前記透孔に対向する箇所には透孔が形成され、 前記上下セパレータ及び前記 2枚の伝熱板の透孔により気液分離ヘッダー及び液 溜部が構成され、 A through hole is formed at a location facing the through hole of the upper and lower separators, A gas-liquid separation header and a liquid reservoir are configured by the upper and lower separators and the through holes of the two heat transfer plates,
該液溜部と前記気液分離ヘッダーとが連結手段を介して接続され、  The liquid reservoir and the gas-liquid separation header are connected via a connecting means,
前記液溜部内に溜まった作動流体を前記気液分離ヘッダーに送る搬送手段が前 記連結手段に介装される一方、  While the conveying means for sending the working fluid accumulated in the liquid reservoir to the gas-liquid separation header is interposed in the connecting means,
隣り合う 2枚の伝熱板及び前記上下セパレータにより形成される空間が熱源の通流 部となって!/、ることを特徴とする蒸発器。  An evaporator characterized in that a space formed by two adjacent heat transfer plates and the upper and lower separators serves as a heat source flow path!
PCT/JP2007/065399 2006-08-10 2007-08-07 Evaporator WO2008018429A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007551500A JP4917048B2 (en) 2006-08-10 2007-08-07 Evaporator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006217882 2006-08-10
JP2006-217882 2006-08-10

Publications (1)

Publication Number Publication Date
WO2008018429A1 true WO2008018429A1 (en) 2008-02-14

Family

ID=39032959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065399 WO2008018429A1 (en) 2006-08-10 2007-08-07 Evaporator

Country Status (2)

Country Link
JP (1) JP4917048B2 (en)
WO (1) WO2008018429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056290A1 (en) * 2013-10-15 2015-04-23 隆啓 阿賀田 Method for improving fluid flow characteristics, heat exchanger in which improvement method is carried out, distillation device, deodorization device, and slit-and-stretched sheet used in improvement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148432U (en) * 1981-03-12 1982-09-17
JPS62175595A (en) * 1986-01-27 1987-08-01 Matsushita Refrig Co Heat transfer tube

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653572A (en) * 1986-03-11 1987-03-31 Air Products And Chemicals, Inc. Dual-zone boiling process
JPS62284199A (en) * 1986-06-02 1987-12-10 Matsushita Refrig Co Heat transfer pipe
JPH01179892A (en) * 1987-12-29 1989-07-17 Showa Alum Corp Heat pipe
JP2682584B2 (en) * 1991-08-22 1997-11-26 三菱電機株式会社 Heat exchange equipment
JPH07127987A (en) * 1993-11-05 1995-05-19 Zexel Corp Laminated heat exchanger
JP2000077586A (en) * 1998-08-28 2000-03-14 Fuji Electric Co Ltd Boiling cooler
JP2005024132A (en) * 2003-06-30 2005-01-27 Komatsu Ltd Evaporator
JP4573525B2 (en) * 2003-12-24 2010-11-04 本田技研工業株式会社 Solid polymer electrolyte fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148432U (en) * 1981-03-12 1982-09-17
JPS62175595A (en) * 1986-01-27 1987-08-01 Matsushita Refrig Co Heat transfer tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056290A1 (en) * 2013-10-15 2015-04-23 隆啓 阿賀田 Method for improving fluid flow characteristics, heat exchanger in which improvement method is carried out, distillation device, deodorization device, and slit-and-stretched sheet used in improvement method
EP3059543A4 (en) * 2013-10-15 2017-07-12 Takahiro Agata Method for improving fluid flow characteristics, heat exchanger in which improvement method is carried out, distillation device, deodorization device, and slit-and-stretched sheet used in improvement method
US9939212B2 (en) 2013-10-15 2018-04-10 Takahiro Agata Method for improving fluid flow characteristics, heat exchanger, distillation apparatus and deodorizing apparatus with the same applied thereto, and expanded metal used for the same

Also Published As

Publication number Publication date
JPWO2008018429A1 (en) 2009-12-24
JP4917048B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP2013004562A (en) Ebullient cooling system
CN103189708A (en) Loop-shaped heat pipe and electronic device equipped with same
US8073096B2 (en) Methods and apparatuses for removal and transport of thermal energy
JPH09326264A (en) Heat radiator for electric power storing battery
CN210805247U (en) Passive waste heat derivation heat pipe heat exchange system of spent fuel pool
US11209217B2 (en) Mechanical vapour compression arrangement having a low compression ratio
US3440146A (en) Desalination method and apparatus with plural vaporization chambers containing shallow layers of liquid
WO2008018429A1 (en) Evaporator
JP2001064658A (en) Evaporator
CN1153947C (en) Method and apparatus for improving heat transfer
US20120132512A1 (en) Gaseous density convective desalination and cooling system
JP5092931B2 (en) Boiling cooler
CN112892079A (en) Baffling gas-liquid separator and fuel cell engine system
US8835063B2 (en) Evaporative humidifier for fuel cell system
CN108815869B (en) Liquid purification device
JP3426701B2 (en) Fuel cell
KR101479706B1 (en) Structure for preventing slosh in marine desalinator
US20220034572A1 (en) Thermal energy storage and retrieval systems and methods
JPH0541234A (en) Level switch for fuel cell cooling water system
JPH0378556B2 (en)
JP2007200698A (en) Solid polymer electrolyte fuel cell
JP2008130484A (en) Fuel cell system
CN220083450U (en) Refrigerating module of water purifier
TWI621819B (en) Evaporation and condensation apparatus and power apparatus
JP2005121298A (en) Evaporator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007551500

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792068

Country of ref document: EP

Kind code of ref document: A1