WO2008016009A1 - Piston ring - Google Patents

Piston ring Download PDF

Info

Publication number
WO2008016009A1
WO2008016009A1 PCT/JP2007/064901 JP2007064901W WO2008016009A1 WO 2008016009 A1 WO2008016009 A1 WO 2008016009A1 JP 2007064901 W JP2007064901 W JP 2007064901W WO 2008016009 A1 WO2008016009 A1 WO 2008016009A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston ring
mol
alloy
shape memory
memory alloy
Prior art date
Application number
PCT/JP2007/064901
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Miyazaki
Motonobu Onoda
Naoki Okada
Yoshitaka Fujii
Hee Young Kim
Original Assignee
Nippon Piston Ring Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co., Ltd. filed Critical Nippon Piston Ring Co., Ltd.
Publication of WO2008016009A1 publication Critical patent/WO2008016009A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Definitions

  • the present invention relates to a piston ring. More specifically, the present invention relates to a variable tension piston ring that is disposed in a piston ring groove of a piston in an internal combustion engine used for an automobile, a lawn mower, a generator, etc., and in which the tension in a high temperature state is increased compared to the tension in a low temperature state. .
  • Piston rings are roughly classified into two types: pressure rings and oil rings.
  • the piston ring is composed of only one piston ring, the piston ring body, and this piston ring.
  • an expander is disposed on the inner peripheral surface side of the main body to apply a pressing force in the direction of expanding the piston ring main body.
  • the tension in such a piston ring is usually set so that the piston ring can perform its function even under the most severe conditions in which the piston ring can be used.
  • the tension of the piston ring is set assuming a high speed and high load state of the internal combustion engine.
  • the tension of the piston ring is designed assuming a high speed and high load state.
  • the piston ring is composed of a piston ring main body and an expander
  • the sum of the tension of the piston ring main body and the expander is similarly designed assuming a high speed and high load state.
  • a piston ring has been developed that can change the tension of the piston ring between a low temperature and a high temperature by forming the piston ring from a shape memory alloy.
  • the piston ring in a piston ring composed of only one piston ring, the piston ring is formed of a nickel-titanium-based shape memory alloy.
  • a technique is disclosed in which the piston ring and the cylinder inner peripheral surface are brought into non-contact and the piston ring and the cylinder inner peripheral surface are brought into contact with each other only when a high temperature is reached! (See paragraphs, etc.)
  • Patent Document 2 in the piston ring composed of a piston ring main body and an expander (coil expander), the expander is formed of a nickel titanium-based shape memory alloy as in Patent Document 1. By doing so, a technique for increasing the tension in the high temperature state than the tension in the low temperature state is disclosed (see the claims of the utility model registration in Patent Document 2).
  • Patent Document 3 discloses a shape memory alloy characterized by adding palladium to nickel-titanium for the purpose of transformation at a higher temperature.
  • Patent Document 4 discloses a shape memory alloy characterized by adding zirconium (or hafnium) to nickel titanium for the same purpose as Patent Document 3.
  • Patent Document 5 discloses a shape with a wide range of transformation temperatures and excellent workability.
  • a shape memory alloy characterized by adding niobium to nickel titanium is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-0666371
  • Patent Document 2 Actual Fairness No. 03-041078
  • Patent Document 3 Japanese Patent Laid-Open No. 11 036024
  • Patent Document 4 Japanese Patent Laid-Open No. 10-008168
  • Patent Document 5 Japanese Patent Application Laid-Open No. 61-119639
  • the current piston ring does not completely solve the problem of friction loss, and needs to be improved to further improve fuel consumption.
  • the piston ring disclosed in Patent Document 1 cannot be applied in a temperature range of 80 ° C. or higher with a force S in which a nickel-titanium alloy is used as a shape memory alloy. The effect cannot be expected in an automobile engine or the like that is subjected to severe temperature conditions.
  • the present invention has been made in view of such a situation, and the tension in the low temperature state and the tension in the high temperature state can be changed within the practical range of the engine, and as a result, the flexion loss is minimized.
  • the main issue is to provide a piston ring that can reduce fuel consumption and improve fuel efficiency.
  • the piston ring of the present invention for solving the above-mentioned problems is characterized in that 34.7 mol% or more and 48.5 mol% or less of nickel, and 9 mol% or more and 22.5 mol% or less of zirconium and hafnium, It is formed of a shape memory alloy composed of niobium of 1 mol% or more and 30 mol% or less, the remainder of titanium, and inevitable impurities.
  • the piston ring of the present invention may be formed of a shape memory alloy containing 9 mol% or more and 22.5 mol% or less of zirconium and 3 mol% or more and 30 mol% or less of niobium. Good.
  • the shape memory alloy having a specific force of not less than 0.98 and not more than 1.14 is obtained by dividing the total mol% of titanium, zirconium and hafum by mol% of nickel. It's formed with les, even les.
  • the piston ring of the present invention includes a piston ring main body and an expander disposed on the inner peripheral surface side of the piston ring main body. Both or any one of the pandas may be formed of the shape memory alloy.
  • the expander may be a coil expander or a plate expander.
  • the piston ring of the present invention includes a side rail and a spacer expander, and either or both of the side rail and the spacer expander are used.
  • One is made of the shape memory alloy! /
  • the tension at a temperature lower than the reverse transformation peak temperature of the shape memory alloy is 0.;! To 25N, and the reverse transformation peak temperature of the shape memory alloy
  • the tension at the above temperature is preferably 0.2 to 55 N.
  • the piston ring of the present invention may be used as an oil ring or a pressure ring.
  • the piston ring of the present invention nickel of 34.7 mol% or more and 48.5 mol% or less, 9 mol% or more and 22.5 mol% or less of zirconium and hafnium, lmol% or more of niobium of 30 mol% or less, the remaining titanium, unavoidable impurities, force, and other shape memory alloys. Therefore, a high transformation temperature (transformation peak temperature (M *) or reverse transformation peak temperature (A *)) of 80 ° C or higher can be realized.
  • M * transformation peak temperature
  • a * reverse transformation peak temperature
  • the shape memory alloy having the component composition can withstand repeated use at a high temperature, the piston ring made of the shape memory alloy has improved durability.
  • a shape memory alloy having the component composition is excellent in workability because of a higher rolling ratio in cold working than a conventional shape memory alloy. Therefore, the desired shape
  • the components of the shape memory alloy may include 9 mol% or more and 22.5 mol% or less of zirconium, and 3 mol% or more and 30 mol% or less of niobium. You can get power.
  • the ratio obtained by dividing the total mol% of titanium, zirconium and hafnium by mol% of nickel is 0.98 or more and 1.14 or less. An effect can be obtained.
  • the piston ring of the present invention there is no problem even if the piston ring is composed of a piston ring body and an expander disposed on the inner peripheral surface side of the piston ring body. If at least one of the main body and the expander is formed of the shape-memory alloy, the same effect as described above can be obtained, and the expander can be either a coil expander or a plate expander. It is the same even if it is.
  • the piston ring of the present invention includes a side rail and a spacer expander, and both or one of the side rail and the spacer expander is the above-mentioned. Even if it is made of shape memory alloy! That's the power S.
  • the tension at a temperature lower than the reverse transformation peak temperature of the shape memory alloy (temperature assuming starting of the engine: -30 to 50 ° C) is 0. 1 to 25 N
  • the tension at a temperature higher than the reverse transformation peak temperature of the shape memory alloy (temperature assuming high speed rotation after the engine starts, temperature after austenite transformation) is 0.2 to 55 N.
  • piston ring of the present invention can exhibit the above-described effects even if it is used as either an oil ring or a pressure ring.
  • FIG. 1 is an explanatory view of an image obtained by observing an alloy 6 of a material example of the present invention with a scanning electron microscope.
  • FIG. 2 is an explanatory view of an image obtained by observing an alloy 8 of a material example of the present invention with a scanning electron microscope.
  • FIG. 3 is a schematic sectional view of an example of the piston ring of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the piston ring of the present invention, (a) is a schematic cross-sectional view of a piston ring 40 composed of a piston ring main body 41 and a coil expander 42; (B) is a schematic cross-sectional view of a piston ring 50 composed of a piston ring body 51 and a plate expander 52, and (c) to (e) are side lenores 44, 61, 71 and a spacer expander.
  • FIG. 4 is a schematic cross-sectional view of piston rings 43, 60, and 70 that are composed of a pair of cylinders 45, 62, and 72;
  • the piston ring of the present invention will be specifically described below.
  • the piston ring of the present invention comprises 34.7 mol% or more and 48.5 mol% or less of nickel, 9 mol% or more and 25.5 mol% or less of zirconium and hafnium, and lmo 1% or more and 30 mol% or less. It is characterized by being formed of a shape memory alloy composed of niobium, the remaining titanium, unavoidable impurities, force, and the like.
  • the shape memory alloy that can be used for the piston ring of the present invention is the above-mentioned shape memory alloy, which is 9 mol 1% or more and 22.5 mol% or less of zirconium, 3 mol% or more and 30 mol% or less of niobium. Furthermore, the specific force obtained by dividing the total mo 1% of titanium, zirconium and hafnium by mol% of nickel may be 0 ⁇ 98 or more and 1 ⁇ 14 or less.
  • the piston ring of the present invention is characterized by the shape memory alloy that is the material thereof. Therefore, first, the characteristics of the shape memory alloy, which is the feature, will be described in detail with various experimental examples.
  • Examples of materials that can be used for the piston ring of the present invention (hereinafter referred to as “material examples of the present invention”) and examples of materials that cannot be used for the piston ring of the present invention, that is, out of the above components
  • materials hereinafter referred to as “comparative material examples”
  • test piece used in the experiment was prepared by the following methods (1) to (3).
  • Alloy 1 (Ti—Ni-Zr) is composed of 49.5 mol% Ni and 10 mol% Zr.
  • the alloy produced by the above production method was evaluated by carrying out a chemical evaluation test.
  • cold rolling was performed to a rolling rate of 60% using a cold rolling mill.
  • the rolling rate at the time of rupture was measured to determine the workability. evaluated.
  • Transformation temperature of each alloy cold rolled material was heat treated for 1 hour at 7 00 ° C, differential scanning calorimetry measurement (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (DSC, Differential Scanning Calorimetry), the marten
  • Examples of materials of the present invention include Ti—Ni—Zr—Nb quaternary alloys 4 to 6, and the total mol% of Ti and Zr divided by mol% of Ni.
  • Table 2 shows the rolling rate (%), martensitic transformation peak temperature (M * point,) and reverse transformation peak temperature (A * point, ° C).
  • composition of the present invention (alloy 7 to alloy 10) and comparative material example (alloy 11) are divided into the composition of Ti-Ni-Zr-Nb quaternary alloy and the total mol% of Ti and Zr divided by mol% of ⁇ . “Two
  • Table 3 shows the “geckel ratio”, rolling rate at break (%), martensitic transformation peak temperature (M * point, ° C) and reverse transformation peak temperature (A * point, ° C).
  • the composition of the quaternary alloy of Ti—Ni—Zr—Nb and the total mol% of Ti and Zr are expressed in mol mol of Ni Table 4 shows the “ratio to nickel” divided by, the rolling reduction rate at break (%), the martensitic transformation peak temperature (M * point, ° C) and the reverse transformation peak temperature (A * point, .C). Show.
  • Table 5 shows the rolling rate (%), martensitic transformation peak temperature (M * point, ° C) and reverse transformation peak temperature (A * point, ° C).
  • Examples of materials of the present invention include Ti-Ni—Hf—; Nb quaternary alloy and Ti-Ni—Zr—Hf—Nb quaternary alloy 21 to alloy 24, and the sum of Ti, Zr and Hf.
  • ⁇ Ratio of nickel to mol% divided by mol% of Ni '', rolling ratio at break (° / 0 ), martensitic transformation peak temperature (M * point,) and reverse transformation peak temperature (A * point, ) Is shown in Table 6.
  • Alloy 21 corresponds to the alloy 9 in which Zr is replaced with Hf
  • alloy 22 corresponds to the alloy 18 in which Zr is replaced with Hf
  • Alloy 23 corresponds to the alloy 6 with Zr substituted by Hf
  • alloy 24 corresponds to the alloy 9 with half of Zr (15 mol%) replaced with Hf.
  • FIG. 1 is an explanatory view of an image obtained by observing the alloy 6 of the present material example with a scanning electron microscope.
  • the Ti—Ni—Zr ternary alloys such as Alloy 1 to Alloy 3 of the comparative material examples, have poor workability with a rolling rate of only 30% at maximum.
  • the transformation temperature M * point and A * point
  • the rolling rate is lowered and the workability is lowered.
  • Alloy 4 to Alloy 6 can be used as a shape memory alloy that can be used under high temperature conditions and has excellent workability. Therefore, by using the alloy as a material for the piston ring, the tension is low and suitable in low temperature and low load conditions, and friction loss can be minimized. By doing so, it is possible to realize a piston ring with increased tension.
  • FIG. 2 is an explanatory view of an image obtained by observing the alloy 8 of the material example of the present invention with a scanning electron microscope.
  • FIG. 3 is a schematic cross-sectional view of an example of the piston ring of the present invention.
  • the piston ring 30 of the present invention shown in FIG. 3 is a piston ring composed of only one ring 30, and the one ring 30 is formed of the shape memory alloy described above.
  • the piston ring 30 of the present invention is characterized by its material, and its shape and the like are not particularly limited.
  • the bore diameter is appropriately designed according to the size of the internal combustion engine in which the piston ring 30 is used, the shape of the piston, and the like.
  • the thickness is preferably about 0.7 to 3 mm, and the tension in the diameter expansion direction of the piston ring 30 at that time is particularly preferable. Is 0.; ⁇ 25N at room temperature, and should be 0.2 ⁇ 55N after reverse transformation (austenite transformation) Is preferred.
  • the thickness is particularly preferably about 0.7 to 4 mm.
  • the tension in the diameter expansion direction of the piston ring 30 at that time is As described above, it is preferably 0.;! To 25N at room temperature, and preferably 0.2 to 55N after reverse transformation (austenite transformation)! /.
  • the cross-sectional shape of the piston ring 30 that may be subjected to conventionally known surface processing or the like is not limited to the substantially rectangular shape shown in the figure, and various conventionally known various types can be used. It is possible to take a shape.
  • FIG. 4 is a schematic sectional view showing another example of the piston ring of the present invention.
  • FIG. 4 (a) shows a piston ring 40 composed of a piston ring body 41 and a coil expander 42.
  • FIG. 4B is a schematic cross-sectional view of a piston ring 50 including a piston ring main body 51 and a plate expander 52.
  • FIG. 4 (c) to (e) are schematic cross-sectional views of side rings 44, 61, 71 and piston rings 43, 60, 70 composed of spacer expanders 45, 62, 72 and force. It is.
  • the piston ring of the present invention 40, 43, 50, 60, 70, and the piston ring body 41, 51 or side lenorette 44, 61, 71 and the expander 42 45, 52, 62, 72 and / or at least one of them is formed by the shape memory alloy described above, and the piston rings 40, 43, 50, 60, 70 ⁇ of the present invention (the It is preferable that the squeezers 42, 45, 52, 62 and 72 are made of a shape memory alloy, compared to the piston ring bodies 41 and 51 and the side lanes 44, 61 and 71. This is because 45, 52, 62, and 72 contribute to the tension of the entire piston ring.
  • the size, shape and the like are not particularly limited.
  • the bore diameter is the same as the tension described above. Is preferred.
  • the piston ring of the present invention can also be used as an oil ring, and can also be used as a pressure ring.
  • the piston ring of Example 2 was produced using the alloy 12 of the material of the present invention described above.
  • the piston ring of Example 3 was produced using the alloy 9 of the material of the present invention described above.
  • the piston ring of Example 4 was produced using the alloy 8 of the material of the present invention described above.
  • a Ti-Ni (Ti-50at% Ni material) shape memory alloy which is a conventionally known shape memory alloy, has a reverse transformation peak temperature of 58 ° C.
  • a coil expander with a temperature of 65 ° C after completion of the state (end of austenite transformation) was prepared, and this was combined with the same piston ring body as in Example 1 as shown in Fig. 4 (a).
  • a piston ring of Comparative Example 1 of the present invention was produced.
  • each piston ring was used as an oil ring, and the other first pressure ring and the second pressure ring were all conventionally known rings having the same specifications. Each was mounted on a ⁇ 88mm piston in an internal combustion engine, and the fuel consumption was measured in 10 ⁇ 15 mode. On the other hand, all other conditions except for the conventional coil expander made of spring steel. Prepare the same piston rings (top ring, second ring) as in the examples and comparative examples.
  • the piston ring of the present invention uses the piston ring of Comparative Example 1, that is, a conventionally known shape memory alloy (Ni-Ti system)! It is a component that can achieve a fuel efficiency of about 4 to 5 times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Disclosed is a piston ring which can vary a tension under low-temperature and low-load conditions and a tension under high-temperature and high-load conditions, and therefore can minimize the friction loss and improve the fuel efficiency. The piston ring is formed by a shape memory alloy comprising 34.7 to 48.5 mol% inclusive of nickel, 9 to 22.5 mol% inclusive of at least either one of zirconium and hafnium and 1 to 30 mol% of niobium, with the remainder being titanium and unavoidable impurities.

Description

明 細 書  Specification
ピストンリング  piston ring
技術分野  Technical field
[0001] 本発明はピストンリングに関する。さらに具体的には、自動車、芝刈り機、発電機等 に用いる内燃機関におけるピストンのピストンリング溝に配設され、低温状態の張力 に比べて高温状態の張力が増大する、張力可変ピストンリングに関する。  [0001] The present invention relates to a piston ring. More specifically, the present invention relates to a variable tension piston ring that is disposed in a piston ring groove of a piston in an internal combustion engine used for an automobile, a lawn mower, a generator, etc., and in which the tension in a high temperature state is increased compared to the tension in a low temperature state. .
背景技術  Background art
[0002] ピストンリングには、大別すると圧力リングとオイルリングの 2種類があり、どちらの場 合であっても、一つのピストンリングのみから構成される場合やピストンリング本体と、 このピストンリング本体の内周面側に配置されて、ピストンリング本体に対する拡径方 向への押圧力を与えるためのエキスパンダを用いて構成される場合がある。  [0002] Piston rings are roughly classified into two types: pressure rings and oil rings. In either case, the piston ring is composed of only one piston ring, the piston ring body, and this piston ring. There may be a case where an expander is disposed on the inner peripheral surface side of the main body to apply a pressing force in the direction of expanding the piston ring main body.
[0003] このようなピストンリングにおける張力は、当該ピストンリングが使用されうる最も過酷 な条件下においても、ピストンリングがその機能を発揮できるように設定されているの が通常である。例えば、内燃機関(エンジン)のピストンに装着されるピストンリングに おいては、内燃機関の高速高負荷状態を想定して、ピストンリングの張力を設定して いる。具体的には、一つのピストンリングのみから構成される場合にあっても、当該ピ ストンリング自体の張力は高速高負荷状態を想定して設計されている。あるいは、ピ ストンリングがピストンリング本体とエキスパンダとから構成される場合にあっても、同 様にピストンリング本体とエキスパンダの張力の和が高速高負荷状態を想定して設計 されている。  [0003] The tension in such a piston ring is usually set so that the piston ring can perform its function even under the most severe conditions in which the piston ring can be used. For example, in a piston ring attached to a piston of an internal combustion engine (engine), the tension of the piston ring is set assuming a high speed and high load state of the internal combustion engine. Specifically, even when the piston ring is composed of only one piston ring, the tension of the piston ring itself is designed assuming a high speed and high load state. Alternatively, even when the piston ring is composed of a piston ring main body and an expander, the sum of the tension of the piston ring main body and the expander is similarly designed assuming a high speed and high load state.
[0004] ここで、近年は、環境に優しい、特に燃料消費量の低いエンジンを目指すため、ピ ストンリングとシリンダライナのフリクション低減についての要求が高まっている。  [0004] Here, in recent years, in order to aim for an engine that is environmentally friendly and particularly low in fuel consumption, there is an increasing demand for reducing friction between the piston ring and the cylinder liner.
[0005] しかしながら、従来のピストンリングにあっては、ピストンと共にシリンダ内周面を摺 動する際のエンジンの回転数の上昇によるピストンの往復運動の速度上昇に伴い、 シリンダ内周面とピストンリングとの間に発生する摺動摩擦とピストンの'慣性力によりピ ストンリングを浮き上がらせる力(フラッタリング)が大きくなり、高速高負荷になるほど オイル消費量が大きくなる傾向がある。したがって、高速高負荷状態つまり内燃機関 が高温状態の場合を想定してピストンリング全体の張力が設定されているため、低速 低負荷状態つまり内燃機関が低温状態の場合においては必要以上の張力がシリン ダの内周面に力、かってしまうこととなり、その結果として、多くのフリクションロスが生じ ていた。また、低速低負荷状態にピストンリング全体の張力を設定することも考えられ る力 そうすると高速高負荷運転となった場合に、ピストンリングのシール性が十分に 得られずオイル消費量が急激に増加してしまうため好ましくない。 [0005] However, in the conventional piston ring, as the speed of the reciprocating motion of the piston increases due to the increase in the number of revolutions of the engine when sliding along the cylinder inner peripheral surface together with the piston, the cylinder inner peripheral surface and the piston ring The force that lifts the piston ring (fluttering) due to the sliding friction and the piston's inertial force increases, and the oil consumption tends to increase at higher speeds and loads. Therefore, high-speed and high-load conditions, ie internal combustion engines Since the tension of the entire piston ring is set assuming that the piston is at a high temperature, excessive tension is not applied to the cylinder's inner surface in a low-speed, low-load state, that is, when the internal combustion engine is at a low temperature. As a result, a lot of friction loss occurred. In addition, it is possible to set the tension of the entire piston ring in a low-speed and low-load state.If high-speed and high-load operation is performed, the piston ring cannot be sufficiently sealed and the oil consumption increases rapidly. This is not preferable.
[0006] このような問題を解決するために、ピストンリングを形状記憶合金により形成すること により、低温時と高温時においてピストンリングの張力を変化できるようなピストンリン グが開発されている。 [0006] In order to solve such a problem, a piston ring has been developed that can change the tension of the piston ring between a low temperature and a high temperature by forming the piston ring from a shape memory alloy.
[0007] 具体的には、例えば特許文献 1には、一つのピストンリングのみから構成されるビス トンリングにおいて、当該ピストンリングをニッケル チタン系の形状記憶合金により 形成することにより、低温状態においては、ピストンリングとシリンダ内周面とを非接触 とし、高温状態になって初めてピストンリングとシリンダ内周面とを接触させる技術が 開示されて!/、る (特許文献 1の請求項 2、 0012段落など参照)。  [0007] Specifically, for example, in Patent Document 1, in a piston ring composed of only one piston ring, the piston ring is formed of a nickel-titanium-based shape memory alloy. A technique is disclosed in which the piston ring and the cylinder inner peripheral surface are brought into non-contact and the piston ring and the cylinder inner peripheral surface are brought into contact with each other only when a high temperature is reached! (See paragraphs, etc.)
[0008] また、特許文献 2には、ピストンリング本体とエキスパンダ(コイルエキスパンダ)とか ら構成されるピストンリングにおいて、エキスパンダを前記特許文献 1と同様にニッケ ルーチタン系の形状記憶合金により形成することにより、低温状態における張力より も高温状態における張力を大きくする技術が開示されている(特許文献 2の実用新案 登録請求の範囲など参照)。  [0008] In Patent Document 2, in the piston ring composed of a piston ring main body and an expander (coil expander), the expander is formed of a nickel titanium-based shape memory alloy as in Patent Document 1. By doing so, a technique for increasing the tension in the high temperature state than the tension in the low temperature state is disclosed (see the claims of the utility model registration in Patent Document 2).
[0009] このように、ピストンリングの材料として形状記憶合金を用いることは従来力 行われ ている。  [0009] As described above, the use of a shape memory alloy as a material for the piston ring has been conventionally performed.
[0010] ここで、形状記憶合金としては、例えば特許文献 3には、より高温で変態することを 目的としてニッケル一チタンにパラジウムを添加したことを特徴とする形状記憶合金 が開示されている。  [0010] Here, as a shape memory alloy, for example, Patent Document 3 discloses a shape memory alloy characterized by adding palladium to nickel-titanium for the purpose of transformation at a higher temperature.
[0011] また、特許文献 4には、前記特許文献 3と同様の目的のために、ニッケル チタン にジルコニウム(若しくはハフニウム)を添加したことを特徴とする形状記憶合金が開 示されている。  [0011] Further, Patent Document 4 discloses a shape memory alloy characterized by adding zirconium (or hafnium) to nickel titanium for the same purpose as Patent Document 3.
[0012] さらに、特許文献 5には、変態温度をより広範囲にし、さらに加工性に優れた形状 記憶合金を提供することを目的として、ニッケル チタンにニオブを添加したことを特 徴とする形状記憶合金が開示されている。 [0012] Furthermore, Patent Document 5 discloses a shape with a wide range of transformation temperatures and excellent workability. In order to provide a memory alloy, a shape memory alloy characterized by adding niobium to nickel titanium is disclosed.
特許文献 1 :特開平 06— 066371号公報  Patent Document 1: Japanese Patent Laid-Open No. 06-0666371
特許文献 2:実公平 03— 041078号公報  Patent Document 2: Actual Fairness No. 03-041078
特許文献 3:特開平 11 036024号公報  Patent Document 3: Japanese Patent Laid-Open No. 11 036024
特許文献 4 :特開平 10— 008168号公報  Patent Document 4: Japanese Patent Laid-Open No. 10-008168
特許文献 5:特開昭 61— 119639号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 61-119639
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] しかしながら、現在のピストンリングにあっては、前記フリクションロスの問題を完全 に解決してはおらず、さらなる燃費の向上のためにも改良の必要がある。 [0013] However, the current piston ring does not completely solve the problem of friction loss, and needs to be improved to further improve fuel consumption.
[0014] 具体的は、前記特許文献 1に開示のピストンリングにあっては、形状記憶合金として ニッケル チタン系合金が用いられている力 S、 80°C以上の温度範囲での応用はでき ず、過酷な温度条件となる自動車エンジン等ではその効果が期待できない。 Specifically, the piston ring disclosed in Patent Document 1 cannot be applied in a temperature range of 80 ° C. or higher with a force S in which a nickel-titanium alloy is used as a shape memory alloy. The effect cannot be expected in an automobile engine or the like that is subjected to severe temperature conditions.
[0015] また、前記特許文献 2に開示のピストンリングにあっても、形状記憶合金としては、 前記特許文献 1と同様の合金が用いられているため、 80°C以上の温度範囲での使 用には不適であり、燃費向上は期待できない。 [0015] Even in the piston ring disclosed in Patent Document 2, the same shape memory alloy as in Patent Document 1 is used, so that it can be used in a temperature range of 80 ° C or higher. It is unsuitable for use and cannot be expected to improve fuel efficiency.
[0016] さらに、前記特許文献 3に開示の形状記憶合金にあっては、添加物として高価なパ ラジウムを用いているため材料コストを著しく上昇させ、かつ加工性が劣るためピスト ンリングへの応用は困難である。 [0016] Further, in the shape memory alloy disclosed in Patent Document 3, since expensive palladium is used as an additive, the material cost is remarkably increased and the workability is inferior, so that it is applied to piston rings. It is difficult.
[0017] また、前記特許文献 4に開示の形状記憶合金にあっても、加工性が劣るためピスト ンリングへの応用は困難である。 [0017] Also, the shape memory alloy disclosed in Patent Document 4 is difficult to apply to piston rings because of poor workability.
[0018] また、前記特許文献 5に開示の形状記憶合金にあっては、組織安定性が悪く形状 記憶特性が失われるため、実用化されていないのが現状である。 [0018] In addition, the shape memory alloy disclosed in Patent Document 5 has not been put into practical use because it has poor structural stability and loses its shape memory characteristics.
[0019] 本発明はこのような状況に鑑みてなされたものであり、低温状態における張力と、高 温状態における張力をエンジンの実用的な範囲で変化させることができ、その結果フ リクシヨンロスを最小限に抑え、燃費の向上を可能とするピストンリングを提供すること を主たる課題とする。 課題を解決するための手段 [0019] The present invention has been made in view of such a situation, and the tension in the low temperature state and the tension in the high temperature state can be changed within the practical range of the engine, and as a result, the flexion loss is minimized. The main issue is to provide a piston ring that can reduce fuel consumption and improve fuel efficiency. Means for solving the problem
[0020] 上記課題を解決するための本発明のピストンリングは、 34· 7mol%以上 48. 5mol %以下のニッケルと、 9mol%以上 22. 5mol%以下の、ジルコニウムおよびハフユウ ムの少なくとも一方と、 lmol%以上 30mol%以下のニオブと、残部のチタンと、不可 避的不純物と、からなる形状記憶合金により形成されていることを特徴とする。  [0020] The piston ring of the present invention for solving the above-mentioned problems is characterized in that 34.7 mol% or more and 48.5 mol% or less of nickel, and 9 mol% or more and 22.5 mol% or less of zirconium and hafnium, It is formed of a shape memory alloy composed of niobium of 1 mol% or more and 30 mol% or less, the remainder of titanium, and inevitable impurities.
[0021] 上記本発明のピストンリングにあっては、 9mol%以上 22. 5mol%以下のジルコ二 ゥムと、 3mol%以上 30mol%以下のニオブと、を含む形状記憶合金により形成され ていてもよい。  The piston ring of the present invention may be formed of a shape memory alloy containing 9 mol% or more and 22.5 mol% or less of zirconium and 3 mol% or more and 30 mol% or less of niobium. Good.
[0022] また、上記本発明のピストンリングにあっては、チタン、ジルコニウムおよびハフユウ ムの合計 mol%をニッケルの mol%で除算した比力 0. 98以上 1. 14以下である形 状記憶合金で形成されてレ、てもよレ、。  [0022] Further, in the above-described piston ring of the present invention, the shape memory alloy having a specific force of not less than 0.98 and not more than 1.14 is obtained by dividing the total mol% of titanium, zirconium and hafum by mol% of nickel. It's formed with les, even les.
[0023] また、上記本発明のピストンリングにあっては、ピストンリング本体と、当該ピストンリ ング本体の内周面側に配されるエキスパンダとから構成されており、当該ピストンリン グ本体およびエキスパンダの双方または何れか一方が前記形状記憶合金により形 成されていてもよい。  [0023] The piston ring of the present invention includes a piston ring main body and an expander disposed on the inner peripheral surface side of the piston ring main body. Both or any one of the pandas may be formed of the shape memory alloy.
[0024] また、上記本発明のピストンリングにあっては、前記エキスパンダが、コイルエキスパ ンダまたはプレートエキスパンダの何れかであってもよい。  [0024] In the piston ring of the present invention, the expander may be a coil expander or a plate expander.
[0025] また、上記本発明のピストンリングにあっては、前記ピストンリングが、サイドレールと 、スぺーサエキスパンダとから構成されており、当該サイドレールおよびスぺーサェキ スパンダの双方または何れか一方が前記形状記憶合金により形成されて!/、てもよレヽ [0025] In the piston ring of the present invention, the piston ring includes a side rail and a spacer expander, and either or both of the side rail and the spacer expander are used. One is made of the shape memory alloy! /
Yes
[0026] また、上記本発明のピストンリングにあっては、前記形状記憶合金の逆変態ピーク 温度未満の温度での張力が 0.;!〜 25Nであり、前記形状記憶合金の逆変態ピーク 温度以上の温度での張力が 0. 2〜55Nであることが好ましい。  [0026] In the piston ring of the present invention, the tension at a temperature lower than the reverse transformation peak temperature of the shape memory alloy is 0.;! To 25N, and the reverse transformation peak temperature of the shape memory alloy The tension at the above temperature is preferably 0.2 to 55 N.
[0027] また、上記本発明のピストンリングにあっては、オイルリングまたは圧力リングとして 用いられてもよい。  [0027] The piston ring of the present invention may be used as an oil ring or a pressure ring.
発明の効果  The invention's effect
[0028] 本発明のピストンリングによれば、 34· 7mol%以上 48. 5mol%以下のニッケルと、 9mol%以上 22. 5mol%以下の、ジルコニウムおよびハフニウムの少なくとも一方と 、 lmol%以上 30mol%以下のニオブと、残部のチタンと、不可避的不純物と、力、ら なる形状記憶合金により形成されているので、 80°C以上の高い変態温度(変態ピー ク温度(M*)または逆変態ピーク温度 (A* ) )を実現することができる。したがって、低 温低負荷状態においては適度な低い張力を発揮しつつ、 80°C以上の高温高負荷 状態となった場合に変態が生じ、低温低負荷状態より高い張力を発揮することができ るピストンリングを提供可能となる。その結果、低温低負荷状態におけるフリクション口 スを最小限に抑えることができ、燃費を向上せしめることができる。 [0028] According to the piston ring of the present invention, nickel of 34.7 mol% or more and 48.5 mol% or less, 9 mol% or more and 22.5 mol% or less of zirconium and hafnium, lmol% or more of niobium of 30 mol% or less, the remaining titanium, unavoidable impurities, force, and other shape memory alloys. Therefore, a high transformation temperature (transformation peak temperature (M *) or reverse transformation peak temperature (A *)) of 80 ° C or higher can be realized. Therefore, while a moderately low tension is exhibited in a low temperature and low load state, transformation occurs when a high temperature and high load state of 80 ° C or higher is reached, and a higher tension than in a low temperature and low load state can be exhibited. A piston ring can be provided. As a result, the friction opening in the low temperature and low load state can be minimized, and fuel consumption can be improved.
[0029] また、当該成分組成からなる形状記憶合金は、高温での繰り返し使用にも耐えうる ため、当該形状記憶合金により形成されたピストンリングは耐久性も向上される。  [0029] In addition, since the shape memory alloy having the component composition can withstand repeated use at a high temperature, the piston ring made of the shape memory alloy has improved durability.
[0030] さらにまた、当該成分組成からなる形状記憶合金は、従来の形状記憶合金と比べ て、冷間加工での圧延率が高いため加工性に優れている。したがって、所望の形状  [0030] Furthermore, a shape memory alloy having the component composition is excellent in workability because of a higher rolling ratio in cold working than a conventional shape memory alloy. Therefore, the desired shape
[0031] ここで、形状記憶合金の成分としては、 9mol%以上 22. 5mol%以下のジルコユウ ムと、 3mol%以上 30mol%以下のニオブとを含むようにしても、前記と同様の作用 ¾]果を得ること力できる。 [0031] Here, the components of the shape memory alloy may include 9 mol% or more and 22.5 mol% or less of zirconium, and 3 mol% or more and 30 mol% or less of niobium. You can get power.
[0032] また、チタン、ジルコニウムおよびハフニウムの合計 mol%をニッケルの mol%で除 算した比を、 0. 98以上 1. 14以下とすることが好ましぐこれによつても前記と同様の 作用効果を得ることができる。  [0032] It is also preferable that the ratio obtained by dividing the total mol% of titanium, zirconium and hafnium by mol% of nickel is 0.98 or more and 1.14 or less. An effect can be obtained.
[0033] さらにまた、上記本発明のピストンリングにあっては、ピストンリング本体と、当該ビス トンリング本体の内周面側に配されるエキスパンダとから構成されていても問題なぐ 当該ピストンリング本体、またはエキスパンダの少なくとも何れか一方が前記形状記 憶合金により形成されていれば、前記と同様の作用効果を得ることができ、前記ェキ スパンダが、コイルエキスパンダまたはプレートエキスパンダの何れかであっても同様 である。  [0033] Furthermore, in the piston ring of the present invention, there is no problem even if the piston ring is composed of a piston ring body and an expander disposed on the inner peripheral surface side of the piston ring body. If at least one of the main body and the expander is formed of the shape-memory alloy, the same effect as described above can be obtained, and the expander can be either a coil expander or a plate expander. It is the same even if it is.
[0034] また、上記本発明のピストンリングにあっては、サイドレールと、スぺーサエキスパン ダとから構成されており、当該サイドレールおよびスぺーサエキスパンダの双方また は何れか一方が前記形状記憶合金により形成されて!/、ても、同様の作用効果を得る こと力 Sでさる。 [0034] Further, the piston ring of the present invention includes a side rail and a spacer expander, and both or one of the side rail and the spacer expander is the above-mentioned. Even if it is made of shape memory alloy! That's the power S.
[0035] また、上記本発明のピストンリングにあっては、前記形状記憶合金の逆変態ピーク 温度未満の温度(エンジンの始動時を想定した温度:— 30〜50°C)での張力が 0. 1 〜25Nであり、前記形状記憶合金の逆変態ピーク温度以上の温度 (エンジンが始動 後高速回転時を想定した温度であり、オーステナイト変態後の温度)での張力が 0. 2 〜55Nの範囲内とすることにより、低温低負荷状態でのフリクションロスを最小限に抑 えつつ、高温高負荷状態においてもピストンリングの役目を果たすことができる。  [0035] Further, in the piston ring of the present invention, the tension at a temperature lower than the reverse transformation peak temperature of the shape memory alloy (temperature assuming starting of the engine: -30 to 50 ° C) is 0. 1 to 25 N, and the tension at a temperature higher than the reverse transformation peak temperature of the shape memory alloy (temperature assuming high speed rotation after the engine starts, temperature after austenite transformation) is 0.2 to 55 N. By making it within the range, it is possible to serve as a piston ring even in a high temperature and high load state while minimizing friction loss in a low temperature and low load state.
[0036] なお、本発明のピストンリングにあっては、オイルリング、圧力リングの何れとして用 いても上記作用効果を発揮することができる。  [0036] Note that the piston ring of the present invention can exhibit the above-described effects even if it is used as either an oil ring or a pressure ring.
図面の簡単な説明  Brief Description of Drawings
[0037] [図 1]本発明材料例の合金 6を走査型電子顕微鏡で観察した画像の説明図である。  FIG. 1 is an explanatory view of an image obtained by observing an alloy 6 of a material example of the present invention with a scanning electron microscope.
[図 2]本発明材料例の合金 8を走査型電子顕微鏡で観察した画像の説明図である。  FIG. 2 is an explanatory view of an image obtained by observing an alloy 8 of a material example of the present invention with a scanning electron microscope.
[図 3]本発明のピストンリングの一例の概略断面図である。  FIG. 3 is a schematic sectional view of an example of the piston ring of the present invention.
[図 4]本発明のピストンリングの他の一例を示す概略断面図であり、(a)は、ピストンリ ング本体 41とコイルエキスパンダ 42とから構成されるピストンリング 40の概略断面図 であり、 (b)は、ピストンリング本体 51とプレートエキスパンダ 52とから構成されるピスト ンリング 50の概略断面図であり、(c)〜(e)は、サイドレーノレ 44、 61、 71と、スぺーサ エキスノ ンダ 45、 62、 72と力、ら構成されるピストンリング 43、 60、 70の概略断面図で ある。  FIG. 4 is a schematic cross-sectional view showing another example of the piston ring of the present invention, (a) is a schematic cross-sectional view of a piston ring 40 composed of a piston ring main body 41 and a coil expander 42; (B) is a schematic cross-sectional view of a piston ring 50 composed of a piston ring body 51 and a plate expander 52, and (c) to (e) are side lenores 44, 61, 71 and a spacer expander. FIG. 4 is a schematic cross-sectional view of piston rings 43, 60, and 70 that are composed of a pair of cylinders 45, 62, and 72;
符号の説明  Explanation of symbols
[0038] 30、 40、 43、 50、 60、 70 ピストンリング [0038] 30, 40, 43, 50, 60, 70 Piston ring
41、 51 ピストンリング本体  41, 51 Piston ring body
42 コィノレエキスパンダ  42 Coinole Expander
44、 61 , 71 サイドレーノレ 44, 61, 71
Figure imgf000008_0001
Figure imgf000008_0001
52 プレートエキスパンダ  52 plate expander
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 以下に、本発明のピストンリングについて具体的に説明する。 [0040] 本発明のピストンリングは、 34· 7mol%以上 48· 5mol%以下のニッケルと、 9mol %以上 22· 5mol%以下の、ジルコニウムおよびハフニウムの少なくとも一方と、 lmo 1%以上 30mol%以下のニオブと、残部のチタンと、不可避的不純物と、力、らなる形 状記憶合金により形成されていることに特徴を有している。また、本発明のピストンリ ングに用いることができる形状記憶合金としては、前記形状記憶合金であって、 9mo 1%以上 22. 5mol%以下のジルコニウムと、 3mol%以上 30mol%以下のニオブと、 を含有するようにしてもよく、さらに、チタン、ジルコニウムおよびハフニウムの合計 mo 1%をニッケルの mol%で除算した比力 0· 98以上 1 · 14以下となるようにしてもよい [0039] The piston ring of the present invention will be specifically described below. [0040] The piston ring of the present invention comprises 34.7 mol% or more and 48.5 mol% or less of nickel, 9 mol% or more and 25.5 mol% or less of zirconium and hafnium, and lmo 1% or more and 30 mol% or less. It is characterized by being formed of a shape memory alloy composed of niobium, the remaining titanium, unavoidable impurities, force, and the like. Further, the shape memory alloy that can be used for the piston ring of the present invention is the above-mentioned shape memory alloy, which is 9 mol 1% or more and 22.5 mol% or less of zirconium, 3 mol% or more and 30 mol% or less of niobium. Furthermore, the specific force obtained by dividing the total mo 1% of titanium, zirconium and hafnium by mol% of nickel may be 0 · 98 or more and 1 · 14 or less.
[0041] このように、本発明のピストンリングにあっては、その材料となる形状記憶合金に特 徴を有している。したがって、以下に先ず、当該特徴である形状記憶合金の特性に ついて、種々の実験例を挙げて詳細に説明する。 [0041] Thus, the piston ring of the present invention is characterized by the shape memory alloy that is the material thereof. Therefore, first, the characteristics of the shape memory alloy, which is the feature, will be described in detail with various experimental examples.
[0042] (材料となる形状記憶合金についての実験例)  [0042] (Experimental example of shape memory alloy as material)
本発明のピストンリングに用いることができる材料の例(以下、「本発明材料例」とす る。)および、本発明のピストンリングには用いることができない材料の例、つまり前記 構成成分外の材料の例(以下、「比較材料例」とする)として、下記表;!〜 3に示す合 金組成の合金;!〜 11の試験片を作製して、実験を行った。  Examples of materials that can be used for the piston ring of the present invention (hereinafter referred to as “material examples of the present invention”) and examples of materials that cannot be used for the piston ring of the present invention, that is, out of the above components As examples of materials (hereinafter referred to as “comparative material examples”), test pieces of alloys having alloy compositions shown in the following table;! To 3;
[0043] 当該実験に使用した試験片は、下記の方法(1)〜(3)により作製された。  [0043] The test piece used in the experiment was prepared by the following methods (1) to (3).
(1)各金属元素の mol%を計測してアーク溶解法により溶融して合金インゴットを作 製する。例えば、合金 1 (Ti— Ni -Zr )は、 49· 5mol%の Niと 10mol%の Zrと  (1) The mol% of each metal element is measured and melted by the arc melting method to produce an alloy ingot. For example, Alloy 1 (Ti—Ni-Zr) is composed of 49.5 mol% Ni and 10 mol% Zr.
49. 5 10  49. 5 10
、残部(40. 5mol%)の Tiの組成の合金である。  The balance (40.5 mol%) of Ti alloy.
(2)作製された合金インゴットを 950°Cで 2時間( = 7. 2ks)均質化熱処理を行う。  (2) The alloy ingot thus prepared is subjected to homogenization heat treatment at 950 ° C for 2 hours (= 7.2ks).
(3)放電化工機を使用して長さ 15mm、幅 10mm、厚さ lmmの板材(試料)を切り出 す。  (3) Using an electric discharge machine, cut out a plate (sample) 15 mm long, 10 mm wide, and 1 mm thick.
[0044] <加ェ性評価試験〉  [0044] <Chemical evaluation test>
前記作製方法で作製された合金の加ェ性を、加ェ性評価試験を行つて評価した。 加工性評価試験は、冷間圧延機を使用して、圧延率 60%まで冷間圧延を行った。 圧延率が 60%に至るまでに破断した試料は破断時の圧延率を測定して、加工性を 評価した。 The alloy produced by the above production method was evaluated by carrying out a chemical evaluation test. In the workability evaluation test, cold rolling was performed to a rolling rate of 60% using a cold rolling mill. For samples that broke until the rolling rate reaches 60%, the rolling rate at the time of rupture was measured to determine the workability. evaluated.
[0045] く変態温度測定試験〉  [0045] Transformation Temperature Measurement Test>
各合金の変態温度は、冷間圧延材を700°Cで 1時間熱処理し、示差走査熱量測 定 (DSC、 Differential Scanning Calorimetry)により、マルテンサイト変態ピーク温度(Transformation temperature of each alloy cold rolled material was heat treated for 1 hour at 7 00 ° C, differential scanning calorimetry measurement (DSC, Differential Scanning Calorimetry), the martensitic transformation peak temperature (
M*点)と、逆変態ピーク温度 (A*点)とを測定した。 M * point) and reverse transformation peak temperature (A * point) were measured.
[0046] 比較材料例として、従来公知の Ti— Ni— Zrの三元合金の合金 1〜合金 3の組成と[0046] As an example of a comparative material, the composition of Alloy 1 to Alloy 3 of the conventionally known Ti—Ni—Zr ternary alloy and
、 Tiおよび Zrの合計 mol%を Niの πιο1ο/0で除算した Γ対ニッケル比」、破断時の圧延 率(%)、マルテンサイト変態ピーク温度 (Μ*点、。 C)およぴ逆変態ピーク温度 (Α*点 、°C)を表 1に示す。 , Dividing the Γ to nickel ratio πιο1 ο / 0 of Ni to total mol% of Ti and Zr "rolling ratio at break (%), the martensitic transformation peak temperature (Micromax * point,. C) Oyopi reverse Table 1 shows the transformation peak temperature (Α * point, ° C).
[0047] [表 1] [0047] [Table 1]
表 1. Ti- Ni-Zr合金の加工性と変態温度  Table 1. Workability and transformation temperature of Ti-Ni-Zr alloy
Figure imgf000010_0001
本発明材料例として、 Ti— Ni—Zr— Nbの四元合金の合金 4〜合金 6の組成と、 Ti および Zrの合計 mol%を Niの mol%で除算した Γ対ニッケル比」、破断時の圧延率 ( %)、マルテンサイト変態ピーク温度 (M*点、 )およぴ逆変態ピーク温度 (A*点、 °C )を表 2に示す。
Figure imgf000010_0001
Examples of materials of the present invention include Ti—Ni—Zr—Nb quaternary alloys 4 to 6, and the total mol% of Ti and Zr divided by mol% of Ni. Table 2 shows the rolling rate (%), martensitic transformation peak temperature (M * point,) and reverse transformation peak temperature (A * point, ° C).
[表 2] 2. Ti- Νί-Zr-Nb合金の加工性と変態温度  [Table 2] 2. Workability and transformation temperature of Ti--ί-Zr-Nb alloy
Figure imgf000010_0002
本発明材料例 (合金 7〜合金 10)および比較材料例 (合金 11)として、 Ti— Ni—Zr 一 Nbの四元合金の組成と、 Tiおよび Zrの合計 mol%を Νίの mol%で除算した「対二
Figure imgf000010_0002
The composition of the present invention (alloy 7 to alloy 10) and comparative material example (alloy 11) are divided into the composition of Ti-Ni-Zr-Nb quaternary alloy and the total mol% of Ti and Zr divided by mol% of Νί. “Two
差替え用紙 (規則 26) g ッケル比」、破断時の圧延率 (%)、マルテンサイト変態ピーク温度 (M*点、 °C)およ ぴ逆変態ピーク温度 (A*点、 °C)を表 3に示す。 Replacement paper (Rule 26) Table 3 shows the “geckel ratio”, rolling rate at break (%), martensitic transformation peak temperature (M * point, ° C) and reverse transformation peak temperature (A * point, ° C).
[0049] なお、合金 7〜合金 11は、 Ti、 Ni、 Zrの成分比を 35. 5mol%、 49. 5mol°/o、 15 mol°/。に固定して、全体を Nbに置換した合金である。 [0049] In Alloys 7 to 11, the component ratios of Ti, Ni, and Zr are 35.5 mol%, 49.5 mol ° / o, and 15 mol ° /. This is an alloy in which the whole is replaced with Nb.
[0050] [表 3] 表 3. Ti-Ni-Zr~Nb合金の加工性と変態温度 [0050] [Table 3] Table 3. Workability and transformation temperature of Ti-Ni-Zr ~ Nb alloys
Figure imgf000011_0001
本発明材料例 (合金 12〜合金 14)および比較材料例 (合金 15)として、 Ti— Ni— Zr— Nbの四元合金の組成と、 Tiおよび Zrの合計 mol%を Niの mol° /。で除算した「 対ニッケル比」、破断時の圧延率 (%)、マルテンサイト変態ピーク温度 (M*点、 °C) およぴ逆変態ピーク温度 (A*点、。C)を表 4に示す。
Figure imgf000011_0001
As examples of the present invention material (alloy 12 to alloy 14) and comparative material example (alloy 15), the composition of the quaternary alloy of Ti—Ni—Zr—Nb and the total mol% of Ti and Zr are expressed in mol mol of Ni Table 4 shows the “ratio to nickel” divided by, the rolling reduction rate at break (%), the martensitic transformation peak temperature (M * point, ° C) and the reverse transformation peak temperature (A * point, .C). Show.
[0051] なお、合金 15の変態温度は、実験を行った範囲では観測されず、低温になりすぎ たものと考えられる。  [0051] It should be noted that the transformation temperature of alloy 15 was not observed in the range in which the experiment was conducted and is considered to have become too low.
[0052] [表 4]  [0052] [Table 4]
差替え用紙 (規則 26) 表 4, Ti-Ni- Zr-Nb合金の加工性と変態温度 Replacement paper (Rule 26) Table 4, Workability and transformation temperature of Ti-Ni- Zr-Nb alloy
Figure imgf000012_0001
Figure imgf000012_0001
本努明材料例として、 Ti一 Ni— Zr—N の四元合金の合金 16〜合金 20の組成と 、 Tiおよび の合計 mol%を Niの mol%で除算した Γ対ニッケル比」、破断時の圧延 率 (%)、マルテンサイト変態ピーク温度 (M*点、 °C)および逆変態ピーク温度 (A*点 、°C)を表 5に示す。  As an example of this material, the composition of Ti-Ni-Zr-N quaternary alloys 16 to 20 and the total mol% of Ti and is divided by mol% of Ni. Table 5 shows the rolling rate (%), martensitic transformation peak temperature (M * point, ° C) and reverse transformation peak temperature (A * point, ° C).
[0053] [表 5] [0053] [Table 5]
表 5. 1VNト Z「Nb合金の加工性と変態温度  Table 5. 1VN-to-Z “Nb alloy workability and transformation temperature
Figure imgf000012_0002
本発明材料例として、 Ti-Ni— Hf—; Nbの四元合金および Ti一 Ni— Zr— Hf— N bの五元合金の合金 21〜合金 24の組成と、 Ti、 Zrおよび Hfの合計 mol%を Niの m ol%で除算した「対ニッケル比」、破断時の圧延率 (°/0)、マルテンサイト変態ピーク温 度 (M*点、 )および逆変態ピーク温度 (A*点、 )を表 6に示す。
Figure imgf000012_0002
Examples of materials of the present invention include Ti-Ni—Hf—; Nb quaternary alloy and Ti-Ni—Zr—Hf—Nb quaternary alloy 21 to alloy 24, and the sum of Ti, Zr and Hf. `` Ratio of nickel to mol% divided by mol% of Ni '', rolling ratio at break (° / 0 ), martensitic transformation peak temperature (M * point,) and reverse transformation peak temperature (A * point, ) Is shown in Table 6.
[0054] なお、合金 21は、合金 9の Zrを Hfに置換したものに相当し、合金 22は合金 18の Z rを Hfに置換したものに相当する。また、合金 23は、合金 6の Zrを Hfに置換したもの に相当し、合金 24は、合金 9の Zr(15mol%)の半分を Hfに置換したものに相当す [0054] Alloy 21 corresponds to the alloy 9 in which Zr is replaced with Hf, and alloy 22 corresponds to the alloy 18 in which Zr is replaced with Hf. Alloy 23 corresponds to the alloy 6 with Zr substituted by Hf, and alloy 24 corresponds to the alloy 9 with half of Zr (15 mol%) replaced with Hf.
差替え用紙 (規則 26) る。 Replacement paper (Rule 26) The
[0055] [表 6]  [0055] [Table 6]
表 6. Ή-Νί- Z「Nb合金の加工性と変態温度  Table 6. Ή-Νί- Z “Nb alloy workability and transformation temperature
Figure imgf000013_0001
Figure imgf000013_0001
図 1は、本癸明材料例の合金 6を走査型電子顕微鏡で観察した画像の説明図であ る。  FIG. 1 is an explanatory view of an image obtained by observing the alloy 6 of the present material example with a scanning electron microscope.
[0056] 前記実験結果から、比較材料例の合金 1〜合金 3のように、 Ti— Ni— Zrの三元合 金では、圧延率が最大でも 30%しかなぐ加工性が悪い。そして、 Zrが増加すると変 態温度 (M*点および A*点)が上昇するが、圧延率が低下し、加工性が低下すること が分かる。  [0056] From the above experimental results, the Ti—Ni—Zr ternary alloys, such as Alloy 1 to Alloy 3 of the comparative material examples, have poor workability with a rolling rate of only 30% at maximum. As Zr increases, the transformation temperature (M * point and A * point) rises, but it turns out that the rolling rate is lowered and the workability is lowered.
[0057] これに対し、表 2において、比較材料例の合金 2の Niを Nbに置換した本癸明材料 例の合金 4〜合金 6の Ti— Ni— Zr— Nbの四元合金では、圧延率が向上し、加工性 が向上していることが分かる。また、変態温度 (M*点および A*点)も 80。C以上であり ゝ 80°C以上の高温条件下で効果を発揮することができることが分かる。特に、 Nbの 量が多くなると変態温度が低下する傾向があるが、変態温度の変化は小さぐ急激に 変態温度が低下しないことも分かった。  [0057] On the other hand, in Table 2, Ti—Ni—Zr—Nb quaternary alloys of Alloy 4 to Alloy 6 of the present material example in which Ni in the alloy 2 of the comparative material example is replaced with Nb are rolled. It can be seen that the rate is improved and the workability is improved. The transformation temperature (M * point and A * point) is also 80. It can be seen that the effect can be exerted under the high temperature condition of 80 ° C or higher. In particular, as the amount of Nb increases, the transformation temperature tends to decrease, but the transformation temperature change is small and the transformation temperature does not decrease rapidly.
[0058] つまり、合金 4〜合金 6は、高温条件下で使用可能で、加工性に優れた形状記憶 合金と使用可能である。よって、当該合金をピストンリングの材料とすることにより、低 温低負荷状態においては、張力が低く適当でありフリクションロスを最小限に抑えるこ とができ、 80 以上での高温高負荷状態において変態することで、張力が増加する ピストンリングを実現することができる。  That is, Alloy 4 to Alloy 6 can be used as a shape memory alloy that can be used under high temperature conditions and has excellent workability. Therefore, by using the alloy as a material for the piston ring, the tension is low and suitable in low temperature and low load conditions, and friction loss can be minimized. By doing so, it is possible to realize a piston ring with increased tension.
[0059] なお、合金 4〜合金 6では、破断までの圧延率が向上した力 S、細かレ、クラック (亀裂) が多数存在することが観測された。図 1の走査型電子顕微鏡による SEM画像に示す  [0059] In Alloys 4 to 6, it was observed that there were many forces S, fine cracks, and cracks (cracks) that improved the rolling ratio until fracture. As shown in the SEM image of the scanning electron microscope in Fig. 1.
差替え用紙 (規則 26) ように、圧延後の合金 6には、軟らかくて容易に塑性変形する 0相と、硬くて脆いラー べス相が形成され、前記ラーべス相の界面で発生したクラックの成長が /3相で阻害さ れることで、加工性が改善されている。 Replacement paper (Rule 26) Thus, in the rolled alloy 6, a 0 phase that is soft and easily plastically deformed and a hard and brittle Laves phase are formed, and crack growth occurring at the interface of the Laves phase is a / 3 phase. The processability is improved by being hindered by.
[0060] 図 2は、本発明材料例の合金 8を走査型電子顕微鏡で観察した画像の説明図であ FIG. 2 is an explanatory view of an image obtained by observing the alloy 8 of the material example of the present invention with a scanning electron microscope.
[0061] 表 3から、本発明材料例の合金 7〜合金 10のように、 Ti Ni — Zr の成分比を [0061] From Table 3, the composition ratio of Ti Ni — Zr is shown as in Alloy 7 to Alloy 10 of the material examples of the present invention.
49. 5 15  49. 5 15
固定して、全体を Nbに置換する形の Ti— Ni Zr Nbの四元合金でも、逆変態ピ ーク温度 (A*)が 100°C以上でマルテンサイト変態ピーク温度(M*)も比較的高い合 金を実現できた。また、 Nbが lmol% (比較材料例の合金 11)では加工性向上の効 果は見られなかったが、 Nbが 5mol%以上では圧延率も向上させることができ、特に 、 Nbが 10mol%以上の合金 8〜合金 10では、 60%以上の圧延率を達成することが できた。なお、合金 7〜合金 10では、合金 4〜合金 6と比較して、細かいクラックもほと んど形成されず、加工性が改善された。図 2の SEM画像において、圧延後の合金 8 には、結晶粒界および粒内に軟らかい /3相が析出しているため、加工性が改善され ている。  Even in the case of Ti—Ni Zr Nb quaternary alloy in which the whole is replaced with Nb, the reverse transformation peak temperature (A *) is over 100 ° C and the martensitic transformation peak temperature (M *) is also compared. Was able to achieve a high level of money. In addition, when Nb was lmol% (alloy 11 of the comparative material example), no effect of improving workability was observed, but when Nb was 5 mol% or more, the rolling rate could be improved, and in particular, Nb was 10 mol% or more. In Alloys 8 to 10, a rolling rate of 60% or more could be achieved. In Alloys 7 to 10, compared with Alloys 4 to 6, almost no fine cracks were formed, and workability was improved. In the SEM image of Fig. 2, the rolled alloy 8 has improved workability due to the precipitation of soft / 3 phases at the grain boundaries and within the grains.
[0062] よって、合金 7〜合金 10をピストンリングの材料とすることにより、低温低負荷状態に おいては、張力が低く適当でありフリクションロスを最小限に抑えることができ、 80°C 以上の高温高負荷状態において逆変態 (オーステナイト変態)することで、張力が増 加するピストンリングを実現することができる。  [0062] Therefore, by using Alloy 7 to Alloy 10 as the material for the piston ring, the tension is low and appropriate in the low temperature and low load state, and friction loss can be minimized, and 80 ° C or higher A piston ring with increased tension can be realized by reverse transformation (austenite transformation) under high temperature and high load conditions.
[0063] 表 1〜表 4において、合金 12〜合金 14や合金 6に示すように、「対ニッケル比」が 1 程度の場合には、 Zrが 15mol%程度の合金 2や合金 11と比較して圧延率の向上が 見られる力 S、合金 15のように、「対ニッケル比」が 1から大幅に離れて 0. 82になると、 圧延率が低下し、加工性が非常に悪くなることが分力、つた。  [0063] In Table 1 to Table 4, as shown in Alloy 12 to Alloy 14 and Alloy 6, when the "to nickel ratio" is about 1, it is compared with Alloy 2 and Alloy 11 with Zr of about 15 mol%. As shown in S and Alloy 15, when the “ratio to nickel” is far from 1 and reaches 0.82, the rolling rate decreases and the workability becomes very poor. Component power, ivy.
[0064] 表 5において、合金 16〜合金 20に示すように、変態温度(M*点および 点)を上 昇させるが加工性が低下しやすくなる Zrの添加量を増やしても、 Nbを 5〜30mol% 添加することにより、変態温度をあまり低下させずに、加工性を改善できる。特に、合 金 20では、 400°C以上の非常に高い変態温度と、 60%以上の非常に高い加工性を 実現できている。 [0065] よって、合金 16〜合金 20をピストンリングの材料とすることにより、低温低負荷状態 においては、張力を低く設定できフリクションロスを最小限に抑えることができ、 80°C 以上の高温高負荷状態において変態することで、張力が増加するピストンリングを実 現すること力 Sでさる。 [0064] In Table 5, as shown in Alloy 16 to Alloy 20, the transformation temperature (M * point and point) increases, but the workability tends to decrease. By adding ~ 30 mol%, the processability can be improved without significantly lowering the transformation temperature. In particular, the alloy 20 has realized a very high transformation temperature of 400 ° C or higher and a very high workability of 60% or higher. [0065] Therefore, by using Alloy 16 to Alloy 20 as the material for the piston ring, the tension can be set low in the low temperature and low load state, and the friction loss can be minimized. The force S is used to realize a piston ring in which the tension increases by transformation under load.
[0066] 表 6において、合金 21〜合金 24に示すように、 Ti— Ni— Zrとほぼ同様の特性を有 し、加工性に問題のある Ti— Ni— Hfの合金でも、 Nbを添加することにより、高い変 態温度の形状記憶合金を実現し、かつ加工性を向上できることが確認された。特に、 合金 21と合金 9、合金 22と合金 18、合金 23と合金 6、合金 24と合金 9および合金 21 を対比すると、 Zrを Hfに置換してもほぼ同様の物性(変態温度や圧延率)を有するこ とが分かり、 Nbにより同様の改善効果が見られることが分かる。  [0066] In Table 6, as shown in Alloy 21 to Alloy 24, Nb is added even for Ti-Ni-Hf alloys that have almost the same characteristics as Ti-Ni-Zr and have problems in workability. As a result, it was confirmed that a shape memory alloy having a high transformation temperature can be realized and the workability can be improved. In particular, when alloy 21 and alloy 9, alloy 22 and alloy 18, alloy 23 and alloy 6, alloy 24 and alloy 9 and alloy 21 are compared, almost the same physical properties (transformation temperature and rolling rate) can be obtained even if Zr is replaced with Hf. It can be seen that Nb has the same improvement effect.
[0067] つまり、 Ti— Ni— Zr (または Hf)に Nbを添カロすることにより、高い変態温度で加工 性の高い形状記憶合金が実現することが分力、つた。したがって、このような形状記憶 合金をピストンリングの材料として用いることにより、低温低負荷状態においては、張 力を低く設定できフリクションロスを最小限に抑えることができ、 80°C以上の高温高負 荷状態において変態することで、張力が増加するピストンリングを実現することができ  [0067] In other words, by adding Nb to Ti—Ni—Zr (or Hf), a shape memory alloy having high workability at a high transformation temperature was realized. Therefore, by using such a shape memory alloy as a material for the piston ring, the tension can be set low in a low temperature and low load state, and the friction loss can be minimized. By transforming in the loaded state, it is possible to realize a piston ring with increased tension.
[0068] 図 3は、本発明のピストンリングの一例の概略断面図である。 FIG. 3 is a schematic cross-sectional view of an example of the piston ring of the present invention.
[0069] 図 3に示す本発明のピストンリング 30は、一つのリング 30のみからなるピストンリング であり、当該一のリング 30が前記で説明した形状記憶合金により形成されている。  [0069] The piston ring 30 of the present invention shown in FIG. 3 is a piston ring composed of only one ring 30, and the one ring 30 is formed of the shape memory alloy described above.
[0070] 本発明のピストンリング 30にあっては、その材質に特徴を有しており、その形状等 につ!/、ては特に限定されることはなレ、。  [0070] The piston ring 30 of the present invention is characterized by its material, and its shape and the like are not particularly limited.
[0071] 例えば、図 3に示す一つのリング 30のみからなるピストンリングにあっては、そのボ ァ径は、当該ピストンリング 30が用いられる内燃機関の大きさやピストンの形状等に 合わせて適宜設計可能であるが、 φ 65〜; 100mm程度であることが好ましぐこの場 合においては、その厚さは 0. 7〜4mm程度が好ましい。  [0071] For example, in the piston ring including only one ring 30 shown in Fig. 3, the bore diameter is appropriately designed according to the size of the internal combustion engine in which the piston ring 30 is used, the shape of the piston, and the like. In this case, it is preferable to have a thickness of about φ65 to about 100 mm, but the thickness is preferably about 0.7 to 4 mm.
[0072] ここで、ボア径を φ 65〜90mm程度とした場合には、その厚さは、 0. 7〜3mm程 度が特に好ましぐその際のピストンリング 30の拡径方向への張力は、室温時におい て 0. ;!〜 25Nであり、逆変態(オーステナイト変態)後において 0. 2〜55Nとすること が好ましい。 [0072] Here, when the bore diameter is about 65 to 90 mm, the thickness is preferably about 0.7 to 3 mm, and the tension in the diameter expansion direction of the piston ring 30 at that time is particularly preferable. Is 0.; ~ 25N at room temperature, and should be 0.2 ~ 55N after reverse transformation (austenite transformation) Is preferred.
[0073] 一方で、ボア径を φ 90〜100mm程度とした場合には、その厚さは、 0. 7〜4mm 程度が特に好ましぐその際のピストンリング 30の拡径方向への張力は、前記と同様 に、室温時において 0. ;!〜 25Nであり、逆変態(オーステナイト変態)後において 0. 2〜55Nとすることが好まし!/、。  [0073] On the other hand, when the bore diameter is about 90 to 100 mm, the thickness is particularly preferably about 0.7 to 4 mm. The tension in the diameter expansion direction of the piston ring 30 at that time is As described above, it is preferably 0.;! To 25N at room temperature, and preferably 0.2 to 55N after reverse transformation (austenite transformation)! /.
[0074] なお、本発明のピストンリング 30にあっては、従来公知の表面加工等が施されてい てもよぐその断面形状についても、図示する略矩形状に限られず、従来公知の種々 の形状を採ることが可能である。  In the piston ring 30 of the present invention, the cross-sectional shape of the piston ring 30 that may be subjected to conventionally known surface processing or the like is not limited to the substantially rectangular shape shown in the figure, and various conventionally known various types can be used. It is possible to take a shape.
[0075] 図 4は、本発明のピストンリングの他の一例を示す概略断面図であり、図 4 (a)は、ピ ストンリング本体 41とコイルエキスパンダ 42とから構成されるピストンリング 40の概略 断面図であり、図 4 (b)は、ピストンリング本体 51とプレートエキスパンダ 52とから構成 されるピストンリング 50の概略断面図である。また、図 4 (c)〜(e)は、サイドレール 44 、 61、 71と、スぺーサエキスノ ンダ 45、 62、 72と力、ら構成されるピストンリング 43、 6 0、 70の概略断面図である。  FIG. 4 is a schematic sectional view showing another example of the piston ring of the present invention. FIG. 4 (a) shows a piston ring 40 composed of a piston ring body 41 and a coil expander 42. FIG. 4B is a schematic cross-sectional view of a piston ring 50 including a piston ring main body 51 and a plate expander 52. FIG. 4 (c) to (e) are schematic cross-sectional views of side rings 44, 61, 71 and piston rings 43, 60, 70 composed of spacer expanders 45, 62, 72 and force. It is.
[0076] 図 4ίこ示すよう ίこ、本発明のピストンリング 40、 43、 50、 60、 70ίこあって (ま、ピストン リング本体 41、 51、あるいはサイドレーノレ 44、 61、 71と、エキスノ ンダ 42、 45、 52、 62、 72との双方あるいは少なくとも一方が前記で説明した形状記憶合金により形成 されてレヽる。なお、本発明のピストンリング 40、 43、 50、 60、 70ίこあって (ま、特 ίこェキ スパンダ 42、 45、 52、 62、 72が形状記憶合金により形成されていることが好ましい。 ピストンリング本体 41、 51やサイドレーノレ 44、 61、 71に 匕べ、エキスノ ンダ 42、 45、 52、 62、 72の方がピストンリング全体の張力に寄与しているためである。  [0076] As shown in FIG. 4, the piston ring of the present invention 40, 43, 50, 60, 70, and the piston ring body 41, 51 or side lenorette 44, 61, 71 and the expander 42 45, 52, 62, 72 and / or at least one of them is formed by the shape memory alloy described above, and the piston rings 40, 43, 50, 60, 70ί of the present invention (the It is preferable that the squeezers 42, 45, 52, 62 and 72 are made of a shape memory alloy, compared to the piston ring bodies 41 and 51 and the side lanes 44, 61 and 71. This is because 45, 52, 62, and 72 contribute to the tension of the entire piston ring.
[0077] この場合においても、前記図 3に示したピストンリング 30と同様に、その大きさや形 状等については特に限定されることはなぐ例えば、前記と同様のボア径ゃ張力とす ることが好ましい。  [0077] In this case as well, as with the piston ring 30 shown in Fig. 3, the size, shape and the like are not particularly limited. For example, the bore diameter is the same as the tension described above. Is preferred.
[0078] なお、本発明のピストンリングはオイルリングに用いることも可能であり、圧力リングと して用いることも可能である。  [0078] The piston ring of the present invention can also be used as an oil ring, and can also be used as a pressure ring.
実施例  Example
[0079] 本発明のピストンリングについて、実施例を用いてさらに具体的に説明する。 [0080] (実施例 1) [0079] The piston ring of the present invention will be described more specifically with reference to examples. [0080] (Example 1)
前記で説明した本発明材料例の合金 17を用いて、コイル外径を 1. 4mmとし高温 時の張力は後述する比較例と同じとなるようにコイルエキスパンダを作製し、これとピ ストンリング本体(材質は、質量%で C : 0. 5、 Si : 0. 2、Mn : 0. 3、P : 0. 02、 S : 0. 0 15、 Cr: 10. 2、残部 Fe、および不可避的不純物)とを組み合わせて、図 4 (a)に示 すような、本発明の実施例 1のピストンリングを作製した。  Using the alloy 17 of the present invention material example described above, a coil expander was prepared so that the coil outer diameter was 1.4 mm and the tension at high temperature was the same as in the comparative example described later. Body (Materials are% by mass: C: 0.5, Si: 0.2, Mn: 0.3, P: 0.02, S: 0.015, Cr: 10.2, balance Fe, and inevitable The piston ring of Example 1 of the present invention as shown in FIG.
[0081] (実施例 2) [0081] (Example 2)
前記実施例 1のピストンリングと同じ要領で、前記で説明した本発明材料の合金 12 を用いて、実施例 2のピストンリングを作製した。  In the same manner as the piston ring of Example 1, the piston ring of Example 2 was produced using the alloy 12 of the material of the present invention described above.
[0082] (実施例 3) [Example 3]
前記実施例 1のピストンリングと同じ要領で、前記で説明した本発明材料の合金 9を 用いて、実施例 3のピストンリングを作製した。  In the same manner as the piston ring of Example 1, the piston ring of Example 3 was produced using the alloy 9 of the material of the present invention described above.
[0083] (実施例 4) [0083] (Example 4)
前記実施例 1のピストンリングと同じ要領で、前記で説明した本発明材料の合金 8を 用いて、実施例 4のピストンリングを作製した。  In the same manner as the piston ring of Example 1, the piston ring of Example 4 was produced using the alloy 8 of the material of the present invention described above.
[0084] (比較例 1) [0084] (Comparative Example 1)
本発明のピストンリングの比較例として、従来公知の形状記憶合金である Ti— Ni系 (Ti— 50at%Ni材)形状記憶合金を用いて、逆変態ピーク温度が 58°Cであり、逆変 態終了(オーステナイト変態終了)後温度が 65°Cとなるようなコイルエキスパンダを作 製し、これと実施例 1と同一のピストンリング本体とを組み合わせて、図 4 (a)に示すよ うな、本発明の比較例 1のピストンリングを作製した。  As a comparative example of the piston ring of the present invention, a Ti-Ni (Ti-50at% Ni material) shape memory alloy, which is a conventionally known shape memory alloy, has a reverse transformation peak temperature of 58 ° C. A coil expander with a temperature of 65 ° C after completion of the state (end of austenite transformation) was prepared, and this was combined with the same piston ring body as in Example 1 as shown in Fig. 4 (a). A piston ring of Comparative Example 1 of the present invention was produced.
[0085] <燃費効果試験〉 [0085] <Fuel efficiency test>
前記実施例 1〜4のピストンリング、および比較例 1のピストンリングを用いて、燃費 効果試験を行った。  Using the piston rings of Examples 1 to 4 and the piston ring of Comparative Example 1, a fuel efficiency effect test was performed.
[0086] 具体的には、各ピストンリングをオイルリングとして用い、その他の第 1圧力リング、 第 2圧力リングは全て従来公知の同一仕様のリングを用いた。それぞれを内燃機関 エンジンにおける φ 88mmのピストンに装着し、 10 · 15モードで燃費を測定した。一 方で、従来のばね鋼からなるコイルエキスパンダを用いた以外、その他の条件は全 て実施例および比較例と同一のピストンリング(トップリング、セカンドリング)を用意し[0086] Specifically, each piston ring was used as an oil ring, and the other first pressure ring and the second pressure ring were all conventionally known rings having the same specifications. Each was mounted on a φ88mm piston in an internal combustion engine, and the fuel consumption was measured in 10 · 15 mode. On the other hand, all other conditions except for the conventional coil expander made of spring steel. Prepare the same piston rings (top ring, second ring) as in the examples and comparative examples.
、同様に燃費を測定した。 Similarly, the fuel consumption was measured.
[0087] 各測定結果につ!/、て、前記従来のばね鋼からなるコイルエキスパンダを用いた場 合の燃費と比べて比較例 1のピストンリングを装着した場合の燃費の向上率を基準([0087] For each measurement result! /, The fuel efficiency improvement rate when the piston ring of Comparative Example 1 is attached is compared with the fuel efficiency when the coil expander made of the conventional spring steel is used. (
1)とし、本発明の実施例 1〜4のピストンリングを装着した場合における、前記基準か らの燃費効果比(向上率)を数値化した。 The fuel efficiency ratio (improvement rate) from the above-mentioned standard when the piston rings of Examples 1 to 4 of the present invention were mounted was quantified.
[0088] その結果を表 7に示す。 The results are shown in Table 7.
[0089] [表 7] [0089] [Table 7]
Figure imgf000018_0001
上記表 7からも明らかなように、本発明のピストンリングは、比較例 1のピストンリング 、つまり従来公知の形状記憶合金 (Ni— Ti系)が用いられて!/、るピストンリングに比べ て約 4〜 5倍の高い燃費効果が得られることが分力、つた。
Figure imgf000018_0001
As is clear from Table 7 above, the piston ring of the present invention uses the piston ring of Comparative Example 1, that is, a conventionally known shape memory alloy (Ni-Ti system)! It is a component that can achieve a fuel efficiency of about 4 to 5 times.

Claims

請求の範囲 The scope of the claims
[1] 34. 7mol%以上 48· 5mol%以下のニッケノレと、  [1] 34. Nikkenore with 7mol% or more and 48.5mol% or less,
9mol%以上 22. 5mol%以下の、ジルコニウムおよびハフニウムの少なくとも一方 と、  9 mol% or more and 25.5 mol% or less of at least one of zirconium and hafnium,
lmol%以上 30mol%以下のニオブと、  niobium in the range of lmol% to 30mol%,
残部のチタンと、  The remaining titanium,
不可避的不純物と、  Inevitable impurities,
力 なる形状記憶合金により形成されていることを特徴とするピストンリング。  A piston ring characterized by being made of a strong shape memory alloy.
[2] 9mol%以上 22· 5mol%以下のジルコニウムと、 [2] 9 mol% or more and 25.5 mol% or less of zirconium,
3mol%以上 30mol%以下のニオブと、  3 to 30 mol% niobium,
を含む形状記憶合金により形成されていることを特徴とする請求項 1に記載のピスト ンリング。  2. The piston ring according to claim 1, wherein the piston ring is made of a shape memory alloy containing.
[3] チタン、ジルコニウムおよびハフニウムの合計 mol%をニッケルの mol%で除算した 比が、 0. 98以上 1. 14以下である形状記憶合金で形成されていることを特徴とする 請求項 1または 2に記載のピストンリング。  [3] The shape memory alloy is characterized in that a ratio obtained by dividing the total mol% of titanium, zirconium and hafnium by mol% of nickel is 0.998 or more and 1.14 or less. 2. The piston ring according to 2.
[4] 前記ピストンリングが、ピストンリング本体と、当該ピストンリング本体の内周面側に配 されるエキスパンダとから構成されており、 [4] The piston ring includes a piston ring body and an expander disposed on the inner peripheral surface side of the piston ring body,
当該ピストンリング本体およびエキスパンダの双方または何れか一方が前記形状記 憶合金により形成されていることを特徴とする請求項 1ないし 3の何れか一の請求項 に記載のピストンリング。  4. The piston ring according to claim 1, wherein both or one of the piston ring main body and the expander is formed of the shape memory alloy. 5.
[5] 前記エキスパンダが、コイルエキスパンダまたはプレートエキスパンダの何れかであ ることを特徴とする請求項 4に記載のピストンリング。 [5] The piston ring according to claim 4, wherein the expander is either a coil expander or a plate expander.
[6] 前記ピストンリングが、サイドレールと、スぺーサエキスパンダとから構成されており、 当該サイドレールおよびスぺーサエキスパンダの双方または何れか一方が前記形 状記憶合金により形成されていることを特徴とする請求項 1ないし 3の何れか一の請 求項に記載のピストンリング。 [6] The piston ring includes a side rail and a spacer expander, and both or one of the side rail and the spacer expander is formed of the shape memory alloy. The piston ring according to any one of claims 1 to 3, wherein the piston ring is provided.
[7] 前記形状記憶合金の逆変態ピーク温度未満の温度での張力が 0.;!〜 25Nであり[7] The shape memory alloy has a tension at a temperature lower than the reverse transformation peak temperature of 0.;! ~ 25N.
、前記形状記憶合金の逆変態ピーク温度以上の温度での張力が 0. 2〜55Nである ことを特徴とする請求項 1ないし 6の何れか一の請求項に記載のピストンリング。 オイルリングまたは圧力リングとして用いられることを特徴とする請求項 1ないし 7の 何れか一の請求項に記載のピストンリング。 The tension at a temperature equal to or higher than the reverse transformation peak temperature of the shape memory alloy is 0.2 to 55 N. The piston ring according to any one of claims 1 to 6, wherein the piston ring is provided. The piston ring according to any one of claims 1 to 7, wherein the piston ring is used as an oil ring or a pressure ring.
PCT/JP2007/064901 2006-07-31 2007-07-30 Piston ring WO2008016009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-208894 2006-07-31
JP2006208894A JP2008031545A (en) 2006-07-31 2006-07-31 Piston ring

Publications (1)

Publication Number Publication Date
WO2008016009A1 true WO2008016009A1 (en) 2008-02-07

Family

ID=38997185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064901 WO2008016009A1 (en) 2006-07-31 2007-07-30 Piston ring

Country Status (2)

Country Link
JP (1) JP2008031545A (en)
WO (1) WO2008016009A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995393B2 (en) 2013-08-01 2018-06-12 Mahle Metal Leve S/A Piston ring and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157934A (en) * 1982-03-13 1983-09-20 Hitachi Metals Ltd Shape memory alloy
JPS61119639A (en) * 1984-11-06 1986-06-06 アドバンスト・メタル・コンポーネンツ・インコーポレイテッド Nickel/titanium/niobium shape memory alloy
JPH0543969A (en) * 1990-11-05 1993-02-23 Johnson Service Co Shape-memory alloy of high critical temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157934A (en) * 1982-03-13 1983-09-20 Hitachi Metals Ltd Shape memory alloy
JPS61119639A (en) * 1984-11-06 1986-06-06 アドバンスト・メタル・コンポーネンツ・インコーポレイテッド Nickel/titanium/niobium shape memory alloy
JPH0543969A (en) * 1990-11-05 1993-02-23 Johnson Service Co Shape-memory alloy of high critical temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995393B2 (en) 2013-08-01 2018-06-12 Mahle Metal Leve S/A Piston ring and method for manufacturing same

Also Published As

Publication number Publication date
JP2008031545A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP5696995B2 (en) Heat resistant superalloy
JP5278936B2 (en) Heat resistant superalloy
JP6430103B2 (en) Titanium alloy with good oxidation resistance and high strength at high temperature
CN1743483A (en) Ni-Cr-Co alloy for advanced gas turbine engines
CA2841329A1 (en) Hot-forgeable ni-based superalloy excellent in high temperature strength
EP2041326A2 (en) Nickel-rich wear resistant alloy and method of making and use thereof
CA2600807A1 (en) Cobalt-chromium-iron-nickel alloys amenable to nitride strengthening
US20170342527A1 (en) Cobalt-based super alloy
WO2010123552A2 (en) Nickel based alloy useful for valve seat inserts
WO2020203460A1 (en) Ni-BASED SUPER-HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
WO2008016010A1 (en) Piston ring
CN109706415A (en) A kind of memory alloy-based nano lamellar composite material and preparation method
US9051844B2 (en) Heat resistant super alloy and its use
JP4768672B2 (en) Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material
CN104152750A (en) Nickel-saving type gas valve alloy and preparation method thereof
JP4910156B2 (en) High temperature shape memory alloys, actuators and engines
JPH07216515A (en) Fe-base super heat resistant alloy
WO2003056052A1 (en) Precipitation hardenable austenitic steel
JP5337963B2 (en) Titanium-tantalum shape memory alloy, actuator and motor
WO2008016009A1 (en) Piston ring
JP2019183263A (en) Ni BASED SUPERALLOY MATERIAL FOR COLD WORKING
JP6881119B2 (en) Ferritic stainless steel and heat resistant members
JP4543380B2 (en) Fuel cell stack fastening bolt alloy
WO2020105496A1 (en) Austenitic steel sintered material, austenitic steel powder and turbine member
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791586

Country of ref document: EP

Kind code of ref document: A1