JP3744084B2 - Heat-resistant alloy with excellent cold workability and overaging characteristics - Google Patents

Heat-resistant alloy with excellent cold workability and overaging characteristics Download PDF

Info

Publication number
JP3744084B2
JP3744084B2 JP30122496A JP30122496A JP3744084B2 JP 3744084 B2 JP3744084 B2 JP 3744084B2 JP 30122496 A JP30122496 A JP 30122496A JP 30122496 A JP30122496 A JP 30122496A JP 3744084 B2 JP3744084 B2 JP 3744084B2
Authority
JP
Japan
Prior art keywords
heat
alloy
resistant
overaging
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30122496A
Other languages
Japanese (ja)
Other versions
JPH10130790A (en
Inventor
茂紀 植田
俊治 野田
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP30122496A priority Critical patent/JP3744084B2/en
Priority to US08/955,753 priority patent/US5951789A/en
Priority to EP97118341A priority patent/EP0838533B1/en
Priority to DE69710409T priority patent/DE69710409T2/en
Publication of JPH10130790A publication Critical patent/JPH10130790A/en
Priority to US09/114,494 priority patent/US6099668A/en
Application granted granted Critical
Publication of JP3744084B2 publication Critical patent/JP3744084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は自動車エンジン用排気バルブ,耐熱ボルト,自動車エンジン用排気ガス触媒ニットメッシュ等に用いて好適な析出硬化型の耐熱合金、特に冷間加工性及び過時効特性に優れた耐熱合金に関し、詳しくは冷間加工後において固溶化熱処理を施すことなく、そのまま時効処理して用いることのできる耐熱合金に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
自動車エンジン用排気バルブ等に用いる耐熱材料としては、従来高Mn系のオーステナイト耐熱鋼JIS SUH35(Fe−9Mn−21Cr−4Ni−0.5C−0.4N)或いはNi基超合金JIS NCF751(Ni−15.5Cr−0.9Nb−1.2Al−2.3Ti−7Fe−0.05C)等が使用されてきた。
【0003】
後者のNi基超合金は高温強度,高温酸化,高温腐食に優れた合金であるが、Niを70%強含んでいることからコストが高いといった問題がある。
そこで高価なNi量を低減する試みが従来なされており、Ni含有量40%或いはそれ以下の含有量の合金の開発も行われている。
【0004】
しかしながらNi含有量を更に低減するとなると性能的な問題が生じ、現実的にはそれ以上にNi含有量を低減することは困難である。
【0005】
Ni含有量を更に低減した場合、Feの増加によって高温における組織安定性が劣化してしまい、高温で長時間使用すると脆化相であるη相(NiTi)が析出し、高温強度の低下、室温での靱性低下をもたらしてしまう。
このようにNi含有量の低減は性能的な問題から自ずと限界がある。
【0006】
ところで上記自動車エンジン用排気バルブ等の耐熱部品は、従来これを熱間でのアプセット加工,熱間押出加工等の熱間加工にて製造しているが、例えば自動車エンジン用排気バルブ等の耐熱部品は表面傷その他の要求特性が厳しく、熱処理後において機械加工による仕上げ加工の加工量,加工工数が多くなって加工に要する時間が長く、このことがコストを高めてしまう1つの要因となっていた。
そこでこれを冷間加工にて製造できるようにすれば、コストを更に低減できて望ましい。
【0007】
しかしながら従来提供ないし提案されている耐熱材料は熱間加工を前提としており、そのまま冷間加工にて耐熱部品を製造することのできない材料である。
即ち冷間加工にて耐熱部品を製造するには、耐熱材料が冷間加工性に優れたものであることが要求される。
【0008】
ところで、析出硬化型の耐熱合金に優れた冷間加工性を付与し、これを用いて冷間加工することを可能となし得た場合であっても、通常はその後において一旦固溶化熱処理を施した上で時効処理を行い、析出成分を析出させて所要の強度を発現させることが必要で、熱処理のための工数が多い問題がある。
【0009】
これは、冷間加工をしてそのまま時効処理を行うと冷間加工時に合金内部に残留した歪によって時効が過度に促進されてしまい、Ni含有量が低く、Feが多くなるとピーク硬さに到達した後急激に軟化して脆化相であるη相を析出させてしまうからであり、そこで冷間加工後に一旦固溶化熱処理を施して歪を取り、その上で時効処理を行うことが必要となるのである。
【0010】
しかしながらこのようにした場合、熱処理のための工数が多くなって、そのことが耐熱部品のコストを高める要因となってしまう。
従って耐熱部品の製造コストの更なる低減を図る上で、上記熱処理のための工数を少なくすることが望ましい。
【0011】
析出硬化型の耐熱合金を用いて自動車エンジン用排気バルブ等の耐熱部品を製造した場合、その他に次のような問題点が内在する。
即ち、この種の析出硬化型の耐熱合金から成る耐熱部品を高温度で長時間使用すると経時的に時効が進んでしまい、いわゆる過時効状態となって合金が軟化・劣化してしまう。
【0012】
従って耐熱部品に用いられる耐熱合金としては、高温度で長時間使用され続けても軟化・劣化を特に起さない、過時効特性に優れたものであることが求められる。
【0013】
【課題を解決するための手段】
本願の発明はこのような課題を解決するためになされたものである。
而して本願の請求項1の耐熱合金は、質量%で、C:0.01〜0.1%,Si:≦2%,Mn:≦2%,Cr:12〜25%,Nb+Ta:0.2〜2.0%,Ti:1.5%未満,Al:0.5〜3.0%,Ni:25〜45%,Cu:0.1〜5.0%でTiとAlとの原子%の比率Ti/Alが、Ti/Al=0.115〜1.0であり、残部不可避的不純物及びFeからなる合金組成を有することを特徴とする。
【0014】
請求項2のものは、請求項1において、更にW,Mo,Vの何れか1種若しくは2種以上を質量%で、W:≦3%,Mo:≦3%,V:≦1%、且つ1/2W+Mo+V:≦3%の範囲で含有していることを特徴とする。
【0015】
請求項3のものは、請求項1,2の何れかにおいて、質量%で、Ni+Co:25〜45%,Co:≦5%の範囲で含有することを特徴とする。
【0016】
請求項4のものは、請求項1,2,3の何れかにおいて、Ti,Al,Nb,Taが原子%で、Ti+Al+Nb+Ta:4.5〜7.0%であることを特徴とする。
【0017】
請求項5のものは、請求項1,2,3,4の何れかにおいて、下記式で表されるMが、M:≦0.95であることを特徴とする。
M=(0.717Ni+0.858Fe+1.142Cr+1.90Al+2.271Ti+2.117Nb+2.224Ta+1.001Mn+1.90Si+0.615Cu)/100(但し各元素は原子%)
【0018】
請求項6のものは、請求項1,2,3,4,5の何れかにおいて、更にB,Zrの1種若しくは2種を質量%で、B:0.001〜0.01%,Zr:0.001〜0.1%の範囲で含有することを特徴とする。
【0019】
請求項7のものは、請求項1,2,3,4,5,6の何れかにおいて、Ca+Mgを質量%で、Ca+Mg:0.001〜0.01%の範囲で含有することを特徴とする。
【0020】
請求項8のものは、請求項1,2,3,4,5,6,7の何れかにおいて、P,S,O,Nがそれぞれ質量%で、P:≦0.02%,S:≦0.01%,O:≦0.01%,N:≦0.01%であることを特徴とする。
【0021】
【作用】
本発明の耐熱合金は、Ni含有量が低レベルでコストが安価であり、加えて冷間加工性に優れたもので、自動車エンジン用排気バルブ等の耐熱部品を冷間加工にて製造することが可能であり、耐熱部品の製造コストを低廉化することができる。
即ち耐熱合金材料自体のコストと、これを用いた耐熱部品の製造コストの両方を低減することができる。
【0022】
本発明の耐熱合金は、Cuを所定範囲で含有させた点を1つの特徴とするもので、このCuが積層欠陥エネルギーを高めて加工硬化を抑制する働きをなすことにより、耐熱合金における冷間加工性が効果的に高められる。
【0023】
本発明の耐熱合金はまた、次のような特長を有する。
即ちこの耐熱合金は、冷間加工後において固溶化熱処理することなくそのまま直接時効処理したときに、過時効を起すことなく合金内部に残留した歪によって時効が適正に進行する。
【0024】
また高温度で長時間使用されたときにも過時効状態となるのが抑制され、耐熱部品の寿命が高寿命化する。
これは専らAl:0.5〜3.0%に対してTi:1.5%未満と低く抑えられ、特にTi/Al=0.115〜1.0(原子%の比率)とされていることによる。
【0025】
このTiとAlとの比率(原子%の比率)Ti/Alは、合金内部に残留した歪とともに合金の時効速さを左右する重要な因子であり、Ti/Alの値が大きくなるほど時効が促進され、また逆にTi/Alの値が小さくなるほど時効が遅延する。
【0026】
本発明では、冷間加工時に生じた歪を原動力として時効処理時に時効が適正に進行するようにTi/Alの値が小さく抑えられている。
そして本発明において耐熱部品の製造時に冷間加工後の固溶化熱処理を省略できることから、耐熱部品の製造コストをより一層低廉化することができる。
【0027】
本発明においては、C,Si,Mn,Cr,Nb+Ta,Ti,Al,Ni,Cuに加えて、更にW,Mo,Vの1種若しくは2種以上を、W:≦3%,Mo:≦3%,V:≦1%且つ1/2W+Mo+V:≦3%の範囲で含有させることができる(請求項2)。
これらは固溶強化元素であり、これら元素を含有させることで耐熱合金の強度を効果的に高めることができる。
【0028】
本発明では、更にNi+Co:25〜45%の範囲内で、Co:≦5%の範囲で含有させることができる(請求項3)。
CoはNiとほぼ同じような作用があり、そこでNiの一部を置換する形でCoを5%の範囲内まで含有させることができる。
【0029】
本発明では、Ti,Al,Nb,Taを原子%でTi+Al+Nb+Ta:4.5〜7.0%とすることができ(請求項4)、更にγ相の安定性を示す指標であるM:≦0.95とすることができる(請求項)。
また必要に応じてB,Zrの1種若しくは2種をB:0.001〜0.01%,Zr:0.001〜0.1%の範囲で含有させることができる(請求項)。
これらB,Zrを含有させることによって粒界を強化することができる。
【0030】
本発明では、更に、Ca+MgをCa+Mg:0.001〜0.01%の範囲で含有させることができ(請求項)、これによって熱間加工性も向上させることができる。
【0031】
更にP,S,O,NをP:≦0.02%,S:≦0.01%,O:≦0.01%,N:≦0.01%に規制することができる(請求項)。
これらは不純物成分であり、そしてこれら不純物成分を上記範囲内に規制することで、耐熱合金の特性を更に良好となすことができる。
【0032】
本発明の耐熱合金は、上記説明から明らかなように冷間加工後において固溶化熱処理を施すことなく、直接時効処理した場合において本来の特長を発揮する。
【0033】
次に本発明における各化学成分の限定理由を詳述する。
C:0.01〜0.1%
Cは0.01%以上含有させることでTi,Nb,Crと結合して炭化物を形成することにより合金の高温強度を改善する。一方において0.1%より多く含有させるとMC炭化物を多量に析出して合金の熱間加工性を低下させ、また加工時にその炭化物が起点と成って疵を発生させる。従って本発明ではその含有量を0.01〜0.1%の範囲内に規定する。
【0034】
Si:≦2%
Siは脱酸元素として有用であり、耐酸化性を改善する。しかし2%を超えて含有させると合金の冷間加工性が低下するため上限値を2%とする。
【0035】
Mn:≦2%
MnはSiと同様に脱酸元素として有用であるが、多量に含有させると合金の高温酸化性を損なうばかりでなく、靭性を害するη相(NiTi)の析出を助長するため上限値を2%とする。
【0036】
Cr:12〜25%
Crは合金の高温酸化及び腐食を改善する上で有用な元素であり、そのために12%以上含有させることが必要である。
しかし含有量が25%を超えるとオーステナイト相が不安定と成り、脆化相であるσ相が析出して合金の靭性が低下する。そこで本発明ではCrの上限値を25%とする。Crの望ましい範囲は12〜20%である。
【0037】
Nb+Ta:0.2〜2.0%
Nb及びTaは何れもNiとともに重要な析出相である金属間化合物のγ´相(γプライム相)Ni(Al,Ti,Nb,Ta)を形成する元素であり、そのγ´相の析出によって合金の高温強度を効果的に高くすることができる。但しその効果を得るためにはNb+Taとして0.2%以上含有させる必要がある。
しかしながら含有量が2.0%を超えるとδ相Ni(Nb,Ta)が析出して合金の靭性が低下する。そこで本発明では上限値を2.0%とする。
【0038】
Ti:1.5%未満
TiはAl,Nb,TaとともにNiと結合してγ´相を形成する。但し1.5%以上含有させるとAl含有量に対してTiの含有量が相対的に多くなり、時効が過度に促進されてしまうようになる。そこで本発明ではTiの含有量を1.5%を限度としてそれより少ない量に規制する。
【0039】
Al:0.5〜3.0%
AlはNiと結合してγ´相を形成する最も重要な元素である。その含有量が0.5%未満であるとγ´相の析出量が不十分となり、そこで本発明では下限値を0.5%とする。
一方において含有量が3.0%を超えて多くなると合金の熱間加工性が低下する。そこで本発明では上限値を3.0%とする。
【0040】
Ni:25〜45%
Niは合金のマトリックスであるオーステナイトを形成する元素であり、合金の耐熱性及び耐食性を向上させる。また強化相であるγ´相を析出させる上で必須の成分である。
加えてNiは高温における組織を安定させる働きがあり、これらの効果を十分に発揮させる上で25%以上含有させることが必要である。
一方においてこれを45%を超えて多く含有させると、かかるNiが高価な元素であることから合金のコストを高めてしまい、ひいては本発明の目的を達成できなくなる。加えてこのNiは本合金では固溶化状態での硬さを上昇させてしまい、冷間加工性を低下させる。そこで本発明ではその含有量の上限値を45%とする。
【0041】
Cu:0.1〜5.0%
Cuは合金の冷間加工性を高める上で必須の成分である。
このCuは上述したように積層欠陥エネルギーを高めて加工硬化を抑制する働きがあり、そしてその作用によって冷間加工性を効果的に向上させる。
但しその含有量が0.1%未満では十分な効果を期待できず、また5.0%を超えて含有させても効果の向上が少なく、加えて熱間加工性が劣化する。そこで本発明ではCuの含有量を0.1〜5.0%とする。望ましい含有量範囲は0.5〜3.0%である。
【0042】
W :≦3%
Mo:≦3%
V :≦1%
1/2W+Mo+V:≦3%
W,Mo,Vは固溶強化により高温強度を向上させる元素である。
W,Moについては3%超、Vは1%超添加しても効果は飽和傾向を示すとともに、コスト上昇,冷間加工性低下となるためにその含有量を1/2W+Mo+V:≦3%とする。
【0043】
Ni+Co:25〜45%
Co:≦5%
CoはNiとほぼ同じような作用があり、そこでNiを一部置換する形で合金に含有させることができる。即ちNi+Co:25〜45%の条件を満たす範囲内でCoを合金中に含有させることができる。しかしながらCoはNiに較べても高価な元素であるため上限を5.0%とする。
【0044】
Ti+Al+Nb+Ta:4.5〜7.0原子%
Ti,Al,Nb,Taは何れもγ´相の構成元素である。十分なNi量が存在する場合、γ´相の析出量はこれら元素の含有量の総和に比例する。そして合金の高温強度はγ´相の析出量に比例する。本発明において合金の高温強度を十分に発現させる上で4.5原子%以上含有させる必要がある。
一方においてその総和が7.0原子%を超えると強度は上昇するものの熱間加工性が低下する。そこで本発明ではそれらの元素の総和の上限値を7.0原子%とする。
【0045】
Ti/Al:0.115〜1.0(各元素は原子%)
高温下で長時間使用中に析出する金属間化合物のη相(NiTi)は合金の機械的性質を劣化させる。η相の析出はTi含有量とAl含有量との比(Ti/Al)に依存する。即ちTi/Alの比率が大きくなるほどη相の析出が起こり易くなる。そこで本発明では長時間使用後においてη相が析出しないように、また冷間加工後において直接時効処理したときに時効が過度に進まないようにTi/Alの値を1.0以下とする。
尚Ti/Alの望ましい下限値は0.2である。
【0046】
M:≦0.95
ここでM=(0.717Ni+0.858Fe+1.142Cr+1.90Al+2.271Ti+2.117Nb+2.224Ta+1.001Mn+1.90Si+0.615Cu)/100(但し各元素は原子%)
このMはγ相の安定性を示す指標であり、このMが0.95より大きくなると金属間化合物σ相が析出するようになる。このσ相は合金の機械的性質を劣化させる。またMが0.95より大きくなると熱間加工性も劣化する。そこで本発明ではMを0.95以下に規制する。
【0047】
B :0.001〜0.01%
Zr:0.001〜0.1%
B,Zrは結晶粒界に偏析して粒界を強化する。その効果が十分現れるのはそれぞれ0.001%以上含有させた場合である。但しBについては0.01%、Zrについては0.1%を超えて含有させると熱間加工性を損なうため、含有量をそれぞれの上限値以下とする。
【0048】
Ca+Mg:0.001〜0.01%
これらの元素は何れも合金の溶解時に脱酸,脱硫元素として添加される元素であり、合金の熱間加工性を改善する効果がある。その効果が現れるのはCa+Mgとして0.001%からである。但し0.01%を超えて含有させると熱間加工性を劣化させる。そこで上限値を0.01%とする。
【0049】
P:≦0.02%
S:≦0.01%
O:≦0.01%
N:≦0.01%
これらは何れも不純物としてのものであって、このうちP,Sは合金の熱間加工性を低下させる。またO,Nは酸化物又は窒化物(非金属介在物)を形成し、合金の機械的性質を劣化させる。そこで本発明ではそれぞれの上限値を0.02%,0.01%,0.01%,0.01%とした。
【0050】
【実施例】
次に本発明の実施例を以下に詳しく説明する。
表1に示す化学組成の各種合金50kgを図1の工程に従って真空誘導炉にて溶解し、インゴットを得た。そしてそのインゴットを1100℃で16時間ソーキングした後、引き続いて1100℃〜900℃の温度範囲で鍛造,圧延し、直径16mmの丸棒とした。そしてその丸棒を1050℃×30分加熱後油冷の条件で熱処理し、次いでその熱処理した丸棒を用いて据込率70%,75%で冷間圧縮試験(温度:室温)を行い、その際の割れ発生率を調べることによって冷間加工性を調べた。ここで冷間での圧縮試験は下記に示す日本塑性加工学会冷間鍛造分科会基準に従って行った。
【0051】
【表1】

Figure 0003744084
【表2】
Figure 0003744084
【0052】
一方、上記熱処理した丸棒に対して750℃×4時間又は100時間加熱後空冷の条件で時効処理したものと、800℃×100時間加熱後空冷の条件で時効処理したものとのそれぞれについて、室温におけるビッカース硬さ測定(荷重(P)1kgf)を行った。
【0053】
また併せて上記熱処理した丸棒に対して据込率70%で圧縮試験(冷間加工)を行い、その後これを用いて750℃×4時間又は100時間加熱後空冷の条件で時効処理したものと、800℃×100時間加熱後空冷の条件で時効処理したものとのそれぞれについて室温におけるビッカース硬さ測定(荷重1kgf)を行い、また併せて圧縮及び時効処理後の試料のミクロ組織観察を行った。
【0054】
また上記熱処理した丸棒に対して絞り50%の前方押出しを施し、その後750℃×4時間加熱後、空冷の条件で時効処理したものについて800℃における回転曲げ疲れ試験を行った。
【0055】
これらの結果が表2,表3に示してある。
尚各試験は下記の条件で行った。
【0056】
【表3】
Figure 0003744084
【0057】
【表4】
Figure 0003744084
【0058】
<試験条件>
冷間圧縮鍛造試験
直径15mm,高さ22.5mmの試験片を軸方向に据込鍛造し、据込率70%,75%で加工を行ったときの割れ発生率を調べることで冷間加工性の評価を行った。
ここで据込率εは次式で表される。
ε=(h−h)/h×100
但しh:試験片の元の高さ,h:試験片の変形後の高さ
尚各試験はn=5個の試験片についてそれぞれ行った。
【0059】
硬さ測定
ビッカース式硬さ計を用い、測定荷重1kgでビッカース硬さを測定した。
【0060】
疲れ試験
前方押出し後の各試験材より直径8mmの平滑試験片を切り出し、小野式回転曲げ疲労試験機を用い、回転曲げ疲れ試験を行った。応力振幅を294MPaとしたときの繰返し数を各試料2本の平均で求めた。
【0061】
表2の結果から、本発明例の耐熱合金の場合冷間加工性に優れていること、また冷間加工を施した後に時効処理することで十分な硬さが得られること、一方において冷間加工後に直接時効処理を施してもη相が析出せず過時効状態とならないこと、更に長時間高温状態の下においても硬さがそれほど低下しないこと、即ち過時効状態となるのが抑制されることが分る。
また表3の疲れ試験の結果から、本発明例の耐熱合金の場合、耐疲労特性においても同等若しくは優れていることが分る。
【0062】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその主旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【0063】
【発明の効果】
上記本発明の耐熱合金は、Ni含有量が低レベルでコストが安価であり、加えて冷間加工性に優れていて自動車エンジン用排気バルブ等の耐熱部品を冷間加工にて製造することが可能であり、耐熱部品の製造コストを低廉化することができる。
即ち耐熱合金材料自体のコストと、これを用いた耐熱部品の製造コストの両方を低減することができる。
【0064】
本発明の耐熱合金は、Cuを所定範囲で含有させた点を1つの特徴とするもので、このCuが積層欠陥エネルギーを高めて加工硬化を抑制する働きをなすことにより、耐熱合金における冷間加工性が効果的に高められる。
【0065】
また本発明の耐熱合金は、Al含有量に対してTiの含有量を低くすることで時効速さが抑制されており、詳しくは冷間加工後に直接時効処理したときに適正に時効が進むものとされており、特にTi/Al値:0.115〜1.0とすることで、時効速度が最適化されて冷間加工後直接時効処理したときに過時効を起すことなく最適の硬さ・強度が発現され、また高温下で長時間使用されたときに経時的に時効が進行して過時効状態となるのが抑制され、耐熱部品の寿命を高寿命化することができる。
【図面の簡単な説明】
【図1】 本発明の実施例における耐熱合金の製造工程と熱処理及び各種試験片の作成工程を説明する工程説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a precipitation-hardening type heat-resistant alloy suitable for use in automobile engine exhaust valves, heat-resistant bolts, automobile engine exhaust gas catalyst knit mesh, and the like, and more particularly to a heat-resistant alloy excellent in cold workability and overaging characteristics. Relates to a heat-resistant alloy that can be used after aging without being subjected to solution heat treatment after cold working.
[0002]
[Prior art and problems to be solved by the invention]
As heat-resistant materials used for exhaust valves for automobile engines, etc., conventional high-Mn austenitic heat-resistant steel JIS SUH35 (Fe-9Mn-21Cr-4Ni-0.5C-0.4N) or Ni-base superalloy JIS NCF751 (Ni- 15.5Cr-0.9Nb-1.2Al-2.3Ti-7Fe-0.05C) and the like have been used.
[0003]
The latter Ni-base superalloy is an alloy excellent in high-temperature strength, high-temperature oxidation, and high-temperature corrosion, but has a problem of high cost because it contains Ni over 70%.
Thus, attempts have been made to reduce the amount of expensive Ni, and an alloy having a Ni content of 40% or less has been developed.
[0004]
However, if the Ni content is further reduced, performance problems occur, and it is actually difficult to reduce the Ni content further.
[0005]
When the Ni content is further reduced, the structural stability at high temperatures deteriorates due to the increase in Fe, and when used for a long time at high temperatures, the η phase (Ni 3 Ti), which is an embrittlement phase, precipitates and the high temperature strength decreases. , Resulting in reduced toughness at room temperature.
Thus, the reduction of the Ni content is naturally limited due to performance problems.
[0006]
By the way, heat-resistant parts such as the exhaust valves for automobile engines are conventionally manufactured by hot working such as hot upset processing and hot extrusion processing. For example, heat-resistant parts such as exhaust valves for automobile engines are used. Has severe surface scratches and other required characteristics, and after heat treatment, the amount of finishing processing by machining and the number of processing steps increase, and the time required for processing is long. This is one factor that increases costs. .
Therefore, it is desirable to make it possible to manufacture this by cold working because the cost can be further reduced.
[0007]
However, conventionally provided or proposed heat resistant materials are premised on hot working, and heat resistant parts cannot be manufactured by cold working as they are.
That is, in order to manufacture a heat-resistant component by cold working, it is required that the heat-resistant material is excellent in cold workability.
[0008]
By the way, even if the precipitation-hardening type heat-resistant alloy is provided with excellent cold workability and can be used for cold work, it is usually possible to perform a solution heat treatment after that. In addition, it is necessary to perform an aging treatment to precipitate the precipitated components to express the required strength, and there is a problem that the number of man-hours for the heat treatment is large.
[0009]
This is because when aging treatment is performed as it is after cold working, aging is excessively promoted by strain remaining in the alloy during cold working, and the peak hardness is reached when the Ni content is low and Fe is increased. This is because the η phase, which is an embrittled phase, precipitates suddenly after the heat treatment, and therefore it is necessary to perform a solution heat treatment once after cold working to remove the strain, and then perform an aging treatment thereon. It becomes.
[0010]
However, in this case, the number of man-hours for the heat treatment increases, which increases the cost of the heat-resistant component.
Therefore, in order to further reduce the manufacturing cost of the heat-resistant component, it is desirable to reduce the number of steps for the heat treatment.
[0011]
When a heat-resistant component such as an exhaust valve for an automobile engine is manufactured using a precipitation-hardening type heat-resistant alloy, the following other problems are inherent.
That is, when a heat-resistant component made of this kind of precipitation-hardening type heat-resistant alloy is used for a long time at a high temperature, the aging progresses with time, so that the alloy becomes soft and deteriorates in a so-called overaging state.
[0012]
Accordingly, heat-resistant alloys used for heat-resistant parts are required to have excellent overaging characteristics that do not cause softening or deterioration even if they are used for a long time at high temperatures.
[0013]
[Means for Solving the Problems]
The invention of the present application has been made to solve such problems.
Thus, the heat-resistant alloy according to claim 1 of the present application is, in mass %, C: 0.01 to 0.1%, Si: ≤ 2%, Mn: ≤ 2%, Cr: 12 to 25%, Nb + Ta: 0. 2 to 2.0%, Ti: less than 1.5%, Al: 0.5 to 3.0%, Ni: 25 to 45%, Cu: 0.1 to 5.0%, and Ti and Al The ratio Ti / Al in atomic% is Ti / Al = 0.115 to 1.0, and the alloy composition is composed of the balance inevitable impurities and Fe.
[0014]
A second aspect of the present invention is the same as the first aspect, in which any one or more of W, Mo, and V is in mass %, W: ≤3%, Mo: ≤3%, V: ≤1%, And it is contained in the range of 1 / 2W + Mo + V: ≦ 3%.
[0015]
According to a third aspect of the present invention, in any one of the first and second aspects, the mass % is contained in a range of Ni + Co: 25 to 45% and Co: ≦ 5%.
[0016]
A fourth aspect of the present invention is characterized in that, in any one of the first, second, and third aspects, Ti, Al, Nb, and Ta are atomic%, and Ti + Al + Nb + Ta: 4.5 to 7.0%.
[0017]
According to a fifth aspect of the present invention, in any one of the first, second, third, and fourth aspects, M represented by the following formula is M: ≦ 0.95.
M = (0.717Ni + 0.858Fe + 1.142Cr + 1.90Al + 2.271Ti + 2.117Nb + 2.224Ta + 1.001Mn + 1.90Si + 0.615Cu) / 100 (where each element is atomic%)
[0018]
According to a sixth aspect of the present invention, in any one of the first, second, third, fourth, and fifth aspects, one or two of B and Zr are further expressed by mass %, and B: 0.001 to 0.01%, Zr : It is contained in 0.001 to 0.1% of range.
[0019]
A seventh aspect of the present invention is characterized in that, in any one of the first, second, third, fourth, fifth, and sixth aspects, Ca + Mg is contained in mass % and Ca + Mg: 0.001 to 0.01%. To do.
[0020]
In the eighth aspect of the present invention, in any one of the first, second, third, fourth, fifth, sixth, and seventh aspects, P, S, O, and N are each in mass %, and P: ≦ 0.02%, S: ≦ 0.01%, O: ≦ 0.01%, N: ≦ 0.01%.
[0021]
[Action]
The heat-resistant alloy of the present invention has a low Ni content and is low in cost, and has excellent cold workability, and heat-resistant parts such as exhaust valves for automobile engines are manufactured by cold working. It is possible to reduce the manufacturing cost of heat-resistant parts.
That is, it is possible to reduce both the cost of the heat-resistant alloy material itself and the manufacturing cost of the heat-resistant component using the material.
[0022]
The heat-resistant alloy of the present invention is characterized in that Cu is contained in a predetermined range. This Cu increases the stacking fault energy and suppresses work hardening, so that the cold-resistant alloy in the heat-resistant alloy is cold. Workability is effectively enhanced.
[0023]
The heat-resistant alloy of the present invention also has the following features.
That is, when this heat-resistant alloy is directly aged without being subjected to a solution heat treatment after cold working, the aging properly proceeds due to strain remaining inside the alloy without causing overaging.
[0024]
Moreover, even when used for a long time at a high temperature, the overaging state is suppressed, and the life of the heat-resistant component is extended.
This solely Al: Ti against 0.5 to 3.0%: is al kept low at less than 1.5%, in particular is a Ti / Al = 0.115~1.0 (ratio of atomic%) Because it is.
[0025]
The ratio of Ti to Al (ratio of atomic%) Ti / Al is an important factor that determines the aging speed of the alloy along with the strain remaining inside the alloy, and the aging promotes as the value of Ti / Al increases. On the contrary, the aging is delayed as the value of Ti / Al becomes smaller.
[0026]
In the present invention, the value of Ti / Al is suppressed to be small so that the aging properly proceeds during the aging treatment using the strain generated during the cold working as a driving force.
In the present invention, since the solution heat treatment after the cold working can be omitted at the time of manufacturing the heat-resistant component, the manufacturing cost of the heat-resistant component can be further reduced.
[0027]
In the present invention, in addition to C, Si, Mn, Cr, Nb + Ta, Ti, Al, Ni, and Cu, one or more of W, Mo, and V are further added to W: ≦ 3%, Mo: ≦ 3%, V: ≦ 1% and ½ W + Mo + V: ≦ 3% can be contained (claim 2).
These are solid solution strengthening elements, and by containing these elements, the strength of the heat-resistant alloy can be effectively increased.
[0028]
In the present invention, Ni can be contained in a range of Ni + Co: 25 to 45% and Co: ≦ 5% (Claim 3).
Co has almost the same action as Ni, and therefore Co can be contained in a range of 5% in a form of substituting a part of Ni.
[0029]
In the present invention, Ti, Al, Nb, and Ta can be Ti + Al + Nb + Ta: 4.5 to 7.0% in atomic% (Claim 4), and M: ≦, which is an index indicating the stability of the γ phase. 0.95 (claim 5 ).
Moreover, 1 type or 2 types of B and Zr can be contained in the range of B: 0.001-0.01% and Zr: 0.001-0.1% as needed (Claim 6 ).
The grain boundary can be strengthened by containing these B and Zr.
[0030]
In the present invention, Ca + Mg can be further contained in the range of Ca + Mg: 0.001 to 0.01% (Claim 7 ), whereby the hot workability can be improved.
[0031]
Further P, S, O, a N P: ≦ 0.02%, S : ≦ 0.01%, O: ≦ 0.01%, N: can be restricted to ≦ 0.01% (claim 8 ).
These are impurity components, and the characteristics of the heat-resistant alloy can be further improved by regulating these impurity components within the above range.
[0032]
As is clear from the above description, the heat-resistant alloy of the present invention exhibits its original characteristics when directly aged without being subjected to a solution heat treatment after cold working.
[0033]
Next, the reasons for limiting each chemical component in the present invention will be described in detail.
C: 0.01 to 0.1%
When C is contained in an amount of 0.01% or more, it combines with Ti, Nb, and Cr to form carbides, thereby improving the high temperature strength of the alloy. On the other hand, if the content is more than 0.1%, a large amount of MC carbide precipitates to lower the hot workability of the alloy, and the carbide becomes a starting point during processing to generate soot. Therefore, in the present invention, the content is specified within the range of 0.01 to 0.1%.
[0034]
Si: ≦ 2%
Si is useful as a deoxidizing element and improves oxidation resistance. However, if the content exceeds 2%, the cold workability of the alloy decreases, so the upper limit is made 2%.
[0035]
Mn: ≦ 2%
Mn is useful as a deoxidizing element in the same way as Si. However, if contained in a large amount, Mn not only impairs the high temperature oxidation of the alloy, but also promotes precipitation of η phase (Ni 3 Ti) that impairs toughness. 2%.
[0036]
Cr: 12-25%
Cr is an element useful for improving high temperature oxidation and corrosion of the alloy, and for that purpose, it is necessary to contain 12% or more.
However, if the content exceeds 25%, the austenite phase becomes unstable and the σ phase, which is an embrittlement phase, precipitates and the toughness of the alloy decreases. Therefore, in the present invention, the upper limit value of Cr is set to 25%. A desirable range of Cr is 12 to 20%.
[0037]
Nb + Ta: 0.2-2.0%
Nb and Ta are elements that form a γ ′ phase (γ prime phase) Ni 9 (Al, Ti, Nb, Ta) of an intermetallic compound that is an important precipitation phase together with Ni, and the precipitation of the γ ′ phase. Can effectively increase the high-temperature strength of the alloy. However, in order to obtain the effect, it is necessary to contain 0.2% or more as Nb + Ta.
However, if the content exceeds 2.0%, δ phase Ni 3 (Nb, Ta) precipitates and the toughness of the alloy decreases. Therefore, in the present invention, the upper limit value is set to 2.0%.
[0038]
Ti: Less than 1.5% Ti combines with Al, Nb and Ta with Ni to form a γ 'phase. However, when the content is 1.5% or more, the Ti content is relatively increased with respect to the Al content, and aging is excessively promoted. Therefore, in the present invention, the Ti content is limited to a lower amount up to 1.5%.
[0039]
Al: 0.5 to 3.0%
Al is the most important element that combines with Ni to form a γ 'phase. If the content is less than 0.5%, the amount of precipitation of the γ ′ phase becomes insufficient, and therefore the lower limit is set to 0.5% in the present invention.
On the other hand, when the content exceeds 3.0%, the hot workability of the alloy decreases. Therefore, in the present invention, the upper limit is set to 3.0%.
[0040]
Ni: 25-45%
Ni is an element that forms austenite, which is an alloy matrix, and improves the heat resistance and corrosion resistance of the alloy. Further, it is an essential component for precipitating the γ ′ phase that is a reinforcing phase.
In addition, Ni has a function of stabilizing the structure at a high temperature, and it is necessary to contain 25% or more in order to sufficiently exhibit these effects.
On the other hand, if more than 45% is contained, this Ni increases the cost of the alloy because it is an expensive element, and consequently the object of the present invention cannot be achieved. In addition, this Ni increases the hardness in a solid solution state in this alloy, and decreases the cold workability. Therefore, in the present invention, the upper limit of the content is set to 45%.
[0041]
Cu: 0.1 to 5.0%
Cu is an essential component for improving the cold workability of the alloy.
As described above, this Cu has a function of increasing stacking fault energy and suppressing work hardening, and effectively improves cold workability.
However, if the content is less than 0.1%, a sufficient effect cannot be expected, and even if the content exceeds 5.0%, the improvement of the effect is small, and hot workability deteriorates. Therefore, in the present invention, the Cu content is set to 0.1 to 5.0%. A desirable content range is 0.5 to 3.0%.
[0042]
W: ≦ 3%
Mo: ≦ 3%
V: ≦ 1%
1 / 2W + Mo + V: ≦ 3%
W, Mo, and V are elements that improve high temperature strength by solid solution strengthening.
Even if W and Mo exceed 3% and V exceeds 1%, the effect tends to saturate, and the cost increases and cold workability decreases, so the content is 1/2 W + Mo + V: ≦ 3% To do.
[0043]
Ni + Co: 25-45%
Co: ≤ 5%
Co has almost the same action as Ni, and Ni can be contained in the alloy in a form that partially substitutes Ni. That is, Co can be contained in the alloy within a range satisfying the condition of Ni + Co: 25 to 45%. However, since Co is an expensive element compared with Ni, the upper limit is set to 5.0%.
[0044]
Ti + Al + Nb + Ta: 4.5 to 7.0 atomic%
Ti, Al, Nb, and Ta are all constituent elements of the γ ′ phase. When a sufficient amount of Ni is present, the amount of precipitation of the γ ′ phase is proportional to the sum of the contents of these elements. The high temperature strength of the alloy is proportional to the amount of precipitation of the γ ′ phase. In the present invention, it is necessary to contain 4.5 atomic% or more in order to sufficiently develop the high temperature strength of the alloy.
On the other hand, when the sum exceeds 7.0 atomic%, the hot workability deteriorates although the strength increases. Therefore, in the present invention, the upper limit of the sum of these elements is set to 7.0 atomic%.
[0045]
Ti / Al: 0.115 to 1.0 (each element is atomic%)
The η phase (Ni 3 Ti) of the intermetallic compound that precipitates during use for a long time at high temperatures degrades the mechanical properties of the alloy. The precipitation of the η phase depends on the ratio of Ti content to Al content (Ti / Al). That is, the larger the Ti / Al ratio, the easier the precipitation of the η phase occurs. Therefore, in the present invention, the value of Ti / Al is set to 1.0 or less so that the η phase does not precipitate after long-time use, and so that aging does not proceed excessively when direct aging treatment is performed after cold working.
A desirable lower limit value of Ti / Al is 0.2.
[0046]
M: ≦ 0.95
Where M = (0.717Ni + 0.858Fe + 1.142Cr + 1.90Al + 2.271Ti + 2.117Nb + 2.224Ta + 1.001Mn + 1.90Si + 0.615Cu) / 100 (where each element is atomic%)
This M is an index indicating the stability of the γ phase, and when this M is larger than 0.95, the intermetallic compound σ phase comes to precipitate. This σ phase degrades the mechanical properties of the alloy. When M is larger than 0.95, the hot workability is also deteriorated. Therefore, in the present invention, M is restricted to 0.95 or less.
[0047]
B: 0.001 to 0.01%
Zr: 0.001 to 0.1%
B and Zr segregate at the grain boundaries and strengthen the grain boundaries. The effect appears sufficiently when each content is 0.001% or more. However, if B is contained over 0.01% and Zr is contained over 0.1%, the hot workability is impaired.
[0048]
Ca + Mg: 0.001 to 0.01%
These elements are all elements added as deoxidation and desulfurization elements when the alloy is melted, and have the effect of improving the hot workability of the alloy. The effect appears from 0.001% as Ca + Mg. However, if it exceeds 0.01%, hot workability is deteriorated. Therefore, the upper limit is set to 0.01%.
[0049]
P: ≦ 0.02%
S: ≦ 0.01%
O: ≦ 0.01%
N: ≦ 0.01%
These are all impurities, and among these, P and S lower the hot workability of the alloy. O and N form oxides or nitrides (non-metallic inclusions) and degrade the mechanical properties of the alloy. Therefore, in the present invention, the upper limit values are 0.02%, 0.01%, 0.01%, and 0.01%, respectively.
[0050]
【Example】
Next, embodiments of the present invention will be described in detail below.
50 kg of various alloys having chemical compositions shown in Table 1 were melted in a vacuum induction furnace according to the process of FIG. 1 to obtain an ingot. The ingot was soaked at 1100 ° C. for 16 hours, and subsequently forged and rolled in a temperature range of 1100 ° C. to 900 ° C. to obtain a round bar having a diameter of 16 mm. Then, the round bar was heated at 1050 ° C. for 30 minutes and then heat-treated under oil cooling conditions, and then a cold compression test (temperature: room temperature) was performed at an upsetting rate of 70% and 75% using the round bar subjected to the heat treatment, The cold workability was examined by examining the crack occurrence rate at that time. Here, the cold compression test was performed according to the Japan Plastic Working Society Cold Forging Subcommittee Standard shown below.
[0051]
[Table 1]
Figure 0003744084
[Table 2]
Figure 0003744084
[0052]
On the other hand, for each of the above heat-treated round bar aging treatment under conditions of air cooling after heating at 750 ° C. for 4 hours or 100 hours, and those subjected to air cooling conditions after heating at 800 ° C. for 100 hours, Vickers hardness measurement at room temperature (load (P) 1 kgf) was performed.
[0053]
In addition, a compression test (cold working) was performed on the heat-treated round bar at an upsetting rate of 70%, and then aging treatment was carried out under the conditions of air cooling after heating at 750 ° C. for 4 hours or 100 hours. And Vickers hardness measurement (load 1 kgf) at room temperature for each of those subjected to heating at 800 ° C. for 100 hours and then air-cooled, and also the microstructure of the sample after compression and aging treatment is observed. It was.
[0054]
Further, a forward bending fatigue test at 800 ° C. was carried out on the heat-treated round bar subjected to forward extrusion with a drawing of 50%, heated at 750 ° C. for 4 hours, and then subjected to aging treatment under air cooling conditions.
[0055]
These results are shown in Tables 2 and 3.
Each test was performed under the following conditions.
[0056]
[Table 3]
Figure 0003744084
[0057]
[Table 4]
Figure 0003744084
[0058]
<Test conditions>
Cold compression forging test A specimen with a diameter of 15 mm and a height of 22.5 mm was upset forged in the axial direction, and cold working was performed by examining the crack occurrence rate when processing was performed at upsetting ratios of 70% and 75%. Sexuality was evaluated.
Here, the upsetting rate ε is expressed by the following equation.
ε = (h 0 −h C ) / h 0 × 100
However, h 0 : Original height of the test piece, h C : Height after deformation of the test piece Each test was performed for n = 5 test pieces.
[0059]
Hardness measurement Vickers hardness was measured with a measurement load of 1 kg using a Vickers hardness meter.
[0060]
Fatigue Test A smooth test piece having a diameter of 8 mm was cut out from each test material after forward extrusion, and a rotary bending fatigue test was performed using an Ono type rotary bending fatigue tester. The number of repetitions when the stress amplitude was 294 MPa was determined by averaging the two samples.
[0061]
From the results of Table 2, the heat-resistant alloy of the present invention example is excellent in cold workability, and sufficient hardness can be obtained by aging treatment after performing cold work. Even if direct aging treatment is performed after processing, the η phase does not precipitate and does not become overaged, and further, the hardness does not decrease so much even under high temperature conditions for a long time, that is, it is suppressed from becoming overaged. I understand that.
From the results of the fatigue test shown in Table 3, it can be seen that the heat resistant alloys of the examples of the present invention are equivalent or superior in fatigue resistance characteristics.
[0062]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in a mode in which various changes are made without departing from the gist of the present invention.
[0063]
【The invention's effect】
The heat-resistant alloy of the present invention has a low Ni content and low cost. In addition, it has excellent cold workability, and heat-resistant parts such as exhaust valves for automobile engines can be manufactured by cold working. It is possible, and the manufacturing cost of heat-resistant parts can be reduced.
That is, it is possible to reduce both the cost of the heat-resistant alloy material itself and the manufacturing cost of the heat-resistant component using the material.
[0064]
The heat-resistant alloy of the present invention is characterized in that Cu is contained in a predetermined range. This Cu increases the stacking fault energy and suppresses work hardening, so that the cold-resistant alloy in the heat-resistant alloy is cold. Workability is effectively enhanced.
[0065]
In addition, the heat-resistant alloy of the present invention has its aging speed suppressed by lowering the Ti content relative to the Al content. Specifically, the aging proceeds properly when directly aging treatment is performed after cold working. In particular , by setting the Ti / Al value: 0.115 to 1.0, the aging speed is optimized, and the optimum hardness without causing overaging when directly aged after cold working.・ Strength is exhibited, and when it is used for a long time at a high temperature, the aging progresses with time and the overaging state is suppressed, and the life of the heat-resistant component can be increased.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a process explanatory diagram illustrating a heat-resistant alloy manufacturing process, heat treatment, and various test piece creation processes in an embodiment of the present invention.

Claims (8)

質量%で
C :0.01〜0.1%
Si:≦2%
Mn:≦2%
Cr:12〜25%
Nb+Ta:0.2〜2.0%
Ti:1.5%未満
Al:0.5〜3.0%
Ni:25〜45%
Cu:0.1〜5.0%
でTiとAlとの原子%の比率Ti/Alが
Ti/Al=0.115〜1.0
であり、残部不可避的不純物及びFeからなる合金組成を有することを特徴とする冷間加工性及び過時効特性に優れた耐熱合金。
In mass % C: 0.01 to 0.1%
Si: ≦ 2%
Mn: ≦ 2%
Cr: 12-25%
Nb + Ta: 0.2-2.0%
Ti: Less than 1.5% Al: 0.5-3.0%
Ni: 25-45%
Cu: 0.1 to 5.0%
The ratio Ti / Al of Ti and Al is Ti / Al
Ti / Al = 0.115-1.0
, And the cold workability and overaging characteristics excellent heat-resistant alloy and having an alloy composition consisting of the balance inevitable impurities and Fe.
請求項1において、更にW,Mo,Vの何れか1種若しくは2種以上を質量%で
W :≦3%
Mo:≦3%
V :≦1%
且つ
1/2W+Mo+V:≦3%
の範囲で含有していることを特徴とする冷間加工性及び過時効特性に優れた耐熱合金。
In Claim 1, further, any one or more of W, Mo and V in mass % W: ≦ 3%
Mo: ≦ 3%
V: ≦ 1%
And 1 / 2W + Mo + V: ≦ 3%
A heat-resistant alloy excellent in cold workability and overaging characteristics characterized by being contained in the range of.
請求項1,2の何れかにおいて、質量%で
Ni+Co:25〜45%
Co:≦5%
の範囲で含有することを特徴とする冷間加工性及び過時効特性に優れた耐熱合金。
In any one of Claims 1 and 2, Ni + Co: 25-45% in the mass %
Co: ≤ 5%
A heat-resistant alloy excellent in cold workability and overaging characteristics characterized by being contained in the range of.
請求項1,2,3の何れかにおいて、Ti,Al,Nb,Taが原子%で
Ti+Al+Nb+Ta:4.5〜7.0%
であることを特徴とする冷間加工性及び過時効特性に優れた耐熱合金。
In any one of Claim 1, 2, 3, Ti, Al, Nb, Ta is atomic%, Ti + Al + Nb + Ta: 4.5-7.0%
A heat-resistant alloy excellent in cold workability and overaging characteristics characterized by
請求項1,2,3,4の何れかにおいて、下記式で表されるMが
M:≦0.95
であることを特徴とする冷間加工性及び過時効特性に優れた耐熱合金。
M=(0.717Ni+0.858Fe+1.142Cr+1.90Al+2.271Ti+2.117Nb+2.224Ta+1.001Mn+1.90Si+0.615Cu)/100(但し各元素は原子%)
In any one of Claims 1, 2, 3, and 4, M represented by a following formula is M: <= 0.95.
A heat-resistant alloy excellent in cold workability and overaging characteristics characterized by
M = (0.717Ni + 0.858Fe + 1.142Cr + 1.90Al + 2.271Ti + 2.117Nb + 2.224Ta + 1.001Mn + 1.90Si + 0.615Cu) / 100 (where each element is atomic%)
請求項1,2,3,4,5の何れかにおいて、更にB,Zrの1種若しくは2種を質量%で
B :0.001〜0.01%
Zr:0.001〜0.1%
の範囲で含有することを特徴とする冷間加工性及び過時効特性に優れた耐熱合金。
In any one of Claims 1, 2, 3, 4, and 5, 1 type or 2 types of B and Zr are further represented by the mass % B: 0.001-0.01%
Zr: 0.001 to 0.1%
A heat-resistant alloy excellent in cold workability and overaging characteristics characterized by being contained in the range of.
請求項1,2,3,4,5,6の何れかにおいて、Ca+Mgを質量%で
Ca+Mg:0.001〜0.01%
の範囲で含有することを特徴とする冷間加工性及び過時効特性に優れた耐熱合金。
In any one of Claims 1, 2, 3, 4, 5, and 6 , Ca + Mg by mass % Ca + Mg: 0.001-0.01%
A heat-resistant alloy excellent in cold workability and overaging characteristics characterized by being contained in the range of.
請求項1,2,3,4,5,6,7の何れかにおいて、P,S,O,Nがそれぞれ質量%で
P :≦0.02%
S :≦0.01%
O :≦0.01%
N :≦0.01%
であることを特徴とする冷間加工性及び過時効特性に優れた耐熱合金。
Claim 1,2,3,4,5,6, in 7 either, P, S, O, N are respectively mass% P: ≦ 0.02%
S: ≦ 0.01%
O: ≦ 0.01%
N: ≦ 0.01%
A heat-resistant alloy excellent in cold workability and overaging characteristics characterized by
JP30122496A 1996-10-25 1996-10-25 Heat-resistant alloy with excellent cold workability and overaging characteristics Expired - Fee Related JP3744084B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30122496A JP3744084B2 (en) 1996-10-25 1996-10-25 Heat-resistant alloy with excellent cold workability and overaging characteristics
US08/955,753 US5951789A (en) 1996-10-25 1997-10-22 Heat resisting alloy for exhaust valve and method for producing the exhaust valve
EP97118341A EP0838533B1 (en) 1996-10-25 1997-10-22 Heat resisting alloy for exhaust valve and method for producing the exhaust valve
DE69710409T DE69710409T2 (en) 1996-10-25 1997-10-22 Heat resistant alloy for exhaust valves and method of manufacturing such exhaust valves
US09/114,494 US6099668A (en) 1996-10-25 1998-07-13 Heat resisting alloy for exhaust valve and method for producing the exhaust valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30122496A JP3744084B2 (en) 1996-10-25 1996-10-25 Heat-resistant alloy with excellent cold workability and overaging characteristics

Publications (2)

Publication Number Publication Date
JPH10130790A JPH10130790A (en) 1998-05-19
JP3744084B2 true JP3744084B2 (en) 2006-02-08

Family

ID=17894283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30122496A Expired - Fee Related JP3744084B2 (en) 1996-10-25 1996-10-25 Heat-resistant alloy with excellent cold workability and overaging characteristics

Country Status (1)

Country Link
JP (1) JP3744084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408347B2 (en) 2019-10-30 2024-01-05 日鉄ステンレス株式会社 High Ni alloy and method for producing high Ni alloy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387057B2 (en) * 2008-03-07 2014-01-15 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and toughness
JP7330132B2 (en) * 2020-04-09 2023-08-21 本田技研工業株式会社 Seal member and manufacturing method thereof
CN114990408B (en) * 2022-04-26 2023-02-10 沈阳航空航天大学 NiCoCrFeAlTi intermediate entropy alloy with excellent comprehensive mechanical property and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408347B2 (en) 2019-10-30 2024-01-05 日鉄ステンレス株式会社 High Ni alloy and method for producing high Ni alloy

Also Published As

Publication number Publication date
JPH10130790A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
EP2058413B1 (en) Ferritic stainless steel sheet having excellent heat resistance
EP0838533B1 (en) Heat resisting alloy for exhaust valve and method for producing the exhaust valve
EP0639654B1 (en) Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
US5779972A (en) Heat resisting alloys, exhaust valves and knit meshes for catalyzer for exhaust gas
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JP6768929B2 (en) Ferritic stainless steel with excellent high-temperature wear resistance, manufacturing method of ferritic stainless steel sheet, exhaust parts, high-temperature sliding parts, and turbocharger parts
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
JP2963842B2 (en) Alloy for exhaust valve
JPH0826438B2 (en) Ferritic heat-resistant cast steel with excellent thermal fatigue life
US9745649B2 (en) Heat-resisting steel for exhaust valves
JP4972972B2 (en) Ni-based alloy
JP2000303149A (en) Ferritic stainless steel for automotive exhaust system parts
JP3412234B2 (en) Alloy for exhaust valve
US5106578A (en) Cast-to-near-net-shape steel body of heat-resistant cast steel
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP4116134B2 (en) Austenitic stainless steel excellent in high temperature sag resistance and method for producing the same
JP3977847B2 (en) Heat resistant alloy for engine valves
EP2503012A1 (en) Precipitation hardened heat-resistant steel
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JPH03177543A (en) Valve steel
CN109252088B (en) Ferritic stainless steel and heat-resistant member
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees