WO2008010263A1 - Process for producing electrode for discharge surface treatment and method of discharge surface treatment - Google Patents

Process for producing electrode for discharge surface treatment and method of discharge surface treatment Download PDF

Info

Publication number
WO2008010263A1
WO2008010263A1 PCT/JP2006/314189 JP2006314189W WO2008010263A1 WO 2008010263 A1 WO2008010263 A1 WO 2008010263A1 JP 2006314189 W JP2006314189 W JP 2006314189W WO 2008010263 A1 WO2008010263 A1 WO 2008010263A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
powder
surface treatment
discharge surface
discharge
Prior art date
Application number
PCT/JP2006/314189
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Goto
Hiroyuki Teramoto
Kazushi Nakamura
Original Assignee
Mitsubishi Electric Corporation
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation, Ihi Corporation filed Critical Mitsubishi Electric Corporation
Priority to PCT/JP2006/314189 priority Critical patent/WO2008010263A1/en
Publication of WO2008010263A1 publication Critical patent/WO2008010263A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • Discharge surface treatment electrode manufacturing method and discharge surface treatment method are Discharge surface treatment electrode manufacturing method and discharge surface treatment method
  • the present invention uses a molded powder formed of a metal powder, a metal compound powder, or a conductive ceramic powder as an electrode, and a pulse shape between the electrode and the workpiece in the working fluid or in the air.
  • the discharge surface treatment method is used to form a film having the material force of the electrode on the workpiece surface or the film having the material force by reacting the electrode material by the energy of the pulsed discharge.
  • the present invention relates to a method for producing a discharge surface treatment electrode.
  • Patent Document 1 a metal material that does not form carbide or is difficult to form as an electrode material is mixed with a wax that is a binder, and this is put into a mold, and a predetermined press pressure is applied. By punching with, a compression-molded electrode is manufactured.
  • Patent Document 1 International Publication No. 2004Z011696 Pamphlet
  • the present invention has been made in view of the above, and is capable of manufacturing a discharge surface treatment electrode having a complicated shape at low cost without performing post-processing. It is an object of the present invention to obtain a method and a discharge surface treatment method using an electrode produced by the production method.
  • a method for producing an electrode for discharge surface treatment comprises a metal powder, a metal compound powder, or a ceramic powder.
  • a pulsed discharge is generated between the electrode and the workpiece in the machining fluid or in the air, and the energy of the coating or electrode material consisting of the electrode material on the workpiece surface is generated by the energy.
  • the method for producing an electrode for discharge surface treatment according to the present invention can strengthen the bonding between the electrode powders, so that the efficiency can be easily achieved without post-processing a small electrode for discharge surface treatment having a complicated shape. There is an effect that it can be manufactured well. In addition, since the electrode for discharge surface treatment can be manufactured without post-processing, the cost for post-processing is increased, and the electrode material for post-processing is not wasted, so that the electrode for discharge surface treatment can be manufactured at low cost. There is an effect that it can be.
  • FIG. 1 is a diagram for explaining a method for manufacturing an electrode for discharge surface treatment according to a first embodiment of the present invention.
  • FIG. 2-1 is a diagram for explaining a method of manufacturing the electrode for discharge surface treatment according to the first embodiment of the present invention.
  • FIG. 2-2 is a diagram for explaining a method of manufacturing the electrode for discharge surface treatment according to the first embodiment of the present invention.
  • FIGS. 2-3 are diagrams for explaining a method of manufacturing the electrode for discharge surface treatment according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a schematic configuration of a discharge surface treatment apparatus that performs a discharge surface treatment in Embodiment 1 of the present invention.
  • FIG. 41 is a diagram showing an example of a discharge pulse condition during discharge surface treatment, and a diagram showing a voltage waveform applied between an electrode and a workpiece during discharge.
  • FIG. 42 is a diagram showing an example of the pulse condition of the discharge during the discharge surface treatment, and is a diagram showing the current waveform of the current flowing during the discharge.
  • FIG. 5 is a diagram showing an example of discharge pulse conditions during discharge surface treatment.
  • FIG. 6 is an image showing an example of a state of a cross section when a titanium carbide (TiC) film is formed on a workpiece having a steel material force.
  • TiC titanium carbide
  • FIG. 7 is a characteristic diagram showing the relationship between the thickness of the fusion layer and the adhesion of the coating.
  • FIG. 8 is a characteristic diagram showing the relationship between the thickness of the fusion layer and the deformation amount of the base material.
  • FIG. 9 is an image showing an example of a cross-sectional state when a cobalt (Co) alloy film is formed on a workpiece having a steel material force, which is a workpiece.
  • FIG. 10 is a diagram for explaining the principle of an extrusion molding machine, and is a schematic diagram showing a part of the extrusion molding machine as a cross-sectional view.
  • FIG. 1 and FIG. 2-1 to FIGS. 2 to 3 are diagrams for explaining a method for manufacturing an electrode for discharge surface treatment according to the first embodiment of the present invention.
  • the method for producing an electrode for discharge surface treatment according to the first embodiment uses a metal powder, a metal compound powder, or a molded powder obtained by molding a conductive ceramic powder as an electrode in a working fluid or in the air. ! A pulsed discharge is generated between the electrode and the workpiece, and the coating of the electrode material on the surface of the workpiece or the coating of the material that reacts the electrode material with the energy of the pulsed discharge is generated by the energy. It is a manufacturing method of the electrode for discharge surface treatment used for the discharge surface treatment method which forms.
  • a method for producing a discharge surface treatment electrode used in this embodiment for such a discharge surface treatment method is to mix a powder as an electrode material and a binder to produce a plastic mixture, A compression molded body is formed by press-fitting this mixture into a mold made of a split mold having a predetermined shape using a nozzle, and a heat treatment is performed to obtain an electrode for discharge surface treatment.
  • a method for producing a discharge surface treatment electrode used in this embodiment for such a discharge surface treatment method is to mix a powder as an electrode material and a binder to produce a plastic mixture, A compression molded body is formed by press-fitting this mixture into a mold made of a split mold having a predetermined shape using a nozzle, and a heat treatment is performed to obtain an electrode for discharge surface treatment.
  • each step of manufacturing the above-described electrode for discharge surface treatment will be described in detail with reference to FIG. 1 and FIGS. 2-1 to 2-3.
  • the electrode powder includes titanium carbide (TiC) powder with a particle size of about 3 ⁇ m and titanium hydride (TiH) powder with a particle size of about 10 ⁇ m.
  • the powder at the end is brittle, it has a particle size of about 10 m or less and is pulverized in the process of mixing the powder to a particle size less than that of titanium carbide (TiC) powder.
  • TiC titanium carbide
  • the binder to be mixed with the electrode powder a mixture of norafine wax and polyethylene in a volume ratio of about 1: 1 was used.
  • the mixing of the electrode powder and the binder was performed by adding the electrode powder and the binder in a volume ratio of about 1: 1, and kneading continuously for about several hours to about 20 hours with a single binder.
  • the kneading first, paraffin wax and polyethylene are heated to a temperature of about 150 ° C. to 200 ° C. to be in a molten state, and then the electrode powder is taken for about 10 minutes to 30 minutes. Gradually added.
  • a surfactant such as stearic acid was added to the binder at about several percent of the weight of the powder, the effect of preventing aggregation of the electrode powder was obtained. In this way, a mixture 102 of electrode powder and binder is produced.
  • a green compact compression molded body
  • the mixture 102 was introduced into a molding machine (not shown). Then, it is introduced into a nozzle 202 connected to a molding machine as shown in FIG. 2-1, and using this nozzle 202, a mixture 102 is molded as a mold having a split mold as shown in FIG. Press fit into 201. At the time of press-fitting, the mixture 102 is press-fitted into the mold 201 by pressing the mixture 102 into the mold 201 at about 50 MPa to 200 MPa.
  • the mixture 102 press-fitted into the mold 201 is cooled for a period of several tens of seconds to several tens of minutes while the pressure is applied in the mold 201.
  • the noinda is gelled and is less likely to collapse and can be taken out from the mold 201 as a molded body.
  • the mold 201 was disassembled and the green compact (compression molded body) 203 was taken out.
  • This green compact (compression molded body) 203 is a source of the electrode for discharge surface treatment. For the following reasons, it can be used as an electrode for discharge surface treatment as it is. There is no.
  • the green compact (compression molded body) 203 is heat-treated, and the green compact (compression molded body) 203 is removed.
  • a heat treatment step is performed to make the electrode ready for use as a discharge surface treatment electrode.
  • the heat treatment step in the present embodiment is a discharge surface treatment that does not increase the density of the molded body by melting the powder as in sintering in general metal injection molding!
  • the purpose is to achieve a state in which the bonding at the portion where the electrode powders are in contact with each other becomes stronger with the electrode powder shape remaining as it is.
  • This heat treatment removes the paraffin wax while raising the temperature of the green compact (compressed compact) 203 in a vacuum furnace over a period of about 2 hours from 100 ° C to 300 ° C. To do.
  • the polyethylene is removed while the temperature of the green compact (compression molded body) 203 is raised from 400 ° C to 500 ° C over about 1 hour.
  • titanium hydride (TiH 3) releases hydrogen to become titanium (Ti).
  • the titanium (Ti) serves as a binder (binding material) and serves to bond the electrode powders together.
  • Binders such as polyethylene play a role of connecting powders and powders before heating, and titanium (Ti) is carbonized after binders such as polyethylene are lost. It plays a role in connecting hard powders such as titanium (TiC).
  • the temperature of the green compact (compression molded body) 203 was further raised and held at a temperature in the range of 900 ° C to 1100 ° C for 1 hour to 2 hours, and then the heater of the vacuum furnace was turned off. Natural cooling was carried out in the vacuum furnace to prevent oxidation.
  • the heat treatment temperature described above varies depending on various conditions such as the state of the electrode powder and the pressure of compression molding. If the density of the green compact (compression compact) 203 (the density calculated from the volume and weight of the compact (compression compact) 203 including the space) is high, a lower temperature is the appropriate heat treatment temperature. Thus, when this density was low, it was confirmed that a higher temperature tends to be an appropriate heat treatment temperature. This is because when the density is high, the electrode powders are in close contact with each other, and the bonding state between the powders tends to be strong even at a low temperature where the contact area between the electrode powders is large.
  • Patent Document 1 As shown in Patent Document 1, conventionally, an electrode material is often compression-molded by a press. However, the following effects can be obtained by performing compression molding by press-fitting an electrode material into a mold as shown in the present embodiment.
  • the press-fitting pressure is controlled without being aware of the amount of the electrode material. Since the electrode corresponding to the mold shape is compression-molded with a predetermined hardness, it is easy to mold the electrode.
  • TiC titanium carbide
  • TiH titanium hydride
  • the binder component is not limited to paraffin wax or polyethylene. good.
  • a thermoplastic resin such as polypropylene or acrylic resin, or a protein material such as agar may be used as long as it exhibits a reversible reaction of sol-gel.
  • Agar and the like may be water-soluble substances such as water-soluble substances.
  • electrode powder is not limited to this. Instead of titanium hydride (TiH),
  • a metal such as cobalt (Co), nickel (Ni), or iron (Fe) may be used.
  • the metal has a lower formability than these metals.
  • Other metals such as tungsten (W), molybdenum (Mo), and chromium (Cr) may be used.
  • carbide ceramics such as tungsten carbide (WC), chromium carbide, vanadium carbide, molybdenum carbide, niobium carbide, silicon carbide, etc. can be used. Titanium nitride (TiN), titanium boride (TiB), or the like may be used.
  • the metal to be mixed has conductivity, and it may be mixed in such a ratio that conductivity can be obtained when it becomes an electrode.
  • a single metal or a mixed metal may be used.
  • ceramics other than carbide ceramics when used for discharge surface treatment in oil, are components in which the carbide in the coating is not the electrode material itself.
  • the film thickness is about 5 m to 30 m when a dense film is formed. When a film thicker than this can be formed, the film is in a porous state.
  • the formed film contains about 30% or more of a metal component that does not become carbide.
  • a metal component that does not become carbide For this purpose, no carbide is formed or It is preferable that a metal material that is difficult to form, such as cobalt (Co), nickel (Ni), iron (Fe), etc., is contained in the electrode material at a volume ratio of about 40% or more.
  • chromium (Cr), tungsten (W), molybdenum (Mo), etc. are materials that form carbides. Chromium (Cr), tungsten (W), which does not completely become carbides in force discharge surface treatment Since the amount of molybdenum (Mo) metal remains in the coating is large, it is a material that can form a dense thick film.
  • Ease of formation of carbide by the material can be easily known from an Ellingham diagram or the like.
  • the particle size of the powder is 1
  • the electrode is formed with fine particles of about m or less, the electrode can be broken and melted under relatively small discharge conditions, so that a dense thick film can be formed.
  • the particle diameter of the electrode material will be described.
  • the electrode powder a force using titanium carbide (TiC) powder having a particle size of about 3 m and titanium hydride (TiH) powder having a particle size of about 10 m is shown below. There is a good reason.
  • TiC titanium carbide
  • TiH titanium hydride
  • the first boundary is around a particle size of 10 ⁇ m.
  • the particle size is about 10 ⁇ m or more, it becomes difficult to generate a stable discharge, and the formation of the coating itself becomes difficult. Therefore, by setting the particle size to about 10 m or less, it is possible to produce a discharge surface treatment electrode that can generate a discharge reliably and stably.
  • the second boundary is in the vicinity of 3 ⁇ m.
  • the particle size is about 3 m or less, it is easy to produce a uniformly compressed shaped body. If the electrodes cannot be compressed uniformly, the coating cannot be formed uniformly due to the difference in the density or hardness of the electrodes. Therefore, in order to form a uniform film, the average particle size must be about 3 ⁇ m or less. However, it is effective in the case of increasing the density of the electrode that a part of the electrode is mixed with a powder having a reasonably large particle size that may be mixed with a powder larger than about 3 m. is there.
  • the third boundary is around a particle size of 1 ⁇ m.
  • the particle size of the powder In order to form a coating, it is necessary to melt the electrode material powder. The larger the particle size of the powder, the greater the energy of the discharge pulse required to melt the powder. However, when the energy of the pulse discharge increases, the unit of the material to which the electrode force is supplied increases, resulting in a problem that voids increase in the film. For this reason, in order to form a dense film, it is preferable to melt a small powder with a discharge pulse of small energy, and for this purpose, the particle size is preferably about 1 ⁇ m or less.
  • the molding pressure is a force applied at a pressure of about 50 MPa to 200 MPa.
  • This pressure is not limited to this range because the range varies depending on the state of the mixture to be pressed. For example, a mixture of electrode powder and binder due to a small amount of binder, etc. When the viscosity of the coalescence is high, it is better to increase the pressure. For example, about 100 MPa to 300 MPa is an appropriate pressure.
  • the discharge surface treatment using the electrode manufactured by the method for manufacturing the electrode for discharge surface treatment according to the present embodiment will be described.
  • the electrode for discharge surface treatment in this embodiment can be used for processing of simple shaped parts and molds, it is mainly used for processing of complicated shaped parts having specific shapes and small parts. Is preferred.
  • a nodal discharge is generated between the electrode and the workpiece in an electrically insulating liquid or air, and heat is locally generated by the discharge energy.
  • the electrode material is transferred to the base material while melting the workpiece (base material) and the electrode material, thereby forming a coating film having strong adhesion without deformation of the parts.
  • FIG. 3 is a schematic diagram showing a schematic configuration of a discharge surface treatment apparatus that performs discharge surface treatment according to the present embodiment.
  • the discharge surface treatment apparatus according to the present embodiment includes an electrode 301 composed of the above-described titanium carbide (TiC) powder and titanium hydride (TiH) powder.
  • a machining fluid supply device (not shown) that immerses the oil as the machining fluid 303, the electrode 301 and the workpiece 302 in the machining fluid, or supplies the machining fluid 303 between the electrode 301 and the workpiece 302;
  • a discharge surface treatment power source 304 that generates a pulsed discharge (arc column 305) by applying a voltage between the electrode 301 and the workpiece 302 is provided.
  • the description of the other members directly related to the present invention such as a driving device for controlling the relative position between the discharge surface treatment power source 304 and the workpiece 302 is omitted.
  • the electrode 301 and the workpiece 302 are disposed opposite to each other in the force liquid 303 and the discharge surface treatment power supply 304 is placed in the machining liquid 303.
  • the force also generates a pulsed discharge between the electrode 301 and the workpiece 302.
  • a coating film of electrode material is formed on the surface of the workpiece by the discharge energy of the nodal discharge, and Forms a film of a substance in which the electrode material reacts with the discharge energy on the workpiece surface.
  • the polarity is negative on the electrode 301 side and positive on the workpiece 302 side.
  • a discharge arc column 305 is generated between the electrode 301 and the workpiece 302.
  • Figs. 41 and 42 show examples of discharge pulse conditions during discharge surface treatment
  • Fig.4-1 shows voltage waveforms applied between the electrode and workpiece during discharge
  • 42 shows the current waveform of the current that flows during discharge.
  • Time t2—tl is the pulse width te.
  • the voltage waveform at time t0 to t2 is repeatedly applied between both electrodes with a pause time to.
  • a pulsed voltage is applied between the discharge surface treatment electrode and the workpiece.
  • the electrical conditions of the discharge pulse during the discharge surface treatment are as shown in FIG.
  • the negative voltage of the electrode is shown on the horizontal axis (positive).
  • the electrode is broken by a current having a high peak waveform as shown in FIG. 8, and the melting is advanced by a current having a wide waveform having a low peak as shown in FIG.
  • the film can be formed on the workpiece 302 at a high speed.
  • a current value of about 10 A to 30 A is appropriate for the high peak waveform portion
  • a current value of about 2 A to 6 A for the current value of the wide waveform portion of the low peak width is the discharge duration (discharge pulse width). 4 / z 3-20 s was appropriate.
  • the current of the wide waveform part of the low peak is If it is lower than 2A, it will be difficult to continue the pulse of discharge, and the phenomenon of pulse cracking in which the current is interrupted will increase.
  • fusion layer (gradient structure layer) in which the structure of the material changes in an inclined manner at the boundary between the base material and the film as shown in FIG. .
  • Fig. 6 is an image showing an example of a cross-sectional state when a titanium carbide (TiC) film is formed on a work made of steel.
  • the A—A line is the approximate position of the workpiece (base material) surface before the titanium carbide (TiC) coating is formed.
  • the S—S line is the position on the workpiece surface after the titanium carbide (TiC) coating is formed.
  • the titanium carbide (TiC) coating is formed in region C between the S—S and B—B lines. Therefore, the fusion layer is the region between the A—A line and the B—B line.
  • curve I (Fe- ⁇ ⁇ ) shows the equivalent of iron content, and the higher this position, the greater the iron content.
  • the thickness of the fusion layer is determined by the magnitude of the pulse discharge energy in the discharge surface treatment, and the pulse discharge energy is thin when the pulse discharge energy is small. The energy of the pulse discharge is large. And it was amazing that it became thicker. If the thickness of the fusion layer is too thin, the adhesion of the coating will be weak, and if the energy of the pulse discharge is too great and the thickness of the fusion layer exceeds about 20 ⁇ m, the surface roughness of the coating will be reduced. It was found that the cracks were generated and many cracks were generated in the coating.
  • FIG. 7 shows the relationship between the thickness of the fusion layer and the adhesion of the coating.
  • Figure 8 shows the relationship between the thickness of the fusion layer and the deformation of the base metal.
  • the thickness force of the fusion layer which is a tilted structure, is less than m
  • the coating peels easily from the interface where the adhesion strength at the interface between the base material and the coating is weak.
  • the adhesion strength gradually increased, and when the thickness of the fusion layer exceeded 10 m, it was found that peeling at the interface was not observed.
  • the adhesion strength referred to here is, for example, a non-dimensional value obtained from a film tensile test.
  • the thickness of the fusion layer which is a tilted structure, is about 20 m to 30 m or more, the deformation of the base material suddenly increases. Therefore, in order not to cause a problem of deformation of the base material having a strong adhesion of the coating, it is necessary that the thickness of the fusion layer of the coating is in the range of several m to 30 ⁇ m.
  • the pulse condition for forming such a film requires a peak current value of 30 A or less and a pulse width of 200 s or less, more preferably a peak current value of 20 A or less and a pulse width. Is better than 20 ⁇ s. Under these conditions, the surface of the base material is melted to a thickness of about 20 ⁇ m, and as a result, the thickness of the fusion layer of the coating is in the range of several to 30 m.
  • peak current value is an average value of the peak current in the discharge pulse.
  • the force at which the current value of the rectangular waveform is the peak current value itself, as shown in Fig. 5, when there is a part with a high peak in the current waveform Is the average value of the current values during the time of the current pulse.
  • a high peak portion is provided in a part of the current waveform to form a coating film.
  • the formation performance may be improved. Specifically, when a high current is applied to the top of the current waveform, the electrode can be broken well, and as a result, the film formation rate can be increased. Therefore, for processing complex parts with small shapes, it is appropriate to apply a high current to the top, form a film under electrical conditions with a peak current value of 30 A or less and a pulse width of 200 ⁇ s or less! /
  • the electrode powders can be strongly bonded to each other, so that it is possible to provide a small discharge surface treatment electrode having a complicated shape. . Moreover, it is possible to easily and efficiently manufacture a small discharge surface treatment electrode having a complicated shape without performing post-processing.
  • the electrode for discharge surface treatment can be manufactured without performing post-treatment, there is no increase in cost due to post-processing, and electrode material by post-processing is not wasted, and the discharge surface treatment is not caused. Processing electrodes can be manufactured at low cost.
  • titanium carbide (TiC) powder and titanium hydride (TiH) powder are used.
  • the force carried describes the case of manufacturing a mixture by adding a binder consisting of Bruno "paraffin wax and polyethylene," chrome (Cr) 25 weight 0/0, nickel (Ni) 10 wt% of tungsten (W) 7% by weight, residual cobalt (Co) ”was dissolved in a metal and the electrode material with a particle size of about 1 ⁇ m of conoret (Co) alloy powder was used as a paraffin.
  • a binder in which wax and polyethylene were mixed at a volume ratio of about 1: 1 was prepared to produce a mixture, and an electrode for discharge surface treatment was produced.
  • the discharge surface treatment electrode according to the present embodiment is mixed, and the discharge surface treatment electrode is pressed into a mold except that the discharge surface treatment electrode is produced using the above mixture.
  • the process (pressing conditions) and the heating process conditions after compression molding are the same as in Embodiment 1 described above, and the electrical conditions and film characteristics in the discharge surface treatment using the manufactured electrodes are also the same. It is substantially the same.
  • FIG. 9 An example of a state of a cross section when a coating of a cobalt (Co) alloy is formed on a workpiece made of steel material, which is a workpiece, by discharge surface treatment using the discharge surface treatment electrode according to the present embodiment
  • a fusion layer in which the material changes in an inclined manner is formed at the boundary between the base material and the coating.
  • the EE line is the approximate position of the workpiece (base material) surface before the cobalt (Co) alloy film is formed.
  • the fusion layer is the region between the FF line and the GG line.
  • the thickness of the fusion layer is determined by the magnitude of the pulse discharge energy in the discharge surface treatment, and is thin when the pulse discharge energy is small, and the pulse discharge energy is large. And it was amazing that it became thicker. If the thickness of the fusion layer is too thin, the adhesion of the coating will be weak, and if the energy of the pulse discharge is too great and the thickness of the fusion layer exceeds about 20 ⁇ m, the surface roughness of the coating will be reduced. It was found that the cracks were generated and many cracks were generated in the coating.
  • an electrode material as an electrode material, a ratio of "chrome (Cr) 25 wt%, nickel (Ni) 10 by weight 0/0, tungsten (W) 7 wt%, remainder cobalt (Co)" Cobalt (Co) alloy powder with a particle size of about 1 ⁇ m prepared by melting the compounded metal was used, but the electrode material is not limited to this alloy. Specifically, a conoret (Co) alloy powder having another composition may be used, or a nickel (Ni) alloy powder, an iron (Fe) alloy powder, or the like may be used.
  • the formed coating contains about 30% or more of a metal component that does not form carbides.
  • cobalt (Co), nickel (Ni), iron (Fe), etc. which are metal materials, are contained in the electrode material at a volume ratio of about 40% or more.
  • these metals can be used alone or as a mixture.
  • chromium (Cr) is a material that forms carbides.
  • Cr chromium
  • the amount of chromium (Cr) metal that does not completely become carbides remains in the coating.
  • Mo molybdenum
  • tungsten (W) tungsten
  • wear The ease with which carbides are formed by the material can be easily determined from Ellingham diagrams.
  • the binder component is not limited to paraffin wax and polyethylene.
  • raffin wax stearic acid or wax such as zinc stearate may be used.
  • polyethylene a thermoplastic resin such as polypropylene or acrylic resin, or a protein material such as agar may be used as long as the substance exhibits a reversible reaction of sol-gel.
  • Agar and the like may be water-soluble substances such as water-soluble substances.
  • the particle size of the electrode material will be described.
  • the force using a cobalt (Co) alloy powder having a particle size of about 1 ⁇ m has the following reasons.
  • the inventors In the discharge surface treatment, the inventors have found that there are several significant boundaries within the category of particle size.
  • the first boundary is in the vicinity of a particle size of 10 ⁇ m.
  • the particle size is about 10 ⁇ m or more, it becomes difficult to generate a stable discharge, and the formation of the coating itself becomes difficult. Therefore, by setting the particle size to about 10 m or less, it is possible to produce a discharge surface treatment electrode that can generate a discharge reliably and stably.
  • the second boundary is in the vicinity of 3 ⁇ m.
  • the particle size is about 3 m or less, it is easy to produce a uniformly compressed shaped body. If the electrodes cannot be compressed uniformly, the coating cannot be formed uniformly due to the difference in the density or hardness of the electrodes. Therefore, in order to form a uniform film, the average particle size must be about 3 ⁇ m or less. However, it is effective in the case of increasing the density of the electrode that a part of the electrode is mixed with a powder having a reasonably large particle size that may be mixed with a powder larger than about 3 m. is there.
  • the third boundary is in the vicinity of a particle diameter of 1 ⁇ m.
  • the larger the particle size of the powder the greater the energy of the discharge pulse required to melt the powder.
  • the unit of the material to which the electrode force is supplied increases, resulting in a problem that voids increase in the film.
  • the molding pressure is a force set to about 50 MPa to 200 MPa as in the first embodiment.
  • This pressure is not limited to this range because the range varies depending on the state of the mixture to be press-fitted. For example, when the viscosity of the mixture of the electrode powder and the binder is high due to a small amount of the binder, it is better to increase the pressure. For example, an appropriate pressure is about 100 MPa to 300 MPa.
  • the bonding between the electrode powders can be strengthened as in the case of the first embodiment, a small discharge surface treatment electrode having a complicated shape is provided. It is possible. Further, as in the case of the first embodiment, it is possible to easily and efficiently manufacture a small discharge surface treatment electrode having a complicated shape without performing post-processing.
  • the electrode for discharge surface treatment can be manufactured without performing post-processing, the cost for post-processing does not increase, and the electrode material by post-processing does not occur, and the discharge surface treatment It is possible to manufacture the electrode for a low price.
  • a green compact (compression molded body) can be extruded using an extrusion molding machine 400 as shown in FIG.
  • FIG. 10 is a diagram for explaining the principle of the extrusion molding machine, and is a schematic diagram showing a part of the extrusion molding machine as a cross-sectional view.
  • compression molding 404 can also extrude the tip force of the die 402.
  • the opening shape of the tip of the die 402 is a shape corresponding to the electrode shape.
  • the discharge surface treatment electrode can be produced in the same manner as in Embodiment 1 except for the above-described forming method. it can.
  • the bonding between electrode powders can be strengthened in the same manner as in the first embodiment. It is possible to provide a surface treatment electrode. As in the case of Embodiment 1, a small discharge surface treatment electrode can be easily and efficiently manufactured without post-processing. In addition, according to the present embodiment, since the electrode for discharge surface treatment can be manufactured without performing post-processing, there is no increase in cost due to post-processing. It is possible to manufacture the surface treatment electrode at low cost.
  • the method for manufacturing a discharge surface treatment electrode according to the present invention is useful for manufacturing a discharge surface treatment electrode having a complicated shape.

Abstract

A process for producing an electrode for discharge surface treatment that is employed in a discharge surface treatment in which providing an electrode of molded powder obtained by molding of a metal powder or metal compound powder or ceramic powder, pulsed discharge is induced between the electrode and a work in a processing liquid or gas so that by the discharge energy, the work surface is provided with a coating of electrode material or a coating of substance resulting from reaction of the electrode material by the pulsed discharge energy. The process comprises feeding under pressure a mixture having plasticity obtained by mixing a metal powder or metal compound powder or ceramic powder with a binder into a die corresponding to electrode contour to thereby obtain a molded form and heating the molded form so as to remove binder components, thereby achieving production of an intended electrode.

Description

明 細 書  Specification
放電表面処理用電極の製造方法および放電表面処理方法  Discharge surface treatment electrode manufacturing method and discharge surface treatment method
技術分野  Technical field
[0001] 本発明は、金属粉末、金属の化合物の粉末または導電性のセラミックの粉末を成 形した成形粉体を電極として、加工液中または気中において電極とワークとの間にパ ルス状の放電を発生させ、そのエネルギーによりワーク表面に電極の材料力 なる被 膜または電極の材料がパルス状の放電のエネルギーにより反応した物質力もなる被 膜を形成する放電表面処理方法と、これに用いられる放電表面処理用電極の製造 方法に関するものである。  [0001] The present invention uses a molded powder formed of a metal powder, a metal compound powder, or a conductive ceramic powder as an electrode, and a pulse shape between the electrode and the workpiece in the working fluid or in the air. The discharge surface treatment method is used to form a film having the material force of the electrode on the workpiece surface or the film having the material force by reacting the electrode material by the energy of the pulsed discharge. The present invention relates to a method for producing a discharge surface treatment electrode.
背景技術  Background art
[0002] 従来、加工液中において電極とワークとの間にパルス状の放電を発生させ、そのェ ネルギーによりワーク表面に電極の材料カゝらなる被膜または電極の材料がパルス状 の放電のエネルギーにより反応した物質力 なる被膜を形成する液中放電加工法に よって被加工物表面をコーティングして、耐食性、耐磨耗性を高める技術が提案され ている (たとえば、特許文献 1参照)。  Conventionally, a pulsed discharge is generated between an electrode and a workpiece in the machining fluid, and the energy or energy of the coating or electrode material on the surface of the workpiece is caused by the energy generated on the workpiece surface. There has been proposed a technique for improving the corrosion resistance and wear resistance by coating the surface of a workpiece by a submerged electric discharge machining method that forms a film having a material force reacted by the above (for example, see Patent Document 1).
[0003] 特許文献 1にお ヽて示される技術は、電極材料として炭化物を形成しな ヽもしくは 形成しにくい金属材料をバインダであるワックスと混合し、これを金型に入れ、所定の プレス圧でパンチすることにより、圧縮成形された電極を製造するものである。 [0003] In the technique disclosed in Patent Document 1, a metal material that does not form carbide or is difficult to form as an electrode material is mixed with a wax that is a binder, and this is put into a mold, and a predetermined press pressure is applied. By punching with, a compression-molded electrode is manufactured.
[0004] 特許文献 1:国際公開第 2004Z011696号パンフレット [0004] Patent Document 1: International Publication No. 2004Z011696 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、プレスにより圧縮成形する方法では、プレスによる圧力を均一にする ために直方体、円柱等の単純形状の電極形成に限られてしまう。このため、特定の 部品の特定の場所への被膜形成を行う場合のように、ある程度、形状を持った部分 への処理のためには、単純形状で形成された電極を後加工し、所定の形状にする必 要がある。このように、単純形状の電極を必要な形状に加工する場合には、加工のた めのコストが増加する、加工を行った際に電極の材料が無駄になる、という問題があ る。 [0005] The method of compression molding with a press while pressing is limited to the formation of a simple electrode such as a rectangular parallelepiped or a cylinder in order to make the pressure by the press uniform. For this reason, in order to process a part having a certain shape, as in the case where a film is formed on a specific part of a specific part, an electrode formed in a simple shape is post-processed to a predetermined shape. It needs to be shaped. As described above, when a simple electrode is processed into a necessary shape, there are problems that the cost for the processing increases and the electrode material is wasted when the processing is performed. The
[0006] 本発明は、上記に鑑みてなされたものであって、複雑な形状の放電表面処理用電 極を後加工を行うことなく安価に製造することが可能な放電表面処理用電極の製造 方法、およびこの製造方法により製造された電極を用いた放電表面処理方法を得る ことを目的とする。  [0006] The present invention has been made in view of the above, and is capable of manufacturing a discharge surface treatment electrode having a complicated shape at low cost without performing post-processing. It is an object of the present invention to obtain a method and a discharge surface treatment method using an electrode produced by the production method.
課題を解決するための手段  Means for solving the problem
[0007] 上述した課題を解決し、目的を達成するために、本発明にカゝかる放電表面処理用 電極の製造方法は、金属粉末または金属の化合物の粉末またはセラミックの粉末を 成形した成形粉体を電極として、加工液中または気中において電極とワークとの間に パルス状の放電を発生させ、そのエネルギーによりワーク表面に電極の材料からなる 被膜または電極の材料がパルス上の放電のエネルギーにより反応した物質カゝらなる 被膜を形成する放電表面処理に用いられる放電表面処理用電極の製造方法であつ て、金属粉末または金属の化合物の粉末またはセラミックの粉末とバインダとを混合 して可塑性を有する混合体を作製する混合工程と、混合体を電極形状に対応した型 に圧入することにより成形して成形体を作製する成形工程と、成形体を加熱してバイ ンダの成分を除去する除去工程と、を含むことを特徴とする。 [0007] In order to solve the above-mentioned problems and achieve the object, a method for producing an electrode for discharge surface treatment according to the present invention comprises a metal powder, a metal compound powder, or a ceramic powder. Using the body as an electrode, a pulsed discharge is generated between the electrode and the workpiece in the machining fluid or in the air, and the energy of the coating or electrode material consisting of the electrode material on the workpiece surface is generated by the energy. A method of manufacturing an electrode for discharge surface treatment used for discharge surface treatment to form a film consisting of a substance that reacts with the metal, and is made by mixing a metal powder, a metal compound powder, or a ceramic powder with a binder to make plastic A mixing process for producing a mixture having a shape, a molding process for producing a molded body by pressing the mixture into a mold corresponding to the electrode shape, Characterized in that it comprises a removal step of removing the component of the bi Sunda to heat the body, the.
発明の効果  The invention's effect
[0008] 本発明にかかる放電表面処理用電極の製造方法は、電極粉末同士の結合が強く することができるため、形状が複雑な小さい放電表面処理用電極を後加工を行うこと なぐ容易に効率良く製造することができる、という効果を奏する。また、後加工を行う ことなく放電表面処理用電極を製造できるため、後加工によるコストの増加がなぐま た、後加工による電極材料が無駄が生じず、放電表面処理用電極を安価に製造す ることができる、という効果を奏する。  [0008] The method for producing an electrode for discharge surface treatment according to the present invention can strengthen the bonding between the electrode powders, so that the efficiency can be easily achieved without post-processing a small electrode for discharge surface treatment having a complicated shape. There is an effect that it can be manufactured well. In addition, since the electrode for discharge surface treatment can be manufactured without post-processing, the cost for post-processing is increased, and the electrode material for post-processing is not wasted, so that the electrode for discharge surface treatment can be manufactured at low cost. There is an effect that it can be.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、本発明の実施の形態 1にかかる放電表面処理用電極の製造方法を説 明するための図である。  FIG. 1 is a diagram for explaining a method for manufacturing an electrode for discharge surface treatment according to a first embodiment of the present invention.
[図 2-1]図 2—1は、本発明の実施の形態 1にかかる放電表面処理用電極の製造方 法を説明するための図である。 [図 2-2]図 2— 2は、本発明の実施の形態 1にかかる放電表面処理用電極の製造方 法を説明するための図である。 [FIG. 2-1] FIG. 2-1 is a diagram for explaining a method of manufacturing the electrode for discharge surface treatment according to the first embodiment of the present invention. [Fig. 2-2] Fig. 2-2 is a diagram for explaining a method of manufacturing the electrode for discharge surface treatment according to the first embodiment of the present invention.
[図 2-3]図 2— 3は、本発明の実施の形態 1にかかる放電表面処理用電極の製造方 法を説明するための図である。  [FIGS. 2-3] FIGS. 2-3 are diagrams for explaining a method of manufacturing the electrode for discharge surface treatment according to the first embodiment of the present invention.
[図 3]図 3は、本発明の実施の形態 1において放電表面処理を行う放電表面処理装 置の概略構成を示す模式図である。  FIG. 3 is a schematic diagram showing a schematic configuration of a discharge surface treatment apparatus that performs a discharge surface treatment in Embodiment 1 of the present invention.
[図 4-1]図 4 1は、放電表面処理時における放電のパルス条件の一例を示す図で あり、放電時の電極とワークとの間に力かる電圧波形を示す図である。  [FIG. 4-1] FIG. 41 is a diagram showing an example of a discharge pulse condition during discharge surface treatment, and a diagram showing a voltage waveform applied between an electrode and a workpiece during discharge.
[図 4-2]図 4 2は、放電表面処理時における放電のパルス条件の一例を示す図で あり、放電時に流れる電流の電流波形を示す図である。 [FIG. 4-2] FIG. 42 is a diagram showing an example of the pulse condition of the discharge during the discharge surface treatment, and is a diagram showing the current waveform of the current flowing during the discharge.
[図 5]図 5は、放電表面処理時における放電のパルス条件の一例を示す図である。  FIG. 5 is a diagram showing an example of discharge pulse conditions during discharge surface treatment.
[図 6]図 6は、鋼材力もなるワークに炭化チタン (TiC)被膜を形成した場合の断面の 状態の一例を示す画像である。 FIG. 6 is an image showing an example of a state of a cross section when a titanium carbide (TiC) film is formed on a workpiece having a steel material force.
[図 7]図 7は、融合層の厚みと被膜の密着力との関係を示す特性図である。  FIG. 7 is a characteristic diagram showing the relationship between the thickness of the fusion layer and the adhesion of the coating.
[図 8]図 8は、融合層の厚みと母材の変形量との関係を示す特性図である。  FIG. 8 is a characteristic diagram showing the relationship between the thickness of the fusion layer and the deformation amount of the base material.
[図 9]図 9は、被カ卩ェ物である鋼材力もなるワークにコバルト(Co)合金の被膜を形成 した場合の断面の状態の一例を示す画像である。  FIG. 9 is an image showing an example of a cross-sectional state when a cobalt (Co) alloy film is formed on a workpiece having a steel material force, which is a workpiece.
[図 10]図 10は、押し出し成形機の原理を説明するための図であり、押し出し成形機 の一部を断面図として示した模式図である。  FIG. 10 is a diagram for explaining the principle of an extrusion molding machine, and is a schematic diagram showing a part of the extrusion molding machine as a cross-sectional view.
符号の説明 Explanation of symbols
101 容器  101 containers
102 混合体  102 mixture
201 金型  201 mold
202 ノズル  202 nozzles
203 圧粉体 (圧縮成形体)  203 Compact (Compression molding)
301 電極  301 electrodes
302 ワーク  302 work
303 加工液 304 放電表面処理用電源 303 machining fluid 304 Discharge surface treatment power supply
305 アーク柱  305 arc pillar
400 成形機  400 molding machine
401 ホッパー  401 hopper
402 ダイス  402 dice
403 スクリュー  403 screw
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下に、本発明にかかる放電表面処理用電極の製造方法および放電表面処理方 法の実施例を図面に基づいて詳細に説明する。なお、本発明は以下の記述により限 定されるものではなぐ本発明の要旨を逸脱しない範囲において適宜変更可能であ る。 [0011] Hereinafter, embodiments of a method for producing a discharge surface treatment electrode and a discharge surface treatment method according to the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following description and can be appropriately changed without departing from the gist of the present invention.
実施の形態 1.  Embodiment 1.
[0012] 図 1および図 2— 1〜図 2〜3は、本発明の実施の形態 1にかかる放電表面処理用 電極の製造方法を説明するための図である。実施の形態 1にかかる放電表面処理用 電極の製造方法は、金属粉末、金属の化合物の粉末または導電性のセラミックの粉 末を成形した成形粉体を電極として、加工液中または気中にお!ヽて電極とワークとの 間にパルス状の放電を発生させ、そのエネルギーによりワーク表面に電極の材料か らなる被膜または電極の材料がパルス状の放電のエネルギーにより反応した物質か らなる被膜を形成する放電表面処理方法に用いる放電表面処理用電極の製造方法 である。  FIG. 1 and FIG. 2-1 to FIGS. 2 to 3 are diagrams for explaining a method for manufacturing an electrode for discharge surface treatment according to the first embodiment of the present invention. The method for producing an electrode for discharge surface treatment according to the first embodiment uses a metal powder, a metal compound powder, or a molded powder obtained by molding a conductive ceramic powder as an electrode in a working fluid or in the air. ! A pulsed discharge is generated between the electrode and the workpiece, and the coating of the electrode material on the surface of the workpiece or the coating of the material that reacts the electrode material with the energy of the pulsed discharge is generated by the energy. It is a manufacturing method of the electrode for discharge surface treatment used for the discharge surface treatment method which forms.
[0013] このような放電表面処理方法に用いる本実施の形態に力かる放電表面処理用電極 の製造方法は、電極材料となる粉末とバインダとを混合して可塑性を有する混合体を 作製し、ノズルを用いてこの混合体を所定の形状の割り型からなる金型に圧入するこ とにより圧縮成形体を形成し、さらに加熱処理を施すことにより放電表面処理用電極 とするものである。以下において、上述した放電表面処理用電極の製造の各工程に ついて図 1および図 2— 1〜図 2— 3を用いて詳細に説明する。  [0013] A method for producing a discharge surface treatment electrode used in this embodiment for such a discharge surface treatment method is to mix a powder as an electrode material and a binder to produce a plastic mixture, A compression molded body is formed by press-fitting this mixture into a mold made of a split mold having a predetermined shape using a nozzle, and a heat treatment is performed to obtain an electrode for discharge surface treatment. Hereinafter, each step of manufacturing the above-described electrode for discharge surface treatment will be described in detail with reference to FIG. 1 and FIGS. 2-1 to 2-3.
[0014] く混合体形成工程 >  [0014] Mixture Formation Process>
まず、電極の材料となる粉末 (以下、電極粉末と呼ぶ)とバインダとを容器 101内に おいて混合して可塑性を有する混合体 102を作製した。電極粉末としては、粒径約 3 μ m程度の炭化チタン (TiC)粉末と粒径約 10 μ m程度の水素化チタン (TiH )粉末 First, powder (hereinafter referred to as electrode powder) and a binder, which are electrode materials, are placed in the container 101. In this way, the mixture 102 having plasticity was prepared. The electrode powder includes titanium carbide (TiC) powder with a particle size of about 3 μm and titanium hydride (TiH) powder with a particle size of about 10 μm.
2 とを重量比 = 9 : 1の割合で混合した粉末を使用した。なお、水素化チタン (TiH )粉  2 was mixed at a weight ratio of 9: 1. Titanium hydride (TiH) powder
2 末は粒径が約 10 m程度である力 脆いために粉末を混合する過程で粉砕されて 炭化チタン (TiC)粉末と同程度以下の粒径になる。また、電極粉末に混合するバイ ンダとしては、ノラフィンワックスとポリエチレンとを、約 1: 1の体積比で混合したものを 用いた。  Since the powder at the end is brittle, it has a particle size of about 10 m or less and is pulverized in the process of mixing the powder to a particle size less than that of titanium carbide (TiC) powder. As the binder to be mixed with the electrode powder, a mixture of norafine wax and polyethylene in a volume ratio of about 1: 1 was used.
[0015] 電極粉末とバインダとの混合は、電極粉末とバインダとを約 1: 1の体積比で加え、 プレンダ一で数時間から 20時間程度連続して混鍊することにより行った。このとき、 混鍊は、まずパラフィンワックスとポリエチレンとを約 150°C〜200°Cの温度に加熱し て溶融状態にしておき、これに電極粉末を 10分〜 30分程度の時間をかけて徐々に 添加して行った。この混鍊の際に、バインダに対してステアリン酸などの界面活性剤 を粉末の重量の数%程度添加すると、電極粉末の凝集を防ぐ効果が得られた。以上 により、電極粉末とバインダとの混合体 102が作製される。  [0015] The mixing of the electrode powder and the binder was performed by adding the electrode powder and the binder in a volume ratio of about 1: 1, and kneading continuously for about several hours to about 20 hours with a single binder. At this time, in the kneading, first, paraffin wax and polyethylene are heated to a temperature of about 150 ° C. to 200 ° C. to be in a molten state, and then the electrode powder is taken for about 10 minutes to 30 minutes. Gradually added. During the kneading, when a surfactant such as stearic acid was added to the binder at about several percent of the weight of the powder, the effect of preventing aggregation of the electrode powder was obtained. In this way, a mixture 102 of electrode powder and binder is produced.
[0016] <圧粉体形成工程 >  [0016] <Green compact forming process>
つぎに、混合体 102を用いて圧粉体 (圧縮成形体)を形成した。圧粉体を形成する には、まず混合体 102を成形機(図示せず)に導入した。そして、図 2—1に示すよう に成形機に接続されたノズル 202に導入し、このノズル 202を用いて図 2— 2に示す ように混合体 102を所定の形状の割り型からなる金型 201に圧入した。圧入の際に は、 50MPa〜200MPa程度で混合体 102を金型 201に圧入することで、混合体 10 2を金型 201内にお ヽて圧縮成形する。  Next, a green compact (compression molded body) was formed using the mixture 102. In order to form a green compact, first, the mixture 102 was introduced into a molding machine (not shown). Then, it is introduced into a nozzle 202 connected to a molding machine as shown in FIG. 2-1, and using this nozzle 202, a mixture 102 is molded as a mold having a split mold as shown in FIG. Press fit into 201. At the time of press-fitting, the mixture 102 is press-fitted into the mold 201 by pressing the mixture 102 into the mold 201 at about 50 MPa to 200 MPa.
[0017] 金型 201に圧入された混合体 102は、該金型 201内で上記の圧力を加えたままの 状態で数十秒〜数十分程度の時間冷却される。これにより、ノインダがゲルイ匕して崩 れにくくなり、金型 201から成形体として取り出すことが可能になる。その後、図 2— 3 に示すように、金型 201を分解して圧粉体 (圧縮成形体) 203を取り出した。  [0017] The mixture 102 press-fitted into the mold 201 is cooled for a period of several tens of seconds to several tens of minutes while the pressure is applied in the mold 201. As a result, the noinda is gelled and is less likely to collapse and can be taken out from the mold 201 as a molded body. Thereafter, as shown in FIG. 2-3, the mold 201 was disassembled and the green compact (compression molded body) 203 was taken out.
[0018] <加熱処理工程 >  [0018] <Heat treatment process>
この圧粉体 (圧縮成形体) 203は、放電表面処理用の電極の元になるものではある 力 以下の理由により、このままでは放電表面処理用電極としては使用できる状態に はない。 This green compact (compression molded body) 203 is a source of the electrode for discharge surface treatment. For the following reasons, it can be used as an electrode for discharge surface treatment as it is. There is no.
[0019] (1)電極粉末の結合状態が弱ぐ通電が十分に行えない。また、電極粉末の結合 状態が弱いため、強度が弱ぐすぐに崩れてしまう。  [0019] (1) The bonding state of the electrode powder is weak, and current cannot be sufficiently supplied. In addition, since the bonding state of the electrode powder is weak, the strength is weak and it collapses immediately.
(2)バインダ成分が多く含まれて!/、るため、被膜中に不純物が混入するおそれがあ る。  (2) Because a large amount of binder component is included! / Impurities may be mixed in the coating.
[0020] そこで、電極粉末間の結合を強くするために、またバインダ成分を抜くために、圧粉 体 (圧縮成形体) 203を加熱処理して、該圧粉体 (圧縮成形体) 203を放電表面処理 用電極として使用できる状態にする加熱処理工程を実施する。  [0020] Therefore, in order to strengthen the bond between the electrode powders and to remove the binder component, the green compact (compression molded body) 203 is heat-treated, and the green compact (compression molded body) 203 is removed. A heat treatment step is performed to make the electrode ready for use as a discharge surface treatment electrode.
[0021] なお、本実施の形態における加熱処理工程は、一般的な金属射出成形における 焼結のように粉末を溶融させて成形体の密度を上げるものではなぐ放電表面処理 にお!、て被膜となる電極粉末の姿が残った状態で、電極粉末同士が接触する部分 での結合が強くなる程度の状態にすることを目的としている。  [0021] It should be noted that the heat treatment step in the present embodiment is a discharge surface treatment that does not increase the density of the molded body by melting the powder as in sintering in general metal injection molding! The purpose is to achieve a state in which the bonding at the portion where the electrode powders are in contact with each other becomes stronger with the electrode powder shape remaining as it is.
[0022] 電気抵抗では、四短針法で測定した電気抵抗を 1. 0 X 10— 3 Ω以上 3. 0 X 10— 2 Ω 未満程度とすると、放電表面処理用電極としての性能を満足することが実験からわか つている。したがって、四短針法で測定した電気抵抗を 1. 0 X 10— 3 Ω以上 3. 0 X 10" 2 Ω未満程度とするように加熱処理を行う。また、この加熱処理工程では、バインダの 割合が多い場合には圧粉体 (圧縮成形体) 203の収縮が多少生じる場合があるが、 通常はほとんど生じない。 [0022] In the electric resistance, when a 3 order of less than 0 X 10- 2 Ω electrical resistance measured 1. 0 X 10- 3 Ω or more by a four hour hand method, to satisfy the performance as the electrode for electrical-discharge surface treatment Is clear from the experiment. Thus, four were measured by the short hand method the electrical resistance 1. 0 X 10- 3 Ω or 3. performing 0 X 10 "heat treated to about less than 2 Omega. Further, in the heat treatment step, the proportion of the binder When there is a large amount, the green compact (compression molded body) 203 may shrink somewhat, but usually hardly occurs.
[0023] この加熱処理は、真空炉中で圧粉体 (圧縮成形体) 203の温度を 100°C〜300°C 程度までに 2時間くらいの時間をかけて昇温しながらパラフィンワックスを除去する。さ らに、圧粉体 (圧縮成形体) 203の温度を 400°C〜500°Cまで約 1時間程度の時間 をかけて昇温しながらポリエチレンを除去する。  [0023] This heat treatment removes the paraffin wax while raising the temperature of the green compact (compressed compact) 203 in a vacuum furnace over a period of about 2 hours from 100 ° C to 300 ° C. To do. In addition, the polyethylene is removed while the temperature of the green compact (compression molded body) 203 is raised from 400 ° C to 500 ° C over about 1 hour.
[0024] この加熱処理にお!、て、水素化チタン (TiH )は水素を放出し、チタン (Ti)となる。  In this heat treatment, titanium hydride (TiH 3) releases hydrogen to become titanium (Ti).
2  2
そして、該チタン (Ti)がバインダ (結合材)としての働きをし、電極粉末同士を結合す る働きをしている。ここで、ポリエチレンなどのバインダとの違いを説明すると、ポリエ チレンなどのバインダは加熱前の状態で粉末と粉末とをつなぐ役割を果たし、チタン (Ti)はポリエチレンなどのバインダが無くなった後に、炭化チタン (TiC)のような硬い 粉末同士をつなぐ役割を果たす。 [0025] その後、さらに圧粉体 (圧縮成形体) 203の温度を昇温させて 900°C〜1100°Cの 範囲の温度で 1時間〜 2時間保持した後、真空炉のヒーターを切り、真空炉内で酸 ィ匕防止のための自然冷却を行った。 The titanium (Ti) serves as a binder (binding material) and serves to bond the electrode powders together. Here, the difference from polyethylene and other binders is explained. Binders such as polyethylene play a role of connecting powders and powders before heating, and titanium (Ti) is carbonized after binders such as polyethylene are lost. It plays a role in connecting hard powders such as titanium (TiC). [0025] After that, the temperature of the green compact (compression molded body) 203 was further raised and held at a temperature in the range of 900 ° C to 1100 ° C for 1 hour to 2 hours, and then the heater of the vacuum furnace was turned off. Natural cooling was carried out in the vacuum furnace to prevent oxidation.
[0026] なお、上述した加熱処理温度は、電極粉末の状態や圧縮成形の圧力などの諸条 件により変化する。圧粉体 (圧縮成形体) 203の密度 (空間も含む圧粉体 (圧縮成形 体) 203の体積と重量とから計算される密度)が高い場合には、低めの温度が適切な 加熱処理温度となり、この密度が低い場合には、高めの温度が適切な加熱処理温度 となる傾向が確認された。これは、密度が高い場合には電極粉末同士が密着した状 態になっているので電極粉末同士の接触面積が大きぐ低い温度でも粉末間の結合 状態が強くなり易いためである。  [0026] The heat treatment temperature described above varies depending on various conditions such as the state of the electrode powder and the pressure of compression molding. If the density of the green compact (compression compact) 203 (the density calculated from the volume and weight of the compact (compression compact) 203 including the space) is high, a lower temperature is the appropriate heat treatment temperature. Thus, when this density was low, it was confirmed that a higher temperature tends to be an appropriate heat treatment temperature. This is because when the density is high, the electrode powders are in close contact with each other, and the bonding state between the powders tends to be strong even at a low temperature where the contact area between the electrode powders is large.
[0027] 特許文献 1に示されるように、従来はプレスにより電極材料を圧縮成形することが多 かった。しカゝしながら、本実施の形態に示すように金型に電極材料を圧入することで 圧縮成形を行うことにより、以下のような効果が得られる。  [0027] As shown in Patent Document 1, conventionally, an electrode material is often compression-molded by a press. However, the following effects can be obtained by performing compression molding by press-fitting an electrode material into a mold as shown in the present embodiment.
[0028] すなわち、プレスによる圧縮成形の場合には、投入した電極材料の混合体をパン チにより所定の圧力で圧縮するため、混合体の投入量に応じて圧縮後の形状が変 化する(放電表面処理により被膜を形成するための電極の固さはある特定範囲となる ことから、プレスによる圧力は所定範囲内で一定となる)。したがって、電極材量の投 入量を正確に管理しなくてはならな!、。  [0028] That is, in the case of compression molding with a press, the charged mixture of electrode materials is compressed by a punch with a predetermined pressure, so that the shape after compression changes according to the amount of the charged mixture ( Since the hardness of the electrode for forming the film by the discharge surface treatment is in a specific range, the pressure by pressing is constant within a predetermined range). Therefore, the amount of electrode material input must be accurately controlled!
[0029] それに対して、本実施の形態に示すように金型に電極材料の混合体を圧入する場 合は、電極材量の投入量を意識しなくても、圧入圧力を制御することで金型形状に 応じた電極が所定の硬さで圧縮成形されるため、電極の成形が容易である。  [0029] On the other hand, when the electrode material mixture is press-fitted into the mold as shown in the present embodiment, the press-fitting pressure is controlled without being aware of the amount of the electrode material. Since the electrode corresponding to the mold shape is compression-molded with a predetermined hardness, it is easy to mold the electrode.
[0030] なお、上記にお!、ては、炭化チタン (TiC)と水素化チタン (TiH )との 2種類の電極  [0030] It should be noted that there are two types of electrodes, titanium carbide (TiC) and titanium hydride (TiH).
2  2
粉末に、バインダとしてパラフィンワックスとポリエチレンとを加えた場合にっ 、て説明 したが、他の電極粉末やバインダを用いた場合でも、これらの混合体を金型へ圧入し て成形を行うことにより、上述した場合と同様に容易に放電表面処理用電極の製造を 行うことが可能である。  As described above, when paraffin wax and polyethylene are added to the powder as a binder, even when other electrode powders or binders are used, the mixture is pressed into a mold and molded. As in the case described above, it is possible to easily manufacture the discharge surface treatment electrode.
[0031] たとえば、バインダの成分はパラフィンワックスやポリエチレンだけに限るものではな ぐノ《ラフィンワックス以外にも、ステアリン酸ゃステアリン酸亜鉛などのワックス類でも 良い。また、ポリエチレン以外にも、ポリプロピレン、アクリル系榭脂などの熱可塑性榭 脂、あるいは、ゾルーゲルの可逆反応を示す物質であれば寒天などのタンパク質系 物質でも良い。また、寒天などは水溶性の物質である力 水溶性の物質でも良い。 [0031] For example, the binder component is not limited to paraffin wax or polyethylene. good. In addition to polyethylene, a thermoplastic resin such as polypropylene or acrylic resin, or a protein material such as agar may be used as long as it exhibits a reversible reaction of sol-gel. Agar and the like may be water-soluble substances such as water-soluble substances.
[0032] また、電極粉末もこれに限るものではなぐ水素化チタン (TiH )の代わりに、たとえ  [0032] In addition, electrode powder is not limited to this. Instead of titanium hydride (TiH),
2  2
ばコバルト(Co)、ニッケル (Ni)、鉄 (Fe)などのような金属を用いても良い。また、こ れらの金属よりは成形性が落ちる力 他の金属、タングステン (W)、モリブデン (Mo) 、クロム (Cr)などを用いても良い。また、炭化チタン (TiC)の代わりに、たとえば炭化 タングステン (WC)、炭化クロム、炭化バナジウム、炭化モリブデン、炭化ニオブ、炭 化珪素などの炭化物セラミックスを用いて良ぐまた導電性のセラミックスであれば、 窒化チタン (TiN)、硼化チタン (TiB )、などを用いても良い。導電性のセラミックスで  For example, a metal such as cobalt (Co), nickel (Ni), or iron (Fe) may be used. In addition, the metal has a lower formability than these metals. Other metals such as tungsten (W), molybdenum (Mo), and chromium (Cr) may be used. In addition, instead of titanium carbide (TiC), carbide ceramics such as tungsten carbide (WC), chromium carbide, vanadium carbide, molybdenum carbide, niobium carbide, silicon carbide, etc. can be used. Titanium nitride (TiN), titanium boride (TiB), or the like may be used. With conductive ceramics
2  2
無い場合でも、混合する金属が導電性を持ち、電極となったときに導電性が得られる 割合で混合すればよい。もちろん、金属単体あるいは混合したものでも良い。  Even when there is no such material, the metal to be mixed has conductivity, and it may be mixed in such a ratio that conductivity can be obtained when it becomes an electrode. Of course, a single metal or a mixed metal may be used.
[0033] ただし、炭化物セラミックスでな 、セラミックスは、油中での放電表面処理に使用し た場合には被膜中の成分が電極材料そのものではなぐ炭化物が混合した成分にな る。これらの硬質物質を主成分とした被膜の場合には、緻密な被膜を形成する場合 には、被膜厚さは 5 m〜30 m程度になる。これよりも厚い被膜を形成できる場合 には、被膜がポーラスな状態になっている。  [0033] However, ceramics other than carbide ceramics, when used for discharge surface treatment in oil, are components in which the carbide in the coating is not the electrode material itself. In the case of a film mainly composed of these hard substances, the film thickness is about 5 m to 30 m when a dense film is formed. When a film thicker than this can be formed, the film is in a porous state.
[0034] また、厚い緻密な被膜を形成するためには、形成された被膜中に炭化物にならな い金属成分が 30%程度以上含まれることが必要であり、そのためには炭化物を形成 しないもしくは形成しにくい金属材料、たとえばコバルト(Co)、ニッケル (Ni)、鉄 (Fe )などが電極材料中に体積比で 40%程度以上含まれて ヽることが好ま ヽ。  [0034] In addition, in order to form a thick and dense film, it is necessary that the formed film contains about 30% or more of a metal component that does not become carbide. For this purpose, no carbide is formed or It is preferable that a metal material that is difficult to form, such as cobalt (Co), nickel (Ni), iron (Fe), etc., is contained in the electrode material at a volume ratio of about 40% or more.
[0035] ただし、炭化物を形成する材料であっても炭化物を形成する反応のしゃすさには 差がある。たとえば、クロム (Cr)、タングステン (W)、モリブデン (Mo)などは炭化物を 形成する材料ではある力 放電表面処理においては完全には炭化物になるわけで はなぐクロム(Cr)、タングステン (W)、モリブデン (Mo)の金属のまま被膜中に残る 量も多いため、緻密な厚膜を形成することができる材料である。  [0035] However, even if the material forms carbide, there is a difference in the size of the reaction to form carbide. For example, chromium (Cr), tungsten (W), molybdenum (Mo), etc., are materials that form carbides. Chromium (Cr), tungsten (W), which does not completely become carbides in force discharge surface treatment Since the amount of molybdenum (Mo) metal remains in the coating is large, it is a material that can form a dense thick film.
[0036] 材料による炭化物の形成しやすさは、エリンガム図などで容易に知ることができる。  [0036] Ease of formation of carbide by the material can be easily known from an Ellingham diagram or the like.
また、炭化物を比較的作り易い材料であるモリブデン (Mo)でも、粉末の粒径を 1 m以下程度の微粒にして電極を形成すると、比較的小さな放電の条件で電極を崩し て溶融させることができるため、緻密な厚膜を形成させることができる。 Even with molybdenum (Mo), which is a relatively easy material to make carbide, the particle size of the powder is 1 When the electrode is formed with fine particles of about m or less, the electrode can be broken and melted under relatively small discharge conditions, so that a dense thick film can be formed.
[0037] つぎに、電極材料の粒径にっ 、て説明する。本実施の形態では、電極粉末として は、粒径約 3 m程度の炭化チタン (TiC)粉末と粒径約 10 m程度の水素化チタン (TiH )粉末とを使用した力 これには以下のような理由がある。放電表面処理におNext, the particle diameter of the electrode material will be described. In the present embodiment, as the electrode powder, a force using titanium carbide (TiC) powder having a particle size of about 3 m and titanium hydride (TiH) powder having a particle size of about 10 m is shown below. There is a good reason. For discharge surface treatment
2 2
いては、粒径の範隨こいくつかの有意な境界が存在することが発明者らの研究によ り見出された。  In our study, the inventors found that there were some significant boundaries within the category of particle size.
[0038] 1つ目の境界は、粒径 10 μ m近傍である。粒径が 10 μ m程度以上になると、安定 して放電を発生させることが困難になり、被膜の形成そのものが困難になる。したがつ て、粒径を 10 m程度以下とすることにより、確実に安定して放電を発生させることが 可能な放電表面処理用電極を作製することができる。  [0038] The first boundary is around a particle size of 10 μm. When the particle size is about 10 μm or more, it becomes difficult to generate a stable discharge, and the formation of the coating itself becomes difficult. Therefore, by setting the particle size to about 10 m or less, it is possible to produce a discharge surface treatment electrode that can generate a discharge reliably and stably.
[0039] 2つ目の境界は、 3 μ m近傍である。プレスや本実施の形態のような圧入のような粉 末材料の圧縮成形において、粒径が 3 m程度以下になると、均一に圧縮された成 形体を作りやすくなることが見出された。電極の圧縮が均一に行えないと、電極の密 度または硬さの差により被膜が均一に形成できなくなる。このため、均一な被膜の形 成のためには、平均粒径が 3 μ m程度以下であることが必要である。ただし、電極中 の一部には 3 m程度よりも大きな粉末が混ざっていてもよぐ適度に大きな粒径の 粉末が混ざって 、ることは、電極の密度を上げた 、場合には有効である。  [0039] The second boundary is in the vicinity of 3 μm. In the compression molding of powder materials such as press and press-fitting as in this embodiment, it has been found that when the particle size is about 3 m or less, it is easy to produce a uniformly compressed shaped body. If the electrodes cannot be compressed uniformly, the coating cannot be formed uniformly due to the difference in the density or hardness of the electrodes. Therefore, in order to form a uniform film, the average particle size must be about 3 μm or less. However, it is effective in the case of increasing the density of the electrode that a part of the electrode is mixed with a powder having a reasonably large particle size that may be mixed with a powder larger than about 3 m. is there.
[0040] 3つ目の境界は、粒径 1 μ m近傍である。被膜を形成するためには、電極材料であ る粉末を溶融させる必要がある力 粉末の粒径が大きいほど粉末を溶融させるのに 必要な放電パルスのエネルギーは大きくなる。しかしながら、パルス放電のエネルギ 一が大きくなると電極力も供給される材料の単位が大きくなることになり、その結果被 膜に空隙が増えるという問題がある。このことから、緻密な被膜を形成するためには、 小さな粉末を小さなエネルギーの放電パルスで溶融させることが好ましく、このために は粒径を 1 μ m程度以下にすることが好ましい。  [0040] The third boundary is around a particle size of 1 μm. In order to form a coating, it is necessary to melt the electrode material powder. The larger the particle size of the powder, the greater the energy of the discharge pulse required to melt the powder. However, when the energy of the pulse discharge increases, the unit of the material to which the electrode force is supplied increases, resulting in a problem that voids increase in the film. For this reason, in order to form a dense film, it is preferable to melt a small powder with a discharge pulse of small energy, and for this purpose, the particle size is preferably about 1 μm or less.
[0041] また、成形圧も本実施の形態では 50MPa〜200MPa程度の圧力で行った力 こ の圧力は、圧入する混合体の状態により範囲が変わるため、この範囲に限るもので はない。たとえば、バインダの量が少ないなどの理由により電極粉末とバインダとの混 合体の粘度が高い場合には圧力を高くする方が良ぐたとえば 100MPa〜300MP a程度が適切な圧力となる。 [0041] Further, in this embodiment, the molding pressure is a force applied at a pressure of about 50 MPa to 200 MPa. This pressure is not limited to this range because the range varies depending on the state of the mixture to be pressed. For example, a mixture of electrode powder and binder due to a small amount of binder, etc. When the viscosity of the coalescence is high, it is better to increase the pressure. For example, about 100 MPa to 300 MPa is an appropriate pressure.
[0042] 一方、バインダの量が多いなどの理由により混合体の粘度が低い場合には、圧力 が低くても成形は可能になり、たとえば 30MPa〜100MPa程度が適切な圧力となる 。ただし、バインダの量が多い場合には、後の加熱の工程で収縮などの問題が生じ る場合がある。 [0042] On the other hand, when the viscosity of the mixture is low due to a large amount of binder or the like, molding is possible even when the pressure is low. For example, an appropriate pressure is about 30 MPa to 100 MPa. However, when the amount of the binder is large, problems such as shrinkage may occur in the subsequent heating process.
[0043] つぎに、本実施の形態にかかる放電表面処理用電極の製造方法により製造した電 極を用いた放電表面処理について説明する。本実施の形態における放電表面処理 用電極は、単純な形状の部品や金型の処理にも使用できるが、主に特定の形状を 有した複雑な形状の部品や小さな部品への処理に用いて好適である。  [0043] Next, the discharge surface treatment using the electrode manufactured by the method for manufacturing the electrode for discharge surface treatment according to the present embodiment will be described. Although the electrode for discharge surface treatment in this embodiment can be used for processing of simple shaped parts and molds, it is mainly used for processing of complicated shaped parts having specific shapes and small parts. Is preferred.
[0044] そこで、本実施の形態では、電気絶縁性のある液中または気中にて電極と被加工 物との間にノ ルス状の放電を発生させ、その放電エネルギーにより局部的に熱を加 えながら被加工物(母材)と電極材料を溶融しつつ電極の材料を母材に移行させるこ とで、部品の変形がなく強い密着力の被膜を形成させる。  [0044] Therefore, in the present embodiment, a nodal discharge is generated between the electrode and the workpiece in an electrically insulating liquid or air, and heat is locally generated by the discharge energy. In addition, the electrode material is transferred to the base material while melting the workpiece (base material) and the electrode material, thereby forming a coating film having strong adhesion without deformation of the parts.
[0045] 以下、被処理材 (ワーク)上に被膜を形成する放電表面処理方法について説明す る。本実施の形態にぉ ヽて放電表面処理を行う放電表面処理装置の概略構成を示 す模式図を図 3に示す。図 3に示すように本実施の形態に力かる放電表面処理装置 は、上述した炭化チタン (TiC)粉末と水素化チタン (TiH )粉末とからなる電極 301と  [0045] Hereinafter, a discharge surface treatment method for forming a film on a workpiece (workpiece) will be described. FIG. 3 is a schematic diagram showing a schematic configuration of a discharge surface treatment apparatus that performs discharge surface treatment according to the present embodiment. As shown in FIG. 3, the discharge surface treatment apparatus according to the present embodiment includes an electrode 301 composed of the above-described titanium carbide (TiC) powder and titanium hydride (TiH) powder.
2  2
、加工液 303である油と、電極 301とワーク 302とを加工液中に浸漬させる、または電 極 301とワーク 302との間に加工液 303を供給する加工液供給装置(図示せず)と、 電極 301とワーク 302との間に電圧を印加してパルス状の放電(アーク柱 305)を発 生させる放電表面処理用電源 304とを備えて構成されている。なお、図 3においては 、放電表面処理用電源 304とワーク 302との相対位置を制御する駆動装置などの本 発明に直接関係のな ヽ部材は記載を省略して 、る。  A machining fluid supply device (not shown) that immerses the oil as the machining fluid 303, the electrode 301 and the workpiece 302 in the machining fluid, or supplies the machining fluid 303 between the electrode 301 and the workpiece 302; A discharge surface treatment power source 304 that generates a pulsed discharge (arc column 305) by applying a voltage between the electrode 301 and the workpiece 302 is provided. In FIG. 3, the description of the other members directly related to the present invention such as a driving device for controlling the relative position between the discharge surface treatment power source 304 and the workpiece 302 is omitted.
[0046] この放電表面処理装置によりワーク表面に被膜を形成するには、電極 301とワーク 302とを力卩ェ液 303の中で対向配置し、加工液 303中において放電表面処理用電 源 304力も電極 301とワーク 302との間にパルス状の放電を発生させる。そして、ノ ルス状の放電の放電エネルギーにより電極材料の被膜をワーク表面に形成し、また は放電エネルギーにより電極材料が反応した物質の被膜をワーク表面に形成する。 極性は、電極 301側がマイナス、ワーク 302側がプラスの極性を使用する。図 3に示 すように放電のアーク柱 305は電極 301とワーク 302との間に発生する。 In order to form a coating film on the workpiece surface by this discharge surface treatment apparatus, the electrode 301 and the workpiece 302 are disposed opposite to each other in the force liquid 303 and the discharge surface treatment power supply 304 is placed in the machining liquid 303. The force also generates a pulsed discharge between the electrode 301 and the workpiece 302. Then, a coating film of electrode material is formed on the surface of the workpiece by the discharge energy of the nodal discharge, and Forms a film of a substance in which the electrode material reacts with the discharge energy on the workpiece surface. The polarity is negative on the electrode 301 side and positive on the workpiece 302 side. As shown in FIG. 3, a discharge arc column 305 is generated between the electrode 301 and the workpiece 302.
[0047] このような条件で作製された圧粉体電極を用いて放電表面処理を行!ヽ、被膜を形 成した。放電表面処理を行う場合の放電のパルス条件の一例を図 4 1と図 4 2と に示す。図 4 1と図 4 2は、放電表面処理時における放電のパルス条件の一例を 示す図であり、図 4—1は、放電時の電極とワークとの間に力かる電圧波形を示し、図 4 2は、放電時に流れる電流の電流波形を示している。  [0047] Using the green compact electrode produced under such conditions, discharge surface treatment was performed to form a coating. Examples of discharge pulse conditions when performing discharge surface treatment are shown in Figs. 41 and 42. Fig.41 and Fig.42 show examples of discharge pulse conditions during discharge surface treatment, and Fig.4-1 shows voltage waveforms applied between the electrode and workpiece during discharge. 42 shows the current waveform of the current that flows during discharge.
[0048] 図 4—1に示されるように時刻 tOで両極間に無負荷電圧 uiがかけられる力 放電遅 れ時間 td経過後の時刻 tlに両極間に電流が流れ始め、放電が始まる。このときの電 圧が放電電圧 ueであり、このとき流れる電流がピーク電流値 ieである。そして時刻 t2 で両極間への電圧の供給が停止されると、電流は流れなくなる。  [0048] As shown in Fig. 4-1, the force at which no-load voltage ui is applied between both poles at time tO. At time tl after the discharge delay time td has elapsed, current begins to flow between both poles, and discharge begins. The voltage at this time is the discharge voltage ue, and the current flowing at this time is the peak current value ie. When the voltage supply between the two electrodes is stopped at time t2, no current flows.
[0049] 時刻 t2— tlがパルス幅 teである。この時刻 t0〜t2における電圧波形を、休止時間 toをおいて繰り返して両極間に印加する。つまり、この図 4—1に示されるように、放 電表面処理用電極とワークとの間に、パルス状の電圧を印カ卩させる。  [0049] Time t2—tl is the pulse width te. The voltage waveform at time t0 to t2 is repeatedly applied between both electrodes with a pause time to. In other words, as shown in Fig. 4-1, a pulsed voltage is applied between the discharge surface treatment electrode and the workpiece.
[0050] 本実施の形態においては放電表面処理時の放電パルスの電気的な条件は、図 4  In the present embodiment, the electrical conditions of the discharge pulse during the discharge surface treatment are as shown in FIG.
2に示すような電流波形が矩形波状の条件の場合には、ピーク電流値 ie = 2A〜l 0A、放電持続時間(放電パルス幅) te = 5 s〜20 μ sが適切な条件である力 この 範囲は上記電極の崩れやすさにより前後する場合がある。また、放電のパルスにより 電極をよりよく崩すためには、図 5に示すように放電パルスの期間中に幅が狭くピーク が高い電流を加えた波形が有効であることがわ力つてきた。ここで、図 5においては、 電極マイナスの電圧を横軸上 (正)として記載してある。  When the current waveform shown in Fig. 2 is a rectangular wave condition, the peak current value ie = 2A to l 0A and the discharge duration (discharge pulse width) te = 5 s to 20 μs are appropriate conditions. This range may vary depending on the ease of collapse of the electrode. In addition, as shown in Fig. 5, it has become apparent that a waveform with a current having a narrow width and a high peak is effective during the discharge pulse period in order to break the electrode better with the discharge pulse. Here, in FIG. 5, the negative voltage of the electrode is shown on the horizontal axis (positive).
[0051] このような電流波形を使用すると、図 8に示すような高いピークの波形の電流により 電極を崩し、図 5に示すような低いピークの幅の広い波形の電流により溶融を進める ことができ、ワーク 302に被膜を速い速度で形成することが可能である。この場合、高 いピークの波形の部分は電流値が 10A〜30A程度が適切であり、低いピークの幅 の広い波形の部分の電流は電流値が 2A〜6A程度、放電持続時間(放電パルス幅 )が 4 /z 3〜20 s程度が適切であった。低いピークの幅の広い波形の部分の電流が 2Aより低いと、放電のパルスを継続することが難しくなり、途中で電流が途切れるパ ルス割れの現象が多くなるようになる。 [0051] When such a current waveform is used, the electrode is broken by a current having a high peak waveform as shown in FIG. 8, and the melting is advanced by a current having a wide waveform having a low peak as shown in FIG. The film can be formed on the workpiece 302 at a high speed. In this case, a current value of about 10 A to 30 A is appropriate for the high peak waveform portion, and a current value of about 2 A to 6 A for the current value of the wide waveform portion of the low peak width is the discharge duration (discharge pulse width). 4 / z 3-20 s was appropriate. The current of the wide waveform part of the low peak is If it is lower than 2A, it will be difficult to continue the pulse of discharge, and the phenomenon of pulse cracking in which the current is interrupted will increase.
[0052] そして、このようにして形成された被膜は、図 6に示すように母材と被膜の境界に材 料の組織が傾斜的に変化する融合層(傾斜組織層)を形成している。図 6は、鋼材か らなるワークに炭化チタン (TiC)被膜を形成した場合の断面の状態の一例を示す画 像である。 [0052] The film thus formed forms a fusion layer (gradient structure layer) in which the structure of the material changes in an inclined manner at the boundary between the base material and the film as shown in FIG. . Fig. 6 is an image showing an example of a cross-sectional state when a titanium carbide (TiC) film is formed on a work made of steel.
[0053] 図 6においては、 A— A線が炭化チタン (TiC)被膜形成前のワーク (母材)表面の おおよその位置である。また、 S— S線が炭化チタン (TiC)被膜形成後のワーク表面 の位置である。炭化チタン (TiC)被膜は、 S— S線と B— B線との間の領域 Cに形成さ れている。したがって、融合層は、 A— A線と B— B線との間の領域である。  In FIG. 6, the A—A line is the approximate position of the workpiece (base material) surface before the titanium carbide (TiC) coating is formed. The S—S line is the position on the workpiece surface after the titanium carbide (TiC) coating is formed. The titanium carbide (TiC) coating is formed in region C between the S—S and B—B lines. Therefore, the fusion layer is the region between the A—A line and the B—B line.
[0054] また、図 6におけるライン L— Lに沿って Fe— Κ αと Ti— k aについて線分析を行つ た結果を重ねて示す。  [0054] Further, the results of the line analysis of Fe-Κα and Ti-ka along the line LL in Fig. 6 are overlapped.
[0055] 図 6において曲線 I (Fe— Κ α )は、鉄の含有量相当を示すものであり、この位置が 高いほど鉄の含有量が多い。また、 Ti— ko; )は、チタンの含有量相当を示すもの であり、この位置が高 、ほどチタンの含有量が多!、。  [0055] In Fig. 6, curve I (Fe- Κ α) shows the equivalent of iron content, and the higher this position, the greater the iron content. Ti-ko;) indicates the equivalent of titanium content. The higher this position, the higher the titanium content! ,.
[0056] 図 6より、ワークの表面ほどチタン (Ti)元素が多ぐ徐々に母材である鉄 (Fe)が増 えてくることがわかる。また、ワークの最表面近くで Ti— k aの強度が下がっているの は、試験片のエッジのだれによるものであり、実際には最表面では Tiは多くなつてい る。  [0056] From FIG. 6, it can be seen that the amount of titanium (Ti) element increases as the surface of the workpiece increases, and iron (Fe), the base material, gradually increases. Moreover, the decrease in Ti-ka strength near the outermost surface of the workpiece is due to the edge of the specimen, and in fact, Ti is increasing on the outermost surface.
[0057] なお、発明者らの実験によると、この融合層の厚みは、放電表面処理におけるパル ス放電のエネルギーの大きさにより決まり、パルス放電のエネルギーが小さいと薄ぐ パルス放電のエネルギーが大きいと厚くなることがわ力つた。そして、融合層の厚み が薄すぎる場合には被膜の密着力が弱くなり、またパルス放電のエネルギーが大き すぎて融合層の厚みが 20 μ m程度を超える場合には被膜の表面の面粗さが粗くな り、し力も被膜にクラックが多く発生することがわ力 た。  [0057] According to the inventors' experiment, the thickness of the fusion layer is determined by the magnitude of the pulse discharge energy in the discharge surface treatment, and the pulse discharge energy is thin when the pulse discharge energy is small. The energy of the pulse discharge is large. And it was amazing that it became thicker. If the thickness of the fusion layer is too thin, the adhesion of the coating will be weak, and if the energy of the pulse discharge is too great and the thickness of the fusion layer exceeds about 20 μm, the surface roughness of the coating will be reduced. It was found that the cracks were generated and many cracks were generated in the coating.
[0058] 本実施の形態における放電表面処理と他の技術と比較してみても、溶射などのよう な密着力の弱い被膜には、このような融合層がほとんど見られない。また、 PVD (物 理蒸着)や CVD (化学蒸着)でも融合層は、: L m程度の薄いものであることから、溶 射や PVDなどでは、被膜が容易に剥離する。なお、 CVDでは、融合層(拡散層)は PVDよりは厚いが、母材が高温になるため、母材の変形が大きくなる。 [0058] Even when compared with the discharge surface treatment in the present embodiment and other techniques, such a fusion layer is hardly seen in a coating with weak adhesion such as thermal spraying. In PVD (physical vapor deposition) and CVD (chemical vapor deposition), the fusion layer is as thin as The coating easily peels off when shooting or PVD. In CVD, the fusion layer (diffusion layer) is thicker than PVD, but the deformation of the base material increases because the base material becomes hot.
[0059] 本実施の形態におけるパルス放電を用いた技術でも、パルス放電のエネルギーを 大きくして融合層の厚みを厚くしていくと、クラックが生じ、母材の変形も大きくなる。し 力しながら、実験により、融合層の厚みの範囲が数 πι〜20 /ζ πι程度であることが、 被膜の密着力が強ぐ母材に変形やクラックを生じさせないための最適な条件である ことがわかった。 [0059] Even in the technique using pulse discharge in the present embodiment, when the energy of pulse discharge is increased to increase the thickness of the fusion layer, cracks occur and deformation of the base material also increases. However, by experiments, the fusion layer thickness range of several πι to 20 / ζ πι is the optimum condition for preventing deformation and cracks in the base material with strong coating adhesion. I found out that there was.
[0060] 図 7に、融合層の厚みと被膜の密着力との関係を示す。また、図 8に、融合層の厚 みと母材の変形量との関係を示す。図 7に示すように傾斜組織である融合層の厚み 力 m以下である場合には母材と被膜との界面の密着強度が弱ぐ界面から被膜 が剥離しやすいことがわ力つた。また、融合層の厚みが厚くなるにつれて徐々に密着 強度が強くなり、融合層の厚みが 10 m以上になると、界面での剥離は見られなくな ることがわ力つた。なお、ここでいう密着強度は、たとえば被膜の引っ張り試験で求め られる値を無次元化したものである。  [0060] FIG. 7 shows the relationship between the thickness of the fusion layer and the adhesion of the coating. Figure 8 shows the relationship between the thickness of the fusion layer and the deformation of the base metal. As shown in Fig. 7, when the thickness force of the fusion layer, which is a tilted structure, is less than m, the coating peels easily from the interface where the adhesion strength at the interface between the base material and the coating is weak. In addition, as the thickness of the fusion layer increased, the adhesion strength gradually increased, and when the thickness of the fusion layer exceeded 10 m, it was found that peeling at the interface was not observed. The adhesion strength referred to here is, for example, a non-dimensional value obtained from a film tensile test.
[0061] また、図 8に示すように、傾斜組織である融合層の厚みが 20 m〜30 m程度以 上になると急激に母材の変形が大きくなることがわ力つた。したがって、被膜の密着 力が強ぐ母材の変形の問題が生じないためには、被膜の融合層の厚みが数 m〜 30 μ mの範囲にあることが必要である。  [0061] Further, as shown in FIG. 8, when the thickness of the fusion layer, which is a tilted structure, is about 20 m to 30 m or more, the deformation of the base material suddenly increases. Therefore, in order not to cause a problem of deformation of the base material having a strong adhesion of the coating, it is necessary that the thickness of the fusion layer of the coating is in the range of several m to 30 μm.
[0062] このような被膜を形成するためのパルス条件は、ピーク電流値が 30A以下、パルス 幅が 200 s以下であることが必要であり、より好ましくは、ピーク電流値が 20A以下 、パルス幅が 20 μ s以下が良い。この範囲の条件では、母材の表面を 20 μ m程度の 厚みで溶融させるため、結果として被膜の融合層の厚みが数 mから 30 mの範囲 になる。  [0062] The pulse condition for forming such a film requires a peak current value of 30 A or less and a pulse width of 200 s or less, more preferably a peak current value of 20 A or less and a pulse width. Is better than 20 μs. Under these conditions, the surface of the base material is melted to a thickness of about 20 μm, and as a result, the thickness of the fusion layer of the coating is in the range of several to 30 m.
[0063] なお、ここでいうピーク電流値は、放電パルスの中でのピーク電流の平均値である。  Note that the peak current value here is an average value of the peak current in the discharge pulse.
つまり、電流波形が図 4 2のように矩形波の場合には、矩形波状の電流値がピーク 電流値そのものになる力 図 5のように電流波形中の一部に高いピークの部分がある 場合には、その電流パルスの時間中の電流値の平均値である。  In other words, when the current waveform is a square wave as shown in Fig. 42, the force at which the current value of the rectangular waveform is the peak current value itself, as shown in Fig. 5, when there is a part with a high peak in the current waveform Is the average value of the current values during the time of the current pulse.
[0064] 放電表面処理では、電流波形中の一部に高いピークの部分を設けることで、被膜 形成の性能を上げることができる場合があることが発明者らの研究で明らかになって いる。具体的には、電流波形の先頭に高い電流を流すと、電極をよく崩すことができ 、その結果、成膜速度を上昇させることができる。したがって、複雑形状の小さな部品 などへの処理には、先頭に高い電流を流し、ピーク電流値が 30A以下、パルス幅が 200 μ s以下の電気条件により被膜を形成することが適して!/、る。 [0064] In the discharge surface treatment, a high peak portion is provided in a part of the current waveform to form a coating film. Inventors' research has shown that the formation performance may be improved. Specifically, when a high current is applied to the top of the current waveform, the electrode can be broken well, and as a result, the film formation rate can be increased. Therefore, for processing complex parts with small shapes, it is appropriate to apply a high current to the top, form a film under electrical conditions with a peak current value of 30 A or less and a pulse width of 200 μs or less! /
[0065] 以上において説明したように、本実施の形態によれば、電極粉末同士の結合が強 くすることができるため、形状が複雑な小さい放電表面処理用電極を提供することが 可能である。また、形状が複雑な小さい放電表面処理用電極を、後加工を行うことな ぐ容易に効率良く製造することが可能である。また、本実施の形態によれば、後加 ェを行うことなく放電表面処理用電極を製造できるため、後加工によるコストの増加 がなぐまた、後加工による電極材料が無駄が生じず、放電表面処理用電極を安価 に製造することが可能である。  [0065] As described above, according to the present embodiment, the electrode powders can be strongly bonded to each other, so that it is possible to provide a small discharge surface treatment electrode having a complicated shape. . Moreover, it is possible to easily and efficiently manufacture a small discharge surface treatment electrode having a complicated shape without performing post-processing. In addition, according to the present embodiment, since the electrode for discharge surface treatment can be manufactured without performing post-treatment, there is no increase in cost due to post-processing, and electrode material by post-processing is not wasted, and the discharge surface treatment is not caused. Processing electrodes can be manufactured at low cost.
[0066] そして、本実施の形態に力かる放電表面処理用電極を用いて放電表面処理を行う ことにより、部品との密着力が強い被膜を形成することができる。これにより、放電表 面処理で形成した被膜と部品との密着力が強ぐ熱歪みや割れを発生させない放電 表面処理用電極を提供することが可能である。  [0066] Then, by performing discharge surface treatment using the discharge surface treatment electrode that works according to the present embodiment, it is possible to form a film having strong adhesion to the component. As a result, it is possible to provide an electrode for discharge surface treatment that does not generate thermal distortion or cracking, in which the adhesion between the coating formed by the discharge surface treatment and the component is strong.
[0067] 実施の形態 2.  [0067] Embodiment 2.
上述した実施の形態 1では、炭化チタン (TiC)粉末と水素化チタン (TiH )粉末に  In Embodiment 1 described above, titanium carbide (TiC) powder and titanium hydride (TiH) powder are used.
2 2
、ノ《ラフィンワックスとポリエチレンとからなるバインダを加えて混合体を作製した場合 について説明した力 実施の形態 2では、「クロム(Cr) 25重量0 /0、ニッケル (Ni) 10 重量%、タングステン (W) 7重量%、残コバルト(Co)」の比率で配合された金属を溶 解して作製された粒径約 1 μ mのコノ レト(Co)合金粉末力もなる電極材料に、パラ フィンワックスとポリエチレンとを約 1: 1の体積比で混合したバインダをカ卩えて混合体 を作製し、放電表面処理用電極を作製した。 , In the second the force carried describes the case of manufacturing a mixture by adding a binder consisting of Bruno "paraffin wax and polyethylene," chrome (Cr) 25 weight 0/0, nickel (Ni) 10 wt% of tungsten (W) 7% by weight, residual cobalt (Co) ”was dissolved in a metal and the electrode material with a particle size of about 1 μm of conoret (Co) alloy powder was used as a paraffin. A binder in which wax and polyethylene were mixed at a volume ratio of about 1: 1 was prepared to produce a mixture, and an electrode for discharge surface treatment was produced.
[0068] なお、本実施の形態に力かる放電表面処理用電極は、上記の混合体を用いて放 電表面処理用電極を作製したこと以外は、混合体の混鍊、金型への圧入工程 (圧入 条件)、圧縮成形圧入後の加熱工程の条件に関しては、上述した実施の形態 1と同 様であり、製造された電極を用いての放電表面処理における電気条件、被膜特性も 略同様である。 [0068] It should be noted that the discharge surface treatment electrode according to the present embodiment is mixed, and the discharge surface treatment electrode is pressed into a mold except that the discharge surface treatment electrode is produced using the above mixture. The process (pressing conditions) and the heating process conditions after compression molding are the same as in Embodiment 1 described above, and the electrical conditions and film characteristics in the discharge surface treatment using the manufactured electrodes are also the same. It is substantially the same.
[0069] 本実施の形態にかかる放電表面処理用電極を用いた放電表面処理により、被カロ ェ物である鋼材力 なるワークにコバルト(Co)合金の被膜を形成した場合の断面の 状態の一例を図 9に示す。図 9に示すように、母材と被膜の境界に材料が傾斜的に 変化する融合層を形成されている。図 9においては、 E—E線がコバルト(Co)合金被 膜形成前のおおよそのワーク (母材)表面の位置である。また、融合層は、 F— F線と G G線との間の領域である。  [0069] An example of a state of a cross section when a coating of a cobalt (Co) alloy is formed on a workpiece made of steel material, which is a workpiece, by discharge surface treatment using the discharge surface treatment electrode according to the present embodiment Figure 9 shows. As shown in Fig. 9, a fusion layer in which the material changes in an inclined manner is formed at the boundary between the base material and the coating. In Fig. 9, the EE line is the approximate position of the workpiece (base material) surface before the cobalt (Co) alloy film is formed. The fusion layer is the region between the FF line and the GG line.
[0070] なお、発明者らの実験によると、この融合層の厚みは、放電表面処理におけるパル ス放電のエネルギーの大きさにより決まり、パルス放電のエネルギーが小さいと薄く、 パルス放電のエネルギーが大きいと厚くなることがわ力つた。そして、融合層の厚み が薄すぎる場合には被膜の密着力が弱くなり、またパルス放電のエネルギーが大き すぎて融合層の厚みが 20 μ m程度を超える場合には被膜の表面の面粗さが粗くな り、し力も被膜にクラックが多く発生することがわ力 た。  [0070] According to the experiments by the inventors, the thickness of the fusion layer is determined by the magnitude of the pulse discharge energy in the discharge surface treatment, and is thin when the pulse discharge energy is small, and the pulse discharge energy is large. And it was amazing that it became thicker. If the thickness of the fusion layer is too thin, the adhesion of the coating will be weak, and if the energy of the pulse discharge is too great and the thickness of the fusion layer exceeds about 20 μm, the surface roughness of the coating will be reduced. It was found that the cracks were generated and many cracks were generated in the coating.
[0071] 本実施の形態では、電極材料として、「クロム(Cr) 25重量%、ニッケル (Ni) 10重 量0 /0、タングステン (W) 7重量%、残コバルト(Co)」の比率で配合された金属を溶解 して作製された粒径約 1 μ mのコバルト (Co)合金粉末を使用したが、電極材料もこ の合金に限るものではない。具体的には、他の組成のコノ レト(Co)合金粉末を用い ても良ぐまた、ニッケル (Ni)合金粉末、鉄 (Fe)合金粉末などを用いても良い。 [0071] In this embodiment, as an electrode material, a ratio of "chrome (Cr) 25 wt%, nickel (Ni) 10 by weight 0/0, tungsten (W) 7 wt%, remainder cobalt (Co)" Cobalt (Co) alloy powder with a particle size of about 1 μm prepared by melting the compounded metal was used, but the electrode material is not limited to this alloy. Specifically, a conoret (Co) alloy powder having another composition may be used, or a nickel (Ni) alloy powder, an iron (Fe) alloy powder, or the like may be used.
[0072] しカゝしながら、厚 ヽ緻密な被膜を形成するためには、形成された被膜中に炭化物を 形成しない金属成分が 30%程度以上含まれることが必要であり、そのためには炭化 物を形成しにく 、金属材料であるコバルト(Co)、ニッケル (Ni)、鉄 (Fe)などが電極 材料中に体積比で 40%程度以上含まれていることが好ましい。もちろん、これらの金 属のみの場合あるいは混合物でも良 、。  [0072] However, in order to form a thick and dense coating, it is necessary that the formed coating contains about 30% or more of a metal component that does not form carbides. In order to form an object, it is preferable that cobalt (Co), nickel (Ni), iron (Fe), etc., which are metal materials, are contained in the electrode material at a volume ratio of about 40% or more. Of course, these metals can be used alone or as a mixture.
[0073] ただし、炭化物を形成する材料であっても炭化物を形成する反応のしゃすさには 差がある。たとえば、クロム (Cr)などは炭化物を形成する材料ではある力 放電表面 処理においては完全には炭化物になるわけではなぐクロム (Cr)の金属のまま被膜 中に残る量も多いため、緻密な厚膜を形成することができる材料である。たとえば、モ リブデン (Mo)、タングステン (W)などは、単体の金属粉でも厚膜を形成することがで きる。材料による炭化物の形成しやすさは、エリンガム図などで容易に知ることができ る。 [0073] However, even if the material forms carbide, there is a difference in the size of the reaction to form carbide. For example, chromium (Cr) is a material that forms carbides. In power discharge surface treatment, the amount of chromium (Cr) metal that does not completely become carbides remains in the coating. It is a material that can form a film. For example, molybdenum (Mo), tungsten (W), etc. can form a thick film with a single metal powder. wear. The ease with which carbides are formed by the material can be easily determined from Ellingham diagrams.
[0074] また、バインダの成分はパラフィンワックスやポリエチレンだけに限るものではなぐ ノ《ラフィンワックス以外にも、ステアリン酸ゃステアリン酸亜鉛などのワックス類でも良 い。また、ポリエチレン以外にも、ポリプロピレン、アクリル系榭脂などの熱可塑性榭脂 、あるいは、ゾルーゲルの可逆反応を示す物質であれば寒天などのタンパク質系物 質でも良い。また、寒天などは水溶性の物質である力 水溶性の物質でも良い。  [0074] Further, the binder component is not limited to paraffin wax and polyethylene. In addition to raffin wax, stearic acid or wax such as zinc stearate may be used. In addition to polyethylene, a thermoplastic resin such as polypropylene or acrylic resin, or a protein material such as agar may be used as long as the substance exhibits a reversible reaction of sol-gel. Agar and the like may be water-soluble substances such as water-soluble substances.
[0075] つぎに、電極材料の粒径につ!、て説明する。本実施の形態では、粒径約 1 μ mの コバルト (Co)合金粉末を使用した力 これには以下のような理由がある。放電表面 処理においては、粒径の範隨こいくつかの有意な境界が存在することが発明者らの 研究により見出された。  Next, the particle size of the electrode material will be described. In the present embodiment, the force using a cobalt (Co) alloy powder having a particle size of about 1 μm has the following reasons. In the discharge surface treatment, the inventors have found that there are several significant boundaries within the category of particle size.
[0076] 1つ目の境界は、粒径 10 μ m近傍である。粒径が 10 μ m程度以上になると、安定 して放電を発生させることが困難になり、被膜の形成そのものが困難になる。したがつ て、粒径を 10 m程度以下とすることにより、確実に安定して放電を発生させることが 可能な放電表面処理用電極を作製することができる。  [0076] The first boundary is in the vicinity of a particle size of 10 μm. When the particle size is about 10 μm or more, it becomes difficult to generate a stable discharge, and the formation of the coating itself becomes difficult. Therefore, by setting the particle size to about 10 m or less, it is possible to produce a discharge surface treatment electrode that can generate a discharge reliably and stably.
[0077] 2つ目の境界は、 3 μ m近傍である。プレスや本実施の形態のような圧入のような粉 末材料の圧縮成形において、粒径が 3 m程度以下になると、均一に圧縮された成 形体を作りやすくなることが見出された。電極の圧縮が均一に行えないと、電極の密 度または硬さの差により被膜が均一に形成できなくなる。このため、均一な被膜の形 成のためには、平均粒径が 3 μ m程度以下であることが必要である。ただし、電極中 の一部には 3 m程度よりも大きな粉末が混ざっていてもよぐ適度に大きな粒径の 粉末が混ざって 、ることは、電極の密度を上げた 、場合には有効である。  [0077] The second boundary is in the vicinity of 3 μm. In the compression molding of powder materials such as press and press-fitting as in this embodiment, it has been found that when the particle size is about 3 m or less, it is easy to produce a uniformly compressed shaped body. If the electrodes cannot be compressed uniformly, the coating cannot be formed uniformly due to the difference in the density or hardness of the electrodes. Therefore, in order to form a uniform film, the average particle size must be about 3 μm or less. However, it is effective in the case of increasing the density of the electrode that a part of the electrode is mixed with a powder having a reasonably large particle size that may be mixed with a powder larger than about 3 m. is there.
[0078] 3つ目の境界は、粒径 1 μ m近傍である。被膜を形成するためには、電極材料であ る粉末を溶融させる必要がある力 粉末の粒径が大きいほど粉末を溶融させるのに 必要な放電パルスのエネルギーは大きくなる。しかしながら、パルス放電のエネルギ 一が大きくなると電極力も供給される材料の単位が大きくなることになり、その結果被 膜に空隙が増えるという問題がある。このことから、緻密な被膜を形成するためには、 小さな粉末を小さなエネルギーの放電パルスで溶融させることが好ましく、このために は粒径を 1 μ m程度以下にすることが好ましい。 [0078] The third boundary is in the vicinity of a particle diameter of 1 μm. In order to form a coating, it is necessary to melt the electrode material powder. The larger the particle size of the powder, the greater the energy of the discharge pulse required to melt the powder. However, when the energy of the pulse discharge increases, the unit of the material to which the electrode force is supplied increases, resulting in a problem that voids increase in the film. For this reason, in order to form a dense film, it is preferable to melt a small powder with a small energy discharge pulse. Preferably has a particle size of about 1 μm or less.
[0079] また、成形圧も実施の形態 1と同様に 50MPa〜200MPa程度とした力 この圧力 は、圧入する混合体の状態により範囲が変わるため、この範囲に限るものではない。 たとえば、バインダの量が少ないなどの理由により電極粉末とバインダとの混合体の 粘度が高い場合には圧力を高くする方が良ぐたとえば 100MPa〜300MPa程度 が適切な圧力となる。 [0079] Also, the molding pressure is a force set to about 50 MPa to 200 MPa as in the first embodiment. This pressure is not limited to this range because the range varies depending on the state of the mixture to be press-fitted. For example, when the viscosity of the mixture of the electrode powder and the binder is high due to a small amount of the binder, it is better to increase the pressure. For example, an appropriate pressure is about 100 MPa to 300 MPa.
[0080] 一方、バインダの量が多いなどの理由により混合体の粘度が低い場合には、圧力 が低くても成形は可能になり、たとえば 30MPa〜100MPa程度が適切な圧力となる 。ただし、バインダの量が多い場合には、後の加熱の工程で収縮などの問題が生じ る場合がある。  [0080] On the other hand, when the viscosity of the mixture is low due to a large amount of binder or the like, molding is possible even when the pressure is low. For example, an appropriate pressure is about 30 MPa to 100 MPa. However, when the amount of the binder is large, problems such as shrinkage may occur in the subsequent heating process.
[0081] 以上において説明した本実施の形態においても、実施の形態 1の場合と同様に電 極粉末同士の結合が強くすることができるため、形状が複雑な小さい放電表面処理 用電極を提供することが可能である。また、実施の形態 1の場合と同様に、形状が複 雑な小さい放電表面処理用電極を、後加工を行うことなぐ容易に効率良く製造する ことが可能である。また、本実施の形態によれば、後加工を行うことなく放電表面処理 用電極を製造できるため、後加工によるコストの増加がなぐまた、後加工による電極 材料が無駄が生じず、放電表面処理用電極を安価に製造することが可能である。  [0081] Also in the present embodiment described above, since the bonding between the electrode powders can be strengthened as in the case of the first embodiment, a small discharge surface treatment electrode having a complicated shape is provided. It is possible. Further, as in the case of the first embodiment, it is possible to easily and efficiently manufacture a small discharge surface treatment electrode having a complicated shape without performing post-processing. In addition, according to the present embodiment, since the electrode for discharge surface treatment can be manufactured without performing post-processing, the cost for post-processing does not increase, and the electrode material by post-processing does not occur, and the discharge surface treatment It is possible to manufacture the electrode for a low price.
[0082] そして、本実施の形態に力かる放電表面処理用電極を用いて放電表面処理を行う ことにより、実施の形態 1の場合と同様に部品との密着力が強い被膜を形成すること ができる。これにより、放電表面処理で形成した被膜と部品との密着力が強ぐ熱歪 みや割れを発生させない放電表面処理用電極を提供することが可能である。  [0082] Then, by performing discharge surface treatment using the discharge surface treatment electrode that is effective in the present embodiment, a film having strong adhesion to the component can be formed as in the first embodiment. it can. As a result, it is possible to provide an electrode for discharge surface treatment that does not generate thermal distortion or cracking, in which the adhesion between the coating formed by the discharge surface treatment and the component is strong.
[0083] 実施の形態 3.  [0083] Embodiment 3.
上述した実施の形態にぉ ヽては、電極粉末とバインダ等を混合した混合体を金型 内に圧入して電極粉末の成形を行う場合について説明したが、金型に圧入するだけ でなぐ所定の形状の口が開いた金型に圧入することで、所定の形状の断面形状を 有する圧粉体 (圧縮成形体)を押し出すことができる。金型に混合体を入れたままの 状態にするか押し出すかの違いはある力 基本的には同じ原理である。そして、実施 の形態 1の場合と同様に、押し出された圧粉体 (圧縮成形体)に加熱処理を施して成 形体の強度を高めて放電表面処理用電極とする。 In the embodiment described above, a case has been described in which a mixture of electrode powder and a binder or the like is pressed into a mold to form the electrode powder. By pressing into a mold having an opening of the shape, a green compact (compression molded body) having a predetermined cross-sectional shape can be extruded. There is a difference in whether the mixture is left in the mold or pushed out. Force is basically the same principle. Then, in the same manner as in the first embodiment, the extruded green compact (compression molded body) is subjected to a heat treatment. The strength of the shape is increased to obtain an electrode for discharge surface treatment.
[0084] たとえば、図 10に示すような押し出し成形機 400を用いて圧粉体 (圧縮成形体)を 押し出すことができる。図 10は、押し出し成形機の原理を説明するための図であり、 押し出し成形機の一部を断面図として示した模式図である。図 10に示すような押し 出し成形機 400を用いる場合には、ホッパー 401から混合体を押し出し成形機 400 内に導入し、スクリュー 403を回転させることにより所定の形状の断面形状を有する 圧粉体 (圧縮成形体) 404をダイス 402の先端力も押し出すことができる。ここで、ダイ ス 402の先端の開口形状は、電極形状に対応した形状とされている。  [0084] For example, a green compact (compression molded body) can be extruded using an extrusion molding machine 400 as shown in FIG. FIG. 10 is a diagram for explaining the principle of the extrusion molding machine, and is a schematic diagram showing a part of the extrusion molding machine as a cross-sectional view. When an extrusion molding machine 400 as shown in FIG. 10 is used, the mixture is introduced into the extrusion molding machine 400 from the hopper 401 and the screw 403 is rotated to thereby have a predetermined shape of the green compact. (Compression molding) 404 can also extrude the tip force of the die 402. Here, the opening shape of the tip of the die 402 is a shape corresponding to the electrode shape.
[0085] 本実施の形態に力かる放電表面処理用電極の製造方法においては、以上の成形 方法以外の工程については、実施の形態 1と同様にして放電表面処理用電極を作 製することができる。  In the method for manufacturing a discharge surface treatment electrode according to the present embodiment, the discharge surface treatment electrode can be produced in the same manner as in Embodiment 1 except for the above-described forming method. it can.
[0086] 以上のような本実施の形態に力かる放電表面処理用電極の製造方法においても、 実施の形態 1の場合と同様に電極粉末同士の結合が強くすることができるため、小さ い放電表面処理用電極を提供することが可能である。また、実施の形態 1の場合と同 様に、小さい放電表面処理用電極を、後加工を行うことなぐ容易に効率良く製造す ることが可能である。また、本実施の形態によれば、後加工を行うことなく放電表面処 理用電極を製造できるため、後加工によるコストの増加がなぐまた、後加工による電 極材料が無駄が生じず、放電表面処理用電極を安価に製造することが可能である。  [0086] In the above-described method for manufacturing a discharge surface treatment electrode that is effective in the present embodiment, the bonding between electrode powders can be strengthened in the same manner as in the first embodiment. It is possible to provide a surface treatment electrode. As in the case of Embodiment 1, a small discharge surface treatment electrode can be easily and efficiently manufactured without post-processing. In addition, according to the present embodiment, since the electrode for discharge surface treatment can be manufactured without performing post-processing, there is no increase in cost due to post-processing. It is possible to manufacture the surface treatment electrode at low cost.
[0087] そして、本実施の形態に力かる放電表面処理用電極を用いて放電表面処理を行う ことにより、実施の形態 1の場合と同様に部品との密着力が強い被膜を形成すること ができる。これにより、放電表面処理で形成した被膜と部品との密着力が強ぐ熱歪 みや割れを発生させない放電表面処理用電極を提供することが可能である。  [0087] Then, by performing the discharge surface treatment using the discharge surface treatment electrode which is effective in the present embodiment, it is possible to form a film having a strong adhesion to the component as in the first embodiment. it can. As a result, it is possible to provide an electrode for discharge surface treatment that does not generate thermal distortion or cracking, in which the adhesion between the coating formed by the discharge surface treatment and the component is strong.
産業上の利用可能性  Industrial applicability
[0088] 以上のように、本発明に力かる放電表面処理用電極の製造方法は、複雑な形状の 放電表面処理用電極を製造する場合に有用である。 [0088] As described above, the method for manufacturing a discharge surface treatment electrode according to the present invention is useful for manufacturing a discharge surface treatment electrode having a complicated shape.

Claims

請求の範囲 The scope of the claims
[1] 金属粉末または金属の化合物の粉末またはセラミックの粉末を成形した成形粉体 を電極として、加工液中または気中において前記電極とワークとの間にノ ルス状の 放電を発生させ、そのエネルギーによりワーク表面に前記電極の材料カゝらなる被膜ま たは前記電極の材料が前記パルス上の放電のエネルギーにより反応した物質力 な る被膜を形成する放電表面処理に用いられる放電表面処理用電極の製造方法であ つて、  [1] A metal powder, a metal compound powder, or a molded powder obtained by molding a ceramic powder is used as an electrode to generate a nodal discharge between the electrode and the workpiece in the working fluid or in the air. For the discharge surface treatment used for the discharge surface treatment in which a film made of the material of the electrode is formed on the surface of the work by energy or a film having a material force in which the electrode material reacts by the energy of discharge on the pulse. An electrode manufacturing method,
前記金属粉末または金属の化合物の粉末またはセラミックの粉末とバインダとを混 合して可塑性を有する混合体を作製する混合工程と、  A mixing step of mixing the metal powder or metal compound powder or ceramic powder and a binder to produce a plastic mixture;
前記混合体を電極形状に対応した型に圧入することにより成形して成形体を作製 する成形工程と、  A molding step of forming the molded body by press-fitting the mixture into a mold corresponding to the electrode shape; and
前記成形体を加熱して前記バインダの成分を除去する除去工程と、  A removing step of removing the binder component by heating the molded body;
を含むことを特徴とする放電表面処理用電極の製造方法。  A method for producing an electrode for discharge surface treatment, comprising:
[2] 前記バインダが、ワックス類、熱可塑性榭脂、またはこれらの混合物であること を特徴とする請求項 1に記載の放電表面処理用電極の製造方法。  [2] The method for producing an electrode for discharge surface treatment according to [1], wherein the binder is a wax, a thermoplastic resin, or a mixture thereof.
[3] 前記成形体を形成する粉末が、炭化物を形成しな!ヽもしくは形成し難!ヽ金属材料 を 40体積%以上含むこと [3] The powder forming the molded body does not form carbides!含 む Contain 40% by volume of metal material
を特徴とする請求項 1に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 1, wherein:
[4] 前記炭化物を形成しな 、もしくは形成し難 、金属材料が、コバルト、ニッケルおよび 鉄力 なる群より選択される少なくとも 1種以上の金属材料であること [4] The carbide is not formed or difficult to form, and the metal material is at least one metal material selected from the group consisting of cobalt, nickel, and iron.
を特徴とする請求項 3に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 3.
[5] 前記成形体を形成する粉末として、粒径が 10 m以下の粉末を用いること [5] Use a powder having a particle size of 10 m or less as the powder forming the compact.
を特徴とする請求項 1に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 1, wherein:
[6] 前記成形体を形成する粉末として、粒径が 3 μ m以下の粉末を用いること [6] Use a powder having a particle size of 3 μm or less as the powder forming the compact.
を特徴とする請求項 1に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 1, wherein:
[7] 前記成形体を形成する粉末として、粒径が 1 m以下の粉末を用いること [7] A powder having a particle size of 1 m or less is used as the powder forming the molded body.
を特徴とする請求項 1に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 1, wherein:
[8] 金属粉末または金属の化合物の粉末またはセラミックの粉末を成形した成形粉体 を電極として、加工液中または気中において前記電極とワークとの間にノ ルス状の 放電を発生させ、そのエネルギーによりワーク表面に前記電極の材料カゝらなる被膜ま たは前記電極の材料が前記パルス上の放電のエネルギーにより反応した物質力 な る被膜を形成する放電表面処理に用いられる放電表面処理用電極の製造方法であ つて、 [8] Molded powder obtained by molding metal powder, metal compound powder or ceramic powder Is used as an electrode to generate a nodal discharge between the electrode and the workpiece in the machining fluid or in the air, and the energy is used to generate a coating or material for the electrode on the workpiece surface. Is a method of manufacturing a discharge surface treatment electrode used for discharge surface treatment to form a material coating that reacts with the energy of discharge on the pulse,
前記金属粉末または金属の化合物の粉末またはセラミックの粉末とバインダとを混 合して可塑性を有する混合体を作製する混合工程と、  A mixing step of mixing the metal powder or metal compound powder or ceramic powder and a binder to produce a plastic mixture;
前記混合体を電極形状に対応した開口形状を有する型を用いて押出成形により成 形して成形体を作製する成形工程と、  A molding step of forming the mixture by extrusion molding using a mold having an opening shape corresponding to the electrode shape; and
前記成形体を加熱して前記バインダの成分を除去する除去工程と、  A removing step of removing the binder component by heating the molded body;
を含むことを特徴とする放電表面処理用電極の製造方法。  A method for producing an electrode for discharge surface treatment, comprising:
[9] 前記バインダが、ワックス類、熱可塑性榭脂、またはこれらの混合物であること を特徴とする請求項 8に記載の放電表面処理用電極の製造方法。  [9] The method for producing an electrode for discharge surface treatment according to [8], wherein the binder is a wax, a thermoplastic resin, or a mixture thereof.
[10] 前記成形体を形成する粉末が、炭化物を形成しな!ヽもしくは形成し難!ヽ金属材料 を 40体積%以上含むこと [10] The powder forming the molded body does not form carbides or is difficult to form! ヽ contains 40% by volume or more of a metal material
を特徴とする請求項 8に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 8, wherein:
[11] 前記炭化物を形成しな 、もしくは形成し難 、金属材料が、コバルト、ニッケルおよび 鉄力 なる群より選択される少なくとも 1種以上の金属材料であること [11] The carbide is not formed or difficult to form, and the metal material is at least one metal material selected from the group consisting of cobalt, nickel, and iron.
を特徴とする請求項 10に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 10, wherein:
[12] 前記成形体を形成する粉末として、粒径が 10 m以下の粉末を用いること [12] Use a powder having a particle size of 10 m or less as the powder forming the compact.
を特徴とする請求項 8に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 8, wherein:
[13] 前記成形体を形成する粉末として、粒径が 3 μ m以下の粉末を用いること [13] Use a powder having a particle size of 3 μm or less as the powder forming the molded body.
を特徴とする請求項 8に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 8, wherein:
[14] 前記成形体を形成する粉末として、粒径が 1 m以下の粉末を用いること [14] A powder having a particle size of 1 m or less is used as the powder forming the molded body.
を特徴とする請求項 8に記載の放電表面処理用電極の製造方法。  The method for producing an electrode for discharge surface treatment according to claim 8, wherein:
[15] 金属粉末または金属の化合物の粉末またはセラミックの粉末を成形した成形粉体 を電極として、加工液中または気中において前記電極とワークとの間にノ ルス状の 放電を発生させ、そのエネルギーによりワーク表面に前記電極の材料カゝらなる被膜ま たは前記電極の材料が前記パルス上の放電のエネルギーにより反応した物質力 な る被膜を形成する放電表面処理方法であって、 [15] A metal powder, a metal compound powder, or a molded powder obtained by molding a ceramic powder is used as an electrode to generate a nose-like discharge between the electrode and the workpiece in the working fluid or in the air. Depending on the energy, the electrode surface is covered with a coating that is the material of the electrode. Or a discharge surface treatment method in which the material of the electrode forms a material film reacting with the energy of discharge on the pulse,
前記ワークとの境界に材料の組織が傾斜的に変化する傾斜組織層を 1 μ m〜20 μ mの厚みで有する前記被膜を形成すること  Forming the coating film having a gradient structure layer with a thickness of 1 μm to 20 μm in which the material structure changes in an inclined manner at the boundary with the workpiece.
を特徴とする放電表面処理方法。  A discharge surface treatment method characterized by the above.
[16] 前記電極として、前記金属粉末または金属の化合物の粉末またはセラミックの粉末 とバインダとを混合した可塑性を有する混合体を、電極形状に対応した型に圧入す ることにより成形体を形成し、さらに加熱処理を施して前記バインダの成分を除去した 電極を用いること [16] As the electrode, a molded body is formed by press-fitting a plastic mixture obtained by mixing the metal powder, the metal compound powder or the ceramic powder and a binder into a mold corresponding to the electrode shape. Use an electrode that has been further heat-treated to remove the binder component.
を特徴とする請求項 15に記載の放電表面処理方法。  16. The discharge surface treatment method according to claim 15, wherein:
[17] 前記バインダが、ワックス類、熱可塑性榭脂、またはこれらの混合物であること を特徴とする請求項 16に記載の放電表面処理方法。 17. The discharge surface treatment method according to claim 16, wherein the binder is a wax, a thermoplastic resin, or a mixture thereof.
[18] 前記成形体を形成する粉末が、炭化物を形成しな!ヽもしくは形成し難!ヽ金属材料 を 40体積%以上含むこと [18] The powder forming the compact does not form carbides!ヽ or difficult to form!含 む Contain 40% by volume of metal material
を特徴とする請求項 16に記載の放電表面処理方法。  The discharge surface treatment method according to claim 16.
[19] 前記炭化物を形成しな 、もしくは形成し難 、金属材料が、コバルト、ニッケルおよび 鉄力 なる群より選択される少なくとも 1種以上の金属材料であること [19] The carbide is not formed or difficult to form, and the metal material is at least one metal material selected from the group consisting of cobalt, nickel, and iron.
を特徴とする請求項 18に記載の放電表面処理方法。  The discharge surface treatment method according to claim 18, wherein:
[20] 前記成形体を形成する粉末として、粒径が 10 m以下の粉末を用いること [20] Use a powder having a particle size of 10 m or less as the powder forming the compact.
を特徴とする請求項 16に記載の放電表面処理方法。  The discharge surface treatment method according to claim 16.
[21] 前記成形体を形成する粉末として、粒径が 3 μ m以下の粉末を用いること [21] A powder having a particle size of 3 μm or less is used as the powder forming the molded body.
を特徴とする請求項 16に記載の放電表面処理方法。  The discharge surface treatment method according to claim 16.
[22] 前記成形体を形成する粉末として、粒径が 1 m以下の粉末を用いること [22] Use a powder having a particle size of 1 m or less as the powder forming the molded body.
を特徴とする請求項 16に記載の放電表面処理方法。  The discharge surface treatment method according to claim 16.
[23] 前記電極として、前記金属粉末または金属の化合物の粉末またはセラミックの粉末 とバインダとを混合した可塑性を有する混合体を、電極形状に対応した開口形状を 有する型を用 ヽて押出成形により成形体を形成し、さらに加熱処理を施して前記バイ ンダの成分を除去した電極を用いること を特徴とする請求項 15に記載の放電表面処理方法。 [23] A plastic mixture obtained by mixing the metal powder, the metal compound powder, or the ceramic powder and a binder is used as the electrode by extrusion molding using a mold having an opening shape corresponding to the electrode shape. Use an electrode in which a molded body is formed and the binder component is further removed by heat treatment. 16. The discharge surface treatment method according to claim 15, wherein:
[24] 前記バインダが、ワックス類、熱可塑性榭脂、またはこれらの混合物であること を特徴とする請求項 23に記載の放電表面処理方法。 24. The discharge surface treatment method according to claim 23, wherein the binder is a wax, a thermoplastic resin, or a mixture thereof.
[25] 前記成形体を形成する粉末が、炭化物を形成しな!ヽもしくは形成し難!ヽ金属材料 を 40体積%以上含むこと [25] The powder forming the molded body does not form carbides or is difficult to form! ヽ contains 40% by volume or more of a metal material
を特徴とする請求項 23に記載の放電表面処理方法。  24. The discharge surface treatment method according to claim 23.
[26] 前記炭化物を形成しな 、もしくは形成し難 、金属材料が、コバルト、ニッケルおよび 鉄力 なる群より選択される少なくとも 1種以上の金属材料であること [26] The carbide is not formed or difficult to form, and the metal material is at least one metal material selected from the group consisting of cobalt, nickel, and iron.
を特徴とする請求項 25に記載の放電表面処理方法。  26. The discharge surface treatment method according to claim 25.
[27] 前記成形体を形成する粉末として、粒径が 10 m以下の粉末を用いること [27] As the powder forming the molded body, a powder having a particle size of 10 m or less should be used.
を特徴とする請求項 23に記載の放電表面処理方法。  24. The discharge surface treatment method according to claim 23.
[28] 前記成形体を形成する粉末として、粒径が 3 μ m以下の粉末を用いること [28] A powder having a particle size of 3 μm or less is used as the powder forming the molded body.
を特徴とする請求項 23に記載の放電表面処理方法。  24. The discharge surface treatment method according to claim 23.
[29] 前記成形体を形成する粉末として、粒径が 1 m以下の粉末を用いること [29] A powder having a particle size of 1 m or less is used as the powder forming the molded body.
を特徴とする請求項 23に記載の放電表面処理方法。  24. The discharge surface treatment method according to claim 23.
[30] 前記パルス状の放電の放電条件力 パルス幅 200 μ s以下、ピーク電流値 30Α以 下であること [30] Discharge condition force for the pulsed discharge The pulse width is 200 μs or less and the peak current value is 30 mm or less.
を特徴とする請求項 15に記載の放電表面処理方法。  16. The discharge surface treatment method according to claim 15, wherein:
PCT/JP2006/314189 2006-07-18 2006-07-18 Process for producing electrode for discharge surface treatment and method of discharge surface treatment WO2008010263A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/314189 WO2008010263A1 (en) 2006-07-18 2006-07-18 Process for producing electrode for discharge surface treatment and method of discharge surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/314189 WO2008010263A1 (en) 2006-07-18 2006-07-18 Process for producing electrode for discharge surface treatment and method of discharge surface treatment

Publications (1)

Publication Number Publication Date
WO2008010263A1 true WO2008010263A1 (en) 2008-01-24

Family

ID=38956600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314189 WO2008010263A1 (en) 2006-07-18 2006-07-18 Process for producing electrode for discharge surface treatment and method of discharge surface treatment

Country Status (1)

Country Link
WO (1) WO2008010263A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099239A1 (en) * 2008-02-05 2009-08-13 Suzuki Motor Corporation Electric discharge coating method and green compact electrode used therefor
US11826426B2 (en) 2017-08-02 2023-11-28 The University Of Chicago Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof
US11872311B2 (en) 2011-07-08 2024-01-16 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005545A1 (en) * 1999-07-16 2001-01-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode and production method thereof
JP2004137576A (en) * 2002-10-18 2004-05-13 Mitsubishi Electric Corp Electrode for discharge surface treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005545A1 (en) * 1999-07-16 2001-01-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode and production method thereof
JP2004137576A (en) * 2002-10-18 2004-05-13 Mitsubishi Electric Corp Electrode for discharge surface treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099239A1 (en) * 2008-02-05 2009-08-13 Suzuki Motor Corporation Electric discharge coating method and green compact electrode used therefor
JP5263175B2 (en) * 2008-02-05 2013-08-14 スズキ株式会社 Discharge coating method and green compact electrode used therefor
US11872311B2 (en) 2011-07-08 2024-01-16 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
US11826426B2 (en) 2017-08-02 2023-11-28 The University Of Chicago Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof

Similar Documents

Publication Publication Date Title
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
US7915559B2 (en) Electrode for electric discharge surface treatment, method for manufacturing electrode, and method for storing electrode
JP5121933B2 (en) Discharge surface treatment method
KR100768615B1 (en) Method of electrical discharge coating
WO2004108990A1 (en) Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
WO2008010263A1 (en) Process for producing electrode for discharge surface treatment and method of discharge surface treatment
RU2005134207A (en) ELECTRODE FOR SURFACE TREATMENT BY ELECTRIC DISCHARGE (OPTIONS), METHOD OF SURFACE TREATMENT BY ELECTRIC DISCHARGE (OPTIONS) AND DEVICE FOR TREATMENT OF SURFACE ELECTRIC DISCHARGE (VARIANTS)
WO2009096543A1 (en) Discharge surface treatment method and coating block for discharge surface treatment
EP1953265A1 (en) Electric discharge surface treating method and electric discharge surface treating apparatus
WO2011136246A1 (en) Electrode to be used in discharge surface treatment, and process for production thereof
JP4450812B2 (en) Discharge surface treatment method
JP4580250B2 (en) Method for manufacturing discharge surface treatment electrode, electrode and discharge surface treatment method
JP4895477B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
JP4332637B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method
JP4119461B2 (en) Manufacturing method of electrode for discharge surface treatment
JP4320523B2 (en) ELECTRODE FOR DISCHARGE SURFACE TREATMENT, ITS MANUFACTURING METHOD, AND DISCHARGE SURFACE TREATMENT METHOD
JP2004137576A (en) Electrode for discharge surface treatment
TWI284682B (en) Electric discharge surface treating electrode, manufacture and evaluation methods thereof, electric discharge surface treating device, and electric discharge treating method
JP3852580B2 (en) Discharge surface treatment electrode and method for producing the same
WO2006057053A1 (en) Electrode for discharge surface treatment and method for discharge surface treatment, and apparatus for discharge surface treatment
JP2005213559A (en) Electrode for electrical discharge surface treatment and electrical discharge surface treatment method
JP2005213558A (en) Electrode for electrical discharge surface treatment and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06781202

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06781202

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)