JP2004137576A - Electrode for discharge surface treatment - Google Patents

Electrode for discharge surface treatment Download PDF

Info

Publication number
JP2004137576A
JP2004137576A JP2002304730A JP2002304730A JP2004137576A JP 2004137576 A JP2004137576 A JP 2004137576A JP 2002304730 A JP2002304730 A JP 2002304730A JP 2002304730 A JP2002304730 A JP 2002304730A JP 2004137576 A JP2004137576 A JP 2004137576A
Authority
JP
Japan
Prior art keywords
electrode
surface treatment
discharge surface
film
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002304730A
Other languages
Japanese (ja)
Other versions
JP2004137576A5 (en
JP3847697B2 (en
Inventor
Akihiro Goto
後藤 昭弘
Masao Akiyoshi
秋吉 雅夫
Hiroyuki Ochiai
落合 宏行
Mitsutoshi Watanabe
渡辺 光敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Mitsubishi Electric Corp
Original Assignee
IHI Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Mitsubishi Electric Corp filed Critical IHI Corp
Priority to JP2002304730A priority Critical patent/JP3847697B2/en
Priority to TW093104220A priority patent/TWI284682B/en
Publication of JP2004137576A publication Critical patent/JP2004137576A/en
Publication of JP2004137576A5 publication Critical patent/JP2004137576A5/ja
Application granted granted Critical
Publication of JP3847697B2 publication Critical patent/JP3847697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an electrode for discharge surface treatment with which a thick film can easily be formed on a workpiece by a discharge surface treatment method. <P>SOLUTION: For thickening a film formed on the workpiece by a discharge surface treatment method, components for forming a desired film on the workpiece and components added so as to be ≥30% by volume, more preferably, to be ≥50% to the electrode for the discharge surface treatment, and forming no carbides, or hard to form carbides are mixed, and the mixture is formed so as to be a prescribed shape with a former to obtain the electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、金属粉末もしくは金属の化合物の粉末、または、セラミックスの粉末を圧縮成形した圧粉体電極とワークとの間にパルス状の放電を発生させ、そのエネルギによって、ワーク表面に電極材料または電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理方法における放電表面処理用電極に関するものである。
【0002】
【従来の技術】
液中放電によって金属材料の表面をコーティングして、耐食性、耐磨耗性を与える技術は既に特許出願され公知となっている。その技術の骨子はつぎのとおりである。第一に、WC(タングステンカーバイド)とCoの粉末を混合して圧縮成形した電極で液中放電を行うことにより電極材料をワークに堆積させる。この後、別の電極(例えば、銅電極やグラファイト電極など)によって、ワークに堆積した電極材料に対して再溶融放電加工を行い、より高い硬度と高い密着力を得る方法である。以下、この従来技術について説明する。
【0003】
まず、第1の従来技術について説明する(例えば、特許文献1参照)。WC−Coの混合圧粉体電極を用いて、ワーク(母材S50C)に液中で放電加工を行いWC−Coを堆積させる(1次加工)。ついで銅電極のようなそれほど消耗しない電極によって再溶融加工(2次加工)を行う。このように処理することで、1次加工の堆積のままでは、硬度(ビッカース硬度)がHv=1410程度であり、また空洞も多い組織を有する被覆層であったものが、2次加工の再溶融加工によって空洞が無くなり、硬度もHv=1750と向上した組織を有する被覆層が得られている。この第1の従来技術の方法によれば、鋼材に対しては硬くしかも密着度のよい被覆層が得られる。しかしながら、超硬合金のような焼結材料の表面には強固な密着力を有する被覆層を形成することは困難である。
【0004】
つぎに、出願人による第2の従来技術によれば、Ti等の硬質炭化物を形成する材料を電極として、ワークである金属材料との間に放電を発生させると、再溶融の過程なしに強固な硬質膜をワークである金属表面に形成できることを明らかにした(例えば、特許文献2参照)。これは、放電により消耗した電極材料と加工液中の成分であるCが反応してTiC(炭化チタン)が生成することによるものである。また、さらに、TiH(水素化チタン)など、金属の水素化物の圧粉体電極によって、ワークである金属材料との間に放電を発生させると、Ti等の材料を使用する場合よりも速くそして密着性のよい硬質膜を形成することができることがわかった。さらに、TiH等の水素化物に他の金属やセラミックスを混合した圧粉体電極により、ワークである金属材料との間に放電を発生させると硬度、耐磨耗性等様々な性質をもった硬質被膜を素早く形成することができることがわかっている。
【0005】
また、第3の従来技術によれば、予備焼結により強度の高い表面処理電極が製造できることがわかっている(例えば、特許文献3参照)。この第3の従来技術の一例として、WC粉末とCo粉末を混合した粉末からなる放電表面処理用電極を製造する場合について説明する。WC粉末とCo粉末を混合し圧縮成形してなる圧粉体は、WC粉末とCo粉末を混合して圧縮成形しただけでもよいが、ワックスを混入した後に圧縮成形すれば圧粉体の成形性が向上するためより望ましい。しかし、ワックスは絶縁性物質であるため、電極中に大量に残ると、電極の電気抵抗が大きくなるため放電性が悪化する。そこで、ワックスを除去することが必要になる。ワックスは圧粉体電極を真空炉に入れて加熱することで除去できる。この時、加熱温度が低すぎるとワックスが除去できず、温度が高すぎるとワックスがすすになってしまい、電極の純度を劣化させるので、ワックスが溶融する温度以上でかつワックスが分解してすすになる温度以下に加熱温度を保つ必要がある。つぎに、真空炉中の圧粉体を、高周波コイルなどにより加熱し、機械加工に耐えうる強度を与え、かつ硬化しすぎない程度に、例えば白墨程度の硬度となるまで焼成するが、炭化物間の接触部においては相互に結合を進行させるが本焼結にまで至らない弱い結合となるように比較的低い焼結温度で焼成している。このような電極で放電表面処理を行なうと、緻密で均質な被膜を形成できることが開示されている。
【0006】
【特許文献1】
特開平5−148615号公報(第3〜5頁)
【特許文献2】
特開平9−192937号公報(第9頁)
【特許文献3】
国際公開第99/58744号パンフレット(第18〜20頁)
【0007】
【発明が解決しようとする課題】
上述した従来の放電表面処理では、耐磨耗性を有する薄膜形成、特に常温に近い温度における耐磨耗性を有する被膜に主眼をおいており、硬質の耐磨耗性を有する緻密な被膜を均一に形成することは可能である。しかしながら、これらの従来技術を用いて厚膜の形成を行うには、長時間の時間を必要とするという問題点があった。また、被膜の厚さをたとえば数10μm程度以上に厚くすることができないという問題点もあった。そのため、肉盛処理のような用途への使用が困難であった。これらのような問題点があるため、上述した従来の放電表面処理を用いて厚膜を形成することは、現実的ではなかった。
【0008】
また、厚膜形成技術は、厚膜の形成のほかに、溶接や溶射の代替など他の用途への展開を行うことができるようになる。たとえば、溶接や溶射は、人手による作業である上に、作業をライン化することが困難であるために、コストが高くなるという問題点があった。また、溶接された部分や溶射された部分で、溶接割れが発生してしまうという問題点もあった。
【0009】
一方、放電表面処理によって厚膜を形成する場合には、上述した特許文献3に開示されているように、作成された電極の特性によっても大きな差異が現れる。この差異の原因の一つとして、電極を構成する素材の粉末の粒径の分布に違いが考えられる。作成される電極ごとに粉末の粒径の分布に違いがあると、同じプレス圧で加圧して電極を成形しても、電極ごとに固まり具合が異なるので、最終的な電極の強度に違いが生じるからである。また、上記の電極の特性による差異の原因の一つとして、被加工物に形成する被膜の材質を変えるために行われる電極材質の変更が考えられる。電極の材質を変更した場合、物性値の違いによって電極の強度が、変更前の電極の強度とは異なってできてしまう。この場合には、電極の材質を変えているので、電極の成形条件が異なってしまうのはやむをえないが、電極の成形条件を多数変更し、被膜の形成テストを行い、その材質の電極にあった成形条件を決めるというプロセスが必要であるという問題点があった。すなわち、電極を構成する材質の種類だけ、成形条件を決めるテストが必要となっており、手間がかかるという問題点があった。
【0010】
この発明は上記に鑑みてなされたもので、放電表面処理方法によって被加工物上に厚膜を容易に形成することが可能な放電表面処理用電極を得ることを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、この発明にかかる放電表面処理用電極は、被加工物に被膜を形成するための成分と、炭化物を形成しないまたは形成しにくい成分との混合物を含んで構成される放電表面処理用電極であって、塗膜用鉛筆引かき試験による硬度でB〜8Bの範囲の硬さとなるように成形されることを特徴とする。
【0012】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかる放電表面処理用電極の好適な実施の形態を詳細に説明する。
【0013】
この発明では、放電表面処理方法によって被加工物に形成する被膜を厚くするために、放電表面処理用電極材料に炭化物を形成しない材料または炭化物を形成しにくい材料を添加するとともに、このような材料からなる放電表面処理用電極が所定の硬さを有するように成形することを特徴とする。ここで、炭化物を形成しない材料または炭化物を形成しにくい材料として、Co,Ni,Fe,Al,Cu,Znなどを挙げることができる。なお、この発明において、放電表面処理方法とは、絶縁性の油または水を主体とした加工液中で、放電表面処理用電極と被加工物との間に電圧を印加して放電を発生させ、この放電時の熱エネルギによって放出された放電表面処理用電極の構成材料またはこの構成材料の反応物質が、被加工物の表面に被膜を形成する方法をいう。
【0014】
以下に、放電表面処理用電極において炭化物を形成しない材料または炭化物を形成しにくい材料を添加することと、放電表面処理用電極が所定の硬さを有することに分けて詳細に説明する。
【0015】
まず、放電表面処理用電極において炭化物を形成しない材料または炭化物を形成しにくい材料を添加することについて説明する。従来の放電表面処理用電極には、炭化物を形成しやすい材料の割合が多く含まれていた。たとえば、Tiなどの材料を電極に含むと、放電表面処理に用いる加工液である油中での放電によってTiが化学反応して、TiCという硬質の炭化物になる。そこで、従来では特許文献2に示されるように、放電表面処理で生じる硬質のTiCを積極的に利用して、耐磨耗性を有する被膜の形成を行っていた。このような従来の放電表面処理用電極を用いた放電表面処理では、鋼材に放電表面処理を行う場合に、表面処理が進行するにつれて、被加工物表面の材質が鋼材からセラミックスであるTiCへと変化し、それにともない、熱伝導や融点などの特性が変化してしまう。
【0016】
これに対して、この発明による電極材質の成分に炭化物を形成しない材料または炭化物を形成しにくい材料を添加して放電表面処理用電極を作成した場合には、放電表面処理によって炭化物を形成しない材料または炭化物を形成しにくい材料がそのままの状態(金属の状態)で被膜に残る。これにより、金属の状態のまま被加工物の被膜に残る材料が増えることになり、被膜を厚く盛り上げるのに重要な役割を果たす。
【0017】
つぎに、この発明にかかる放電表面処理用電極について、硬質材料としてCr粉末と、炭化物を形成しない材料または炭化物を形成しにくい材料としてCo粉末を用いた場合を例に挙げて説明する。まず、Cr粉末とCo粉末とを所定の比率となるように秤量したものを混合し、所定の形状を有する金型(ダイ)に入れた後に成型して所定の硬さを有する圧紛体を得る。
【0018】
図1は、成型する際に使用される成型器の断面形状を示す図である。下パンチ104を金型(ダイ)105に形成されている孔の下部から挿入し、これらの下パンチ104と金型(ダイ)105で形成される空間に混合したCr粉末101とCo粉末102との混合物を充填する。その後、上パンチ103を金型(ダイ)105に形成されている孔の上部から挿入する。このようにCr粉末とCo粉末との混合物が充填された成型器の上パンチ103と下パンチ104の両側から圧力がかかるように加圧器等で圧縮成型することによって、放電表面処理用電極が作製される。なお、必要に応じて、圧縮成型された圧紛体を放電表面処理用電極を構成する材料によって定まる所定の温度で加熱処理することも可能である。加熱処理することで、圧縮成型された電極の強度を増加させることができる。
【0019】
なお、Cr粉末とCo粉末とを混合する際に、ワックスを混入してもよい。このように、ワックスを粉末に混合した後に圧縮成形すると、圧粉体の成形性が向上するからである。ただし、ワックスは絶縁性物質であるため、電極中に大量に残留してしまうと、電極の電気抵抗が大きくなってしまうために放電性が悪化するので、ワックスを除去することが必要になる。ワックスを除去する方法として、ワックスを含む圧縮成型された圧粉体電極を真空炉に入れて加熱する方法がある。これにより、圧紛体中のワックスが除去される。
【0020】
上述した方法によって作成した炭化物を形成しない材料または炭化物を形成しにくい材料の成分を変化させた放電表面処理用電極を用いて、放電表面処理方法によって被加工物上に形成される被膜の厚さの変化を試験した結果を以下に示す。試験に用いた放電表面処理用電極のベースとなる材質はCrであり、これに炭化物を形成しない材料または炭化物を形成しにくい材料としてCoを添加した。添加するCoは体積で0〜80%の間で変化させ、試験される放電表面処理用電極の硬さは一定とした。また、放電表面処理時において使用した放電のパルス条件は、図2に示す条件で行った。すなわち、ピーク電流値ie=10A、放電持続時間(放電パルス幅)te=64μs、休止時間to=128μsである。なお、図2(a)は、放電時の電圧波形を示し、図2(b)は、放電時の電流波形を示している。また、試験では、15mm×15mmの面積の電極で被膜を形成した。このような条件の下、被加工物に対して、放電表面処理を15分間行った。
【0021】
図3は、炭化物であるCrに炭化物を形成しにくいCo量を変化させて作成された放電表面処理電極のCo量の変化による厚膜の形成しやすさの変化を示す図である。この図3において、横軸は放電表面処理用電極に含まれるCoの体積パーセントを示しており、縦軸は被加工物に形成される被膜の厚さ(μm)を対数メモリで示している。
【0022】
この図3から、Coが0%の場合、すなわち、放電表面処理用電極がCrのみから構成される場合には、被加工物上に形成される被膜の厚さは10μm程度が限度であり、それ以上被膜の厚さを増すことはできない。図4は、炭化物を形成しない材料または炭化物を形成しにくい材料が放電表面処理用電極にない場合の処理時間に対する皮膜の形成の様子を示す図である。この図4において、横軸は単位面積あたりの放電表面処理を行う処理時間(分/cm)を、縦軸は放電表面加工処理を行う前の被加工物の表面の位置を基準としたときの被膜の厚さ(被加工物の表面位置)(μm)を示している。この図4に示されるように、放電表面処理の初期の段階では、被膜が時間と共に成長して厚くなるが、あるところ(約5分/cm)で飽和する。その後しばらくは被膜の厚さは成長しないが、ある時間(約20分/cm)以上、放電表面処理を続けると被膜の厚さが減少しはじめ、最後には被膜の厚さはマイナスとなり、掘り込みに変わってしまう。しかし、掘り込みに変わった状態においても、実際には、被加工物上の被膜は存在しており、10μm程度の厚さを有している。すなわち、適切な時間(処理時間が10〜20分/cmの間)で処理した状態とほとんど変わっていない。したがって、放電表面処理時間が長くなると、被加工物の部分の厚さが減少していることになる。
【0023】
図3に示されるように、Coが約30%までの間では、被加工物に形成される被膜の厚さは、Coが0%の場合とほとんど同じで、10μm程度となっている。しかし、Coが30%以上になると被加工物上に形成される被膜の厚さが急激に増加し、Coが約50%の場合では、約2〜3mmの厚さの被膜が被加工物上に形成されるようになる。しかし、Coが50%以上では、Coの量を増加させても被加工物上に形成される被膜の厚さは増加せず、ほぼ一定の厚さ(約2〜3mm)となる。
【0024】
このように、炭化物を形成しない材料または炭化物を形成しにくい材料であるCo量を増やすにしたがい、被加工物上に形成される被膜の厚さを厚くすることができる。被加工物上に形成される被膜の厚さを厚くするためには、炭化物を形成しない材料または炭化物を形成しにくい材料の放電表面処理用電極に対する体積割合を、好ましくは30%以上、より好ましくは50%以上とすることが望ましい。なお、Ni,Fe,Al,Cu,Znなどの他の炭化物を形成しない材料または炭化物を形成しにくい材料についても、同様の傾向を有する。
【0025】
つぎに、放電表面処理用電極が適当な硬さを有することが必要なことについて説明する。放電表面処理用電極は、通常、粉末材料を圧縮成形し、加熱して作成される。以下では、放電表面処理用電極の硬さとその放電表面処理用電極によって形成される被膜の性質との間の関係について説明する。なお、以下では、放電表面処理用電極の硬さの基準として引用する指標は、JIS K 5600−5−4に規定されている途膜用鉛筆引かき試験を用いた。この規格は、本来塗装被膜の評価に使用されているものであるが、硬さの低い材料の評価には都合のよい試験方法であることを知見したので、この発明において使用した。なお、この塗膜用鉛筆引かき試験の結果とその他の硬さ評価方法の結果とは相互に換算できるものであり、その他の硬さ評価方法を指標として用いてもよいことは当然である。
【0026】
放電表面処理による厚膜の形成と放電表面処理用電極の硬さとの間の関係について、例としてCr30%−Co70%の体積比で作成された放電表面処理用電極の場合を例に挙げて説明する。図5は、Cr30%−Co70%の体積比の放電表面処理用電極の硬さを変化させた場合の厚膜形成の状態を示す図である。この図5において、横軸は硬さの評価に用いた塗膜用鉛筆の硬さによって測定された放電表面処理用電極の硬さを示し、左に向かうほど硬くなり右に向かうほど柔らかくなる。縦軸は放電表面処理用電極によって形成された被膜の厚さの評価状態である。この評価試験を行う際の放電表面処理時において使用された放電のパルス条件は、ピーク電流値ie=10A、放電持続時間(放電パルス時間)te=64μs、休止時間to=128μsである。また、評価試験では、15mm×15mmの面積の電極で被膜を形成した。
【0027】
この図5に示されるように、放電表面処理用電極の硬さが4B〜7B程度の硬さの場合が最も被膜の状態が非常に良好であり、緻密な厚膜が形成された。また、放電表面処理用電極の硬さがB〜4Bの間でも良好な厚膜が形成される。しかし、この範囲では、硬くなるにしたがって被膜の形成速度が遅くなる傾向があり、B程度の硬さでは厚膜の形成がかなり難しくなってしまう。さらにBよりも硬くなると厚膜の形成は不可能となり、放電表面処理用電極の硬さが硬くなるにしたがって工作物(被加工物)を除去しながら加工するようになってしまう。一方、放電表面処理用電極の硬さが8B程度の硬さでも良好な厚膜を形成することができるが、組織の分析を行うと被膜中に空孔が徐々に増えていく傾向にある。さらに放電表面処理用電極が9B程度よりも柔らかくなると、電極成分が十分に溶融しないままに工作物に付着するような現象が見られ、被膜が緻密でなくポーラスなものとなってしまう。なお、上述した放電表面処理用電極の硬さと被膜の状態との間の関係は、使用する放電パルス条件によっても多少変化し、適切な放電パルス条件を使用した場合にはある程度良好な被膜を形成することができる範囲を拡大することもできる。
【0028】
なお、この放電表面処理用電極の硬さと形成される被膜との間の関係は、放電表面処理用電極にCo以外のNi,Fe,Al,Cu,Znなどの炭化物を形成しない材料または炭化物を形成しにくい材料を添加した場合一般について成立つ。
【0029】
上述したように、この実施の形態によれば、放電表面処理用電極を構成する材料にCo,Ni,Fe,Al,Cu,Znなどの炭化物を形成しない材料または炭化物を形成しにくい材料を30体積%以上、より好ましくは50体積%以上添加し、この放電表面処理用電極の硬さを塗膜用鉛筆引かき試験による硬度でB〜8Bの間、より好ましくは4B〜7Bの間になるようにして放電表面処理用電極を形成し、この放電表面処理用電極を用いて放電表面処理を行うことによって、被加工物上に厚膜を安定して形成することができるという効果を有する。また、この放電表面処理用電極を用いることによって、溶接や溶射の作業を代替することが可能となり、従来では溶射や溶接で行っていた作業をライン化することが可能となる。
【0030】
電極の状態を管理するには、従来では、プレス圧や加熱温度など所定の条件で成形した放電表面処理用電極を使用して被膜の形成を行い、形成された被膜の状態によって放電表面処理用電極の状態を判断していた。この方法では、放電表面処理用電極の状態を判断するたびに、テスト用の放電表面処理を行って被膜を形成しなければならず、手間がかかるという問題点があった。そこで、放電表面処理用電極の状態を管理する方法として、放電表面処理用電極の(1)熱伝導度、(2)電気抵抗、(3)折り曲げ試験および(4)硬さ試験について検討を行った。
【0031】
まず、(1)の熱伝導度は放電表面処理用電極の熱の伝わりやすさの指標であり、放電表面処理用電極がしっかり固まっているほど熱の伝わりやすさはよくなる傾向がある。測定には、放電表面処理用電極を所定の形状に切り出し、一端からレーザなどにより所定の熱量を入力し、他端の温度の変化を測定するなどの方法が採られている。この方法は、測定にコストがかかること、材料の物性値の影響を受けるため異なった材料の場合には異なった値となるので、異なる材料ごとに最適な状態の場合の値を把握しなければならないこと、などの問題点がある。
【0032】
つぎに、(2)の電気抵抗は、放電表面処理用電極を所定の形状に切り出し、電気抵抗を測定する方法である。電気抵抗は、放電表面処理用電極がしっかり固まっているほど小さくなる傾向があり、放電表面処理用電極の強度のよい指標にはなるが、測定にばらつきが出やすいこと、材料の物性値の影響を受けるため異なった材料の場合には異なった値となるので、異なる材料ごとに最適な状態の場合の値を把握しなければならないこと、などの問題点がある。
【0033】
つぎに、(3)の折り曲げ試験は、放電表面処理用電極を所定の形状に切り出して、三点曲げ試験を行い、曲げに対する抵抗力を測定する方法である。この方法は、測定にばらつきがでやすいこと、測定にコストがかかること、などの問題点がある。
【0034】
そして、最後の(4)の硬さ試験は、放電表面処理用電極に圧子を押し付けてその圧痕の形状によって硬さを測定する方法や鉛筆などの測定子で放電表面処理用電極を引っかいて傷がつくかどうかで判断する方法などがある。
【0035】
これら4つの方法は互いに強い相関を持つものであるが、測定の簡易性などの理由から(4)の鉛筆などの測定子による硬さ試験によって放電表面処理用電極の状態を判断する方法が最も適していることがわかった。
【0036】
【発明の効果】
以上説明したように、この発明によれば、放電表面処理用電極を構成する材料に、炭化物を形成しない材料または炭化物を形成しにくい材料を添加し、放電表面処理用電極の硬さが、塗膜用鉛筆引かき試験による硬度で所定の範囲の間、より好ましくは4B〜7Bの間になるように形成することによって、放電表面処理によって被加工物上に厚膜を安定に形成することができるという効果を有する。また、この放電表面処理用電極を用いることによって、溶接や溶射の作業を代替することが可能となり、従来では溶射や溶接で行っていた作業をライン化することが可能となる。
【図面の簡単な説明】
【図1】放電表面処理用電極を作成する成型器の断面を示す図である。
【図2】放電表面処理図用電極のCo量の変化による厚膜の形成しやすさを試験するための放電のパルス条件を示す図であり、(a)は放電時の電圧波形図を示し、(b)は放電時の電流波形図を示している。
【図3】炭化物であるCrに炭化物を形成しにくいCo量を変化させて作成された放電表面処理電極のCo量の変化による厚膜の形成しやすさの変化を示す図である。
【図4】炭化物を形成しにくい材料が放電表面処理用電極にない場合の処理時間に対する皮膜の形成の様子を示す図である。
【図5】Cr30%−Co70%の体積比の放電表面処理用電極の硬さを変化させた場合の厚膜形成の状態を示す図である。
【符号の説明】
101 Cr粉末、102 Co粉末、103 上パンチ、104 下パンチ、105 金型(ダイ)。
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, a pulse-like discharge is generated between a metal powder or a metal compound powder, or a green compact electrode obtained by compression-molding a ceramic powder and a work, and the energy of the discharge causes the electrode material or The present invention relates to a discharge surface treatment electrode in a discharge surface treatment method for forming a film made of a substance in which an electrode material has reacted by discharge energy.
[0002]
[Prior art]
A technique for imparting corrosion resistance and abrasion resistance by coating the surface of a metal material by in-liquid discharge has already been applied for a patent and is known. The outline of the technology is as follows. First, an electrode material is deposited on a work by performing a submerged discharge with an electrode formed by mixing WC (tungsten carbide) and Co powder and compression-molding. Thereafter, another electrode (for example, a copper electrode, a graphite electrode, or the like) is used to perform remelting discharge machining on the electrode material deposited on the work, thereby obtaining higher hardness and higher adhesion. Hereinafter, this conventional technique will be described.
[0003]
First, a first related art will be described (for example, see Patent Document 1). Using a WC-Co mixed green compact electrode, the workpiece (base material S50C) is subjected to electrical discharge machining in a liquid to deposit WC-Co (primary machining). Next, re-melting (secondary processing) is performed using an electrode that does not wear much, such as a copper electrode. By performing such a treatment, a coating layer having a hardness (Vickers hardness) of about Hv = 1410 and having a structure having many cavities in the primary processing deposited as it is is re-used in the secondary processing. Cavities are eliminated by the melt processing, and a coating layer having a structure whose hardness is improved to Hv = 1750 is obtained. According to the first prior art method, a coating layer that is hard and has good adhesion to steel is obtained. However, it is difficult to form a coating layer having strong adhesion on the surface of a sintered material such as a cemented carbide.
[0004]
Next, according to the second prior art by the applicant, when a discharge is generated between a metal material which is a work and a material forming a hard carbide such as Ti as an electrode, the material is solid without remelting process. It has been clarified that a simple hard film can be formed on a metal surface as a work (for example, see Patent Document 2). This is because TiC (titanium carbide) is generated by the reaction between the electrode material consumed by the discharge and the component C in the working fluid. Further, when a discharge is generated between a metal material as a work and a green compact electrode of a metal hydride such as TiH 2 (titanium hydride), the speed is higher than when a material such as Ti is used. And it turned out that a hard film with good adhesiveness can be formed. Furthermore, when a discharge is generated between a metal material as a work and a compact electrode in which another metal or ceramic is mixed with a hydride such as TiH 2 , various properties such as hardness and abrasion resistance are obtained. It has been found that hard coatings can be formed quickly.
[0005]
Further, according to the third conventional technique, it is known that a surface-treated electrode having high strength can be manufactured by preliminary sintering (for example, see Patent Document 3). As an example of the third conventional technique, a case will be described in which a discharge surface treatment electrode made of a powder obtained by mixing a WC powder and a Co powder is manufactured. A green compact formed by mixing and compressing WC powder and Co powder may be simply formed by mixing and compressing WC powder and Co powder. Is more desirable because it improves However, since the wax is an insulating substance, if a large amount of the wax remains in the electrode, the electric resistance of the electrode increases, and the discharge performance deteriorates. Therefore, it is necessary to remove the wax. The wax can be removed by heating the green compact electrode in a vacuum furnace. At this time, if the heating temperature is too low, the wax cannot be removed, and if the heating temperature is too high, the wax is sooted and the purity of the electrode is deteriorated. It is necessary to keep the heating temperature below the temperature at which Next, the green compact in the vacuum furnace is heated by a high-frequency coil or the like to give a strength that can withstand machining, and is fired to a degree not to harden, for example, to a hardness of about black ink. At the contact portions, the layers are fired at a relatively low sintering temperature so that the bonding progresses with each other but weak bonding does not reach the main sintering. It is disclosed that when a discharge surface treatment is performed with such an electrode, a dense and uniform coating can be formed.
[0006]
[Patent Document 1]
JP-A-5-148615 (pages 3 to 5)
[Patent Document 2]
JP-A-9-192937 (page 9)
[Patent Document 3]
WO 99/58744 pamphlet (pages 18 to 20)
[0007]
[Problems to be solved by the invention]
In the conventional discharge surface treatment described above, the main focus is on the formation of a thin film having abrasion resistance, particularly a coating having abrasion resistance at a temperature close to room temperature, and a dense coating having a hard abrasion resistance. It is possible to form uniformly. However, there is a problem that it takes a long time to form a thick film using these conventional techniques. There is also a problem that the thickness of the coating cannot be increased to, for example, about several tens μm or more. Therefore, it has been difficult to use it for applications such as hardfacing. Because of these problems, it is not practical to form a thick film using the above-described conventional discharge surface treatment.
[0008]
In addition, the thick film forming technology can be applied to other applications such as welding and thermal spraying, in addition to forming a thick film. For example, welding or thermal spraying is a manual operation, and it is difficult to make the operation into a line, so that there is a problem that the cost increases. There is also a problem that a weld crack is generated in a welded portion or a sprayed portion.
[0009]
On the other hand, when a thick film is formed by the discharge surface treatment, a great difference appears depending on the characteristics of the formed electrode as disclosed in Patent Document 3 described above. One of the causes of this difference is considered to be a difference in the distribution of the particle diameters of the powders of the materials constituting the electrodes. If there is a difference in the particle size distribution of the powder for each electrode to be created, even if the electrodes are molded by pressing at the same pressing pressure, the strength of each electrode will differ, so the final electrode strength will differ. This is because it occurs. Further, as one of the causes of the difference due to the characteristics of the electrodes, a change in the material of the electrodes performed to change the material of the film formed on the workpiece may be considered. When the material of the electrode is changed, the strength of the electrode is different from the strength of the electrode before the change due to the difference in the physical property value. In this case, since the material of the electrode is changed, it is inevitable that the molding conditions of the electrode are different, but a large number of molding conditions of the electrode are changed, a coating formation test is performed, and the electrode of the material is used. There was a problem that a process of determining molding conditions was required. That is, a test for determining the molding conditions is required only for the type of the material constituting the electrode, and there is a problem that it takes time and effort.
[0010]
The present invention has been made in view of the above, and an object of the present invention is to provide an electrode for electric discharge surface treatment capable of easily forming a thick film on a workpiece by an electric discharge surface treatment method.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the discharge surface treatment electrode according to the present invention provides a discharge electrode including a mixture of a component for forming a film on a workpiece and a component that does not or hardly forms carbide. An electrode for surface treatment, characterized in that it is formed to have a hardness in the range of B to 8B as measured by a pencil scratch test for a coating film.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Exemplary embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
[0013]
In the present invention, a material that does not form carbides or a material that hardly forms carbides is added to the electrode material for discharge surface treatment in order to increase the thickness of the film formed on the workpiece by the discharge surface treatment method. Characterized in that the electrode for discharge surface treatment is formed to have a predetermined hardness. Here, Co, Ni, Fe, Al, Cu, Zn, and the like can be cited as a material that does not form carbide or a material that hardly forms carbide. Note that, in the present invention, the discharge surface treatment method is to generate a discharge by applying a voltage between the discharge surface treatment electrode and the workpiece in a working fluid mainly composed of insulating oil or water. This refers to a method in which the constituent material of the discharge surface treatment electrode released by the heat energy at the time of discharge or the reactant of this constituent material forms a film on the surface of the workpiece.
[0014]
Hereinafter, the addition of a material that does not form a carbide or a material that does not easily form a carbide in the electrode for discharge surface treatment and that the electrode for discharge surface treatment has a predetermined hardness will be described in detail.
[0015]
First, the addition of a material that does not form carbides or a material that does not easily form carbides in the discharge surface treatment electrode will be described. Conventional discharge surface treatment electrodes contain a large proportion of a material that easily forms carbide. For example, when a material such as Ti is included in the electrode, Ti is chemically reacted by electric discharge in an oil, which is a working fluid used for electric discharge surface treatment, to form a hard carbide of TiC. Therefore, conventionally, as shown in Patent Document 2, hard TiC generated by the discharge surface treatment has been actively used to form a wear-resistant coating. In such a conventional discharge surface treatment using an electrode for discharge surface treatment, when the discharge surface treatment is performed on a steel material, as the surface treatment progresses, the material of the surface of the workpiece is changed from steel material to TiC which is ceramics. Accordingly, characteristics such as heat conduction and melting point change.
[0016]
On the other hand, when a material that does not form carbides or a material that hardly forms carbides is added to the components of the electrode material according to the present invention to form the discharge surface treatment electrode, a material that does not form carbides by the discharge surface treatment Alternatively, a material that hardly forms carbide remains in the film as it is (metal state). This increases the amount of material remaining in the film of the workpiece in the metal state, and plays an important role in thickening the film.
[0017]
Next, the discharge surface treatment electrode according to the present invention will be described with reference to an example in which Cr 3 C 2 powder is used as a hard material, and Co powder is used as a material that does not form carbide or a material that hardly forms carbide. . First, a mixture of Cr 3 C 2 powder and Co powder weighed so as to have a predetermined ratio is mixed, put into a mold (die) having a predetermined shape, and then molded to form a pressure having a predetermined hardness. Get the powder.
[0018]
FIG. 1 is a diagram showing a cross-sectional shape of a molding device used for molding. The lower punch 104 is inserted from below the hole formed in the die (die) 105, and the Cr 3 C 2 powder 101 and Co mixed in the space formed by the lower punch 104 and the die (die) 105 are mixed. The mixture with the powder 102 is filled. After that, the upper punch 103 is inserted from above the hole formed in the die (die) 105. The compression molding using a press or the like so that pressure is applied from both sides of the upper punch 103 and the lower punch 104 filled with the mixture of the Cr 3 C 2 powder and the Co powder as described above for discharge surface treatment. An electrode is made. In addition, if necessary, it is also possible to heat-treat the compression-molded compact at a predetermined temperature determined by the material constituting the discharge surface treatment electrode. By performing the heat treatment, the strength of the compression-molded electrode can be increased.
[0019]
When mixing the Cr 3 C 2 powder and the Co powder, wax may be mixed. If the wax is mixed with the powder and then compression-molded, the compactability of the green compact is improved. However, since the wax is an insulating substance, if a large amount of the wax remains in the electrode, the electrical resistance of the electrode increases and the discharge performance deteriorates. Therefore, it is necessary to remove the wax. As a method of removing the wax, there is a method of heating a compression-molded compact electrode containing the wax in a vacuum furnace. Thereby, the wax in the compact is removed.
[0020]
The thickness of the film formed on the workpiece by the discharge surface treatment method using the discharge surface treatment electrode in which the component of the material that does not form carbide or the material that does not easily form carbide is formed by the above-described method. Are shown below. The material serving as the base of the discharge surface treatment electrode used in the test was Cr 3 C 2 , to which Co was added as a material that did not form carbide or a material that hardly formed carbide. The amount of Co added was varied between 0 and 80% by volume, and the hardness of the discharge surface treatment electrode to be tested was constant. The discharge pulse conditions used in the discharge surface treatment were the conditions shown in FIG. That is, the peak current value ie = 10 A, the discharge duration (discharge pulse width) te = 64 μs, and the pause time to = 128 μs. FIG. 2A shows a voltage waveform at the time of discharging, and FIG. 2B shows a current waveform at the time of discharging. In the test, a film was formed with an electrode having an area of 15 mm × 15 mm. Under such conditions, the workpiece was subjected to a discharge surface treatment for 15 minutes.
[0021]
FIG. 3 is a diagram showing a change in the easiness of forming a thick film due to a change in the amount of Co of a discharge surface-treated electrode formed by changing the amount of Co in which carbide is difficult to form in Cr 3 C 2 which is a carbide. . In FIG. 3, the abscissa indicates the volume percentage of Co contained in the discharge surface treatment electrode, and the ordinate indicates the thickness (μm) of the film formed on the workpiece by logarithmic memory.
[0022]
From FIG. 3, when Co is 0%, that is, when the discharge surface treatment electrode is composed of only Cr 3 C 2 , the thickness of the film formed on the workpiece is limited to about 10 μm. And the thickness of the coating cannot be increased any further. FIG. 4 is a diagram showing a state of film formation with respect to a processing time when a material that does not form a carbide or a material that hardly forms a carbide is not present in the electrode for discharge surface treatment. In FIG. 4, the horizontal axis represents the processing time (min / cm 2 ) for performing the discharge surface treatment per unit area, and the vertical axis represents the position of the surface of the workpiece before performing the discharge surface processing. Thickness (surface position of the workpiece) (μm). As shown in FIG. 4, in the initial stage of the discharge surface treatment, the film grows with time and becomes thicker, but saturates at a certain point (about 5 minutes / cm 2 ). After that, the thickness of the coating does not grow for a while, but when the discharge surface treatment is continued for a certain time (about 20 minutes / cm 2 ) or more, the thickness of the coating starts to decrease, and finally, the thickness of the coating becomes negative, It turns into digging. However, even in the state changed to digging, the coating on the workpiece actually exists and has a thickness of about 10 μm. That is, there is almost no change from the state where the processing is performed for an appropriate time (the processing time is between 10 and 20 minutes / cm 2 ). Therefore, as the discharge surface treatment time increases, the thickness of the workpiece decreases.
[0023]
As shown in FIG. 3, up to about 30% of Co, the thickness of the film formed on the workpiece is almost the same as in the case of 0% of Co, and is about 10 μm. However, when Co is 30% or more, the thickness of the film formed on the workpiece rapidly increases, and when Co is about 50%, a film having a thickness of about 2 to 3 mm is formed on the workpiece. Is formed. However, when the amount of Co is 50% or more, the thickness of the film formed on the workpiece does not increase even if the amount of Co is increased, and the thickness becomes almost constant (about 2 to 3 mm).
[0024]
As described above, as the amount of Co, which is a material that does not form carbide or hardly forms carbide, is increased, the thickness of the film formed on the workpiece can be increased. In order to increase the thickness of the film formed on the workpiece, the volume ratio of the material that does not form carbide or the material that does not easily form carbide to the electrode for discharge surface treatment is preferably 30% or more, more preferably. Is desirably 50% or more. Note that other materials that do not form carbides, such as Ni, Fe, Al, Cu, and Zn, or materials that do not easily form carbides have the same tendency.
[0025]
Next, the fact that the discharge surface treatment electrode needs to have an appropriate hardness will be described. The electrode for discharge surface treatment is usually formed by compression molding a powder material and heating. The relationship between the hardness of the discharge surface treatment electrode and the properties of the coating formed by the discharge surface treatment electrode will be described below. In the following, as an index to be cited as a standard of the hardness of the electrode for discharge surface treatment, a pencil-drawing test for a film defined in JIS K 5600-5-4 was used. Although this standard was originally used for evaluating a coating film, it was found to be a convenient test method for evaluating a material having low hardness, and was used in the present invention. The results of the pencil scratch test for coating films and the results of other hardness evaluation methods can be mutually converted, and it is natural that other hardness evaluation methods may be used as indices.
[0026]
Regarding the relationship between the formation of a thick film by the discharge surface treatment and the hardness of the electrode for discharge surface treatment, the case of an electrode for discharge surface treatment prepared with a volume ratio of 30% Cr 3 C 2 -70% Co as an example. This will be described in detail. FIG. 5 is a diagram showing a state of forming a thick film when the hardness of the discharge surface treatment electrode having a volume ratio of Cr 3 C 2 30% -Co 70% is changed. In FIG. 5, the horizontal axis indicates the hardness of the electrode for discharge surface treatment measured by the hardness of the pencil for coating used in the evaluation of the hardness, and the hardness increases toward the left and softens toward the right. The vertical axis indicates the evaluation state of the thickness of the film formed by the discharge surface treatment electrode. The pulse conditions of the discharge used in the discharge surface treatment when performing this evaluation test are a peak current value ie = 10 A, a discharge duration time (discharge pulse time) te = 64 μs, and a pause time to = 128 μs. In the evaluation test, a film was formed with an electrode having an area of 15 mm × 15 mm.
[0027]
As shown in FIG. 5, the state of the coating film was most excellent when the electrode for discharge surface treatment had a hardness of about 4B to 7B, and a dense thick film was formed. In addition, a good thick film is formed even when the hardness of the discharge surface treatment electrode is between B and 4B. However, in this range, there is a tendency that the film formation speed becomes slower as the film becomes harder. Further, if it is harder than B, it becomes impossible to form a thick film, and as the hardness of the discharge surface treatment electrode becomes harder, it becomes necessary to work while removing a workpiece (workpiece). On the other hand, a good thick film can be formed even if the hardness of the discharge surface treatment electrode is about 8B, but pores in the coating tend to gradually increase when the structure is analyzed. Furthermore, when the electrode for discharge surface treatment is softer than about 9B, a phenomenon is observed in which the electrode components adhere to the workpiece without being sufficiently melted, and the coating is not dense and porous. Note that the relationship between the hardness of the discharge surface treatment electrode and the state of the coating described above slightly changes depending on the discharge pulse conditions used, and a somewhat good coating is formed when appropriate discharge pulse conditions are used. The range that can be done can be expanded.
[0028]
The relationship between the hardness of the discharge surface treatment electrode and the film formed is such that a material or carbide that does not form carbides such as Ni, Fe, Al, Cu, and Zn other than Co is used for the discharge surface treatment electrode. This is generally true when a material that is difficult to form is added.
[0029]
As described above, according to this embodiment, a material that does not form carbides such as Co, Ni, Fe, Al, Cu, and Zn, or a material that hardly forms carbides, is used as a material constituting the discharge surface treatment electrode. % By volume, more preferably 50% by volume or more, and the hardness of this electrode for discharge surface treatment is between B and 8B, more preferably between 4B and 7B, as measured by a pencil scratch test for a coating film. By forming a discharge surface treatment electrode as described above and performing a discharge surface treatment using the discharge surface treatment electrode, a thick film can be stably formed on the workpiece. Also, by using the electrode for electric discharge surface treatment, it is possible to replace the work of welding and spraying, and it is possible to make the work conventionally performed by spraying and welding into a line.
[0030]
Conventionally, in order to manage the state of the electrode, a film is formed using an electrode for discharge surface treatment molded under predetermined conditions such as press pressure and heating temperature, and the state of the discharge surface treatment is determined according to the state of the formed film. The state of the electrode was determined. In this method, every time the state of the electrode for discharge surface treatment is determined, a discharge surface treatment for test must be performed to form a coating, which is troublesome. Therefore, as a method of managing the state of the electrode for discharge surface treatment, (1) thermal conductivity, (2) electric resistance, (3) bending test, and (4) hardness test of the electrode for discharge surface treatment were examined. Was.
[0031]
First, the thermal conductivity of (1) is an index of the easiness of heat transfer of the electrode for discharge surface treatment, and the stiffness of the electrode tends to improve as the electrode for discharge surface treatment is firmly solidified. For the measurement, a method is employed in which the discharge surface treatment electrode is cut into a predetermined shape, a predetermined amount of heat is input from one end by a laser or the like, and a change in temperature at the other end is measured. This method is costly to measure and is affected by the physical property values of the materials, so different values will be used for different materials.Therefore, it is necessary to know the values in the optimal state for different materials. There are problems such as not to be.
[0032]
Next, the electric resistance of (2) is a method of measuring the electric resistance by cutting out the discharge surface treatment electrode into a predetermined shape. The electrical resistance tends to decrease as the electrode for discharge surface treatment is firmly solidified, which is a good indicator of the strength of the electrode for discharge surface treatment, but the measurement tends to vary, and the effect of the physical properties of the material Therefore, since different values are obtained in the case of different materials, there is a problem that it is necessary to grasp the value in the case of an optimum state for each different material.
[0033]
Next, the bending test of (3) is a method of cutting out the electrode for discharge surface treatment into a predetermined shape, performing a three-point bending test, and measuring the resistance to bending. This method has problems such as that measurement tends to vary and measurement is costly.
[0034]
In the final hardness test (4), a method is used in which an indenter is pressed against the discharge surface treatment electrode and the hardness is measured according to the shape of the indentation, or the discharge surface treatment electrode is scratched with a pencil or other measuring element. There is a method to judge whether or not it is attached.
[0035]
Although these four methods have a strong correlation with each other, the method (4) of judging the state of the electrode for discharge surface treatment by a hardness test using a measuring element such as a pencil is most preferable because of simplicity of measurement. It turned out to be suitable.
[0036]
【The invention's effect】
As described above, according to the present invention, a material that does not form a carbide or a material that hardly forms a carbide is added to the material constituting the electrode for discharge surface treatment, and the hardness of the electrode for discharge surface treatment is reduced. By forming the film to have a hardness within a predetermined range, more preferably, between 4B and 7B in the hardness by a pencil drawing test for a film, a thick film can be stably formed on the workpiece by the discharge surface treatment. It has the effect of being able to. Also, by using the electrode for electric discharge surface treatment, it is possible to replace the work of welding and spraying, and it is possible to make the work conventionally performed by spraying and welding into a line.
[Brief description of the drawings]
FIG. 1 is a view showing a cross section of a molding device for producing an electrode for discharge surface treatment.
FIG. 2 is a diagram showing discharge pulse conditions for testing the easiness of forming a thick film due to a change in the amount of Co in a discharge surface treatment diagram electrode. FIG. (B) shows a current waveform diagram at the time of discharging.
FIG. 3 is a diagram showing a change in the easiness of forming a thick film due to a change in the amount of Co of a discharge surface-treated electrode formed by changing the amount of Co in which carbide is difficult to form in Cr 3 C 2 which is a carbide. .
FIG. 4 is a view showing a state of film formation with respect to a processing time when a material that hardly forms carbide is not present in the discharge surface treatment electrode.
FIG. 5 is a view showing a state of forming a thick film when the hardness of the discharge surface treatment electrode having a volume ratio of Cr 3 C 2 30% -Co 70% is changed.
[Explanation of symbols]
101 Cr 3 C 2 powder, 102 Co powder, 103 upper punch, 104 lower punch, 105 mold (die).

Claims (5)

被加工物に被膜を形成するための成分と、炭化物を形成しないまたは形成しにくい成分との混合物を含んで構成される放電表面処理用電極であって、
塗膜用鉛筆引かき試験による硬度でB〜8Bの範囲の硬さとなるように成形されることを特徴とする放電表面処理用電極。
An electrode for discharge surface treatment comprising a mixture of a component for forming a film on a workpiece and a component that does not form or hardly forms carbide,
An electrode for discharge surface treatment, which is formed so as to have a hardness in the range of B to 8B in hardness by a pencil scratch test for coating films.
被加工物に被膜を形成するための成分と、炭化物を形成しないまたは形成しにくい成分との混合物を含んで構成される放電表面処理用電極であって、
塗膜用鉛筆引かき試験による硬度で4B〜7Bの範囲の硬さとなるように成形されることを特徴とする放電表面処理用電極。
An electrode for discharge surface treatment comprising a mixture of a component for forming a film on a workpiece and a component that does not form or hardly forms carbide,
An electrode for discharge surface treatment, which is formed so as to have a hardness in a range of 4B to 7B as measured by a pencil scratch test for coating films.
前記炭化物を形成しないまたは形成しにくい成分は、30体積%以上含まれることを特徴とする請求項1または2に記載の放電表面処理用電極。The discharge surface treatment electrode according to claim 1, wherein the component that does not or hardly forms the carbide is contained in an amount of 30% by volume or more. 前記炭化物を形成しないまたは形成しにくい成分は、50体積%以上含まれることを特徴とする請求項1または2に記載の放電表面処理用電極。The discharge surface treatment electrode according to claim 1, wherein the component that does not or hardly forms the carbide is contained in an amount of 50% by volume or more. 前記炭化物を形成しない材料または炭化物を形成しにくい成分は、Co,Ni,Fe,Al,Cu,Znの中から選択されることを特徴とする請求項1〜4のいずれか1つに記載の放電表面処理用電極。5. The material according to claim 1, wherein the material that does not form a carbide or the component that hardly forms a carbide is selected from Co, Ni, Fe, Al, Cu, and Zn. Electrode for discharge surface treatment.
JP2002304730A 2002-10-18 2002-10-18 Electrode for discharge surface treatment Expired - Fee Related JP3847697B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002304730A JP3847697B2 (en) 2002-10-18 2002-10-18 Electrode for discharge surface treatment
TW093104220A TWI284682B (en) 2002-10-18 2004-02-20 Electric discharge surface treating electrode, manufacture and evaluation methods thereof, electric discharge surface treating device, and electric discharge treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304730A JP3847697B2 (en) 2002-10-18 2002-10-18 Electrode for discharge surface treatment

Publications (3)

Publication Number Publication Date
JP2004137576A true JP2004137576A (en) 2004-05-13
JP2004137576A5 JP2004137576A5 (en) 2005-10-13
JP3847697B2 JP3847697B2 (en) 2006-11-22

Family

ID=32452072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304730A Expired - Fee Related JP3847697B2 (en) 2002-10-18 2002-10-18 Electrode for discharge surface treatment

Country Status (1)

Country Link
JP (1) JP3847697B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010263A1 (en) * 2006-07-18 2008-01-24 Mitsubishi Electric Corporation Process for producing electrode for discharge surface treatment and method of discharge surface treatment
WO2009096543A1 (en) * 2008-01-30 2009-08-06 Ihi Corporation Discharge surface treatment method and coating block for discharge surface treatment
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
WO2008010263A1 (en) * 2006-07-18 2008-01-24 Mitsubishi Electric Corporation Process for producing electrode for discharge surface treatment and method of discharge surface treatment
WO2009096543A1 (en) * 2008-01-30 2009-08-06 Ihi Corporation Discharge surface treatment method and coating block for discharge surface treatment
CN101925692A (en) * 2008-01-30 2010-12-22 株式会社Ihi Discharge surface treatment method and coating block for discharge surface treatment
JP5168288B2 (en) * 2008-01-30 2013-03-21 株式会社Ihi Discharge surface treatment method and discharge surface treatment coating block
US9478325B2 (en) 2008-01-30 2016-10-25 Ihi Corporation Discharge surface treatment method and coating block for discharge surface treatments

Also Published As

Publication number Publication date
JP3847697B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US8658005B2 (en) Electrical-discharge surface-treatment method
US20100180725A1 (en) Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
US7537808B2 (en) Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
JP5121933B2 (en) Discharge surface treatment method
RU2321677C2 (en) Electrode for working surface by electric discharge (variants), method for working surface by means of electric discharge variants) and apparatus for working surface by means of electric discharge (variants)
JP2004137576A (en) Electrode for discharge surface treatment
CA2522836A1 (en) Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method
JP4450812B2 (en) Discharge surface treatment method
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method
JP2005213554A (en) Discharge surface treatment method and discharge surface treatment apparatus
JP4119461B2 (en) Manufacturing method of electrode for discharge surface treatment
TWI284682B (en) Electric discharge surface treating electrode, manufacture and evaluation methods thereof, electric discharge surface treating device, and electric discharge treating method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Ref document number: 3847697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees