WO2008007704A1 - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
WO2008007704A1
WO2008007704A1 PCT/JP2007/063819 JP2007063819W WO2008007704A1 WO 2008007704 A1 WO2008007704 A1 WO 2008007704A1 JP 2007063819 W JP2007063819 W JP 2007063819W WO 2008007704 A1 WO2008007704 A1 WO 2008007704A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge electrode
air
water
electrostatic
chamber
Prior art date
Application number
PCT/JP2007/063819
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Yamaguchi
Kiyoshi Takashima
Original Assignee
Panasonic Electric Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co., Ltd. filed Critical Panasonic Electric Works Co., Ltd.
Publication of WO2008007704A1 publication Critical patent/WO2008007704A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to an electrostatic atomizer for generating charged fine particle mist having a sterilizing power.
  • This electrostatic atomizer includes a discharge electrode, water supply means for supplying water to the discharge electrode, and a high voltage application unit for applying a high voltage to the discharge electrode, and applies a high voltage to the discharge electrode. Then, the water supplied to the surface of the discharge electrode is atomized to generate nanometer-sized charged fine particle mist.
  • the water supply means is composed of a heat exchanger having a cooling part and a heat radiating part. Condensed water is formed on the surface of the discharge electrode by electrically cooling the discharge electrode via the cooling part. Supply.
  • the present invention has been invented in view of the above-described problems.
  • the high voltage source and the cooling means are removed from the high humidity environment while improving the efficiency of electrostatic atomization using the high humidity air.
  • Quarantine An object is to provide a safe and low-cost electrostatic atomizer.
  • An electrostatic atomizing apparatus includes an electrostatic atomizing unit that discharges charged fine particles of water and a housing that houses the electrostatic atomizing unit.
  • the electrostatic atomization unit includes a discharge electrode, a counter electrode facing the discharge electrode, a cooling means for cooling the discharge electrode and aggregating moisture from ambient air on the discharge electrode, and facing the discharge electrode.
  • the high-voltage source is configured to apply a high voltage between the electrode and charge the static water to the aggregated water by applying the high voltage to discharge charged fine particles of water from the discharge end at the tip of the discharge electrode.
  • the interior space of the housing is divided into a spray chamber and a heat radiation chamber by a partition wall and a part of the electrostatic atomization unit.
  • the discharge electrode and the counter electrode of the electrostatic atomization unit are arranged, and in the heat radiating chamber, the heat radiating portion of the cooling means and the high voltage source are arranged.
  • the spray chamber includes a first air inlet and an outlet for introducing outside air, and discharges the charged fine particles to the outside from the outlet through an air flow sucked from the first air inlet.
  • the heat radiating chamber is provided with a second air inlet and an air outlet for introducing outside air, and the heat radiating air passage through which air flows can be completely isolated from the air flow passage in the spray chamber.
  • the spray chamber is provided with a blowing means for supplying high-humidity air to the discharge electrode.
  • high-humidity air is introduced into the spray chamber to increase the generation efficiency of condensed water at the discharge electrode, and the heat-dissipating chamber is isolated from the high-humidity air and is placed in the heat-dissipating chamber.
  • the electrical circuit of the voltage source and the cooling means and the related electrical connection points can be protected from the high humidity environment, and safe operation is promised without requiring special waterproofing treatment.
  • a water reservoir for storing water is provided on the first air inlet side of the spray chamber.
  • moisture that evaporates from the water reservoir is placed on the discharge electrode that is sucked from the first intake port by the air blowing means and directed to the discharge electrode, and high humidity air is supplied to the discharge electrode.
  • the discharge electrode is preferably disposed above the water reservoir. As a result, a drainage channel is formed in the spray chamber where water condensed excessively at the discharge electrode returns to the water reservoir due to gravity, preventing excessive condensation water from stopping on the discharge electrode and deteriorating discharge performance. In addition, the condensed water can be reused.
  • the spraying chamber has a first flow path for flowing an air flow from the first intake port toward the discharge electrode and a second flow for flowing an air flow from the first intake port toward the discharge port by the partition wall. It is also preferable to partition the flow path.
  • air blowing means for creating an air flow including high-humidity air from the water reservoir is disposed in the first flow path, and the charged fine particle water released from the discharge electrode is supplied to the partition wall from the second flow path.
  • An opening is formed on the downstream side of the air blowing means.
  • the electrostatic atomizing unit has a support frame that holds the discharge electrode, the counter electrode, and the cooling means, and the support frame is accommodated in an attachment hole formed in the partition wall. .
  • a seal wall is formed on the support frame, the cooling means is disposed on the back of the seal wall, and the discharge electrode projects forward of the seal wall through the seal wall and is exposed to the front of the seal wall.
  • the tip of the discharge electrode and the counter electrode are separated from the cooling part by the seal wall, and the housing is partitioned into the spray chamber and the heat radiating chamber by the support frame and the partition wall, and electrostatic atomization is performed. In the unit, only the tip of the discharge electrode and the counter electrode are exposed to the spray chamber, and the rest is isolated from the spray chamber.
  • the outer surface of this seal wall is an inclined surface with a lower degree of protrusion as it goes from the discharge electrode to the outer periphery, and the condensed water generated excessively on the discharge electrode can flow down along this inclined surface. Prevents excessive condensation from stopping on the electrode.
  • draining ribs extending in the radial direction from the top around the discharge electrode toward one place on the outer periphery are formed, and excessive discharge generated in the discharge electrode is formed.
  • the condensed water can be discharged to the water reservoir side by the draining rib.
  • An inner cylinder surrounding the outer periphery of the seal wall is formed inside the support frame, and guide ribs for guiding water flowing down from the surface of the seal wall to the water reservoir side It is preferable to be formed on the outer periphery of the inner cylinder. As a result, excessive dew condensation water can be collected more smoothly in the reservoir.
  • the seal wall is made of a material having high heat insulation and the surface is subjected to a hydrophilic treatment. For this reason, the seal wall is not cooled and condensed water is not generated on the seal wall, and water droplets of the condensed water are not left on the surface of the seal wall.
  • FIG. 1 is a cross-sectional view showing an electrostatic atomizer according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an electrostatic atomizing unit used in the above.
  • FIG. 3 Front view of the electrostatic atomizing unit.
  • FIG. 4 is a longitudinal sectional view of the electrostatic atomization unit same as above.
  • FIG. 5 is a horizontal sectional view of the electrostatic atomization unit.
  • FIG. 6 is a front view showing a state before the electrostatic atomizing unit is installed.
  • the electrostatic atomizer includes an electrostatic atomizing unit 10 and a housing 100 that accommodates the electrostatic atomizing unit 10.
  • the interior of the housing 100 is partitioned into a spray chamber 110 and a heat radiation chamber 120 which are separated from each other by a partition wall 102 and a part of the electrostatic atomization unit 10.
  • the spray chamber 110 includes a first air inlet 112 for introducing outside air, and a discharge port 114 for discharging the mist of charged fine particle water generated by the electrostatic atomization unit 10 to the outside.
  • the heat radiation chamber 120 is an electrostatic atomization unit.
  • a second intake port 122 for introducing outside air to cool the 10 heat generation sources and an exhaust port 124 for discharging the air after heat exchange are provided.
  • the electrostatic atomization unit 10 includes a support frame 50 that holds the discharge electrode 20, the counter electrode 30, and the heat exchanger 40 as shown in FIGS.
  • the discharge electrode is formed of a material having high thermal conductivity and conductivity such as aluminum, copper, tanta- sten, titanium, and stainless steel.
  • the support frame 50 is inserted into the mounting hole 104 of the partition wall 102 and fixes the electrostatic atomizing unit 10 to the housing 100.
  • the support frame 50 is formed of an insulating material such as PBT resin, polycarbonate resin, or PPS resin. It has a rectangular outer cylinder 52 and an inner cylinder 60 whose side surfaces are open.
  • the discharge electrode 20 is disposed on the central axis of the inner cylinder 60, and the tip protrudes forward of the inner cylinder.
  • the pole 30 has a ring shape having a circular window 32 in the center.
  • the center of the circular window 32 is fixed to the tip of the outer cylinder 52 along the center axis of the inner cylinder 60, and is connected to the discharge end at the tip of the discharge electrode 20. Separate along the axial direction of the discharge electrode.
  • the discharge electrode 20 and the counter electrode 30 are connected to a high voltage source 90 disposed in the heat radiation chamber 120, respectively.
  • the high voltage source 90 is composed of a transformer and applies a predetermined high voltage between the discharge electrode 20 and the grounded counter electrode 30, and applies a negative voltage (for example, ⁇ 4.6 kV) to the discharge electrode 20.
  • the discharge electrode 20 is a connection terminal 22 provided in front of the separation wall 62 and is connected to a lead 92 from the high voltage source 90, and the counter electrode 30 is a connection terminal 34 formed on the outer periphery of the outer cylinder 52. To the lead 94 from the high voltage source 90.
  • the inner cylinder 60 is formed with a separation wall 62 that separates the interior back and forth along the axial direction of the discharge electrode 20, and heat is applied to the back of the separation wall 62.
  • Exchanger 40 is stored.
  • the heat exchanger 40 is composed of a Peltier effect thermoelectric module, and the discharge electrode 20 is coupled to the cooling side, and the discharge electrode is cooled to a temperature below the dew point of water, so that the moisture contained in the surrounding air
  • the heat exchanger 40 defines a cooling means for supplying water to the discharge electrode 20.
  • the heat exchanger 40 is configured by electrically connecting a plurality of thermoelectric elements 46 in parallel between a pair of insulating plates 42 and 44 each having an electric circuit on the surface, and is supplied from a control module 80 housed in the housing.
  • the discharge electrode 20 is cooled at a cooling rate determined by the variable voltage.
  • One insulating plate 42 on the cooling side is thermally coupled to the flange at the rear end of the discharge electrode 20, and the other insulating plate 44 on the heat radiating side is thermally coupled to the heat radiating plate 48.
  • the heat radiating plate 48 is fixed to the support frame 50 with screws 54. Between the heat radiating plate 48 and the separation wall 62, the heat exchanger 40 together with the flange 24 at the rear end of the discharge electrode 20 is provided.
  • the insulating plates 42 and 44 are made of alumina or aluminum nitride with high thermal conductivity.
  • Control module 80 is suitable for the ambient temperature and humidity
  • the heat exchanger 40 is controlled so as to maintain an appropriate temperature, that is, an electrode temperature at which a sufficient amount of water can be condensed on the discharge electrode 20.
  • the periphery of the flange 24 at the rear end of the discharge electrode 20 is surrounded by a sealing member 26 disposed between the cooling-side insulating plate 42 and the separation wall 62.
  • the heat exchanger 40 is electrically connected to the leads 85, 87 of the control module 80 at terminals 45, 47 formed on the electric circuit on the surface of the insulating plate 44 on the heat radiation side.
  • a seal wall 64 having a curved outer surface is formed integrally with the inner cylinder 60, and the discharge electrode 20 penetrates the seal wall 64.
  • the sealing wall 64 is formed of a heat insulating material made of a foamed resin molded product such as polyamide, and the connection terminal 22 of the discharge electrode 20 is hidden behind the seal wall 64.
  • the electrostatic atomizing unit 10 is discharged. Only the tip of the electrode 20, the counter electrode 30, and the front surface of the seal wall 64 are exposed to the spray chamber 110, and the other portions are isolated from the spray chamber 110.
  • the electrostatic atomizing unit 10 by attaching the electrostatic atomizing unit 10 to the mounting hole 104 in the housing 100, the outer peripheral frame of the support frame 50, the seal wall 64, and the separation wall 62 are continuous with the partition wall 102 of the housing 100, The inside of the housing 100 is separated into a spray chamber 110 and a heat radiating chamber 120.
  • the heat-insulating plate 44 in the heat exchanger 40 is exposed to the heat-dissipating chamber 120 together with the heat-dissipating plate 48, but the cooling-side insulating plate 42 is located between the separation wall 62 and the insulating plate 44.
  • both the heat radiating chamber 120 and the spray chamber 110 are isolated.
  • connection terminal 34 of the counter electrode 30 and the terminals 45 and 47 of the heat exchanger 40 are located outside the support frame 50 on the heat radiation chamber 120 side, are isolated from the spray chamber 110, and are connected to the discharge electrode connection terminals 22. Is isolated from the spray chamber 110 by a seal wall 64. As shown in FIG. 6, a part of the seal wall 64 is formed with a notch 67 that exposes the connection terminal 22 to facilitate connection to the high voltage source 90 at the connection terminal 22. After connection, this notch 67 and other openings are sealed with an insulating synthetic resin material 70, and the connection terminal 22 is isolated from the spray chamber 110 by a sealing wall 64 containing the synthetic resin material. Yes.
  • the electrical connection point between the electrostatic atomizing unit 10 and the high voltage source 90 and the control module 80 which are connected only by the electric circuit can be isolated from the spray chamber 110 and supplied to the spray chamber 110. It can protect against high humidity air and prevent damage to electrical circuits and electrical connections due to moisture.
  • the electrostatic atomizing unit 10 configured as described above is disposed in the housing 100 so that the axial direction of the discharge electrode 20 is horizontal, and is arranged from the lower end of the spray chamber 110.
  • Supply When high-humidity air is in contact with the discharge electrode 20 and moisture in the air is condensed on the discharge electrode 20, water is supplied to the discharge electrode 20 and applied between the discharge electrode 20 and the counter electrode 30. Due to the high voltage, the charged fine particles of water are discharged into the spray chamber 110, and are directed to the discharge port 114 from the first intake port 112 and are discharged to the outside through the air flow.
  • the heat radiating chamber 120 is provided with an exhaust fan 124, which creates an air flow that causes the air sucked from the second air intake port 122 to be discharged from the air exhaust port 124, and the heat sink 48 and the high voltage source 90 are added to this air flow. These exposures promote heat dissipation.
  • the front surface of the seal wall 64 exposed to the spray chamber 110 has an arcuate curved surface with a degree of protrusion that decreases from the center surrounding the discharge electrode 20 to the periphery, and excessive condensation is generated on the discharge electrode 20.
  • the water is allowed to flow downward.
  • a draining rib 65 running along the radial direction is formed on the seal wall 64 so that excessive dew condensation water can be quickly washed out to the outside of the inner cylinder 60.
  • a guide rib 66 extending downward on the extension line of the draining rib 65 is formed at one place on the outer periphery of the inner cylinder 60, and excessive dew condensation water is supplied to the water reservoir 115 formed at the lower end of the spray chamber 110. The collection is promoted.
  • the synthetic resin applied to the seal wall 64 and a part of the seal wall 64 is made of a highly heat-insulating material, and is thermally insulated from the discharge electrode 20 to prevent the seal wall 64 from being cooled. And!
  • a fan 113 is provided at the lower end of the spray chamber 110, and water vapor from the water reservoir 116 is placed on the air flow sucked from the first air inlet 112 to electrostatically discharge high humidity air.
  • the spray chamber 110 is partitioned by the partition wall 106 into a first flow path F1 for flowing air to the electrostatic atomization unit 10 side and a second flow path F2 for flowing air to the discharge port 114 side.
  • the partition wall 106 facing the unit 10 is formed with an opening 108 through which mist of charged fine particle water discharged from the electrostatic atomization unit 10 is sent to the second flow path F2.
  • a fan 114 is disposed in the first flow path F1, and in combination with the fan 113 provided on the upstream side, high-humidity air is supplied to the electrostatic atomization unit 10 side.
  • the charged fine particle mist generated in step 2 is sent to the second flow path F2.
  • the fan 114 and the fan 113 constitute a blowing unit that promotes the generation of water vapor from the water reservoir 116 and supplies high humidity air to the discharge electrode 20 of the electrostatic atomizing unit 10. It may be composed of either one of the fans.
  • the upper first flow channel Fl is a flow channel for supplying high-humidity air to the discharge electrode 20, but also as a drainage channel for returning excessive condensed water generated by the discharge electrode 20 to the water reservoir 116. Acts and continues to generate efficient condensed water on the discharge electrode 20 while reusing excessively generated condensed water.
  • a force showing an example in which the water reservoir 116 is formed in the housing 100 in order to supply high-humidity air is not necessarily limited to this.
  • a high-humidity supply source such as a humidifier can be used outside, it is possible to eliminate the water reservoir and provide a connection port connected to the supply source at one end of the housing.
  • the electrostatic atomizing unit 10 is arranged in the housing 100, and the partition wall 102 formed in the housing 100 and a part of the electrostatic atomizing unit are included in the housing 100.
  • a force showing an example of separation of a spray chamber 110 using high-humidity air and a heat-dissipating chamber 120 separated from the spray chamber, and the structure of the electrostatic atomization unit disclosed in this application, in particular, the separation wall 62 The structure in which the space where the tip of the discharge electrode 20 and the counter electrode 30 are located is separated from the space where other members including the heat exchanger 40 are located using the seal wall 64 and the use form shown in the figure. Is also applicable.
  • an electrostatic atomizing unit for example, by disposing an electrostatic atomizing unit at the boundary between a high humidity space such as a bathroom where high humidity air can be used and a low humidity space isolated from this space, the discharge electrode 20 and the counter electrode 20 It is possible to protect the other electrical circuits and electrical connections from the high-humidity environment while exposing only to the high-humidity space to improve efficiency and enable electrostatic atomization. In this sense, the structure of the electrostatic atomizing unit 10 itself is also useful.
  • Such a structure of the electrostatic atomization unit means that the space surrounded by the support frame 50 is defined in the axial direction of the discharge electrode by the support frame 50 holding the discharge electrode 20, the counter electrode 30, and the heat exchanger 40.
  • the separation wall 62 is divided into two regions in the front and rear, and the sealing wall 64 is provided in front of the separation wall 62.
  • the heat exchanger 40 is disposed on the back side of the separation wall 62, and the separation wall 62 is The rear end of the discharge electrode is supported, and the counter electrode 30 is supported by the outer frame of the support frame.
  • the discharge electrode 20 passes through the separation wall 62 and the seal wall 64 and its front end is separated from the counter electrode.
  • a connection terminal 22 for connecting the discharge electrode 20 to the external high-voltage power supply 90 is located between the separation wall 62 and the seal wall 64, and a connection terminal 34 for connecting the counter electrode 30 to the external high-voltage power supply 90.
  • the heat exchanger is composed of a Peltier effect thermoelectric module, and electrical connection terminals 45 and 47 with an external control module are located outside the support frame 50 on the back side of the separation wall 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

An electrostatic atomizing unit is contained in a housing. A part of the electrostatic atomizing unit and a part of the housing demarcate the inside of the housing into an atomizing chamber and a heat-dissipating chamber. A discharge electrode and a counter electrode are exposed in the atomizing chamber. A high-humidity air is flowed through the atomizing chamber, and condensation of water onto the discharge electrode supplements water content. The heat-dissipating part of cooling means for cooling the discharge electrode and a high-voltage source for applying a high voltage between the discharge electrode and the counter electrode are provided in the heat-dissipating chamber, and the heat is dissipated from them in a state that they are isolated from the high-humidity air. The connection terminals for connecting the discharge electrode and the counter electrode to the high-voltage source are isolated from the atomizing chamber, and the connection terminals connected to the cooling means end an external control module are also isolated from the atomizing chamber.

Description

明 細 書  Specification
静電霧化装置  Electrostatic atomizer
技術分野  Technical field
[0001] 本発明は、除菌力のある帯電微粒子ミストを発生させるための静電霧化装置に関 するものである。  [0001] The present invention relates to an electrostatic atomizer for generating charged fine particle mist having a sterilizing power.
背景技術  Background art
[0002] 国際特許公開 WO 2005/097339は、ナノメータサイズの帯電微粒子ミスト(ナノサイ ズミスト)を生成する従来の静電霧化装置を開示している。この装置では、水が供給さ れる放電電極と対向電極との間に高電圧を印加して放電させることで、放電電極が 保持している水にレイリー***を生じさせて霧化させるようになつている。このような帯 電微粒子水は、活性種 (ラジカル)を含んでいるとともに長寿命であって、環境空間 内の隅々まで飛散してこの空間内に存在する物体に付着浸透して効果的に除菌、 脱臭を行なうことができる。  International Patent Publication WO 2005/097339 discloses a conventional electrostatic atomizer that generates nanometer-sized charged fine particle mist (nano-size mist). In this apparatus, a high voltage is applied between the discharge electrode to which water is supplied and the counter electrode to cause discharge, thereby causing Rayleigh splitting in the water held by the discharge electrode and atomization. ing. Such charged fine particle water contains active species (radicals) and has a long life, and is scattered to every corner of the environment space and effectively adheres to and penetrates objects existing in this space. It can be sterilized and deodorized.
[0003] この静電霧化装置は、放電電極と、放電電極に水を供給する水供給手段と、放電 電極に高電圧を印加する高電圧印加部とを備え、放電電極に高電圧を印加して放 電電極の表面に供給した水を霧化させることでナノメータサイズの帯電微粒子ミスト を発生させるものである。この静電霧化装置では、水供給手段が冷却部と放熱部とを 有する熱交換器で構成され、電気的に冷却部を介して放電電極を冷却することで放 電電極の表面に結露水を供給するものである。  [0003] This electrostatic atomizer includes a discharge electrode, water supply means for supplying water to the discharge electrode, and a high voltage application unit for applying a high voltage to the discharge electrode, and applies a high voltage to the discharge electrode. Then, the water supplied to the surface of the discharge electrode is atomized to generate nanometer-sized charged fine particle mist. In this electrostatic atomizer, the water supply means is composed of a heat exchanger having a cooling part and a heat radiating part. Condensed water is formed on the surface of the discharge electrode by electrically cooling the discharge electrode via the cooling part. Supply.
[0004] しかしながら、この先行技術での静電霧化装置では、放電電極および対向電極が 配置される空間には湿気を含んだ空気を供給する必要がある一方、高電圧を印加 する高電圧印加部や水供給手段の電気回路は、湿気を含んだ空気の環境に晒され ると、電気的な不具合が生じ易いため、防水処理が必要となり、装置全体のコストが 高くなるという問題があった。  [0004] However, in the electrostatic atomizer according to this prior art, it is necessary to supply moisture-containing air to the space where the discharge electrode and the counter electrode are arranged, while applying a high voltage to apply a high voltage. The electrical circuit of the water supply means and the water supply means is prone to electrical problems when exposed to moisture-containing air environments, requiring waterproofing and increasing the overall cost of the device. .
発明の開示  Disclosure of the invention
[0005] 本発明は上記の問題点に鑑みて発明したものであって、高湿度の空気を利用して 静電霧化の効率を向上させながら、高電圧源や冷却手段を高湿度環境から隔離 '保 護して安全で且つ低コストの静電霧化装置を提供することを課題とする。 [0005] The present invention has been invented in view of the above-described problems. The high voltage source and the cooling means are removed from the high humidity environment while improving the efficiency of electrostatic atomization using the high humidity air. Quarantine An object is to provide a safe and low-cost electrostatic atomizer.
[0006] 本発明に係る静電霧化装置は、水の帯電微粒子を放出する静電霧化ユニットと、こ の静電霧化ユニットを収容するハウジングとで構成される。静電霧化ユニットは、放電 電極と、上記放電電極と対向する対向電極と、上記放電電極を冷却して上記放電電 極上に周囲の空気から水分を凝集させる冷却手段と、上記放電電極と対向電極との 間に高電圧を印加して、この高電圧の印加によって凝集した水に静電気を帯電させ て放電電極先端の放電端から水の帯電微粒子を放出させる高電圧源とで構成され る。上記のハウジングはその内部空間が隔壁と静電霧化ユニットの一部とで噴霧室と 放熱室とに区画される。この噴霧室には静電霧化ユニットの放電電極と対向電極とが 配置され、放熱室には上記冷却手段の放熱部及び上記高電圧源が配置されてレ、る 。この構造により、高湿度の空気が望ましい噴霧室と、高湿度の空気を嫌う放熱室と を分離でき、噴霧室に高湿度の空気を供給することで放電電極での結露水の生成 効率を高めると同時に、放熱室に配置される部品を高湿度の空気力、から保護できる [0006] An electrostatic atomizing apparatus according to the present invention includes an electrostatic atomizing unit that discharges charged fine particles of water and a housing that houses the electrostatic atomizing unit. The electrostatic atomization unit includes a discharge electrode, a counter electrode facing the discharge electrode, a cooling means for cooling the discharge electrode and aggregating moisture from ambient air on the discharge electrode, and facing the discharge electrode. The high-voltage source is configured to apply a high voltage between the electrode and charge the static water to the aggregated water by applying the high voltage to discharge charged fine particles of water from the discharge end at the tip of the discharge electrode. The interior space of the housing is divided into a spray chamber and a heat radiation chamber by a partition wall and a part of the electrostatic atomization unit. In the spray chamber, the discharge electrode and the counter electrode of the electrostatic atomization unit are arranged, and in the heat radiating chamber, the heat radiating portion of the cooling means and the high voltage source are arranged. With this structure, it is possible to separate the spray chamber where high-humidity air is desirable from the heat-dissipating chamber that dislikes high-humidity air, and increase the generation efficiency of condensed water at the discharge electrode by supplying high-humidity air to the spray chamber. At the same time, components placed in the heat dissipation chamber can be protected from high-humidity aerodynamic forces.
[0007] 好ましくは、噴霧室は外気を導入する第 1吸気口と吐出口を備え、第 1吸気口から 吸い込んだ空気流に載せて上記の帯電微粒子を上記吐出口から外部に放出する。 一方、放熱室は外気を導入する第 2吸気口と排気口が備えられ、この間で空気を流 す放熱空気路が、噴霧室での空気流の流路と完全に隔離することができる。更に、 噴霧室には、湿度の高い空気を上記放電電極へ供給するための送風手段を備えら れる。従って、噴霧室は高湿度の空気が導入されて、放電電極での結露水の生成効 率を高めることができると共に、放熱室はこの高湿度の空気から隔離され、放熱室に 配置される高電圧源や冷却手段の電気回路及び関連する電気接続箇所を高湿度 環境から保護されることができ、格別な防水処理を必要とせずに、安全な動作が約 束される。 [0007] Preferably, the spray chamber includes a first air inlet and an outlet for introducing outside air, and discharges the charged fine particles to the outside from the outlet through an air flow sucked from the first air inlet. On the other hand, the heat radiating chamber is provided with a second air inlet and an air outlet for introducing outside air, and the heat radiating air passage through which air flows can be completely isolated from the air flow passage in the spray chamber. Further, the spray chamber is provided with a blowing means for supplying high-humidity air to the discharge electrode. Therefore, high-humidity air is introduced into the spray chamber to increase the generation efficiency of condensed water at the discharge electrode, and the heat-dissipating chamber is isolated from the high-humidity air and is placed in the heat-dissipating chamber. The electrical circuit of the voltage source and the cooling means and the related electrical connection points can be protected from the high humidity environment, and safe operation is promised without requiring special waterproofing treatment.
[0008] 上記噴霧室の第 1吸気口側に、水を貯える水溜が設けられることが好ましい。この 場合、上記送風手段によって第 1吸気口から吸い込まれて上記放電電極に向力、う空 気流に、上記水溜から蒸発する水分が乗せられ、湿度の高い空気が放電電極に供 る。 [0009] また、上記放電電極は上記水溜の上方に配置されることが好ましい。この結果、上 記放電電極で過剰に結露した水が上記水溜へ重力により戻る排水路が上記噴霧室 内に形成され、過剰の結露水が放電電極上に止まって放電性能を低下させることを 防止することができると共に、結露水を再利用することができる。 [0008] It is preferable that a water reservoir for storing water is provided on the first air inlet side of the spray chamber. In this case, moisture that evaporates from the water reservoir is placed on the discharge electrode that is sucked from the first intake port by the air blowing means and directed to the discharge electrode, and high humidity air is supplied to the discharge electrode. [0009] The discharge electrode is preferably disposed above the water reservoir. As a result, a drainage channel is formed in the spray chamber where water condensed excessively at the discharge electrode returns to the water reservoir due to gravity, preventing excessive condensation water from stopping on the discharge electrode and deteriorating discharge performance. In addition, the condensed water can be reused.
[0010] 更に、上記噴霧室が、仕切り壁によって、第 1吸気口から上記放電電極に向かう空 気流を流す第 1流路と、第 1吸気口から上記吐出口に向かう空気流を流す第 2流路と に区画されることも好ましい。この場合、第 1流路内に、上記水溜からの湿度の高い 空気を含む空気流を作り出す送風手段が配置され、上記仕切り壁に、上記放電電極 から放出される帯電微粒子水を第 2流路内に送り出す開口が上記送風手段の下流 側に形成される。これにより、水溜からの蒸発水を効率よく放電電極側に供給するこ とができて、帯電微粒子水の生成効率を向上させることができる。  [0010] Further, the spraying chamber has a first flow path for flowing an air flow from the first intake port toward the discharge electrode and a second flow for flowing an air flow from the first intake port toward the discharge port by the partition wall. It is also preferable to partition the flow path. In this case, air blowing means for creating an air flow including high-humidity air from the water reservoir is disposed in the first flow path, and the charged fine particle water released from the discharge electrode is supplied to the partition wall from the second flow path. An opening is formed on the downstream side of the air blowing means. Thereby, the evaporated water from the water reservoir can be efficiently supplied to the discharge electrode side, and the generation efficiency of charged particulate water can be improved.
[0011] 好ましい実施形態において、上記静電霧化ユニットは、上記放電電極、上記対向 電極、上記冷却手段を保持する支持フレームを有し、支持フレームが上記隔壁に形 成した取り付け孔に収められる。上記支持フレームにはシール壁が形成され、シール 壁の背部に上記冷却手段が配置されると共に、上記放電電極がこのシール壁を通し てシール壁の前方に突出し、シール壁の前方に露出する上記放電電極の先端部と 上記対向電極が上記シール壁によって、上記冷却部と隔離され、この支持フレーム と上記隔壁とで、上記ハウジングが上記噴霧室と上記放熱室とに区画され、静電霧 化ユニットは放電電極の先端部と対向電極のみが噴霧室側に露出し、残りを噴霧室 から隔離する。このシール壁の外表面は放電電極から外周に行くに従って突出度合 いが小さくなつた傾斜面とされ、放電電極上へ過剰に生成される結露水はこの斜面 に沿って流れ落とすことができ、放電電極上に過剰の結露水が止まることが防止でき  In a preferred embodiment, the electrostatic atomizing unit has a support frame that holds the discharge electrode, the counter electrode, and the cooling means, and the support frame is accommodated in an attachment hole formed in the partition wall. . A seal wall is formed on the support frame, the cooling means is disposed on the back of the seal wall, and the discharge electrode projects forward of the seal wall through the seal wall and is exposed to the front of the seal wall. The tip of the discharge electrode and the counter electrode are separated from the cooling part by the seal wall, and the housing is partitioned into the spray chamber and the heat radiating chamber by the support frame and the partition wall, and electrostatic atomization is performed. In the unit, only the tip of the discharge electrode and the counter electrode are exposed to the spray chamber, and the rest is isolated from the spray chamber. The outer surface of this seal wall is an inclined surface with a lower degree of protrusion as it goes from the discharge electrode to the outer periphery, and the condensed water generated excessively on the discharge electrode can flow down along this inclined surface. Prevents excessive condensation from stopping on the electrode.
[0012] 上記シール壁の外表面には、上記放電電極の周りの頂部から外周の一所に向か つて半径方向に沿って延出する水切りリブが形成され、放電電極に生成される過剰 の結露水をこの水切りリブによって、水溜側に排出することができる。 [0012] On the outer surface of the seal wall, draining ribs extending in the radial direction from the top around the discharge electrode toward one place on the outer periphery are formed, and excessive discharge generated in the discharge electrode is formed. The condensed water can be discharged to the water reservoir side by the draining rib.
[0013] 上記支持フレームの内側にはシール壁の外周を囲む内筒が形成され、上記のシー ル壁の表面から流れ落ちる水を上記の水溜側に誘導するための誘導リブが上記の 内筒の外周に形成されることが好ましい。これにより、過剰の結露水をより円滑に水 溜に回収することができる。 [0013] An inner cylinder surrounding the outer periphery of the seal wall is formed inside the support frame, and guide ribs for guiding water flowing down from the surface of the seal wall to the water reservoir side It is preferable to be formed on the outer periphery of the inner cylinder. As a result, excessive dew condensation water can be collected more smoothly in the reservoir.
[0014] 更に、上記シール壁は断熱性が高い材料で形成され、表面が親水処理されたこと が好ましい。このため、シール壁が冷却されてこの上に結露水が生成されることを無く すと共に、シール壁表面に結露水の水滴を残さないようにすることができる。 [0014] Further, it is preferable that the seal wall is made of a material having high heat insulation and the surface is subjected to a hydrophilic treatment. For this reason, the seal wall is not cooled and condensed water is not generated on the seal wall, and water droplets of the condensed water are not left on the surface of the seal wall.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の一実施形態に係る静電霧化装置を示す断面図。  FIG. 1 is a cross-sectional view showing an electrostatic atomizer according to an embodiment of the present invention.
[図 2]同上に使用する静電霧化ユニットを示す斜視図。  FIG. 2 is a perspective view showing an electrostatic atomizing unit used in the above.
[図 3]同上の静電霧化ユニットの正面図。  [Fig. 3] Front view of the electrostatic atomizing unit.
[図 4]同上の静電霧化ユニットの縦断面図。  FIG. 4 is a longitudinal sectional view of the electrostatic atomization unit same as above.
[図 5]同上の静電霧化ユニットの水平断面図。  FIG. 5 is a horizontal sectional view of the electrostatic atomization unit.
[図 6]同上の静電霧化ユニットの取り付け前の状態を示す正面図。  FIG. 6 is a front view showing a state before the electrostatic atomizing unit is installed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明の一実施形態に係る静電霧化装置を添付図面に基づいて説明する。図 1 に示すように、静電霧化装置は静電霧化ユニット 10とこれを収容するハウジング 100 とで構成される。ハウジング 100の内部は、隔壁 102と静電霧化ユニット 10の一部と によって、互いに隔離された噴霧室 110と放熱室 120とに区画される。噴霧室 110は 外気を導入する第 1吸気口 112と、静電霧化ユニット 10で生成される帯電微粒子水 のミストを外部に放出する吐出口 114を備え、放熱室 120は静電霧化ユニット 10の 熱発生源を冷却するために外気を導入する第 2吸気口 122と、熱交換後の空気を排 出する排気口 124を備える。  An electrostatic atomizer according to an embodiment of the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, the electrostatic atomizer includes an electrostatic atomizing unit 10 and a housing 100 that accommodates the electrostatic atomizing unit 10. The interior of the housing 100 is partitioned into a spray chamber 110 and a heat radiation chamber 120 which are separated from each other by a partition wall 102 and a part of the electrostatic atomization unit 10. The spray chamber 110 includes a first air inlet 112 for introducing outside air, and a discharge port 114 for discharging the mist of charged fine particle water generated by the electrostatic atomization unit 10 to the outside. The heat radiation chamber 120 is an electrostatic atomization unit. A second intake port 122 for introducing outside air to cool the 10 heat generation sources and an exhaust port 124 for discharging the air after heat exchange are provided.
[0017] 静電霧化ユニット 10は、図 2〜4に示すように、放電電極 20、対向電極 30、及び熱 交換器 40を保持する支持フレーム 50を備える。放電電極はアルミニウムや銅、タン ダステン、チタン、ステンレス等の熱伝導性及び導電性の高い材料で形成される。支 持フレーム 50は、隔壁 102の取り付け孔 104に揷入されて静電霧化ユニット 10をハ ウジング 100に固定するもので、 PBT樹脂やポリカーボネート樹脂や PPS樹脂等の 絶縁材料で成形された一側面が開放する矩形状の外筒 52と内筒 60を備える。放電 電極 20は内筒 60の中心軸上に配置され、先端が内筒の前方に突出する。対向電 極 30は中央に円形窓 32を有するリング状であり、円形窓 32の中心を内筒 60の中心 軸に併せて外筒 52の先端に固定され、放電電極 20の先端の放電端に対して放電 電極の軸方向に沿って離間する。放電電極 20と対向電極 30はそれぞれ放熱室 12 0内に配置される高電圧源 90に接続される。高電圧源 90はトランスで構成されて所 定の高電圧を放電電極 20と接地された対向電極 30との間に印加するもので、負の 電圧(例えば、 -4. 6kV)を放電電極 20に与えることで、放電電極 20先端の放電端 と各対向電極 30の円形窓 32の内周縁との間に高電圧電界を発生させ、後述するよ うに、放電電極 20上に供給される水を静電気で帯電させて、放電端から水の帯電微 粒子をミストとして放出する。このミストは対向電極 30の円形窓 32を通して、噴霧室 1 10内に放出され、噴霧室 100内を流れる空気流に乗って吐出口 114を介して外部 に放出される。 The electrostatic atomization unit 10 includes a support frame 50 that holds the discharge electrode 20, the counter electrode 30, and the heat exchanger 40 as shown in FIGS. The discharge electrode is formed of a material having high thermal conductivity and conductivity such as aluminum, copper, tanta- sten, titanium, and stainless steel. The support frame 50 is inserted into the mounting hole 104 of the partition wall 102 and fixes the electrostatic atomizing unit 10 to the housing 100. The support frame 50 is formed of an insulating material such as PBT resin, polycarbonate resin, or PPS resin. It has a rectangular outer cylinder 52 and an inner cylinder 60 whose side surfaces are open. The discharge electrode 20 is disposed on the central axis of the inner cylinder 60, and the tip protrudes forward of the inner cylinder. Opposite power The pole 30 has a ring shape having a circular window 32 in the center. The center of the circular window 32 is fixed to the tip of the outer cylinder 52 along the center axis of the inner cylinder 60, and is connected to the discharge end at the tip of the discharge electrode 20. Separate along the axial direction of the discharge electrode. The discharge electrode 20 and the counter electrode 30 are connected to a high voltage source 90 disposed in the heat radiation chamber 120, respectively. The high voltage source 90 is composed of a transformer and applies a predetermined high voltage between the discharge electrode 20 and the grounded counter electrode 30, and applies a negative voltage (for example, −4.6 kV) to the discharge electrode 20. To generate a high-voltage electric field between the discharge end of the discharge electrode 20 tip and the inner peripheral edge of the circular window 32 of each counter electrode 30, and the water supplied onto the discharge electrode 20 as described later. It is charged with static electricity and discharges charged fine water particles as mist from the discharge end. The mist is discharged into the spray chamber 110 through the circular window 32 of the counter electrode 30, and is released to the outside through the discharge port 114 on the air flow flowing in the spray chamber 100.
[0018] 放電電極 20は、分離壁 62の前方に設けた接続端子 22で、高電圧源 90からのリー ド 92と接続され、対向電極 30は、外筒 52の外周に形成した接続端子 34で高電圧源 90からのリード 94に接続される。  The discharge electrode 20 is a connection terminal 22 provided in front of the separation wall 62 and is connected to a lead 92 from the high voltage source 90, and the counter electrode 30 is a connection terminal 34 formed on the outer periphery of the outer cylinder 52. To the lead 94 from the high voltage source 90.
[0019] 内筒 60には、図 4、 5に示すように、内部を放電電極 20の軸方向に沿って前後に 分離する分離壁 62がー体に形成され、分離壁 62の背部に熱交換器 40が収められ る。熱交換器 40は、ペルチヱ効果熱電モジュールで構成され、冷却側に放電電極 2 0が結合されて、放電電極が水の露点以下の温度に冷却されることで、周囲の空気 中に含まれる水分を放電電極に凝集させるものであり、この熱交換器 40が水を放電 電極 20へ供給する冷却手段を規定する。この熱交換器 40は、それぞれ表面に電気 回路を備えた一対の絶縁板 42、 44の間に複数の熱電素子 46を並列に電気接続し て構成され、ハウジング内に収めた制御モジュール 80から与えられる可変の電圧に よって決まる冷却速度で放電電極 20を冷却する。冷却側となる一方の絶縁板 42は 放電電極 20後端のフランジへ熱結合され、放熱側となる他方の絶縁板 44は放熱板 48に熱結合される。この放熱板 48は、図 5に示すように、支持フレーム 50へねじ 54 によって固定され、放熱板 48と分離壁 62との間に、放電電極 20後端のフランジ 24と 共に熱交換器 40が保持される。絶縁板 42、 44は、熱伝導性の高いアルミナゃ窒化 アルミニウムで構成される。制御モジュール 80は環境温度と環境湿度に応じた適切 な温度、即ち、十分な量の水を放電電極 20上に凝集できる電極温度を維持するよう に、熱交換器 40を制御する。放電電極 20後端のフランジ 24の周囲は、冷却側の絶 縁板 42と分離壁 62との間に配した封止部材 26によって包囲される。 As shown in FIGS. 4 and 5, the inner cylinder 60 is formed with a separation wall 62 that separates the interior back and forth along the axial direction of the discharge electrode 20, and heat is applied to the back of the separation wall 62. Exchanger 40 is stored. The heat exchanger 40 is composed of a Peltier effect thermoelectric module, and the discharge electrode 20 is coupled to the cooling side, and the discharge electrode is cooled to a temperature below the dew point of water, so that the moisture contained in the surrounding air The heat exchanger 40 defines a cooling means for supplying water to the discharge electrode 20. The heat exchanger 40 is configured by electrically connecting a plurality of thermoelectric elements 46 in parallel between a pair of insulating plates 42 and 44 each having an electric circuit on the surface, and is supplied from a control module 80 housed in the housing. The discharge electrode 20 is cooled at a cooling rate determined by the variable voltage. One insulating plate 42 on the cooling side is thermally coupled to the flange at the rear end of the discharge electrode 20, and the other insulating plate 44 on the heat radiating side is thermally coupled to the heat radiating plate 48. As shown in FIG. 5, the heat radiating plate 48 is fixed to the support frame 50 with screws 54. Between the heat radiating plate 48 and the separation wall 62, the heat exchanger 40 together with the flange 24 at the rear end of the discharge electrode 20 is provided. Retained. The insulating plates 42 and 44 are made of alumina or aluminum nitride with high thermal conductivity. Control module 80 is suitable for the ambient temperature and humidity The heat exchanger 40 is controlled so as to maintain an appropriate temperature, that is, an electrode temperature at which a sufficient amount of water can be condensed on the discharge electrode 20. The periphery of the flange 24 at the rear end of the discharge electrode 20 is surrounded by a sealing member 26 disposed between the cooling-side insulating plate 42 and the separation wall 62.
[0020] 熱交換器 40は、放熱側の絶縁板 44の表面の電気回路に形成した端子 45、 47で 制卸モジユーノレ 80力、らのリード 85、 87と電気接続される。  [0020] The heat exchanger 40 is electrically connected to the leads 85, 87 of the control module 80 at terminals 45, 47 formed on the electric circuit on the surface of the insulating plate 44 on the heat radiation side.
[0021] 分離壁 62の前方には、外表面が曲面に仕上げられたシール壁 64が、内筒 60と一 体に形成され、放電電極 20がシール壁 64を貫通する。シール壁 64は、ポリアミド等 の発泡樹脂成形品からなる断熱材料で成形され、放電電極 20の接続端子 22はシ ール壁 64の裏側に隠され、その結果、静電霧化ユニット 10は放電電極 20の先端、 対向電極 30、及びシール壁 64の前面のみが噴霧室 110に露出し、その他の部分は 噴霧室 110から隔離される。即ち、静電霧化ユニット 10をハウジング 100内の取り付 け孔 104に装着することで、支持フレーム 50の外周枠、シール壁 64、分離壁 62がハ ウジング 100の隔壁 102と連続して、ハウジング 100内部を、噴霧室 110と放熱室 12 0とに分離する。この場合、熱交換器 40における放熱側の絶縁板 44は放熱板 48と 共に放熱室 120に露出するが、冷却側の絶縁板 42は、分離壁 62と絶縁板 44との間 で位置することで、放熱室 120からも噴霧室 110からも隔離される。また、対向電極 3 0の接続端子 34及び熱交換器 40の端子 45、 47は、支持フレーム 50の外側で放熱 室 120側に位置して、噴霧室 110から隔離され、放電電極の接続端子 22は、シール 壁 64によって噴霧室 110から隔離される。尚、シール壁 64の一部は、図 6に示され るように、接続端子 22を露出させる切り欠き 67が形成されて、接続端子 22での高電 圧源 90への接続作業を容易としている力、接続後は、絶縁性の合成樹脂材料 70に よりこの切り欠き 67及びその他の開口部を封止し、合成樹脂材料を含むシール壁 64 により接続端子 22を噴霧室 110から隔離している。このため、高電圧源 90や制御モ ジュール 80の電気回路だけでなぐこれらと静電霧化ユニット 10との電気接続箇所 を、噴霧室 110から隔離することができて、噴霧室 110内に供給される高湿度の空気 から保護でき、湿気による電気回路や電気接続箇所の損傷を防ぐことができる。  In front of the separation wall 62, a seal wall 64 having a curved outer surface is formed integrally with the inner cylinder 60, and the discharge electrode 20 penetrates the seal wall 64. The sealing wall 64 is formed of a heat insulating material made of a foamed resin molded product such as polyamide, and the connection terminal 22 of the discharge electrode 20 is hidden behind the seal wall 64. As a result, the electrostatic atomizing unit 10 is discharged. Only the tip of the electrode 20, the counter electrode 30, and the front surface of the seal wall 64 are exposed to the spray chamber 110, and the other portions are isolated from the spray chamber 110. That is, by attaching the electrostatic atomizing unit 10 to the mounting hole 104 in the housing 100, the outer peripheral frame of the support frame 50, the seal wall 64, and the separation wall 62 are continuous with the partition wall 102 of the housing 100, The inside of the housing 100 is separated into a spray chamber 110 and a heat radiating chamber 120. In this case, the heat-insulating plate 44 in the heat exchanger 40 is exposed to the heat-dissipating chamber 120 together with the heat-dissipating plate 48, but the cooling-side insulating plate 42 is located between the separation wall 62 and the insulating plate 44. Thus, both the heat radiating chamber 120 and the spray chamber 110 are isolated. Further, the connection terminal 34 of the counter electrode 30 and the terminals 45 and 47 of the heat exchanger 40 are located outside the support frame 50 on the heat radiation chamber 120 side, are isolated from the spray chamber 110, and are connected to the discharge electrode connection terminals 22. Is isolated from the spray chamber 110 by a seal wall 64. As shown in FIG. 6, a part of the seal wall 64 is formed with a notch 67 that exposes the connection terminal 22 to facilitate connection to the high voltage source 90 at the connection terminal 22. After connection, this notch 67 and other openings are sealed with an insulating synthetic resin material 70, and the connection terminal 22 is isolated from the spray chamber 110 by a sealing wall 64 containing the synthetic resin material. Yes. For this reason, the electrical connection point between the electrostatic atomizing unit 10 and the high voltage source 90 and the control module 80 which are connected only by the electric circuit can be isolated from the spray chamber 110 and supplied to the spray chamber 110. It can protect against high humidity air and prevent damage to electrical circuits and electrical connections due to moisture.
[0022] このようにして構成された静電霧化ユニット 10は、図 1に示すように、放電電極 20の 軸方向を水平となるようにハウジング 100内に配置され、噴霧室 110の下端から供給 される湿度の高い空気が放電電極 20に接触して放電電極 20上に空気中の水分が 結露することで、放電電極 20に水が供給され、放電電極 20と対向電極 30との間に 印加する高電圧によって水の帯電微粒子が噴霧室 110内に放出され、第 1吸気口 1 12から吐出口 114に向力、う空気流に乗って、外部に放出される。 As shown in FIG. 1, the electrostatic atomizing unit 10 configured as described above is disposed in the housing 100 so that the axial direction of the discharge electrode 20 is horizontal, and is arranged from the lower end of the spray chamber 110. Supply When high-humidity air is in contact with the discharge electrode 20 and moisture in the air is condensed on the discharge electrode 20, water is supplied to the discharge electrode 20 and applied between the discharge electrode 20 and the counter electrode 30. Due to the high voltage, the charged fine particles of water are discharged into the spray chamber 110, and are directed to the discharge port 114 from the first intake port 112 and are discharged to the outside through the air flow.
[0023] 放熱室 120には排気ファン 124が備えられ、第 2吸気口 122から吸い込んだ空気を 排気口 124から排出させる空気流を作り出し、この空気流に放熱板 48や高電圧源 9 0を晒すことで、これらの放熱を促進させる。  [0023] The heat radiating chamber 120 is provided with an exhaust fan 124, which creates an air flow that causes the air sucked from the second air intake port 122 to be discharged from the air exhaust port 124, and the heat sink 48 and the high voltage source 90 are added to this air flow. These exposures promote heat dissipation.
[0024] 噴霧室 110に露出するシール壁 64の前面は、放電電極 20を囲む中央から周縁に 行くに従って、突出度合いが小さくなる弧状曲面とされ、放電電極 20上に過剰に生 成される結露水を下方へ流れ落とすようにしている。更に、シール壁 64には半径方 向に沿って走る水切りリブ 65が形成されて、過剰の結露水を内筒 60の外方へ素早く 流し落とすようになつている。これに関連して、内筒 60の外周の一所には、水切りリブ 65の延長線上で下方に伸びる誘導リブ 66が形成され、過剰の結露水を噴霧室 110 下端に形成した水溜 115への回収を促進させている。シール壁 64及びこの一部に 施される合成樹脂は断熱性の高!/、材料で形成されて、放電電極 20と熱的に遮断さ れることで、シール壁 64が冷却されるのを防止して!/、る。  [0024] The front surface of the seal wall 64 exposed to the spray chamber 110 has an arcuate curved surface with a degree of protrusion that decreases from the center surrounding the discharge electrode 20 to the periphery, and excessive condensation is generated on the discharge electrode 20. The water is allowed to flow downward. Further, a draining rib 65 running along the radial direction is formed on the seal wall 64 so that excessive dew condensation water can be quickly washed out to the outside of the inner cylinder 60. In this connection, a guide rib 66 extending downward on the extension line of the draining rib 65 is formed at one place on the outer periphery of the inner cylinder 60, and excessive dew condensation water is supplied to the water reservoir 115 formed at the lower end of the spray chamber 110. The collection is promoted. The synthetic resin applied to the seal wall 64 and a part of the seal wall 64 is made of a highly heat-insulating material, and is thermally insulated from the discharge electrode 20 to prevent the seal wall 64 from being cooled. And!
[0025] 図 1に示すように、噴霧室 110の下端にはファン 113が設けられ、水溜 116からの 水蒸気を、第 1吸気口 112から吸い込む空気流に乗せて、湿度の高い空気を静電霧 化ユニット 10側へ供給する。噴霧室 110は、仕切り壁 106によって、静電霧化ュニッ ト 10側へ空気を流す第 1流路 F1と、吐出口 114側に空気を流す第 2流路 F2に仕切 られ、静電霧化ユニット 10に対向する仕切り壁 106には、静電霧化ユニット 10から放 出される帯電微粒子水のミストを第 2流路 F2へ送り出す開口 108が形成される。第 1 流路 F1には、ファン 114が配置され、上流側に設けたファン 113と相俟って、湿度の 高い空気を静電霧化ユニット 10側へ供給すると共に、静電霧化ユニット 10で発生し た帯電微粒子のミストを第 2流路 F2側に送り出す。ファン 114とファン 113は、水溜 1 16からの水蒸気の発生を促進させ、湿度の高い空気を静電霧化ユニット 10の放電 電極 20へ供給する送風手段を構成するものであるが、送風手段はどちらか一方のフ アンで構成するようにしてもょレ、。 [0026] 上の第 1流路 Flは、高い湿度の空気を放電電極 20へ供給する流路である一方、 放電電極 20で生成される過剰の結露水を水溜 116に返送する排水路としても作用 し、過剰に生成される結露水を再利用しながら、効率のよい結露水の放電電極 20上 への生成を継続させる。 [0025] As shown in FIG. 1, a fan 113 is provided at the lower end of the spray chamber 110, and water vapor from the water reservoir 116 is placed on the air flow sucked from the first air inlet 112 to electrostatically discharge high humidity air. Supply to atomizing unit 10 side. The spray chamber 110 is partitioned by the partition wall 106 into a first flow path F1 for flowing air to the electrostatic atomization unit 10 side and a second flow path F2 for flowing air to the discharge port 114 side. The partition wall 106 facing the unit 10 is formed with an opening 108 through which mist of charged fine particle water discharged from the electrostatic atomization unit 10 is sent to the second flow path F2. A fan 114 is disposed in the first flow path F1, and in combination with the fan 113 provided on the upstream side, high-humidity air is supplied to the electrostatic atomization unit 10 side. The charged fine particle mist generated in step 2 is sent to the second flow path F2. The fan 114 and the fan 113 constitute a blowing unit that promotes the generation of water vapor from the water reservoir 116 and supplies high humidity air to the discharge electrode 20 of the electrostatic atomizing unit 10. It may be composed of either one of the fans. The upper first flow channel Fl is a flow channel for supplying high-humidity air to the discharge electrode 20, but also as a drainage channel for returning excessive condensed water generated by the discharge electrode 20 to the water reservoir 116. Acts and continues to generate efficient condensed water on the discharge electrode 20 while reusing excessively generated condensed water.
[0027] 尚、上記のシール壁 64の表面に微細な凹凸を形成して、親水化処理を行えば、結 露水が大きな水滴となってシール壁 64の表面に止まることを無くして、効果的に結露 水を水溜 116側に回収することができる。  [0027] It should be noted that if fine irregularities are formed on the surface of the above-mentioned seal wall 64 and the hydrophilic treatment is performed, dew condensation water becomes large water droplets and does not stop on the surface of the seal wall 64, which is effective. Condensed water can be collected on the water reservoir 116 side.
[0028] また、本実施形態では、高湿度の空気を供給するために水溜 116をハウジング 10 0内に形成した例を示している力 本発明は必ずしも、これのみに限定されるもので はなぐ外部に高湿度の供給源、例えば加湿器が利用できる場合は、水溜をなくして 、ハウジングの一端にこの供給源に接続される接続口を設けることが可能である。  [0028] Further, in the present embodiment, a force showing an example in which the water reservoir 116 is formed in the housing 100 in order to supply high-humidity air. The present invention is not necessarily limited to this. When a high-humidity supply source such as a humidifier can be used outside, it is possible to eliminate the water reservoir and provide a connection port connected to the supply source at one end of the housing.
[0029] 更に、上述の実施形態では、ハウジング 100内に静電霧化ユニット 10を配置して、 ハウジング 100内に形成した隔壁 102と静電霧化ユニットの一部とで、ハウジング 10 0内を湿度の高い空気を利用する噴霧室 110と、この噴霧室と隔離した放熱室 120と に分離した例を示した力 本出願で開示される静電霧化ユニットの構造、特に、分離 壁 62やシール壁 64を用いて、放電電極 20の先端と対向電極 30が位置する空間を 、熱交換器 40を含むその他の部材が位置する空間と隔離する構造は、図に示される 使用形態以外にも、適用できるものである。例えば、浴室のような高湿度の空気が利 用できる高湿度空間と、この空間から隔離された低湿度空間との境界に静電霧化ュ ニットを配置することで、放電電極 20と対向電極のみを高湿度空間に露出させて効 率のよ!/、静電霧化を可能としながら、その他の部材である電気回路や電気接続部を 高湿度環境から隔離して保護することができる。この意味において、静電霧化ュニッ ト 10の構造自体も有用である。  Furthermore, in the above-described embodiment, the electrostatic atomizing unit 10 is arranged in the housing 100, and the partition wall 102 formed in the housing 100 and a part of the electrostatic atomizing unit are included in the housing 100. A force showing an example of separation of a spray chamber 110 using high-humidity air and a heat-dissipating chamber 120 separated from the spray chamber, and the structure of the electrostatic atomization unit disclosed in this application, in particular, the separation wall 62 The structure in which the space where the tip of the discharge electrode 20 and the counter electrode 30 are located is separated from the space where other members including the heat exchanger 40 are located using the seal wall 64 and the use form shown in the figure. Is also applicable. For example, by disposing an electrostatic atomizing unit at the boundary between a high humidity space such as a bathroom where high humidity air can be used and a low humidity space isolated from this space, the discharge electrode 20 and the counter electrode 20 It is possible to protect the other electrical circuits and electrical connections from the high-humidity environment while exposing only to the high-humidity space to improve efficiency and enable electrostatic atomization. In this sense, the structure of the electrostatic atomizing unit 10 itself is also useful.
[0030] このような静電霧化ユニットの構造とは、放電電極 20、対向電極 30、熱交換器 40 を保持する支持フレーム 50に、支持フレーム 50で包囲される空間を放電電極の軸 方向に沿った前後 2つの領域に区画する分離壁 62及び分離壁 62の前方にシール 壁 64を備えた構造であり、分離壁 62の背面側に熱交換器 40が配置され、分離壁 6 2に放電電極の後端が支持され、対向電極 30は支持フレームの外枠に支持される。 放電電極 20は分離壁 62及びシール壁 64を貫通してその前端が対向電極と離間す る。放電電極 20を外部の高圧電源 90に接続するための接続端子 22は、分離壁 62 とシール壁 64との間に位置し、対向電極 30を外部の高圧電源 90に接続するための 接続端子 34は支持フレーム 50の外周に位置する。また、熱交換器はペルチェ効果 熱電モジュールで構成され、外部の制御モジュールとの電気接続端子 45、 47が分 離壁 62の背面側で支持フレーム 50の外方に位置する。この構造により、支持フレー ム 50で囲まれ且つシール壁 64の前方の領域には放電電極 20の先端部と対向電極 30のみが露出し、その他の部材をシール壁 64の背後に隔離することができる。 [0030] Such a structure of the electrostatic atomization unit means that the space surrounded by the support frame 50 is defined in the axial direction of the discharge electrode by the support frame 50 holding the discharge electrode 20, the counter electrode 30, and the heat exchanger 40. The separation wall 62 is divided into two regions in the front and rear, and the sealing wall 64 is provided in front of the separation wall 62. The heat exchanger 40 is disposed on the back side of the separation wall 62, and the separation wall 62 is The rear end of the discharge electrode is supported, and the counter electrode 30 is supported by the outer frame of the support frame. The discharge electrode 20 passes through the separation wall 62 and the seal wall 64 and its front end is separated from the counter electrode. A connection terminal 22 for connecting the discharge electrode 20 to the external high-voltage power supply 90 is located between the separation wall 62 and the seal wall 64, and a connection terminal 34 for connecting the counter electrode 30 to the external high-voltage power supply 90. Is located on the outer periphery of the support frame 50. The heat exchanger is composed of a Peltier effect thermoelectric module, and electrical connection terminals 45 and 47 with an external control module are located outside the support frame 50 on the back side of the separation wall 62. With this structure, only the tip of the discharge electrode 20 and the counter electrode 30 are exposed in the area surrounded by the support frame 50 and in front of the seal wall 64, and other members are isolated behind the seal wall 64. it can.

Claims

請求の範囲 The scope of the claims
[1] 水の帯電微粒子を放出する静電霧化ユニットと、  [1] An electrostatic atomization unit that discharges charged fine particles of water;
上記静電霧化ユニットを収容するハウジングとで構成された静電霧化装置であり、 上記静電霧化ユニットは、  It is an electrostatic atomizer configured with a housing that accommodates the electrostatic atomization unit, and the electrostatic atomization unit comprises:
放電電極と、  A discharge electrode;
上記放電電極と対向する対向電極と、  A counter electrode facing the discharge electrode;
上記放電電極を冷却して上記放電電極上に周囲の空気から水分を凝集させる冷 却手段と、  Cooling means for cooling the discharge electrode and aggregating moisture from ambient air on the discharge electrode;
上記放電電極と対向電極との間に高電圧を印加して、この高電圧の印加によって 凝集した水に静電気を帯電させて放電電極先端の放電端から水の帯電微粒子を放 出させる高電圧源とで構成され、  A high voltage source that applies a high voltage between the discharge electrode and the counter electrode, charges the aggregated water with static electricity, and discharges charged fine particles of water from the discharge end of the discharge electrode tip. And consists of
上記ハウジング内に設けた隔壁と上記静電霧化ユニットの一部によって上記ハウジ ングの内部空間が噴霧室と放熱室とに区画され、  An internal space of the housing is partitioned into a spray chamber and a heat radiating chamber by a partition wall provided in the housing and a part of the electrostatic atomization unit.
上記噴霧室に上記静電霧化ユニットの上記放電電極と上記対向電極とが配置され、 上記放熱室に上記冷却手段の放熱部及び上記高電圧源が配置されていることを特 徴とする静電霧化装置。  The static electricity is characterized in that the discharge electrode and the counter electrode of the electrostatic atomization unit are disposed in the spray chamber, and the heat radiation portion of the cooling means and the high voltage source are disposed in the heat radiation chamber. Electric atomizer.
[2] 上記噴霧室は外気を導入する第 1吸気口と吐出口を備え、第 1吸気口から吸い込ん だ空気流に載せて上記の帯電微粒子を上記吐出口から外部に放出するものであり、 上記放熱室は外気を導入する第 2吸気口と排気口を備え、  [2] The spray chamber includes a first air inlet and a discharge port for introducing outside air, and discharges the charged fine particles to the outside from the discharge port on an air flow sucked from the first air inlet. The heat dissipating chamber has a second intake port and an exhaust port for introducing outside air,
上記噴霧室に、湿度の高!/、空気を上記放電電極へ供給するための送風手段を備え たことを特徴とする請求項 1に記載の静電霧化装置。  2. The electrostatic atomizer according to claim 1, wherein the spraying chamber is provided with air blowing means for supplying high humidity! / And air to the discharge electrode.
[3] 上記噴霧室の第 1吸気口側に、水を貯える水溜が設けられて、上記送風手段によつ て第 1吸気口から吸い込まれて上記放電電極に向かう空気流に、上記水溜から蒸発 する水分を載せて湿度の高い空気が作り出されることを特徴とする請求項 2に記載の 静電霧化装置。 [3] A water reservoir for storing water is provided on the first air inlet side of the spray chamber, and the air flow from the first air inlet toward the discharge electrode is sucked from the first air inlet by the air blowing means. 3. The electrostatic atomizer according to claim 2, wherein air having high humidity is created by placing evaporating water.
[4] 上記放電電極が上記水溜の上方に配置され、上記放電電極で過剰に結露した水が 上記水溜へ重力により戻る排水路が上記噴霧室内に形成されたことを特徴とする請 求項 3に記載の静電霧化装置。 [4] The claim, wherein the discharge electrode is disposed above the water reservoir, and a drainage channel is formed in the spray chamber in which water condensed excessively by the discharge electrode returns to the water reservoir by gravity. The electrostatic atomizer described in 1.
[5] 上記噴霧室が、仕切り壁によって、第 1吸気口から上記放電電極に向力、う空気流を 流す第 1流路と、第 1吸気口から上記吐出口に向かう空気流を流す第 2流路とに区画 され、 [5] The spray chamber has a first flow path for flowing a force and air flow from the first intake port to the discharge electrode, and a first flow channel for flowing an air flow from the first intake port to the discharge port. Divided into two channels
第 1流路内に、上記水溜からの湿度の高い空気を含む空気流を作り出す上記の送 風手段が配置され、  In the first flow path, the above-described air supply means for creating an air flow including high-humidity air from the water reservoir is disposed,
上記仕切り壁に、上記放電電極から放出される帯電微粒子水を第 2流路内 F2に送り 出す開口が上記送風手段の下流側に形成されたことを特徴とする請求項 2に記載の 静電霧化装置。  3. The electrostatic discharge according to claim 2, wherein an opening for sending charged fine particle water discharged from the discharge electrode to the second flow path F2 is formed in the partition wall on the downstream side of the blowing means. Atomization device.
[6] 上記静電霧化ユニットは、上記放電電極、上記対向電極、上記冷却手段を保持する 支持フレームを有し、支持フレームが上記隔壁に形成した取り付け孔に収められ、上 記支持フレームに形成したシール壁の背部に上記冷却手段が配置されると共に、上 記放電電極がこのシール壁を通してシール壁の前方に突出し、シール壁の前方に 露出する上記放電電極の先端部と上記対向電極が上記シール壁によって、上記冷 却部と隔離され、この支持フレームと上記隔壁とで、上記ハウジングが上記噴霧室と 上記放熱室とに区画され、  [6] The electrostatic atomization unit has a support frame that holds the discharge electrode, the counter electrode, and the cooling means, and the support frame is housed in an attachment hole formed in the partition wall, and is attached to the support frame. The cooling means is disposed on the back of the formed seal wall, and the discharge electrode protrudes forward of the seal wall through the seal wall, and the tip of the discharge electrode exposed to the front of the seal wall and the counter electrode are The cooling wall isolates the cooling part, and the support frame and the partition partition the housing into the spray chamber and the heat dissipation chamber,
上記シール壁の外表面が放電電極から外周に行くに従って突出度合!/、が小さくなつ た傾斜面と成ったことを特徴とする請求項 1に記載の静電霧化装置。  2. The electrostatic atomizer according to claim 1, wherein the outer surface of the sealing wall is an inclined surface with a degree of protrusion! / Decreasing as it goes from the discharge electrode to the outer periphery.
[7] 上記シール壁の外表面に、上記放電電極の周りの頂部から外周の一所に向力、つて 半径方向に沿って延出する水切りリブが形成されたことを特徴とする請求項 6に記載 の静電霧化装置。 [7] The draining rib is formed on the outer surface of the sealing wall, the draining rib extending in the radial direction from the top around the discharge electrode to one place on the outer periphery. An electrostatic atomizer as described in 1.
[8] 上記支持フレームの内側に上記のシール壁の外周を囲む内筒が形成され、上記の シール壁の表面から流れ落ちる水を上記の水溜側に誘導するための誘導リブが上 記の内筒の外周に形成されたことを特徴とする請求項 5または請求項 7に記載の静 電霧化装置。  [8] An inner cylinder surrounding the outer periphery of the seal wall is formed inside the support frame, and guide ribs for guiding water flowing down from the surface of the seal wall to the water reservoir side are provided in the inner cylinder The electrostatic atomizer according to claim 5, wherein the electrostatic atomizer is formed on an outer periphery of the electrostatic atomizer.
[9] 上記シール壁は断熱性の高い材料で形成され、表面が親水処理されたことを特徴と する請求項 6に記載の静電霧化装置。  [9] The electrostatic atomizer according to [6], wherein the seal wall is formed of a highly heat-insulating material, and the surface is subjected to a hydrophilic treatment.
PCT/JP2007/063819 2006-07-14 2007-07-11 Electrostatic atomizer WO2008007704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006194747A JP4595896B2 (en) 2006-07-14 2006-07-14 Electrostatic atomizer
JP2006-194747 2006-07-14

Publications (1)

Publication Number Publication Date
WO2008007704A1 true WO2008007704A1 (en) 2008-01-17

Family

ID=38923260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063819 WO2008007704A1 (en) 2006-07-14 2007-07-11 Electrostatic atomizer

Country Status (3)

Country Link
JP (1) JP4595896B2 (en)
TW (1) TWI337898B (en)
WO (1) WO2008007704A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030028A1 (en) * 2008-09-12 2010-03-18 Panasonic Electric Works Co., Ltd. Electrostatic atomization device and hydrophilic treatment device including the same
EP2233212A1 (en) * 2009-03-26 2010-09-29 Panasonic Electric Works Co., Ltd Electrostatic atomization device
US9398762B2 (en) 2010-06-11 2016-07-26 Regeneron Pharmaceuticals, Inc. Production of fertile XY female animals from XY ES cells
EP3626621A1 (en) * 2018-09-21 2020-03-25 Panasonic Intellectual Property Management Co., Ltd. Electrostatic atomizing apparatus and electrostatic atomizing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065157B2 (en) * 2008-05-29 2012-10-31 カルソニックカンセイ株式会社 Air conditioner
JP5331436B2 (en) * 2008-10-08 2013-10-30 日立アプライアンス株式会社 Air conditioner
JP2010227774A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Electrostatic atomizer
EP2412441B1 (en) * 2009-03-27 2014-07-02 Mitsubishi Electric Corporation Electrostatic atomizing device, appliances, air conditioner, and refrigerator
JP4942799B2 (en) * 2009-08-05 2012-05-30 三菱電機株式会社 Dehumidifying / humidifying device and air conditioner equipped with the same
JP5609457B2 (en) * 2010-03-29 2014-10-22 パナソニック株式会社 refrigerator
JP5662705B2 (en) * 2010-06-04 2015-02-04 パナソニック株式会社 Electrostatic atomizer
JP2012066201A (en) * 2010-09-24 2012-04-05 Panasonic Corp Electrostatic atomizing device
JP5202720B2 (en) * 2011-12-19 2013-06-05 三菱電機株式会社 Dehumidifying / humidifying device and air conditioner equipped with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345156A (en) * 1990-11-12 1993-12-27 Imperial Chem Ind Plc <Ici> Cartridge and electrostatic spraying device
WO2005102101A1 (en) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. Fan heater with electrostatic atomizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201241A (en) * 2000-01-18 2001-07-27 Fukushima Industries Corp Refrigerator
JP4329672B2 (en) * 2004-10-28 2009-09-09 パナソニック電工株式会社 Electrostatic atomizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345156A (en) * 1990-11-12 1993-12-27 Imperial Chem Ind Plc <Ici> Cartridge and electrostatic spraying device
WO2005102101A1 (en) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. Fan heater with electrostatic atomizer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030028A1 (en) * 2008-09-12 2010-03-18 Panasonic Electric Works Co., Ltd. Electrostatic atomization device and hydrophilic treatment device including the same
JP2010064051A (en) * 2008-09-12 2010-03-25 Panasonic Electric Works Co Ltd Electrostatic atomizing device and hydrophilizing device having the same
US8602330B2 (en) 2008-09-12 2013-12-10 Panasonic Corporation Electrostatic atomization device and hydrophilic treatment device including the same
EP2233212A1 (en) * 2009-03-26 2010-09-29 Panasonic Electric Works Co., Ltd Electrostatic atomization device
CN101912830A (en) * 2009-03-26 2010-12-15 松下电工株式会社 Electrostatic atomization apparatus
US8317113B2 (en) 2009-03-26 2012-11-27 Panasonic Corporation Electrostatic atomization device
US9398762B2 (en) 2010-06-11 2016-07-26 Regeneron Pharmaceuticals, Inc. Production of fertile XY female animals from XY ES cells
EP3626621A1 (en) * 2018-09-21 2020-03-25 Panasonic Intellectual Property Management Co., Ltd. Electrostatic atomizing apparatus and electrostatic atomizing method
EP3626623A1 (en) * 2018-09-21 2020-03-25 Panasonic Intellectual Property Management Co., Ltd. Electrostatic atomizing system, and method for fault detection in electrostatic atomizing system
EP3626622A1 (en) * 2018-09-21 2020-03-25 Panasonic Intellectual Property Management Co., Ltd. Liquid container, and electrostatic atomizing apparatus with liquid container
US11285500B2 (en) 2018-09-21 2022-03-29 Panasonic Intellectual Property Management Co., Ltd. Liquid container, and electrostatic atomizing apparatus with liquid container
US11285499B2 (en) 2018-09-21 2022-03-29 Panasonic Intellectual Property Management Co., Ltd. Electrostatic atomizing apparatus and electrostatic atomizing method

Also Published As

Publication number Publication date
JP4595896B2 (en) 2010-12-08
TWI337898B (en) 2011-03-01
TW200817097A (en) 2008-04-16
JP2008018404A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2008007704A1 (en) Electrostatic atomizer
WO2007052583A1 (en) Electrostatic atomizer
JP4470710B2 (en) Air conditioner for vehicles
JP4016934B2 (en) Electrostatic atomizer
US6349760B1 (en) Method and apparatus for improving the thermal performance of heat sinks
TWI321066B (en) Electrostatically atomizing device
WO2009008142A1 (en) Electrostatically atomizing kit for use in a vehicle
JP2013079755A (en) Ion delivery device and air conditioner with the same
JP4551288B2 (en) Air conditioner
JP5301798B2 (en) Air conditioner
JP2010172794A (en) Electrostatic atomizing apparatus
KR101294874B1 (en) Electrostatic atomization apparatus and electric cleaner
JP2007209982A (en) Electrostatic atomizing device
TW201127272A (en) Discharge device
JP3986550B2 (en) Electrostatic atomizer
JP2008238061A (en) Electrostatic atomizer
JP5216518B2 (en) Air conditioner
CN109641509B (en) Air supply device with discharge device
JP5107202B2 (en) Air conditioner
JP5558924B2 (en) Electrostatic atomizer and vacuum cleaner
JP2013236654A (en) Deodorizing device, and storage device for garbage accommodation body equipped with the same
JP3980051B2 (en) Electrostatic atomizer
JP2013079780A (en) Electrostatic atomization device and air conditioning device
JP2008029813A (en) Heating and blowing apparatus
JP2012066219A (en) Electrostatic atomizing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790623

Country of ref document: EP

Kind code of ref document: A1