WO2007139147A1 - Ion conductive polymer composition, method for producing the same, film containing the ion conductive polymer composition, and electrochemical device using the film - Google Patents

Ion conductive polymer composition, method for producing the same, film containing the ion conductive polymer composition, and electrochemical device using the film Download PDF

Info

Publication number
WO2007139147A1
WO2007139147A1 PCT/JP2007/060987 JP2007060987W WO2007139147A1 WO 2007139147 A1 WO2007139147 A1 WO 2007139147A1 JP 2007060987 W JP2007060987 W JP 2007060987W WO 2007139147 A1 WO2007139147 A1 WO 2007139147A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
polymer composition
conductive polymer
ion conductive
oxide compound
Prior art date
Application number
PCT/JP2007/060987
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Watanabe
Kenji Miyatake
Hiroyuki Uchida
Original Assignee
University Of Yamanashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Yamanashi filed Critical University Of Yamanashi
Priority to JP2008517964A priority Critical patent/JPWO2007139147A1/en
Publication of WO2007139147A1 publication Critical patent/WO2007139147A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • H01M8/1074Sol-gel processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Ion conductive polymer composition Ion conductive polymer composition, production method thereof, film containing this ion conductive polymer composition, and electrochemical device using the same
  • the present invention relates to an ion conductive polymer composition used for a solid electrolyte and the like, and in particular, a composition having high ion conductivity even under high temperature and low humidification conditions, a method for producing the same, and a film containing the composition And an electrochemical device using the same.
  • a fuel cell is a power generation device that converts the chemical energy of fuel (hydrogen, ethanol, etc.) and oxygen directly into electrical energy, and is a clean next-generation energy source that does not generate greenhouse gases or harmful substances.
  • fuel hydrogen, ethanol, etc.
  • DMFC methanol direct fuel cells
  • the operating temperature be higher than current (80 ° C or lower) (over 120 ° C or higher).
  • current 80 ° C or lower
  • the cooling water is circulated and cooled by a radiator. If the operating temperature of the battery is increased from 80 ° C to 120 ° C or higher, the temperature difference between the cooling water and the outside air will increase. Can be greatly reduced in size.
  • the higher the operating temperature the faster the reaction rate in the battery, and the higher the performance of the battery. against this background, there is a high demand for higher operating temperatures of fuel cells.
  • Electrolyte membranes used in PEFC and DMFC are ion exchange membranes that allow only protons to permeate in the wet state.
  • fluorine-based electrolyte membranes mainly composed of perfluoroalkylsulfonic acid polymers are used. It is used.
  • proton conductivity and membrane strength decrease at temperatures above 100 ° C and cannot be used for high temperature operation.
  • Current electrolyte membranes also have problems such as fuel gas permeation and high cost, which are one of the factors hindering the high performance and practical application of fuel cells.
  • an electrolyte of a hydrocarbon polymer not containing fluorine is used.
  • Gel electrolytes, ionic liquids, etc. have been studied, but the problem of ionic conductivity remarkably decreasing under high temperature and low humidification conditions has been improved. This is because these polymer electrolytes exhibit high conductivity only when they contain water, but their water retention is poor under high temperature and low humidification conditions.
  • Increasing the concentration of ionic groups can increase water retention, but swelling due to water content increases and shape changes with changes in temperature and humidity increase. Also, the flexibility of the electrolyte membrane is lost. This makes it difficult to join the electrolyte membrane and the electrode, and there is a problem that the contact resistance in the electrochemical cell increases.
  • metal oxide fine particles are adsorbed by metal oxide fine particles. It is easy to ensure that water is present in the vicinity of the hydrophilic group responsible for ionic conductivity. Therefore, ion conductivity is improved by adding metal oxide fine particles.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-1111834
  • Patent Document 2 JP-A-7-90111
  • Patent Document 3 Japanese Patent Laid-Open No. 9-97616 Disclosure of the invention
  • the present inventors have found that in a polymer composition in which a metal oxide compound containing an acid group and a polymer compound are mixed or bonded, an acid group Because of its strong and hydrophilic properties, it was found that the water retention of the metal oxide compound efficiently contributes to ionic conduction, and can maintain high ionic conductivity under high temperature and low humidification conditions, leading to the completion of the present invention. It was.
  • the ion conductive polymer composition of the present invention is characterized by mixing or binding a metal oxide compound containing an acidic group to a polymer compound usually used as an electrolyte.
  • the point of this metal oxide compound is that acidic groups and metal oxides coexist in one molecule, and both are present in close proximity.
  • water molecules adsorbed by the metal oxide are present in the vicinity of the hydrophilic acidic group that contributes to ionic conduction.
  • the vapor pressure of water is low and the vapor pressure of water is high (high temperature and low humidification conditions)
  • forces that cause water molecules to exist locally only near the metal oxide compound This water can be used effectively for ion conduction. It will be.
  • the degree of dissociation of acidic ions increases, and ion migration in the membrane via water molecules is likely to occur, giving high ionic conductivity.
  • the polymer compound is preferably a cation exchange resin.
  • the polymer compound is a cation exchange resin
  • the ion concentration in the electrolyte membrane increases.
  • the sum of the ions derived from the cation exchange resin and the ions derived from the metal oxide compound becomes the ion concentration in the membrane, and the number of ions moving is increased.
  • high ionic conductivity is given.
  • the type of cation exchange resin used in the present invention is not particularly limited. Commercially available ruion exchange resins and membranes, various polymers with cationic groups introduced, etc. I can. These polymer compounds and cation exchange resins may be of a single type, or may be a mixture or copolymer of several types.
  • the acidic group of the metal oxide compound and the metal oxide are bonded by an organic group.
  • the acidic group can easily move in the membrane and contribute to ionic conduction.
  • the organic group having a large binding energy is connected to the organic group by a covalent bond, the acidic group is hardly detached and the acidic group can be prevented from being discharged out of the system.
  • the type of the organic group that binds the acidic group to the metal oxide is not particularly limited! However, a flexible organic group is preferred so that the acidic group can move easily. Particularly, the carbon number is 1 to 20 or less.
  • a hydrogen group is preferred.
  • the organic group may be a linear or branched group, may have an unsaturated bond, or may have an aromatic ring or an alicyclic ring. These organic groups may contain only hetero elements such as oxygen, nitrogen, sulfur, fluorine, chlorine, bromine and iodine, which may be composed of only carbon and hydrogen.
  • linear aliphatic hydrocarbon groups such as methylene, ethylene, propylene, butylene, and pentylene are most preferably used from the viewpoint of ease of synthesis.
  • These organic groups may be of a single type or may include several types.
  • Examples of such metal oxide compounds include compounds represented by the following general formula (1).
  • R 1 represents a hydrogen atom, a metal ion, or a hydrocarbon group having a carbon number of ⁇ 20.
  • R 2 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • X represents a metal element, and Y represents an acidic group or a precursor thereof.
  • a and b represent integers from 1 to 4, and the sum a + b is selected to be equal to the valence of X.
  • each R 1 may be the same or different.
  • b is 2 to 4
  • each R 2 or Y may be the same or different.
  • the metal element in the above-described metal acid compound is one that has a large water adsorption ability of the acid compound and is easily dehydrated and condensed by a sol-gel reaction.
  • a metal element Silicon, titanium, aluminum, and boron.
  • a key element for ease of synthesis and stability of bond with an organic group.
  • These metal elements may be a single type or may include several types.
  • silicon and boron are sometimes classified as semimetals (metalloids), the metal in the metal oxide compound of the present invention includes such elements.
  • the acidic group is a sulfonic acid group, a phosphonic acid group, or a carboxylic acid group. Since these acidic groups are excellent in heat resistance and have a high degree of dissociation, they give high ionic conductivity even under high temperature and low humidification conditions. In particular, a sulfonic acid group is preferable from the viewpoint of ease of synthesis and high acidity. These acidic groups may be a single type or may contain several types.
  • the ion conductive polymer composition of the present invention is obtained by impregnating or mixing the above metal compound with the metal oxide compound represented by the general formula (1), followed by a hydrolysis / polycondensation process. It can be produced by carrying out a Lugel reaction. When the sol-gel reaction occurs, a metal oxygen (X 2 O) bond is formed in a network, and an ion conductive polymer composition in which the metal oxide compound is uniformly dispersed in the polymer compound is obtained. High water ionic conductivity can be obtained even under high temperature and low humidity conditions due to the water retention of the metal oxide compound composed of the network-form bonds.
  • the present invention it has become possible to provide a polymer composition exhibiting high ion conductivity even under conditions of high temperature and low humidity.
  • This composition is formed by impregnating or mixing a polymer compound with a metal oxide compound containing an acidic group, and the use of such a metal oxide compound is a key point of the present invention. That is, in this compound, since the acidic group and the metal oxide are present in one molecule, the water adsorbed by the metal oxide effectively contributes to the ionic conduction by the acidic group.
  • the sum of ions derived from the polymer compound (cation exchange resin) and ions derived from the metal oxide compound is the ion concentration in the film, the number of ions that move increases. Give high ionic conductivity.
  • silica, titer, etc. as the metal oxide, these can be removed. Since a network structure is formed by water condensation, the metal oxide can be uniformly dispersed and water retention can be improved.
  • Me represents a methyl group
  • Et represents an ethyl group
  • i-Pr represents an isopropyl group.
  • compounds in which an acidic group is each precursor group can also be used.
  • a metal compound having a mercaptan (one SH) group instead of a sulfonic acid group and a hydroxyl group or an aldehyde group instead of a carboxyl group can be used.
  • the content of the metal element is not particularly limited, but is generally 0.01 to 80 wt%, preferably 0.1 to 30 wt%. %. If the content of the metal element is less than 0.01% by weight, the water retention effect is not observed, and if it exceeds 80% by weight, the amount of acidic groups is relatively reduced and the ionic conductivity is lowered. Similarly, the amount of acidic groups in this compound is generally 0.01 to 95% by weight, preferably 5 to 80% by weight. If the acidic group content is less than 0.01% by weight, the ionic conductivity will decrease, and if it exceeds 95% by weight, the amount of metal oxide will be relatively small and the water retention effect will not be recognized.
  • cation exchange resin used in the present invention include polystyrene sulfonic acid, polystyrene carboxylic acid, polystyrene phosphonic acid, polyacrylic acid, polymethacrylic acid.
  • Aliphatic cation exchange resins such as acid, polybululsulfonic acid, polybulal alcohol, and their cross-linked products, polytrifluorostyrenesulfonic acid, polytrifluorostyrene phosphonic acid, polyperfluorosulfonic acid , Fluorinated aliphatic cation exchange resins such as polyperfluorocarboxylic acid, polyperfluorophosphonic acid, polyperfluorosulfonic acid imide, and cross-linked products thereof, sulfonic acid-polysulfone, sulfonic acid And aromatic cation exchange resins such as polyethersulfone, sulfonated polyetheretherketone, sulfonated polyether, sulfonated polysulfide, sulfonated polyimide, and their cross-linked products.
  • inorganic polymers having cation exchange groups and organic Z inorganic hybrid (or blend) polymers can also be used.
  • the content of the metal oxide compound is not particularly limited. Is 0.01 to 95% by weight, preferably 0.1 to 30% by weight. The reason is that when the content of the metal oxide compound is less than 0.01% by weight, the effect of improving water retention and ionic conductivity is not recognized, and when it exceeds 95% by weight, the flexibility and mechanical strength of the membrane are lowered. It is for this purpose.
  • the method for producing the ion conductive polymer composition of the present invention will be described with an example.
  • This composition is impregnated or mixed with the compound represented by the general formula (1) in the polymer compound (cation exchange resin) as described above, and then subjected to sol-gel reaction accompanied by hydrolysis and polycondensation process.
  • the polymer compound can be used in the form of powder, fiber, lump, membrane or solution. From the viewpoint of ease of handling and ease of impregnation, a thin film (thickness 200 m or less) or solution can be used. preferable.
  • the metal oxide compound can be in various forms depending on its type. Generally, the metal oxide compound is a liquid, and can be used as a solution by dissolving it in an appropriate solvent.
  • the sol-gel reaction temperature varies depending on the reactivity of the metal compound, and is usually performed at a temperature of about 60 to 200 ° C. In order to sufficiently proceed polycondensation, the reaction may be carried out under reduced pressure or under vacuum.
  • a solvent that dissolves the metal compound can be used. There is no particular limitation as long as it is a solvent that dissolves these, but it is desirable that the solvent does not react with the metal oxide compound during the sol-gel reaction process.
  • water can be appropriately added to facilitate the hydrolysis.
  • a polymer material mainly composed of the ion conductive polymer composition of the present invention can be formed into an electrolyte membrane.
  • the film forming method is not particularly limited, and a casting method in which a polymer material solution containing an ion conductive polymer composition is cast on a flat plate, a method in which the solution is applied to a flat plate by a die coater, a command coater, etc., a spin coating method A general method such as a method of stretching a molten polymer material can be employed. This polymer material may be used alone or in combination with other polymer materials or the like. When the sol-gel reaction is performed in a solution in which a polymer material is dissolved, the film can be formed as it is using the solution after completion of the reaction.
  • an ion conductive polymer composition excellent in water retention and ion conductivity as described above for an electrolyte membrane it has high performance and lower power than conventional fluorine-based electrolyte membranes. Can be manufactured at cost.
  • the electrolyte membrane containing it has hydrogen Z oxygen (air) or methanol Z oxygen (air). This is useful for electrochemical devices such as fuel cells that supply water, electrolysis cells such as salt electrolysis and water electrolysis, and electrochemical sensors such as ion exchange membrane oxygen sensors.
  • the electrolyte membrane When used as an electrolyte membrane of an electrochemical cell comprising an anode, an electrolyte membrane, and a force sword, the electrolyte membrane is made into a thin film of about 0.005 to 3 mm, preferably about 0.02 to 0.2 mm. It is desirable to use one. The thinner the film thickness, the lower the resistance. However, the mechanical strength is weakened and easily damaged, and the transmission of substances other than ions, such as hydrogen, oxygen, and methanol, increases.
  • an electrochemical cell having a catalyst layer on the anode and the force sword can be used by coating the ion conductive polymer composition of the present invention on catalyst particles.
  • Sulfonic acid polyether synthesized by a known method (ion exchange capacity 1.7 meq / g) 2.52 g and 3-trihydroxysilanolate 1-prononsnorphonic acid 0.42 g (30—35% aqueous solution, Gelest was dissolved in 120 mL of dimethylacetamide. This mixture was stirred for 1 hour at room temperature and 24 hours at 130 ° C. under a nitrogen stream to advance the sol-gel reaction. As a result, a thin milky white solution was obtained. This solution was formed on a flat glass substrate to form an electrolyte membrane (film thickness 50 ⁇ m).
  • a commercially available Nafionl 12 membrane was immersed in 3-trihydroxysilyl-1-propanesulfonic acid (30-35% aqueous solution, Gelest) for 1 hour at room temperature and 12 hours at 70 ° C.
  • the sol-gel reaction was allowed to proceed while the film was dried at 100 ° C for 12 hours and at 130 ° C for 12 hours in a vacuum. As a result, a colorless and transparent electrolyte membrane was obtained.
  • the membrane samples obtained in Test Examples 1 to 3 were cut to a size of 5 ⁇ 40 mm, and the AC impedance was measured by the 4-terminal method. The measurement was performed at 120 ° C, 20% and 80% relative humidity, and a current value of 0.005 mA constant current and a sweep frequency of 10 to 20000 Hz were set. The proton conductivity was calculated from the obtained impedance, distance between membrane terminals (10 mm), and film thickness (50 / z m).
  • Table 1 shows the measurement results.
  • the membrane samples of Test Examples 1 to 3 composed of a cation exchange resin and a metal oxide compound containing an acidic group are the membranes of Comparative Examples 1 to 3: Sample (Test Example Compared with the same cation-exchanged resin as in 1-3, but without metal oxide compounds containing acidic groups) at high temperature and low humidity (120 ° C, 20% RH (relative humidity)) at high temperature and low humidity (120 ° C, 20% RH (relative humidity)) at high temperature and low humidity (120 ° C, 20% RH (relative humidity)) at high temperature and low humidity (120 ° C, 20% RH (relative humidity))
  • RH relative humidity
  • the ion conductive polymer composition of the present invention in which a polymer compound and a metal oxide compound containing an acidic group are mixed or bonded is high under high temperature and low humidification conditions. It can be seen that it exhibits ionic conductivity.
  • Carbon black lg carrying platinum in high dispersion at 30 wt% and 23 mL of the reaction solution of Test Example 1 were kneaded. 0.5 mL of this paste was applied onto a gas diffusion layer (area 10 cm 2 ) prepared using water-repellent carbon paper and dried at 80 ° C. for 2 hours. This was cold-pressed (10 kg for 10 seconds), then immersed in 400 mL of a 1N nitric acid ethanol solution and stirred for 12 hours. This acid treatment step was repeated twice, then washed with ethanol and dried at 80 ° C. for 2 hours. Two electrode catalysts obtained were sandwiched between the electrolyte membrane of Test Example 1 (area 10 cm 2 ) and hot-pressed (120 ° C., 10 kg / cm 2 , 10 seconds) to obtain a membrane Z electrode assembly.
  • the fuel cell using Test Example 1 according to the present invention is Comparative Example 1 (consisting of the same cation exchange resin as Test Example 1, but no metal oxide compound containing an acidic group). Compared to the fuel cell used, it has high performance under high temperature and no humidification conditions (120 ° C, 0% RH).
  • the present invention can be suitably used as electrolyte membranes and catalyst layers for electrochemical devices such as fuel cells, electrochemical cells, and electrochemical sensors.

Abstract

Disclosed is a novel ion conductive polymer composition which is improved in ion conductivity and usable under high temperature low humidity conditions. Specifically disclosed is an ion conductive polymer composition obtained by mixing or combining a polymer compound (for example, a cation-exchange resin) and a metal oxide compound containing an acidic group. In this composition, the acidic group and the metal oxide compound are preferably bound by an organic group, and a compound represented by the following general formula: {(R1O)aX(R2Y)b} is preferable as the metal oxide compound. The metal element inthe metal oxide compound preferably contains silicon, titanium, aluminum or boron. The acidic group is preferably a sulfonic acid group, a phosphonic acid group or a carboxylic acid group.

Description

明 細 書  Specification
イオン伝導性高分子組成物、その製造方法及びこのイオン伝導性高分 子組成物を含む膜並びにこれを用いた電気化学デバイス  Ion conductive polymer composition, production method thereof, film containing this ion conductive polymer composition, and electrochemical device using the same
技術分野  Technical field
[0001] 本発明は、固体電解質等に用いられるイオン伝導性高分子組成物に関し、特に高 温'低加湿条件下でも高いイオン伝導性を有する組成物とその製造方法、この組成 物を含む膜及びこれを用いた電気化学デバイスに関する。  TECHNICAL FIELD [0001] The present invention relates to an ion conductive polymer composition used for a solid electrolyte and the like, and in particular, a composition having high ion conductivity even under high temperature and low humidification conditions, a method for producing the same, and a film containing the composition And an electrochemical device using the same.
背景技術  Background art
[0002] 燃料電池は、燃料 (水素、エタノールなど)と酸素の化学エネルギーを、直接電気工 ネルギ一に変換する発電装置であり、温室ガスや有害物質を発生しな 、クリーンな 次世代エネルギー源として有望視されて 、る。とりわけ固体高分子形燃料電池 (PE FC)やメタノール直接型燃料電池 (DMFC)は小型軽量化が可能で、電気自動車や 家庭用、携帯機器用の電源として最も適している。  [0002] A fuel cell is a power generation device that converts the chemical energy of fuel (hydrogen, ethanol, etc.) and oxygen directly into electrical energy, and is a clean next-generation energy source that does not generate greenhouse gases or harmful substances. As promising. In particular, polymer electrolyte fuel cells (PE FC) and methanol direct fuel cells (DMFC) can be reduced in size and weight, and are most suitable as power sources for electric vehicles, households, and portable devices.
[0003] PEFCや DMFCの高機能化と広範な実用化のためには、運転温度を現在(80°C 以下)よりも高く( 120°C程度以上に)することが求められて 、る。例えば自動車用の 燃料電池は、その冷却水を循環してラジェータで冷却する力 電池の運転温度を 80 °Cから 120°C以上に高めれば、冷却水と外気の温度差が大きくなるため、ラジェータ を大幅に小型化することができる。また、運転温度が高くなれば、電池内の反応速度 が早くなるため、電池の高性能化も可能になる。このような背景から、燃料電池の運 転温度を高温化する要請が高 、。  [0003] In order to achieve high functionality and wide-ranging practical use of PEFC and DMFC, it is required that the operating temperature be higher than current (80 ° C or lower) (over 120 ° C or higher). For example, in a fuel cell for an automobile, the cooling water is circulated and cooled by a radiator. If the operating temperature of the battery is increased from 80 ° C to 120 ° C or higher, the temperature difference between the cooling water and the outside air will increase. Can be greatly reduced in size. In addition, the higher the operating temperature, the faster the reaction rate in the battery, and the higher the performance of the battery. Against this background, there is a high demand for higher operating temperatures of fuel cells.
[0004] PEFCや DMFCに用いられる電解質膜は、湿潤状態でプロトンのみを透過するィ オン交換膜であり、現在では主にパーフルォロアルキルスルホン酸高分子力 なるフ ッ素系電解質膜が用いられている。しかしながら、 100°C以上ではプロトン伝導度と 膜強度が低下してしまうため、高温運転に用いることができない。また、現在の電解 質膜は、燃料ガスの透過や高コストなどの問題点もあり、これらが燃料電池の高性能 ィ匕と実用化を阻んでいる一因となっている。  [0004] Electrolyte membranes used in PEFC and DMFC are ion exchange membranes that allow only protons to permeate in the wet state. At present, fluorine-based electrolyte membranes mainly composed of perfluoroalkylsulfonic acid polymers are used. It is used. However, proton conductivity and membrane strength decrease at temperatures above 100 ° C and cannot be used for high temperature operation. Current electrolyte membranes also have problems such as fuel gas permeation and high cost, which are one of the factors hindering the high performance and practical application of fuel cells.
[0005] このような問題を解決するために、フッ素を含まない炭化水素系高分子の電解質ィ匕 、ゲル電解質、イオン性液体などが検討されているが、高温'低加湿条件下でイオン 伝導性が著しく低下してしまう問題点は改善されて 、な 、。これら高分子電解質は水 を含んだ場合にのみ高 ヽ伝導性を示すが、高温'低加湿条件下では保水性に乏し いためである。イオン性基の濃度を増大させると保水性を上げることはできるが、含水 による膨潤が大きくなり温度や湿度の変化に伴う形状変化が大きくなる。また、電解 質膜の柔軟性が失われる。これにより電解質膜と電極との接合が困難になり、電気化 学セルにおける接触抵抗が大きくなるという問題がある。 [0005] In order to solve such a problem, an electrolyte of a hydrocarbon polymer not containing fluorine is used. Gel electrolytes, ionic liquids, etc. have been studied, but the problem of ionic conductivity remarkably decreasing under high temperature and low humidification conditions has been improved. This is because these polymer electrolytes exhibit high conductivity only when they contain water, but their water retention is poor under high temperature and low humidification conditions. Increasing the concentration of ionic groups can increase water retention, but swelling due to water content increases and shape changes with changes in temperature and humidity increase. Also, the flexibility of the electrolyte membrane is lost. This makes it difficult to join the electrolyte membrane and the electrode, and there is a problem that the contact resistance in the electrochemical cell increases.
[0006] 電解質における保水性向上の方法として、膜中に金属酸ィ匕物 (シリカやチタ-ァな ど)の微粒子又はファイバーを高分散に担持することが提案されている(下記特許文 献 1〜3)。例えば、特許文献 1には、「パーフルォロカーボンスルホン酸、ポリサルフ オン、パーフルォロカルボン酸のカチオン交換榭脂及びスチレンージビュルベンゼン スルフォン酸のァ-オン交換樹脂の群力も選ばれた高分子固体電解質に、微細粒 子のシリカ及び Z又は繊維状のシリカファイバーを電解質に対して 0. 01〜50重量 %含有してなる高分子固体電解質組成物」が開示されている。  [0006] As a method for improving the water retention in an electrolyte, it has been proposed that fine particles or fibers of metal oxides (silica, titer, etc.) are supported in a film in a highly dispersed state (the following patent documents). 1-3). For example, in Patent Document 1, “the group forces of perfluorocarbonsulfonic acid, polysulfone, perfluorocarboxylic acid cation exchange resin and styrene-dibutylbenzene sulfonic acid ion exchange resin were also selected. Further, a solid polymer electrolyte composition comprising 0.01 to 50% by weight of fine particle silica and Z or fibrous silica fiber in an electrolyte is disclosed as a solid polymer electrolyte.
[0007] しかし、本発明者らの知見によれば、力かる金属酸ィ匕物微粒子の添加が、イオン伝 導性の向上に有効か否かは、高分子固体電解質のミクロな構造に依存する。すなわ ち、パーフルォロ系電解質膜のような、親水性イオン性基と疏水性高分子主鎖が数 ナノメートルオーダーで明確に相分離したクラスター構造を有するものでは、金属酸 化物微粒子により吸着された水がイオン伝導性を担う親水性基に近接して存在する という条件が確保され易い。そのため、金属酸ィ匕物微粒子の添カ卩によりイオン伝導性 が向上する。これに対して、力かるクラスター構造を有しない、または形成しにくい他 の電解質材料においては、金属酸ィ匕物微粒子により保水性が向上しても、吸着され た水が親水性基に近接して存在するという条件が保証されず、金属酸化物の添加は あまり有効ではない。このような背景から、現状よりも、高温'低加湿条件下で高いィ オン伝導度を保持できる新たな電解質膜が求められている。  [0007] However, according to the knowledge of the present inventors, whether or not the powerful addition of metal oxide fine particles is effective in improving the ion conductivity depends on the micro structure of the polymer solid electrolyte. To do. In other words, those having a cluster structure in which hydrophilic ionic groups and hydrophobic polymer main chains are clearly phase-separated on the order of several nanometers, such as perfluorinated electrolyte membranes, are adsorbed by metal oxide fine particles. It is easy to ensure that water is present in the vicinity of the hydrophilic group responsible for ionic conductivity. Therefore, ion conductivity is improved by adding metal oxide fine particles. On the other hand, in other electrolyte materials that do not have a strong cluster structure or are difficult to form, even if the water retention is improved by the metal oxide fine particles, the adsorbed water approaches the hydrophilic group. The presence of metal oxides is not guaranteed and the addition of metal oxides is not very effective. Against this background, there is a need for a new electrolyte membrane that can maintain high ion conductivity under high temperature and low humidification conditions.
[0008] 特許文献 1 :特開平 6— 111834号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 6-1111834
特許文献 2:特開平 7— 90111号公報  Patent Document 2: JP-A-7-90111
特許文献 3:特開平 9— 97616号公報 発明の開示 Patent Document 3: Japanese Patent Laid-Open No. 9-97616 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 上記事情に鑑みて、本発明の目的は、高温'低加湿条件下で使用可能なイオン伝 導性の改良された新たなイオン伝導性高分子組成物を提供することである。また、そ の製造方法、イオン伝導性高分子組成物を含む膜及びそれを用いた電気化学デバ イスを提供することである。  In view of the above circumstances, an object of the present invention is to provide a new ion conductive polymer composition with improved ion conductivity that can be used under high temperature and low humidification conditions. Another object of the present invention is to provide a production method thereof, a membrane containing an ion conductive polymer composition, and an electrochemical device using the membrane.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、酸性基を含む金 属酸化物化合物と高分子化合物とを混合又は結合させた高分子組成物では、酸性 基の強 、親水性のために、金属酸化物化合物の保水性が効率よくイオン伝導に寄 与し、高温'低加湿条件下で高いイオン伝導度を保持できることを見出し、本発明を 完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that in a polymer composition in which a metal oxide compound containing an acid group and a polymer compound are mixed or bonded, an acid group Because of its strong and hydrophilic properties, it was found that the water retention of the metal oxide compound efficiently contributes to ionic conduction, and can maintain high ionic conductivity under high temperature and low humidification conditions, leading to the completion of the present invention. It was.
[0011] すなわち、本発明のイオン伝導性高分子組成物は、電解質として通常用いられる 高分子化合物に、酸性基を含む金属酸化物化合物を混合又は結合させることを特 徴とする。この金属酸化物化合物は、 1分子内に酸性基と金属酸化物が共存し、両 者が近接して存在することがポイントである。これにより、金属酸ィ匕物によって吸着さ れた水分子が、イオン伝導に寄与する親水性の酸性基の近傍に存在することになる 。特に高温で水の蒸気圧の低い条件 (高温'低加湿条件)では、金属酸化物化合物 の近傍にのみ、水分子が局所的に存在することになる力 この水をイオン伝導に有 効に使えることになる。その結果、酸性イオンの解離度が増大し、しかも、水分子を介 した膜中のイオン移動が起こりやすくなり、高いイオン伝導度を与えることなる。  That is, the ion conductive polymer composition of the present invention is characterized by mixing or binding a metal oxide compound containing an acidic group to a polymer compound usually used as an electrolyte. The point of this metal oxide compound is that acidic groups and metal oxides coexist in one molecule, and both are present in close proximity. Thus, water molecules adsorbed by the metal oxide are present in the vicinity of the hydrophilic acidic group that contributes to ionic conduction. In particular, under conditions where the vapor pressure of water is low and the vapor pressure of water is high (high temperature and low humidification conditions), forces that cause water molecules to exist locally only near the metal oxide compound. This water can be used effectively for ion conduction. It will be. As a result, the degree of dissociation of acidic ions increases, and ion migration in the membrane via water molecules is likely to occur, giving high ionic conductivity.
[0012] 本発明のイオン伝導性高分子組成物においては、高分子化合物が陽イオン交換 榭脂であることが好ましい。高分子化合物が陽イオン交換榭脂であることにより、電解 質膜中のイオン濃度が増大する。すなわち、陽イオン交換樹脂に由来するイオンと 金属酸ィ匕物化合物に由来するイオンの総和が膜中のイオン濃度となり、移動するィ オンの数が増えることとなる。その結果、高いイオン伝導度を与えることとなる。本発 明に用いられる陽イオン交換樹脂の種類は特に限定されな 、。市販されて 、る陽ィ オン交換榭脂及びその膜や、各種高分子に陽イオン基を導入したものなどが適宜用 いられる。なお、これらの高分子化合物および陽イオン交換榭脂は、単一の種類であ つてもよく、 、くつかの種類の混合物または共重合体であってもよ 、。 [0012] In the ion conductive polymer composition of the present invention, the polymer compound is preferably a cation exchange resin. When the polymer compound is a cation exchange resin, the ion concentration in the electrolyte membrane increases. In other words, the sum of the ions derived from the cation exchange resin and the ions derived from the metal oxide compound becomes the ion concentration in the membrane, and the number of ions moving is increased. As a result, high ionic conductivity is given. The type of cation exchange resin used in the present invention is not particularly limited. Commercially available ruion exchange resins and membranes, various polymers with cationic groups introduced, etc. I can. These polymer compounds and cation exchange resins may be of a single type, or may be a mixture or copolymer of several types.
[0013] 本発明のイオン伝導性高分子組成物においては、金属酸ィ匕物化合物の酸性基と 金属酸化物が有機基によって結合して 、ることが好ま 、。有機基によって結合して いることにより、酸性基が膜中で容易に分子運動をすることができ、イオン伝導に貢 献することができる。また、結合エネルギーが大きな有機基と共有結合でつながれて いることにより、酸性基が脱離しにくくなり、酸性基が系外に排出されるのを防ぐことが できる。  [0013] In the ion conductive polymer composition of the present invention, it is preferable that the acidic group of the metal oxide compound and the metal oxide are bonded by an organic group. By being bound by an organic group, the acidic group can easily move in the membrane and contribute to ionic conduction. In addition, since the organic group having a large binding energy is connected to the organic group by a covalent bond, the acidic group is hardly detached and the acidic group can be prevented from being discharged out of the system.
[0014] 酸性基と金属酸化物を結合する有機基の種類は特に限定されな!ヽが、酸性基が 動き易いように柔軟な有機基が好ましぐ特に炭素数が 1〜20以下の炭化水素基が 好ましい。有機基は直鎖もしくは分岐基であっても、また不飽和結合を有するもので あってもよぐまた、芳香環または脂環を有するものであってもよい。これら有機基は 炭素、水素のみ力 構成されていてもよぐ酸素、窒素、硫黄、フッ素、塩素、臭素、ョ ゥ素などのへテロ元素を含んでいてもよい。これらの中でも、メチレン、エチレン、プロ ピレン、ブチレン、ペンチレンなどの直鎖脂肪族炭化水素基が合成の容易さの点か ら最も好ましく用いられる。なお、これら有機基は単一の種類であってもよぐいくつか の種類が含まれて 、てもよ 、。  [0014] The type of the organic group that binds the acidic group to the metal oxide is not particularly limited! However, a flexible organic group is preferred so that the acidic group can move easily. Particularly, the carbon number is 1 to 20 or less. A hydrogen group is preferred. The organic group may be a linear or branched group, may have an unsaturated bond, or may have an aromatic ring or an alicyclic ring. These organic groups may contain only hetero elements such as oxygen, nitrogen, sulfur, fluorine, chlorine, bromine and iodine, which may be composed of only carbon and hydrogen. Among these, linear aliphatic hydrocarbon groups such as methylene, ethylene, propylene, butylene, and pentylene are most preferably used from the viewpoint of ease of synthesis. These organic groups may be of a single type or may include several types.
[0015] このような金属酸ィ匕物化合物として、下記の一般式 (1)で表される化合物が挙げら れる。  [0015] Examples of such metal oxide compounds include compounds represented by the following general formula (1).
(R'O) X(R2Y) (1) (R'O) X (R 2 Y) (1)
a b  a b
(1)式中、 R1は水素原子、金属イオン又は炭素数力^〜 20の炭化水素基を表す。 R2 は炭素数が 1〜20の炭化水素基を表す。 Xは金属元素を表し、 Yは酸性基またはそ の前駆体を表す。 aおよび bは 1〜4の整数を表し、その和 a + bが Xの価数と等しくな るように選択される。 aが 2〜4である時、それぞれの R1は同じであっても異なっていて もよい。 bが 2〜4である時、それぞれの R2または Yは同じであっても異なっていてもよ い。 In the formula (1), R 1 represents a hydrogen atom, a metal ion, or a hydrocarbon group having a carbon number of ~ 20. R 2 represents a hydrocarbon group having 1 to 20 carbon atoms. X represents a metal element, and Y represents an acidic group or a precursor thereof. a and b represent integers from 1 to 4, and the sum a + b is selected to be equal to the valence of X. When a is 2 to 4, each R 1 may be the same or different. When b is 2 to 4, each R 2 or Y may be the same or different.
[0016] 上述の金属酸ィヒ物化合物における金属元素は、その酸ィヒ物の水の吸着能が大き ぐゾルゲル反応で脱水縮合し易いものであることが好ましい。かかる金属元素として 、ケィ素、チタン、アルミニウム、ホウ素が挙げられる。特に、合成の容易さや有機基と の結合の安定性の点力 ケィ素を含むことが好まし 、。これら金属元素は単一の種 類であってもよぐいくつかの種類が含まれていてもよい。なお、ケィ素とホウ素は半 金属 (メタロイド)として分類されることもあるが、本発明の金属酸化物化合物における 金属は、かかる元素も含むものである。 [0016] It is preferable that the metal element in the above-described metal acid compound is one that has a large water adsorption ability of the acid compound and is easily dehydrated and condensed by a sol-gel reaction. As such a metal element , Silicon, titanium, aluminum, and boron. In particular, it is preferable to include a key element for ease of synthesis and stability of bond with an organic group. These metal elements may be a single type or may include several types. In addition, although silicon and boron are sometimes classified as semimetals (metalloids), the metal in the metal oxide compound of the present invention includes such elements.
[0017] 本発明のイオン伝導性高分子組成物にお!ヽては、酸性基がスルホン酸基、ホスホ ン酸基、またはカルボン酸基であることが好ましい。これらの酸性基は、耐熱性に優 れ解離度も大きいことから、高温'低加湿条件下でも高いイオン伝導度を与えることと なる。特に、合成の容易さ、高い酸性度の点から、スルホン酸基であることが好ましい 。なお、これらの酸性基は単一の種類であってもよぐいくつかの種類が含まれてい てもよい。  [0017] In the ion conductive polymer composition of the present invention, it is preferable that the acidic group is a sulfonic acid group, a phosphonic acid group, or a carboxylic acid group. Since these acidic groups are excellent in heat resistance and have a high degree of dissociation, they give high ionic conductivity even under high temperature and low humidification conditions. In particular, a sulfonic acid group is preferable from the viewpoint of ease of synthesis and high acidity. These acidic groups may be a single type or may contain several types.
[0018] 本発明のイオン伝導性高分子組成物は、上記高分子化合物に一般式 (1)で表され る金属酸化物化合物を含浸または混合し、その後、加水分解 ·重縮合過程を伴うゾ ルゲル反応を行うことによって製造することができる。ゾルゲル反応が起こることにより 、金属 酸素 (X O)結合が網目状に形成され、高分子化合物中に金属酸化物化 合物が均一に分散したイオン伝導性高分子組成物が得られることとなる。網目状形 成された結合からなる金属酸化物化合物の保水性により、高温 ·低加湿条件下でも 高 ヽイオン伝導度が得られる。  [0018] The ion conductive polymer composition of the present invention is obtained by impregnating or mixing the above metal compound with the metal oxide compound represented by the general formula (1), followed by a hydrolysis / polycondensation process. It can be produced by carrying out a Lugel reaction. When the sol-gel reaction occurs, a metal oxygen (X 2 O) bond is formed in a network, and an ion conductive polymer composition in which the metal oxide compound is uniformly dispersed in the polymer compound is obtained. High water ionic conductivity can be obtained even under high temperature and low humidity conditions due to the water retention of the metal oxide compound composed of the network-form bonds.
発明の効果  The invention's effect
[0019] 本発明により、高温 '低加湿の条件下でも高いイオン伝導性を示す高分子組成物 を提供することが可能になった。この組成物は、高分子化合物に酸性基を含む金属 酸化物化合物を含浸又は混合させてなるもので、このような金属酸化物化合物を用 いたことが本発明のキーポイントである。すなわち、この化合物においては、酸性基と 金属酸化物が 1分子内に存在することから、金属酸ィ匕物によって吸着された水が酸 性基によるイオン伝導に有効に寄与する。また、本発明においては、高分子化合物( 陽イオン交換榭脂)に由来するイオンと金属酸化物化合物に由来するイオンの総和 が膜中のイオン濃度となるため、移動するイオンの数が増えて、高いイオン伝導度を 与える。さらに、金属酸ィ匕物としてシリカ、チタ-ァ等を用いることにより、これらが脱 水縮合してネットヮ―ク構造を形成するため、金属酸ィ匕物が一様に分散して、保水性 を高めることができる。 [0019] According to the present invention, it has become possible to provide a polymer composition exhibiting high ion conductivity even under conditions of high temperature and low humidity. This composition is formed by impregnating or mixing a polymer compound with a metal oxide compound containing an acidic group, and the use of such a metal oxide compound is a key point of the present invention. That is, in this compound, since the acidic group and the metal oxide are present in one molecule, the water adsorbed by the metal oxide effectively contributes to the ionic conduction by the acidic group. In the present invention, since the sum of ions derived from the polymer compound (cation exchange resin) and ions derived from the metal oxide compound is the ion concentration in the film, the number of ions that move increases. Give high ionic conductivity. Furthermore, by using silica, titer, etc. as the metal oxide, these can be removed. Since a network structure is formed by water condensation, the metal oxide can be uniformly dispersed and water retention can be improved.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の好ましい実施形態について、さらに詳しく説明する。  Hereinafter, preferred embodiments of the present invention will be described in more detail.
前出の一般式 (1)で表される化合物の具体例を (化学式 1)及び (化学式 2)に示す。 ( 化学式 1)は金属元素 Xがケィ素、(化学式 2)は Xがチタンの場合である。 Specific examples of the compound represented by the general formula (1) are shown in (Chemical Formula 1) and (Chemical Formula 2). (Chemical formula 1) is the case where the metal element X is silicon and (Chemical formula 2) is the case where X is titanium.
式中、 Meはメチル基、 Etはェチル基、 i-Prはイソプロピル基を表す。本発明にお いては、酸性基がそれぞれの前駆体基である化合物も用いることができる。具体的に は、スルホン酸基の代わりにメルカプタン(一 SH)基、カルボキシル基の代わりにヒド 口キシ基やアルデヒド基などを有する金属化合物を用いることができる。  In the formula, Me represents a methyl group, Et represents an ethyl group, and i-Pr represents an isopropyl group. In the present invention, compounds in which an acidic group is each precursor group can also be used. Specifically, a metal compound having a mercaptan (one SH) group instead of a sulfonic acid group and a hydroxyl group or an aldehyde group instead of a carboxyl group can be used.
(化学式 1) (Chemical formula 1)
OH O e OEt Oi-Pr OH O e OEt Oi-Pr
HO-si-(CH2)nS03H eO-Si-(CH2)nS03H EtO-Si-(CH2)nS03H i-PrO-Si- (CH2)nS03HHO-si- (CH 2 ) n S0 3 HeO-Si- (CH 2 ) n S0 3 H EtO-Si- (CH 2 ) n S0 3 H i-PrO-Si- (CH 2 ) n S0 3 H
OH OMe OEt Oi-Pr OH OMe OEt Oi-Pr
(n=1 - 20) (nキ 20) (n=1 - 20) (n=1 - 20) 2)nC00H
Figure imgf000008_0001
(n = 1-20) (n key 20) (n = 1-20) (n = 1-20) 2) n C00H
Figure imgf000008_0001
(n=1 - 20) (n=1-20) (n-1-20) (n=1-20) (n = 1-20) (n = 1-20) (n-1-20) (n = 1-20)
OH OMe OEt (CH2)nP0(0H)2 OH OMe OEt (CH2) n P0 (0H) 2
H0-Si-(CH2)nP0(0H)2 Me0-Si-(CH2)nP0(0H)2 Et0-Si-(CH2)rP0(0H)2 i-Pr0-Si-(CH2)nP0(0H). H0-Si- (CH 2 ) n P0 (0H) 2 Me0-Si- (CH 2 ) n P0 (0H) 2 Et0-Si- (CH 2 ) r P0 (0H) 2 i-Pr0-Si- (CH 2 ) n P0 (0H).
OMe OEt Oi-Pr  OMe OEt Oi-Pr
(n=1- 20) (n=1-20) (n=1- 20)  (n = 1-20) (n = 1-20) (n = 1-20)
(CH2)nS03H (CH2)nS03H (CHz)nS03H (CH2)nS03H HO-Si-(CH2)„S03H eO-Si-(CH2)„S03H EtO-Si- (CH2)nS03H i-PrO-Si-(CH2)nS03H(CH 2 ) n S0 3 H (CH 2 ) n S0 3 H (CH z ) n S0 3 H (CH 2 ) n S0 3 H HO-Si- (CH2) „S0 3 HeO-Si- (CH 2 ) „S0 3 H EtO-Si- (CH 2 ) n S0 3 H i-PrO-Si- (CH 2 ) n S0 3 H
OH OMe OEt Oi-Pr OH OMe OEt Oi-Pr
(n=1 - 20) (n=1-20) (n=1 - 20) (n=1-20) (n = 1-20) (n = 1-20) (n = 1-20) (n = 1-20)
(CH,)nC00H (ΟΗ^,,ΟΟΟΗ (CH2)nC00H (CH2)nC00H HO-sV(CH2)nC00H Me0-Si-(CH2)nC00H EtO-Si-CHz)nC0OH ί - PrO- S'i-(CH2)nC00H(CH,) n C00H (ΟΗ ^ ,, ΟΟΟΗ (CH 2 ) n C00H (CH 2 ) n C00H HO-sV (CH 2 ) n C00H Me0-Si- (CH 2 ) n C00H EtO-Si-CH z ) n C0OH ί-PrO- S'i- (CH 2 ) n C00H
OH OMe OEt Oi-Pr OH OMe OEt Oi-Pr
(n=1 - 20) (n=1-20) (n=1 - 20) (n=1-20) (n = 1-20) (n = 1-20) (n = 1-20) (n = 1-20)
(CH2)nP0(0H)2 (CH2)nP0(0H)2 (CH2)nP0(0H)2 (CH2)nP0(0H)2 H0-Si-(CH2) P0(0H)2 eO-Si-(CH2)nPO(OH)2 Et0-Si-(CH2)nP0(0H)2 i-PrO-Si-(GH2)nP0(0H)2 (CH 2 ) nP0 (0H) 2 (CH 2 ) n P0 (0H) 2 (CH 2 ) n P0 (0H) 2 (CH 2 ) n P0 (0H) 2 H0-Si- (CH 2 ) P0 (0H ) 2 eO-Si- (CH 2 ) n PO (OH) 2 Et0-Si- (CH 2 ) n P0 (0H) 2 i-PrO-Si- (GH 2 ) n P0 (0H) 2
OH OMe OEt Oi-Pr OH OMe OEt Oi-Pr
(nキ 20) (n=1-20) (n=1- 20) (n=1 - 20)  (n key 20) (n = 1-20) (n = 1-20) (n = 1-20)
(化学式 2) (Chemical formula 2)
OH OMe OEt Oi-Pr OH OMe OEt Oi-Pr
H0-Ti-(CH2)nS03H eO-Ti-(GH2)nS03H EtO-Ti- (CH2)„S03H i- PrO- Ti-(CH2)nS03H OH OMe OEt Oi-Pr H0-Ti- (CH 2 ) n S0 3 HeO-Ti- (GH 2 ) n S0 3 H EtO-Ti- (CH 2 ) „S0 3 H i- PrO- Ti- (CH 2 ) n S0 3 H OH OMe OEt Oi-Pr
(n:1-20) (n=1-20) (n=1-20) (n=1-20)  (n: 1-20) (n = 1-20) (n = 1-20) (n = 1-20)
OH OMe OEt Oi-Pr  OH OMe OEt Oi-Pr
HO-1ji-(CH2)nCO0H MeO-卜 (CH2)nCO0H EtO-Ti-(CH2)nCOOH ト PrO- T'i- (GH2)nC00H OH OMe OEt Oi~Pr HO-1ji- (CH 2 ) n CO0H MeO- 卜 (CH 2 ) n CO0H EtO-Ti- (CH 2 ) n COOH To PrO- T'i- (GH 2 ) n C00H OH OMe OEt Oi ~ Pr
(n=1-20) (n=1-20) (n=1-20) (n=1-20)  (n = 1-20) (n = 1-20) (n = 1-20) (n = 1-20)
OH OMe OEt (CH2)nPO(OH)2 OH OMe OEt (CH2) n PO (OH) 2
HO-Ti-(CH2)n P0(0H)2 MeO-Ti-(CH2)nPO(0H)z EtO-Ti-(CH2)nPO(OH)2 -PrO-T:i- (CH2)„P0(0H)2 HO-Ti- (CH 2 ) n P0 (0H) 2 MeO-Ti- (CH 2 ) n PO (0H) z EtO-Ti- (CH 2 ) n PO (OH) 2 -PrO-T: i- ( CH 2 ) „P0 (0H) 2
OH OMe OEt Oi-Pr OH OMe OEt Oi-Pr
(n=1-20) (n=1-20) (n=1- 20) (n=ト 20) HO (n = 1-20) (n = 1-20) (n = 1-20) (n = G 20) HO
Figure imgf000009_0001
Figure imgf000009_0001
(n=1- 20) (n=1 20) (n=1- 20) (n二 1-20)  (n = 1-20) (n = 1 20) (n = 1-20) (n 2 1-20)
(CH,)nCOOH (CHz)nCOOH (CH2)nC00H (CH2)nCO0H H0-Ti-(CH2)nC00H eO-Ti-(CH2)nCOOH Et0-T CH2)nCO0H i-PrO-Tj-(CH2)nCOOH OH OMe OEt Oi-Pr (CH,) n COOH (CH z ) n COOH (CH 2 ) n C00H (CH 2 ) n CO0H H0-Ti- (CH 2 ) n C00H eO-Ti- (CH 2 ) n COOH Et0-T CH 2 ) n CO0H i-PrO-Tj- (CH 2 ) n COOH OH OMe OEt Oi-Pr
(n=1- 20) (n=1-20) (n=1-20) (n=1~20)  (n = 1-20) (n = 1-20) (n = 1-20) (n = 1-20)
(CH;,)nP0(0H)2 (CH2)nP0(0H)2 (CH2)nP0(0H)2 (CH2)nP0(0H)2 HO- T'i- (CH2) PO (0H)2 Me0-Ti-(CH2)nP0 (0H)2 EtO-T'i-(GH2)nPO(OH)2 i-Pr0-Ti-(GH2)nP0(0H)2 OH OMe OEt Oi-Pr (CH;,) nP0 (0H) 2 (CH 2 ) n P0 (0H) 2 (CH 2 ) nP0 (0H) 2 (CH 2 ) nP0 (0H) 2 HO- T'i- (CH 2 ) PO ( 0H) 2 Me0-Ti- (CH 2 ) n P0 (0H) 2 EtO-T'i- (GH 2 ) n PO (OH) 2 i-Pr0-Ti- (GH 2 ) n P0 (0H) 2 OH OMe OEt Oi-Pr
(n=1-20) (n=1 - 20) (n=1-20) (n=1 20)  (n = 1-20) (n = 1-20) (n = 1-20) (n = 1 20)
[0021] このような酸性基を含む金属酸ィ匕物化合物において、金属元素の含有量は特に限 定されないが、一般的には 0.01〜80重量%であり、好ましくは 0. 1〜30重量%と する。金属元素の含有量が 0.01重量%未満では保水効果が認められなくなり、 80 重量%を超えると相対的に酸性基の量が少なくなり、イオン伝導度が低下することに なる。同様にこの化合物における酸性基の量は、一般的には 0.01〜95重量%であ り、好ましくは 5〜80重量%とする。酸性基含有量が 0.01重量%未満ではイオン伝 導度が低下することになり、 95重量%を超えると相対的に金属酸ィ匕物が少なくなり、 保水効果が認められなくなる。 [0021] In such a metal oxide compound containing an acidic group, the content of the metal element is not particularly limited, but is generally 0.01 to 80 wt%, preferably 0.1 to 30 wt%. %. If the content of the metal element is less than 0.01% by weight, the water retention effect is not observed, and if it exceeds 80% by weight, the amount of acidic groups is relatively reduced and the ionic conductivity is lowered. Similarly, the amount of acidic groups in this compound is generally 0.01 to 95% by weight, preferably 5 to 80% by weight. If the acidic group content is less than 0.01% by weight, the ionic conductivity will decrease, and if it exceeds 95% by weight, the amount of metal oxide will be relatively small and the water retention effect will not be recognized.
[0022] 次に、本発明に用いられる陽イオン交換樹脂の具体例としては、ポリスチレンスルホ ン酸、ポリスチレンカルボン酸、ポリスチレンホスホン酸、ポリアクリル酸、ポリメタクリル 酸、ポリビュルスルホン酸、ポリビュルアルコール、およびそれらの架橋体などの脂肪 族系陽イオン交換榭脂、ポリトリフルォロスチレンスルホン酸、ポリトリフルォロスチレ ンホスホン酸、ポリパーフルォロスルホン酸、ポリパーフルォロカルボン酸、ポリパーフ ルォロホスホン酸、ポリパーフルォロスルホン酸イミド、およびそれらの架橋体などの フッ素化脂肪族系陽イオン交換榭脂、スルホン酸ィ匕ポリスルホン、スルホン酸ィ匕ポリ エーテルスルホン、スルホン酸化ポリエーテルエーテルケトン、スルホン酸化ポリエー テル、スルホン酸化ポリスルフイド、スルホン酸化ポリイミド、およびそれらの架橋体な どの芳香族系陽イオン交換榭脂、などを挙げることができる。この他、陽イオン交換基 を有する無機高分子や有機 Z無機ハイブリッド (またはブレンド)高分子なども用いる ことができる Next, specific examples of the cation exchange resin used in the present invention include polystyrene sulfonic acid, polystyrene carboxylic acid, polystyrene phosphonic acid, polyacrylic acid, polymethacrylic acid. Aliphatic cation exchange resins such as acid, polybululsulfonic acid, polybulal alcohol, and their cross-linked products, polytrifluorostyrenesulfonic acid, polytrifluorostyrene phosphonic acid, polyperfluorosulfonic acid , Fluorinated aliphatic cation exchange resins such as polyperfluorocarboxylic acid, polyperfluorophosphonic acid, polyperfluorosulfonic acid imide, and cross-linked products thereof, sulfonic acid-polysulfone, sulfonic acid And aromatic cation exchange resins such as polyethersulfone, sulfonated polyetheretherketone, sulfonated polyether, sulfonated polysulfide, sulfonated polyimide, and their cross-linked products. In addition, inorganic polymers having cation exchange groups and organic Z inorganic hybrid (or blend) polymers can also be used.
[0023] 高分子化合物(陽イオン交換榭脂)と金属酸化物化合物からなる本発明のイオン伝 導性高分子組成物において、金属酸ィヒ物化合物の含有量は特に限定されないが、 一般的には 0. 01〜95重量%であり、好ましくは 0. 1〜30重量%とする。その理由 は、金属酸化物化合物の含有量が 0. 01重量%未満では、保水とイオン伝導度の向 上効果が認められなくなり、 95重量%を超えると膜の柔軟性や機械的強度が低下す るためである。 [0023] In the ion-conducting polymer composition of the present invention comprising a polymer compound (cation exchange resin) and a metal oxide compound, the content of the metal oxide compound is not particularly limited. Is 0.01 to 95% by weight, preferably 0.1 to 30% by weight. The reason is that when the content of the metal oxide compound is less than 0.01% by weight, the effect of improving water retention and ionic conductivity is not recognized, and when it exceeds 95% by weight, the flexibility and mechanical strength of the membrane are lowered. It is for this purpose.
[0024] 本発明のイオン伝導性高分子組成物の製造方法について、一例を挙げて説明す る。この組成物は上記のような高分子化合物(陽イオン交換榭脂)に一般式 (1)で表さ れる化合物を含浸または混合し、その後、加水分解 '重縮合過程を伴うゾルゲル反 応を行うことによって製造することができる。高分子化合物は粉末、繊維、塊、膜また は溶液の形態として用いることができる力 取り扱いの容易さ、含浸のし易さの点から 、薄膜 (膜厚 200 m以下)あるいは溶液を用いることが好ましい。金属酸化物化合 物はその種類により様々な形態でありうる力 一般的には液体であり、そのまま用いる 力 あるいは適当な溶媒に溶解させて、溶液として用いることができる。  [0024] The method for producing the ion conductive polymer composition of the present invention will be described with an example. This composition is impregnated or mixed with the compound represented by the general formula (1) in the polymer compound (cation exchange resin) as described above, and then subjected to sol-gel reaction accompanied by hydrolysis and polycondensation process. Can be manufactured. The polymer compound can be used in the form of powder, fiber, lump, membrane or solution. From the viewpoint of ease of handling and ease of impregnation, a thin film (thickness 200 m or less) or solution can be used. preferable. The metal oxide compound can be in various forms depending on its type. Generally, the metal oxide compound is a liquid, and can be used as a solution by dissolving it in an appropriate solvent.
[0025] ゾルゲル反応温度は金属化合物の反応性によって異なる力 通常 60〜200°C程 度の温度で行われる。なお、重縮合を充分進行させるために、減圧下あるいは真空 下で反応を行ってもよい。溶液中でゾルゲル反応を行う場合は、高分子化合物ある いは金属化合物を溶解する溶媒を用いることができる。これらを溶解する溶媒であれ ば特に制限はないが、ゾルゲル反応過程で金属酸化物化合物と反応しないことが望 ましい。また、加水分解を円滑に進ませるために、適宜水をカ卩えることもできる。 [0025] The sol-gel reaction temperature varies depending on the reactivity of the metal compound, and is usually performed at a temperature of about 60 to 200 ° C. In order to sufficiently proceed polycondensation, the reaction may be carried out under reduced pressure or under vacuum. When performing sol-gel reaction in solution, there is a polymer compound Alternatively, a solvent that dissolves the metal compound can be used. There is no particular limitation as long as it is a solvent that dissolves these, but it is desirable that the solvent does not react with the metal oxide compound during the sol-gel reaction process. In addition, water can be appropriately added to facilitate the hydrolysis.
[0026] 本発明のイオン伝導性高分子組成物を主成分とする高分子材料を製膜して、電解 質膜とすることができる。製膜方法は特に限定を要せず、イオン伝導性高分子組成 物を含む高分子材料溶液を平板上にキャストするキャスト法、ダイコータ、コマンコー タ等により平板に溶液を塗布する方法、スピンコート法、溶融した高分子材料を延伸 等する方法などの一般的方法を採用することができる。この高分子材料は、前記ィォ ン伝導性高分子組成物を単独で用いてもよぐその他の高分子材料などと混合して 用いてもよ!ヽ。上記ゾルゲル反応を高分子材料を溶解した溶液中で行った場合には 、反応終了後その溶液を用いてそのまま製膜を行うこともできる。  [0026] A polymer material mainly composed of the ion conductive polymer composition of the present invention can be formed into an electrolyte membrane. The film forming method is not particularly limited, and a casting method in which a polymer material solution containing an ion conductive polymer composition is cast on a flat plate, a method in which the solution is applied to a flat plate by a die coater, a command coater, etc., a spin coating method A general method such as a method of stretching a molten polymer material can be employed. This polymer material may be used alone or in combination with other polymer materials or the like. When the sol-gel reaction is performed in a solution in which a polymer material is dissolved, the film can be formed as it is using the solution after completion of the reaction.
[0027] 前述のような保水性とイオン伝導性に優れたイオン伝導性高分子組成物を電解質 膜に採用することで、高性能でし力も従来力 用いられているフッ素系電解質膜より も低コストで製造することができる。以上説明したように、本発明のイオン伝導性高分 子組成物は保水性とイオン伝導性に優れているため、それを含む電解質膜は、水素 Z酸素 (空気)やメタノール Z酸素 (空気)などを供給する燃料電池、食塩電解、水電 解などの電気分解セル、イオン交換膜酸素センサなどの電気化学センサ、などの電 気化学デバイスの用途に有用である。  [0027] By adopting an ion conductive polymer composition excellent in water retention and ion conductivity as described above for an electrolyte membrane, it has high performance and lower power than conventional fluorine-based electrolyte membranes. Can be manufactured at cost. As described above, since the ion conductive polymer composition of the present invention is excellent in water retention and ion conductivity, the electrolyte membrane containing it has hydrogen Z oxygen (air) or methanol Z oxygen (air). This is useful for electrochemical devices such as fuel cells that supply water, electrolysis cells such as salt electrolysis and water electrolysis, and electrochemical sensors such as ion exchange membrane oxygen sensors.
[0028] アノード、電解質膜、力ソードからなる電気化学セルの電解質膜として用いる場合に は、この電解質膜を 0. 005から 3mm程度、好ましくは 0. 02-0. 2mm程度の薄膜 状にしたものを用いることが望ましい。膜厚は薄い方が抵抗が小さくなるが、機械的 強度が弱くなり損傷し易くなるとともに、イオン以外の物質、例えば水素、酸素、メタノ ールなどの透過が多くなる。また、電気化学セルのうち、アノードおよび力ソードに触 媒層を有する電気化学セルは、本発明のイオン伝導性高分子組成物を触媒粒子に 被覆して用いることができる。  [0028] When used as an electrolyte membrane of an electrochemical cell comprising an anode, an electrolyte membrane, and a force sword, the electrolyte membrane is made into a thin film of about 0.005 to 3 mm, preferably about 0.02 to 0.2 mm. It is desirable to use one. The thinner the film thickness, the lower the resistance. However, the mechanical strength is weakened and easily damaged, and the transmission of substances other than ions, such as hydrogen, oxygen, and methanol, increases. Of the electrochemical cells, an electrochemical cell having a catalyst layer on the anode and the force sword can be used by coating the ion conductive polymer composition of the present invention on catalyst particles.
実施例  Example
[0029] (試験例 1) [0029] (Test Example 1)
陽イオン交換榭脂として、公知の方法 (J.Am.Chem.Soc., 128,1762-1769(2006》によ り合成したスルホン酸ィ匕ポリイミド (イオン交換容量 1. 8meq/g) 2. 52gと、金属酸ィ匕 物化合物として、 3—トリヒドロキシシリル— 1—プロパンスルホン酸 0. 83g (30— 35 %水溶液、 Gelest社製)を、 210mLのジメチルスルホキシドに溶解した。この混合物 を、窒素気流下、室温で 1時間、 130°Cで 24時間攪拌してゾルゲル反応を進行させ た。その結果、赤褐色の溶液が得られた。この溶液を平板なガラス基板上にて製膜し 、電解質膜 (膜厚 50 μ m)を形成した。 As a cation exchange resin, a known method (J. Am. Chem. Soc., 128, 1762-1769 (2006) Synthesized sulfonic acid-polyimide (ion exchange capacity 1. 8meq / g) 2.52g and metal oxide compound, 3-trihydroxysilyl-1-propanesulfonic acid 0.83g (30-35% An aqueous solution (manufactured by Gelest) was dissolved in 210 mL of dimethyl sulfoxide. This mixture was stirred for 1 hour at room temperature and 24 hours at 130 ° C. under a nitrogen stream to advance the sol-gel reaction. As a result, a reddish brown solution was obtained. This solution was formed on a flat glass substrate to form an electrolyte membrane (film thickness 50 μm).
[0030] (試験例 2) [0030] (Test Example 2)
公知の方法により合成したスルホン酸ィ匕ポリエーテル (イオン交換容量 1. 7meq/g) 2. 52gと、 3—トリヒドロキシシリノレー 1—プロノ ンスノレホン酸 0. 42g (30— 35%水溶 液、 Gelest社製)を、 120mLのジメチルァセトアミドに溶解した。この混合物を、窒素 気流下、室温で 1時間、 130°Cで 24時間攪拌してゾルゲル反応を進行させた。その 結果、薄い乳白色の溶液が得られた。この溶液を平板なガラス基板上にて製膜し、 電解質膜 (膜厚 50 μ m)を形成した。  Sulfonic acid polyether synthesized by a known method (ion exchange capacity 1.7 meq / g) 2.52 g and 3-trihydroxysilanolate 1-prononsnorphonic acid 0.42 g (30—35% aqueous solution, Gelest Was dissolved in 120 mL of dimethylacetamide. This mixture was stirred for 1 hour at room temperature and 24 hours at 130 ° C. under a nitrogen stream to advance the sol-gel reaction. As a result, a thin milky white solution was obtained. This solution was formed on a flat glass substrate to form an electrolyte membrane (film thickness 50 μm).
[0031] (試験例 3) [0031] (Test Example 3)
市販の Nafionl 12膜を、 3 -トリヒドロキシシリル— 1—プロパンスルホン酸(30— 3 5%水溶液、 Gelest社製)に室温で 1時間、 70°Cで 12時間浸漬させた。この膜を常圧 100°Cで 12時間、真空中 130°Cで 12時間乾燥しながら、ゾルゲル反応を進行させ た。その結果、無色透明な電解質膜を得た。  A commercially available Nafionl 12 membrane was immersed in 3-trihydroxysilyl-1-propanesulfonic acid (30-35% aqueous solution, Gelest) for 1 hour at room temperature and 12 hours at 70 ° C. The sol-gel reaction was allowed to proceed while the film was dried at 100 ° C for 12 hours and at 130 ° C for 12 hours in a vacuum. As a result, a colorless and transparent electrolyte membrane was obtained.
[0032] (プロトン伝導度の測定)  [0032] (Measurement of proton conductivity)
試験例 1〜3で得た膜試料を、 5 X 40mmの大きさに切り取り、 4端子法により交流 インピーダンスを測定した。測定は 120°Cで相対湿度 20%、および 80%で行い、電 流値として 0. 005mAの定電流、掃引周波数として 10〜20000Hzの条件を設定し た。得られたインピーダンスと膜端子間距離(10mm)、膜厚 (50 /z m)から、プロトン 伝導度を算出した。  The membrane samples obtained in Test Examples 1 to 3 were cut to a size of 5 × 40 mm, and the AC impedance was measured by the 4-terminal method. The measurement was performed at 120 ° C, 20% and 80% relative humidity, and a current value of 0.005 mA constant current and a sweep frequency of 10 to 20000 Hz were set. The proton conductivity was calculated from the obtained impedance, distance between membrane terminals (10 mm), and film thickness (50 / z m).
[0033] 測定結果を表 1に示す。  [0033] Table 1 shows the measurement results.
[表 1] 含水率(wt%) プロ トン伝導度 含水率(wt%) プロ トン伝導度 [table 1] The water content (w t%) pro-ton conductivity moisture content (w t%) pro-ton conductivity
(SZc m) (S/Ό m) (SZc m) (S / Ό m)
20 % R H 2 0 % R H 80 % R H 80 % R H 比較例 1 20% R H 2 0% R H 80% R H 80% R H Comparative Example 1
(スルホン酸化ポ 6. 0 0. 0C03 20. 1 0. C7 リイミ ドのみ)  (Sulfonation oxidation 6.0 0. 0C03 20. 1 0. C7 polyimide only)
試験例 1 11. 8 0. 01 24.6 0, 20 比較例 2  Test Example 1 11. 8 0. 01 24.6 0, 20 Comparative Example 2
':スルホン酸化ポ 5. 5 0, 0001 12. 5 0. 05 リエ一テルのみ)  ': Sulfonated polymer 5.5 0, 0001 12. 5 0. 05
試験例 2 11. 2 1 B. 8 0. 17 比較例 3 4. 8 11. 5 0. 10 Test Example 2 11. 2 1 B. 8 0. 17 Comparative Example 3 4. 8 11. 5 0. 10
(Kaf i on112) (Kaf i on112)
試験例 3 3, 3 0. 02 16. 3 0. 22  Test example 3 3, 3 0. 02 16. 3 0. 22
[0034] 表 1から明らかなように、陽イオン交換樹脂と酸性基を含む金属酸ィ匕物化合物から なる試験例 1〜3の膜試料は、比較例 1〜3の膜:試料 (試験例 1〜3と同じ陽イオン交 換榭脂からなるが、酸性基を含む金属酸化物化合物はなし)と比較して、高温 '低加 湿条件下(120°C、 20%RH (相対湿度) )で高!ヽ含水率と高!ヽプロトン伝導度を示す ことが明らかになった。さらに、高温 ·高加湿条件(120°C、 80%RH)でも同様の効 果が得られることが明らかとなった。以上のことから、高分子化合物と酸性基を含む 金属酸化物化合物とを混合または結合させた本発明のイオン伝導性高分子組成物 カゝらなる電解質膜は、高温'低加湿条件下で高いイオン伝導度を示すことが分かる。 [0034] As is apparent from Table 1, the membrane samples of Test Examples 1 to 3 composed of a cation exchange resin and a metal oxide compound containing an acidic group are the membranes of Comparative Examples 1 to 3: Sample (Test Example Compared with the same cation-exchanged resin as in 1-3, but without metal oxide compounds containing acidic groups) at high temperature and low humidity (120 ° C, 20% RH (relative humidity)) It was revealed that the water content was high and the proton conductivity was high. Furthermore, it was revealed that the same effect can be obtained even under high temperature and high humidification conditions (120 ° C, 80% RH). Based on the above, the ion conductive polymer composition of the present invention in which a polymer compound and a metal oxide compound containing an acidic group are mixed or bonded is high under high temperature and low humidification conditions. It can be seen that it exhibits ionic conductivity.
[0035] (膜 Z電極接合体の作製)  [0035] (Production of membrane Z electrode assembly)
白金を 30wt%で高分散担持したカーボンブラック lgと試験例 1の反応溶液 23mL を混練した。このペースト 0. 5mLを撥水性カーボンペーパーを用いて作製したガス 拡散層(面積 10cm2)上に塗布し、 80°Cで 2時間乾燥した。これを冷間プレス(10kg 10秒)した後、 1N硝酸エタノール溶液 400mL中に浸漬し、 12時間攪拌し た。この酸処理工程を 2回繰り返した後、エタノールで洗浄、 80°Cで 2時間乾燥した。 得られた電極触媒 2枚で試験例 1の電解質膜 (面積 10cm2)を挟んでホットプレス(1 20°C、 10kg/cm2, 10秒)し、膜 Z電極接合体を得た。 Carbon black lg carrying platinum in high dispersion at 30 wt% and 23 mL of the reaction solution of Test Example 1 were kneaded. 0.5 mL of this paste was applied onto a gas diffusion layer (area 10 cm 2 ) prepared using water-repellent carbon paper and dried at 80 ° C. for 2 hours. This was cold-pressed (10 kg for 10 seconds), then immersed in 400 mL of a 1N nitric acid ethanol solution and stirred for 12 hours. This acid treatment step was repeated twice, then washed with ethanol and dried at 80 ° C. for 2 hours. Two electrode catalysts obtained were sandwiched between the electrolyte membrane of Test Example 1 (area 10 cm 2 ) and hot-pressed (120 ° C., 10 kg / cm 2 , 10 seconds) to obtain a membrane Z electrode assembly.
[0036] (燃料電池試験)  [0036] (Fuel cell test)
上述のようにして得られた膜 Z電極接合体を反応ガス供給溝を有する 2枚のセパレ 一タで挟持して、燃料電池セルを作成した。片側(アノード側)に乾燥水素を 200mL Zmin、反対側 (力ソード側)に乾燥酸素を lOOmLZminで供給して、 100°Cで測定 した電流電圧特性を表 2に示した。 The membrane Z electrode assembly obtained as described above was sandwiched between two separators each having a reaction gas supply groove to produce a fuel cell. 200 mL of dry hydrogen on one side (anode side) Table 2 shows the current-voltage characteristics measured at 100 ° C when dry oxygen was supplied to Zmin and the opposite side (force sword side) in lOOmLZmin.
[0037] [表 2] [0037] [Table 2]
Figure imgf000014_0001
表 2から明らかなように、本発明による試験例 1を用いた燃料電池は、比較例 1 (試 験例 1と同じ陽イオン交換樹脂からなるが、酸性基を含む金属酸化物化合物はなし) を用いた燃料電池と比較して、高温'無加湿条件下(120°C、 0%RH)で高い性能を 有している。
Figure imgf000014_0001
As is clear from Table 2, the fuel cell using Test Example 1 according to the present invention is Comparative Example 1 (consisting of the same cation exchange resin as Test Example 1, but no metal oxide compound containing an acidic group). Compared to the fuel cell used, it has high performance under high temperature and no humidification conditions (120 ° C, 0% RH).
[0038] 以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明して きたが、本発明は上記内容に限定されるものではなぐ本発明の範疇を逸脱しない 範囲においてあらゆる変形や変更が可能である。  As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and is within the scope not departing from the scope of the present invention. All modifications and changes are possible.
[0039] 本明細書は、 2006年 5月 31曰出願の特願 2006— 150767に基づく。この内容は すべてここに含めておく  [0039] This specification is based on Japanese Patent Application No. 2006-150767 filed on May 31, 2006. Include all this content here
産業上の利用可能性  Industrial applicability
[0040] 本発明は、燃料電池や電気化学セル、および電気化学センサなどの電気化学デ バイスの電解質膜及び触媒層などとして好適に使用することができる。  [0040] The present invention can be suitably used as electrolyte membranes and catalyst layers for electrochemical devices such as fuel cells, electrochemical cells, and electrochemical sensors.

Claims

請求の範囲 The scope of the claims
[1] 高分子化合物と、酸性基を含む金属酸化物化合物とを混合または結合させることを 特徴とするイオン伝導性高分子組成物。  [1] An ion conductive polymer composition comprising a polymer compound and a metal oxide compound containing an acidic group mixed or bonded.
[2] 前記高分子化合物が、陽イオン交換榭脂であることを特徴とする請求項 1に記載の イオン伝導性高分子組成物。  [2] The ion conductive polymer composition according to [1], wherein the polymer compound is a cation exchange resin.
[3] 前記の酸性基を含む金属酸化物化合物において、酸性基と金属酸化物化合物が 有機基によって結合していることを特徴とする請求項 1又は 2に記載のイオン伝導性 高分子組成物。  [3] The ion conductive polymer composition according to claim 1 or 2, wherein in the metal oxide compound containing an acidic group, the acidic group and the metal oxide compound are bonded to each other through an organic group. .
[4] 前記金属酸化物化合物が、下記の一般式 (1)で表される化合物であることを特徴と する請求項 3に記載のイオン伝導性高分子組成物。  4. The ion conductive polymer composition according to claim 3, wherein the metal oxide compound is a compound represented by the following general formula (1).
(R'O) X(R2Y) (1) (R'O) X (R 2 Y) (1)
a b  a b
(式中、 R1は水素原子、金属イオン又は炭素数が 1〜20の炭化水素基を表し、 R2は 炭素数が 1〜20の炭化水素基を表す。 Xは金属元素を表し、 Yは酸性基またはその 前駆体を表す。 aおよび bは 1〜4の整数を表し、その和 a + bが Xの価数と等しくなる ように選択される。 aが 2〜4である時、それぞれの R1は同じであっても異なっていても よい。 bが 2〜4である時、それぞれの R2または Yは同じであっても異なっていてもよい o ) (Wherein R 1 represents a hydrogen atom, a metal ion or a hydrocarbon group having 1 to 20 carbon atoms, R 2 represents a hydrocarbon group having 1 to 20 carbon atoms. X represents a metal element, Y Represents an acidic group or a precursor thereof, and a and b represent an integer of 1 to 4, and the sum a + b is selected to be equal to the valence of X. When a is 2 to 4, Each R 1 may be the same or different, and when b is 2 to 4, each R 2 or Y may be the same or different o)
[5] 前記金属酸化物化合物が、ケィ素、チタン、アルミニウム、またはホウ素を含むこと を特徴とする請求項 1から 4のいずれかに記載のイオン伝導性高分子組成物。  [5] The ion conductive polymer composition according to any one of [1] to [4], wherein the metal oxide compound contains silicon, titanium, aluminum, or boron.
[6] 前記酸性基が、スルホン酸基、ホスホン酸基、またはカルボン酸基であることを特徴 とする請求項 1から 5のいずれかに記載のイオン伝導性高分子組成物。 6. The ion conductive polymer composition according to any one of claims 1 to 5, wherein the acidic group is a sulfonic acid group, a phosphonic acid group, or a carboxylic acid group.
[7] 前記一般式 (1)で表される金属酸ィ匕物化合物を、前記高分子化合物に含浸、また は混合することを特徴とする請求項 1から 6のいずれかに記載のイオン伝導性高分子 組成物の製造方法。 [7] The ion conduction according to any one of [1] to [6], wherein the polymer compound is impregnated or mixed with the metal oxide compound represented by the general formula (1). For producing a functional polymer composition.
[8] 請求項 1から 6の 、ずれかに記載のイオン伝導性高分子組成物の製造方法であつ て、  [8] The method for producing an ion conductive polymer composition according to any one of claims 1 to 6,
前記一般式 (1)で表される金属酸化物化合物と前記高分子化合物との溶液を混合 '攪拌して、または前記高分子化合物に含浸させた前記金属酸化物化合物溶液を 所定温度に保持して、ゾルゲル反応により前記金属酸化物化合物の重合体又は前 記金属酸化物化合物と前記高分子化合物との共重合体を形成させることを特徴とす るイオン伝導性高分子組成物の製造方法。 A solution of the metal oxide compound represented by the general formula (1) and the polymer compound is mixed and stirred, or the metal oxide compound solution impregnated in the polymer compound is mixed. An ion-conductive polymer composition characterized by forming a polymer of the metal oxide compound or a copolymer of the metal oxide compound and the polymer compound by a sol-gel reaction while maintaining at a predetermined temperature. Manufacturing method.
[9] 請求項 1から 6の 、ずれかに記載のイオン伝導性高分子組成物を含むことを特徴と する膜。  [9] A film comprising the ion conductive polymer composition according to any one of claims 1 to 6.
[10] 請求項 9に記載の膜を用いることを特徴とする電気化学デバイス。  [10] An electrochemical device using the film according to claim 9.
PCT/JP2007/060987 2006-05-31 2007-05-30 Ion conductive polymer composition, method for producing the same, film containing the ion conductive polymer composition, and electrochemical device using the film WO2007139147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008517964A JPWO2007139147A1 (en) 2006-05-31 2007-05-30 ION CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, FILM CONTAINING THIS ION CONDUCTIVE POLYMER COMPOSITION AND ELECTROCHEMICAL DEVICE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-150767 2006-05-31
JP2006150767 2006-05-31

Publications (1)

Publication Number Publication Date
WO2007139147A1 true WO2007139147A1 (en) 2007-12-06

Family

ID=38778665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060987 WO2007139147A1 (en) 2006-05-31 2007-05-30 Ion conductive polymer composition, method for producing the same, film containing the ion conductive polymer composition, and electrochemical device using the film

Country Status (2)

Country Link
JP (1) JPWO2007139147A1 (en)
WO (1) WO2007139147A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173856A (en) * 1990-11-06 1992-06-22 Nok Corp Solid polymer electrolyte
JPH0680881A (en) * 1992-08-31 1994-03-22 Toray Dow Corning Silicone Co Ltd Electroviscus liquid
JP2003253010A (en) * 2002-02-27 2003-09-10 Sekisui Chem Co Ltd Proton conductive membrane and production method therefor
JP2004501229A (en) * 2000-05-02 2004-01-15 ウニヴェルズィテート ステュットガルト Organic-inorganic film
JP2004139859A (en) * 2002-10-18 2004-05-13 Nippon Soda Co Ltd Solid electrolyte
JP2004165047A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Membrane-electrode junction, and fuel cell using the same
WO2004097850A1 (en) * 2003-04-25 2004-11-11 Sekisui Chemical Co., Ltd. Proton-conductive film, process for producing the same, and fuel cell empolying the proton-conductive film
JP2005026207A (en) * 2003-03-10 2005-01-27 Sekisui Chem Co Ltd Electrode for solid polymer type fuel cell, and its manufacturing method
JP2005026005A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Electrode for fuel cell, manufacturing method thereof, and fuel cell using the same
JP2006179448A (en) * 2004-03-31 2006-07-06 Hitachi Chem Co Ltd Electrolyte membrane and membrane-electrode joining element, and fuel cell using this the same
JP2007188753A (en) * 2006-01-13 2007-07-26 Shin Etsu Chem Co Ltd Catalyst paste for solid polymer fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173856A (en) * 1990-11-06 1992-06-22 Nok Corp Solid polymer electrolyte
JPH0680881A (en) * 1992-08-31 1994-03-22 Toray Dow Corning Silicone Co Ltd Electroviscus liquid
JP2004501229A (en) * 2000-05-02 2004-01-15 ウニヴェルズィテート ステュットガルト Organic-inorganic film
JP2003253010A (en) * 2002-02-27 2003-09-10 Sekisui Chem Co Ltd Proton conductive membrane and production method therefor
JP2004139859A (en) * 2002-10-18 2004-05-13 Nippon Soda Co Ltd Solid electrolyte
JP2004165047A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Membrane-electrode junction, and fuel cell using the same
JP2005026207A (en) * 2003-03-10 2005-01-27 Sekisui Chem Co Ltd Electrode for solid polymer type fuel cell, and its manufacturing method
WO2004097850A1 (en) * 2003-04-25 2004-11-11 Sekisui Chemical Co., Ltd. Proton-conductive film, process for producing the same, and fuel cell empolying the proton-conductive film
JP2005026005A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Electrode for fuel cell, manufacturing method thereof, and fuel cell using the same
JP2006179448A (en) * 2004-03-31 2006-07-06 Hitachi Chem Co Ltd Electrolyte membrane and membrane-electrode joining element, and fuel cell using this the same
JP2007188753A (en) * 2006-01-13 2007-07-26 Shin Etsu Chem Co Ltd Catalyst paste for solid polymer fuel cell

Also Published As

Publication number Publication date
JPWO2007139147A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
Wong et al. Additives in proton exchange membranes for low-and high-temperature fuel cell applications: A review
Bose et al. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges
Tripathi et al. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications
Pandey et al. Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties
Kerres Development of ionomer membranes for fuel cells
Ahmad et al. Overview of hybrid membranes for direct-methanol fuel-cell applications
Peighambardoust et al. Review of the proton exchange membranes for fuel cell applications
Tang et al. Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells
Hu et al. Sulfonated poly (fluorenyl ether ketone)/Sulfonated α-zirconium phosphate Nanocomposite membranes for proton exchange membrane fuel cells
Salarizadeh et al. Influence of amine-functionalized iron titanate as filler for improving conductivity and electrochemical properties of SPEEK nanocomposite membranes
Chen et al. Covalently cross-linked perfluorosulfonated membranes with polysiloxane framework
Han et al. Effect of “bridge” on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550
Ren et al. A novel crosslinking organic–inorganic hybrid proton exchange membrane based on sulfonated poly (arylene ether sulfone) with 4-amino-phenyl pendant group for fuel cell application
Park et al. Composite membranes based on a sulfonated poly (arylene ether sulfone) and proton-conducting hybrid silica particles for high temperature PEMFCs
Martina et al. Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application
US20100104918A1 (en) Improved fuel cell proton exchange membranes
de Bonis et al. Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes
Yadav et al. Insight toward the electrochemical properties of sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide) via impregnating functionalized boron nitride: alternate composite polymer electrolyte for direct methanol fuel cell
Rao et al. α-ZrP nanoreinforcement overcomes the trade-off between phosphoric acid dopability and thermomechanical properties: nanocomposite HTPEM with stable fuel cell performance
Li et al. Facilitating proton transport with enhanced water conservation membranes for direct methanol fuel cells
Peng et al. Enhancing proton conductivity of sulfonated poly (ether ether ketone)-based membranes by incorporating phosphotungstic-acid-coupled graphene oxide
Xu et al. Acid-functionalized polysilsesquioxane− Nafion composite membranes with high proton conductivity and enhanced selectivity
Woo et al. Physicochemical properties of Aquivion/fluorine grafted sepiolite electrolyte membranes for use in PEMFC
Mohanapriya et al. Hybrid membranes for polymer electrolyte fuel cells operating under various relative humidity values
Paul et al. Co-tri MOF-impregnated Aquivion® composites as proton exchange membranes for fuel cell applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744400

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008517964

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744400

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)