WO2007139144A1 - セルチップ - Google Patents

セルチップ Download PDF

Info

Publication number
WO2007139144A1
WO2007139144A1 PCT/JP2007/060979 JP2007060979W WO2007139144A1 WO 2007139144 A1 WO2007139144 A1 WO 2007139144A1 JP 2007060979 W JP2007060979 W JP 2007060979W WO 2007139144 A1 WO2007139144 A1 WO 2007139144A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell chip
water
hepatocytes
cell
membrane
Prior art date
Application number
PCT/JP2007/060979
Other languages
English (en)
French (fr)
Inventor
Masaru Tanaka
Shusaku Tsukiyama
Sadaaki Yamamoto
Masatsugu Shimomura
Hidekazu Yamazaki
Hideaki Naruse
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to EP07744392.7A priority Critical patent/EP2048223B1/en
Priority to US12/302,705 priority patent/US20100035766A1/en
Publication of WO2007139144A1 publication Critical patent/WO2007139144A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5067Liver cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing

Definitions

  • the present invention relates to a biomaterial using a hermetic porous material, and more particularly to a cell chip comprising a hermetic porous material and hepatocytes.
  • a DNA chip is a useful technology that enables simultaneous analysis of thousands to tens of thousands of genes and provides reliable information in clinical fields such as clinical diagnosis and prognosis. is there.
  • Non-patent Document 1 A nano-cell chip in which cells are aligned and fixed on a chip substrate, which is inherently desired to observe the behavior of biomolecules using cells themselves, has also been developed (Patent Document 1).
  • cultured hepatocytes are widely used for screening pharmaceuticals, but conventional hepatocyte primary culture systems have a shorter period of time that retains hepatocyte function ⁇ ⁇ 2 days. Compared with liver tissue, the function was low and it was not practical (Non-patent Document 1).
  • Patent Document 2 a harcam-like porous body formed from a water-insoluble polymer
  • Non-Patent Document 1 Landry, J., et al., J. Cell Biol., 1985, No. 101, No. 3, pp. 914-923
  • Non-Patent Document 2 Koide, N. et al., BBRC, 1982, No. 161, No. 1, pp. 385-391
  • Non-Patent Document 3 Koide, N. et al., Exp. Cell Res., 1990, No. 186, No. 2, pp. 227-235
  • Non-Patent Document 4 Tong, J.Z., et al., Exp. Cell Res., 1992, No. 200, No. 2, pp. 326-332
  • Non-Patent Document 5 Matsushita, T. et al., Appl. Microbiol. Biotechnol., 1991, 36, No. 3, pp. 324-326
  • Non-Patent Document 6 Park I.K. et al., Biomaterial, 2003, No. 24, No. 13, pp. 2331-2337
  • Non-Patent Document 7 Fukuda, J. et al., Cell transplant, 2003, No.12, No.1, pp. 51-58
  • Patent Document 1 Special Table 2005— 517411
  • Patent Document 2 JP 2001-157574
  • the inventors of the present invention have made it possible to use a hermoid porous material formed of a water-insoluble polymer force as a substrate for a cell chip, particularly in a short time while maintaining the drug metabolizing enzyme activity for a long period of time.
  • the inventors found that hepatocytes can be retained, and completed the following inventions.
  • [0012] (4) A method for evaluating a compound's ability to inhibit, suppress or activate the physiological activity of a target substance contained in hepatocytes using the cell chip according to any one of (1) to (3) The method includes the step of incubating the cell chip and the compound and the step of measuring the physiological activity of the target substance contained in the hepatocytes held on the cell chip after the incubation.
  • the cell chip holding the hepatocytes of the present invention particularly the cell chip holding human hepatocytes on both sides of the hermetic porous body, has a drug metabolizing enzyme activity and a special P450 activity for more than a week. It has the advantage that it can be maintained, the amount of DNA in the meantime, that is, the number of cells is also stably maintained. In the case of using conventional cultured cells, the ability to maintain such a function for 1 to 2 days has not been achieved. Therefore, the ability to maintain the function of the cell of the present invention is outstandingly superior. Cell chips are useful for screening drugs using hepatocytes and observing the physiological effects of compounds on hepatocytes.
  • the cell chip means a nanochip in which complete cells that live on a substrate, preferably a thin film, are aligned and held.
  • the holding described here is not a state where the cells and the substrate are merely in contact with each other, but the cells can be easily removed even if the cells on the substrate are washed with water or a buffer solution.
  • Substrate is the state of being firmly fixed to the extent that it is not released.
  • the cell chip of the present invention retains hepatocytes, particularly human hepatocytes, on one or both sides of a Hercam-like porous body (also known as a Nozomi cam structure or Hercam sheet) that also has water-insoluble polymer power. Can be manufactured.
  • a Hercam-like porous body also known as a Nozomi cam structure or Hercam sheet
  • the Hercam's porous material having a water-insoluble polymer force is a porous thin film made of a polymer (polymer), in which minute pores oriented in the vertical direction of the film are membranes. This means that it is provided in the shape of a beehive (in the form of a huck cam) in the plane direction.
  • the honeycomb-shaped porous body used in the present invention has a hole (through hole) penetrating the membrane in the vertical direction, and in particular, a peripheral through hole in which the through hole exists in the planar direction. Communicating with each other! /, It is preferable to use a porous cam body.
  • a porous thin film in which pores are provided in such a regular arrangement such as a her-came shape is a normal porous film having irregular pores having various pore diameters, shapes, or depths. It is understood as a completely different structure from a material. Further, although it is inferred, when the through-holes existing in the planar direction of the Hercam-shaped porous body communicate with each other, the structural force is retained in the HerCam-shaped porous body in the cell chip of the present invention. It is considered that there is an advantage that the interaction between the isolated human hepatocytes is exerted, or the medium is supplied with dissolved oxygen and the waste is discharged smoothly.
  • the shape of the Hercam's porous material that can be used in the present invention has a film thickness of 0.01 ⁇ m to 100 ⁇ m, preferably 0.1 ⁇ m to 50 ⁇ m, and more preferably 1 ⁇ m to 20 ⁇ m, and the diameter of the diameter ⁇ ⁇ . 01 ⁇ m ⁇ lOO ⁇ m, preferably ⁇ or 0.1 ⁇ m to 50 ⁇ m, more preferably ⁇ or 1 ⁇ to 20; ⁇ m, Particularly preferred is 5 ⁇ m to 10 ⁇ m.
  • the honeycomb-shaped porous body having such a structural feature can be manufactured according to various known methods.
  • photolithography is soft lithography (Whiteside et al., Angew. Chem. Int. Ed., 1998, pp. 37, 550-575), phase separation of block copolymers (Albrecht et al., Macromolecules). , 2002, pp. 35, 8106-8110), a method of producing a two-dimensional and three-dimensional periodic structure by stacking submicron colloidal fine particles (Gu et al., Langmuir, No. 1 7 ⁇ ), a method of making an inverse dopard structure by making this into a saddle shape (Karso et al., Lang (Langmuir, 1999, 15th, 8276-8281).
  • JP-A-8-311231, JP-A-2001-157475, JP-A-2002-347107, and JP-A-2002-335949 are methods that greatly differ from these methods and the manufacturing principle.
  • the proposed method can also be used. In these methods, water droplets are condensed on the surface of a polymer water-insoluble organic solvent solution, and a honeycomb-shaped porous body is prepared by using the water droplets as a bowl shape. This is advantageous compared to the manufacturing method. Further details will be described below.
  • a water-insoluble organic solvent solution of a water-insoluble polymer obtained by dissolving a water-insoluble polymer in a water-insoluble organic solvent, particularly a water-insoluble organic solvent having a surface tension ⁇ L of 50 dynZcm or less is used.
  • the surface tension is ⁇ S
  • the surface tension of the water-insoluble organic solvent to be applied is ⁇ L
  • the surface tension between the substrate and the solvent is ⁇ LS
  • the substrate satisfying the relationship of ⁇ S- ⁇ SL> TL
  • the water-insoluble organic solvent mentioned here is preferably insoluble in water having a surface tension of 50 dynZcm or less and capable of holding water droplets condensed on the surface of the solution, and 0 to 150 ° C under atmospheric pressure.
  • halogenated hydrocarbons such as carbon tetrachloride, dichloromethane and chloroform
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • esters such as ethyl acetate and butyl acetate
  • water-insoluble ketones such as methylisoptyl ketone And disulfur carbon.
  • the water-insoluble polymer is not particularly limited as long as it is insoluble in water and soluble in the above water-insoluble organic solvent, or can be dissolved in a water-insoluble organic solvent in the presence of an appropriate surfactant. Any restrictions can be selected and used as appropriate.
  • Examples include biodegradable polymers such as polylactic acid and polyhydroxybutyric acid, aliphatic polycarbonates, amphiphilic polymers, photofunctional polymers, and electronic functional polymers.
  • water-insoluble organic solvent for example, polystyrene, polycarbonate, polysenolephone, polyethenolesnolephone, polyalkyl siloxane, polyalkyl methacrylate or polyalkyl acrylate, such as polymethyl methacrylate, polybutadiene, polyisoprene, poly N-butylcarbazole, polylactic acid,
  • a combination of organic solvents can be used.
  • fluorocarbon solvents such as ⁇ -225 (manufactured by Asahi Glass Co., Ltd.), Use of trifluorobenzene, fluoroethers, etc. gives good results. Among these, it can be appropriately selected and used in consideration of solubility in the water-insoluble polymer specifically used.
  • the concentration of the water-insoluble polymer in the water-insoluble organic solvent solution can be appropriately determined according to the characteristics and physical properties required of the produced hermetic porous material and the water-insoluble organic solvent to be used.
  • the concentration of the water-insoluble polymer in the water-insoluble organic solvent solution is set to 0.5 lgZL to 10 gZL, particularly 0.5 gZL to 6. OgZL. It is preferable to do.
  • the substrate to which the water-insoluble organic solvent solution of the water-insoluble polymer is applied includes the surface tension ⁇ S of the surface of the substrate and the surface tension ⁇ L of the water-insoluble organic solvent to be applied as well as the substrate and the solvent. It is desirable to select and use a substrate satisfying the relationship of ⁇ S- ⁇ SL> ⁇ L with respect to the surface tension ⁇ LS. This is because the wettability of the water-insoluble organic solvent solution in the water-insoluble organic solvent solution to the water-insoluble organic solvent itself can affect the thickness of the liquid film formed on the substrate.
  • the substrate preferably has a high affinity with the water-insoluble organic solvent solution of the water-insoluble polymer to be applied.
  • a substrate having a surface exhibiting a surface tension that can be expressed by the above formula using the surface tension ⁇ L of the water-insoluble organic solvent as an index may be used.
  • Suitable examples of such substrates and Examples thereof include a glass plate, a silicon plate, and a metal plate.
  • a substrate whose surface is subjected to processing capable of increasing the affinity with a water-insoluble organic solvent solution.
  • Such improvement of the wettability of the substrate surface can be achieved by a method known per se in accordance with the substrate and the water-insoluble organic solvent used, for example, silane coupling treatment with a thiol compound for glass or metal substrates.
  • Monomolecular film formation processing methods can be used.
  • a hydrophobic organic solvent such as black mouth form
  • a sufficiently cleaned Si substrate a glass substrate whose surface is modified with an alkylsilane coupling agent, etc.
  • a fluorinated solvent it is preferable to use a Teflon (registered trademark) substrate or a glass substrate modified with a fluorinated alkylsilane coupling agent!
  • the liquid film thickness when a water-insoluble organic solvent solution of a water-insoluble polymer is applied to a substrate to form a liquid film of the same solution is 1 ⁇ m to 1000 ⁇ m, preferably 700 ⁇ m or less. It is desirable that Examples of methods for applying a water-insoluble organic solvent solution of a water-insoluble polymer to a substrate include a bar coating method, a dip coating method, a spin coating method, and the like, in addition to a method of dropping a display solution onto a substrate. Any of continuous types can be used.
  • a Hermace porous body made of a water-insoluble polymer By placing the water-insoluble organic solvent on the substrate in this manner and evaporating the water-insoluble organic solvent from the thin film, a Hermace porous body made of a water-insoluble polymer can be produced. At that time, the pore diameter of the Hercam's porous material can also be adjusted by adjusting the evaporation rate of the solvent.
  • the evaporation rate of the solvent can be adjusted by placing the thin film on the substrate in an air stream having a relative humidity of 30% or higher and a wind speed of 0.01 to 20 mZ seconds.
  • a honeycomb-shaped porous body having through-holes used in the present application For example, a water-insoluble polymer is used in an air flow adjusted within a range of 30 to 99% relative humidity and 0.01 to 20 mZ seconds. It is preferable to place a liquid film of water-insoluble organic solvent solution.
  • the thin film may be distorted or cracked by the wind pressure of the air flow.
  • the thin film is a thin film of an organic solvent solution on the substrate against the airflow It is preferable to generate them in parallel or upward.
  • the airflow may be generated by either positive pressure from the upstream side or negative pressure from the downstream side.
  • the nozzle force installed toward the substrate may be either jetted with predetermined air, or the air above the substrate may be sucked with unidirectional force.
  • the present invention can be produced by seeding and holding hepatocytes on both surfaces of the honeycomb-shaped porous body prepared by the above method. Since the conventional cell chip arranges and fixes a large number of cells in a narrow space, a special measure is required to prevent the cell suspension stored in the fixative from spreading. There is no limit to it. The operation of placing hepatocytes on the two-comb porous material for an appropriate period of time should be performed on both sides of the honeycomb-shaped porous material! /.
  • the honeycomb porous body sterilized by heat sterilization or ultraviolet irradiation is immersed in a suitable medium selected from, for example, DMEM, F-12, Williams' Medium E, etc. Suspended 0.5 ⁇ 10 5 to 1.0 ⁇ 10 5 hepatocytes are seeded and left under normal cell culture conditions for 3 to 5 hours. Thereafter, the inside and outside of the honeycomb-like porous body may be reversed and the same operation may be repeated.
  • any hepatocytes derived from mammals such as rats, mice, rabbits and the like can be used, but human hepatocytes are particularly preferred.
  • human hepatocytes are particularly preferred.
  • the cell function is greatly reduced within about 3 days, and the cell function continues to decline as the storage time elapses.
  • the decrease in the activity of proteins involved in drug metabolism activity, particularly P450 makes it difficult to conduct experiments on drug candidate compounds using human hepatocytes. This is because the decrease in drug metabolic activity of human hepatocytes means that the operation of the evaluation experiment using human hepatocytes must be completed in 1 to 2 days from the preparation of human hepatocytes.
  • the cell chip of the present invention was observed to show a decrease in cell function occurring 3 days after seeding human hepatocytes in a nodular porous body, as shown in the following examples. However, the decrease in cell function over the course of the subsequent storage time is mostly observed over 7 days. Not ( Figures 1-4).
  • the cell chip of the present invention eliminates the restriction that the operation of the evaluation experiment using human hepatocytes as described above must be completed in 1 to 2 days from the preparation of human hepatocytes.
  • the human hepatocytes held on the cell chip of the present invention float and are not easily lost, and the cell chip of the present invention can supply a stable number of human hepatocytes.
  • the cell chip of the present invention having the above advantageous features is a method for evaluating the inhibitory ability, inhibitory ability or active ability of a compound with respect to the physiological activity of a target substance contained in hepatocytes.
  • the method also includes the step of incubating the cell chip and the compound and the step of measuring the physiological activity of the target substance contained in the hepatocytes retained in the cell chip after incubation.
  • Particularly preferable is the above-mentioned method having the target material force SP450.
  • the cell chip of the present invention is placed in a suitable liquid medium or buffer, and a compound is added thereto as appropriate, followed by incubation, and then a target substance contained in the hepatocytes, typically metabolism.
  • a compound is added thereto as appropriate, followed by incubation, and then a target substance contained in the hepatocytes, typically metabolism.
  • the selection of the target substance is completely arbitrary, and the amount of the target molecule or the evaluation of the physiological activity may be a method determined for each target substance.
  • the target molecule is preferably a group of proteins involved in drug metabolism, and a particularly preferred protein is P450.
  • FIG. 1 Photographs obtained by observing cells on each membrane on the first day after seeding with human hepatocytes by phase contrast inverted micrograph. The figure shows the upper force flat membrane, non-penetrating membrane, and honeycomb membrane.
  • FIG. 2 Photographs obtained by observing the cells on each membrane on day 3 with a phase contrast inverted microscope after seeding of human hepatocytes. The figure shows the upper force flat membrane, non-penetrating membrane, and honeycomb membrane.
  • FIG. 3 Photographs obtained by observing cells on each membrane on day 5 with a phase contrast inverted microscope after seeding of human hepatocytes. The figure shows the upper force flat membrane, non-penetrating membrane, and honeycomb membrane.
  • FIG. 4 Photographs obtained by observing cells on each membrane on the 7th day with a phase contrast inverted microscope after seeding of human hepatocytes. The figure shows the upper force flat membrane, non-penetrating membrane, and honeycomb membrane.
  • FIG. 5 is a graph showing the results of measuring the activity of the drug metabolizing enzyme P450 in 1) of Test Example. The bars in the graph indicate the 1st, 3rd, 5th and 7th days after sowing for each membrane from the left.
  • FIG. 6 is a graph showing the DNA amount measurement results of 2) in Test Example. The bars in the graph indicate the first force, the third day, the fifth day, and the seventh day after sowing for each membrane.
  • the biodegradable polymer poly ( ⁇ -caprolatatone) (PCL, molecular weight 70,000-100,000 made by Wako) and amphiphilic polyacrylamide polymer (Cap) is 0.5 mg / mL at a weight ratio of 10: 1. It was dissolved in black mouth form. This solution was cast on a glass petri dish ( ⁇ 90mm), and the black-hole form was evaporated in an atmosphere with a relative humidity of 80%, thereby forming a hard cam-like shape with a pore diameter of 7-9 ⁇ m penetrating the membrane. A porous material (a two-cam film) ( ⁇ 90mm) was prepared.
  • a black mouth form solution having a PCL concentration of 5 mgZmL was cast into a glass petri dish, and the black mouth form was evaporated in an atmosphere having a relative humidity of 80% to penetrate the membrane.
  • a hard cam-like porous body (non-penetrating membrane) ( ⁇ 90 mm) having a hollow with a diameter of 6 to 8 m on one side was prepared.
  • Sarakuko after casting 20 L of this black mouth form solution onto the cover glass, the cover glass is removed with a spin coater (MIKASA 1H-D7) for 1000r. By rotating for 30 seconds at pm and covering the entire surface with polymer, a flat film (flat film) with a diameter of 22 mm was created.
  • Frozen human hepatocyte (BD Biosciences, USA) vials (cell count 5.8 X 10 6 cells / vial) are lysed at 37 ° C and cells are obtained by density gradient method using frozen hepatocyte purification kit (BD Biosciences, USA) Was suspended in DMEM medium (Invitrogen, USA) containing 10% FBS, dexamethasone, insulin, nicotinamide and ascorbic acid to prepare a cell suspension.
  • Sterilization was performed by irradiating the flat membrane, non-penetrating membrane, and no-cam membrane with 253.7 nm UV light for 2 hours or longer. After sterilization, each membrane was placed in a well of a 12 well plate, and a glass ring for pressing was placed on the membrane for the flat membrane and the non-penetrating membrane. Next, ethanol was added and degassed, and replaced with sterilized milli-Q water, and then replaced with DMEM medium. All membranes were left for 2 hours or more in a state where the medium was V, and the force was also used for the operation in the next section.
  • the cell suspension prepared in 2) of the number of cells shown in the table below was seeded on each membrane prepared in 3) and cultured in an incubator at 37 ° C and 5% CO.
  • an incubator at 37 ° C and 5% CO.
  • Honeycomb membrane 0.56 X 10 5 0.56 1.0 X 10 5 Total on both sides After 1, 3, 5, and 7 days after seeding, gently shake the culture vessel to remove non-adherent cells together with the culture medium. A cell chip having human hepatocytes retained on the membrane was obtained. The cell chip was stored with DMEM medium added thereto. [0051] In the cell chip obtained, the number of adherent cells was observed more than in the other two types (FIGS. 1 to 4). With this cell chip, no floating cells appeared even after the number of days of culture. In the cell chip obtained from the non-penetrating membrane, a tendency was observed that the number of adherent cells decreased with the passage of the culture days compared to the cell chip obtained from the hermetic membrane (FIGS. 1 to 4). In addition, when seeding and culturing human hepatocytes on a flat membrane, sufficient numbers of adherent cells were not obtained (Figs. 1 to 4).
  • the activity of the drug metabolizing enzyme P450 in human hepatocytes on the cell chip obtained in Example 1 was measured.
  • the medium was removed from the cell chip and washed twice with KHB solution (Krebs-Henseleit Buffer, Sigma-Aldrich, USA).
  • KHB solution Krebs-Henseleit Buffer, Sigma-Aldrich, USA.
  • 0.5 ml of lOOmM testosterone solution was added as a reaction substrate per membrane, and left in an incubator at 37 ° C and 5% CO for 1 hour.
  • the flat membrane and the non-penetrating membrane showed a high P450 activity value on the first day of culture, and the activity decreased with the number of culture days.
  • the cell chip obtained from the Herkham membrane continued the culture. Even then, almost constant P450 activity was maintained until day 7 (Fig. 5).
  • the culture vessel was supplemented with Tris-EDTA-NaCl buffer and stored frozen. After thawing, add proteinase K to a final concentration of 100 M, incubate at 37 ° C for 1 hour, crush the cells and membranes with an ultrasonic crusher, 12,000 rpm, 4 ° C, 20 The supernatant was collected by centrifugation for minutes, Hoechst 33258 was added as a color former, the excitation light was 340 ⁇ m, fluorescence at 465 nm was measured, and the amount of DNA was calculated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biophysics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 基板の上に生きた細胞をその機能を維持したまま保持した、新たなセルチップを提供する。  貫通孔を有する非水溶性ポリマーからなるハニカム状多孔質体と、該多孔質体に保持させたヒト肝細胞よりなるセルチップ。  本発明のセルチップ、特にハニカム状多孔質体の両面においてヒト肝細胞を保持したセルチップは、長期に亘って薬剤代謝酵素活性、特にP450活性が維持される、また細胞数が安定に維持される、等の利点を有している。

Description

明 細 書
セルチップ
技術分野
[0001] 本発明は、ハ-カム状多孔質体を用いた生体材料に関し、特にハ-カム状多孔質 体と肝細胞とよりなるセルチップに関する。
背景技術
[0002] 有用な遺伝子を探索して同定するための有効な手段あるいは技術の一つに、高密 度 cDNAアレイ (high density cDNA array)あるいは DNAチップと呼ばれるものがある 。 DNAチップは、数千〜数万の数の遺伝子を同時に分析することを可能にし、臨床 的診断や予後判定などの臨床分野においても信頼性の高い情報を提供することの できる、有益な技術である。
[0003] この DNAチップを含むこれまでの研究では、細胞を破壊して DNAやタンパク質等 を互いに分離して検出したり、反応を追跡したりすることが主な手法であった。しかし ながら、これらの生体高分子は周囲に存在する多種多様の生体分子と細胞内で秩 序だった相互作用を形成しており、また細胞内で一定の位置に配置されて 、るため に、細胞を破壊して得られる生体分子の挙動を観察しても、その観察結果は必ずし も細胞レベルの応答をそのまま反映して 、るとは言 、切れな 、。
[0004] 細胞そのものを利用した生体分子の挙動観察が本来的には望ましぐチップ基板 上に細胞が整列され固定されたノィォ-セルチップも開発されている (特許文献 1)。 しかし、肝細胞や神経細胞などの特定の機能を有する細胞を長期に培養し、かつそ の細胞の機能をその間も保持することは、一般的には容易なことではない。例えば、 培養肝細胞は、医薬品のスクリーニングを行う為に広く使われているが、従来の肝細 胞初代培養系は、肝細胞機能を保持している期間力^〜 2日間と短ぐさらに生体肝 組織と比べて機能が低く、実用的ではなかった (非特許文献 1)。
[0005] 観察細胞を破壊せずに、細胞内の生体高分子の相互作用を維持したままで、細胞 内の生体分子の様々な変化や相互作用を検出する技術が開発されればこれまでに ない新たな知見が得られる可能性が高まると期待される。 [0006] この様な期待に対して、基板の上に生きた細胞をその機能を維持したまま保持する 技術が報告されている (例えば非特許文献 2〜7)。しかし、本来的に細胞を生きたま ま、しかも機能を維持したまま基板上に保持するのは、先の培養細胞の機能を長期 に保つことと同様に、一般には決して容易なことではなぐ非特許文献 2〜7に記載の 技術によっても、長時間に亘つて細胞機能が維持されたヒト肝細胞を得ることは難し い。
[0007] また、細胞増殖に良好な足場 (scaffold)となり得る材料の一つに、非水溶性ポリマ 一から形成されるハ-カム状多孔質体 (特許文献 2)が知られているが、増殖した細 胞がその機能を長期に亘つて保持できるかどうか、またこのハ-カム状多孔質体が長 期に亘つて細胞の機能を保持することのできるセルチップ用の基板として利用できる ことは報告されていない。
非特許文献 1 : Landry, J., et al.、 J. Cell Biol.、 1985年、第 101卷、第 3号、第 914〜 923頁
非特許文献 2 : Koide, N. et al.、 BBRC、 1982年、第 161卷、第 1号、第 385〜391頁 非特許文献 3 : Koide, N. et al.、 Exp. Cell Res., 1990年、第 186卷、第 2号、第 227 〜235頁
非特許文献 4 : Tong, J.Z., et al.、 Exp. Cell Res., 1992年、第 200卷、第 2号、第 32 6〜332頁
非特許文献 5 : Matsushita, T. et al.、 Appl. Microbiol. Biotechnol.、 1991年、第 36卷 、第 3号、第 324〜326頁
非特許文献 6 : Park I.K. et al.、 Biomaterial、 2003年、第 24卷、第 13号、第 2331〜 2337頁
非特許文献 7 : Fukuda, J.et al.、 Cell transplant, 2003年、第 12卷、第 1号、第 51〜 58頁
特許文献 1:特表 2005— 517411
特許文献 2:特開 2001— 157574
発明の開示
発明が解決しょうとする課題 [0008] 本発明者らは、非水溶性ポリマー力 形成されるハ-カム状多孔質体がセルチップ 用の基板として、特に薬剤代謝酵素活性を長期に亘つて維持させつつ、短時間でヒ ト肝細胞を保持し得ることを見出し、以下の各発明を完成した。
課題を解決するための手段
[0009] (1)孔径 0. 01 μ m〜100 μ mの貫通孔ならびに膜厚 0. 01 μ m〜100 μ mを有す る非水溶性ポリマー力 なるハ-カム状多孔質薄膜の片面又は両面に肝細胞が保 持されているセルチップ。
[0010] (2)肝細胞がヒト肝細胞である、(1)に記載のセルチップ。
[0011] (3)前記貫通孔が薄膜の平面方向に存在する周囲の貫通孔と連通して!/、る構造を 有するハニカム状多孔質体である、(1)又は(2)に記載のセルチップ。
[0012] (4) (1)〜(3)のいずれかに記載のセルチップを用いて肝細胞に含まれるターゲット 物質の生理活性に対する化合物の阻害能、抑制能もしくは活性化能を評価する方 法であって、当該セルチップと化合物とをインキュベーションする工程ならびにインキ ュベーシヨン後のセルチップに保持された肝細胞に含まれるターゲット物質の生理活 性を測定する工程を含む、前記方法。
[0013] (5)ターゲット物質力 P450である、(5)に記載の方法。
発明の効果
[0014] 本発明の肝細胞を保持したセルチップ、特にハ-カム状多孔質体の両面にヒト肝 細胞を保持したセルチップは、一週間以上に亘つて薬剤代謝酵素活性、特〖こ P450 活性を維持することができる、その間の DNA量すなわち細胞数も安定に維持されて いる、等の利点を有している。従来の培養細胞を用いた場合には 1〜2日し力この様 な機能維持はなされな力つたことから、本発明の細胞の機能維持能力は突出して優 れたものであり、本発明のセルチップは、肝細胞を用いた薬物のスクリーニング、化 合物が肝細胞に与える生理学的影響などの観察に有効である。
発明を実施するための最良の形態
[0015] 本発明に 、うセルチップとは、基板、好ましくは薄膜に生きた完全な細胞を整列し て保持させたノィォチップを意味する。ここに言う保持は、細胞と基板等が単に接触 して ヽる状態ではなく、水や緩衝液等で基板上の細胞を洗浄しても容易には細胞が 基板等力 遊離しない程度に固着している状態を言う。
[0016] 本発明のセルチップは、非水溶性ポリマー力もなるハ-カム状多孔質体 (ノヽ二カム 構造体あるいはハ-カムシートとも呼ばれる)の片面又は両面に肝細胞を、特にヒト 肝細胞を保持させることで製造することができる。
[0017] ここで非水溶性ポリマー力 なるハ-カム状多孔質体とは、高分子 (ポリマー)でで きた多孔性の薄膜であって、膜の垂直方向に向けられた微少な孔が膜の平面方向 に蜂の巣状に (ハ-カム状に)設けられて ヽるものを意味する。本発明で使用するハ 二カム状多孔質体は、膜を垂直方向に貫通して!/、る孔 (貫通孔)を有するものであり 、特に貫通孔が平面方向に存在する周囲の貫通孔と互いに連通して!/、るハ二カム状 多孔質体の使用が好まし 、。
[0018] この様なハ-カム状という規則的な配置で孔が設けられている多孔質の薄膜は、孔 の口径、形状あるいは深さなどがまちまちである不規則な孔を有する通常の多孔質 体とは全く異なる構造体として理解される。また推論ではあるが、ハ-カム状多孔質 体の平面方向に存在する貫通孔同士が連通して 、ると 、う構造力 本発明のセルチ ップにおいて、ハ-カム状多孔質体に保持されたヒト肝細胞間の相互作用が発揮さ れる、あるいは培地ゃ溶存酸素の供給、老廃物の排出がスムーズに行われるなどの 利点をもたらすと考えられる。
[0019] 本発明で利用可能なハ-カム状多孔質体の形状は、膜厚が 0. 01 μ m〜100 μ m 、好ましく ίま 0. 1 μ m〜50 μ m、より好ましく ίま 1 μ m〜20 μ mであり、孑し径カ ^Ο. 01 ^ m^lOO ^ m,好ましく ίま 0. 1 ^ m~50 ^ m,より好ましく ίま 1 πι〜20 ;ζ m、特に 好ましくは 5 μ m〜10 μ mである。
[0020] この様な構造的特徴を有するハニカム状多孔質体は、種々の公知の方法に従って 製造することができる。例えばフォトリソグラフィーゃソフトリソグラフィー(ホワイトサイド ら、 Angew. Chem. Int. Ed. , 1998年、第 37卷、 第 550— 575頁)、ブロ ックコポリマーの相分離(アルブレヒトら,マクロモレキュール(Macromolecules)、 2002年、第 35卷、第 8106— 8110頁)、サブミクロンのコロイド微粒子^^積するこ とで 2次元、 3次元の周期構造を作製する方法 (グら、ラングミュア (Langmuir)、第 1 7卷)、これを铸型にしてインバースドォパール構造を作製する方法 (カルソら、ラング ミュア(Langmuir)、 1999年、第 15卷、第 8276— 8281頁)などを挙げることができ る。
[0021] また、これらの方法と製造原理を大きく異にする方法である特開平 8— 311231、特 開 2001— 157475、特開 2002— 347107ある!/ヽ ίま特開 2002— 335949【こ記載さ れた方法も使用することができる。これらの方法は、高分子の水不溶性有機溶媒溶 液表面上に水滴を結露させ、該水滴を铸型としてハニカム状の多孔質体を調製する ものであり、製造コストや効率等の点でその他の製造法に比べて有利である。以下、 さらに詳しく説明する。
[0022] この方法では、水不溶性有機溶媒、特に 50dynZcm以下の表面張力 γ Lを有す る水不溶性有機溶媒に非水溶性ポリマーを溶解した非水溶性ポリマーの水不溶性 有機溶媒溶液を、表面の表面張力を γ Sとし、塗布される水不溶性有機溶媒の表面 張力 γ Lならびに該基板と該溶媒との間の表面張力 γ LSとした場合に γ S— γ SL > T Lの関係を満たす基板の表面に塗布し、さらに相対湿度 30%以上の空気の存 在下で基板上に塗布された非水溶性ポリマーの水不溶性有機溶媒溶液を蒸発させ ることが好ましい。
[0023] ここにいう水不溶性有機溶媒は、 50dynZcm以下の表面張力を有し、かつ該溶液 表面に結露した水滴を保持し得る程度の水不溶性と、大気圧下で 0〜150°C、好ま しくは 10〜90°Cの沸点を有する有機溶媒を言う。例えば四塩化炭素、ジクロロメタン 、クロ口ホルム等のハロゲン化炭化水素、ベンゼン、トルエン、キシレンなどの芳香族 炭化水素、酢酸ェチル、酢酸ブチル等のエステル類、メチルイソプチルケトン等の非 水溶性のケトン類、二硫ィ匕炭素などを挙げることができる。
[0024] また非水溶性ポリマーは、水に不溶性でかつ上記の水不溶性有機溶媒に可溶な、 あるいは適当な界面活性剤の存在下で水不溶性有機溶媒に溶解し得るポリマーで あれば特別の制限はなぐ適宜選択して使用することができる。
[0025] 例えば、ポリ乳酸やポリヒドロキシ酪酸のような生分解性ポリマー、脂肪族ポリカーボ ネート、両親媒性ポリマー、光機能性ポリマー、電子機能性ポリマーなどを挙げること ができる。
[0026] 上記の水不溶性有機溶媒と非水溶性ポリマーとの具体的な組み合わせの例として は、例えばポリスチレン、ポリカーボネート、ポリスノレホン、ポリエーテノレスノレホン、ポリ アルキルシロキサン、ポリメタクリル酸メチルなどのポリアルキルメタタリレートまたはポ リアルキルアタリレート、ポリブタジエン、ポリイソプレン、ポリ N ビュルカルバゾー ル、ポリ乳酸、ポリ ε 一力プロラタトン、ポリアルキルアクリルアミド、およびこれらの 共重合体よりなる群力も選ばれるポリマーに対しては、四塩化炭素、ジクロロメタン、ク ロロホルム、ベンゼン、トルエン、キシレン、二硫ィ匕炭素などの有機溶媒を組み合わ せて使用することができる。また、フッ素化アルキルを側鎖に持つアタリレート、メタタリ レートおよびこれらの共重合体よりなる群力 選ばれるポリマーに対しては、 ΑΚ— 22 5 (旭硝子株式会社製)などのフッ化炭素溶媒、トリフルォロベンゼン、フルォロエー テル類などの使用も良好な結果を与える。これらの中から、具体的に使用する非水 溶性ポリマーに対する溶解性を考慮して、適宜選択して使用することができる。
[0027] また、フッ素化アルキルを側鎖に持つポリアタリレートやメタタリレートの側鎖の水素 をフッ素に置換したフッ素系ポリマーを用いてハニカム状多孔質体を製造する際に は、フッ素系の有機溶媒 (ΑΚ— 225等)の使用も良好な結果を与える。
[0028] 水不溶性有機溶媒溶液中の非水溶性ポリマー濃度は、製造されるハ-カム状多孔 質体に求める特性、物性並びに使用する水不溶性有機溶媒に応じて、適宜定めるこ とができる。本発明で使用する貫通孔を有するハ-カム状多孔質体の作製に際して は、水不溶性有機溶媒溶液中の非水溶性ポリマーの濃度を 0. lgZL〜10gZL、 特に 0. 5gZL〜6. OgZLとすることが好ましい。
[0029] さらにかかる非水溶性ポリマーの水不溶性有機溶媒溶液を塗布する基板は、基板 表面の表面張力 γ Sど塗布される水不溶性有機溶媒の表面張力 γ Lならびに該基 板と該溶媒との間の表面張力 γ LSとの間で、 γ S— γ SL> γ Lの関係を満たす基 板を選択して用いることが望ましい。これは、非水溶性ポリマー溶液の水不溶性有機 溶媒溶液を塗布する基板自体の水不溶性有機溶媒に対する濡れ性が、基板上に形 成される液膜の厚みに影響を与え得るためである。基板には、塗布される非水溶性 ポリマーの水不溶性有機溶媒溶液との親和性が高 、ものであることが好ま 、。具体 的には、水不溶性有機溶媒の表面張力 γ Lを指標にして上記式で表すことのできる 表面張力を示す表面を有する基板を利用すればよい。そのような基板の好適な例と しては、ガラス板、シリコン製板あるいは金属板などを挙げることができる。
[0030] また、水不溶性有機溶媒溶液との親和性を高めることのできる加工を表面に施した 基板の使用も可能である。この様な基板表面の濡れ性の改良は、基板と使用する水 不溶性有機溶媒に合わせて、自体公知の方法、例えばガラス製や金属製の基板に 対してはそれぞれシランカップリング処理ゃチオール化合物による単分子膜形成処 理方法などを利用することができる。
[0031] 例えば、クロ口ホルムなどの疎水性有機溶媒を水不溶性有機溶媒として用いる場合 の基板としては、十分に洗浄された Si基板や、アルキルシランカップリング剤などで 表面を修飾したガラス基板などの使用が好ましい。また、フッ素系溶媒を用いる場合 は、テフロン (登録商標)基板、あるいはフッ素化アルキルシランカップリング剤などで 修飾したガラス基板などの使用が好まし!/ヽ。
[0032] 非水溶性ポリマーの水不溶性有機溶媒溶液を基板に塗付して同溶液の液膜を形 成させる際の液膜厚としては 1 μ m〜1000 μ m、好ましくは 700 μ m以下とすること が望ま ヽ。また基板に非水溶性ポリマーの水不溶性有機溶媒溶液を塗付する方法 としては、基板に显溶液を滴下する方法の他、バーコート、ディップコート、スピンコー ト法などを挙げることができ、バッチ式、連続式の何れも利用することができる。
[0033] この様にして基板上に置 、た薄膜から水不溶性有機溶媒を蒸発させることで、非 水溶性ポリマーからなるハ-カム状多孔質体を製造することができる。その際、溶媒 の蒸発速度を調節することでも、ハ-カム状多孔質体の孔径を調節することができる
[0034] 溶媒の蒸発速度は、相対湿度 30%以上の湿度を有する風速 0. 01〜20mZ秒の 気流下に上記の基板上の薄膜を置くことで調節することができる。本願において使用 する貫通した孔を有するハニカム状多孔質体の製造にお!、ては、相対湿度 30〜99 %、風速 0. 01〜20mZ秒の範囲内で調節した気流に非水溶性ポリマーの水不溶 性有機溶媒溶液の液膜を置くことが好ま ヽ。気流方向に対する薄膜の配置の仕方 としては、基板上の薄膜に対して斜め上方向から、あるいは垂直方向から気流を当 たるような配置では、気流による風圧によって薄膜に歪みや亀裂が発生することもあ り得る。その様な場合には、薄膜は、気流に対して基板上の有機溶媒溶液の薄膜を 平行に、あるいは上方向に生じさせることが好ましい。この場合、気流はその上流か らの陽圧あるいは下流からの負圧の何れによって発生させても構わない。例えば、基 板に向けて設置したノズル力 所定の空気を噴射しても、基板上部の空気を一方向 力も吸引しても、何れでも良い。
[0035] 本発明では、上記の方法によって調製されるハニカム状多孔質体の両面に肝細胞 を播いて保持させることで製造することができる。従来のセルチップは、狭い空間に 数多くの細胞を整列して固定するため、固定剤内に保存された細胞懸濁液を広がら ないようにする為の特別な措置が必要とされる力 本発明には力かる制限はなぐハ 二カム状多孔質体の上に肝細胞を適当な時間置く操作を、ハニカム状多孔質体の 両面につ 、て行えばよ!/、。
[0036] 具体的には、加熱殺菌あるいは紫外線照射によって殺菌したハニカム状多孔質体 を、例えば DMEM、 F-12、 Williams' Medium E等から選ばれる適当な培地に浸し、 この上から同培地に懸濁させた 0.5 X 105〜1.0 X 105個の肝細胞を播種し、 3〜5時間 ほど通常の細胞培養条件下で放置する。その後、該ハニカム状多孔質体の裏表を 反転させ、同様の操作を繰り返せばよい。
[0037] 肝細胞としては、哺乳動物、例えばラット、マウス、ゥサギ等に代表される各種動物 由来の肝細胞をいずれも利用できるが、ヒト肝細胞の利用が特に好ましい。一般に、 生体力 採取された肝細胞は、これを適当な培地に保存等してもその細胞機能を保 持させることは難しいと理解されている。例えば、採取されたヒト肝細胞を適当な培地 に置くと、 3日間ほどの間にその細胞機能は大きく低下し、さらに保存時間が経過す ると共に細胞機能は低下し続ける。特に薬物代謝活性に関与する蛋白質群、中でも P450の活性低下は、ヒト肝細胞を用いた薬物候補化合物の評価実験を困難にする 。ヒト肝細胞の薬物代謝活性の低下は、ヒト肝細胞を用いた前記評価実験の操作をヒ ト肝細胞の調製から 1日乃至 2日で終了しなければならないことを意味するからである
[0038] 一方、本発明のセルチップにぉ 、ては、後の実施例で示すように、ヒト肝細胞をノヽ 二カム状多孔質体に播いてから 3日後までに生じる細胞機能の低下は観察されるも のの、その後の保存時間の経過による細胞機能の低下は、 7日間に亘つて殆ど観察 されない(図 1〜4)。本発明のセルチップは、前述のようなヒト肝細胞を用いた前記評 価実験の操作をヒト肝細胞の調製から 1日乃至 2日で終了しなければならないという 制約を解消するものである。また、本発明のセルチップ上に保持されたヒト肝細胞は 浮遊して消失されにくいものであり、本発明のセルチップは安定した数のヒト肝細胞 を供給することちできる。
[0039] あくまで推測ではある力 貫通孔を有するハニカム状多孔質体の両面に付着したヒ ト肝細胞は、貫通孔を通じて及び Z又は平面方向に存在する周囲の貫通孔との連 通部分を通じて何らかの相互作用を及ぼすことにより、生体内におけるヒト肝臓細胞 の周辺環境(3次元的環境)を擬似的に再現し、その結果ヒト肝細胞のハニカム状多 孔質体に対する接着性が高まる、細胞機能の低下が抑制されるなどの効果が発揮さ れるものと考えられる。
[0040] 以上の有利な特徴を有する本発明のセルチップは、これを用いて肝細胞に含まれ るターゲット物質の生理活性に対する化合物の阻害能、抑制能もしくは活性ィ匕能を 評価する方法であって、当該セルチップと化合物とをインキュベーションする工程な らびにインキュベーション後のセルチップに保持された肝細胞に含まれるターゲット 物質の生理活性を測定する工程を含む、前記方法をも提供するものである。特に好 ましくは、ターゲット物質力 SP450である前記方法である。
[0041] 具体的には、本発明のセルチップを適当な液体培地ある 、は緩衝液に置き、ここに 化合物を適宜加えてインキュベーションした後、肝細胞内に含まれるターゲット物質、 典型的には代謝調節その他の細胞機能に関与する蛋白質の量あるいはその生理活 性を測定することで、加えられた化合物がターゲット物質である蛋白質の発現や活性 を阻害、抑制あるいは活性ィ匕するかを、適当なコントロール物質を用いたときの結果 と比較して判定を行うことができる。
[0042] ターゲット物質の選択は全くの任意であり、またターゲット分子の量あるいは生理活 性の評価は、各ターゲット物質について定まる方法を採用すればよい。本発明のヒト 肝細胞を保持したセルチップでは、好ま 、ターゲット分子は薬物代謝形に関与す る蛋白質群であり、特に好ましい蛋白質は P450である。
図面の簡単な説明 [0043] [図 1]ヒト肝細胞を播種後、 1日目の各膜上の細胞を位相差倒立顕微鏡写で観察した 写真である。図は上力 平膜、非貫通膜、ハニカム膜である。
[図 2]ヒト肝細胞を播種後、 3日目の各膜上の細胞を位相差倒立顕微鏡写で観察した 写真である。図は上力 平膜、非貫通膜、ハニカム膜である。
[図 3]ヒト肝細胞を播種後、 5日目の各膜上の細胞を位相差倒立顕微鏡写で観察した 写真である。図は上力 平膜、非貫通膜、ハニカム膜である。
[図 4]ヒト肝細胞を播種後、 7日目の各膜上の細胞を位相差倒立顕微鏡写で観察した 写真である。図は上力 平膜、非貫通膜、ハニカム膜である。
[図 5]試験例の 1)の薬物代謝酵素 P450の活性測定結果を示すグラフである。グラフ 中のバーは、各膜について左から播種後 1日目、 3日目、 5日目及び 7日目をそれぞ れ示す。
[図 6]試験例の 2)の DNA量測定結果を示すグラフである。グラフ中のバーは、各膜 につ ヽて左力ら播種後 1日目、 3日目、 5日目及び 7日目をそれぞれ示す。
[0044] 以下に実施例を挙げて本発明をさらに詳細に説明する力 本発明はこれらの実施 例に限定されるものではない。
実施例 1
[0045] 1)ハニカム状多孔質体の作製
生分解性高分子であるポリ( ε -カプロラタトン)(PCL、 Wako製分子量 70, 000〜 100, 000)と両親媒性ポリアクリルアミドポリマー(Cap)を重量比 10 : 1で 0. 5mg/ mLとなるようにクロ口ホルムに溶解した。この溶液をガラスシャーレ( φ 90mm)上に キャストし、相対湿度 80%の雰囲気下でクロ口ホルムを蒸発させることで、膜を貫通し た孔径 7〜9 μ mの孔を有するハ-カム状多孔質体 (ノヽ二カム膜) ( φ 90mm)を作製 した。
[0046] また比較対象として、上記の方法において PCL濃度が 5mgZmLのクロ口ホルム溶 液をガラスシャーレにキャストし、相対湿度 80%の雰囲気下でクロ口ホルムを蒸発さ せて、膜を貫通していない孔径 6〜8 mの窪みを片面に有するハ-カム状多孔質 体 (非貫通膜) ( φ 90mm)を作製した。さら〖こ、このクロ口ホルム溶液 20 Lをカバー ガラス上にキャストした後、カバーガラスをスピンコーター(MIKASA 1H- D7)で 1000r pm、 30秒間回転させて全面をポリマーで被覆させることで、孔のないフラットフオル ム(平膜) φ 22mmを作成した。
[0047] 2)ヒト肝細胞の培養
凍結ヒト肝細胞(BD Biosciences, USA)バイアル(細胞数 5.8 X 106cells/バイアル)を 37°Cで溶解し、凍結肝細胞精製キット (BD Biosciences, USA)を使用して密度勾配 法により細胞を回収し、 10%FBS、デキサメタゾン、インスリン、ニコチンアミド及びァ スコルビン酸を含む DMEM培地(Invitrogen、 USA)に浮遊させ、細胞懸濁液を用意 した。
[0048] 3)膜の前処理
平膜、非貫通膜およびノヽ-カム膜に 253. 7nmの紫外線を 2時間以上照射すること により滅菌を行った。滅菌後、 12ゥエルプレートのゥエルに各膜を 1枚ずつ入れ、平 膜と非貫通膜には押さえのガラスリングを膜の上に乗せた。次 、でエタノールを加え て脱気し、滅菌ミリ Q水に置換した後、 DMEM培地に置換した。いずれの膜も培地を V、れた状態で 2時間以上放置して力も次項の操作に用いた。
[0049] 4)肝細胞の播種
下表に示す細胞数の 2)で用意した細胞懸濁液を、 3)で用意したそれぞれの膜に 播種し、 37°C、 5%COのインキュベータで培養した。ハ-カム膜については、片面
2
に下表の半分の細胞を播種し、 5時間後に膜を反転させて力 残りの細胞を播種し た。
[表 1] 膜の種類 1枚あたり細胞 膜面積 細胞密度 備考
数 cells) (cm2) /cm2
平膜 (PCL/PS) 1.778 X 105 2.54 0.7 X 105
非貫通膜 1.778 X 105 2.54 0.7 X 106
ハニカム膜 0.56 X 105 0.56 1.0 X 105 両面の合計 播種後 1、 3、 5および 7日目に培養容器を静かに振盪して力ゝら非接着細胞を培地と ともに除去し、ハ-カム膜にヒト肝細胞を保持させたセルチップを得た。セルチップは 、これに DMEM培地を添カ卩して保存した。 [0051] ハ-カム膜力 得られるセルチップにおいて、接着細胞が他の 2種に比べて多く観 察された(図 1〜図 4)。このセルチップでは、さらに培養日数が経過しても浮遊細胞 の出現は認められなかった。非貫通膜から得られるセルチップでは、ハ-カム膜から 得られるセルチップに比較して、培養日数の経過に伴い接着細胞が減少する傾向が 観察された(図 1〜図 4)。また、平膜へのヒト肝細胞の播種と培養では、接着細胞は 十分な数が得られな力つた (図 1〜図 4)。
[0052] <試験例>
1) P450活性測定
実施例 1で得たセルチップ上のヒト肝細胞における薬物代謝酵素 P450の活性測 定を行った。セルチップから培地を除去し、 KHB液(Krebs-Henseleit Buffer, Sigma- Aldrich、 USA)で 2回洗浄した。ついで反応基質として lOOmMテストステロン溶液を 膜 1枚あたり 0. 5mlずつ添カ卩し、 37°C、 5%COのインキュベータに 1時間静置した
2
。静置後、溶液を回収し、 P450によるテストステロンの代謝産物である 6 18 - Hydroxy! estosteroneの溶液中の含有量を測定した。
[0053] その結果、平膜と非貫通膜では、培養 1日目で高 ヽ P450活性値を示した後に培養 日数と共に活性が低下したが、ハ-カム膜より得られるセルチップでは、培養を継続 しても 7日目までほぼ一定の P450活性が保たれていた(図 5)。
[0054] 2) DNA量測定
P450活性測定のサンプル回収後、培養容器に Tris- EDTA- NaCl緩衝液を添カロし 、凍結保存した。解凍後、 Proteinase Kを最終濃度 100 Mになるように添カ卩して 37 °Cで 1時間保温した後、超音波破砕機で細胞と膜を破砕し、 12, 000rpm、 4°C、 20 分間遠心して上清を回収し、発色剤として Hoechst 33258を添加し、励起光を 340η mにして 465nmの蛍光を測定して DNA量を算出した。
[0055] この結果、 DNA量は、ハ-カム膜より得られるセルチップでは、培養 3、 5、 7日目 に亘つてほぼ一定となることが確認された。一方、平膜ならびに非貫通膜では培養日 数の経過にともなう減少傾向が認められ、 7日目には検出限界以下となった。

Claims

請求の範囲
[1] 孔径 0. 01 μ m〜100 μ mの貫通孔ならびに膜厚 0. 01 μ m〜100 μ mを有する 水溶性ポリマーからなるハ-カム状多孔質薄膜の片面又は両面に肝細胞が保持さ れているセルチップ。
[2] 肝細胞がヒト肝細胞である、請求の範囲第 1項に記載のセルチップ。
[3] 前記貫通孔が薄膜の平面方向に存在する周囲の貫通孔と連通して!/、る構造を有す るハ-カム状多孔質体である、請求の範囲第 1項又は第 2項に記載のセルチップ。
[4] 請求の範囲第 1項〜第 3項の 、ずれかに記載のセルチップを用いて肝細胞に含まれ るターゲット物質の生理活性に対する化合物の阻害能、抑制能もしくは活性ィ匕能を 評価する方法であって、当該セルチップと化合物とをインキュベーションする工程な らびにインキュベーション後のセルチップに保持された肝細胞に含まれるターゲット 物質の生理活性を測定する工程を含む、前記方法。
[5] ターゲット物質力P450である、請求の範囲第 4項に記載の方法。
PCT/JP2007/060979 2006-05-30 2007-05-30 セルチップ WO2007139144A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07744392.7A EP2048223B1 (en) 2006-05-30 2007-05-30 Cell chip
US12/302,705 US20100035766A1 (en) 2006-05-30 2007-05-30 Cell chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006149284A JP4853905B2 (ja) 2006-05-30 2006-05-30 セルチップ
JP2006-149284 2006-05-30

Publications (1)

Publication Number Publication Date
WO2007139144A1 true WO2007139144A1 (ja) 2007-12-06

Family

ID=38778662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060979 WO2007139144A1 (ja) 2006-05-30 2007-05-30 セルチップ

Country Status (4)

Country Link
US (1) US20100035766A1 (ja)
EP (1) EP2048223B1 (ja)
JP (1) JP4853905B2 (ja)
WO (1) WO2007139144A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017012109A (ja) * 2015-07-02 2017-01-19 富士フイルム株式会社 細胞培養容器、細胞培養装置および細胞培養方法
WO2021132586A1 (ja) * 2019-12-27 2021-07-01 学校法人高崎健康福祉大学 肝細胞培養膜、それを備えた薬物輸送能評価キット、及び薬物輸送能評価方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056260B2 (ja) * 2018-03-15 2022-04-19 株式会社リコー 中空構造体
JPWO2020262062A1 (ja) 2019-06-27 2020-12-30

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311231A (ja) 1995-05-17 1996-11-26 Toyota Central Res & Dev Lab Inc ハニカム状多孔質体及びその製造方法
JP2001157475A (ja) 1999-09-14 2001-06-08 Nikon Corp 振動アクチュエータ
JP2001157574A (ja) 1999-11-30 2001-06-12 Terumo Corp ハニカム構造体およびその調製方法、ならびにその構造体を用いたフィルムおよび細胞培養基材
JP2002335949A (ja) 2001-05-22 2002-11-26 Inst Of Physical & Chemical Res ハニカム構造体フィルムを用いた細胞の三次元組織培養法
JP2002347107A (ja) 2001-05-22 2002-12-04 Inst Of Physical & Chemical Res 延伸フィルムおよびそれを用いた細胞培養基材
JP2005517411A (ja) 2002-02-18 2005-06-16 ソウル ナショナル ユニバーシティ ホスピタル バイオ−セルチップ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057729A1 (en) * 2003-09-12 2006-03-16 Illumina, Inc. Diffraction grating-based encoded element having a substance disposed thereon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311231A (ja) 1995-05-17 1996-11-26 Toyota Central Res & Dev Lab Inc ハニカム状多孔質体及びその製造方法
JP2001157475A (ja) 1999-09-14 2001-06-08 Nikon Corp 振動アクチュエータ
JP2001157574A (ja) 1999-11-30 2001-06-12 Terumo Corp ハニカム構造体およびその調製方法、ならびにその構造体を用いたフィルムおよび細胞培養基材
JP2002335949A (ja) 2001-05-22 2002-11-26 Inst Of Physical & Chemical Res ハニカム構造体フィルムを用いた細胞の三次元組織培養法
JP2002347107A (ja) 2001-05-22 2002-12-04 Inst Of Physical & Chemical Res 延伸フィルムおよびそれを用いた細胞培養基材
JP2005517411A (ja) 2002-02-18 2005-06-16 ソウル ナショナル ユニバーシティ ホスピタル バイオ−セルチップ

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
ALBRECHT ET AL., MACROMOLECULES, vol. 35, 2002, pages 8106 - 8110
FUKUDA, J. ET AL., CELL TRANSPLANT, vol. 12, no. 1, 2003, pages 51 - 58
FUKUHIRA Y. ET AL.: "Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine", BIOMATERIALS, vol. 27, March 2006 (2006-03-01), pages 1797 - 1802, XP005204033 *
GU ET AL., LANGMUIR, vol. 17
GUILLOUZO A. ET AL.: "Use of human hepatocyte cultures for drug metabolism studies", TOXICOLOGY, vol. 82, 1993, pages 209 - 219, XP003019618 *
KALSO ET AL., LANGMUIR, vol. 15, 1999, pages 8276 - 8281
KOIDE, N. ET AL., BBRC, vol. 161, no. 1, 1982, pages 385 - 391
KOIDE, N. ET AL., EXP. CELL RES., vol. 186, no. 2, 1990, pages 227 - 235
LANDRY, J. ET AL., J. CELL BIOL., vol. 101, no. 3, 1985, pages 914 - 923
MATSUSHITA, T. ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 36, no. 3, 1991, pages 324 - 326
NISHIKAWA Y. ET AL.: "Honeycomb-jo Takosei Film ni yoru Kansoshiki Keisei no Yudo", POLYMER PREPRINTS, JAPAN, vol. 49, 2000, pages 3967 - 3968, XP003019616 *
PARK I.K. ET AL., BIOMATERIAL, vol. 24, no. 13, 2003, pages 2331 - 2337
SALONEN J.S. ET AL.: "Comparative studies on the cytochrome p450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems", DRUG METAB. DISPOS., vol. 31, 2003, pages 1093 - 1102, XP003019620 *
See also references of EP2048223A4
SUNAMI H. ET AL.: "II. Saisei Igaku no Nanotechnology Honeycomb Film o Mochiita Tanpakushitsu Kyuchaku Oyobi Saibo Setchaku no Seigyo", REGENERATIVE MEDICINE, vol. 5, 2006, pages 96 - 101, XP003019617 *
TANAKA M. ET AL.: "Effect of pore size of self-organized honeycomb-patterned polymer films on spreading, focal adhesion, proliferation, and function of endothelial cells", J. NANOSCI. NANOTECHNOL., vol. 7, March 2007 (2007-03-01), pages 763 - 772, XP003019621 *
TONG, J.Z. ET AL., EXP. CELL RES., vol. 200, no. 2, 1992, pages 326 - 332
WHITESIDES ET AL., ANGEW. CHEM. INT. ED., vol. 37, 1998, pages 550 - 575
YAMAMOTO S. ET AL.: "Tokushu Mirai e Tsunagu Daigakuhatsu Venture Jiko Soshikika Micro Pattern Kobunshi Usumaku no Kaihatsu to Kodo Saisei Iryo eno Oyo", KAGAKU KOGYO, vol. 57, 2006, pages 27 - 35, XP003019619 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017012109A (ja) * 2015-07-02 2017-01-19 富士フイルム株式会社 細胞培養容器、細胞培養装置および細胞培養方法
WO2021132586A1 (ja) * 2019-12-27 2021-07-01 学校法人高崎健康福祉大学 肝細胞培養膜、それを備えた薬物輸送能評価キット、及び薬物輸送能評価方法

Also Published As

Publication number Publication date
JP4853905B2 (ja) 2012-01-11
US20100035766A1 (en) 2010-02-11
EP2048223B1 (en) 2015-03-25
EP2048223A1 (en) 2009-04-15
JP2007319006A (ja) 2007-12-13
EP2048223A4 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
Nishikawa et al. Fabrication of honeycomb film of an amphiphilic copolymer at the air− water interface
Sun et al. Mussel-inspired anchoring for patterning cells using polydopamine
Kuo et al. Investigation of size–dependent cell adhesion on nanostructured interfaces
Elkayam et al. Enhancing the drug metabolism activities of C3A—a human hepatocyte cell line—by tissue engineering within alginate scaffolds
US7312046B2 (en) Method of screening compounds using a nanoporous silicon support containing macrowells for cells
Messelmani et al. Liver organ-on-chip models for toxicity studies and risk assessment
Nakamura et al. Expression of albumin and cytochrome P450 enzymes in HepG2 cells cultured with a nanotechnology-based culture plate with microfabricated scaffold
JP2013507922A (ja) 細胞培養用マイクロ流体デバイス
TW201142289A (en) Nanoscale apertures having islands of functionality
Lorite et al. Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks
He et al. Origami-based self-folding of co-cultured NIH/3T3 and HepG2 cells into 3D microstructures
Hess et al. Dose‐dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites
Yap et al. Assembly of polystyrene microspheres and its application in cell micropatterning
EP3447120B1 (en) Three-dimensional thin film structure having microparticles enclosed therein and method for manufacturing same
WO2007139144A1 (ja) セルチップ
JP4247432B2 (ja) 凹凸を有するハニカム構造体フィルム
Taskin et al. Combined cell culture-biosensing platform using vertically aligned patterned peptide nanofibers for cellular studies
WO2013015939A1 (en) Composite substrate for 3d cell culture
Chen et al. Antifouling strategies for protecting bioelectronic devices
Rusen et al. Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment–detachment study
Beckwith et al. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly (vinyl alcohol) hydrogels
WO2008019573A1 (fr) Dispositifs et procédés permettant de faire adhérer différents types de cellules sur un même substrat.
Ray et al. Surface engineering of a bioartificial membrane for its application in bioengineering devices
JP2008278769A (ja) 膵島細胞からなる3次元凝集体をインビトロで製造する方法
Ye et al. Fabrication of poly HEMA grids by micromolding in capillaries for cell patterning and single‐cell arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007744392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12302705

Country of ref document: US