WO2007138851A1 - III-V SEMICONDUCTOR/SiO2 NANOPARTICLE AND AGENT FOR LABELING BIOLOGICAL SUBSTANCE - Google Patents

III-V SEMICONDUCTOR/SiO2 NANOPARTICLE AND AGENT FOR LABELING BIOLOGICAL SUBSTANCE Download PDF

Info

Publication number
WO2007138851A1
WO2007138851A1 PCT/JP2007/059937 JP2007059937W WO2007138851A1 WO 2007138851 A1 WO2007138851 A1 WO 2007138851A1 JP 2007059937 W JP2007059937 W JP 2007059937W WO 2007138851 A1 WO2007138851 A1 WO 2007138851A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii
type semiconductor
nanoparticle
nanoparticles
type
Prior art date
Application number
PCT/JP2007/059937
Other languages
French (fr)
Japanese (ja)
Inventor
Naoko Furusawa
Kazuya Tsukada
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2008517824A priority Critical patent/JP5200931B2/en
Publication of WO2007138851A1 publication Critical patent/WO2007138851A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Definitions

  • the present invention relates to III V-type semiconductor ZSiO-type nanoparticles, and the III V-type semiconductor ZSiO-type
  • semiconductor nanoparticles have a nanometer size, they exhibit quantum size effects such as an increase in bandgap energy, and exhibit, for example, good optical absorption characteristics and optical characteristics such as light emission characteristics. It is known to show. Therefore, in recent years, research reports on semiconductor nanoparticles have only been actively made. Semiconductor nanoparticles such as CdSeZZnS type semiconductor nanoparticles and Si ZSiO type semiconductor nanoparticles can be used for various purposes such as displays and LEDs.
  • the marker substances such as organic fluorescent dyes conventionally used in the above method have the disadvantages that they are severely deteriorated when irradiated with ultraviolet rays and have a short lifetime, and the sensitivity with low luminous efficiency is sufficient.
  • a method using semiconductor nanoparticles as the marker substance has attracted attention.
  • a polymer having a polar functional group is physically and
  • the semiconductor nanoparticles disclosed in Patent Document 1 substantially including the effects thereof are CdSeZZnS type semiconductor nanoparticles, but when used as a biological material labeling agent, the surface is organic. Although it is covered with molecules, the materials used with these semiconductor nanoparticles, especially CdSe, have been pointed out to be inherently biotoxic and environmentally friendly. There was a problem.
  • the SiZSiO type semiconductor nanoparticle used in Patent Document 2 has Si as its core material.
  • Si may be too reactive with other substances, such as oxygen.For example, deterioration of luminescence characteristics when UV irradiation is continued in an aqueous dispersion. There was a problem.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-329686
  • Patent Document 2 JP 2005-172429 A
  • the present invention provides a luminescent material with high emission intensity and little deterioration using III VI type semiconductor nanoparticles with low toxicity, and further, a biological material label using the III VI type semiconductor nanoparticles.
  • the purpose is to provide an agent.
  • III-V type semiconductor / SiO type nanoparticle characterized by having a particle size in the range of 1 to 50 nm.
  • III V-type semiconductor ZSiO-type nanoparticle according to any one of 1 to 4 above and a molecular marker
  • Bio substance labeling agent characterized in that it is bound to a recognition substance via an organic molecule.
  • the present invention it is possible to provide a light emitting material with high emission intensity and low deterioration using III-VI type semiconductor nanoparticles with low toxicity. Further, the III V type semiconductor ZSiO type
  • Bio substance labeling agent could be provided using nanoparticles.
  • the present invention may use the expression AZB-type nanoparticle.
  • a doublet means a nanoparticle with a core formed of InP and a shell formed of SiO.
  • Akira has one feature that the shell is SiO. Core material as shell material
  • SiO has a band gap of 9eV
  • SiO is very cheap as a compound.
  • the thickness of the shell is in the range of 0.2 to 50 nm, and more preferably in the range of 1 to 20 nm. If the thickness of the shell is larger than the lower limit of the above range, the thickness of the shell is sufficient, and it does not cause a chemical reaction between the core and other substances or a decrease in light emission intensity when light irradiation is continued. . In addition, it is preferable that the shell thickness is smaller than the upper limit of the above range because the optical properties of the nanoparticles can be sufficiently exhibited.
  • the m-V semiconductor is a semiconductor using an m-group element and a V-group element.
  • Group m (group 13) elements include aluminum (A1), gallium (Ga), and indium (In) forces.
  • Group V (group 15) elements include nitrogen (N), phosphorus (P), and arsenic ( As) and antimony (Sb) are often used.
  • GaAs gallium 'arsenic
  • InP indium' phosphorus
  • InGaAs InGaAs
  • GaInNAs gainus
  • InP Ga (0 ⁇ x ⁇ 1), etc. are produced.
  • the gap is close to and located in the visible light region, it is mainly used as a light-emitting device material.
  • many of the current red, green and blue light emitting diodes are III-V
  • the material is semiconductor.
  • the particle size of the core formed of the III V semiconductor is in the range of 1 to 50 nm, preferably in the range of 1 to 20 nm, and more preferably in the range of 2 to 12 nm. If the particle size of the core is not less than the lower limit of the above range, the particle size can be easily adjusted, and the variation in the particle size is reduced. Further, if the core particle size is not more than the upper limit of the above range, it has good optical characteristics. In the present invention, InP Ga (0 ⁇ x ⁇ 1) is preferred among III-V semiconductors.
  • the surface of the nanoparticle shell is preferably subjected to a hydrophilization treatment because there are problems such as aggregation of particles having poor water dispersibility.
  • Examples of the hydrophilization treatment method include a method in which the surface lipophilic group is removed with pyridine and the like, and then the surface modifier is chemically and Z-bound or physically bonded to the particle surface.
  • the surface modifier those having a carboxyl group or an amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptodecanoic acid, and amaminopropanethiol.
  • the biological material labeling agent of the present invention includes the above-described hydrophilic treatment III V type semiconductor ZSiO
  • the biological substance labeling agent of the present invention can label a biological substance by specifically binding and Z-reacting with the target biological substance.
  • the molecular labeling substance include nucleotide chains, antibodies, antigens and cyclodextrins.
  • the biological substance labeling agent of the present invention comprises a hydrophilic IIIV type semiconductor ZSiO type nanoparticle.
  • the two molecules and the molecular labeling substance are bound by an organic molecule.
  • the organic molecules include III-V type half Conductor Zsio-type nanoparticles are not particularly limited as long as they are organic molecules that can bind to the molecular labeling substance.
  • Strength For example, among proteins, albumin, myoglobin, casein and the like, and avidin which is a kind of protein are also preferably used together with piotin.
  • the form of the bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordination bond, a physical adsorption, and a physic adsorption. Bond stability strength Bonds with strong binding strength such as covalent bonds are preferred.
  • mV type semiconductor Zsio type nanoparticles are hydrophilized with mercaptodecanoic acid.
  • avidin and piotin can be used as organic molecules.
  • the carboxyl group of the hydrophilized III V semiconductor Zsio nanoparticle is avid.
  • the avidin is further selectively bonded to piotin, and the biotin is further bonded to the biomaterial labeling agent to form a biomaterial labeling agent.
  • the glovebox is deoxygenated in an Ar atmosphere, and synthesis is performed in this environment.
  • TOPO tri-n-octylphosphine oxide
  • TOP tri-n-octylphosphine
  • 4.5g is put in a three-necked flask, and the temperature is raised to 290 ° C.
  • Nanoparticle dispersion liquid 1 could be obtained.
  • Nanoparticle dispersion 2 could be obtained.
  • a particle dispersion 4 could be obtained.
  • a child dispersion 5 could be obtained.
  • lnm obtained in the preparation of the nanoparticle dispersion 1 were dispersed in pyridine, and this dispersion was heated to 100 ° C.
  • Dimethylzinc, 0.0041 g, tributylthiophosphine, A mixed solution of 0. 0053 g, tributylphosphine, and 10 g was added.
  • methanol was added to aggregate the particles, and the aggregate was separated by centrifugation.
  • Nanoparticle dispersion 2 94% Present invention
  • Nanoparticle dispersion 5 99% comparison
  • Avidin-conjugated nanoparticles were produced by adding 25 mg of avidin to 10 ml of the nanoparticle dispersion 10 obtained by hydrophilizing the nanoparticle dispersion 2 of Example 1 and stirring at 40 ° C. for 10 minutes.
  • the resulting avidin-conjugated nanoparticle solution was mixed and stirred with an oligonucleotide having a known piotinated base sequence to prepare an oligonucleotide labeled with nanoparticles.
  • An oligonucleotide having a base sequence complementary to the labeled oligonucleotide is obtained by dropping and washing the labeled oligonucleotide on a DNA chip on which oligonucleotides having various base sequences are immobilized. Only these spots emitted light by UV irradiation. This confirmed the labeling of the oligonucleotides on the nanoparticles.

Abstract

Disclosed is a luminescent material using less-toxic III-V semiconductor nanoparticles and having high luminous intensity. This luminescent material hardly deteriorates. Also disclosed is an agent of labeling biological substances, which uses the III-V semiconductor nanoparticles. Specifically disclosed is a III-V semiconductor/SiO2 nanoparticle which is characterized by having a core made of a III-V semiconductor and having a particle diameter within the range of 1-50 nm, and a shell made of SiO2.

Description

明 細 書  Specification
m_v型半導体 Zsio型ナノ粒子、及び生体物質標識剤  m_v type semiconductor Zsio type nanoparticle and biological substance labeling agent
2  2
技術分野  Technical field
[0001] 本発明は、 III V型半導体 ZSiO型ナノ粒子、及び該 III V型半導体 ZSiO型  [0001] The present invention relates to III V-type semiconductor ZSiO-type nanoparticles, and the III V-type semiconductor ZSiO-type
2 2 ナノ粒子を用いた生体物質標識剤に関する。  2 2 It relates to a biological material labeling agent using nanoparticles.
背景技術  Background art
[0002] 半導体ナノ粒子はその粒径がナノメートルサイズであるため、バンドギャップェネル ギ一の増大など量子サイズ効果を発現し、例えば、良好な光吸収特性及び発光特 性などの光学特性を示すことが知られている。そのため、近年では半導体ナノ粒子に 関する研究報告が活発になされるだけでなぐ CdSeZZnS型半導体ナノ粒子、 Si ZSiO型半導体ナノ粒子などの半導体ナノ粒子は、ディスプレー用、 LED用等様々 [0002] Since semiconductor nanoparticles have a nanometer size, they exhibit quantum size effects such as an increase in bandgap energy, and exhibit, for example, good optical absorption characteristics and optical characteristics such as light emission characteristics. It is known to show. Therefore, in recent years, research reports on semiconductor nanoparticles have only been actively made. Semiconductor nanoparticles such as CdSeZZnS type semiconductor nanoparticles and Si ZSiO type semiconductor nanoparticles can be used for various purposes such as displays and LEDs.
2 2
な用途での検討が進められて 、る。  Considerations for various applications are underway.
[0003] 一方、生体物質を標識する手段として、分子標識物質をマーカー物質に結合した 生体物質標識剤を用いる方法が検討されている。しかし、上記方法で従来使用され てきた有機蛍光色素などのマーカー物質は、紫外線照射時の劣化が激しく寿命が 短いことが欠点であり、また発光効率が低ぐ感度も十分ではな力つた。  On the other hand, as a means for labeling a biological substance, a method of using a biological substance labeling agent in which a molecular labeling substance is bound to a marker substance has been studied. However, the marker substances such as organic fluorescent dyes conventionally used in the above method have the disadvantages that they are severely deteriorated when irradiated with ultraviolet rays and have a short lifetime, and the sensitivity with low luminous efficiency is sufficient.
[0004] そのため、近年上記マーカー物質として半導体ナノ粒子を用いる方法が注目され ている。例えば、極性官能基を有する高分子を半導体ナノ粒子の表面に物理的及び [0004] Therefore, in recent years, a method using semiconductor nanoparticles as the marker substance has attracted attention. For example, a polymer having a polar functional group is physically and
Zまたは化学的に吸接合した生体物質標識剤が検討されている (例えば、特許文献 1参照。 ) oまた、有機分子を siZsio型半導体ナノ粒子の表面に結合した生体物 Z or chemically adsorbed biological substance labeling agents have been studied (for example, see Patent Document 1.) o Biological substances in which organic molecules are bound to the surface of siZsio-type semiconductor nanoparticles
2  2
質標識剤が検討されている (例えば、特許文献 2参照。 )0 Quality labeling agent has been studied (for example, see Patent Document 2.) 0
[0005] これら従来の半導体ナノ粒子を用いた生体物質標識剤には課題が存在している。 [0005] A problem exists in biological substance labeling agents using these conventional semiconductor nanoparticles.
[0006] 例えば、特許文献 1で実質的にその効果も含めて開示されている半導体ナノ粒子 は、 CdSeZZnS型半導体ナノ粒子であるが、生体物質標識剤として使用する場合 には、その表面は有機分子で覆われているとはいうものの、この半導体ナノ粒子と使 用される材料、特に CdSeは本質的に生体毒性、環境への負荷が指摘されており、 生体物質標識剤としての使用には課題があった。 [0007] また、特許文献 2で使用される SiZSiO型半導体ナノ粒子粒子は、 Siをそのコア材 [0006] For example, the semiconductor nanoparticles disclosed in Patent Document 1 substantially including the effects thereof are CdSeZZnS type semiconductor nanoparticles, but when used as a biological material labeling agent, the surface is organic. Although it is covered with molecules, the materials used with these semiconductor nanoparticles, especially CdSe, have been pointed out to be inherently biotoxic and environmentally friendly. There was a problem. [0007] In addition, the SiZSiO type semiconductor nanoparticle used in Patent Document 2 has Si as its core material.
2  2
として使用しているが、条件によっては Siは他の物質、例えば、酸素との反応性が高 すぎる場合があり、例えば、水分散液中で紫外線を照射し続けた場合の発光特性の 劣化等の課題があった。  However, depending on the conditions, Si may be too reactive with other substances, such as oxygen.For example, deterioration of luminescence characteristics when UV irradiation is continued in an aqueous dispersion. There was a problem.
特許文献 1:特開 2003 - 329686号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-329686
特許文献 2 :特開 2005— 172429号公報  Patent Document 2: JP 2005-172429 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、毒性の少ない III VI型半導体ナノ粒子を用いて、発光強度が高ぐ劣 化の少ない発光材料を提供すること、更に該 III VI型半導体ナノ粒子を用いた生体 物質標識剤を提供することを目的とする。 [0008] The present invention provides a luminescent material with high emission intensity and little deterioration using III VI type semiconductor nanoparticles with low toxicity, and further, a biological material label using the III VI type semiconductor nanoparticles. The purpose is to provide an agent.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の上記課題は、下記構成により達成される。 [0009] The object of the present invention is achieved by the following constitution.
[0010] 1. III— V型半導体で形成されたコアと SiOで形成されたシェルとを有し、該コアの  [0010] 1. III—Has a core formed of a V-type semiconductor and a shell formed of SiO;
2  2
粒径が l〜50nmの範囲であることを特徴とする III— V型半導体/ SiO型ナノ粒子。  III-V type semiconductor / SiO type nanoparticle characterized by having a particle size in the range of 1 to 50 nm.
2  2
[0011] 2.前記 III V型半導体が InP Ga (0<x≤ 1)であることを特徴とする前  [0011] 2. Before the III-V semiconductor is InP Ga (0 <x≤ 1)
1  1
記 1に記載の m V型半導体 Zsio型ナノ粒子。  2. The m V-type semiconductor Zsio-type nanoparticle according to 1.
2  2
[0012] 3.前記シェルの厚さが 0. 2〜50nmの範囲であることを特徴とする前記 1または 2 に記載の III—V型半導体 ZSiO型ナノ粒子。  [0012] 3. The III-V semiconductor ZSiO nanoparticle according to 1 or 2 above, wherein the thickness of the shell is in the range of 0.2 to 50 nm.
2  2
[0013] 4.前記シェルの表面が親水化処理されていることを特徴とする前記 1〜3のいずれ 力 1項に記載の III V型半導体 ZSiO型ナノ粒子。  [0013] 4. The III V-type semiconductor ZSiO-type nanoparticle according to any one of 1 to 3 above, wherein the surface of the shell is subjected to a hydrophilic treatment.
2  2
[0014] 5.前記 1〜4のいずれか 1項に記載の III V型半導体 ZSiO型ナノ粒子と分子標  [0014] 5. The III V-type semiconductor ZSiO-type nanoparticle according to any one of 1 to 4 above and a molecular marker
2  2
識物質とを有機分子を介して結合させたことを特徴とする生体物質標識剤。  Biological substance labeling agent, characterized in that it is bound to a recognition substance via an organic molecule.
[0015] 6.前記分子標識物質がヌクレオチド鎖であることを特徴とする前記 5に記載の生体 物質標識剤。 [0015] 6. The biological substance labeling agent according to 5 above, wherein the molecular labeling substance is a nucleotide chain.
[0016] 7.前記分子標識物質が抗体であることを特徴とする前記 5に記載の生体物質標識 剤。  [0016] 7. The biological substance labeling agent according to 5 above, wherein the molecular labeling substance is an antibody.
[0017] 8.前記有機分子がピオチン及びアビジンであることを特徴とする前記 5〜7のいず れか 1項に記載の生体物質標識剤。 [0017] 8. Any of the above 5 to 7, wherein the organic molecules are piotin and avidin 2. The biological material labeling agent according to claim 1.
発明の効果  The invention's effect
[0018] 本発明によって、毒性の少ない III— VI型半導体ナノ粒子を用いて、発光強度が高 ぐ劣化の少ない発光材料を提供することができ、更に該 III V型半導体 ZSiO型  [0018] According to the present invention, it is possible to provide a light emitting material with high emission intensity and low deterioration using III-VI type semiconductor nanoparticles with low toxicity. Further, the III V type semiconductor ZSiO type
2 ナノ粒子を用いて生体物質標識剤を提供することができた。  2 Biological substance labeling agent could be provided using nanoparticles.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 次に、本発明について具体的に説明する。  [0019] Next, the present invention will be specifically described.
[0020] 本発明では AZB型ナノ粒子という表現を用いることがある力 これは Aでコアが形 成され、 Bでシェルが形成されたナノ粒子を意味する。例えば、 InP/SiO型ナノ粒  [0020] The present invention may use the expression AZB-type nanoparticle. This means a nanoparticle having a core formed by A and a shell formed by B. For example, InP / SiO type nanoparticles
2 子とは InPでコアが形成され、 SiOでシェルが形成されたナノ粒子を意味する。本発  A doublet means a nanoparticle with a core formed of InP and a shell formed of SiO. Main departure
2  2
明はシェルが SiOであることを一つの特徴としている。シェルの物質として、コアの物  Akira has one feature that the shell is SiO. Core material as shell material
2  2
質よりもバンドギャップエネルギーの大き 、物質を選択することで、コアをなす半導体 ナノ粒子の量子効果が安定することが知られている。 SiOはバンドギャップが 9eVと  It is known that the quantum effect of the semiconductor nanoparticles forming the core can be stabilized by selecting a material having a larger band gap energy than quality. SiO has a band gap of 9eV
2  2
大きぐコアの中の励起子の安定ィ匕に好ましい。また、 SiOは化合物として非常に安  Preferred for exciton stability in large cores. In addition, SiO is very cheap as a compound.
2  2
定な物質であることから、空気中、様々な pHの水溶液中、還元 Z酸化の雰囲気下で ナノ粒子コア部分の安定性に大きく寄与することができる。  Since it is a constant substance, it can greatly contribute to the stability of the nanoparticle core part in air, in aqueous solutions with various pH values, and in an atmosphere of reducing Z oxidation.
[0021] 前記シェルの厚みは 0. 2〜50nmの範囲であり、更に好ましくは l〜20nmの範囲 である。シェルの厚みが上記範囲の下限値よりも大きいと、シェルとしての厚みが十 分であり、コアと他の物質との化学反応や光照射を続けた際の発光強度の低下等の 原因とならない。また、シェルの厚みが上記範囲の上限値よりも小さいと、ナノ粒子の 光学特性を十分に発揮できるため好まし 、。  [0021] The thickness of the shell is in the range of 0.2 to 50 nm, and more preferably in the range of 1 to 20 nm. If the thickness of the shell is larger than the lower limit of the above range, the thickness of the shell is sufficient, and it does not cause a chemical reaction between the core and other substances or a decrease in light emission intensity when light irradiation is continued. . In addition, it is preferable that the shell thickness is smaller than the upper limit of the above range because the optical properties of the nanoparticles can be sufficiently exhibited.
[0022] m— V族半導体は、 m族元素と V族元素を用いた半導体である。 m族(13族)元 素としては、アルミニウム (A1)、ガリウム(Ga)、インジウム (In)力 V族(15族)元素と しては、窒素(N)、リン (P)、ヒ素 (As)、アンチモン(Sb)がよく用いられている。これら を組み合わせ、 GaAs (ガリウム'ヒ素)、 InP (インジウム 'リン)、 InGaAs、 GaInNAs ( ゲイナス)、 InP Ga (0<x≤ 1)などが作製される。これら III— V族半導体はバンド  [0022] The m-V semiconductor is a semiconductor using an m-group element and a V-group element. Group m (group 13) elements include aluminum (A1), gallium (Ga), and indium (In) forces. Group V (group 15) elements include nitrogen (N), phosphorus (P), and arsenic ( As) and antimony (Sb) are often used. By combining these, GaAs (gallium 'arsenic), InP (indium' phosphorus), InGaAs, GaInNAs (gainus), InP Ga (0 <x≤ 1), etc. are produced. These III-V semiconductors are bands
1  1
ギャップが可視光領域に近!、位置にあることから、主に発光デバイス材料として用い られている。例えば、現在の赤、緑、青などの発光ダイオードは、その多くが III— V族 半導体を材料としている。 Since the gap is close to and located in the visible light region, it is mainly used as a light-emitting device material. For example, many of the current red, green and blue light emitting diodes are III-V The material is semiconductor.
[0023] 本発明において、 III V半導体で形成されるコアの粒径は l〜50nmの範囲であり 、好ましくは l〜20nmの範囲であり、更に好ましくは 2〜12nmの範囲である。コアの 粒径が上記範囲の下限値以上であれば、粒子径の調整が容易となり、粒子径のばら つきが小さくなる。また、コアの粒径が上記範囲上限値以下であれば、良好な光学特 性を有する。本発明において、 III— V半導体の中でも InP Ga (0<x≤ 1)が好まし  In the present invention, the particle size of the core formed of the III V semiconductor is in the range of 1 to 50 nm, preferably in the range of 1 to 20 nm, and more preferably in the range of 2 to 12 nm. If the particle size of the core is not less than the lower limit of the above range, the particle size can be easily adjusted, and the variation in the particle size is reduced. Further, if the core particle size is not more than the upper limit of the above range, it has good optical characteristics. In the present invention, InP Ga (0 <x≤ 1) is preferred among III-V semiconductors.
1  1
い。それは、バンドギャップが狭く量子効果により可視光域での発光が起こることにカロ え可視光発光を示す粒径範囲が広 、ため、発光色をコントロールしゃす 、と 、う利 点があるからであり、中でも InPは最もバンド幅が狭ぐ発光強度が高く特に好ましい  Yes. This is because the bandgap is narrow and the light emission in the visible light region occurs due to the quantum effect, and the particle size range that shows visible light emission is wide, so it has the advantage of controlling the emission color. Among them, InP is particularly preferred because it has the narrowest bandwidth and high emission intensity.
[0024] 上述した III V型半導体 ZSiO型ナノ粒子のシェルの表面は疎水性であるため、 [0024] Since the surface of the shell of the III V-type semiconductor ZSiO-type nanoparticles described above is hydrophobic,
2  2
例えば、生体物質標識剤として使用する場合はこのままでは水分散性が悪ぐ粒子 が凝集してしまう等の問題があるためナノ粒子のシェルの表面を親水化処理すること が好ましい。  For example, when used as a biological material labeling agent, the surface of the nanoparticle shell is preferably subjected to a hydrophilization treatment because there are problems such as aggregation of particles having poor water dispersibility.
[0025] 親水化処理の方法としては、例えば、表面の親油性基をピリジン等で除去した後に 、粒子表面に表面修飾剤をィ匕学的及び Zまたは物理的に結合させる方法がある。表 面修飾剤としては、親水基としてカルボキシル基、アミノ基を持つものが好ましく用い られ、具体的にはメルカプトプロピオン酸、メルカプトゥンデカン酸、ァミノプロパンチ オールなどが挙げられる。  [0025] Examples of the hydrophilization treatment method include a method in which the surface lipophilic group is removed with pyridine and the like, and then the surface modifier is chemically and Z-bound or physically bonded to the particle surface. As the surface modifier, those having a carboxyl group or an amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptodecanoic acid, and amaminopropanethiol.
[0026] 本発明の生体物質標識剤は、上述した親水化処理された III V型半導体 ZSiO  [0026] The biological material labeling agent of the present invention includes the above-described hydrophilic treatment III V type semiconductor ZSiO
2 型ナノ粒子と分子標識物質とを有機分子を介して結合させて得られる。  It is obtained by binding type 2 nanoparticles and molecular labeling substances via organic molecules.
[0027] 本発明の生体物質標識剤は、分子標識物質が目的とする生体物質と特異的に結 合及び Zまたは反応することにより、生体物質の標識が可能となる。該分子標識物質 としては、例えば、ヌクレオチド鎖、抗体、抗原及びシクロデキストリン等が挙げられる [0027] The biological substance labeling agent of the present invention can label a biological substance by specifically binding and Z-reacting with the target biological substance. Examples of the molecular labeling substance include nucleotide chains, antibodies, antigens and cyclodextrins.
[0028] 本発明の生体物質標識剤は、親水化処理された III V型半導体 ZSiO型ナノ粒 [0028] The biological substance labeling agent of the present invention comprises a hydrophilic IIIV type semiconductor ZSiO type nanoparticle.
2 子と、分子標識物質とが有機分子により結合されている。該有機分子としては、 III- V型半 導体 Zsio型ナノ粒子分子標識物質とを結合できる有機分子であれば特に制限はThe two molecules and the molecular labeling substance are bound by an organic molecule. The organic molecules include III-V type half Conductor Zsio-type nanoparticles are not particularly limited as long as they are organic molecules that can bind to the molecular labeling substance.
2 2
ない  Absent
力 例えば、タンパク質中でもアルブミン、ミオグロビン及びカゼイン等、またタンパク 質の一種であるアビジンをピオチンと共に用いることも好適に用いられる。上記結合 の態様としては特に限定されず、共有結合、イオン結合、水素結合、配位結合、物理 吸着及びィヒ学吸着等が挙げられる。結合の安定性力 共有結合などの結合力の強 い結合が好ましい。  Strength For example, among proteins, albumin, myoglobin, casein and the like, and avidin which is a kind of protein are also preferably used together with piotin. The form of the bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordination bond, a physical adsorption, and a physic adsorption. Bond stability strength Bonds with strong binding strength such as covalent bonds are preferred.
[0029] 具体的には、 m V型半導体 Zsio型ナノ粒子をメルカプトゥンデカン酸で親水化  [0029] Specifically, mV type semiconductor Zsio type nanoparticles are hydrophilized with mercaptodecanoic acid.
2  2
処理した場合は、有機分子としてアビジン及びピオチンを用いることができる。この場 合、親水化処理された III V型半導体 Zsio型ナノ粒子のカルボキシル基はァビジ  When treated, avidin and piotin can be used as organic molecules. In this case, the carboxyl group of the hydrophilized III V semiconductor Zsio nanoparticle is avid.
2  2
ンと好適に結合し、アビジンが更にピオチンと選択的に結合し、ピオチンが更に生体 物質標識剤と結合することにより生体物質標識剤となる。  The avidin is further selectively bonded to piotin, and the biotin is further bonded to the biomaterial labeling agent to form a biomaterial labeling agent.
実施例  Example
[0030] 次に本発明について実施例を示して更に詳細に説明するが、本発明はこれらによ つて限定されるものではな 、。  [0030] Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0031] 実施例 1 [0031] Example 1
けノ粒子分散液の調製〕  Preparation of nanoparticles dispersion)
けノ粒子分散液 1の調製)  Preparation of Keno Particle Dispersion 1
グローブボックス内を Ar雰囲気として、脱酸素状態とし、この中で合成を行う。  The glovebox is deoxygenated in an Ar atmosphere, and synthesis is performed in this environment.
[0032] 三口フラスコ中に TOPO (tri— n— octylphosphine oxide)、 0. 5g、 TOP (tri— n-octylphosphine) , 4. 5gを人れ、 290oC【こ昇温する。この中【こ InCl 0. 8g、トリ [0032] TOPO (tri-n-octylphosphine oxide), 0.5g, TOP (tri-n-octylphosphine), 4.5g is put in a three-necked flask, and the temperature is raised to 290 ° C. In this [InCl 0.8g, Tri
3 スメチルシリルホスフィン 0. 75g、 TOPO、 0. 5g、 TOP, 4. 5gの混合液を急速に注 入する。この後、温度を 270°Cで 1日保った後、室温まで降温する。この状態で脱水 メタノールを滴下し凝集沈殿させ、遠心分離で上澄み液を除去し、ナノ粒子を得る。 この際、脱水メタノールの量をコントロールし、メタノール滴下→沈殿→遠心分離を繰 り返すことで、ナノ粒子の沈殿凝集物を得、更にピリジンで洗浄して、 ΤΟΡ、 ΤΟΡΟ を表面から除去し、 5. lnmの ΙηΡナノ粒子凝集物を得ることができた。  3 Rapidly pour a mixture of 0.75 g of Smethylsilylphosphine, TOPO, 0.5 g, TOP, 4.5 g. After this, keep the temperature at 270 ° C for 1 day and then cool it down to room temperature. In this state, dehydrated methanol is added dropwise to cause aggregation and precipitation, and the supernatant is removed by centrifugation to obtain nanoparticles. At this time, by controlling the amount of dehydrated methanol and repeating methanol dripping → precipitation → centrifugation, nanoparticle precipitate agglomerates were obtained, and further washed with pyridine to remove soot and soot from the surface, 5. lnm ΙηΡ nanoparticle aggregates were obtained.
[0033] その後、 2. 08 X 10— 4gのテトラエトキシシラン、 HC10. 5mol/L、 50ml, 50mlの エタノール及び 10— 6molの InPナノ粒子凝集物をビーカー中に入れ 80°Cに昇温し、 1時間攪拌した。 [0033] Thereafter, 2. 08 X 10- 4 g of tetraethoxysilane, HC10. 5mol / L, 50ml , of 50ml Ethanol and InP nanoparticles aggregates 10- 6 mol was heated to 80 ° C was placed in a beaker, and stirred for 1 hour.
[0034] この結果、粒径 5. lnmの InP粒子表面に 0. lnmの SiOシェリングを行った 10— 5M [0034] As a result, were SiO shelling of 0. lnm to InP particle surface of the particle size 5. lnm 10- 5 M
2  2
ナノ粒子分散液 1を得ることができた。  Nanoparticle dispersion liquid 1 could be obtained.
[0035] けノ粒子分散液 2の調製) [0035] Preparation of Keno Particle Dispersion 2
テトラエトキシシランの量を 3. 7 X 10— 3gにする以外はナノ粒子分散液 1の調製と同 様にして、粒径 5. lnmの InP粒子表面に 1. 2nmの SiOシェリングを行った 10— 5M Except that the amount of tetraethoxysilane 3. 7 X 10- 3 g is in the preparation the same way the nanoparticle dispersion 1 was subjected to SiO shelling of 1. 2 nm to InP particle surface of the particle size 5. lnm 10- 5 M
2  2
ナノ粒子分散液 2を得ることができた。  Nanoparticle dispersion 2 could be obtained.
[0036] けノ粒子分散液 3の調製) [0036] Preparation of Keno Particle Dispersion 3
テトラエトキシシランの量を 1. 87 X 10—2gにする以外はナノ粒子分散液 1の調製と 同様にして、粒径 5. lnmの InP粒子表面に 5. lnmの SiOシェリングを行った 10 Except that the amount of tetraethoxysilane 1. 87 X 10- 2 g in the same manner as the preparation of the nanoparticle dispersion 1 was subjected to SiO Schelling 5. lnm to InP particle surface of the particle size 5. lnm 10
2  2
Mナノ粒子分散液 3を得ることができた。  M nanoparticle dispersion 3 was obtained.
[0037] けノ粒子分散液 4の調製) [0037] Preparation of Keno Particle Dispersion 4)
テトラエトキシシランの量を 0. 413gにする以外はナノ粒子分散液 1の調製と同様に して、粒径 5. lnmの InP粒子表面に 15. 2nmの SiOシェリングを行った 10— 5Mナノ Except that the amount of tetraethoxysilane 0. 413 g in the same manner as the preparation of the nanoparticle dispersion 1, an InP particle surface of the particle size 5. lnm were SiO Schelling 15. 2nm 10- 5 M nano
2  2
粒子分散液 4を得ることができた。  A particle dispersion 4 could be obtained.
[0038] けノ粒子分散液 5の調製) [0038] Preparation of Keno Particle Dispersion 5
テトラエトキシシランの量を 23. 6gにする以外はナノ粒子分散液 1の調製と同様に して、粒径 5. lnmの InP粒子表面に 60nmの SiOシェリングを行った 10— 5Mナノ粒 Except that the amount of tetraethoxysilane 23. 6 g in the same manner as the preparation of the nanoparticle dispersion 1 was subjected to 60 nm SiO shelling of the InP particle surface of the particle size 5. lnm 10- 5 M nanoparticles
2  2
子分散液 5を得ることができた。  A child dispersion 5 could be obtained.
[0039] (ナノ粒子水系分散液 6の調製) [0039] (Preparation of nanoparticle aqueous dispersion 6)
ナノ粒子分散液 1の調製で得られた粒径 5. lnmのナノ粒子の凝集沈殿物を、メル カプトゥンデカン酸 0. 2gを溶解した 10ml純水中に 10— 5Mとなるように再分散させ、 4 0°C、 10分間攪拌することで表面が親水化処理された 10— 5Mシェルな UnPナノ粒子 の水系分散液 6を得ることができた。 The flocculation of nanoparticles having a particle diameter of 5. lnm obtained in the preparation of the nanoparticle dispersion 1, redispersed as in 10ml deionized water were dissolved Mel Kaputundekan acid 0. 2 g a 10- 5 M , it was possible to obtain an aqueous dispersion liquid 6 4 0 ° C, the surface by stirring for 10 minutes has been hydrophilized 10- 5 M shell of UnP nanoparticles.
[0040] (ナノ粒子水系分散液 7の調製) [0040] (Preparation of aqueous nanoparticle dispersion 7)
ナノ粒子分散液 1の調製で得られた粒径 5. lnmの InP粒子をピリジン中に分散し、 この分散液を 100°Cに昇温し、ジメチル亜鉛、 0. 0017g、トリブチルチオホスフィン、 0. 0053g、トリブチルフォスフィン、 10gの混合液を添カ卩した。 30分攪拌した後、メタ ノールを添加し粒子を凝集沈殿させ、遠心分離により凝集物を分離した。更にメルカ プトゥンデカン酸 0. 2gを溶解した 10ml純水中に 10— 5Mとなるように再分散させ、 40 。C、 10分間攪拌することで表面が親水化処理された 10—5MZnSシェリング InPナノ粒 子の水系分散液 7を得ることができた。 InP particles having a particle size of 5. lnm obtained in the preparation of the nanoparticle dispersion 1 were dispersed in pyridine, and this dispersion was heated to 100 ° C. Dimethylzinc, 0.0041 g, tributylthiophosphine, A mixed solution of 0. 0053 g, tributylphosphine, and 10 g was added. After stirring for 30 minutes, methanol was added to aggregate the particles, and the aggregate was separated by centrifugation. Further Melka Putundekan acid 0. 2 g redispersed as dissolved 10ml pure water becomes 10- 5 M and 40. C, the surface by stirring for 10 minutes it was possible to obtain an aqueous dispersion 7 in hydrophilized 10- 5 MZnS Schering InP nanoparticles child.
[0041] 〔ナノ粒子分散液の評価〕  [Evaluation of nanoparticle dispersion]
日立分光蛍光光度計 F— 7000を用いて、上記 7種類のナノ粒子それぞれについ て、励起波長 365nmでの発光スペクトルの測定を行い、ピーク波長強度の比較をナ ノ粒子分散液の強度を 100として行った。粒径は高分解能 TEMで測定を行った。シ ェリング前後の粒径を測定し、粒径変化分の 1Z2をシェル厚とした。  Using Hitachi spectrofluorometer F-7000, we measured the emission spectrum of each of the above 7 types of nanoparticles at an excitation wavelength of 365 nm and compared the peak wavelength intensity with the intensity of the nanoparticle dispersion as 100. went. The particle size was measured by high resolution TEM. The particle size before and after shearing was measured, and 1Z2 for the change in particle size was taken as the shell thickness.
[0042] [表 1]  [0042] [Table 1]
Figure imgf000008_0001
Figure imgf000008_0001
[0043] 表 1より、 SiOのシヱリングを表 1の範囲で行うことで発光強度が上昇することが確 [0043] From Table 1, it is confirmed that the emission intensity increases when SiO sealing is performed in the range shown in Table 1.
2  2
認できた。シェリングがない場合、またはシェリングが薄い場合には発光強度の上昇 は見られない。また、シェリングが厚すぎると逆に発光強度が減少した。  I was able to confirm. When there is no shelling or when the shelling is thin, no increase in emission intensity is observed. On the other hand, when the shelling was too thick, the emission intensity decreased.
[0044] また、上記 7種類のナノ粒子分散液それぞれにつ ヽて、発光スペクトルの時間変化 を測定し、各ナノ粒子の初期の発光強度に対する 1時間後の相対発光強度を求めた[0044] In addition, for each of the seven types of nanoparticle dispersions described above, the time change of the emission spectrum was measured, and the relative emission intensity after 1 hour with respect to the initial emission intensity of each nanoparticle was determined.
。結果を表 2に示す。 . The results are shown in Table 2.
[0045] [表 2] 分散液 発光強度変化 備 考 [0045] [Table 2] Dispersion Change in emission intensity Remarks
ナノ粒子分散液 1 82% 比 較  Nanoparticle dispersion 1 82% Comparison
ナノ粒子分散液 2 94% 本発明  Nanoparticle dispersion 2 94% Present invention
ナノ粒子分散液 3 99% 本発明  Nanoparticle dispersion 3 99% Present invention
ナノ粒子分散液 4 98% 本 月  Nanoparticle dispersion 4 98% this month
ナノ粒子分散液 5 99% 比 較  Nanoparticle dispersion 5 99% comparison
ナノ粒子水分散液 6 81% 比 較  Nanoparticle aqueous dispersion 6 81% Comparison
ナノ粒子水分散液 7 84% 比 較  Nanoparticle aqueous dispersion 7 84% Comparison
[0046] シェリングがない場合、またはシェリングが薄い場合には光安定性が悪いことがわ かる。また、 ZnSのシェリングは光安定性にはあまり効果的ではないことがわかる。こ のように、本発明にかかるシ リングを行った粒子は発光強度の変化が少なぐ光照 射に対して安定性が高いことが示された。 [0046] It can be seen that when there is no shelling or when the shelling is thin, the light stability is poor. It can also be seen that ZnS shelling is not very effective for photostability. Thus, it was shown that the particles subjected to the sealing according to the present invention are highly stable against light irradiation with little change in emission intensity.
[0047] 実施例 2  [0047] Example 2
実施例 1のナノ粒子分散液 2に親水化処理を施したナノ粒子分散液 10mlにァビジ ン 25mgを添加し、 40°Cで 10分間攪拌を行い、アビジンコンジュゲートナノ粒子を作 製した。得られたアビジンコンジュゲートナノ粒子溶液に、ピオチン化された塩基配列 が既知であるオリゴヌクレオチドを混合攪拌し、ナノ粒子でラベリングされたオリゴヌク レオチドを作製した。  Avidin-conjugated nanoparticles were produced by adding 25 mg of avidin to 10 ml of the nanoparticle dispersion 10 obtained by hydrophilizing the nanoparticle dispersion 2 of Example 1 and stirring at 40 ° C. for 10 minutes. The resulting avidin-conjugated nanoparticle solution was mixed and stirred with an oligonucleotide having a known piotinated base sequence to prepare an oligonucleotide labeled with nanoparticles.
[0048] 様々な塩基配列を持つオリゴヌクレオチドを固定ィ匕した DNAチップ上に、上記のラ ベリングしたオリゴヌクレオチドを滴下、洗浄したところ、ラベリングされたオリゴヌタレ ォチドと相補的な塩基配列を持つオリゴヌクレオチドのスポットのみが紫外線照射に より発光した。このことより、ナノ粒子でのオリゴヌクレオチドのラベリングを確認するこ とができた。  [0048] An oligonucleotide having a base sequence complementary to the labeled oligonucleotide is obtained by dropping and washing the labeled oligonucleotide on a DNA chip on which oligonucleotides having various base sequences are immobilized. Only these spots emitted light by UV irradiation. This confirmed the labeling of the oligonucleotides on the nanoparticles.

Claims

請求の範囲 The scope of the claims
[l] m— v型半導体で形成されたコアと sioで形成されたシェルとを有し、該コアの粒径  [l] m—having a core formed of a v-type semiconductor and a shell formed of sio, and the particle size of the core
2  2
力^〜 50nmの範囲であることを特徴とする III— V型半導体/ SiO型ナノ粒子。  III—V-type semiconductor / SiO-type nanoparticles characterized by a force in the range of 50 to 50 nm.
2  2
[2] 前記 III—V型半導体力 ¾iP Ga (0<x≤ 1)であることを特徴とする請求の範囲第 1  [2] The III-V type semiconductor power is ¾iP Ga (0 <x ≦ 1).
1  1
項に記載の III V型半導体 ZSiO型ナノ粒子。  Item III V-type semiconductor ZSiO-type nanoparticles according to item.
2  2
[3] 前記シェルの厚さが 0. 2〜50nmの範囲であることを特徴とする請求の範囲第 1項ま たは第 2項に記載の III V型半導体 ZSiO型ナノ粒子。  [3] The III V-type semiconductor ZSiO-type nanoparticles according to claim 1 or 2, wherein the shell has a thickness in the range of 0.2 to 50 nm.
2  2
[4] 前記シェルの表面が親水化処理されていることを特徴とする請求の範囲第 1項乃至 第 3項のいずれか 1項に記載の III V型半導体 ZSiO型ナノ粒子。  [4] The III V-type semiconductor ZSiO-type nanoparticle according to any one of claims 1 to 3, wherein the surface of the shell is hydrophilized.
2  2
[5] 請求の範囲第 1項乃至第 4項のいずれか 1項に記載の III V型半導体 ZSiO型ナノ  [5] The III V-type semiconductor ZSiO-type nanostructure according to any one of claims 1 to 4
2 粒子と分子標識物質とを有機分子を介して結合させたことを特徴とする生体物質標 識剤。  2 Biological substance labeling agent, characterized by binding particles and molecular labeling substance via organic molecules.
[6] 前記分子標識物質がヌクレオチド鎖であることを特徴とする請求の範囲第 5項に記載 の生体物質標識剤。  [6] The biological substance labeling agent according to claim 5, wherein the molecular labeling substance is a nucleotide chain.
[7] 前記分子標識物質が抗体であることを特徴とする請求の範囲第 5項に記載の生体物 質標識剤。  7. The biological substance labeling agent according to claim 5, wherein the molecular labeling substance is an antibody.
[8] 前記有機分子がピオチン及びアビジンであることを特徴とする請求の範囲第 5項乃 至第 7項のいずれか 1項に記載の生体物質標識剤。  [8] The biological material labeling agent according to any one of [5] to [7], wherein the organic molecules are piotin and avidin.
PCT/JP2007/059937 2006-05-26 2007-05-15 III-V SEMICONDUCTOR/SiO2 NANOPARTICLE AND AGENT FOR LABELING BIOLOGICAL SUBSTANCE WO2007138851A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008517824A JP5200931B2 (en) 2006-05-26 2007-05-15 III-V type semiconductor / SiO2 type nanoparticle and biological material labeling agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-146344 2006-05-26
JP2006146344 2006-05-26

Publications (1)

Publication Number Publication Date
WO2007138851A1 true WO2007138851A1 (en) 2007-12-06

Family

ID=38778371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059937 WO2007138851A1 (en) 2006-05-26 2007-05-15 III-V SEMICONDUCTOR/SiO2 NANOPARTICLE AND AGENT FOR LABELING BIOLOGICAL SUBSTANCE

Country Status (2)

Country Link
JP (1) JP5200931B2 (en)
WO (1) WO2007138851A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128604A1 (en) * 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 Silica nanoparticle having quantum dots encapsulated therein, method for producing same and biological labeling agent using same
US9281447B2 (en) 2011-05-30 2016-03-08 Fujifilm Corporation Method for synthesizing indium phosphide nanoparticles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544488A (en) * 1999-05-07 2002-12-24 クアンタム ドット コーポレイション Methods for detecting analytes using semiconductor nanocrystals
JP2003524147A (en) * 1998-09-18 2003-08-12 マサチューセッツ インスティテュート オブ テクノロジー Biological applications of semiconductor nanocrystals
JP2003287498A (en) * 2002-03-27 2003-10-10 Hitachi Software Eng Co Ltd Semiconductor nanoparticle fluorescent reagent and method for measuring fluorescence
JP2003532898A (en) * 2000-05-05 2003-11-05 バイエル アクチェンゲゼルシャフト Doped nanoparticles as biomarkers
JP2005172429A (en) * 2003-12-05 2005-06-30 Sony Corp Biosubstance fluorescence-labeling agent and method, and bioassay method and device
JP2005189237A (en) * 2003-12-05 2005-07-14 Sekisui Chem Co Ltd Optical measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524147A (en) * 1998-09-18 2003-08-12 マサチューセッツ インスティテュート オブ テクノロジー Biological applications of semiconductor nanocrystals
JP2002544488A (en) * 1999-05-07 2002-12-24 クアンタム ドット コーポレイション Methods for detecting analytes using semiconductor nanocrystals
JP2003532898A (en) * 2000-05-05 2003-11-05 バイエル アクチェンゲゼルシャフト Doped nanoparticles as biomarkers
JP2003287498A (en) * 2002-03-27 2003-10-10 Hitachi Software Eng Co Ltd Semiconductor nanoparticle fluorescent reagent and method for measuring fluorescence
JP2005172429A (en) * 2003-12-05 2005-06-30 Sony Corp Biosubstance fluorescence-labeling agent and method, and bioassay method and device
JP2005189237A (en) * 2003-12-05 2005-07-14 Sekisui Chem Co Ltd Optical measuring method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EMEL'YANENKO Y.S.: "Photoluminescence of layered SiO2-InP Structures", J. OPT. TECHNOL., vol. 68, no. 10, 2001, pages 744 - 746, XP003019398 *
FARMER S.C.: "Photoluminescent Polymer/Quantum Dot Composite Nanoparticles", CHEM. MATER., vol. 13, no. 11, 2001, pages 3920 - 3926, XP001108765 *
YANG Y.: "Preparation of Fluorescent SiO2 Particles with Single CdTe Nanocrystal Cores by the Reverse Microemulsion Method", ADV. MATER., vol. 17, no. 19, 2005, pages 2354 - 2357, XP003019397 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128604A1 (en) * 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 Silica nanoparticle having quantum dots encapsulated therein, method for producing same and biological labeling agent using same
US9023659B2 (en) 2009-05-08 2015-05-05 Konica Minolta Medical & Graphic, Inc. Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof
US9281447B2 (en) 2011-05-30 2016-03-08 Fujifilm Corporation Method for synthesizing indium phosphide nanoparticles

Also Published As

Publication number Publication date
JP5200931B2 (en) 2013-06-05
JPWO2007138851A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
US7405002B2 (en) Coated water-soluble nanoparticles comprising semiconductor core and silica coating
JP5907544B2 (en) Method for producing nanoparticles
JP5519899B2 (en) Dispersant for nanoparticles having cap molecules bonded to the surface, method for dispersing nanoparticles using the same, and nanoparticle-containing thin film containing the same
JP5371011B2 (en) Novel nanoparticle emitter
WO2007034877A1 (en) Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
Zou et al. A transparent and luminescent epoxy nanocomposite containing CdSe QDs with amido group-functionalized ligands
WO2007125812A1 (en) Inorganic nanoparticle, process for producing the same, and biosubstance labeling agent having inorganic nanoparticle linked thereto
Brichkin et al. Hydrophilic semiconductor quantum dots
WO2007086410A1 (en) Core/shell nanoparticle, biological substance labeling agent, and method for producing particle
KR101575396B1 (en) Quantum dot contained nanocomposite particles and method of fabrication thereof
CN108676191B (en) Preparation method of fluorescent photonic crystal
WO2012026150A1 (en) Semiconductor nanoparticle aggregate and production method for semiconductor nanoparticle aggregate
CN110669506A (en) Preparation method of water-soluble gold nanocluster fluorescent material jointly protected by cysteamine and N-acetyl L-cysteine
WO2007138851A1 (en) III-V SEMICONDUCTOR/SiO2 NANOPARTICLE AND AGENT FOR LABELING BIOLOGICAL SUBSTANCE
JP5716029B2 (en) Semiconductor nanoparticle assembly
JPWO2008032599A1 (en) Semiconductor nanoparticle aggregate, method for producing the same, and biological material labeling agent using the same
JP5880563B2 (en) Method for producing ion-resistant semiconductor nanoparticle assembly
JP5790570B2 (en) Semiconductor nanoparticle assembly
JP5082860B2 (en) Si / Si3N4 type nanoparticles, biological material labeling agent using the nanoparticles, and method for producing the nanoparticles
JP2013057630A (en) Semiconductor nanoparticle assembly containing enhancement particle
JP5761102B2 (en) High-brightness semiconductor nanoparticle assembly
Algar et al. Quantum dots for the development of optical biosensors based on fluorescence
KR101575951B1 (en) Preparation method of water-soluble polymer capped nanocrystal
JPWO2008114532A1 (en) Manufacturing method of core / shell type semiconductor nanoparticles and aggregate of semiconductor nanoparticles manufactured using the same
Zeller et al. Quantum Dot–Fibre Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517824

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743372

Country of ref document: EP

Kind code of ref document: A1