WO2007135981A1 - R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME - Google Patents

R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
WO2007135981A1
WO2007135981A1 PCT/JP2007/060216 JP2007060216W WO2007135981A1 WO 2007135981 A1 WO2007135981 A1 WO 2007135981A1 JP 2007060216 W JP2007060216 W JP 2007060216W WO 2007135981 A1 WO2007135981 A1 WO 2007135981A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
powder
porous
rare earth
green compact
Prior art date
Application number
PCT/JP2007/060216
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Nishiuchi
Noriyuki Nozawa
Satoshi Hirosawa
Tomohito Maki
Katsunori Bekki
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to JP2008516664A priority Critical patent/JP4873008B2/en
Priority to CN2007800009112A priority patent/CN101346780B/en
Priority to EP07743651.7A priority patent/EP1970916B1/en
Priority to US12/092,300 priority patent/US8268093B2/en
Publication of WO2007135981A1 publication Critical patent/WO2007135981A1/en
Priority to US13/586,917 priority patent/US9418786B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12153Interconnected void structure [e.g., permeable, etc.]

Definitions

  • the present invention relates to an R—Fe—B based porous magnet produced using the HDDR method and a method for producing the same.
  • R-Fe-B rare earth magnets (R is a rare earth element, Fe is iron, and B is boron), which is a typical high-performance permanent magnet, is mainly composed of the ternary tetragonal compound R Fe B phase. Including the organization as
  • R-Fe-B rare earth magnets are roughly classified into sintered magnets and bonded magnets.
  • the sintered magnet is manufactured by compressing and molding a fine powder (average particle size: several m) of an R—Fe—B magnet alloy with a press machine.
  • bonded magnets are usually produced by compression molding or injection molding a mixture (compound) of R-Fe-B magnet alloy powder (particle size: about 100 m, for example) and a binder resin. Manufactured.
  • the green compact obtained in this way is usually sintered at a temperature of 1000 ° C to 1200 ° C, and becomes a permanent magnet by heat treatment as necessary.
  • a vacuum atmosphere or an inert atmosphere is mainly used in order to suppress the oxidation of rare earth elements.
  • HDDR means a process that sequentially executes hydrogenation and disproportio nation, desorption and recombination. According to the known HDDR treatment, an R—Fe—B alloy ingot or powder is heated in an H gas atmosphere or a mixed atmosphere of an H gas and an inert gas.
  • the temperature is maintained at 500 ° C to 1000 ° C, and thus the above ingot or powder is occluded with hydrogen.
  • the H pressure is 13 Pa or less, or the H partial pressure is 13 Pa or less.
  • the R—Fe—B alloy powder produced by the HDDR treatment has a large coercive force and exhibits magnetic anisotropy.
  • the reason for having such a property is that the metal structure is practically very fine, 0.1 ⁇ m to 1 ⁇ m, and the easy magnetic axis is improved by appropriately selecting the reaction conditions and composition. This is because it becomes an aggregate of crystals aligned in one direction. More specifically, the grain size of ultrafine crystals obtained by HDDR treatment is tetragonal R Fe B-based compounds.
  • HDDR powder Magnetic powder produced by HDDR treatment
  • a binder resin binder
  • An anisotropic bonded magnet is formed by shrink molding or injection molding. Since HDDR powder usually aggregates after HDDR treatment, it is used as a powder after deaggregation for use as an anisotropic bonded magnet.
  • the preferred range of the particle size of the obtained magnet powder is 2 m to 500 m
  • Example 1 an aggregate obtained by HDDR treatment of powder having an average particle size of 3.8 m
  • the powder was crushed in a mortar to obtain a powder with an average particle size of 5.8 ⁇ m, it was mixed with bismaleimide triazine resin and compression molded to produce a bonded magnet.
  • HDDR powder is oriented and then barized using a hot forming method such as hot pressing or hot isostatic pressing (HIP), which is disclosed in Patent Document 3, for example. ing.
  • a hot forming method such as hot pressing or hot isostatic pressing (HIP)
  • HIP hot isostatic pressing
  • Patent Document 4 an R—Fe—B alloy obtained by melting in a high-frequency melting furnace is subjected to solution treatment as necessary, and then cooled and pulverized, and this is then treated with a jet mill or the like. After grinding to 10 m, molding in a magnetic field, followed by sintering in a high vacuum of 1000 ° C to 1140 ° C or in an inert atmosphere, then in the range of 600 ° C to 1100 ° C It is disclosed that the main phase is refined to 0.01 to 1 m by holding in a hydrogen atmosphere and subsequently performing heat treatment in a high vacuum.
  • Patent Document 5 In the method disclosed in Patent Document 5, first, a fine powder of less than 10 m obtained by pulverizing a homogenized alloy with a pulverizer such as a jet mill is formed in a magnetic field to produce a green compact. To do. Thereafter, the green compact is treated in hydrogen at a temperature of 600 ° C to 1000 ° C and then at a temperature of 1000 ° C to 1150 ° C. The processing performed on the green compact corresponds to HDDR processing, but the temperature of DR processing is high. According to the method of Patent Document 5, sintering proceeds by high-temperature DR treatment, so that the green compact is sintered as it is. Patent Document 5 describes that it is necessary to perform sintering at a temperature of 1000 ° C. or higher in order to form a high-density sintered body.
  • the average particle size of 50 is determined by the hydrogen storage decay method. After roughly pulverizing to ⁇ 500 / zm, the coarsely pulverized powder is formed into a predetermined shape (molded in a magnetic field as necessary) to produce a green compact. Thereafter, a known HDDR treatment is performed on the green compact, and the resultant green compact is impregnated with a resin or a resin so as to produce a bonded magnet.
  • Patent Document 1 Japanese Patent Laid-Open No. 1132106
  • Patent Document 2 Japanese Patent Laid-Open No. 2-4901
  • Patent Document 3 Japanese Patent Laid-Open No. 4-253304
  • Patent Document 4 Japanese Patent Laid-Open No. 4-165012
  • Patent Document 5 Japanese Patent Laid-Open No. 6-112027
  • Patent Document 6 Japanese Patent Laid-Open No. 9-148163
  • the R—Fe—B rare earth sintered magnet has a limitation in the shape capable of producing a force capable of obtaining superior magnetic properties as compared with a bonded magnet.
  • One reason is that it is difficult to obtain a desired shape due to the shrinkage anisotropy during sintering.
  • the shrinkage rate in the direction parallel to the orientation magnetic field is larger than the shrinkage rate in the direction perpendicular to the orientation magnetic field, and the ratio exceeds 2.
  • the “shrinkage ratio” is defined by (“dimension before sintering” “dimension after sintering”) ⁇ “dimension before sintering”.
  • a direction parallel to the orientation magnetic field is referred to as “orientation direction”
  • a direction perpendicular to the “orientation direction” is referred to as “mold direction”.
  • an R—Fe—B based bonded magnet has a magnetic property lower than that of a sintered magnet, but a magnet having a shape that is difficult to produce with a sintered magnet can be produced relatively easily.
  • anisotropic bonded magnets made with anisotropic magnetic powder are expected to be applied to motors because they have relatively high magnetic properties.
  • R-Fe-B-based anisotropic magnetic powder is produced by the HDDR method. Can be obtained.
  • the average particle diameter of anisotropic magnetic powder (HDDR magnetic powder) obtained by the HDDR method is usually in the range of several tens of m to several hundreds of zm; after being mixed with a binder resin, it is molded.
  • HDDR magnetic powder is susceptible to cracking due to the pressure applied during molding. As a result, the magnetic properties deteriorated, and the bonded magnet obtained by the conventional method is about 60% of the magnetic powder used (BH).
  • the conventional R—Fe—B based anisotropic bonded magnet has a problem that the demagnetization curve (second quadrant portion of the hysteresis curve) has poor squareness. This contributes to the deterioration of heat resistance, and high heat resistance cannot be obtained unless the coercive force H is set higher than that of the R—Fe—B based sintered magnet. However, if the coercive force H is increased, the magnetic characteristics cj
  • the main phase is refined by subjecting the sintered body to HDDR treatment.
  • HDDR reaction volume changes occur in the HD reaction and DR reaction, so cracking is likely to occur when HDDR processing is performed on the sintered body, and there is a problem that it cannot be produced with high yield.
  • H DDR treatment is applied to the already compacted Balta body (sintered body), the diffusion path of hydrogen, which is essential for the HD reaction, is limited, leading to inhomogeneous structure in the magnet. The processing takes a long time, and as a result, the size of the magnet that can be produced is limited.
  • Patent Document 5 states that magnetic properties higher than that of a general R-Fe-B sintered magnet are obtained.
  • a general sintered magnet a high temperature of 1000 ° C or higher. Since sintering is performed at, shrinkage anisotropy becomes apparent. For this reason, it has essentially the same problem as a sintered magnet in that the shape that can be produced is limited. Further, according to the study of the present inventor, if sintering is performed at 1000 ° C. or higher in the DR treatment, it is difficult to densify while maintaining fine crystal grains, and abnormal grain growth is rather remarkable. Because it will happen, normal In many cases, the magnetic properties are deteriorated compared with the sintered magnet.
  • Patent Document 6 can avoid the problems of conventional R—Fe—B based anisotropic bonded magnet manufacturing methods (decrease in magnetic properties and difficulty in orientation due to magnetic powder crushing during molding). It is worth noting. However, the green compact obtained after HDDR processing by this method has only a certain degree of strength that does not collapse, and handling after HDDR processing is difficult. In addition, it is essential to increase the mechanical strength with the binding resin after HDDR treatment.
  • the present invention has been made to solve the above-mentioned problems, and a main object of the present invention is to exhibit higher magnetic properties than conventional bonded magnets, and more than conventional sintered magnets.
  • the object is to provide an R-Fe-B magnet with a high degree of freedom in shape.
  • the R—Fe—B porous magnet of the present invention has a texture of Nd Fe B-type crystal phase with an average crystal grain size of 0.1 ⁇ m or more and 1 ⁇ m or less, at least a part of which has a long diameter 1 ⁇ m or more 20 ⁇ m or less
  • each has a texture of the Nd Fe B-type crystal phase.
  • It has a structure in which a plurality of powder particles are combined, and voids located between the powder particles form the pores.
  • the average particle size of the powder particles is less than 10 ⁇ m.
  • the pores communicate with the atmosphere.
  • the pores are filled with rosin.
  • the easy magnetization axis of the Nd Fe B-type crystal phase is in a predetermined direction.
  • the embodiment has radial anisotropy or polar anisotropy.
  • the density is 3.5 g / cm 3 or more and 7. Og / cm 3 or less.
  • R is a composition ratio of rare earth elements and Q is a composition ratio of boron and carbon
  • Q is a composition ratio of boron and carbon
  • the R-Fe-B magnet of the present invention is the above-mentioned R-Fe-B porous magnet, 95% of the true density. It is characterized by high density as described above.
  • the texture of the Nd Fe B-type crystal phase is individually selected.
  • the ratio of the shortest grain size a to the longest grain size b of the crystal grains in which the ratio b / a is less than 2 is 50% by volume or more of the total crystal grains.
  • the method for producing an R—Fe B based porous magnet according to the present invention comprises R having an average particle size of less than 10 m.
  • a step of preparing Fe-B rare earth alloy powder a step of forming the green compact by molding the R-Fe-B rare earth alloy powder, and a temperature of 650 ° C or higher with respect to the green compact in hydrogen gas Heat treatment at a temperature of less than 1000 ° C, thereby causing hydrogenation and disproportionation reactions, and a temperature of 650 ° C to less than 1 000 ° C for the green compact in a vacuum or inert atmosphere Performing a heat treatment in order to cause dehydrogenation and recombination reaction thereby.
  • the step of producing the green compact includes a step of forming in a magnetic field.
  • the R—Fe—B based rare earth alloy powder is 10 atomic% ⁇ R ⁇ 30 atomic%, 3 atomic% ⁇ Q ⁇ 15 atomic% (R is a rare earth element, Q is boron or boron) And a sum of carbons in which a part of boron is substituted).
  • the composition of the rare earth element R is set so that the surplus rare earth amount R ′ at the start of HD treatment in the R—Fe—B based porous magnet is R′ ⁇ 0 atomic%,
  • the amount of oxygen in the process from the pulverization process to the start of the hydrogenation and disproportionation reactions is controlled.
  • the R-Fe-B rare earth alloy powder is a rapidly cooled alloy powder.
  • the quenched alloy is a strip cast alloy.
  • the steps of causing the hydrogenation and disproportionation reactions include a step of raising the temperature in an inert atmosphere or vacuum, and a temperature of 650 ° C or higher and lower than 1000 ° C. And a step of introducing hydrogen gas.
  • a method for producing a composite Balta material for an R-Fe-B permanent magnet according to the present invention comprises the step (A) of preparing the R-Fe-B-based porous material, and the R-Fe-B-based porous material by wet processing. And (B) introducing a material different from the R—Fe—B based porous material into the pores of the Fe—B based porous material.
  • the step (A) includes a step of preparing an R—Fe—B rare earth alloy powder having an average particle size of less than 10 ⁇ m, and a molding of the R—Fe—B rare earth alloy powder. Then, a process for producing a green compact, and heat treatment of the green compact in hydrogen gas at a temperature of 650 ° C. or higher and lower than 100 ° C., thereby causing hydrogenation and disproportionation reactions.
  • the R-Fe-B porous material is manufactured, and the green compact is heat-treated at a temperature of 650 ° C or higher and lower than 1000 ° C in a vacuum or inert atmosphere, thereby dehydrogenating and Causing a recombination reaction.
  • a method for producing an R-Fe-B permanent magnet according to the present invention comprises a step of preparing a composite Balta material for an R-Fe-B permanent magnet obtained by the above production method, and the R-Fe- And further forming the R—Fe—B permanent magnet by further heating the composite Balta material for the B permanent magnet.
  • the method for producing a composite Balta material for R—Fe—B permanent magnets according to the present invention has an Nd Fe B-type crystal phase texture with an average crystal grain size of 0.1 ⁇ m to 1 ⁇ m. And at least
  • step (1) at least one of a rare earth metal, a rare earth alloy, and a rare earth compound is formed on the surface of the R-Fe-B based porous material and inside the Z or pores. Simultaneously with the introduction of the seed, the R—Fe—B porous material is heated.
  • a step (C) of heating the R-Fe-B porous material is further included.
  • the step (A) includes a step of preparing an R—Fe—B rare earth alloy powder having an average particle size of less than 10 ⁇ m, and a molding of the R—Fe—B rare earth alloy powder.
  • Shi A green compact is produced, and the green compact is subjected to a heat treatment at a temperature of 650 ° C. or more and less than 100 ° C. in hydrogen gas, thereby causing hydrogenation and disproportionation reactions.
  • the R-Fe-B porous magnet is pressurized at a temperature of 600 ° C or higher and lower than 900 ° C, and the R- Includes a process to increase the density of Fe-B porous magnets to 95% or more of the true density.
  • a method for producing an R-Fe-B magnet powder according to the present invention comprises a step of forming a green compact by molding an R-Fe-B rare earth alloy powder having an average particle size of less than 10 m, a hydrogen A step of subjecting the green compact to a heat treatment at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing a hydration and disproportionation reaction; and the green compact in a vacuum or an inert atmosphere.
  • the method for producing a bonded magnet according to the present invention includes a step of preparing an R-Fe-B-based magnet powder produced by the above-described method for producing an R-Fe-B-based magnet powder, and the R-Fe-B And a step of mixing and molding the system magnetite powder and the binder.
  • a method of manufacturing a magnetic circuit component according to the present invention is a method of manufacturing a magnetic circuit component in which a rare earth magnet molded body and a molded body of a soft magnetic material powder are integrated.
  • a magnet and a soft magnetic material powder in a powder state or a soft magnetic material powder temporary compact are hot press-molded to form an integrated structure of the rare earth magnet compact and the soft magnetic material powder compact. Obtaining a shaped product.
  • the step of preparing the R—Fe—B based porous magnet includes the step of preparing an R—Fe—B based rare earth alloy powder having an average particle size of less than 10 m, and the R— Fe A step of forming a green compact by forming a B-based rare earth alloy powder, and heat treatment of the green compact in a hydrogen gas at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby hydrogenating and A step of causing a disproportionation reaction and a step of subjecting the green compact to heat treatment at a temperature of 650 ° C or higher and lower than 1000 ° C in a vacuum or an inert atmosphere, thereby causing dehydrogenation and recombination reactions. And including.
  • the soft magnetic material powder is temporarily formed by press molding the soft magnetic material powder.
  • the method further includes a step (c) of producing a molded body, wherein the step (b) is performed by hot press molding the temporary molded body of the soft magnetic material powder and the plurality of porous magnets simultaneously. This is a step of obtaining a molded product in which a rare earth magnet compact and a soft magnetic material powder compact are integrated.
  • the soft magnetic material powder is hot press-molded simultaneously with the porous magnet in a powder state.
  • the magnetic circuit component of the present invention is manufactured by the above method.
  • the magnetic circuit component is a magnet rotor.
  • the average particle size of the R—Fe—B rare earth alloy powder to be subjected to HDDR treatment is limited to less than 10 m, and after the green compact of such powder is produced, HDDR treatment is performed. Is doing. Since the powder particles are relatively small, the uniformity of the HDDR reaction is improved and the mechanical strength after HDDR treatment is sufficiently high.
  • the green compact after the HDDR treatment has sufficient strength as a porous magnet, and can be used as it is as a Balta magnet body. This eliminates the need for crushing and crushing after HDDR treatment, and does not deteriorate the magnet characteristics, so that the magnet characteristics superior to those of conventional bonded magnets can be exhibited.
  • FIG. 1 is an SEM photograph showing a fracture surface in an example of a porous magnet according to the present invention.
  • FIG. 2 is a flowchart showing a method for producing a porous magnet of the present invention.
  • FIG. 3 (a) is a schematic diagram of the green compact (molded body) obtained in step S12 shown in the flowchart of FIG. 2, and (b) is a diagram illustrating HDDR treatment (S 14) on the green compact. It is a schematic diagram of the material after giving
  • FIG. 4 is a diagram showing a configuration example of a device for heating and compressing a porous magnet.
  • FIG. 5 is an SEM photograph showing a fracture surface of a porous material produced according to the present invention.
  • FIG. 6 (a) to (c) are schematic views for explaining a method of manufacturing the rotor 100 of the embodiment according to the present invention.
  • FIG. 7 is a schematic diagram showing the structure of a rotor 100 manufactured by the manufacturing method according to the embodiment of the present invention.
  • FIG. 8 is another SEM photograph showing a fracture surface in an example of a porous magnet according to the present invention.
  • FIG. 9 is a Kerr micrograph of a polished surface in an example of a porous magnet according to the present invention.
  • FIG. 10 is a graph showing a demagnetization curve (second quadrant portion of a hysteresis curve) for an example and a comparative example of a porous magnet according to the present invention.
  • FIG. 11] (a) to (d) are schematic cross-sectional views for explaining a hot press forming step in the method for manufacturing the rotor 100 of the embodiment according to the present invention.
  • FIG. 12 is an SEM photograph showing a fracture surface of the porous material produced in Example 13 of the present invention.
  • the conventional HDDR treatment has been carried out in order to produce a magnet powder for a bonded magnet, and a powder having a relatively large average particle size was to be treated. This is because when the average particle size is lowered, it becomes difficult to break up the powder aggregated by HDDR treatment into discrete powder particles.
  • HDDR treatment be performed after forming a compacted body. In the compacted body after HDDR treatment, the bond strength between the particles compared to ordinary sintered magnets. However, even if it is low, it has a brittleness that is difficult to handle, so it could not be used as a Balta magnet.
  • the R-Fe-B porous magnet of the present invention has a texture of NdFe B-type crystal phase with an average crystal grain size of 0.1 ⁇ m or more and 1 ⁇ m or less, at least a part of which has a major axis 1 ⁇ m or more 20 ⁇ m or less
  • porous magnet of the present invention need not be entirely occupied by the porous portion.
  • the “porous part” is a part where textures and pores coexist, and more specifically, Nd having an average crystal grain size of 0.1 ⁇ m to 1 ⁇ m.
  • Such a porous part has a volume fraction of 20% or more with respect to the whole magnet, preferably Preferably occupies an area of 30% or more, more preferably 50% or more.
  • the "average crystal grain size” in this specification is the average size of fine crystal grains constituting the aggregate structure obtained by the HDDR process.
  • the average crystal grain size of 0.1 m or more and 1 ⁇ m or less is smaller than the average crystal grain size (over 1 ⁇ m) of R-Fe-B sintered magnets. Larger than average grain size (less than 0.1 ⁇ m)! / ⁇ .
  • the “major axis” in the present specification is the length of the longest straight line connecting two arbitrary points on the contour of the region constituting the pores of the “porous portion” described above.
  • the major axis of the pore may be evaluated for an arbitrary region of the magnet, for example, the central portion of the magnet.
  • the region included in the porous part select the region included in the porous part and evaluate the long diameter of the pores.
  • FIG. 1 is an SEM photograph showing a fracture surface in an example of an R—Fe—B based porous magnet according to the present invention described in detail later.
  • the pores present in the porous magnet are voids that exist between the powder particles that are bonded together in the HDDR treatment process, and communicate with each other in a three-dimensional network.
  • the individual powder particles that make up the green compact are combined with adjacent powder particles by HDDR treatment to form a three-dimensional structure that exhibits rigidity, and within each powder particle, fine Nd
  • the texture of Fe B-type crystal phase is formed
  • the pores are not filled with rosin and are in communication with the atmosphere.
  • the easy magnetization axis of the fine Nd Fe B-type crystal phase is oriented in a predetermined direction.
  • the axis can also be oriented in a predetermined direction throughout the magnet.
  • the density of R-Fe-B porous magnet of the present invention is equal to or less than the density of R-Fe-B bonded magnet produced by conventional compression molding, that is, 3.5 g / cm 3 or more 7. Og / cm 3 or less force Even when there are gaps between the powder particles, the particles are bonded to each other and exhibit sufficient mechanical strength and excellent magnetic properties.
  • the R-Fe-B porous magnet of the present invention is obtained by crushing a raw material alloy having an R-Fe-B phase to obtain an R-Fe having an average particle size of less than 10 ⁇ m.
  • FIG. 3 (a) is a schematic diagram of a green compact (molded body) obtained by step S12.
  • the individual fine particles constituting the powder are pressed and compacted by molding.
  • the particles A1 and the particles A2 are in contact with each other.
  • FIG. 3 (b) is a schematic view of the material after HDDR treatment (S14) is applied to the green compact.
  • All powder particles such as Al and A2 have an average crystal grain size of 0.1 due to the HDDR reaction.
  • the void B existing in the green compact becomes smaller or disappears as shown in Fig. 3 (b) as the sintering proceeds with the element diffusion described above.
  • complete densification is not achieved by HDDR treatment, and it remains as a “pore” after HDDR treatment.
  • the major axis of the pore is indicated by the symbol “d”.
  • the particle size is determined by measuring the size d of the portion sandwiched between the pores for each particle.
  • the density is in the range of 3.5 g / cm 3 or more and 7. Og / cm 3 or less as described above, the measured values of the major diameter of the pore and the magnet density in the porous portion are within the above-mentioned range. It is possible to evaluate whether the porous structure shown in FIG. If the voids are to be used actively, such as for the purpose of introducing dissimilar materials, which will be described later, it is more preferable to set the density of the porous part to 6. Og / cm 3 or less. More preferably, it is OgZcm 3 or less.
  • FIG. 3 (b) as a texture, a force depicting only an NdFe B-type crystal phase having an average crystal grain size of 0.1 ⁇ m or more and 1 ⁇ m or less, such as a rare earth-rich phase, Including another phase
  • a resin for binding the powder particles is unnecessary, and the magnetic properties can be exhibited in a porous form in which voids between the powder particles form pores. .
  • the reason why sufficient mechanical strength can be obtained in spite of such voids is not always clear.
  • the small powder particles used to form the green compact and the reaction caused by hydrogen diffusion during the HDDR process promotes sintering between particles at a relatively low temperature, improving the bond strength between the particles. The reason is that it contributes to
  • the green compact when the green compact is subjected to HDDR treatment, the powder particles aggregated by the HDDR treatment are disintegrated and used for the production of a bonded magnet, or the green compact is used as a compact. Impregnated with fat to increase mechanical strength. The reason is that if the mechanical strength of the green compact after HDDR treatment is extremely low, it is a force that cannot be used as a magnet.
  • the porous magnet of the present invention after the HDDR treatment has a porous structure (open pore structure) communicating with the atmosphere, by introducing a different material into the inside or the surface of the hole, A composite Balta magnet can be easily produced and the properties of the magnet can be improved.
  • a high-performance composite magnet in which a soft magnetic yoke and a magnet are integrated by performing hot forming after combining a porous magnet with a molded body of a soft magnetic material. You can make parts.
  • an R-T-Q alloy (starting alloy) ingot having an R—Fe—B phase as a hard magnetic phase is prepared.
  • R is a rare earth element and contains Nd and Z or Pr by 50 atomic% (at%) or more.
  • the rare earth element R in the present specification may contain yttrium (Y).
  • T is at least one transition metal element selected from the group force consisting of Fe, Co, and Ni, and is a transition metal element containing 50% or more of Fe.
  • Q is B or a part of B and B substituted with C.
  • This R—T—Q alloy (starting alloy) has an Nd Fe B-type compound phase (hereinafter abbreviated as “R T Qj”).
  • the composition ratio of the rare earth element R is
  • the coercive force can be improved by using a portion of R as Dy and Z or Tb.
  • the composition ratio of the rare earth element R is set so as to be “surplus rare earth amount R ′” force SO atomic% or more at the start of HD processing described later.
  • R ′ at the start of HD processing Is more preferably set to be 0.1 atomic% or more, and further preferably is set to be 0.3 atomic% or more.
  • the “excess rare earth amount R ′” is calculated by the following equation.
  • R, "atoms T 0/0", “atomic 0/0 of R” one X 1 / 7- "atomic 0/0 0" X 2/3
  • the surplus rare earth amount R ′ is in a form other than R ⁇ ⁇ and R ⁇ , which does not constitute R ⁇ ⁇ and R ⁇ ⁇ ⁇ among the rare earth elements R contained in the R-T-Q alloy (starting alloy).
  • the composition ratio of the rare earth elements It shows the composition ratio of the rare earth elements. Unless the composition ratio of the rare earth element R is set so that the surplus rare earth amount R at the start of HD treatment is 0 atomic% or more, the average grain size is 0.1 to 1 / ⁇ according to the method of the present invention. It becomes difficult to obtain fine crystals of ⁇ .
  • Rare earth element R may be oxidized by oxygen and moisture present in the atmosphere in the subsequent grinding and molding processes. The oxidation of the rare earth element R leads to a decrease in the excess rare earth amount R.
  • the process up to the start of HD processing is preferably performed in an atmosphere with as little oxygen as possible, but it is difficult to completely remove the oxygen in the atmosphere, so the R composition ratio of the starting alloy Is preferably set taking into account the reduction of R ′ due to acid in the subsequent step.
  • the upper limit of R ' is not particularly limited, but in consideration of corrosion resistance and a decrease in B, it is preferably 5 atomic% or less, more preferably 3 atomic% or less, and even more preferably 2.5 atomic% or less. . Even if R ′ is 5 atomic% or less, it is preferable that the composition ratio of the rare earth element R does not exceed 30 atomic%.
  • the amount of oxygen in the magnet at the start of HD treatment is preferably suppressed to 1% by mass or less, and more preferably to 0.6% by mass or less.
  • composition ratio of Q is preferably 3 atomic percent or more and 15 atomic percent or less of the whole alloy, preferably 5 atomic percent or more, and more preferably 8 atomic percent or less. 5.5 atomic percent or more 7.5 atomic percent The following are even more preferred:
  • T occupies the remainder.
  • T is at least one transition metal element in which the group force consisting of Fe, Co, and M is also selected, and is a transition metal element containing 50% or more of Fe. If part of T is Co and Z or Ni, it is desirable to select Co for NU. Further, the total amount of Co with respect to the entire alloy is preferably 20 atomic percent or less, more preferably 5 atomic percent or less, from the viewpoint of cost and the like. High magnetic properties can be obtained even if Co is not contained at all, but more stable magnetic properties can be obtained if Co of 0.5 atomic% or more is contained.
  • the average particle diameter of the magnet powder to be subjected to HDDR treatment is 30 ⁇ m or more, typically 5 ⁇ m. 0 m or more.
  • the easy magnetic axis must be aligned in one direction among the particles of the raw material powder. Therefore, the starting alloy ingot in the stage before pulverization is Nd Fe B-type crystal phase
  • the average size of the region where the crystal orientations of the powders were aligned in the same direction was made larger than the average particle size of the powder particles after pulverization.
  • the powder having an average particle size of less than 10 ⁇ m since the powder having an average particle size of less than 10 ⁇ m is used, it is necessary to increase the size of the main phase in the raw material alloy as in the conventional production method of HDDR magnet powder. Absent. Therefore, high anisotropy can be obtained after HDDR treatment even if a molten alloy is rapidly cooled and solidified by strip casting (solid cast alloy). In addition, by grinding and quenching such a quenched alloy, the amount of a-Fe can be reduced compared to the raw material alloy (starting alloy) produced by the conventional book mold method, etc., so the magnetic properties after HDDR treatment Deterioration can be suppressed and good squareness can be obtained.
  • the magnet of the present invention can also be produced using a raw material alloy produced by a rapid cooling method (for example, an atomizing method) other than the strip casting method, a book mold method, a centrifugal forging method, or the like.
  • a rapid cooling method for example, an atomizing method
  • the raw alloy before pulverization may be subjected to a heat treatment for the purpose of homogenizing the structure of the raw alloy.
  • heat treatment can be carried out in a vacuum or an inert atmosphere, typically at a temperature of 1000 ° C or higher.
  • a raw material powder is produced by pulverizing the raw material alloy (starting alloy) by a known method.
  • the starting alloy is coarsely pulverized using a mechanical pulverization method such as a jaw crusher or a hydrogen occlusion pulverization method to produce coarsely pulverized powder having a size of about 50 ⁇ m to 1000 ⁇ m.
  • the coarsely pulverized powder is finely pulverized by a jet mill or the like to produce a raw material powder typically having an average particle size of less than 10 ⁇ m.
  • the average particle diameter of the raw material powder In order to obtain a porous Balta magnet having sufficient mechanical strength, the average particle diameter of the raw material powder However, it is also effective to adjust the alloy composition (especially the rare earth amount R and the surplus rare earth amount R ′) and the HDDR conditions (particularly the HDDR temperature). By optimizing the alloy composition and HDDR conditions, the same effect as the present invention can be obtained even if the average particle size of the raw material powder exceeds 10 m.
  • the average particle size of the raw material powder is preferably 1 ⁇ m or more.
  • the average particle size is less than 1 m, the raw material powder easily reacts with oxygen in the atmosphere, and the heat generated due to oxidation increases the risk of ignition.
  • the preferable upper limit of the average particle diameter is 9 ⁇ m, and the more preferable upper limit is 8 ⁇ m.
  • the average particle size of conventional HDDR magnet powders exceeded 10 ⁇ m and was usually about 50 to 500 ⁇ m. According to the study by the present inventors, when the raw material powder having such a large average particle diameter is subjected to HDDR treatment, sufficient magnetic properties (especially high coercive force and squareness of demagnetization curve) are obtained. May not be obtained or the magnetic properties may be extremely low. The cause of the deterioration of the magnetic properties is due to the inhomogeneity of the reaction during HDDR processing (especially the HD reaction process), but the larger the powder particle size, the more likely the reaction becomes heterogeneous. If the reaction of HDDR proceeds inhomogeneously, the structure and crystal grain size inhomogeneity will occur inside the powder particles, and unreacted parts will occur, resulting in deterioration of magnetic properties.
  • the HDDR process is performed on the green compact formed by compressing the powder, but there is a sufficient gap between the powder particles in the green compact where hydrogen gas can move and diffuse. It exists in a large size.
  • the raw material powder having an average particle diameter of typically 1 ⁇ m or more and less than 10 ⁇ m is used, it is easy for hydrogen to move through the powder particles.
  • the reaction and DR reaction can proceed in a short time.
  • After HDDR This makes it possible to obtain high magnetic properties, particularly good squareness, and to shorten the time required for the HDDR process.
  • a green compact is formed using the above raw material powder.
  • the step of forming the green compact is preferably performed in a magnetic field of 0.5T to 20T (static magnetic field, pulsed magnetic field, etc.) by applying a pressure of 10 MPa to 200 MPa. Molding can be performed by a known powder press apparatus.
  • the green density (molded body density) when taken out from the powder press is about 3.5 gZcm 3 to 5.2 gZcm 3 .
  • the molding step may be performed without applying a magnetic field. Without magnetic field orientation, an isotropic porous magnet is finally obtained. However, in order to obtain higher magnetic properties, it is preferable to execute a molding process while aligning the magnetic field and finally obtain an anisotropic porous magnet.
  • the starting alloy pulverization process and the raw material powder forming process described above are performed in order to prevent the amount of surplus rare earth R ′ in the magnet immediately before HD processing from falling below 0 atomic%. It is preferable to do this while suppressing acidity.
  • a mixture of another alloy may be finely pulverized before the starting alloy pulverization step, and the green compact may be formed after the fine pulverization.
  • another metal, alloy and Z or compound powder may be mixed to produce a green compact thereof.
  • the green compact may be impregnated with a liquid in which a metal, an alloy and Z or a compound are dispersed or dissolved, and then the solvent may be evaporated. It is desirable that the composition of the alloy powder when applying these methods falls within the above-mentioned range as a whole of the mixed powder.
  • HDDR treatment is applied to the green compact (molded body) obtained by the above molding process.
  • the conditions for the HDDR treatment are appropriately selected depending on the type and amount of the additive element, and can be determined with reference to the treatment conditions in the conventional H DDR method.
  • the HDDR reaction can be completed in a shorter time than the conventional HD DR method. .
  • the heating process for the HD reaction is performed in a hydrogen gas atmosphere with a hydrogen partial pressure of lOkPa to 500kPa or a mixed atmosphere of hydrogen gas and an inert gas (Ar, He, etc.), an inert gas atmosphere, or in a vacuum. Do either.
  • an inert gas atmosphere or vacuum the following effects can be obtained.
  • the HD treatment is performed at 650 ° C or higher and lower than 1000 ° C in a hydrogen gas atmosphere of hydrogen partial pressure of lOkPa or higher and 500kPa or lower or a mixed atmosphere of hydrogen gas and inert gas (Ar, He, etc.).
  • the hydrogen partial pressure during HD treatment is more preferably 20 kPa or more and 200 kPa or less.
  • the treatment temperature is more preferably 700 ° C to 900 ° C.
  • the time required for HD processing is 5 minutes or more and 10 hours or less, and is typically set in the range of 10 minutes or more and 5 hours or less. In this embodiment, since the average particle diameter of the raw material powder is small, the HD reaction is completed in a relatively short time.
  • the hydrogen partial pressure during temperature rise and Z or HD treatment is 5 kPa or more.
  • the pressure is set to lOOkPa or less, more preferably from lOkPa to 50 kPa, it is possible to suppress a decrease in anisotropy in HDDR processing.
  • DR processing is performed after HD processing.
  • HD processing and DR processing can be performed continuously in the same device. It can also be performed discontinuously using separate devices.
  • the DR treatment is performed at 650 ° C or higher and lower than 1000 ° C in a vacuum or inert gas atmosphere.
  • the treatment time is usually 5 minutes or more and 10 hours or less, and is typically set in the range of 10 minutes or more and 2 hours or less.
  • the atmosphere is controlled in stages (for example, the hydrogen partial pressure Needless to say, the pressure can be reduced stepwise or the reduced pressure can be reduced stepwise.
  • the sintering reaction occurs throughout the HDDR process including the temperature raising process before the HD reaction described above. For this reason, the green compact becomes a porous sintered magnet having pores with a major axis of 1 ⁇ m to 20 m.
  • the mechanism of sintering that occurs at this time is different from the mechanism of sintering performed when manufacturing ordinary R-Fe-B sintered magnets. The details are not clear at this time.
  • the green compact shrinks ((molded body dimensions before HDDR processing, molded body dimensions after HDDR processing) molded body dimensions before ZHDDR processing X 100) to 2% to 10% Force to shrink by about%
  • the shrinkage anisotropy is small.
  • the shrinkage ratio (shrinkage rate in the magnetic field direction Z shrinkage rate in the mold direction) is about 1.1 to 1.6. For this reason, it becomes possible to manufacture sintered magnets having various shapes that were difficult to manufacture with conventional sintered magnets (typical shrinkage ratio is 2 or more).
  • the problems of orientation and residual magnetism of anisotropic bond magnets manufactured using conventional HDDR powder are also eliminated, and radial anisotropy and polar anisotropy are reduced. It can also be granted. Further, there is no problem that the productivity inherent in the hot forming method is low. [0123] Also, according to the present embodiment, the density of the green compact is improved while the HDDR reaction proceeds, so problems such as cracking of the magnet due to the volume change due to the HD reaction or DR reaction can be avoided. You can also. Further, since the HDDR reaction proceeds almost simultaneously on the surface and inside of the green compact, a large magnet can be easily produced.
  • the porous material (magnet) obtained by the above-mentioned method is densified by using a force that can be used as a Balta permanent magnet as it is, and by using a heat compression treatment such as a hot press method.
  • a full-density magnet can also be obtained.
  • An example of a specific embodiment will be shown below for full condensation by heat compression treatment.
  • Heat compression for the porous magnet can be performed using a known heat compression technique. For example, it is possible to perform heat compression treatment such as hot pressing, SPS® (spark plasma sintering), HIP, hot rolling. Among them, a hot press or SPS that can easily obtain a desired shape can be suitably used. In this embodiment, hot pressing is performed according to the following procedure.
  • a hot press apparatus having the configuration shown in FIG. 4 is used.
  • This apparatus includes a die (die) 27 having an opening in the center, an upper punch 28a and a lower punch 28b for pressurizing a porous magnet, and drive units 30a and 30b for raising and lowering these punches 28a and 28b. It has.
  • a porous magnet (indicated by reference numeral “10” in FIG. 4) produced by the method described above is loaded into a mold 27 shown in FIG. At this time, it is preferable to perform loading so that the magnetic field direction (orientation direction) coincides with the pressing direction.
  • the mold 27 and the punches 28a and 28b are made of a material that can withstand the heating temperature and the applied pressure in the atmospheric gas used. Such a material is preferably a cemented carbide such as carbon or tungsten carbide. It should be noted that anisotropy can be increased by setting the outer dimension of the porous magnet 10 smaller than the opening dimension of the mold 27.
  • the mold 27 loaded with the porous magnet 10 is set in a hot press apparatus.
  • the hot press apparatus preferably includes a chamber 26 that can be controlled to an inert gas atmosphere or a vacuum of 10- ⁇ orr or higher.
  • a heating device such as a carbon heater by resistance heating and a cylinder for pressurizing and compressing the sample are provided.
  • the mold 27 is heated by a heating device, and the temperature of the porous magnet 10 loaded in the mold 27 is changed to 600 ° C to 900 ° C. Increase. At this time, the porous magnet 10 is pressurized with a pressure P of 0.1 to 3. OtonZcm 2 .
  • the pressurization to the porous magnet 10 is preferably started after the temperature of the mold 27 reaches a set level. Hold for 10 minutes or more at 600-900 ° C while applying pressure, then cool. After the magnet fully condensed by heating and compression is cooled to a low temperature (about 100 ° C. or less) that does not oxidize due to contact with the atmosphere, the magnet of this embodiment is taken out from the chamber.
  • the R-Fe-B magnet of this embodiment can also be obtained with the porous magnet force described above.
  • the density of the magnet thus obtained reaches 95% or more of the true density.
  • a crystal grain having a ratio b / a of less than 2 between the shortest grain size a and the longest grain size b of each crystal grain is 50% of all crystal grains. It exists by volume% or more.
  • the magnet according to the present embodiment is greatly different from the conventional anisotropic butter magnets by hot plastic cage described in, for example, Japanese Patent Laid-Open No. 02-39503.
  • flat crystal grains in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b exceeds 2 are dominant.
  • the pores of the R—Fe—B porous material (magnet) obtained by the method described above communicate with the atmosphere to the inside, and different materials can be introduced into the pores.
  • the introduction method dry processing or wet processing is used.
  • different materials include rare earth metals, rare earth alloys and Z or rare earth compounds, iron and alloys thereof. An example of those specific embodiments is shown below.
  • wet treatment applied to R-Fe-B porous materials should be performed using methods such as electrolytic plating, electroless plating, chemical conversion, alcohol reduction, metal carbolysis, and sol-gel method. Can do. According to such a method, the pores inside the pores are caused by chemical reaction. A film or a layer of fine particles can be formed on the surface of the porous material.
  • the wet treatment in the present invention can also be performed by preparing a colloidal solution in which fine particles are dispersed in an organic solvent and impregnating the pores of the R—Fe—B porous material. In this case, by evaporating the organic solvent of the colloidal solution introduced into the pores of the porous material, the pores can be covered with a layer of fine particles dispersed in the colloidal solution.
  • heat treatment or application of ultrasonic waves may be additionally performed in order to promote a chemical reaction or to ensure that fine particles are impregnated into the porous material. .
  • the fine particles to be dispersed in the colloidal solution can be produced by a known method such as a gas phase method such as a plasma CVD method or a liquid phase method such as a sol-gel method.
  • the solvent may be the same as or different from the solvent of the colloidal solution.
  • the average particle size of the fine particles is preferably lOOnm or less. This is because if the average particle size exceeds lOOnm and becomes too large, it will be difficult to penetrate the colloidal solution into the R—Fe—B porous material.
  • the lower limit of the particle size of the fine particles is not particularly limited as long as the colloidal solution is stable. In general, when the particle size of the fine particles is less than 5 nm, the stability of the colloidal solution is often lowered. Therefore, the particle size of the fine particles is preferably 5 nm or more.
  • the solvent in which the fine particles are dispersed is appropriately selected depending on the particle size, chemical properties, and the like of the fine particles.
  • a non-aqueous solvent may be used.
  • a dispersant such as a surfactant may be contained in the colloidal solution.
  • the concentration of the fine particles in the colloidal solution is appropriately selected depending on the particle size, chemical properties, type of solvent and dispersant, etc., but is set within a range of, for example, about 1% to 50% by weight. Is done.
  • the solvent in the colloidal solution is evaporated. Evaporation of the solvent varies depending on the type of solvent, and may evaporate sufficiently in the air at room temperature. However, it is preferable to promote evaporation by heating and applying Z or reduced pressure as necessary.
  • the material introduced by the wet treatment should be present on the surface of the pores that do not need to fill the entire pores, but should cover at least the surface of the pores. Is preferred!
  • a 7 mm x 7 mm x 5 mm size porous magnet material produced by the same method as in Example 5 described later was subjected to ultrasonic cleaning, and then the porous material was immersed in the nanoparticle-dispersed colloid solution.
  • This colloidal solution was Ag nanometal ink (manufactured by ULVAC MATERIAL), and had an average particle diameter of Ag particles: 3 to 7 / ⁇ ⁇ , a solvent: tetradecane, and a solid content concentration of 55 to 60% by mass.
  • the nanoparticle-dispersed colloid solution was placed in a glass container, inserted into a vacuum desiccator with the porous material immersed therein, and placed under reduced pressure. The atmospheric pressure during the treatment was adjusted to about 130Pa.
  • Fig. 5 is a fracture surface SEM photograph of the porous material (composite Balta material) after the impregnation treatment.
  • Region D in the photograph of Fig. 5 is a fracture surface of the porous material, but region E is several ⁇ ! ⁇ Fine pores formed on the surface with a film filled with fine particles of several tens of nm. These fine particle coatings are formed by the Ag nanoparticles dispersed in the nanoparticle-dispersed colloidal solution being transported through the pores of the porous material together with the solvent, and the fine particles remaining in the pores after the solvent evaporation. It is thought that it was formed. Such a coating due to the presence of Ag nanoparticles was also observed at the center of the sample.
  • the purpose is to improve the properties. Further, heat treatment may be performed.
  • the temperature of the heat treatment is appropriately set according to the purpose of heating. However, when the heating temperature is 1000 ° C or higher, the texture in the R—Fe B porous material becomes coarse and the magnetic properties are deteriorated. Therefore, the heating temperature is preferably less than 1000 ° C.
  • the heating atmosphere is preferably in a vacuum or in an inert gas atmosphere such as Ar from the viewpoint of suppressing the deterioration of magnetic properties due to acid-nitridation of R—Fe—B porous materials. .
  • Fe-B based porous material may not have intrinsic coercive force (H).
  • Magnet materials can be made.
  • the HD process and the DR process do not necessarily have to be executed continuously. Furthermore, it is also possible to introduce metals, alloys and Z or compounds as different materials into the green compact after HD treatment in the same manner as described above, and then perform DR treatment. In this case, the green compact after HD processing has progressed in diffusion bonding between particles, and its handling is improved compared to the green compact before HD processing. Can be introduced it can.
  • the rare earth metal, rare earth alloy and rare earth compound introduced into the surface and Z or pores of the R—Fe—B porous material are not particularly limited as long as they contain at least one kind of rare earth element. In order to effectively exhibit the effects of the present invention, it is desirable to include at least one of Nd, Pr, Dy and Tb.
  • a known physical vapor deposition method such as sputtering, vacuum vapor deposition, or ion plating can be used.
  • at least one powder of rare earth metal, rare earth alloy, rare earth compound (hydride, etc.) is mixed with R-Fe-B porous material and heated to convert the rare earth element to R-Fe-B system. It may be diffused into the porous material.
  • a method vapor deposition diffusion method in which a rare earth element is vaporized and evaporated from a rare earth-containing material and diffused into an R—Fe—B porous material may be used. .
  • the temperature of the porous material during the dry treatment may be room temperature or may be raised by heating. However, when the temperature exceeds 1000 ° C, the texture in the R—Fe—B porous material becomes coarse and the magnetic properties deteriorate, so the temperature of the porous material during dry processing is less than 1000 ° C. Preferred to set to.
  • coarsening of the texture can be suppressed. like this
  • the densification of the porous material may proceed, but when heat treatment is performed so as to suppress the coarsening of the texture, pores remain in the porous material. For this reason, in order to fully condense, it is necessary to heat-treat the porous material while applying pressure.
  • the atmosphere during the dry treatment is appropriately selected depending on the process to be applied. If oxygen or nitrogen is present in the atmosphere, the magnetic properties may be deteriorated by oxynitridation during processing, so it is preferable to perform processing in a vacuum or an inert atmosphere (such as argon).
  • treatment liquid an organic solvent
  • impregnating the pores of the R—Fe—B based porous material can be suitably employed.
  • the pores can be covered with a layer of fine particles dispersed in the treatment liquid.
  • additional heat treatment or application of ultrasonic waves may be performed to promote chemical reaction or to ensure that fine particles are impregnated into the porous material.
  • the fine particles dispersed in the treatment liquid are produced by a known method such as a gas phase method such as a plasma CVD method or a liquid phase method such as a sol-gel method.
  • the solvent (dispersion medium) thereof may be the same as or different from the solvent of the treatment liquid.
  • the fine particles dispersed in the treatment liquid preferably contain at least one kind of rare earth oxides, fluorides, and oxyfluorides.
  • the rare earth element can be efficiently diffused into the grain boundaries of the crystal grains constituting the porous material by the heat treatment described later, and the effect of the present invention is great.
  • the average particle size of the fine particles is preferably 1 ⁇ m or less. If the average particle size exceeds 1 ⁇ m and becomes too large, it will be difficult to disperse the fine particles in the treatment liquid, and it will be difficult to penetrate the treatment liquid into the R-Fe-B porous material. Because it becomes.
  • the average particle size is more preferably 0.5 m or less, and even more preferably 0. m (lOOnm) or less.
  • Fine particles The lower limit of the particle size is not particularly limited as long as the treatment liquid is stable. In general, if the particle size of the fine particles is less than 1 nm, the stability of the treatment liquid often decreases, so the particle size of the fine particles is preferably 1 nm or more, more preferably 3 nm or more. More preferably, it is the above.
  • the solvent (dispersion medium) in which the fine particles are dispersed is appropriately selected depending on the particle size, chemical properties, etc. of the fine particles, but the corrosion resistance of the R-Fe-B porous material is not high. It is preferable to use a solvent.
  • a dispersant such as a surfactant may be added to the treatment liquid, or the fine particles may be surface-treated by force.
  • the concentration of the fine particles in the treatment liquid is set within a range of a force appropriately selected according to the particle size, chemical properties, type of solvent and dispersant, for example, from about 1% to 50% by weight.
  • the treatment liquid penetrates to the pores inside the rare earth porous material by capillary action.
  • it is useful to remove the air present in the pores inside the porous material. It is effective to carry out under normal pressure or pressurization after temporarily reducing the pressure or vacuum atmosphere.
  • processing scraps such as grinding may have clogged the pores on the surface of the porous material, which may prevent reliable impregnation. For this reason, it is preferable to clean the surface of the porous material by ultrasonic cleaning or the like before the impregnation.
  • the solvent (dispersion medium) in the treatment liquid is evaporated. Evaporation of the solvent varies depending on the type of solvent, and may evaporate sufficiently in the atmosphere at room temperature. 1S It is preferable to promote evaporation by heating and performing Z or reduced pressure as necessary.
  • the material introduced by the wet treatment should be present on the surface of the pores that do not need to fill the entire pores, but at least covers the surface of the pores. Is preferred!
  • the R—Fe—B porous material in which rare earth elements are introduced into the surface, Z, or pores by the above method is used for the purpose of improving the properties, particularly the coercive force. Further, heat treatment may be performed.
  • the temperature of the heat treatment is appropriately set according to the purpose of heating. However, when the heating temperature is 1000 ° C or higher, the aggregate structure in the R—Fe—B porous material becomes coarse and the magnetic properties are deteriorated, so the heating temperature is preferably less than 1000 ° C. .
  • the heating atmosphere is preferably carried out in a vacuum or in an inert gas atmosphere such as Ar from the viewpoint of suppressing deterioration of magnetic properties due to acid-nitridation of the R—Fe—B porous material.
  • the R-Fe-B porous material may have an intrinsic coercive force.
  • a permanent magnet material capable of exhibiting a high intrinsic coercive force (H 2) can be obtained by this step or the heat compression treatment described later.
  • a magnetization step for expressing a high intrinsic coercive force which is one of the effects of the present invention, is performed, but the timing of performing the magnetization step may be after the wet processing. preferable. When performing heat compression processing, it is preferable to perform after that processing U ,.
  • porous magnet obtained by the present invention can be produced by using the porous magnet obtained by the present invention.
  • rare earth magnet compacts and soft magnetism can be obtained by hot press molding (heat compression) a porous magnet and powdered soft magnetic material powder or soft magnetic material powder temporary compact.
  • hot press molding heat compression
  • a porous magnet and powdered soft magnetic material powder or soft magnetic material powder temporary compact A specific embodiment of a method for obtaining a molded part in which a molded body of material powder is integrated will be described.
  • porous magnets 12a ′ and 12b ′ having the shape shown in FIG. 6 (a) are prepared by the above-described method, while soft magnetic material powder (for example, iron powder or the like) is separately prepared.
  • soft magnetic material powder for example, iron powder or the like
  • a temporary compact 22 'of soft magnetic material powder shown in Fig. 6 (b) was produced.
  • This step can be performed by a known press molding method.
  • a preferable pressure is 30 OMPa or more and 1 GPa or less.
  • the density (bulk density) of the soft magnetic material powder temporary molded body 22 ' is preferably in the range of about 70% to about 90% of the true density, preferably about 75% to about 80%. Is more preferable.
  • the molding temperature is preferably about 15 ° C or more and about 40 ° C or less, and it is not necessary to perform heating or cooling.
  • the atmosphere is preferably carried out in an inert gas (including rare gas and nitrogen) atmosphere in order to prevent oxidation of the rare earth magnet powder.
  • the deformation amount (volume change rate) in the integration process is 30% or less, and a magnetic circuit component can be manufactured with high dimensional accuracy.
  • porous magnets 12a ′, 12b ′ and a temporary compact 22 ′ of soft magnetic material powder as shown in FIG. 6 (c)
  • porous magnets 12a ′, 12b ′ The soft magnetic material powder temporary compact 22 'is set in a mold and hot press-molded.
  • the porous magnets 12a ′ and 12b ′ are compressed and changed to magnet molded bodies 12a and 12b with improved density.
  • a rotor (magnetic circuit component) 100 is obtained in which a plurality of magnet compacts 12a and 12b and a soft magnetic material powder compact 22 shown in FIG. 7 are integrated.
  • a preferable pressure in the above hot press molding is 20 MPa or more and 500 MPa or less. If the pressure is lower than the above range, the bonding strength between the magnet component and the soft magnetic material powder compact may not be sufficiently obtained. If the pressure is higher than the above range, the press device itself may be deformed in the hot press process, and a large device is required to prevent this, leading to an increase in manufacturing cost. is there.
  • the molding temperature is preferably 400 ° C or higher and lower than 1000 ° C, more preferably 600 ° C or higher and 900 ° C or lower, and most preferably 700 ° C or higher and 800 ° C or lower. If the molding temperature is lower than 400 ° C, the magnet compact and the soft magnetic material powder compact may not be sufficiently densified.
  • the time for holding at the above temperature and pressure (hereinafter referred to as “molding time”) is preferably 10 seconds or more and 10 minutes or less from the viewpoint of productivity, which is preferably 10 seconds or more and 1 hour or less. More preferably it is.
  • the molding time is appropriately set in relation to the molding temperature and molding pressure. If the molding time is shorter than 10 seconds, the molded body may not be sufficiently densified, and more than 1 hour. If the length is too long, the magnetic properties may deteriorate due to the coarsening of crystal grains.
  • the hot pressing process is preferably performed in an inert gas (including rare gas and nitrogen) atmosphere in order to prevent oxidation of the rare earth magnet powder.
  • the density of the magnet compacts 12a and 12b in the rotor 100 obtained in this way is approximately 95% or more of the true density
  • the density of the compact 22 of the soft magnetic material powder is approximately 95% or more of the true density. It is.
  • a temporary compact 22 ′ of soft magnetic material powder was formed in advance separately from the porous magnets 12 a ′ and 12 b ′, and this was integrally formed by hot press forming.
  • the porous magnets 12a ′ and 12b ′ without forming the temporary molding 22 ′ of the material powder in advance and the soft magnetic material powder in the powder state can be integrated by hot press molding.
  • a process in which a temporary molded body of a soft magnetic component and a porous magnet are prepared in advance and then integrated is preferable.
  • a rapidly solidified alloy having the composition shown in Table 1 was produced by strip casting. Obtained The rapidly solidified alloy was coarsely pulverized into a powder having a particle size of 425 ⁇ m or less by the hydrogen occlusion / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having an average particle size of 4.4 m.
  • the “average particle size” is a 50% volume center particle size (D) in a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS).
  • This fine powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 20 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.5 Tesla (T).
  • the density of the green compact was calculated to be 4.19 gZcm 3 based on dimensions and unit weight.
  • the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 840 ° C in an argon stream of lOOkPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen stream of lOOkPa (atmospheric pressure). After holding for 2 hours, a hydrogen disproportionation reaction was carried out. After that, it was kept for 1 hour in an argon flow reduced to 5.3 kPa at 840 ° C to perform dehydration 'recombination treatment. Next, it was cooled to room temperature in an atmospheric pressure Ar flow to obtain a sample of the example.
  • the dimensions of the sample thus obtained were measured and compared with the dimensions before the heat treatment.
  • the shrinkage ratio in the magnetic field direction and the mold direction was calculated and the shrinkage ratio was calculated to be 1.39.
  • the shrinkage rate (%) is expressed by (dimension before heat treatment, dimension after heat treatment) ⁇ dimension before heat treatment X 100, and the shrinkage ratio is (shrinkage rate in the magnetic field direction Z shrinkage rate in the mold direction). expressed.
  • FIG. 8 is an SEM photograph showing the fracture surface of the sample.
  • the main difference between Figure 8 and Figure 1 is the magnification.
  • FIG. 8 shows powder particles A bonded to each other and voids B (pores having a major axis of 1 ⁇ m or more and 20 m or less) located between the powder particles A.
  • Powder particles A is have a texture inside the average crystal grain size 0. l i um or l i um following Nd Fe B-type crystal phase
  • the powder particles A in FIG. 8 correspond to the powder particles Al and A2 schematically shown in FIG. 3 (b), and the void B in FIG. 8 corresponds to the void B in FIG. 3 (b). .
  • Figure 8 The region C in Fig. 3 corresponds to the particle joint C in Fig. 3 (b).
  • the magnet of the example has a porous structure in which pores of 1 ⁇ to 20 / ⁇ m are dispersed.
  • a porous structure is formed by sintering powder particles with an average particle size of less than 10 m, but unlike ordinary sintered magnets, it is not densified and has a low density.
  • Such a structure can be obtained by carrying out the HDDR treatment at a temperature sufficiently lower than the normal sintering temperature (about 1100 ° C.). If the DR treatment is performed at a high temperature (1000-1150 ° C), the density of the sintered body will be improved and a porous magnet cannot be obtained. In addition, when DR treatment is performed at such high temperatures, grain growth proceeds to an abnormal level and there is a high possibility that the magnetic properties will be greatly degraded.
  • the HDDR process proceeds during the sintering process, and therefore, from the fine crystalline phase of 0.1 ⁇ ⁇ ⁇ m inside each powder particle. A collective organization is formed.
  • the texture constituting the powder particles in Fig. 8 is a region composed of relatively square fine crystals, such as region a, and a relatively rounded fine region, such as region a '. Two modes of the region composed of crystals are observed. Compared with the conventional HDD R magnetic powder mode as described in Patent Document 1, the relatively rounded fine crystals such as region a 'are not crushed after HDDR processing in the conventional HDDR magnetic powder. This is consistent with the case of individual particle surfaces. On the other hand, the region composed of relatively square crystals such as region a is consistent with the fracture surface of individual particles when the powder is crushed after HDDR processing in conventional HDDR magnetic powder. Considering these points, area a in Fig.
  • Figure 9 is a Kerr micrograph of the polished surface.
  • surrounded by curve F The part has shown the part of the space
  • the part surrounded by the curve G indicates the hard magnetic phase.
  • the density of the sample calculated from the sample dimensions and unit weight was 5.46 gZcm 3 .
  • the ground sample was magnetized with a 3.2 MAZm pulse magnetic field, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 2.
  • J is the external magnetic field H up to 2 Tesla (T) in the magnetization direction of the magnetized sample.
  • FIG. 10 is a graph showing a demagnetization curve for the present example and the comparative example.
  • the vertical axis of the graph is magnetic and the horizontal axis is external magnetic field ⁇ .
  • the comparative example shown in Fig. 10 shows that B and H of bond magnets (density 5.9 g / cm 3 ) produced by conventional methods using HDDR magnetic powder with an average particle size of about 70 ⁇ m are almost the same as the examples.
  • the demagnetization curve of the thing is shown. This bond magnet
  • the present example is superior in the squareness of the demagnetization curve as compared with the comparative example, and a high (BH) max is obtained.
  • Example 1 the porous magnet of Example 1 was pulverized in a mortar and classified in an argon atmosphere to prepare a powder having a particle size of 75 to 300 m. This powder was put into a cylindrical holder and fixed with paraffin while being oriented in a magnetic field of 800 kAZm. After magnetizing the obtained sample with a pulse magnetic field of 4.8 MAZm, the magnetic properties were measured using a vibrating sample magnetometer (VSM: Measurement was performed with an apparatus name VSM5 (manufactured by Toei Kogyo Co., Ltd.). Note that demagnetizing field correction is not performed. Table 3 shows the measurement results.
  • VSM vibrating sample magnetometer
  • J and B in the table are max r by calculation assuming that the true density of the sample is 7.6 g / cm 3
  • J is an external magnetic field H up to 2 Tesla (T) in the magnetization direction of the magnetized sample.
  • the magnet powder obtained by pulverizing the porous sintered magnet also exhibits excellent magnetic properties.
  • Such magnet powder is suitably used for bonded magnets.
  • the porous magnet of the present invention is excellent in the squareness of the demagnetization curve. Also, the shrinkage anisotropy during heat treatment is as small as 1.39 (normal sintered magnets are 2 or more). Moreover, it has a strength sufficient for machining, and can be used as a Balta magnet body without being impregnated with grease. Furthermore, even if the porous magnet is pulverized and pulverized, the coercive force ⁇ decreases little.
  • It can also be used as a magnetic powder for a windshield magnet.
  • the density of the porous magnet of Example 1 was increased using a hot press apparatus shown in FIG. Specifically, the porous magnet of Example 1 was prepared, the porous magnet was ground, and then set in a carbon die. This die was set in a hot press apparatus and compressed in a vacuum at a pressure of 50 MPa at 700 ° C.
  • the magnetic powder before the HDDR treatment has a low coercive force, it is easy to demagnetize the green compact by forming the green compact by molding it in a magnetic field.
  • the green compact since the green compact is completely demagnetized by the HDDR process, it can be heat-compressed (hot working) in a state where it is easy to handle.
  • porous magnet used in the present invention exhibits better squareness than conventional HDDR magnetic powder, it has good squareness even after heat compression for full condensation. Can be maintained.
  • porous magnets 12a ′ and 12b ′ were obtained by the same method as described in Example 1.
  • “hot press molding” was performed on these porous magnets 12a ′ and 12b ′ and the iron core temporary molded body 22 ′. To do.
  • the hot press apparatus shown in Fig. 11 (a) includes a die 32 having a hole capable of forming a cavity having a predetermined shape, and a lower punch 42a capable of moving in the hole of the die 32. 42b, a center shaft 42c, a lower ram 52 that supports them and can be moved up and down as needed, and upper punches 44a and 44b that can move in the holes of the die 32, and support them. And an upper ram 54 that can be moved up and down as needed.
  • the lower punch 42a and the upper punch 44a are for pressing the porous magnet 12a '12b', and the lower punch 42b and the upper punch 44b are for pressing the iron core temporary molded body 22 '.
  • a press device (sometimes referred to as a “multi-axis press device”) that can pressurize the porous magnet 12a ′ 12b ′ and the iron core temporary molded body 22 ′ independently. Therefore, it is preferable to perform a pressing process suitable for each temporary molded body because a difference in the amount of compressive deformation between the temporary molded bodies, which is large in the initial stage of compression, can be absorbed.
  • the hot press device includes a heating device, and the lower ram 52, the die 32, the upper and lower punches 42a, 42b, 44a, 44b and the center shaft 42c are heated to a predetermined temperature. Is done.
  • the porous magnets 12a ′ and 12b ′ and the iron core temporary molded body 22 ′ are assembled at predetermined positions of the die 32.
  • the porous magnets 12a ′ and 12b ′ and the iron core temporary molded body 22 ′ are assembled as shown in FIG. 6 (c), and the center shaft 42c passes through the hole 22a ′ of the iron core temporary molded body. .
  • the porous punches 12a ′ and 12b ′ and the iron core temporary molded body are moved by moving the lower punches 42a and 42b and the upper punches 44a and 44b up and down. 22 'and pressurize.
  • the pressure is 2tonZcm 2 and pressurizes for 5 minutes.
  • the magnet parts 12a and 12b and the iron core (soft magnetic part) 22 are moved by moving the lower punches 42a and 42b and the upper punches 44a and 44b up and down. Take out the rotor 100 with the die 32 from the die 32.
  • the rotor 100 is obtained by cooling to room temperature. After this, there is no need to perform a sintering process.
  • the density of the magnetic parts 12a and 12b prototyped by the above manufacturing method is, for example, 7.4 gZcm 3 , 97.4% of the true density (7.6 gZcm 3 ), which is equivalent to the density of a normal sintered magnet. there were.
  • the density of the iron core 22 was 7.7 g / cm 3 , which was 98.7% of the true density (7.8 gZcm 3 ).
  • the prototype rotor did not break even at 33,000 revolutions, for example, and had sufficient joint strength.
  • the joint strength between the magnet parts 12a and 12b and the iron core 22 measured by the shear test was 57 MPa.
  • the surface magnetic flux density was 0.42T.
  • the assembly process shown in Fig. 11 (a) is performed in a line of a die and a punch set prepared separately from the hot press machine, line 1, no crystal growth occurs! Preheat to about 600 ° C, for example.
  • the set is moved to a hot press machine where it is heated to the optimum temperature (for example, 800 ° C) in a short time by high-frequency induction heating or current heating, and then integrated for a short time.
  • the press a plurality of die and punch sets are prepared, and a plurality of treatments are performed using, for example, a pusher furnace method in a reduced pressure or inert gas atmosphere from the preliminary heating process to the integrated press process. More efficient production is possible by continuously performing the above.
  • the same porous material as the porous magnet of Example 1 is prepared. Then this porous The material was processed to a size of 7 mm X 7 mm X 5 mm by a peripheral cutting machine and grinding machine. Cracking and chipping of the porous material due to this processing were not observed.
  • the porous material was immersed in the nanoparticle-dispersed colloidal solution.
  • This colloidal solution was a colloidal solution in which Co nanoparticles were dispersed.
  • the average particle size of Co particles was about 10; ⁇ ⁇ , the solvent was tetradecane, and the solid content concentration was 60% by mass.
  • the nanoparticle-dispersed colloid solution was placed in a glass container, inserted into a vacuum desiccator with the porous material immersed therein, and placed under reduced pressure. The atmospheric pressure during the treatment was adjusted to about 130Pa.
  • Bubbles were generated in the porous material and the nanoparticle-dispersed colloidal solution due to the reduced pressure. After the generation of bubbles stopped, the pressure was returned to atmospheric pressure. Thereafter, the porous material was inserted into the vacuum dryer, heated to 200 ° C under an atmospheric pressure of about 130 Pa, the solvent was evaporated, and drying was performed. Thus, a sample of the composite Balta material according to the present invention was obtained.
  • the composite Balta material obtained by the above method was set in a hot press apparatus and compressed in a vacuum at a pressure of 50 MPa at 700 ° C.
  • the density of the full-density composite Balta magnet after hot pressing was 7.73 g / cm 3 .
  • the sample of this example was magnetized with a pulse magnetic field of 3.2 MAZm, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 5.
  • the entire porous material was immersed in the nanoparticle-dispersed colloidal solution.
  • the solution can permeate the inside of the porous magnet material using the capillary phenomenon, the porous material Only a part of the particle may be immersed in the nanoparticle-dispersed colloidal solution.
  • a porous material was produced by the same method as in Example 1 above.
  • a magnet that was fully condensed by the hot forming method without impregnating the porous material was produced, and the characteristics were evaluated.
  • the obtained porous material was set in a hot press apparatus and compressed in a vacuum at a pressure of 50 MPa under the condition of 700 ° C.
  • the density of the fluence magnet after hot pressing was 7.58 gZcm 3 .
  • the obtained full-magnet magnet was magnetized with a pulse magnetic field of 3.2 MAZm or more, and the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.). Table 6 shows.
  • the composite Balta magnet (composite magnet) produced by using the method of the present invention so as to have the above-mentioned force is also used as it is by the hot forming method without impregnating the porous material.
  • the residual magnetic flux density B was improved compared to the magnet of the reference example.
  • the composite Balta magnet is a composite magnet in which a hard magnetic phase (Nd Fe B-type compound) and a soft magnetic phase (metal nanoparticles) are mixed.
  • the same porous material as the porous magnet of Example 1 is prepared.
  • this porous material was processed into a size of 20 mm ⁇ 20 mm ⁇ 20 mm by a peripheral blade cutting machine and a grinding machine. No cracking or chipping of the porous material due to this processing was observed. After performing ultrasonic cleaning on the porous material, the porous material was immersed in the DyF fine particle dispersion.
  • Fine particle dispersion is placed in a glass container and is true with the porous material crushed.
  • Bubbles were generated in the porous material and the DyF fine particle dispersion by the reduced pressure. Bubble generation
  • the composite Balta material obtained by the above method was set in a hot press apparatus and compressed in a vacuum at a pressure of 50 MPa at 700 ° C.
  • the density of the full-density composite Balta magnet after hot pressing was 7.55 gZcm 3 .
  • Rapidly solidified alloys B to F having the target compositions shown in Table 8 below were produced by strip casting.
  • the obtained rapidly solidified alloy was coarsely and finely pulverized and molded in a magnetic field using the same method as in Example 1 to produce a green compact with a density of 4.18 to 4.22 gZcm 3 .
  • the average particle size of the fine powder is as shown in Table 8 (the measurement method is the same as in Example 1, and the 50% center particle size (D) is the average particle size).
  • the above-mentioned HDDR treatment was performed on the green compact.
  • the green compact is heated to an HD temperature shown in Table 8 in an argon stream of 100 kPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen stream of lOOkPa (atmospheric pressure).
  • the hydrogenation disproportionation reaction was carried out while maintaining the HD temperature and time shown in Fig. 8.
  • it was held for 1 hour in an argon stream depressurized to 5.3 kPa to perform dehydrogenation and recombination reactions.
  • the sample was cooled to room temperature in an atmospheric argon flow to obtain a sample of the example. As a result of observing the fracture surface of each obtained sample, it was confirmed that it was composed of fine crystal textures and pores having the same aspect as the photograph in FIG.
  • Rapidly solidified alloys G to L having the target compositions shown in Table 10 below were produced by strip casting.
  • the average particle diameter of the fine powder is as shown in Table 10 (the measurement method is the same as in Example 1, and the 50% central particle diameter (D) is the average particle diameter).
  • the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 860 ° C in a 100 kPa (atmospheric pressure) argon flow, and then the atmosphere is switched to a lOOkPa (atmospheric pressure) hydrogen flow at 860 ° C. The hydrogenation 'disproportionation reaction was performed for 30 minutes. After that, keep it at 860 ° C for 1 hour in argon flow reduced to 5.3kPa. , Dehydrogenation and recombination reactions were performed. Next, the sample was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example. As a result of observing the fracture surface of each of the obtained samples, it was confirmed that it was composed of fine crystal textures and pores having the same form as the photograph in Fig. 1.
  • the surface of the sample was covered with a surface grinder, and the sample size after processing and the density of the sample were calculated from the single gravity. The results are shown in Table 11. In addition, it was confirmed that the sample had sufficient mechanical strength because there was no breakage of the magnet due to processing.
  • the ground sample was magnetized with a 3.2 MAZm pulse magnetic field, and the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 11. In Table 11, J is 2 Tesla max in the magnetization direction of the magnetized sample.
  • Rapidly solidified alloy M having the target composition shown in Table 12 below was produced by strip casting.
  • the obtained rapidly solidified alloy was coarsely pulverized, finely pulverized and molded in a magnetic field using the same method as in Example 1 to produce a green compact with a density of 4.20 gZcm 3 .
  • the average particle size of the fine powder is as shown in Table 12 (the measurement method is the same as in Example 1, and the 50% center particle size (D
  • the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 880 ° C in an argon stream of 100 kPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen stream of lOOkPa (atmospheric pressure), and then at 880 ° C. Hydrogenation * disproportionation reaction was performed by holding for 30 minutes. Thereafter, the mixture was kept at 880 ° C for 1 hour in an argon flow reduced to 5.3 kPa, and dehydrogenation and recombination reaction were performed. Next, the sample was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example. The results obtained by observing the fracture surface of the individual samples, was sure to be composed of texture and pores of the fine crystals having a similar manner to pictures 1 0
  • Rapidly solidified alloys N to Q having the target compositions shown in Table 14 below were produced by strip casting.
  • the obtained rapidly solidified alloy was coarsely and finely pulverized and molded in a magnetic field using the same method as in Example 1 to produce a green compact with a density of 4.20 g / cm 3 .
  • the average particle size of the fine powder is as shown in Table 14 (the measurement method is the same as in Example 1, and the 50% central particle size (D) is the average particle size).
  • the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 860 ° C in a 100 kPa (atmospheric pressure) argon flow, and then the atmosphere is switched to a lOOkPa (atmospheric pressure) hydrogen flow at 860 ° C. Hydrogenation * disproportionation reaction was carried out for 2 hours. After that, dehydrogenation and recombination reaction were carried out while maintaining at 860 ° C for 1 hour in an argon flow reduced to 5.3 kPa. Next, the sample was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example. The results obtained by observing the fracture surface of the individual samples, was sure to be composed of texture and pores of the fine crystals having a similar manner to pictures 1 0
  • the surface of the sample is covered with a surface grinder, and the processed sample components are analyzed with an ICP emission spectroscopic analyzer (device name: ICPV-1017 (manufactured by Shimadzu Corporation)).
  • Table 15 shows the results of evaluating the oxygen content with a gas analyzer (equipment name: EGMA-620W (manufactured by Horiba, Ltd.)) and the surplus rare earth content R ′ for which the resultant force was also calculated. In calculating the amount of surplus rare earth, all impurities other than the elements shown in Table 15 were calculated as Fe. [0260] [Table 15]
  • Alloys O and R having the target composition shown in Table 17 below were prepared. Alloy O is the same as Alloy O shown in Table 15.
  • alloy R is an alloy with the same target composition as alloy N, melted by high frequency melting method, and then ingot prepared by water-cooling mold and heat-treated in homogeneous atmosphere at 1000 ° C for 8 hours in Ar atmosphere. is there. Both alloys are the same as in Example 1. Using the same method, coarse pulverization, fine pulverization, and molding in a magnetic field were performed to produce a green compact having a density of 4.18 to 4.20 g / cm 3 . The average particle size of the fine powder is as shown in Table 17 (the measurement method is the same as in Example 1, and the 50% center particle size (D) is the average particle size).
  • the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 860 ° C in a 100 kPa (atmospheric pressure) argon flow, and then the atmosphere is switched to a lOOkPa (atmospheric pressure) hydrogen flow at 860 ° C. Hydrogenation * disproportionation reaction was carried out for 2 hours. After that, dehydrogenation and recombination reaction were carried out while maintaining at 860 ° C for 1 hour in an argon flow reduced to 5.3 kPa. Next, the sample was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example. The results obtained by observing the fracture surface of the individual samples, was sure to be composed of texture and pores of the fine crystals having a similar manner to pictures 1 0
  • a porous material (magnet) produced by the same method as in Example 1 was processed into a size of 7 mm ⁇ 7 mm ⁇ 5 mm by a peripheral blade cutting machine and a grinding machine. No cracking or chipping of the porous material due to this processing was observed.
  • Perform ultrasonic cleaning on porous materials Thereafter, the porous material was immersed in the nanoparticle-dispersed colloidal solution.
  • This colloidal solution is a colloidal solution in which Fe nanoparticles with oxidized surfaces are dispersed.
  • the average particle size of Fe particles is about 7 nm, the solvent is dodecane, and the solid content concentration is 1.5% by volume. .
  • the nanoparticle dispersion solution was placed in a glass container, inserted into a vacuum desiccator with the porous material immersed therein, and placed under reduced pressure. The atmospheric pressure during the treatment was adjusted to about 130 kPa.
  • Bubbles were generated in the porous material and the nanoparticle-dispersed colloidal solution due to the reduced pressure. After the generation of bubbles stopped, the pressure was returned to atmospheric pressure. Thereafter, the porous material was inserted into the vacuum dryer, heated to 200 ° C under an atmospheric pressure of about 130 Pa, the solvent was evaporated, and drying was performed. Thus, a sample of the composite Balta material according to the present invention was obtained.
  • Fig. 12 shows the results of observation of the fracture surface of the obtained sample with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • region D fracture surface of porous material
  • region E region of porous material
  • EDX energy dispersive detector
  • the porous magnet of the present invention has high magnetic properties, particularly excellent squareness compared to the bonded magnet, and has a higher degree of freedom in shape design than conventional sintered magnets. It can be suitably used for various applications in which bonded magnets and sintered magnets have been used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Disclosed is an R-Fe-B porous magnet having an aggregate structure of Nd2Fe14B crystal phases having an average crystal grain size of not less than 0.1 μm but not more than 1 μm. At least a part of the R-Fe-B porous magnet has a porous structure comprising fine pores having a length of not less than 1 μm but not more than 20 μm.

Description

明 細 書  Specification
R_Fe_B系多孔質磁石およびその製造方法  R_Fe_B porous magnet and method for producing the same
技術分野  Technical field
[0001] 本発明は、 HDDR法を用いて作製される R— Fe— B系多孔質磁石およびその製 造方法に関する。  [0001] The present invention relates to an R—Fe—B based porous magnet produced using the HDDR method and a method for producing the same.
背景技術  Background art
[0002] 高性能永久磁石として代表的な R—Fe— B系希土類磁石 (Rは希土類元素、 Feは 鉄、 Bはホウ素)は、三元系正方晶化合物である R Fe B相を主相として含む組織を  [0002] R-Fe-B rare earth magnets (R is a rare earth element, Fe is iron, and B is boron), which is a typical high-performance permanent magnet, is mainly composed of the ternary tetragonal compound R Fe B phase. Including the organization as
2 14  2 14
有し、優れた磁気特性を発揮する。このような R—Fe— B系希土類磁石は、焼結磁石 とボンド磁石に大別される。焼結磁石は、 R—Fe— B系磁石合金の微粉末 (平均粒 径:数 m)をプレス装置で圧縮成形した後、焼結することによって製造される。これ に対して、ボンド磁石は、通常 R—Fe— B系磁石合金の粉末 (粒径:例えば 100 m 程度)と結合樹脂との混合物 (コンパゥンド)を圧縮成形したり、射出成形することによ つて製造される。  It has excellent magnetic properties. Such R-Fe-B rare earth magnets are roughly classified into sintered magnets and bonded magnets. The sintered magnet is manufactured by compressing and molding a fine powder (average particle size: several m) of an R—Fe—B magnet alloy with a press machine. In contrast, bonded magnets are usually produced by compression molding or injection molding a mixture (compound) of R-Fe-B magnet alloy powder (particle size: about 100 m, for example) and a binder resin. Manufactured.
[0003] 焼結磁石の場合、比較的粒径の小さい粉末を用いるため、個々の粉末粒子が磁気 的異方性を有している。このため、プレス装置で粉末の圧縮成形を行うとき、粉末に 対して、配向磁界を印加し、それによつて、粉末粒子が磁界の向きに配向した圧粉 体を作製する。  [0003] In the case of a sintered magnet, a powder having a relatively small particle size is used, so that individual powder particles have magnetic anisotropy. For this reason, when the powder is compression-molded with a press device, an orientation magnetic field is applied to the powder, thereby producing a green compact in which the powder particles are oriented in the direction of the magnetic field.
[0004] このようにして得られた圧粉体は、通常 1000°C〜1200°Cの温度で焼結され、必要 に応じて熱処理することにより、永久磁石となる。焼結時の雰囲気としては、希土類元 素の酸ィ匕を抑制するため、真空雰囲気や不活性雰囲気が主に用いられる。  [0004] The green compact obtained in this way is usually sintered at a temperature of 1000 ° C to 1200 ° C, and becomes a permanent magnet by heat treatment as necessary. As an atmosphere during sintering, a vacuum atmosphere or an inert atmosphere is mainly used in order to suppress the oxidation of rare earth elements.
[0005] 一方、ボンド磁石において、磁気的な異方性を発現するためには、用いる粉末粒 子内の硬磁性相の容易磁ィ匕軸が一方向に配列していることが必要である。また、実 用上必要な保磁力を得るためには、粉末粒子を構成する硬磁性相の結晶粒を単磁 区臨界粒径程度まで小さくすることが必要となる。従って、優れた異方性ボンド磁石 を作製するためには、これらの条件を両立した希土類合金粉末を得なければならな い。 [0006] 異方性ボンド磁石用の希土類合金粉末を製造するため、現在 HDDR (Hydrogen ation― Disproportionation― Desorption― Recombination)処 法力—般的 に採用される。「HDDR」は水素化 (Hydrogenation)および不均化(Disproportio nation)と、脱水素(Desorption)および再結合 (Recombination)とを順次実行す るプロセスを意味している。公知の HDDR処理によれば、 R— Fe— B系合金のインゴ ットまたは粉末を、 Hガス雰囲気または Hガスと不活性ガスとの混合雰囲気中で温 [0005] On the other hand, in order to develop magnetic anisotropy in the bonded magnet, it is necessary that the easy magnetic axis of the hard magnetic phase in the powder particles to be used is aligned in one direction. . In order to obtain a coercive force necessary for practical use, it is necessary to reduce the crystal grains of the hard magnetic phase constituting the powder particles to a single-domain critical particle size. Therefore, in order to produce an excellent anisotropic bonded magnet, it is necessary to obtain a rare earth alloy powder satisfying these conditions. [0006] Currently, HDDR (Hydrogenation- Disproportionation- Desorption- Recombination) processing power is generally adopted to produce rare earth alloy powders for anisotropic bonded magnets. “HDDR” means a process that sequentially executes hydrogenation and disproportio nation, desorption and recombination. According to the known HDDR treatment, an R—Fe—B alloy ingot or powder is heated in an H gas atmosphere or a mixed atmosphere of an H gas and an inert gas.
2 2  twenty two
度 500°C〜1000°Cに保持し、それによつて上記インゴットまたは粉末に水素を吸蔵 させた後、例えば H圧力が 13Pa以下の真空雰囲気、または H分圧が 13Pa以下の  The temperature is maintained at 500 ° C to 1000 ° C, and thus the above ingot or powder is occluded with hydrogen. For example, the H pressure is 13 Pa or less, or the H partial pressure is 13 Pa or less.
2 2  twenty two
不活性雰囲気になるまで温度 500°C〜1000°Cで脱水素処理し、次 、で冷却するこ とを特徴としている。  It is characterized by dehydrogenation treatment at a temperature of 500 ° C to 1000 ° C until an inert atmosphere is reached, and then cooling with.
[0007] 上記処理において、典型的には、次のような反応が進行する。すなわち、前記水素 吸蔵を起こすための熱処理によって、水素化ならびに再結合反応 (双方を合わせて「 HD反応」と呼ぶ。反応式の例: Nd Fe B + 2H→2NdH + 12Fe + Fe B)が進行  [0007] In the above process, the following reaction typically proceeds. In other words, the hydrogenation and recombination reactions (both are collectively referred to as the “HD reaction.” Example of reaction formula: Nd Fe B + 2H → 2NdH + 12Fe + Fe B) progresses by the heat treatment to cause the hydrogen storage.
2 14 2 2 2 し微細組織が形成される。次 、で脱水素処理をおこすための熱処理を行うことにより 2 14 2 2 2 and a fine structure is formed. Next, by performing heat treatment for dehydrogenation treatment in
、脱水素ならびに不均化反応 (双方を合わせて「DR反応」と呼ぶ。反応式の例: 2Nd H + 12Fe + Fe B→Nd Fe B + 2H )が起こり、微細な R Fe B結晶相を含む合金, Dehydrogenation and disproportionation reaction (both referred to as “DR reaction”. Example of reaction formula: 2Nd H + 12Fe + Fe B → Nd Fe B + 2H) occurs, and the fine R Fe B crystal phase Including alloy
2 2 2 14 2 2 14 2 2 2 14 2 2 14
が得られる。  Is obtained.
[0008] HDDR処理を施して製造された R— Fe— B系合金粉末は、大きな保磁力を有し、 磁気的な異方性を示している。このような性質を有する理由は、金属組織が実質的 に 0. 1 μ m〜l μ mと非常に微細で、かつ、反応条件や組成を適切に選択すること によって、容易磁ィ匕軸が一方向にそろった結晶の集合体となるためである。より詳細 には、 HDDR処理によって得られる極微細結晶の粒径が正方晶 R Fe B系化合物  [0008] The R—Fe—B alloy powder produced by the HDDR treatment has a large coercive force and exhibits magnetic anisotropy. The reason for having such a property is that the metal structure is practically very fine, 0.1 μm to 1 μm, and the easy magnetic axis is improved by appropriately selecting the reaction conditions and composition. This is because it becomes an aggregate of crystals aligned in one direction. More specifically, the grain size of ultrafine crystals obtained by HDDR treatment is tetragonal R Fe B-based compounds.
2 14  2 14
の単磁区臨界粒径に近いために高い保磁力を発揮する。この正方晶 R Fe B系化  It exhibits a high coercive force because it is close to the single-domain critical particle size. This tetragonal R Fe B system
2 14 合物の非常に微細な結晶の集合体を「再結晶集合組織」と呼ぶ。 HDDR処理を施 すことによって、再結合集合組織をもつ R—Fe— B系合金粉末を製造する方法は、 例えば、特許文献 1や特許文献 2に開示されて ヽる。  An aggregate of very fine crystals of 2 14 compound is called “recrystallized texture”. Methods for producing R—Fe—B alloy powder having a recombination texture by performing HDDR treatment are disclosed in, for example, Patent Document 1 and Patent Document 2.
[0009] HDDR処理によって作製された磁性粉末 (以下、「HDDR粉末」と称する)は、通 常、結合榭脂 (バインダ)と混合され、混合物 (コンパウンド)にされた後、磁界中で圧 縮成形や射出成形することによって、異方性ボンド磁石を形成することになる。 HDD R粉末は、通常、 HDDR処理後に凝集するため、異方性ボンド磁石として用いるた めに、凝集を解いて粉末として用いられる。例えば、特許文献 1では、得られる磁石 粉末の粒径の好ましい範囲を、 2 m〜500 mとし、実施例 1において、平均粒径 3. 8 mの粉末を HDDR処理して得られた凝集体を乳鉢で解砕して、平均粒径 5. 8 μ mとした粉末を得た後、ビスマレイミドトリアジン榭脂と混合して圧縮成形すること により、ボンド磁石を作製している。 [0009] Magnetic powder produced by HDDR treatment (hereinafter referred to as “HDDR powder”) is usually mixed with a binder resin (binder) to form a mixture (compound), and then subjected to pressure in a magnetic field. An anisotropic bonded magnet is formed by shrink molding or injection molding. Since HDDR powder usually aggregates after HDDR treatment, it is used as a powder after deaggregation for use as an anisotropic bonded magnet. For example, in Patent Document 1, the preferred range of the particle size of the obtained magnet powder is 2 m to 500 m, and in Example 1, an aggregate obtained by HDDR treatment of powder having an average particle size of 3.8 m After the powder was crushed in a mortar to obtain a powder with an average particle size of 5.8 μm, it was mixed with bismaleimide triazine resin and compression molded to produce a bonded magnet.
[0010] また、 HDDR粉末を配向した後、ホットプレスや熱間静水圧プレス(HIP)などの熱 間成形法を用いてバルタ化する技術が提案されており、例えば、特許文献 3に開示 されている。熱間成形法を用いることにより、低温で緻密化することができるため、 H DDR粉末が有する再結晶集合組織を保ったままバルタ磁石を作製することができる [0010] Further, a technique has been proposed in which HDDR powder is oriented and then barized using a hot forming method such as hot pressing or hot isostatic pressing (HIP), which is disclosed in Patent Document 3, for example. ing. By using the hot forming method, it can be densified at a low temperature, so that a Balta magnet can be produced while maintaining the recrystallized texture of H DDR powder.
[0011] さらに、 HDDR法の特徴を用いた R— Fe— B系永久磁石の製造方法が種々提案 されている。例えば、特許文献 4では、高周波溶解炉で溶解してできた R— Fe— B系 合金を、必要に応じて溶体化処理を行なってから冷却後粉砕し、ジェットミルなどでこ れを 1〜 10 mに粉砕した後、磁界中で成形を行い、その後、 1000°C〜1140°Cの 高真空中あるいは不活性雰囲気中にて焼結を行なった後、 600°C〜1100°Cの範囲 の水素雰囲気中にて保持し、引き続き高真空中で熱処理を行うことにより、主相が 0 . 01〜1 mに微細化することが開示されている。 [0011] Further, various methods for producing R-Fe-B permanent magnets using the characteristics of the HDDR method have been proposed. For example, in Patent Document 4, an R—Fe—B alloy obtained by melting in a high-frequency melting furnace is subjected to solution treatment as necessary, and then cooled and pulverized, and this is then treated with a jet mill or the like. After grinding to 10 m, molding in a magnetic field, followed by sintering in a high vacuum of 1000 ° C to 1140 ° C or in an inert atmosphere, then in the range of 600 ° C to 1100 ° C It is disclosed that the main phase is refined to 0.01 to 1 m by holding in a hydrogen atmosphere and subsequently performing heat treatment in a high vacuum.
[0012] 特許文献 5が開示する方法では、まず、均質化処理した合金をジェットミルなどの粉 砕機で粉砕して得た 10 m未満の微粉体を磁界中で成形し、圧粉体を作製する。 その後、圧粉体に対し、水素中で 600°C〜1000°Cの温度で処理した後、 1000°C〜 1150°Cの温度で処理する。圧粉体に対して行う処理は、 HDDR処理に相当するが 、 DR処理の温度が高い。特許文献 5の方法によれば、高温の DR処理により焼結が 進行するため、圧粉体がそのまま緻密に焼結される。特許文献 5には、高密度の焼 結体を形成するため、 1000°C以上の温度で焼結を行うことが必要であると記載され ている。  [0012] In the method disclosed in Patent Document 5, first, a fine powder of less than 10 m obtained by pulverizing a homogenized alloy with a pulverizer such as a jet mill is formed in a magnetic field to produce a green compact. To do. Thereafter, the green compact is treated in hydrogen at a temperature of 600 ° C to 1000 ° C and then at a temperature of 1000 ° C to 1150 ° C. The processing performed on the green compact corresponds to HDDR processing, but the temperature of DR processing is high. According to the method of Patent Document 5, sintering proceeds by high-temperature DR treatment, so that the green compact is sintered as it is. Patent Document 5 describes that it is necessary to perform sintering at a temperature of 1000 ° C. or higher in order to form a high-density sintered body.
[0013] 一方、特許文献 6が開示する方法では、まず、水素吸蔵崩壊法により平均粒径 50 〜500 /z mに粗粉砕した後、その粗粉砕粉を所定形状に成形 (必要に応じて磁界中 成形)し、圧粉体を作製する。その後、圧粉体に対して公知の HDDR処理を行い、 得られる圧粉体に榭脂含浸または榭脂浸漬を行うことにより、ボンド磁石が製造され る。 [0013] On the other hand, in the method disclosed in Patent Document 6, first, the average particle size of 50 is determined by the hydrogen storage decay method. After roughly pulverizing to ~ 500 / zm, the coarsely pulverized powder is formed into a predetermined shape (molded in a magnetic field as necessary) to produce a green compact. Thereafter, a known HDDR treatment is performed on the green compact, and the resultant green compact is impregnated with a resin or a resin so as to produce a bonded magnet.
[0014] 特許文献 5、 6に開示されている方法では、いずれの場合も、圧粉体に対する HD DR処理を行っている。しかし、特許文献 5の方法では、高温焼結による緻密化によ つて機械的強度を高めるのに対して、特許文献 6の方法では、榭脂を用いて機械的 強度を高めている。  [0014] In any of the methods disclosed in Patent Documents 5 and 6, HD DR treatment is performed on the green compact. However, in the method of Patent Document 5, the mechanical strength is increased by densification by high-temperature sintering, whereas in the method of Patent Document 6, the mechanical strength is increased by using a resin.
特許文献 1:特開平 1 132106号公報  Patent Document 1: Japanese Patent Laid-Open No. 1132106
特許文献 2 :特開平 2— 4901号公報  Patent Document 2: Japanese Patent Laid-Open No. 2-4901
特許文献 3:特開平 4— 253304号公報  Patent Document 3: Japanese Patent Laid-Open No. 4-253304
特許文献 4:特開平 4 - 165012号公報  Patent Document 4: Japanese Patent Laid-Open No. 4-165012
特許文献 5:特開平 6— 112027号公報  Patent Document 5: Japanese Patent Laid-Open No. 6-112027
特許文献 6:特開平 9 - 148163号公報  Patent Document 6: Japanese Patent Laid-Open No. 9-148163
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] R— Fe— B系希土類焼結磁石は、ボンド磁石に比べて優れた磁気特性を得ること ができる力 作製可能な形状に制約がある。その理由の一つとして、焼結時における 収縮の異方性により、所望の形状を得ることが困難であることが挙げられる。具体的 には、配向磁界に平行な方向の収縮率が、配向磁界に垂直な方向の収縮率よりも 大きぐその比が 2を越える大きな値となる。ここで、「収縮率」は、(「焼結前の寸法」 「焼結後の寸法」) ÷「焼結前の寸法」によって規定される。なお、本明細書では、 配向磁界に平行な方向を「配向方向」と称し、「配向方向」に垂直な方向を「金型方 向」と称することにする。 [0015] The R—Fe—B rare earth sintered magnet has a limitation in the shape capable of producing a force capable of obtaining superior magnetic properties as compared with a bonded magnet. One reason is that it is difficult to obtain a desired shape due to the shrinkage anisotropy during sintering. Specifically, the shrinkage rate in the direction parallel to the orientation magnetic field is larger than the shrinkage rate in the direction perpendicular to the orientation magnetic field, and the ratio exceeds 2. Here, the “shrinkage ratio” is defined by (“dimension before sintering” “dimension after sintering”) ÷ “dimension before sintering”. In this specification, a direction parallel to the orientation magnetic field is referred to as “orientation direction”, and a direction perpendicular to the “orientation direction” is referred to as “mold direction”.
[0016] 一方、 R—Fe— B系ボンド磁石では、磁気特性は焼結磁石より低いものの、焼結磁 石で作製困難な形状の磁石を比較的容易に作製することができる。特に異方性磁粉 を用いて作製した異方性ボンド磁石は、比較的高い磁気特性が得られるため、モー タなどへの応用が期待されている。 R— Fe— B系の異方性磁粉は、 HDDR法によつ て得ることができる。 HDDR法によって得られた異方性磁粉 (HDDR磁粉)の平均粒 子径は通常数十 m力 数百; z mの範囲内にあり、結合樹脂と混鍊された後、成形 される。しかし、 HDDR磁粉は成形時に印加される圧力によって割れやすい。その 結果、磁気特性が低下し、従来法によって得られるボンド磁石は用いる磁粉の 60% 程度の (BH) [0016] On the other hand, an R—Fe—B based bonded magnet has a magnetic property lower than that of a sintered magnet, but a magnet having a shape that is difficult to produce with a sintered magnet can be produced relatively easily. In particular, anisotropic bonded magnets made with anisotropic magnetic powder are expected to be applied to motors because they have relatively high magnetic properties. R-Fe-B-based anisotropic magnetic powder is produced by the HDDR method. Can be obtained. The average particle diameter of anisotropic magnetic powder (HDDR magnetic powder) obtained by the HDDR method is usually in the range of several tens of m to several hundreds of zm; after being mixed with a binder resin, it is molded. However, HDDR magnetic powder is susceptible to cracking due to the pressure applied during molding. As a result, the magnetic properties deteriorated, and the bonded magnet obtained by the conventional method is about 60% of the magnetic powder used (BH).
maxし力得られない。  I can't get power.
[0017] さらに、従来の R—Fe— B系異方性ボンド磁石では、減磁曲線 (ヒステリシス曲線の 第 2象限部分)の角型性が悪いという問題もある。これが耐熱性の悪化の一因となつ ており、 R—Fe— B系焼結磁石よりも保磁力 Hを高くしないと、高い耐熱性が得られ ない。しかし、一方で保磁力 Hを高くすると、着磁特性の悪ィ匕を招くため、磁気回路 cj  Furthermore, the conventional R—Fe—B based anisotropic bonded magnet has a problem that the demagnetization curve (second quadrant portion of the hysteresis curve) has poor squareness. This contributes to the deterioration of heat resistance, and high heat resistance cannot be obtained unless the coercive force H is set higher than that of the R—Fe—B based sintered magnet. However, if the coercive force H is increased, the magnetic characteristics cj
の設計にぉ 、て制約を与えてしまう。  The design of this would be constrained.
[0018] 特許文献 3等に記載されているように、磁界中で HDDR粉末を配向した後、ホット プレスなどの熱間成形法を用いてバルタ化する製造方法では、磁石形状が金型形 状で決定されるため、焼結磁石で問題となる収縮の異方性の問題は本質的に生じに くい。しかし、熱間成形法は生産性に極めて乏しいため、製造コストの上昇を招き、例 えば汎用のモータ用途として利用可能なコストで大量生産するのは困難である。  [0018] As described in Patent Document 3 and the like, in the manufacturing method in which the HDDR powder is oriented in a magnetic field and then subjected to hot forming using a hot forming method such as hot pressing, the magnet shape is a mold shape. Therefore, the problem of shrinkage anisotropy, which is a problem with sintered magnets, is essentially difficult to occur. However, since the hot forming method is extremely poor in productivity, it causes an increase in manufacturing cost. For example, it is difficult to mass-produce at a cost that can be used as a general-purpose motor.
[0019] 特許文献 4の製造方法では、焼結体に対して HDDR処理を施すことにより、主相を 微細化する。しかし、 HDDR反応では HD反応や DR反応で体積変化が生じるため、 焼結体に対して HDDR処理を行うときに割れが発生しやすく、高!、歩留まりで生産 できないという問題がある。また、すでに緻密化されたバルタ体 (焼結体)に対して H DDR処理を行うため、 HD反応に必須である水素の拡散経路が限られ、磁石内での 組織の不均質性を招いたり、処理に長時間を要したりし、結果的に作製できる磁石の 大きさが制約されてしまう。  [0019] In the manufacturing method of Patent Document 4, the main phase is refined by subjecting the sintered body to HDDR treatment. However, in the HDDR reaction, volume changes occur in the HD reaction and DR reaction, so cracking is likely to occur when HDDR processing is performed on the sintered body, and there is a problem that it cannot be produced with high yield. In addition, since H DDR treatment is applied to the already compacted Balta body (sintered body), the diffusion path of hydrogen, which is essential for the HD reaction, is limited, leading to inhomogeneous structure in the magnet. The processing takes a long time, and as a result, the size of the magnet that can be produced is limited.
[0020] 特許文献 5には、一般的な R—Fe— B焼結磁石よりも高い磁気特性が得られると記 載されている力 一般的な焼結磁石と同様に 1000°C以上の高温で焼結が行われる ため、収縮の異方性が顕在化する。このため、作製可能な形状に制限が生じる点で は、本質的に焼結磁石と同様の問題を有している。さらに、本発明者の検討によれ ば、 DR処理において 1000°C以上で焼結を行うと、微細な結晶粒を維持したまま緻 密化することが困難であり、むしろ異常粒成長が顕著に起こってしまうため、通常の 焼結磁石よりも磁気特性が低下してしまう場合が多い。 [0020] Patent Document 5 states that magnetic properties higher than that of a general R-Fe-B sintered magnet are obtained. As with a general sintered magnet, a high temperature of 1000 ° C or higher. Since sintering is performed at, shrinkage anisotropy becomes apparent. For this reason, it has essentially the same problem as a sintered magnet in that the shape that can be produced is limited. Further, according to the study of the present inventor, if sintering is performed at 1000 ° C. or higher in the DR treatment, it is difficult to densify while maintaining fine crystal grains, and abnormal grain growth is rather remarkable. Because it will happen, normal In many cases, the magnetic properties are deteriorated compared with the sintered magnet.
[0021] 特許文献 6の方法は、従来の R— Fe— B系異方性ボンド磁石の製造方法が有する 問題 (成形時の磁粉粉砕による磁気特性低下、配向の困難さ)を回避できるという点 で注目に値する。しかし、この方法によって HDDR処理後に得られる圧粉体は、崩 壊しな 、程度の強度を有して 、るのみであり、 HDDR処理後のハンドリングが難し ヽ 。また、 HDDR処理後に結合用榭脂によって機械的強度を高めることが必須である  [0021] The method of Patent Document 6 can avoid the problems of conventional R—Fe—B based anisotropic bonded magnet manufacturing methods (decrease in magnetic properties and difficulty in orientation due to magnetic powder crushing during molding). It is worth noting. However, the green compact obtained after HDDR processing by this method has only a certain degree of strength that does not collapse, and handling after HDDR processing is difficult. In addition, it is essential to increase the mechanical strength with the binding resin after HDDR treatment.
[0022] 本発明は、上記の課題を解決するためになされたものであり、本発明の主たる目的 は、従来のボンド磁石に比べて高い磁気特性を示し、かつ、従来の焼結磁石よりも形 状の自由度の高い R—Fe— B系磁石を提供することにある。 [0022] The present invention has been made to solve the above-mentioned problems, and a main object of the present invention is to exhibit higher magnetic properties than conventional bonded magnets, and more than conventional sintered magnets. The object is to provide an R-Fe-B magnet with a high degree of freedom in shape.
課題を解決するための手段  Means for solving the problem
[0023] 本発明の R— Fe— B系多孔質磁石は、平均結晶粒径 0. 1 μ m以上 1 μ m以下の Nd Fe B型結晶相の集合組織を有し、少なくとも一部が長径 1 μ m以上 20 μ m以The R—Fe—B porous magnet of the present invention has a texture of Nd Fe B-type crystal phase with an average crystal grain size of 0.1 μm or more and 1 μm or less, at least a part of which has a long diameter 1 μm or more 20 μm or less
2 14 2 14
下の細孔を有する多孔質である。  It is porous with lower pores.
[0024] 好ま 、実施形態にぉ 、て、各々が前記 Nd Fe B型結晶相の集合組織を有する Preferably, according to the embodiment, each has a texture of the Nd Fe B-type crystal phase.
2 14  2 14
複数の粉末粒子が結合した構造を備え、前記粉末粒子の間に位置する空隙が前記 細孔を形成している。  It has a structure in which a plurality of powder particles are combined, and voids located between the powder particles form the pores.
[0025] 好ま 、実施形態にぉ 、て、前記粉末粒子の平均粒径は 10 μ m未満である。  [0025] Preferably, in an embodiment, the average particle size of the powder particles is less than 10 µm.
[0026] 好ま 、実施形態にぉ 、て、前記細孔は大気と連通して 、る。  [0026] Preferably, in the embodiment, the pores communicate with the atmosphere.
[0027] 好ま 、実施形態にぉ 、て、前記細孔には榭脂が充填されて 、な 、。  [0027] Preferably, according to the embodiment, the pores are filled with rosin.
[0028] 好ましい実施形態において、前記 Nd Fe B型結晶相の容易磁化軸が所定方向に  In a preferred embodiment, the easy magnetization axis of the Nd Fe B-type crystal phase is in a predetermined direction.
2 14  2 14
配向している。  Oriented.
[0029] 好ま 、実施形態にぉ 、て、ラジアル異方性または極異方性を有する。  [0029] Preferably, the embodiment has radial anisotropy or polar anisotropy.
[0030] 好ましい実施形態において、密度が 3. 5g/cm3以上 7. Og/cm3以下である。 [0030] In a preferred embodiment, the density is 3.5 g / cm 3 or more and 7. Og / cm 3 or less.
[0031] 好ま 、実施形態にぉ ヽて、 Rを希土類元素の組成比率、 Qを硼素および炭素の 組成比率とするとき、 10原子%≤R≤30原子%、および、 3原子%≤Q≤15原子% の関係を満足する希土類元素と、硼素および Zまたは炭素とを含有する。 [0031] Preferably, according to the embodiment, when R is a composition ratio of rare earth elements and Q is a composition ratio of boron and carbon, 10 atomic% ≤ R ≤ 30 atomic% and 3 atomic% ≤ Q ≤ It contains rare earth elements satisfying the 15 atomic% relationship, and boron and Z or carbon.
[0032] 本発明の R— Fe— B系磁石は、上記の R— Fe— B系多孔質磁石を真密度の 95% 以上に高密度化したことを特徴とする。 [0032] The R-Fe-B magnet of the present invention is the above-mentioned R-Fe-B porous magnet, 95% of the true density. It is characterized by high density as described above.
[0033] 好ま 、実施形態にぉ 、て、前記 Nd Fe B型結晶相の集合組織にぉ 、て、個々  [0033] Preferably, according to the embodiment, the texture of the Nd Fe B-type crystal phase is individually selected.
2 14  2 14
の結晶粒の最短粒径 aと最長粒径 bの比 b/aが 2未満である結晶粒が全結晶粒の 50 体積%以上存在する。  The ratio of the shortest grain size a to the longest grain size b of the crystal grains in which the ratio b / a is less than 2 is 50% by volume or more of the total crystal grains.
[0034] 本発明による R—Fe B系多孔質磁石の製造方法は、平均粒径 10 m未満の R  [0034] The method for producing an R—Fe B based porous magnet according to the present invention comprises R having an average particle size of less than 10 m.
Fe— B系希土類合金粉末を用意する工程と、前記 R— Fe— B系希土類合金粉末 を成形して圧粉体を作製する工程と、水素ガス中において前記圧粉体に対し 650°C 以上 1000°C未満の温度で熱処理を施し、それによつて水素化および不均化反応を 起こす工程と、真空または不活性雰囲気中において前記圧粉体に対し 650°C以上 1 000°C未満の温度で熱処理を施し、それによつて脱水素および再結合反応を起こす 工程と、を含む。  A step of preparing Fe-B rare earth alloy powder, a step of forming the green compact by molding the R-Fe-B rare earth alloy powder, and a temperature of 650 ° C or higher with respect to the green compact in hydrogen gas Heat treatment at a temperature of less than 1000 ° C, thereby causing hydrogenation and disproportionation reactions, and a temperature of 650 ° C to less than 1 000 ° C for the green compact in a vacuum or inert atmosphere Performing a heat treatment in order to cause dehydrogenation and recombination reaction thereby.
[0035] 好ましい実施形態において、前記圧粉体を作製する工程は、磁界中で成形を行う 工程を含む。  [0035] In a preferred embodiment, the step of producing the green compact includes a step of forming in a magnetic field.
[0036] 好ましい実施形態において、前記 R— Fe— B系希土類合金粉末が、 10原子%≤R ≤30原子%、 3原子%≤Q≤15原子%(Rは希土類元素、 Qは硼素または硼素と硼 素の一部を置換した炭素の総和)の関係を満足する組成を有して 、る。  In a preferred embodiment, the R—Fe—B based rare earth alloy powder is 10 atomic% ≦ R ≦ 30 atomic%, 3 atomic% ≦ Q ≦ 15 atomic% (R is a rare earth element, Q is boron or boron) And a sum of carbons in which a part of boron is substituted).
[0037] 好ましい実施形態において、前記 R— Fe— B系多孔質磁石における HD処理開始 時の余剰希土類量 R'が R'≥0原子%となるように、希土類元素 Rの組成を設定し、 かつ、前記粉砕工程以後水素化および不均化反応開始までの工程の酸素量を制御 する。  In a preferred embodiment, the composition of the rare earth element R is set so that the surplus rare earth amount R ′ at the start of HD treatment in the R—Fe—B based porous magnet is R′≥0 atomic%, In addition, the amount of oxygen in the process from the pulverization process to the start of the hydrogenation and disproportionation reactions is controlled.
[0038] 好ま 、実施形態にぉ 、て、前記 R—Fe— B系希土類合金粉末は急冷合金の粉 砕粉である。  [0038] Preferably, according to the embodiment, the R-Fe-B rare earth alloy powder is a rapidly cooled alloy powder.
[0039] 好ま 、実施形態にぉ 、て、前記急冷合金がストリップキャスト合金である。  [0039] Preferably, in the embodiment, the quenched alloy is a strip cast alloy.
[0040] 好ま 、実施形態にお!、て、前記水素化および不均化反応を起こす工程は、不活 性雰囲気または真空中で昇温する工程と、 650°C以上 1000°C未満の温度で水素ガ スを導入する工程と、を含む。 [0040] Preferably, in the embodiment, the steps of causing the hydrogenation and disproportionation reactions include a step of raising the temperature in an inert atmosphere or vacuum, and a temperature of 650 ° C or higher and lower than 1000 ° C. And a step of introducing hydrogen gas.
[0041] 好ましい実施形態において、前記水素ガスの分圧は、 5kPa以上 lOOkPa以下であ る。 [0042] 本発明による R—Fe— B系永久磁石用複合バルタ材料の製造方法は、上記 R—F e— B系多孔質材料を準備する工程 (A)と、湿式処理により、前記 R— Fe— B系多孔 質材料の細孔内部に前記 R— Fe— B系多孔質材料とは異なる材料を導入する工程 (B)と、を含む。 [0041] In a preferred embodiment, the partial pressure of the hydrogen gas is 5 kPa or more and lOOkPa or less. [0042] A method for producing a composite Balta material for an R-Fe-B permanent magnet according to the present invention comprises the step (A) of preparing the R-Fe-B-based porous material, and the R-Fe-B-based porous material by wet processing. And (B) introducing a material different from the R—Fe—B based porous material into the pores of the Fe—B based porous material.
[0043] 好ましい実施形態において、前記工程 (A)は、平均粒径 10 μ m未満の R—Fe— B 系希土類合金粉末を用意する工程と、前記 R— Fe— B系希土類合金粉末を成形し て、圧粉体を作製する工程と、水素ガス中において前記圧粉体に対し 650°C以上 10 00°C未満の温度で熱処理を施し、それによつて水素化および不均化反応を起こして R—Fe— B系多孔質材料を作製する工程と、真空または不活性雰囲気中において 前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理を施し、それによつて脱 水素および再結合反応を起こす工程と、を含む。  In a preferred embodiment, the step (A) includes a step of preparing an R—Fe—B rare earth alloy powder having an average particle size of less than 10 μm, and a molding of the R—Fe—B rare earth alloy powder. Then, a process for producing a green compact, and heat treatment of the green compact in hydrogen gas at a temperature of 650 ° C. or higher and lower than 100 ° C., thereby causing hydrogenation and disproportionation reactions. The R-Fe-B porous material is manufactured, and the green compact is heat-treated at a temperature of 650 ° C or higher and lower than 1000 ° C in a vacuum or inert atmosphere, thereby dehydrogenating and Causing a recombination reaction.
[0044] 本発明による R—Fe— B系永久磁石の製造方法は、上記の製造方法で得られた R — Fe— B系永久磁石用複合バルタ材料を用意する工程と、前記 R—Fe— B系永久 磁石用複合バルタ材料を更に加熱することにより R—Fe— B系永久磁石を形成する 工程と、を含む。  [0044] A method for producing an R-Fe-B permanent magnet according to the present invention comprises a step of preparing a composite Balta material for an R-Fe-B permanent magnet obtained by the above production method, and the R-Fe- And further forming the R—Fe—B permanent magnet by further heating the composite Balta material for the B permanent magnet.
[0045] 本発明による R— Fe— B系永久磁石用複合バルタ材料の製造方法は、平均結晶 粒径が 0. 1 μ m以上 1 μ m以下の Nd Fe B型結晶相の集合組織を有し、少なくとも  [0045] The method for producing a composite Balta material for R—Fe—B permanent magnets according to the present invention has an Nd Fe B-type crystal phase texture with an average crystal grain size of 0.1 μm to 1 μm. And at least
2 14  2 14
一部が平均長径 1 μ m以上 20 m以下の細孔を有する R—Fe— B系多孔質材料を 準備する工程 (A)と、前記 R—Fe— B系多孔質材料の表面および Zまたは細孔内 部に、希土類金属、希土類合金、希土類ィ匕合物のうち少なくとも 1種を導入する工程 (B)と、を含む。  A step (A) of preparing an R—Fe—B based porous material partially having pores having an average major axis of 1 μm or more and 20 m or less; and the surface of the R—Fe—B based porous material and Z or And (B) introducing at least one of a rare earth metal, a rare earth alloy, and a rare earth compound into the pores.
[0046] 好ましい実施形態において、前記 )工程において、前記 R—Fe— B系多孔質材 料の表面および Zまたは細孔内部に、希土類金属、希土類合金、希土類ィ匕合物のう ち少なくとも 1種を導入すると同時に、前記 R—Fe— B系多孔質材料を加熱する。  [0046] In a preferred embodiment, in the step (1), at least one of a rare earth metal, a rare earth alloy, and a rare earth compound is formed on the surface of the R-Fe-B based porous material and inside the Z or pores. Simultaneously with the introduction of the seed, the R—Fe—B porous material is heated.
[0047] 好ましい実施形態において、前記 (B)工程の後に、さらに前記 R—Fe— B系多孔 質材料を加熱する工程 (C)を含む。  [0047] In a preferred embodiment, after the step (B), a step (C) of heating the R-Fe-B porous material is further included.
[0048] 好ましい実施形態において、前記工程 (A)は、平均粒径 10 μ m未満の R—Fe— B 系希土類合金粉末を用意する工程と、前記 R— Fe— B系希土類合金粉末を成形し て、圧粉体を作製する工程と、水素ガス中において前記圧粉体に対し 650°C以上 10 00°C未満の温度で熱処理を施し、それによつて水素化および不均化反応を起こして R—Fe— B系多孔質材料を作製する工程と、真空または不活性雰囲気中において 前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理を施し、それによつて脱 水素および再結合反応を起こす工程と、を含む。 In a preferred embodiment, the step (A) includes a step of preparing an R—Fe—B rare earth alloy powder having an average particle size of less than 10 μm, and a molding of the R—Fe—B rare earth alloy powder. Shi A green compact is produced, and the green compact is subjected to a heat treatment at a temperature of 650 ° C. or more and less than 100 ° C. in hydrogen gas, thereby causing hydrogenation and disproportionation reactions. A process for producing an R—Fe—B-based porous material, and heat treatment of the green compact at a temperature of 650 ° C. or more and less than 1000 ° C. in a vacuum or an inert atmosphere. Causing a binding reaction.
[0049] 本発明による R—Fe— B系磁石の製造方法は、上記の R—Fe— B系多孔質磁石 に対して、 600°C以上 900°C未満の温度で加圧し、前記 R—Fe— B系多孔質磁石を 真密度の 95%以上に高密度化する工程を含む。  [0049] In the method for producing an R-Fe-B magnet according to the present invention, the R-Fe-B porous magnet is pressurized at a temperature of 600 ° C or higher and lower than 900 ° C, and the R- Includes a process to increase the density of Fe-B porous magnets to 95% or more of the true density.
[0050] 本発明による R—Fe— B系磁石粉末の製造方法は、平均粒径 10 m未満の R— F e— B系希土類合金粉末を成形して圧粉体を作製する工程と、水素ガス中において 前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理を施し、それによつて水 素化および不均化反応を起こす工程と、真空または不活性雰囲気中において前記 圧粉体に対し 650°C以上 1000°C未満の温度で熱処理を施し、それによつて脱水素 および再結合反応を起こし、 R— Fe— B系多孔質磁石を形成する工程と、前記 R— F e— B系多孔質磁石を粉砕する工程と、を含む。  [0050] A method for producing an R-Fe-B magnet powder according to the present invention comprises a step of forming a green compact by molding an R-Fe-B rare earth alloy powder having an average particle size of less than 10 m, a hydrogen A step of subjecting the green compact to a heat treatment at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing a hydration and disproportionation reaction; and the green compact in a vacuum or an inert atmosphere. Subjecting the body to a heat treatment at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing dehydrogenation and recombination reaction to form an R—Fe—B based porous magnet; — Crushing the B-based porous magnet.
[0051] 本発明によるボンド磁石の製造方法は、上記の R— Fe— B系磁石粉末の製造方法 によって製造された R— Fe— B系磁石粉末を用意する工程と、前記 R—Fe— B系磁 石粉末とバインダとを混合し、成形する工程と、を含む。  [0051] The method for producing a bonded magnet according to the present invention includes a step of preparing an R-Fe-B-based magnet powder produced by the above-described method for producing an R-Fe-B-based magnet powder, and the R-Fe-B And a step of mixing and molding the system magnetite powder and the binder.
[0052] 本発明による磁気回路部品の製造方法は、希土類磁石成形体と、軟磁性材料粉 末の成形体とが一体化された磁気回路部品の製造方法であって、 (a)希土類磁石 成形体として平均結晶粒径が 0. l iu m以上l iu m以下のNd Fe B型結晶相の集合 [0052] A method of manufacturing a magnetic circuit component according to the present invention is a method of manufacturing a magnetic circuit component in which a rare earth magnet molded body and a molded body of a soft magnetic material powder are integrated. (A) Rare earth magnet molding set of average crystal grain size as body 0. l i um or l i um following Nd Fe B-type crystal phase
2 14  2 14
組織を有し、少なくとも一部が長径 1 μ m以上 20 m以下の細孔を有する多孔質で ある、複数の R— Fe— B系多孔質磁石を準備する工程と、(b)前記多孔質磁石と、粉 末状態の軟磁性材料粉末または軟磁性材料粉末の仮成形体とを熱間プレス成形す ることによって、希土類磁石成形体と軟磁性材料粉末の成形体とが一体化された成 形品を得る工程と、を含む。  Preparing a plurality of R—Fe—B based porous magnets having a structure and at least a part of which has pores having a major axis of 1 μm to 20 m, and (b) the porous material A magnet and a soft magnetic material powder in a powder state or a soft magnetic material powder temporary compact are hot press-molded to form an integrated structure of the rare earth magnet compact and the soft magnetic material powder compact. Obtaining a shaped product.
[0053] 好ましい実施形態において、前記 R—Fe— B系多孔質磁石を用意する工程は、平 均粒径 10 m未満の R—Fe— B系希土類合金粉末を用意する工程と、前記 R— Fe B系希土類合金粉末を成形して圧粉体を作製する工程と、水素ガス中において前 記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理を施し、それによつて水素 化および不均化反応を起こす工程と、真空または不活性雰囲気中において前記圧 粉体に対し 650°C以上 1000°C未満の温度で熱処理を施し、それによつて脱水素お よび再結合反応を起こす工程と、を含む。 In a preferred embodiment, the step of preparing the R—Fe—B based porous magnet includes the step of preparing an R—Fe—B based rare earth alloy powder having an average particle size of less than 10 m, and the R— Fe A step of forming a green compact by forming a B-based rare earth alloy powder, and heat treatment of the green compact in a hydrogen gas at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby hydrogenating and A step of causing a disproportionation reaction and a step of subjecting the green compact to heat treatment at a temperature of 650 ° C or higher and lower than 1000 ° C in a vacuum or an inert atmosphere, thereby causing dehydrogenation and recombination reactions. And including.
[0054] 好ま 、実施形態にぉ ヽて、前記工程 (b)における軟磁性材料粉末の仮成形体を 用意する工程として、前記軟磁性材料粉末をプレス成形することによって前記軟磁 性材料粉末の仮成形体を作製する工程 (c)をさらに包含し、前記工程 (b)は、前記 軟磁性材料粉末の仮成形体と前記複数の多孔質磁石とを同時に熱間プレス成形す ることによって、前記希土類磁石成形体と軟磁性材料粉末の成形体が一体化された 成形品を得る工程である。  [0054] Preferably, according to the embodiment, as the step of preparing a temporary molded body of the soft magnetic material powder in the step (b), the soft magnetic material powder is temporarily formed by press molding the soft magnetic material powder. The method further includes a step (c) of producing a molded body, wherein the step (b) is performed by hot press molding the temporary molded body of the soft magnetic material powder and the plurality of porous magnets simultaneously. This is a step of obtaining a molded product in which a rare earth magnet compact and a soft magnetic material powder compact are integrated.
[0055] 好ま 、実施形態にぉ 、て、前記工程 (b)では、前記軟磁性材料粉末は粉末状態 で前記多孔質磁石と同時に熱間プレス成形される。  [0055] Preferably, in the embodiment, in the step (b), the soft magnetic material powder is hot press-molded simultaneously with the porous magnet in a powder state.
[0056] 本発明の磁気回路部品は、上記の方法で作製されたものである。  [0056] The magnetic circuit component of the present invention is manufactured by the above method.
[0057] 好ま 、実施形態にぉ 、て、前記磁気回路部品は磁石回転子である。  [0057] Preferably, in the embodiment, the magnetic circuit component is a magnet rotor.
発明の効果  The invention's effect
[0058] 本発明では、 HDDR処理の対象となる R— Fe— B系希土類合金粉末の平均粒径 を 10 m未満に限定したうえで、そのような粉末の圧粉体を作製した後に HDDR処 理を行っている。粉末粒子が相対的に小さいため、 HDDR反応の均一性が向上す るとともに、 HDDR処理後の機械的強度も充分に高くなる。本発明では、 HDDR処 理後の圧粉体が多孔質磁石として充分な強度を持ち、そのままバルタ磁石体として 利用することが可能になる。このため、 HDDR処理後の粉砕'解砕が不要になり、磁 石特性を劣化させないため、従来のボンド磁石よりも優れた磁石特性を発揮させるこ とがでさる。  In the present invention, the average particle size of the R—Fe—B rare earth alloy powder to be subjected to HDDR treatment is limited to less than 10 m, and after the green compact of such powder is produced, HDDR treatment is performed. Is doing. Since the powder particles are relatively small, the uniformity of the HDDR reaction is improved and the mechanical strength after HDDR treatment is sufficiently high. In the present invention, the green compact after the HDDR treatment has sufficient strength as a porous magnet, and can be used as it is as a Balta magnet body. This eliminates the need for crushing and crushing after HDDR treatment, and does not deteriorate the magnet characteristics, so that the magnet characteristics superior to those of conventional bonded magnets can be exhibited.
[0059] また、 HDDR処理によって圧粉体から多孔質磁石を形成するときの収縮が等方的 であるため、従来の焼結磁石に比べ、形状設計の自由度が向上するという効果も得 られる。  [0059] Further, since the shrinkage when forming the porous magnet from the green compact by the HDDR process is isotropic, the effect of improving the degree of freedom in shape design is also obtained as compared with the conventional sintered magnet. .
図面の簡単な説明 [0060] [図 1]本発明による多孔質磁石の実施例における破断面を示す SEM写真である。 Brief Description of Drawings FIG. 1 is an SEM photograph showing a fracture surface in an example of a porous magnet according to the present invention.
[図 2]本発明の多孔質磁石を製造する方法を示すフローチャートである。  FIG. 2 is a flowchart showing a method for producing a porous magnet of the present invention.
[図 3] (a)は、図 2のフローチャートに示す工程 S12で得られる圧粉体 (成形体)の模 式図であり、(b)は、圧粉体に HDDR処理 (S 14)を施した後の材料の模式図である  [FIG. 3] (a) is a schematic diagram of the green compact (molded body) obtained in step S12 shown in the flowchart of FIG. 2, and (b) is a diagram illustrating HDDR treatment (S 14) on the green compact. It is a schematic diagram of the material after giving
[図 4]多孔質磁石に対する加熱圧縮するための装置の構成例を示す図である。 FIG. 4 is a diagram showing a configuration example of a device for heating and compressing a porous magnet.
[図 5]本発明で作製した多孔質材料の破断面を示す SEM写真である。  FIG. 5 is an SEM photograph showing a fracture surface of a porous material produced according to the present invention.
[図 6] (a)〜 (c)は、本発明による実施形態の回転子 100の製造方法を説明するため の模式図である。  [FIG. 6] (a) to (c) are schematic views for explaining a method of manufacturing the rotor 100 of the embodiment according to the present invention.
[図 7]本発明による実施形態の製造方法によって製造される回転子 100の構造を示 す模式図である。  FIG. 7 is a schematic diagram showing the structure of a rotor 100 manufactured by the manufacturing method according to the embodiment of the present invention.
[図 8]本発明による多孔質磁石の実施例における破断面を示す他の SEM写真であ る。  FIG. 8 is another SEM photograph showing a fracture surface in an example of a porous magnet according to the present invention.
[図 9]本発明による多孔質磁石の実施例における研磨面の Kerr顕微鏡写真である。  FIG. 9 is a Kerr micrograph of a polished surface in an example of a porous magnet according to the present invention.
[図 10]本発明による多孔質磁石の実施例および比較例について、減磁曲線 (ヒステリ シス曲線の第 2象限部分)を示すグラフである。  FIG. 10 is a graph showing a demagnetization curve (second quadrant portion of a hysteresis curve) for an example and a comparative example of a porous magnet according to the present invention.
[図 ll] (a)〜(d)は、本発明による実施形態の回転子 100の製造方法における熱間 プレス形成工程を説明するための模式的な断面図である。  [FIG. 11] (a) to (d) are schematic cross-sectional views for explaining a hot press forming step in the method for manufacturing the rotor 100 of the embodiment according to the present invention.
[図 12]本発明の実施例 13で作製した多孔質材料の破断面を示す SEM写真である 符号の説明  FIG. 12 is an SEM photograph showing a fracture surface of the porous material produced in Example 13 of the present invention.
[0061] 12a,、12b, R— Fe— B系多孔質磁石 [0061] 12a, 12b, R—Fe—B porous magnet
12a、 12b 磁石成形体 (磁石部品)  12a, 12b Magnet compact (magnet parts)
22' 軟磁性材料粉末の仮成形体 (鉄芯仮成形体)  22 'Temporary compact of soft magnetic material powder (Iron core temporary compact)
22 軟磁性材料粉末の成形体 (軟磁性部品、鉄心)  22 Molded body of soft magnetic material powder (soft magnetic parts, iron core)
26 チャンバ  26 chambers
27 金型  27 Mold
28a 上パンチ 28b 下パンチ 28a top punch 28b Bottom punch
32 ダイ  32 die
42a, 42b 下パンチ  42a, 42b Bottom punch
42c センターシャフト  42c Center shaft
44a, 44b 上ノンチ  44a, 44b
52 下ラム  52 Lower ram
54 上ラム  54 Upper ram
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0062] 従来の HDDR処理は、ボンド磁石用の磁石粉末を製造するために実施されており 、比較的大きな平均粒径を有する粉末を処理対象にしていた。これは、平均粒径を 低下させると、 HDDR処理によって凝集した粉末を解粉し、ばらばらの粉末粒子に することが困難になるからであった。一方、従来技術について説明したように、圧粉 体を形成した後に HDDR処理を行うことも提案されている力 HDDR処理後の圧粉 体では、通常の焼結磁石に比べると粒子間の結合強度が低ぐそのままではハンドリ ングさえ困難な脆さを有しており、バルタ磁石体としては、到底、使用することができ なかった。 [0062] The conventional HDDR treatment has been carried out in order to produce a magnet powder for a bonded magnet, and a powder having a relatively large average particle size was to be treated. This is because when the average particle size is lowered, it becomes difficult to break up the powder aggregated by HDDR treatment into discrete powder particles. On the other hand, as explained in the prior art, it is also proposed that HDDR treatment be performed after forming a compacted body. In the compacted body after HDDR treatment, the bond strength between the particles compared to ordinary sintered magnets. However, even if it is low, it has a brittleness that is difficult to handle, so it could not be used as a Balta magnet.
[0063] 本発明者は、 HDDR処理後の圧粉体の機械的強度を高めるために、特許文献 5 で採用されていたような HDDRの処理温度を上昇させるというアプローチを採ること なぐ敢えて粉末粒子のサイズを小さくすることにした。その結果、粉末粒子の平均粒 径と HDDR処理温度を適切に設定することにより、機械的強度が充分に高い多孔質 磁石が得られることを見出し、本発明を完成するに至った。  [0063] In order to increase the mechanical strength of the green compact after HDDR treatment, the present inventor dared to take the approach of increasing the processing temperature of HDDR as employed in Patent Document 5, so that the powder particles Decided to reduce the size. As a result, the inventors have found that a porous magnet having sufficiently high mechanical strength can be obtained by appropriately setting the average particle size of the powder particles and the HDDR treatment temperature, and have completed the present invention.
[0064] 本発明の R— Fe— B系多孔質磁石は、平均結晶粒径 0. 1 μ m以上 1 μ m以下の Nd Fe B型結晶相の集合組織を有し、少なくとも一部が長径 1 μ m以上 20 μ m以 [0064] The R-Fe-B porous magnet of the present invention has a texture of NdFe B-type crystal phase with an average crystal grain size of 0.1 μm or more and 1 μm or less, at least a part of which has a major axis 1 μm or more 20 μm or less
2 14 2 14
下の細孔を有する多孔質である。本発明の多孔質磁石は、その全体が多孔質部分 によって占められている必要はない。ここで、「多孔質部分」とは、集合組織と空孔と が混在する部分であり、より詳細には、平均結晶粒径 0. 1 μ m以上 1 μ m以下の Nd  It is porous with lower pores. The porous magnet of the present invention need not be entirely occupied by the porous portion. Here, the “porous part” is a part where textures and pores coexist, and more specifically, Nd having an average crystal grain size of 0.1 μm to 1 μm.
2 2
Fe B型結晶相の集合組織と、長径 1 μ m以上 20 μ m以下の空孔とが存在する部分The part where the texture of Fe B-type crystal phase and pores with a major axis of 1 μm to 20 μm exist
14 14
である。このような多孔質部分は、磁石全体に対して体積分率で 20%以上、好ましく は 30%以上、更に好ましくは 50%以上の領域を占めていることが好ましい。 It is. Such a porous part has a volume fraction of 20% or more with respect to the whole magnet, preferably Preferably occupies an area of 30% or more, more preferably 50% or more.
[0065] なお、本明細書における「平均結晶粒径」は、 HDDR処理によって得られる集合組 織を構成している微細な結晶粒の平均サイズである。 0. 1 m以上 1 μ m以下という 平均結晶粒径は、 R— Fe— B系焼結磁石の平均結晶粒径(1 μ m超)よりも小さぐ 超急冷法によって作製される急冷磁石の平均結晶粒径 (0. 1 μ m未満)よりも大き!/ヽ 。また、本明細書における「長径」とは、前述した「多孔質部分」の細孔を構成する領 域の輪郭上における任意の 2点を結ぶ直線のうち、最長のものの長さである。磁石全 体が多孔質部分によって占められている場合は、磁石の任意の領域、例えば磁石の 中央部について細孔の長径を評価すればよい。一方、磁石の一部が非多孔質であ る場合は、多孔質部分に含まれる領域を選定して細孔の長径を評価すればょ ヽ。 [0065] The "average crystal grain size" in this specification is the average size of fine crystal grains constituting the aggregate structure obtained by the HDDR process. The average crystal grain size of 0.1 m or more and 1 μm or less is smaller than the average crystal grain size (over 1 μm) of R-Fe-B sintered magnets. Larger than average grain size (less than 0.1 μm)! / ヽ. In addition, the “major axis” in the present specification is the length of the longest straight line connecting two arbitrary points on the contour of the region constituting the pores of the “porous portion” described above. When the entire magnet is occupied by the porous portion, the major axis of the pore may be evaluated for an arbitrary region of the magnet, for example, the central portion of the magnet. On the other hand, if part of the magnet is non-porous, select the region included in the porous part and evaluate the long diameter of the pores.
[0066] 図 1は、後に詳しく説明する本発明による R—Fe— B系多孔質磁石の実施例にお ける破断面を示す SEM写真である。図 1からわ力るように、この多孔質磁石内に存在 する細孔は、 HDDR処理工程で相互に結合した粉末粒子の間に存在する空隙であ り、三次元網状に連通している。圧粉体を構成していた個々の粉末粒子は、 HDDR 処理により、隣接する粉末粒子と結合し、剛性を発揮する三次元構造を形成するとと もに、個々の粉末粒子内では、微細な Nd Fe B型結晶相の集合組織が形成されて FIG. 1 is an SEM photograph showing a fracture surface in an example of an R—Fe—B based porous magnet according to the present invention described in detail later. As can be seen from FIG. 1, the pores present in the porous magnet are voids that exist between the powder particles that are bonded together in the HDDR treatment process, and communicate with each other in a three-dimensional network. The individual powder particles that make up the green compact are combined with adjacent powder particles by HDDR treatment to form a three-dimensional structure that exhibits rigidity, and within each powder particle, fine Nd The texture of Fe B-type crystal phase is formed
2 14  2 14
いる。また、細孔に榭脂が充填されておらず、大気と連通した状態にある。  Yes. In addition, the pores are not filled with rosin and are in communication with the atmosphere.
[0067] 図 1の実施例では、微細な Nd Fe B型結晶相の容易磁化軸が所定方向に配向し  In the example of FIG. 1, the easy magnetization axis of the fine Nd Fe B-type crystal phase is oriented in a predetermined direction.
2 14  2 14
ている。 HDDR処理前の粉末粒子の容易磁ィ匕軸を所定方向に配向させておくことに より、 HDDR処理で形成する集合組織内の微細な Nd Fe B型結晶相の容易磁ィ匕  ing. By aligning the easy magnetic axis of the powder particles before HDDR treatment in a predetermined direction, the easy magnetic field of the fine Nd Fe B-type crystal phase in the texture formed by HDDR treatment
2 14  2 14
軸をも磁石全体にわたって所定方向に配向することができる。  The axis can also be oriented in a predetermined direction throughout the magnet.
[0068] 本発明の R—Fe— B系多孔質磁石の密度 (磁粉の体積比率)は、従来の圧縮成形 によって作製された R— Fe— B系ボンド磁石の密度と同等かそれ以下、すなわち、 3 . 5g/cm3以上 7. Og/cm3以下である力 粉末粒子間の隙間が存在した状態でも、 粒子どうしが結合し、十分な機械的強度と優れた磁気特性とを発揮する。 [0068] The density of R-Fe-B porous magnet of the present invention (volume ratio of magnetic powder) is equal to or less than the density of R-Fe-B bonded magnet produced by conventional compression molding, that is, 3.5 g / cm 3 or more 7. Og / cm 3 or less force Even when there are gaps between the powder particles, the particles are bonded to each other and exhibit sufficient mechanical strength and excellent magnetic properties.
[0069] 本発明の R—Fe— B系多孔質磁石は、図 2に示すように、 R—Fe— B相を有する原 料合金を粉砕して平均粒径 10 μ m未満の R—Fe— B系希土類合金粉末を用意する 工程 S 10と、この粉末を圧縮して圧粉体 (成形体)を作製する工程 S 12と、この圧粉 体に対して HDDR処理を行う工程 S14とを実行することによって製造される。 [0069] As shown in Fig. 2, the R-Fe-B porous magnet of the present invention is obtained by crushing a raw material alloy having an R-Fe-B phase to obtain an R-Fe having an average particle size of less than 10 µm. — Step S10 for preparing B-based rare earth alloy powder, Step S12 for compressing this powder to produce a green compact (compact), and this green compact It is manufactured by executing step S14 of performing HDDR processing on the body.
[0070] 次に、図 3 (a)、(b)を参照して、図 2の工程 S 14 (HDDR処理)の前後における材 料組織の変化を説明する。 Next, changes in the material structure before and after step S 14 (HDDR treatment) in FIG. 2 will be described with reference to FIGS. 3 (a) and 3 (b).
[0071] 図 3 (a)は、工程 S12によって得られる圧粉体 (成形体)の模式図である。粉末を構 成する個々の微粒子が成形により押し固められており、例えば粒子 A1と粒子 A2とが 接触した状態にある。また、圧粉体には空隙 Bが存在する。 FIG. 3 (a) is a schematic diagram of a green compact (molded body) obtained by step S12. The individual fine particles constituting the powder are pressed and compacted by molding. For example, the particles A1 and the particles A2 are in contact with each other. There are voids B in the green compact.
[0072] 図 3 (b)は、この圧粉体に HDDR処理(S 14)を施した後の材料の模式図である。 [0072] FIG. 3 (b) is a schematic view of the material after HDDR treatment (S14) is applied to the green compact.
粒子 Al、 A2などの粉末粒子は、いずれも、 HDDR反応により平均結晶粒径が 0. 1 Particles All powder particles such as Al and A2 have an average crystal grain size of 0.1 due to the HDDR reaction.
IX m以上 1 μ m以下の微細な Nd Fe B型結晶相で構成される集合組織を有して ヽ It has a texture composed of fine Nd Fe B-type crystal phase of IX m to 1 μm ヽ
2 14  2 14
る。個々の粒子 (例えば粒子 A1)は、 HDDR反応に伴う元素の拡散により、他の粒 子 (例えば粒子 A2)と強固に結合する。図 3 (b)では、粒子 Al、 A2の結合部を参照 符号「C」で示している。  The Individual particles (for example, particle A1) are strongly bonded to other particles (for example, particle A2) by the diffusion of elements accompanying the HDDR reaction. In Fig. 3 (b), the joint of particles Al and A2 is indicated by the reference symbol “C”.
[0073] 圧粉体の内部に存在した空隙 Bは、前述した元素拡散に伴って焼結が進行するこ とにより、図 3 (b)に示すように小さくなつたり、消滅したりする。しかし、 HDDR処理に よっては完全な緻密化は達成されず、 HDDR処理後にも「細孔」として残存する。図 3 (b)において、細孔の長径は、符号「d 」で示されている。なお、粉末粒子の平均 pore  [0073] The void B existing in the green compact becomes smaller or disappears as shown in Fig. 3 (b) as the sintering proceeds with the element diffusion described above. However, complete densification is not achieved by HDDR treatment, and it remains as a “pore” after HDDR treatment. In FIG. 3 (b), the major axis of the pore is indicated by the symbol “d”. The average pore size of the powder particles
粒径は、個々の粒子について、細孔に挟まれた部分のサイズ d を測定することで grain  The particle size is determined by measuring the size d of the portion sandwiched between the pores for each particle.
評価することができる。焼結の進行具合によっては、図 3 (b)に示される多孔質部分 における粉末粒子の平均粒径を正確に計測することは難し ヽ場合があるが、本発明 によれば、多孔質部分の密度は、前述したように 3. 5g/cm3以上 7. Og/cm3以下 の範囲内にあるため、多孔質部分における細孔の長径と磁石密度の測定値が上述 の範囲に入っている力否かにより、図 3 (b)の多孔質構造が形成されている力否かを 評価することが可能である。なお、後述する異種材料の導入を目的とする場合など、 空隙部を積極的に利用する場合には、多孔質部分の密度を 6. Og/cm3以下にする ことがより好ましぐ 5. OgZcm3以下にすることがさらに好ましい。 Can be evaluated. Depending on the progress of sintering, it may be difficult to accurately measure the average particle size of the powder particles in the porous portion shown in Fig. 3 (b). However, according to the present invention, Since the density is in the range of 3.5 g / cm 3 or more and 7. Og / cm 3 or less as described above, the measured values of the major diameter of the pore and the magnet density in the porous portion are within the above-mentioned range. It is possible to evaluate whether the porous structure shown in FIG. If the voids are to be used actively, such as for the purpose of introducing dissimilar materials, which will be described later, it is more preferable to set the density of the porous part to 6. Og / cm 3 or less. More preferably, it is OgZcm 3 or less.
[0074] なお、図 3 (b)では、集合組織として、平均結晶粒径が 0. 1 μ m以上 1 μ m以下の Nd Fe B型結晶相のみを描いている力 例えば希土類リッチ相など、別の相を含ん[0074] In FIG. 3 (b), as a texture, a force depicting only an NdFe B-type crystal phase having an average crystal grain size of 0.1 μm or more and 1 μm or less, such as a rare earth-rich phase, Including another phase
2 14 2 14
でもよい。 [0075] 本発明では、ボンド磁石のように粉末粒子を結合するための樹脂が不要であり、粉 末粒子間の空隙が細孔を形成した多孔質の形態で磁石特性を発揮することができる 。そのような空隙を有するにもかかわらず、充分な機械的強度が得られる理由は、必 ずしも明確にはなっていない。おそらぐ圧粉体の形成に使用する粉末粒子が小さい こと、および、 HDDR処理中の水素拡散に起因する反応が粒子間の焼結を比較的 低い温度で進行させ、粒子間の結合強度向上に寄与していることが理由であると考 えられる。 But you can. [0075] In the present invention, unlike the bonded magnet, a resin for binding the powder particles is unnecessary, and the magnetic properties can be exhibited in a porous form in which voids between the powder particles form pores. . The reason why sufficient mechanical strength can be obtained in spite of such voids is not always clear. The small powder particles used to form the green compact and the reaction caused by hydrogen diffusion during the HDDR process promotes sintering between particles at a relatively low temperature, improving the bond strength between the particles. The reason is that it contributes to
[0076] 従来、圧粉体に対して HDDR処理を施した場合、 HDDR処理によって凝集した粉 末粒子をばらばらに解砕してカゝらボンド磁石の製造に利用するか、圧粉体に榭脂を 含浸して機械的強度を高めていた。その理由は、 HDDR処理後における圧粉体の 機械的強度が極めて低ぐそのままでは、到底、磁石として使用できな力つた力もで ある。  [0076] Conventionally, when the green compact is subjected to HDDR treatment, the powder particles aggregated by the HDDR treatment are disintegrated and used for the production of a bonded magnet, or the green compact is used as a compact. Impregnated with fat to increase mechanical strength. The reason is that if the mechanical strength of the green compact after HDDR treatment is extremely low, it is a force that cannot be used as a magnet.
[0077] 本発明では、機械的強度の向上により、ハンドリングが容易なだけでなぐより高い 寸法精度を得るための機械加工 (切削加工や研削加工)を行うことも可能になる。こ のため、細孔の内部を充填するように榭脂含浸を行う必要がなぐそのまま永久磁石 として用いることができる。  [0077] In the present invention, by improving the mechanical strength, it becomes possible to perform machining (cutting or grinding) for obtaining higher dimensional accuracy as well as easy handling. For this reason, it can be used as a permanent magnet as it is without the need to impregnate the resin so as to fill the pores.
[0078] HDDR処理後における本発明の多孔質磁石は、大気と連通した多孔質構造 (ォー プンポア構造)を有しているため、孔の内部または表面に異種材料を導入することに より、容易に複合バルタ磁石を作製したり、磁石の特性を向上させたりすることができ る。  [0078] Since the porous magnet of the present invention after the HDDR treatment has a porous structure (open pore structure) communicating with the atmosphere, by introducing a different material into the inside or the surface of the hole, A composite Balta magnet can be easily produced and the properties of the magnet can be improved.
[0079] 得られた多孔質磁石をホットプレスなどの方法で熱間加工することにより、多孔質磁 石の優れた特性を維持しつつ、フルデンスノ レク磁石を得ることも可能となる。これら 熱間加工は、前述した異種材料を導入した複合材料に適用することにより、例えば 硬磁性相と軟磁性相とが静磁気的に結合したコンポジット磁石を得ることができる。  [0079] By hot-working the obtained porous magnet by a method such as hot pressing, it is possible to obtain a full-density magnet while maintaining the excellent characteristics of the porous magnet. By applying these hot working to the composite material into which the above-mentioned different materials are introduced, for example, a composite magnet in which a hard magnetic phase and a soft magnetic phase are magnetostatically coupled can be obtained.
[0080] 本発明によれば、多孔質磁石を軟磁性材料の成形体と組み合わせた後、熱間成 形を行うことにより、軟磁性のヨークと磁石とが一体化された高性能の複合磁気部品 を作製することちできる。  [0080] According to the present invention, a high-performance composite magnet in which a soft magnetic yoke and a magnet are integrated by performing hot forming after combining a porous magnet with a molded body of a soft magnetic material. You can make parts.
[0081] [実施形態] 以下、本発明による R— Fe— B系多孔質磁石の製造方法について、好ましい実施 形態を詳細に説明する。 [0081] Embodiment Hereinafter, preferred embodiments of the method for producing an R—Fe—B porous magnet according to the present invention will be described in detail.
[0082] 〈出発合金〉  <Starting alloy>
まず、硬磁性相として R— Fe— B相を有する R— T— Q系合金(出発合金)のインゴ ットを用意する。ここで、「R」は、希土類元素であり、 Ndおよび Zまたは Prを 50原子 % (at%)以上含む。本明細書における希土類元素 Rはイットリウム (Y)を含んでもよ い。「T」は、 Fe、 Co、および Niからなる群力 選択された少なくとも 1種の遷移金属 元素であり、 Feを 50%以上含む遷移金属元素である。「Q」は、 Bまたは、 Bおよび B の一部を Cで置換したものである。  First, an R-T-Q alloy (starting alloy) ingot having an R—Fe—B phase as a hard magnetic phase is prepared. Here, “R” is a rare earth element and contains Nd and Z or Pr by 50 atomic% (at%) or more. The rare earth element R in the present specification may contain yttrium (Y). “T” is at least one transition metal element selected from the group force consisting of Fe, Co, and Ni, and is a transition metal element containing 50% or more of Fe. “Q” is B or a part of B and B substituted with C.
[0083] この R— T— Q系合金(出発合金)は、 Nd Fe B型化合物相(以下、「R T Qjと略  [0083] This R—T—Q alloy (starting alloy) has an Nd Fe B-type compound phase (hereinafter abbreviated as “R T Qj”).
2 14 2 14 記する。)を体積比率で 50%以上含む。  2 14 2 14 ) Is contained in a volume ratio of 50% or more.
[0084] 出発合金に含まれる希土類元素 Rの大部分は、 R T Qを構成して 、るが、一部は [0084] Most of the rare earth element R contained in the starting alloy constitutes R T Q, but a part thereof
2 14  2 14
、 R Oや、その他の相を構成している。希土類元素 Rの組成比率は出発合金全体の , R O and other phases. The composition ratio of the rare earth element R is
2 3 twenty three
10原子%以上 30原子%以下であることが好ましぐ 12原子%以上 17原子%以下で あることがより好ましい。また Rの一部を Dyおよび Zまたは Tbとすることで、保磁力の 向上を計ることができる。  It is preferably 10 atomic% or more and 30 atomic% or less, more preferably 12 atomic% or more and 17 atomic% or less. In addition, the coercive force can be improved by using a portion of R as Dy and Z or Tb.
[0085] 希土類元素 Rの組成比率は、後に記載する HD処理開始時の「余剰希土類量 R'」 力 SO原子%以上となるように設定されることが好ましぐ HD処理開始時の R'が 0. 1原 子%以上となるように設定されることがより好ましぐ 0. 3原子%以上となるように設定 されることが更に好ましい。ここで、「余剰希土類量 R'」は、以下の式で算出される。  [0085] It is preferable that the composition ratio of the rare earth element R is set so as to be “surplus rare earth amount R ′” force SO atomic% or more at the start of HD processing described later. R ′ at the start of HD processing Is more preferably set to be 0.1 atomic% or more, and further preferably is set to be 0.3 atomic% or more. Here, the “excess rare earth amount R ′” is calculated by the following equation.
[0086] R, =「Rの原子0 /0」一「Tの原子0 /0」 X 1/7-「0の原子0 /0」 X 2/3 [0086] R, = "atoms T 0/0", "atomic 0/0 of R" one X 1 / 7- "atomic 0/0 0" X 2/3
余剰希土類量 R'は、 R—T—Q系合金(出発合金)中に含まれる希土類元素 Rのう ち、 R Τ Βおよび R Οを構成することなぐ R Τ Βおよび R Ο以外の形態で存在し The surplus rare earth amount R ′ is in a form other than R Τ Β and R ぐ, which does not constitute R Τ Β and R 希 土 類 among the rare earth elements R contained in the R-T-Q alloy (starting alloy). Exists
2 14 2 3 2 14 2 3 2 14 2 3 2 14 2 3
ている希土類元素の組成比率を示している。 HD処理開始時の余剰希土類量 R,が 0 原子%以上となるように希土類元素 Rの組成比率を設定しないと、本発明の方法によ り、平均結晶粒径が 0. 1〜1 /ζ πιの微細結晶を得ることが困難となる。希土類元素 R は後の粉砕工程や成形工程で、雰囲気中に存在する酸素や水分によって酸化され ることがある。希土類元素 Rの酸ィ匕は、余剰希土類量 R,の減少を招くことになる。こ のため、 HD処理開始までの工程はできる限り酸素量を抑制した雰囲気で行われる のが好ましいが、雰囲気中の酸素を完全に除去するのは困難であることから、出発 合金の Rの組成比率は後の工程での酸ィ匕による R'の減少をカ卩味して設定されること が好ましい。 It shows the composition ratio of the rare earth elements. Unless the composition ratio of the rare earth element R is set so that the surplus rare earth amount R at the start of HD treatment is 0 atomic% or more, the average grain size is 0.1 to 1 / ζ according to the method of the present invention. It becomes difficult to obtain fine crystals of πι. Rare earth element R may be oxidized by oxygen and moisture present in the atmosphere in the subsequent grinding and molding processes. The oxidation of the rare earth element R leads to a decrease in the excess rare earth amount R. This Therefore, the process up to the start of HD processing is preferably performed in an atmosphere with as little oxygen as possible, but it is difficult to completely remove the oxygen in the atmosphere, so the R composition ratio of the starting alloy Is preferably set taking into account the reduction of R ′ due to acid in the subsequent step.
[0087] R'の上限は、特に制限はないが、耐食性や Bの低下を考慮すると、 5原子%以下 が好ましぐ 3原子%以下がより好ましぐ 2. 5原子%以下が更に好ましい。 R'が 5原 子%以下であっても、希土類元素 Rの組成比率が 30原子%を越えな 、ことが好まし い。  [0087] The upper limit of R 'is not particularly limited, but in consideration of corrosion resistance and a decrease in B, it is preferably 5 atomic% or less, more preferably 3 atomic% or less, and even more preferably 2.5 atomic% or less. . Even if R ′ is 5 atomic% or less, it is preferable that the composition ratio of the rare earth element R does not exceed 30 atomic%.
[0088] HD処理開始時の磁石中の酸素量は 1質量%以下に抑制することが好ましぐ 0. 6 質量%以下に抑制することがより好ましい。  [0088] The amount of oxygen in the magnet at the start of HD treatment is preferably suppressed to 1% by mass or less, and more preferably to 0.6% by mass or less.
[0089] Qの組成比率は、合金全体の 3原子%以上、 15原子%以下が好ましぐ 5原子% 以上、 8原子%以下がより好ましぐ 5. 5原子%以上 7. 5原子%以下がさらに好まし い。 [0089] The composition ratio of Q is preferably 3 atomic percent or more and 15 atomic percent or less of the whole alloy, preferably 5 atomic percent or more, and more preferably 8 atomic percent or less. 5.5 atomic percent or more 7.5 atomic percent The following are even more preferred:
[0090] Tは残余を占める。前述したとおり、 Tは、 Fe、 Co、および Mからなる群力も選択さ れた少なくとも 1種の遷移金属元素であり、 Feを 50%以上含む遷移金属元素である 。 Tの一部を Coおよび Zまたは Niとする場合には、 NUりも Coを選定することが望ま しい。また、合金全体に対する Coの総量は、コストなどの観点から、 20原子%以下で あることが好ましぐ 5原子%以下であることがさらに好ましい。 Coを全く含有しない場 合でも高い磁気特性は得られるが、 0. 5原子%以上の Coを含有すると、より安定し た磁気特性を得ることができる。  [0090] T occupies the remainder. As described above, T is at least one transition metal element in which the group force consisting of Fe, Co, and M is also selected, and is a transition metal element containing 50% or more of Fe. If part of T is Co and Z or Ni, it is desirable to select Co for NU. Further, the total amount of Co with respect to the entire alloy is preferably 20 atomic percent or less, more preferably 5 atomic percent or less, from the viewpoint of cost and the like. High magnetic properties can be obtained even if Co is not contained at all, but more stable magnetic properties can be obtained if Co of 0.5 atomic% or more is contained.
[0091] 磁気特性向上などの効果を得るため、 Al、 Ti、 V、 Cr、 Ga、 Nb、 Mo、 In、 Sn、 Hf 、 Ta、 W、 Cu、 Si、 Zrなどの元素を適宜添カ卩してもよい。ただし、添加量の増加は、 特に飽和磁ィ匕の低下を招くため、総量で 10原子%以下とすることが好ましい。  [0091] In order to obtain effects such as improvement of magnetic properties, elements such as Al, Ti, V, Cr, Ga, Nb, Mo, In, Sn, Hf, Ta, W, Cu, Si, and Zr are appropriately added. May be. However, since an increase in the amount of addition leads to a decrease in saturation magnetism, the total amount is preferably 10 atomic% or less.
[0092] 従来の HDDR磁石粉末の製造方法や、特許文献 6に記載されて 、る製造方法で は、 HDDR処理の対象となる磁石粉末の平均粒子径は 30 μ m以上、典型的には 5 0 m以上である。 HDDR処理後に磁石粉末の各粒子が優れた磁気的異方性を示 すためには、原料粉末の各粒子の中で容易磁ィ匕軸が一方向にそろっている必要が ある。このため、粉砕する前の段階にある出発合金インゴットは、 Nd Fe B型結晶相 の結晶方位が同一方向に揃った領域の平均サイズが粉砕後の粉末粒子の平均粒 径よりも大きくなるように作製されていた。 [0092] In the conventional HDDR magnet powder manufacturing method and the manufacturing method described in Patent Document 6, the average particle diameter of the magnet powder to be subjected to HDDR treatment is 30 μm or more, typically 5 μm. 0 m or more. In order for each particle of the magnet powder to exhibit excellent magnetic anisotropy after HDDR processing, the easy magnetic axis must be aligned in one direction among the particles of the raw material powder. Therefore, the starting alloy ingot in the stage before pulverization is Nd Fe B-type crystal phase The average size of the region where the crystal orientations of the powders were aligned in the same direction was made larger than the average particle size of the powder particles after pulverization.
[0093] その結果、従来の HDDR磁石粉末の製造方法や特許文献 6記載の方法では、ブ ックモールド法や遠心铸造法などの方法を用いて原料合金を製造し、さらに均質ィ匕 熱処理などの熱処理を施すことにより、結晶相を成長させていた。  [0093] As a result, in the conventional HDDR magnet powder manufacturing method and the method described in Patent Document 6, a raw material alloy is manufactured using a method such as a book mold method or a centrifugal forging method, and further a heat treatment such as a homogeneous heat treatment is performed. As a result, the crystal phase was grown.
[0094] し力しながら、本発明者らの検討によれば、ブックモールド法や遠心铸造法によつ て Nd Fe B型化合物を粗大化させた原料合金では、铸造の初晶である a Feを完 However, according to the study by the present inventors, in the raw material alloy obtained by coarsening the Nd Fe B-type compound by the book mold method or the centrifugal forging method, Complete Fe
2 14 2 14
全除去することが困難であり、原料合金中に残存する α— Feが HDDR処理後の磁 気特性に悪 、影響を与えることがわ力つた。  It was difficult to completely remove the α-Fe remaining in the raw material alloy, and it was found that the magnetic properties after HDDR treatment were adversely affected.
[0095] 本発明の製造方法では、平均粒径 10 μ m未満の粉末を用いるため、原料合金中 の主相のサイズを従来の HDDR磁石粉末の製造方法の場合のように大きくする必 要がない。そのため、ストリップキャスト法によって合金溶湯を急冷し、凝固させた合 金 (ストリップキャスト合金)を用いても、 HDDR処理後に高い異方性を得ることができ る。また、このような急冷合金を粉砕して粉末ィ匕することにより、従来のブックモールド 法などによる原料合金(出発合金)に比べて、 a—Fe量を低減できるため、 HDDR 処理後の磁気特性悪化を抑制し、良好な角形性を得ることが可能となる。  [0095] In the production method of the present invention, since the powder having an average particle size of less than 10 μm is used, it is necessary to increase the size of the main phase in the raw material alloy as in the conventional production method of HDDR magnet powder. Absent. Therefore, high anisotropy can be obtained after HDDR treatment even if a molten alloy is rapidly cooled and solidified by strip casting (solid cast alloy). In addition, by grinding and quenching such a quenched alloy, the amount of a-Fe can be reduced compared to the raw material alloy (starting alloy) produced by the conventional book mold method, etc., so the magnetic properties after HDDR treatment Deterioration can be suppressed and good squareness can be obtained.
[0096] なお、ストリップキャスト法以外の急冷法 (たとえばアトマイズ法)やブックモールド法 、遠心铸造法などによって作製した原料合金を用いても本発明の磁石を作製するこ とが可能である。また、原料合金における組織均質ィ匕などを目的として、粉砕前の原 料合金に対して熱処理を施してもよい。このような熱処理は、真空または不活性雰囲 気において、典型的には 1000°C以上の温度で実行され得る。  [0096] Note that the magnet of the present invention can also be produced using a raw material alloy produced by a rapid cooling method (for example, an atomizing method) other than the strip casting method, a book mold method, a centrifugal forging method, or the like. In addition, the raw alloy before pulverization may be subjected to a heat treatment for the purpose of homogenizing the structure of the raw alloy. Such heat treatment can be carried out in a vacuum or an inert atmosphere, typically at a temperature of 1000 ° C or higher.
[0097] 〈原料粉末〉  <Raw material powder>
次に、原料合金(出発合金)を公知の方法で粉砕することにより原料粉末を作製す る。本実施形態では、まず、ジョークラッシャーなどの機械的粉砕法や水素吸蔵粉砕 法などを用いて出発合金を粗粉砕し、大きさ 50 μ m〜1000 μ m程度に粗粉砕粉を 作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、典型的に は平均粒径が 10 μ m未満の原料粉末を作製する。  Next, a raw material powder is produced by pulverizing the raw material alloy (starting alloy) by a known method. In this embodiment, first, the starting alloy is coarsely pulverized using a mechanical pulverization method such as a jaw crusher or a hydrogen occlusion pulverization method to produce coarsely pulverized powder having a size of about 50 μm to 1000 μm. The coarsely pulverized powder is finely pulverized by a jet mill or the like to produce a raw material powder typically having an average particle size of less than 10 μm.
[0098] 十分な機械強度を有する多孔質バルタ磁石を得るためには、原料粉末の平均粒径 を最適化することが有効であるが、合金組成 (特に希土類量 Rや余剰希土類量 R' ) や HDDR条件 (特に HDDR温度)を調整することも有効である。合金組成や HDDR 条件を最適化すれば、原料粉末の平均粒径が 10 mを超えても、本発明と同様の 効果を得ることが可能である。 [0098] In order to obtain a porous Balta magnet having sufficient mechanical strength, the average particle diameter of the raw material powder However, it is also effective to adjust the alloy composition (especially the rare earth amount R and the surplus rare earth amount R ′) and the HDDR conditions (particularly the HDDR temperature). By optimizing the alloy composition and HDDR conditions, the same effect as the present invention can be obtained even if the average particle size of the raw material powder exceeds 10 m.
[0099] 取扱 、の観点から、原料粉末の平均粒径は 1 μ m以上であることが好ま U、。平均 粒径が 1 m未満になると、原料粉末が大気雰囲気中の酸素と反応しやすくなり、酸 化による発熱 '発火の危険性が高まるからである。取り扱 、をより容易にするためには 、平均粒径を 3 m以上に設定することが好ましい。成形体の機械的強度向上という 観点から、平均粒径の好ましい上限は 9 μ mであり、更に好ましい上限は 8 μ mであ る。 [0099] From the viewpoint of handling, the average particle size of the raw material powder is preferably 1 μm or more. When the average particle size is less than 1 m, the raw material powder easily reacts with oxygen in the atmosphere, and the heat generated due to oxidation increases the risk of ignition. In order to make handling easier, it is preferable to set the average particle size to 3 m or more. From the viewpoint of improving the mechanical strength of the molded article, the preferable upper limit of the average particle diameter is 9 μm, and the more preferable upper limit is 8 μm.
[0100] 従来の HDDR磁石粉末の平均粒径は、 10 μ mを超え、通常は 50〜500 μ m程度 であった。本発明者らの検討によると、このように大きな平均粒径を有する原料粉末 に対して HDDR処理を行った場合、十分な磁気特性 (特に高!ヽ保磁力ゃ減磁曲線 の角型性)が得られなカゝつたり、磁気特性が極端に低くなつたりする場合がある。磁 気特性劣化の原因は、 HDDR処理中(特に HD反応過程)における反応の不均質 ィ匕に起因するが、粉末粒子のサイズが大きくなるほど、反応は不均質化しやすくなる 。 HDDRの反応が不均質に進行すると、粉末粒子の内部において組織や結晶粒径 の不均質ィ匕が生じたり、未反応部分が生じたりし、その結果として磁気特性が劣化す ることになる。  [0100] The average particle size of conventional HDDR magnet powders exceeded 10 μm and was usually about 50 to 500 μm. According to the study by the present inventors, when the raw material powder having such a large average particle diameter is subjected to HDDR treatment, sufficient magnetic properties (especially high coercive force and squareness of demagnetization curve) are obtained. May not be obtained or the magnetic properties may be extremely low. The cause of the deterioration of the magnetic properties is due to the inhomogeneity of the reaction during HDDR processing (especially the HD reaction process), but the larger the powder particle size, the more likely the reaction becomes heterogeneous. If the reaction of HDDR proceeds inhomogeneously, the structure and crystal grain size inhomogeneity will occur inside the powder particles, and unreacted parts will occur, resulting in deterioration of magnetic properties.
[0101] HDDR反応を均一に進行させるには、 HDDR反応に要する時間を短縮することが 有効であるが、水素圧力を調整するなどして反応速度を高めると、今度は、結晶配向 度にばらつきが生じてしまう。結晶配向度がばらつくと、磁石粉末の異方性が低下し 、結果的に高い角型性が得られなくなる。  [0101] In order to make the HDDR reaction proceed uniformly, it is effective to shorten the time required for the HDDR reaction. However, if the reaction rate is increased by adjusting the hydrogen pressure, the degree of crystal orientation will vary. Will occur. If the degree of crystal orientation varies, the anisotropy of the magnet powder decreases, and as a result, high squareness cannot be obtained.
[0102] 本発明では、粉末を圧縮して形成した圧粉体に対して HDDR処理を行うが、圧粉 体の内部には、水素ガスが移動 ·拡散可能な隙間が粉末粒子の間に充分な大きさで 存在している。また、本発明では、平均粒径が典型的には 1 μ m以上 10 μ m未満の 原料粉末を使用しているため、水素が粉末粒子内の全体を移動することが容易であ り、 HD反応および DR反応を短時間で進行させることができる。こうして、 HDDR後 の組織が均質化されるため、高い磁気特性、特に良好な角形性が得られるとともに、 HDDR工程に要する時間を短縮できるという利点が得られる。 [0102] In the present invention, the HDDR process is performed on the green compact formed by compressing the powder, but there is a sufficient gap between the powder particles in the green compact where hydrogen gas can move and diffuse. It exists in a large size. In the present invention, since the raw material powder having an average particle diameter of typically 1 μm or more and less than 10 μm is used, it is easy for hydrogen to move through the powder particles. The reaction and DR reaction can proceed in a short time. Thus, after HDDR This makes it possible to obtain high magnetic properties, particularly good squareness, and to shorten the time required for the HDDR process.
[0103] 次に、上記の原料粉末を用いて圧粉体を成形する。圧粉体を成形する工程は、 10 MPa〜200MPaの圧力を印加し、 0. 5T〜20Tの磁界中(静磁界、パルス磁界など) で行うことが望ましい。成形は、公知の粉末プレス装置によって行うことができる。粉 末プレス装置から取り出したときの圧粉体密度 (成形体密度)は、 3. 5gZcm3〜5. 2 gZcm3程度である。 [0103] Next, a green compact is formed using the above raw material powder. The step of forming the green compact is preferably performed in a magnetic field of 0.5T to 20T (static magnetic field, pulsed magnetic field, etc.) by applying a pressure of 10 MPa to 200 MPa. Molding can be performed by a known powder press apparatus. The green density (molded body density) when taken out from the powder press is about 3.5 gZcm 3 to 5.2 gZcm 3 .
[0104] 上記の成形工程は、磁界を印加することなく実行してもよい。磁界配向を行わない 場合、最終的には等方性の多孔質磁石が得られることになる。しかし、より高い磁気 特性を得るためには、磁界配向を行いながら成形工程を実行し、最終的に異方性の 多孔質磁石を得ることが好まし 、。  [0104] The molding step may be performed without applying a magnetic field. Without magnetic field orientation, an isotropic porous magnet is finally obtained. However, in order to obtain higher magnetic properties, it is preferable to execute a molding process while aligning the magnetic field and finally obtain an anisotropic porous magnet.
[0105] 以上の出発合金の粉砕工程および原料粉末の成形工程は、上述の通り、 HD処理 直前の磁石中の余剰希土類量 R'が 0原子%を下回ってしまわないようにするため、 希土類元素の酸ィ匕を抑制しながら行うことが好ま 、。原料粉末の酸化を抑制する には、各工程および各工程間のハンドリングをできる限り酸素量を抑制した不活性雰 囲気下で行うことが望ましい。なお、 R'が所定値以上の市販の粉末を購入し、その 後の各工程および各工程間のハンドリングの雰囲気を制御して使用してもよい。  [0105] As described above, the starting alloy pulverization process and the raw material powder forming process described above are performed in order to prevent the amount of surplus rare earth R ′ in the magnet immediately before HD processing from falling below 0 atomic%. It is preferable to do this while suppressing acidity. In order to suppress the oxidation of the raw material powder, it is desirable to carry out each process and the handling between the processes in an inert atmosphere in which the amount of oxygen is suppressed as much as possible. It is also possible to purchase a commercially available powder having R ′ greater than or equal to a predetermined value, and use it after controlling each subsequent step and the handling atmosphere between each step.
[0106] また、磁気特性の向上などを目的として、出発合金の粉砕工程の前に、別の合金 を混合したものを微粉砕し、微粉砕後に圧粉体を成形してもよい。あるいは、出発合 金を微粉砕した後に、別の金属、合金および Zまたは化合物の粉末を混合し、それ らの圧粉体を作製してもよい。さらには、金属、合金および Zまたは化合物を分散ま たは溶解させた液を圧粉体に含浸させ、その後、溶媒を蒸発させてもよい。これらの 方法を適用する場合の合金粉末の組成は、混合粉全体として前述の範囲内に入る ことが望ましい。  [0106] Further, for the purpose of improving magnetic properties, etc., a mixture of another alloy may be finely pulverized before the starting alloy pulverization step, and the green compact may be formed after the fine pulverization. Alternatively, after the starting alloy is pulverized, another metal, alloy and Z or compound powder may be mixed to produce a green compact thereof. Furthermore, the green compact may be impregnated with a liquid in which a metal, an alloy and Z or a compound are dispersed or dissolved, and then the solvent may be evaporated. It is desirable that the composition of the alloy powder when applying these methods falls within the above-mentioned range as a whole of the mixed powder.
[0107] く HDDR処理〉  [0107] Ku HDDR processing>
次に、上記成形工程によって得られた圧粉体 (成形体)に対し、 HDDR処理を施す  Next, HDDR treatment is applied to the green compact (molded body) obtained by the above molding process.
[0108] 本実施形態では、成形時に原料粉末の粒子に割れが生じても、その後に HDDR 反応を行うため、磁気特性に影響を与えない。 [0108] In this embodiment, even if cracks occur in the raw material powder particles during molding, Since the reaction is performed, the magnetic properties are not affected.
[0109] HDDR処理の条件は、添加元素の種類'量などによって適宜選定され、従来の H DDR法における処理条件を参考にして決定することができる。本実施形態では、平 均粒径 1〜: LO mの比較的微細な粉末粒子の圧粉体を使用するため、従来の HD DR法よりも短い時間で HDDR反応を完了させることが可能となる。  [0109] The conditions for the HDDR treatment are appropriately selected depending on the type and amount of the additive element, and can be determined with reference to the treatment conditions in the conventional H DDR method. In this embodiment, since the green compact with a relatively fine powder particle having an average particle diameter of 1 to LO m is used, the HDDR reaction can be completed in a shorter time than the conventional HD DR method. .
[0110] HD反応のための昇温工程は、水素分圧 lOkPa以上 500kPa以下の水素ガス雰 囲気または水素ガスと不活性ガス (Arや Heなど)の混合雰囲気、不活性ガス雰囲気 、真空中のいずれかで行う。昇温工程を不活性ガス雰囲気または真空中で行うと、以 下のような効果を得ることができる。  [0110] The heating process for the HD reaction is performed in a hydrogen gas atmosphere with a hydrogen partial pressure of lOkPa to 500kPa or a mixed atmosphere of hydrogen gas and an inert gas (Ar, He, etc.), an inert gas atmosphere, or in a vacuum. Do either. When the temperature raising step is performed in an inert gas atmosphere or vacuum, the following effects can be obtained.
[0111] (1)昇温過程での水素吸蔵に伴う圧粉体崩壊を抑制できる。  [0111] (1) It is possible to suppress the green compact collapse accompanying the hydrogen occlusion during the temperature rising process.
[0112] (2)昇温時の反応速度制御の困難性に起因する磁気特性低下を抑制できる。  [0112] (2) It is possible to suppress a decrease in magnetic properties due to difficulty in controlling the reaction rate during temperature rise.
[0113] (3)昇温により低融点の希土類合金および Zまたは希土類ィヒ合物が融解して圧粉 体の収縮を進行させ、高 、強度の多孔質磁石を得ることができる。  [0113] (3) A low-melting rare earth alloy and Z or rare earth compound are melted by the temperature rise, and the compaction of the green compact is advanced, so that a high-strength porous magnet can be obtained.
[0114] HD処理は、水素分圧 lOkPa以上 500kPa以下の水素ガス雰囲気または水素ガス と不活性ガス (Arや Heなど)の混合雰囲気で、 650°C以上 1000°C未満で行う。 HD 処理時の水素分圧は 20kPa以上 200kPa以下がより好まし 、。処理温度は 700°C 以上 900°C以下であることがより好ましい。 HD処理に要する時間は、 5分以上 10時 間以下であり、典型的には 10分以上 5時間以下の範囲に設定される。本実施形態で は、原料粉末の平均粒径が小さいため、比較的短時間で HD反応が完了する。  [0114] The HD treatment is performed at 650 ° C or higher and lower than 1000 ° C in a hydrogen gas atmosphere of hydrogen partial pressure of lOkPa or higher and 500kPa or lower or a mixed atmosphere of hydrogen gas and inert gas (Ar, He, etc.). The hydrogen partial pressure during HD treatment is more preferably 20 kPa or more and 200 kPa or less. The treatment temperature is more preferably 700 ° C to 900 ° C. The time required for HD processing is 5 minutes or more and 10 hours or less, and is typically set in the range of 10 minutes or more and 5 hours or less. In this embodiment, since the average particle diameter of the raw material powder is small, the HD reaction is completed in a relatively short time.
[0115] なお、 R— T— Q系合金中の Tについて、 Co量が合金全体の組成に対し、 3原子% 以下の場合は、昇温および Zまたは HD処理時の水素分圧を 5kPa以上 lOOkPa以 下、より好ましくは、 lOkPa以上 50kPa以下とすることで、 HDDR処理における異方 性の低下を抑制できる。  [0115] Regarding T in R-T-Q alloys, if the Co content is 3 atomic% or less of the total alloy composition, the hydrogen partial pressure during temperature rise and Z or HD treatment is 5 kPa or more. By setting the pressure to lOOkPa or less, more preferably from lOkPa to 50 kPa, it is possible to suppress a decrease in anisotropy in HDDR processing.
[0116] HD処理のあと、 DR処理を行う。 HD処理と DR処理は同一の装置内で連続的に行 うこともできる力 別々の装置を用いて不連続的に行うこともできる。  [0116] DR processing is performed after HD processing. HD processing and DR processing can be performed continuously in the same device. It can also be performed discontinuously using separate devices.
[0117] DR処理は、真空または不活性ガス雰囲気下において 650°C以上 1000°C未満で 行う。処理時間は、通常、 5分以上 10時間以下であり、典型的には 10分以上、 2時 間以下の範囲に設定される。なお、雰囲気を段階的に制御する (例えば水素分圧を 段階的に下げたり、減圧圧力を段階的に下げたりする)ことができることは言うまでも ない。 [0117] The DR treatment is performed at 650 ° C or higher and lower than 1000 ° C in a vacuum or inert gas atmosphere. The treatment time is usually 5 minutes or more and 10 hours or less, and is typically set in the range of 10 minutes or more and 2 hours or less. Note that the atmosphere is controlled in stages (for example, the hydrogen partial pressure Needless to say, the pressure can be reduced stepwise or the reduced pressure can be reduced stepwise.
[0118] 上述した HD反応前の昇温工程を含む HDDR工程の全般を通じて焼結反応が起 こる。このため、圧粉体は長径 1 μ m以上 20 m以下の細孔を有する多孔質の焼結 磁石となる。このときに生じる焼結のメカニズムは、通常の R— Fe— B系焼結磁石を 製造するときに行う焼結のメカニズムとは異なるはずである力 その詳細は現時点で は明らかではない。  [0118] The sintering reaction occurs throughout the HDDR process including the temperature raising process before the HD reaction described above. For this reason, the green compact becomes a porous sintered magnet having pores with a major axis of 1 μm to 20 m. The mechanism of sintering that occurs at this time is different from the mechanism of sintering performed when manufacturing ordinary R-Fe-B sintered magnets. The details are not clear at this time.
[0119] HDDR工程で生じる焼結反応により、圧粉体は収縮率((HDDR処理前の成形体 寸法 HDDR処理後の成形体寸法) ZHDDR処理前の成形体寸法 X 100)で 2% 〜10%程度収縮する力 その収縮の異方性は小さい。本実施形態では、収縮比 (磁 界方向の収縮率 Z金型方向の収縮率)が 1. 1〜1. 6程度である。このため、従来の 焼結磁石 (典型的な収縮比は 2以上)では作製が困難であった種々の形状を有する 焼結磁石を製造することが可能となる。  [0119] Due to the sintering reaction that occurs in the HDDR process, the green compact shrinks ((molded body dimensions before HDDR processing, molded body dimensions after HDDR processing) molded body dimensions before ZHDDR processing X 100) to 2% to 10% Force to shrink by about% The shrinkage anisotropy is small. In this embodiment, the shrinkage ratio (shrinkage rate in the magnetic field direction Z shrinkage rate in the mold direction) is about 1.1 to 1.6. For this reason, it becomes possible to manufacture sintered magnets having various shapes that were difficult to manufacture with conventional sintered magnets (typical shrinkage ratio is 2 or more).
[0120] なお、 HDDR処理全体が酸素量を低減した雰囲気で行われるため、前述した HD 処理直前の余剰希土類量 R'は、 DR処理直後の R'とほぼ同等もしくはそれ以上とな る。従って、 DR処理直後の R'を測定することにより、 HD処理直前における R'の値 が所望の値以上であることを確認することが可能である。ただし、 HDDR処理時の雰 囲気に含まれる極微量の酸素や水分により、多孔質磁石の表層が酸化されて黒変し ていることがあるため、 DR処理直後の R'は、酸ィ匕した表層を取り除いた後に測定す ることが好ましい。  [0120] Since the entire HDDR process is performed in an atmosphere in which the amount of oxygen is reduced, the surplus rare earth amount R ′ immediately before the HD process described above is almost equal to or more than R ′ immediately after the DR process. Therefore, by measuring R ′ immediately after DR processing, it is possible to confirm that the value of R ′ immediately before HD processing is greater than or equal to the desired value. However, since the surface layer of the porous magnet may be oxidized and blackened due to the trace amount of oxygen and moisture contained in the atmosphere during HDDR processing, R 'immediately after DR processing was oxidized. It is preferable to measure after removing the surface layer.
[0121] 本実施形態では、成形工程後に圧粉体 (成形体)に対して HDDR処理を施すため 、 HDDR処理後には粉末成形を行わない。このため、成形のための加圧によって磁 粉が粉砕されるようなことが HDDR処理後に生じず、 HDDR粉末を圧縮するボンド 磁石に比べて高い磁気特性を得ることができる。こうして、本実施形態によれば、減 磁曲線の角型性が向上するため、着磁性と耐熱性とを両立させることが可能になる。  [0121] In this embodiment, since the HDDR process is performed on the green compact (molded body) after the molding process, the powder molding is not performed after the HDDR process. For this reason, the magnetic powder is not crushed by the pressurization for forming after the HDDR treatment, and high magnetic properties can be obtained compared to the bonded magnet that compresses the HDDR powder. Thus, according to the present embodiment, since the squareness of the demagnetization curve is improved, it is possible to achieve both magnetization and heat resistance.
[0122] さらに、本実施形態によれば、従来の HDDR粉末を用いて製造される異方性ボン ド磁石が有する配向や残磁の問題も解消され、ラジアル異方性や極異方性を付与す ることもできる。また、熱間成形法が本質的に有する生産性が低いという問題もない。 [0123] また本実施形態によれば、 HDDR反応を進行させながら圧粉体の密度を向上させ ていくため、 HD反応や DR反応による体積変化に起因する磁石の割れなどの問題 を回避することもできる。さらに、圧粉体の表面および内部でほぼ同時に HDDR反応 が進行して 、くため、大型の磁石を容易に作製することができる。 [0122] Furthermore, according to the present embodiment, the problems of orientation and residual magnetism of anisotropic bond magnets manufactured using conventional HDDR powder are also eliminated, and radial anisotropy and polar anisotropy are reduced. It can also be granted. Further, there is no problem that the productivity inherent in the hot forming method is low. [0123] Also, according to the present embodiment, the density of the green compact is improved while the HDDR reaction proceeds, so problems such as cracking of the magnet due to the volume change due to the HD reaction or DR reaction can be avoided. You can also. Further, since the HDDR reaction proceeds almost simultaneously on the surface and inside of the green compact, a large magnet can be easily produced.
[0124] く多孔質磁石の加熱圧縮処理〉  [0124] Heat compression treatment of porous magnets>
上記の方法によって得られた多孔質材料 (磁石)は、そのままの状態でバルタ永久 磁石として利用することができる力 さらにホットプレス法などの加熱圧縮処理を用い ること〖こよって、緻密化を行い、フルデンス磁石を得ることもできる。以下に加熱圧縮 処理によるフルデンス化について、具体的な実施形態の一例を示す。多孔質磁石に 対する加熱圧縮は、公知の加熱圧縮技術を用いて行うことができる。例えば、ホット プレス、 SPSゝ (spark plasma sintering)、 HIP、熱間圧延などの加熱圧縮処理を行う ことが可能である。なかでも、所望の形状を得やすいホットプレスや SPSが好適に用 V、られ得る。本実施形態では以下の手順でホットプレスを行う。  The porous material (magnet) obtained by the above-mentioned method is densified by using a force that can be used as a Balta permanent magnet as it is, and by using a heat compression treatment such as a hot press method. A full-density magnet can also be obtained. An example of a specific embodiment will be shown below for full condensation by heat compression treatment. Heat compression for the porous magnet can be performed using a known heat compression technique. For example, it is possible to perform heat compression treatment such as hot pressing, SPS® (spark plasma sintering), HIP, hot rolling. Among them, a hot press or SPS that can easily obtain a desired shape can be suitably used. In this embodiment, hot pressing is performed according to the following procedure.
[0125] 本実施形態では、図 4に示す構成を有するホットプレス装置を用いる。この装置は、 中央に開口部を有する金型 (ダイ) 27と、多孔質磁石を加圧するための上パンチ 28a および下パンチ 28bと、これらのパンチ 28a、 28bを昇降する駆動部 30a、 30bとを備 えている。  In this embodiment, a hot press apparatus having the configuration shown in FIG. 4 is used. This apparatus includes a die (die) 27 having an opening in the center, an upper punch 28a and a lower punch 28b for pressurizing a porous magnet, and drive units 30a and 30b for raising and lowering these punches 28a and 28b. It has.
[0126] 上述した方法によって作製した多孔質磁石(図 4では参照符号「10」を付している) を、図 4に示す金型 27に装填する。このとき、磁界方向(配向方向)とプレス方向とが 一致するように装填を行うことが好ましい。金型 27およびパンチ 28a、 28bは、使用す る雰囲気ガス中で加熱温度および印加圧力に耐えうる材料から形成される。このよう な材料としては、カーボンやタングステンカーバイドなどの超硬合金が好ましい。なお 、多孔質磁石 10の外形寸法は金型 27の開口部寸法よりも小さく設定しておくことに より、異方性を高められる。次に、多孔質磁石 10を装填した金型 27をホットプレス装 置にセットする。ホットプレス装置は、不活性ガス雰囲気または 10— ^orr以上の真空 に制御することが可能なチャンバ 26を備えていることが好ましい。チャンバ 26内には 、例えば抵抗加熱によるカーボンヒーターなどの加熱装置と、試料を加圧して圧縮す るためのシリンダーとが備え付けられている。 [0127] チャンバ 26内を真空または不活性ガス雰囲気で満たした後、加熱装置により金型 27を加熱し、金型 27に装填された多孔質磁石 10の温度を 600°C〜900°Cに高める 。このとき、 0. 1〜3. OtonZcm2の圧力 Pで多孔質磁石 10を加圧する。多孔質磁石 10に対する加圧は、金型 27の温度が設定レベルに到達してから開始することが好ま しい。加圧しながら 600〜900°Cの温度で 10分以上保持した後、冷却する。加熱圧 縮によりフルデンス化された磁石が大気と接触して酸ィ匕しない程度の低い温度(100 °C以下程度)まで冷却が進んだ後、本実施形態の磁石をチャンバから取り出す。こう して、上記の多孔質磁石力も本実施形態の R—Fe— B系磁石を得ることができる。 [0126] A porous magnet (indicated by reference numeral “10” in FIG. 4) produced by the method described above is loaded into a mold 27 shown in FIG. At this time, it is preferable to perform loading so that the magnetic field direction (orientation direction) coincides with the pressing direction. The mold 27 and the punches 28a and 28b are made of a material that can withstand the heating temperature and the applied pressure in the atmospheric gas used. Such a material is preferably a cemented carbide such as carbon or tungsten carbide. It should be noted that anisotropy can be increased by setting the outer dimension of the porous magnet 10 smaller than the opening dimension of the mold 27. Next, the mold 27 loaded with the porous magnet 10 is set in a hot press apparatus. The hot press apparatus preferably includes a chamber 26 that can be controlled to an inert gas atmosphere or a vacuum of 10- ^ orr or higher. In the chamber 26, for example, a heating device such as a carbon heater by resistance heating and a cylinder for pressurizing and compressing the sample are provided. [0127] After the chamber 26 is filled with a vacuum or an inert gas atmosphere, the mold 27 is heated by a heating device, and the temperature of the porous magnet 10 loaded in the mold 27 is changed to 600 ° C to 900 ° C. Increase. At this time, the porous magnet 10 is pressurized with a pressure P of 0.1 to 3. OtonZcm 2 . The pressurization to the porous magnet 10 is preferably started after the temperature of the mold 27 reaches a set level. Hold for 10 minutes or more at 600-900 ° C while applying pressure, then cool. After the magnet fully condensed by heating and compression is cooled to a low temperature (about 100 ° C. or less) that does not oxidize due to contact with the atmosphere, the magnet of this embodiment is taken out from the chamber. Thus, the R-Fe-B magnet of this embodiment can also be obtained with the porous magnet force described above.
[0128] こうして得られた磁石の密度は真密度の 95%以上に達する。また、本実施形態に よれば、最終的な結晶相集合組織において、個々の結晶粒の最短粒径 aと最長粒径 bの比 b/aが 2未満である結晶粒が全結晶粒の 50体積%以上存在する。この点にお いて、本実施形態の磁石は、たとえば特開平 02— 39503号公報などに記載の従来 の熱間塑性カ卩ェによる異方性バルタ磁石と大きく異なって 、る。このような磁石の結 晶組織にぉ ヽては、最短粒径 aと最長粒径 bの比 b/aが 2を超えた扁平な結晶粒が支 配的である。  [0128] The density of the magnet thus obtained reaches 95% or more of the true density. Further, according to the present embodiment, in the final crystal phase texture, a crystal grain having a ratio b / a of less than 2 between the shortest grain size a and the longest grain size b of each crystal grain is 50% of all crystal grains. It exists by volume% or more. In this respect, the magnet according to the present embodiment is greatly different from the conventional anisotropic butter magnets by hot plastic cage described in, for example, Japanese Patent Laid-Open No. 02-39503. For such a crystal structure of a magnet, flat crystal grains in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b exceeds 2 are dominant.
[0129] なお、このような加熱圧縮処理は本実施形態に用いた多孔質磁石だけでなぐ後 述する、細孔内に異種材料を導入した多孔質材料 (磁石)にも同様に適用することが できる。  [0129] It should be noted that such a heat compression treatment is applied not only to the porous magnet used in the present embodiment, but also to a porous material (magnet) in which a different material is introduced into the pore, which will be described later. Is possible.
[0130] く多孔質磁石への異種材料の導入〉  [0130] Introduction of dissimilar materials into a porous magnet>
前述した方法によって得られる R—Fe— B系多孔質材料 (磁石)の細孔は内部まで 大気と連通しており、その孔の内部に異種材料を導入することができる。導入の方法 としては、乾式処理や湿式処理が用いられる。また、異種材料の例としては、希土類 金属、希土類合金および Zまたは希土類ィ匕合物、鉄やその合金などが挙げられる。 以下にそれらの具体的な実施形態の一例を示す。  The pores of the R—Fe—B porous material (magnet) obtained by the method described above communicate with the atmosphere to the inside, and different materials can be introduced into the pores. As the introduction method, dry processing or wet processing is used. Examples of different materials include rare earth metals, rare earth alloys and Z or rare earth compounds, iron and alloys thereof. An example of those specific embodiments is shown below.
[0131] (1) 湿式処理による異種材料の導入  [0131] (1) Introduction of dissimilar materials by wet processing
R— Fe— B系多孔質材料に施す湿式処理は、電解めつき処理、無電解めつき処理 、化成処理、アルコール還元法、金属カルボ-ル分解法、ゾルゲル法などの方法を 用いて行うことができる。このような方法によれば、化学反応により、細孔内部の多孔 質材料表面に被膜や微粒子の層を形成することができる。また、有機溶媒に微粒子 を分散させたコロイド溶液を用意し、 R— Fe— B系多孔質材料の孔部に含浸させる 方法を用いても、本発明における湿式処理を行うことができる。この場合は、多孔質 材料の細孔中に導入したコロイド溶液の有機溶媒を蒸発させることにより、コロイド溶 液中に分散して 、た微粒子の層で細孔を被覆することが可能である。これらの方法 により湿式処理を行うとき、化学反応を促進したり、微粒子を多孔質材料の内部にま で確実に含浸させるため、付カ卩的に加熱処理や超音波の印加を行ってもよい。 Wet treatment applied to R-Fe-B porous materials should be performed using methods such as electrolytic plating, electroless plating, chemical conversion, alcohol reduction, metal carbolysis, and sol-gel method. Can do. According to such a method, the pores inside the pores are caused by chemical reaction. A film or a layer of fine particles can be formed on the surface of the porous material. The wet treatment in the present invention can also be performed by preparing a colloidal solution in which fine particles are dispersed in an organic solvent and impregnating the pores of the R—Fe—B porous material. In this case, by evaporating the organic solvent of the colloidal solution introduced into the pores of the porous material, the pores can be covered with a layer of fine particles dispersed in the colloidal solution. When wet processing is performed by these methods, heat treatment or application of ultrasonic waves may be additionally performed in order to promote a chemical reaction or to ensure that fine particles are impregnated into the porous material. .
[0132] 以下、コロイド溶液を用いて行う湿式処理を詳細に説明する。 [0132] Hereinafter, a wet process performed using a colloidal solution will be described in detail.
[0133] コロイド溶液中に分散させる微粒子は、例えばプラズマ CVD法などの気相法、ゾル ゲル法などの液相法などの公知の方法によって作製され得る。液相法を採用して微 粒子を作製する場合、その溶媒は、コロイド溶液の溶媒と同一であっても良いし、異 なっていてもよい。 [0133] The fine particles to be dispersed in the colloidal solution can be produced by a known method such as a gas phase method such as a plasma CVD method or a liquid phase method such as a sol-gel method. In the case of producing fine particles by employing the liquid phase method, the solvent may be the same as or different from the solvent of the colloidal solution.
[0134] 微粒子の平均粒子径は lOOnm以下であることが好ましい。平均粒径が lOOnmを 超えて大きくなりすぎると、 R— Fe— B系多孔質材料の内部までコロイド溶液を浸透さ せることが困難になるからである。微粒子の粒径の下限は、コロイド溶液が安定であ るかぎり、特に限定されない。一般に、微粒子の粒径が 5nm未満になると、コロイド溶 液の安定性が低下することが多 、ため、微粒子の粒径は 5nm以上であることが好ま しい。  [0134] The average particle size of the fine particles is preferably lOOnm or less. This is because if the average particle size exceeds lOOnm and becomes too large, it will be difficult to penetrate the colloidal solution into the R—Fe—B porous material. The lower limit of the particle size of the fine particles is not particularly limited as long as the colloidal solution is stable. In general, when the particle size of the fine particles is less than 5 nm, the stability of the colloidal solution is often lowered. Therefore, the particle size of the fine particles is preferably 5 nm or more.
[0135] 微粒子を分散させる溶媒は、微粒子の粒径、化学的性質などによって適宜選定さ れるが、 R—Fe— B系多孔質材料の耐食性が高くないため、非水系の溶媒を用いる ことが好ましい。微粒子の凝集を防ぐために、界面活性剤などの分散剤をコロイド溶 液に含有させても良い。  [0135] The solvent in which the fine particles are dispersed is appropriately selected depending on the particle size, chemical properties, and the like of the fine particles. However, since the corrosion resistance of the R-Fe-B porous material is not high, a non-aqueous solvent may be used. preferable. In order to prevent aggregation of fine particles, a dispersant such as a surfactant may be contained in the colloidal solution.
[0136] コロイド溶液中における微粒子の濃度は、微粒子の粒径、化学的性質、溶媒や分 散剤の種類などによって適宜選定されるが、例えば 1質量%から 50質量%程度まで の範囲内に設定される。  [0136] The concentration of the fine particles in the colloidal solution is appropriately selected depending on the particle size, chemical properties, type of solvent and dispersant, etc., but is set within a range of, for example, about 1% to 50% by weight. Is done.
[0137] このようなコロイド溶液に希土類多孔質材料を浸漬すると、毛細管現象により、希土 類多孔質材料の内部の細孔までコロイド溶液が浸透する。なお、多孔質材料内部へ のコロイド溶液の浸透 (含浸)をより確実に行うためには、多孔質材料内部の細孔に 存在していた空気を除去することが有用であるため、含浸処理は一旦減圧または真 空雰囲気とした後、常圧に復圧、または加圧して行うことが有効である。 [0137] When a rare earth porous material is immersed in such a colloidal solution, the colloidal solution penetrates to the pores inside the rare earth porous material by capillary action. In order to ensure the penetration (impregnation) of the colloidal solution into the porous material, the pores inside the porous material Since it is useful to remove the existing air, it is effective to perform the impregnation treatment by once reducing the pressure or vacuum atmosphere, and then restoring the pressure to normal pressure or increasing the pressure.
[0138] 含浸処理を行う前の多孔質材料は、研削加工などの加工屑が多孔質材料の表面 における細孔を塞いでいる可能性があり、確実な含浸が妨げられる場合がある。この ため、含浸の前に、超音波洗浄などにより、多孔質材料の表面を清浄ィ匕しておくこと が好ましい。  [0138] In the porous material before the impregnation treatment, there is a possibility that processing scraps such as grinding may block pores on the surface of the porous material, which may prevent reliable impregnation. For this reason, it is preferable to clean the surface of the porous material by ultrasonic cleaning or the like before the impregnation.
[0139] 多孔質材料に含浸処理を行なった後、コロイド溶液中の溶媒を蒸発させる。溶媒の 蒸発は、溶媒の種類によって異なり、室温大気中で十分に蒸発する場合もあるが、 必要に応じて加熱および Zまたは減圧を行うことにより、蒸発を促進させることが好ま しい。  [0139] After impregnating the porous material, the solvent in the colloidal solution is evaporated. Evaporation of the solvent varies depending on the type of solvent, and may evaporate sufficiently in the air at room temperature. However, it is preferable to promote evaporation by heating and applying Z or reduced pressure as necessary.
[0140] 湿式処理によって導入される材料は、細孔の全体を埋めている必要はなぐ細孔表 面上に存在して ヽればよ ヽが、少なくとも細孔表面を被覆して ヽることが好まし!/ヽ。  [0140] The material introduced by the wet treatment should be present on the surface of the pores that do not need to fill the entire pores, but should cover at least the surface of the pores. Is preferred!
[0141] 次に、一例として、 Ag粒子を分散したコロイド溶液を用いて、多孔質磁石材料内部 の細孔表面に Ag粒子による被膜を形成する具体例について示す。  [0141] Next, as an example, a specific example of forming a coating film of Ag particles on the pore surfaces inside the porous magnet material using a colloidal solution in which Ag particles are dispersed will be described.
[0142] 後述する実施例 5と同様の方法で作製した 7mm X 7mm X 5mmサイズの多孔質 磁石材料に対し、超音波洗浄を行った後、ナノ粒子分散コロイド溶液に多孔質材料 を浸漬した。このコロイド溶液は、 Agナノメタルインク(アルバックマテリアル製)であり 、 Ag粒子の平均粒径: 3〜7 /ζ πι、溶媒:テトラデカン、固形分濃度 55〜60質量%で あった。ナノ粒子分散コロイド溶液はガラス製容器内に入れられ、多孔質材料を浸漬 させた状態で真空デシケータ内に挿入し、減圧下に置いた。処理中の雰囲気圧力は 約 130Paに調整した。  [0142] A 7 mm x 7 mm x 5 mm size porous magnet material produced by the same method as in Example 5 described later was subjected to ultrasonic cleaning, and then the porous material was immersed in the nanoparticle-dispersed colloid solution. This colloidal solution was Ag nanometal ink (manufactured by ULVAC MATERIAL), and had an average particle diameter of Ag particles: 3 to 7 / ζ πι, a solvent: tetradecane, and a solid content concentration of 55 to 60% by mass. The nanoparticle-dispersed colloid solution was placed in a glass container, inserted into a vacuum desiccator with the porous material immersed therein, and placed under reduced pressure. The atmospheric pressure during the treatment was adjusted to about 130Pa.
[0143] 減圧により多孔質材料及びナノ粒子分散コロイド溶液内では気泡が発生した。気 泡の発生が止んだ後、大気圧に一旦戻した。その後、真空乾燥機内に多孔質材料 を挿入し、約 130Paの雰囲気圧力下で 200°Cに加熱し、溶媒を蒸発させ、乾燥を行 つた。こうして、本発明による複合バルタ材料のサンプルを得た。  [0143] Air bubbles were generated in the porous material and the nanoparticle-dispersed colloidal solution due to the reduced pressure. After the generation of bubbles stopped, the pressure was returned to atmospheric pressure. Thereafter, the porous material was inserted into the vacuum dryer, heated to 200 ° C under an atmospheric pressure of about 130 Pa, the solvent was evaporated, and drying was performed. Thus, a sample of the composite Balta material according to the present invention was obtained.
[0144] なお、これらの一連の作業、特に乾燥作業は、表面積が大き!ヽ多孔質材料の酸ィ匕 を避けるため、可能な限りアルゴンなどの不活性ガス雰囲気 (または、可能であれば 真空中)で行うことが好ましい。 [0145] 図 5は、含浸処理後の多孔質材料 (複合バルタ材料)の破断面 SEM写真である。 [0144] These series of operations, especially drying operations, have a large surface area! In order to avoid the oxidation of porous materials, an inert gas atmosphere such as argon (or vacuum if possible) Middle). [0145] Fig. 5 is a fracture surface SEM photograph of the porous material (composite Balta material) after the impregnation treatment.
[0146] 図 5の写真における領域 Dは、多孔質材料の破断面であるが、領域 Eは、数 ηπ!〜 数十 nmの微粒子によって埋められた被膜が表面に形成された細孔である。これらの 微粒子被膜は、ナノ粒子分散コロイド溶液中に分散されて ヽた Agナノ粒子が溶媒と ともに多孔質材料の細孔を通って運ばれ、溶媒蒸発後も細孔内に残った微粒子によ つて形成されたものであると考えられる。このような Agナノ粒子の存在による被膜は、 サンプルの中心部でも観察された。 [0146] Region D in the photograph of Fig. 5 is a fracture surface of the porous material, but region E is several ηπ! ~ Fine pores formed on the surface with a film filled with fine particles of several tens of nm. These fine particle coatings are formed by the Ag nanoparticles dispersed in the nanoparticle-dispersed colloidal solution being transported through the pores of the porous material together with the solvent, and the fine particles remaining in the pores after the solvent evaporation. It is thought that it was formed. Such a coating due to the presence of Ag nanoparticles was also observed at the center of the sample.
[0147] このように多孔質材料の細孔を介して中心部まで微粒子を導入することができる。 [0147] In this way, fine particles can be introduced to the central portion through the pores of the porous material.
[0148] なお、 R—Fe— B系多孔質材料とは異なる材料として、アクリルやウレタンなどの榭 脂を用い、該榭脂を含浸後、加熱などの方法で榭脂を硬化させることにより、多孔質 磁石材料としての耐環境性を向上することができる。 [0148] In addition, by using a resin such as acrylic or urethane as a material different from the R-Fe-B-based porous material, impregnating the resin, and curing the resin by a method such as heating, Environmental resistance as a porous magnet material can be improved.
[0149] 湿式処理によって、 R— Fe— B系多孔質材料とは異なる材料が細孔内部に導入さ れた R—Fe— B系多孔質材料に対しては、特性の改善などを目的としてさらに加熱 処理を実施しても良い。加熱処理の温度は、加熱の目的に応じて適宜設定される。 ただし、加熱温度が 1000°C以上になると、 R—Fe B系多孔質材料中の集合組織 が粗大化し、磁気特性の低下を招くため、加熱温度は 1000°C未満とすることが好ま しい。加熱雰囲気は、 R—Fe— B系多孔質材料の酸ィ匕ゃ窒化による磁気特性の低 下を抑制するという観点から、真空中や Arなどの不活性ガス雰囲気中で行うことが好 ましい。 [0149] For the R-Fe-B porous material in which a material different from the R-Fe-B porous material is introduced into the pores by wet processing, the purpose is to improve the properties. Further, heat treatment may be performed. The temperature of the heat treatment is appropriately set according to the purpose of heating. However, when the heating temperature is 1000 ° C or higher, the texture in the R—Fe B porous material becomes coarse and the magnetic properties are deteriorated. Therefore, the heating temperature is preferably less than 1000 ° C. The heating atmosphere is preferably in a vacuum or in an inert gas atmosphere such as Ar from the viewpoint of suppressing the deterioration of magnetic properties due to acid-nitridation of R—Fe—B porous materials. .
[0150] なお、 R—Fe— B系多孔質材料と、それと異なる材料の組み合わせによっては、 R  [0150] Depending on the combination of R—Fe—B porous material and different materials, R
Fe— B系多孔質材料が固有保磁力(H )を有さない場合があり、その場合は、本  Fe-B based porous material may not have intrinsic coercive force (H).
cj  cj
工程や加熱圧縮処理により、 400kAZm以上の固有保磁力(H )を発現し得る永久  Permanently capable of developing an intrinsic coercive force (H) of 400 kAZm or higher by process or heat compression
cj  cj
磁石材料を作製することができる。  Magnet materials can be made.
[0151] HD処理と DR処理とを必ずしも連続して実行する必要はない。さら〖こ、 HD処理後 の圧粉体に対して、異種材料として金属、合金および Zまたは化合物を上記と同様 の方法で導入し、その後に、 DR処理を行っても構わない。この場合、 HD処理後の 圧粉体は粒子同士の拡散接合が進展しており、 HD処理前の圧粉体よりもハンドリン グ性が向上しているため、容易に金属、合金および Zまたは化合物を導入することが できる。 [0151] The HD process and the DR process do not necessarily have to be executed continuously. Furthermore, it is also possible to introduce metals, alloys and Z or compounds as different materials into the green compact after HD treatment in the same manner as described above, and then perform DR treatment. In this case, the green compact after HD processing has progressed in diffusion bonding between particles, and its handling is improved compared to the green compact before HD processing. Can be introduced it can.
[0152] また、湿式処理後における多孔質材料 (複合バルタ材料)に対して、前述した加熱 圧縮処理を適用すると、真密度の 95%以上に緻密化した複合バルタ磁石を得ること ができる。  [0152] Further, by applying the above-mentioned heat compression treatment to the porous material (composite Balta material) after the wet treatment, a composite Balta magnet densified to 95% or more of the true density can be obtained.
[0153] 以上、湿式処理によって異種材料を導入する方法につ!ヽて述べたが、異種材料と して希土類元素を導入する場合には、以下に説明する方法を好適に採用できる。  [0153] Although the method for introducing a different material by wet processing has been described above, the method described below can be suitably employed when a rare earth element is introduced as the different material.
[0154] (2)希土類元素の導入  [0154] (2) Introduction of rare earth elements
R— Fe— B系多孔質材料の表面および Zまたは細孔内部に導入する希土類金属 、希土類合金、希土類化合物は、少なくとも 1種類の希土類元素を含んでいれば特 段限定されることはない。本発明の効果を有効に発揮させるためには、 Nd、 Pr、 Dy 、 Tbのうち少なくとも 1種またはそれ以上を含むことが望ましい。  The rare earth metal, rare earth alloy and rare earth compound introduced into the surface and Z or pores of the R—Fe—B porous material are not particularly limited as long as they contain at least one kind of rare earth element. In order to effectively exhibit the effects of the present invention, it is desirable to include at least one of Nd, Pr, Dy and Tb.
[0155] 希土類金属、希土類合金、希土類ィ匕合物のうちの少なくとも 1種を R— Fe— B系多 孔質材料の表面および Zまたは細孔内部に導入する方法には、種々の方法があり、 本発明では特に特定の方法に限定されない。使用可能な導入方法は、乾式処理と 湿式処理に大別される。以下、それぞれの方法について具体的に記載する。  [0155] There are various methods for introducing at least one of a rare earth metal, a rare earth alloy, and a rare earth compound into the surface of the R-Fe-B porous material and Z or inside the pores. In the present invention, the method is not particularly limited. The introduction methods that can be used are roughly divided into dry processing and wet processing. Hereinafter, each method will be specifically described.
[0156] (A)乾式処理  [0156] (A) Dry treatment
乾式処理としては、公知のスパッタリング法、真空蒸着法、イオンプレーティングな どの物理蒸着法を用いることができる。また、希土類金属、希土類合金、希土類化合 物 (水素化物など)の少なくとも一種の粉末を R— Fe— B系多孔質材料と混合し、加 熱することにより、希土類元素を R— Fe— B系多孔質材料中に拡散させてもよい。ま た、 PCTZJP2007Z53892号に記載されているように、希土類含有物から希土類 元素を気化 '蒸着させつつ、 R— Fe— B系多孔質材料中に拡散する方法 (蒸着拡散 法)を用いても良い。  As the dry process, a known physical vapor deposition method such as sputtering, vacuum vapor deposition, or ion plating can be used. In addition, at least one powder of rare earth metal, rare earth alloy, rare earth compound (hydride, etc.) is mixed with R-Fe-B porous material and heated to convert the rare earth element to R-Fe-B system. It may be diffused into the porous material. Further, as described in PCTZJP2007Z53892, a method (vapor deposition diffusion method) in which a rare earth element is vaporized and evaporated from a rare earth-containing material and diffused into an R—Fe—B porous material may be used. .
[0157] 乾式処理時における多孔質材料の温度は、室温でもよいし、加熱によって昇温さ れていてもよい。ただし、温度が 1000°C以上になると、 R— Fe— B系多孔質材料中 の集合組織が粗大化し、磁気特性の低下を招くため、乾式処理中における多孔質 材料の温度は 1000°C未満に設定することが好ま 、。乾式処理時の温度および時 間を適切に調整することにより、集合組織の粗大化を抑制することができる。このよう な熱処理の条件によっては多孔質材料の緻密化が進行し得るが、集合組織の粗大 化を抑制するように熱処理を行うと、多孔質材料には細孔が残存する。このため、充 分にフルデンス化するためには、多孔質材料を加圧しながら熱処理することが必要 になる。 [0157] The temperature of the porous material during the dry treatment may be room temperature or may be raised by heating. However, when the temperature exceeds 1000 ° C, the texture in the R—Fe—B porous material becomes coarse and the magnetic properties deteriorate, so the temperature of the porous material during dry processing is less than 1000 ° C. Preferred to set to. By appropriately adjusting the temperature and time during the dry processing, coarsening of the texture can be suppressed. like this Depending on the conditions of the heat treatment, the densification of the porous material may proceed, but when heat treatment is performed so as to suppress the coarsening of the texture, pores remain in the porous material. For this reason, in order to fully condense, it is necessary to heat-treat the porous material while applying pressure.
[0158] 乾式処理時の雰囲気は、適用するプロセスによって適宜選定される。雰囲気中に 酸素や窒素が存在すると、処理中の酸化ゃ窒化によって磁気特性劣化を招来する 可能性があるため、真空や不活性雰囲気 (アルゴンなど)中で処理することが好まし い。  [0158] The atmosphere during the dry treatment is appropriately selected depending on the process to be applied. If oxygen or nitrogen is present in the atmosphere, the magnetic properties may be deteriorated by oxynitridation during processing, so it is preferable to perform processing in a vacuum or an inert atmosphere (such as argon).
[0159] (B)湿式処理  [0159] (B) Wet treatment
湿式処理としても、前述した公知の方法を適宜用いて行うことができる。特に、有機 溶媒に微粒子を分散させた液 (以下、「処理液」と称する。)を用意し、 R—Fe— B系 多孔質材料の孔部に含浸させる方法を好適に採用できる。この場合は、多孔質材料 の細孔中に導入したコロイド溶液の有機溶媒を蒸発させることにより、処理液中に分 散して 、た微粒子の層で細孔を被覆することが可能である。これらの方法により湿式 処理を行うとき、化学反応を促進したり、微粒子を多孔質材料の内部にまで確実に含 浸させるため、付加的に加熱処理や超音波の印加を行ってもょ ヽ。  Also as a wet process, it can carry out using the well-known method mentioned above suitably. In particular, a method of preparing a liquid in which fine particles are dispersed in an organic solvent (hereinafter referred to as “treatment liquid”) and impregnating the pores of the R—Fe—B based porous material can be suitably employed. In this case, by evaporating the organic solvent of the colloidal solution introduced into the pores of the porous material, the pores can be covered with a layer of fine particles dispersed in the treatment liquid. When wet processing is performed by these methods, additional heat treatment or application of ultrasonic waves may be performed to promote chemical reaction or to ensure that fine particles are impregnated into the porous material.
[0160] 処理液中に分散させる微粒子は、例えばプラズマ CVD法などの気相法、ゾルゲル 法などの液相法などの公知の方法によって作製される。液相法を採用して微粒子を 作製する場合、その溶媒 (分散媒)は、処理液の溶媒と同一であっても良いし、異な つていてもよい。  [0160] The fine particles dispersed in the treatment liquid are produced by a known method such as a gas phase method such as a plasma CVD method or a liquid phase method such as a sol-gel method. When the fine particles are produced by adopting the liquid phase method, the solvent (dispersion medium) thereof may be the same as or different from the solvent of the treatment liquid.
[0161] 処理液中に分散させる微粒子は、希土類の酸ィ匕物、フッ化物、酸フッ化物の少なく とも 1種を含むことが好ましい。特に、フッ化物や酸フッ化物を用いると、後述する加 熱処理などによって、多孔質材料を構成する結晶粒の粒界に希土類元素を効率的 に拡散させることができ、本発明の効果が大きい。  [0161] The fine particles dispersed in the treatment liquid preferably contain at least one kind of rare earth oxides, fluorides, and oxyfluorides. In particular, when fluoride or oxyfluoride is used, the rare earth element can be efficiently diffused into the grain boundaries of the crystal grains constituting the porous material by the heat treatment described later, and the effect of the present invention is great.
[0162] 微粒子の平均粒子径は 1 μ m以下であることが好ましい。平均粒径が 1 μ mを超え て大きくなりすぎると、処理液への微粒子の分散が困難になったり、 R— Fe— B系多 孔質材料の内部まで処理液を浸透させることが困難になるからである。平均粒子径 は、 0. 5 m以下がより好ましぐ 0.: m(lOOnm)以下がさらに好ましい。微粒子 の粒径の下限は、処理液が安定であるかぎり、特に限定されない。一般に、微粒子 の粒径が lnm未満になると、処理液の安定性が低下することが多いため、微粒子の 粒径は lnm以上であることが好ましぐ 3nm以上であることがより好ましぐ 5nm以上 であることがさらに好ましい。 [0162] The average particle size of the fine particles is preferably 1 µm or less. If the average particle size exceeds 1 μm and becomes too large, it will be difficult to disperse the fine particles in the treatment liquid, and it will be difficult to penetrate the treatment liquid into the R-Fe-B porous material. Because it becomes. The average particle size is more preferably 0.5 m or less, and even more preferably 0. m (lOOnm) or less. Fine particles The lower limit of the particle size is not particularly limited as long as the treatment liquid is stable. In general, if the particle size of the fine particles is less than 1 nm, the stability of the treatment liquid often decreases, so the particle size of the fine particles is preferably 1 nm or more, more preferably 3 nm or more. More preferably, it is the above.
[0163] 微粒子を分散させる溶媒 (分散媒)は、微粒子の粒径、化学的性質などによって適 宜選定されるが、 R— Fe— B系多孔質材料の耐食性が高くないため、非水系の溶媒 を用いることが好ましい。微粒子の凝集を防ぐために、界面活性剤などの分散剤を処 理液に含有させたり、あら力じめ微粒子を表面処理しても良 、。  [0163] The solvent (dispersion medium) in which the fine particles are dispersed is appropriately selected depending on the particle size, chemical properties, etc. of the fine particles, but the corrosion resistance of the R-Fe-B porous material is not high. It is preferable to use a solvent. In order to prevent fine particles from aggregating, a dispersant such as a surfactant may be added to the treatment liquid, or the fine particles may be surface-treated by force.
[0164] 処理液中における微粒子の濃度は、微粒子の粒径、化学的性質、溶媒や分散剤 の種類などによって適宜選定される力 例えば 1質量%から 50質量%程度までの範 囲内に設定される。  [0164] The concentration of the fine particles in the treatment liquid is set within a range of a force appropriately selected according to the particle size, chemical properties, type of solvent and dispersant, for example, from about 1% to 50% by weight. The
[0165] このような処理液に希土類多孔質材料を浸漬すると、毛細管現象により、希土類多 孔質材料の内部の細孔まで処理液が浸透する。なお、多孔質材料内部への処理液 の浸透 (含浸)をより確実に行うためには、多孔質材料内部の細孔に存在していた空 気を除去することが有用であるため、含浸処理は一時的に減圧または真空雰囲気と した後、常圧または加圧して行うことが有効である。  [0165] When the rare earth porous material is immersed in such a treatment liquid, the treatment liquid penetrates to the pores inside the rare earth porous material by capillary action. In order to more reliably infiltrate (impregnate) the treatment liquid into the porous material, it is useful to remove the air present in the pores inside the porous material. It is effective to carry out under normal pressure or pressurization after temporarily reducing the pressure or vacuum atmosphere.
[0166] 含浸処理を行う前の多孔質材料は、研削加工などの加工屑が多孔質材料の表面 における細孔を塞いでいる可能性があり、確実な含浸が妨げられる場合がある。この ため、含浸の前に、超音波洗浄などにより、多孔質材料の表面を清浄ィ匕しておくこと が好ましい。  [0166] In the porous material before the impregnation treatment, processing scraps such as grinding may have clogged the pores on the surface of the porous material, which may prevent reliable impregnation. For this reason, it is preferable to clean the surface of the porous material by ultrasonic cleaning or the like before the impregnation.
[0167] 多孔質材料に含浸処理を行なった後、処理液中の溶媒 (分散媒)を蒸発させる。溶 媒の蒸発は、溶媒の種類によって異なり、室温大気中で十分に蒸発する場合もある 1S 必要に応じて加熱および Zまたは減圧を行うことにより、蒸発を促進させることが 好ましい。  [0167] After the porous material is impregnated, the solvent (dispersion medium) in the treatment liquid is evaporated. Evaporation of the solvent varies depending on the type of solvent, and may evaporate sufficiently in the atmosphere at room temperature. 1S It is preferable to promote evaporation by heating and performing Z or reduced pressure as necessary.
[0168] 湿式処理によって導入される材料は、細孔の全体を埋めている必要はなぐ細孔表 面上に存在して ヽればよ ヽが、少なくとも細孔表面を被覆して ヽることが好まし!/ヽ。  [0168] The material introduced by the wet treatment should be present on the surface of the pores that do not need to fill the entire pores, but at least covers the surface of the pores. Is preferred!
[0169] 上記の方法によって、表面および Zまたは細孔内部に希土類元素が導入された R — Fe— B系多孔質材料に対して、特性の改善、特に保磁力の向上を目的として、さ らに加熱処理を実施しても良い。加熱処理の温度は、加熱の目的に応じて適宜設定 される。ただし、加熱温度が 1000°C以上になると、 R— Fe— B系多孔質材料中の集 合組織が粗大化し、磁気特性の低下を招くため、加熱温度は 1000°C未満とすること が好ましい。加熱雰囲気は、 R—Fe— B系多孔質材料の酸ィ匕ゃ窒化による磁気特性 の低下を抑制するという観点から、真空中や Arなどの不活性ガス雰囲気中で行うこと が好ましい。 [0169] The R—Fe—B porous material in which rare earth elements are introduced into the surface, Z, or pores by the above method is used for the purpose of improving the properties, particularly the coercive force. Further, heat treatment may be performed. The temperature of the heat treatment is appropriately set according to the purpose of heating. However, when the heating temperature is 1000 ° C or higher, the aggregate structure in the R—Fe—B porous material becomes coarse and the magnetic properties are deteriorated, so the heating temperature is preferably less than 1000 ° C. . The heating atmosphere is preferably carried out in a vacuum or in an inert gas atmosphere such as Ar from the viewpoint of suppressing deterioration of magnetic properties due to acid-nitridation of the R—Fe—B porous material.
[0170] なお、 R—Fe— B系多孔質材料と、希土類金属、希土類合金、および Zまたは希 土類ィ匕合物の組み合わせによっては、 R—Fe— B系多孔質材料が固有保磁力(H  [0170] Depending on the combination of the R-Fe-B porous material and the rare earth metal, rare earth alloy, and Z or rare earth compound, the R-Fe-B porous material may have an intrinsic coercive force. (H
cj cj
)を有さない場合があり、その場合は、本工程や後述する加熱圧縮処理によって、高 い固有保磁力(H )を発現しうる永久磁石材料とすることもできる。 In this case, a permanent magnet material capable of exhibiting a high intrinsic coercive force (H 2) can be obtained by this step or the heat compression treatment described later.
[0171] また、希土類導入処理後における多孔質材料 (複合バルタ材料)に対して、前述し た加熱圧縮処理を適用すると、真密度の 95%以上に緻密化した複合バルタ磁石を 得ることができる。 [0171] Further, when the above-described heat compression treatment is applied to the porous material (composite Balta material) after the rare earth introduction treatment, a composite Balta magnet densified to 95% or more of the true density can be obtained. .
[0172] 最終的には、本発明の効果の一つである、高い固有保磁力を発現するための着磁 工程を行うが、着磁工程を行なうタイミングは、湿式処理の後であることが好ましい。 加熱圧縮処理を行う場合は、その処理の後に行うことが好ま U、。  [0172] Ultimately, a magnetization step for expressing a high intrinsic coercive force, which is one of the effects of the present invention, is performed, but the timing of performing the magnetization step may be after the wet processing. preferable. When performing heat compression processing, it is preferable to perform after that processing U ,.
[0173] なお、上述の方法によって得られた多孔質磁石やフルデンス磁石、コンポジット磁 石などを粉砕し、粉末化した後、ボンド磁石などの原料粉末として利用することも可能 である。  [0173] It is also possible to pulverize and pulverize the porous magnet, full-fluid magnet, composite magnet, and the like obtained by the above-described method, and use them as raw material powders such as bond magnets.
[0174] く多孔質磁石を用いた複合部品〉  [0174] Composite parts using highly porous magnets>
本発明によって得られた多孔質磁石を用いることで、種々の複合部品を作成するこ とができる。応用例の一つとして、多孔質磁石と粉末状態の軟磁性材料粉末または 軟磁性材料粉末の仮成形体とを熱間プレス成形 (加熱圧縮)することによって、希土 類磁石成形体と軟磁性材料粉末の成形体とが一体化された成形部品を得る方法に ついて、具体的な実施形態を示す。  Various composite parts can be produced by using the porous magnet obtained by the present invention. As one application example, rare earth magnet compacts and soft magnetism can be obtained by hot press molding (heat compression) a porous magnet and powdered soft magnetic material powder or soft magnetic material powder temporary compact. A specific embodiment of a method for obtaining a molded part in which a molded body of material powder is integrated will be described.
[0175] 本実施形態では、上述の方法により、図 6 (a)に示す形状の多孔質磁石 12a'、 12 b'を用意する一方で、別途、軟磁性材料粉末 (例えば、鉄粉末などの軟磁性金属粉 末)をプレス成形することにより、図 6 (b)に示す軟磁性材料粉末の仮成形体 22'を作 製する。この工程は、公知のプレス成形方法で行うことができる。好ましい圧力は、 30 OMPa以上 lGPa以下である。このとき、軟磁性材料粉末の仮成形体 22'の密度 (か さ密度)は、真密度の約 70%以上約 90%以下の範囲にあることが好ましぐ約 75% 以上約 80%以下がさらに好ましい。圧力が上記の範囲よりも低いと、熱間プレスによ る一体ィヒ工程における変形量 (収縮量)が過大となり、磁石部品および軟磁性部品 の相対位置にずれが生じるので、高い寸法精度で磁気回路部品を成形するのが困 難となることがある。一方、圧力が上記の範囲よりも高いと、後の一体ィ匕工程において 十分な接合強度が得られないおそれがある。また、成形温度は、約 15°C以上約 40 °C以下であることが好ましぐ特に加熱や冷却をする必要は無い。雰囲気は、希土類 磁石粉末の酸ィ匕を防止するために、不活性ガス (希ガスおよび窒素を含む)雰囲気 下で行うことが好ましい。 In the present embodiment, porous magnets 12a ′ and 12b ′ having the shape shown in FIG. 6 (a) are prepared by the above-described method, while soft magnetic material powder (for example, iron powder or the like) is separately prepared. By pressing the soft magnetic metal powder), a temporary compact 22 'of soft magnetic material powder shown in Fig. 6 (b) was produced. To make. This step can be performed by a known press molding method. A preferable pressure is 30 OMPa or more and 1 GPa or less. At this time, the density (bulk density) of the soft magnetic material powder temporary molded body 22 'is preferably in the range of about 70% to about 90% of the true density, preferably about 75% to about 80%. Is more preferable. If the pressure is lower than the above range, the deformation amount (shrinkage amount) in the integrated process by hot pressing becomes excessive, and the relative positions of the magnet part and soft magnetic part are displaced, so high dimensional accuracy can be achieved. Forming magnetic circuit components can be difficult. On the other hand, if the pressure is higher than the above range, there is a possibility that sufficient bonding strength cannot be obtained in the subsequent integral brazing process. The molding temperature is preferably about 15 ° C or more and about 40 ° C or less, and it is not necessary to perform heating or cooling. The atmosphere is preferably carried out in an inert gas (including rare gas and nitrogen) atmosphere in order to prevent oxidation of the rare earth magnet powder.
[0176] なお、本発明の製造方法によれば、一体化工程における変形量 (体積変化率)は 3 0%以下となり、高い寸法精度で磁気回路部品を製造することができる。 上述のよう に、複数の多孔質磁石 12a'、 12b'と軟磁性材料粉末の仮成形体 22'を準備した後 、図 6 (c)に示すように、多孔質磁石 12a'、 12b'と軟磁性材料粉末の仮成形体 22' とを金型内でセットし、熱間プレス成形する。この熱間プレスにより、多孔質磁石 12a' 、 12b'は圧縮され、密度の向上した磁石成形体 12a, 12bに変化する。こうして、図 7に示す、複数の磁石成形体 12a、 12bと軟磁性材料粉末の成形体 22とが一体化さ れた回転子 (磁気回路部品) 100を得る。  [0176] According to the manufacturing method of the present invention, the deformation amount (volume change rate) in the integration process is 30% or less, and a magnetic circuit component can be manufactured with high dimensional accuracy. As described above, after preparing a plurality of porous magnets 12a ′, 12b ′ and a temporary compact 22 ′ of soft magnetic material powder, as shown in FIG. 6 (c), porous magnets 12a ′, 12b ′ The soft magnetic material powder temporary compact 22 'is set in a mold and hot press-molded. By the hot pressing, the porous magnets 12a ′ and 12b ′ are compressed and changed to magnet molded bodies 12a and 12b with improved density. In this way, a rotor (magnetic circuit component) 100 is obtained in which a plurality of magnet compacts 12a and 12b and a soft magnetic material powder compact 22 shown in FIG. 7 are integrated.
[0177] 上記の熱間プレス成形における好ましい圧力は、 20MPa以上 500MPa以下であ る。圧力が上記の範囲よりも低いと、磁石部品と軟磁性材料粉末の成形体との接合 強度が十分に得られないおそれがある。圧力が上記の範囲よりも高いと、熱間プレス 工程でプレス装置自体が変形してしまうおそれがあり、これを防止するために大型の 装置を必要とするなど、製造コストの増大を招くことがある。成形温度は、 400°C以上 1000°C未満であることが好ましぐ 600°C以上 900°C以下であることがより好ましぐ 700°C以上 800°C以下であることが最も好ましい。成形温度が 400°Cよりも低いと、 磁石成形体および軟磁性材料粉末の成形体が十分に緻密化されな ヽことがある。ま た、成形温度が 1000°C以上になると、結晶粒が粗大化し、異方性磁石粉末が有し ている磁気特性をかえって低下させるおそれがある。また、上記温度および圧力に 保持する時間(以下、「成形時間」という。)は、 10秒以上 1時間以下であることが好ま しぐ生産性の観点から 1分以上 10分以下の短時間であることがさらに好ましい。もち ろん、成形時間は、成形温度および成形圧力との関係で適宜設定されるものである 力 成形時間が 10秒よりも短いと成形体を十分に緻密化できないおそれがあり、また 1時間よりも長いと、結晶粒の粗大化によって磁気特性が低下するおそれがある。ま た、熱間プレス工程は、希土類磁石粉末の酸化を防止するために、不活性ガス (希 ガスおよび窒素を含む)雰囲気下で行うことが好まし ヽ。 [0177] A preferable pressure in the above hot press molding is 20 MPa or more and 500 MPa or less. If the pressure is lower than the above range, the bonding strength between the magnet component and the soft magnetic material powder compact may not be sufficiently obtained. If the pressure is higher than the above range, the press device itself may be deformed in the hot press process, and a large device is required to prevent this, leading to an increase in manufacturing cost. is there. The molding temperature is preferably 400 ° C or higher and lower than 1000 ° C, more preferably 600 ° C or higher and 900 ° C or lower, and most preferably 700 ° C or higher and 800 ° C or lower. If the molding temperature is lower than 400 ° C, the magnet compact and the soft magnetic material powder compact may not be sufficiently densified. In addition, when the molding temperature exceeds 1000 ° C, the crystal grains become coarse and the anisotropic magnet powder has. There is a risk of deteriorating the magnetic properties. In addition, the time for holding at the above temperature and pressure (hereinafter referred to as “molding time”) is preferably 10 seconds or more and 10 minutes or less from the viewpoint of productivity, which is preferably 10 seconds or more and 1 hour or less. More preferably it is. Of course, the molding time is appropriately set in relation to the molding temperature and molding pressure. If the molding time is shorter than 10 seconds, the molded body may not be sufficiently densified, and more than 1 hour. If the length is too long, the magnetic properties may deteriorate due to the coarsening of crystal grains. In addition, the hot pressing process is preferably performed in an inert gas (including rare gas and nitrogen) atmosphere in order to prevent oxidation of the rare earth magnet powder.
[0178] このようにして得られる回転子 100における磁石成形体 12a、 12bの密度は真密度 の約 95%以上であり、軟磁性材料粉末の成形体 22の密度は真密度の約 95%以上 である。 ここでは、多孔質磁石 12a'、 12b'と別に、軟磁性材料粉末の仮成形体 22 'を予め成形し、これを熱間プレス形成することによって一体ィ匕する例を説明したが、 軟磁性材料粉末の仮成形体 22'を予め形成することなぐ多孔質磁石 12a'、 12b 'と 粉末状態のままの軟磁性材料粉末とを熱間プレス成形することによって、一体化する ことも出来る。但し、高い寸法精度の磁気回路部品を得るためには、上述したように、 軟磁性部品の仮成形体および多孔質磁石を予め作製してから、これらを一体化する というプロセスが好ましい。 [0178] The density of the magnet compacts 12a and 12b in the rotor 100 obtained in this way is approximately 95% or more of the true density, and the density of the compact 22 of the soft magnetic material powder is approximately 95% or more of the true density. It is. Here, an example was described in which a temporary compact 22 ′ of soft magnetic material powder was formed in advance separately from the porous magnets 12 a ′ and 12 b ′, and this was integrally formed by hot press forming. The porous magnets 12a ′ and 12b ′ without forming the temporary molding 22 ′ of the material powder in advance and the soft magnetic material powder in the powder state can be integrated by hot press molding. However, in order to obtain a magnetic circuit component with high dimensional accuracy, as described above, a process in which a temporary molded body of a soft magnetic component and a porous magnet are prepared in advance and then integrated is preferable.
実施例  Example
[0179] [実施例 1] [0179] [Example 1]
以下の表 1に示す組成の合金 (狙い組成: Nd Fe Co B Ga Zr (原子0 /。)) Alloys with the composition shown in Table 1 below (Target composition: Nd Fe Co B Ga Zr (Atom 0 /.))
13.65 bal 16 6.5 0.5 0.09 を用意し、上述した実施形態の製造方法により、多孔質の希土類永久磁石を作製し た。表 1における数値の単位は質量%である。以下、本実施例の作製方法を説明す る。  13.65 bal 16 6.5 0.5 0.09 was prepared, and a porous rare earth permanent magnet was manufactured by the manufacturing method of the above-described embodiment. The unit of numerical values in Table 1 is mass%. Hereinafter, a manufacturing method of this example will be described.
[0180] [表 1]
Figure imgf000035_0001
[0180] [Table 1]
Figure imgf000035_0001
[0181] まず、表 1の組成を有する急冷凝固合金をストリップキャスト法で作製した。得られた 急冷凝固合金を水素吸蔵崩壊法によって粒径 425 μ m以下の粉末に粗粉砕した後 、ジェットミルを用いて粗粉末を微粉砕し、平均粒径 4. 4 mの微粉末を得た。なお 、「平均粒径」は、レーザー回折式粒度分布測定装置(Sympatec社製、 HEROS/ RODOS)における 50%体積中心粒径(D )である。 [0181] First, a rapidly solidified alloy having the composition shown in Table 1 was produced by strip casting. Obtained The rapidly solidified alloy was coarsely pulverized into a powder having a particle size of 425 μm or less by the hydrogen occlusion / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having an average particle size of 4.4 m. The “average particle size” is a 50% volume center particle size (D) in a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS).
50  50
[0182] この微粉末をプレス装置の金型に充填し、 1. 5テスラ (T)の磁界中において、磁界 と垂直方向に 20MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法 と単重に基づいて計算すると、 4. 19gZcm3であった。 [0182] This fine powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 20 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.5 Tesla (T). The density of the green compact was calculated to be 4.19 gZcm 3 based on dimensions and unit weight.
[0183] 次に、圧粉体に対して前述の HDDR処理を行った。具体的には、圧粉体を lOOkP a (大気圧)のアルゴン流気中で 840°Cまで加熱し、その後、雰囲気を lOOkPa (大気 圧)の水素流気に切り替えた後、 840°Cを 2時間保時して水素ィ匕 '不均化反応を行つ た。その後、 840°Cのまま 5. 3kPaに減圧したアルゴン流気中で 1時間保時し、脱水 素'再結合処理を行った。次に、大気圧 Ar流気中で室温まで冷却し、実施例のサン プルを得た。  [0183] Next, the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 840 ° C in an argon stream of lOOkPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen stream of lOOkPa (atmospheric pressure). After holding for 2 hours, a hydrogen disproportionation reaction was carried out. After that, it was kept for 1 hour in an argon flow reduced to 5.3 kPa at 840 ° C to perform dehydration 'recombination treatment. Next, it was cooled to room temperature in an atmospheric pressure Ar flow to obtain a sample of the example.
[0184] こうして得られたサンプルの寸法を測定し、加熱処理前の寸法と比較した。磁界方 向の収縮率および金型方向の収縮率を計算し、収縮比を求めると、 1. 39であった。 ここで、収縮率(%)は、(加熱処理前寸法 加熱処理後寸法) ÷加熱処理前寸法 X 100で表され、収縮比は、(磁界方向の収縮率 Z金型方向の収縮率)で表される。  [0184] The dimensions of the sample thus obtained were measured and compared with the dimensions before the heat treatment. The shrinkage ratio in the magnetic field direction and the mold direction was calculated and the shrinkage ratio was calculated to be 1.39. Here, the shrinkage rate (%) is expressed by (dimension before heat treatment, dimension after heat treatment) ÷ dimension before heat treatment X 100, and the shrinkage ratio is (shrinkage rate in the magnetic field direction Z shrinkage rate in the mold direction). expressed.
[0185] また、 DR処理直後におけるサンプル中の酸素量を測定した結果は 0. 45質量%で あり、表 1の Nd、 Pr、 Fe、 Coから求めた余剰希土類量 R,は 0. 76原子%であった。  [0185] The result of measuring the amount of oxygen in the sample immediately after the DR treatment was 0.45 mass%, and the surplus rare earth amount R obtained from Nd, Pr, Fe, and Co in Table 1 was 0.76 atoms. %Met.
[0186] サンプルの磁界印加方向に対して垂直な面を X線回折装置で評価した。その結果 、 Nd Fe B相を有し、容易磁ィ匕軸方向が磁界方向に配向していることを確認した。  [0186] The surface perpendicular to the magnetic field application direction of the sample was evaluated with an X-ray diffractometer. As a result, it was confirmed that it had an Nd Fe B phase and the easy magnetic axis direction was oriented in the magnetic field direction.
2 14  2 14
また、サンプルの破断面を走査型電子顕微鏡 (SEM)で観察した。図 8は、サンプル の破断面を示す SEM写真である。図 8が図 1と異なる主要な点は、その倍率にある。 なお、図 8には、相互に結合した粉末粒子 Aと、粉末粒子 Aの間に位置する空隙 B ( 長径 1 μ m以上 20 m以下の細孔)とが示されている。粉末粒子 Aは、その内部に 平均結晶粒径 0. l iu m以上l iu m以下のNd Fe B型結晶相の集合組織を有してい The fracture surface of the sample was observed with a scanning electron microscope (SEM). Figure 8 is an SEM photograph showing the fracture surface of the sample. The main difference between Figure 8 and Figure 1 is the magnification. FIG. 8 shows powder particles A bonded to each other and voids B (pores having a major axis of 1 μm or more and 20 m or less) located between the powder particles A. Powder particles A is have a texture inside the average crystal grain size 0. l i um or l i um following Nd Fe B-type crystal phase
2 14  2 14
る。図 8における粉末粒子 Aは、図 3 (b)に模式的に示されている粉末粒子 Al、 A2 に相当し、図 8における空隙 Bは、図 3 (b)における空隙 Bに相当している。また、図 8 における Cの領域は、図 3 (b)における粒子の結合部 Cに相当している。 The The powder particles A in FIG. 8 correspond to the powder particles Al and A2 schematically shown in FIG. 3 (b), and the void B in FIG. 8 corresponds to the void B in FIG. 3 (b). . Figure 8 The region C in Fig. 3 corresponds to the particle joint C in Fig. 3 (b).
[0187] 図 8から明らかなように、実施例の磁石は 1 μ πι〜20 /ζ mの孔が分散した多孔質構 造を有している。このような多孔質構造は、平均粒径 10 m未満の粉末粒子が焼結 することによって形成されたものであるが、通常の焼結磁石とは異なり、緻密化されて おらず、密度が低い。このような構造は、 HDDR処理の温度を通常の焼結温度(110 0°C程度)よりも充分に低い温度で実施することによって得られる。もし仮に高温(100 0〜1 150°C)で DR処理を行うと、焼結体の密度は向上し、多孔質磁石を得ることは できなくなる。また、そのような高温で DR処理を行うと、異常なレベルに粒成長が進 行し、磁石特性が大きく劣化する可能性が高い。 As is clear from FIG. 8, the magnet of the example has a porous structure in which pores of 1 μπι to 20 / ζ m are dispersed. Such a porous structure is formed by sintering powder particles with an average particle size of less than 10 m, but unlike ordinary sintered magnets, it is not densified and has a low density. . Such a structure can be obtained by carrying out the HDDR treatment at a temperature sufficiently lower than the normal sintering temperature (about 1100 ° C.). If the DR treatment is performed at a high temperature (1000-1150 ° C), the density of the sintered body will be improved and a porous magnet cannot be obtained. In addition, when DR treatment is performed at such high temperatures, grain growth proceeds to an abnormal level and there is a high possibility that the magnetic properties will be greatly degraded.
[0188] 本実施例のサンプルでは、通常の焼結磁石とは異なり、焼結過程で HDDR処理が 進行するため、各粉末粒子の内部で 0. 1 μ ι→μ mの微細な結晶相からなる集合 組織が形成される。 [0188] In the sample of this example, unlike the ordinary sintered magnet, the HDDR process proceeds during the sintering process, and therefore, from the fine crystalline phase of 0.1 μι → μm inside each powder particle. A collective organization is formed.
[0189] また、図 8の粉末粒子を構成する集合組織は、領域 aのように、比較的角張った微 細結晶で構成される領域と、領域 a 'のように比較的丸みを帯びた微細結晶で構成さ れる領域の 2種類の態様が観察される。特許文献 1に記載されるような、従来の HDD R磁粉の態様と比較すると、領域 a 'のような比較的丸みを帯びた微細結晶は、従来 の HDDR磁粉において、 HDDR処理後に粉砕を行わない場合の個々の粒子表面 の態様と一致する。一方、領域 aのように比較的角張った微細結晶で構成される領域 は、従来の HDDR磁粉において、 HDDR処理後に粉末を粉砕した場合の個々の粒 子の破断面の態様と一致する。これらの点を踏まえると、図 8の領域 aは HDDR処理 によって結合された個々の粉末粒子の、 HDDR処理後の破断面 (すなわち粉末粒 子の内部)の形態であり、領域 a'は、圧粉体を構成していた個々の粉末粒子の HD DR処理後の粒子表面の形態であるということがわかる。試料の破断面において、こ のような領域 a、 a 'の 2つの微細結晶の形態を有する態様は、本発明の製法、すなわ ち、微粉末の圧粉体にしたものを HDDR処理することによって得られる多孔質磁石 の特徴の一つである。  [0189] In addition, the texture constituting the powder particles in Fig. 8 is a region composed of relatively square fine crystals, such as region a, and a relatively rounded fine region, such as region a '. Two modes of the region composed of crystals are observed. Compared with the conventional HDD R magnetic powder mode as described in Patent Document 1, the relatively rounded fine crystals such as region a 'are not crushed after HDDR processing in the conventional HDDR magnetic powder. This is consistent with the case of individual particle surfaces. On the other hand, the region composed of relatively square crystals such as region a is consistent with the fracture surface of individual particles when the powder is crushed after HDDR processing in conventional HDDR magnetic powder. Considering these points, area a in Fig. 8 is the form of the fracture surface after HDDR treatment (that is, the inside of the powder particles) of individual powder particles combined by HDDR treatment, and area a ' It can be seen that the individual powder particles constituting the powder are in the form of the particle surface after HD DR treatment. In the fracture surface of the sample, such an embodiment having two fine crystal forms of regions a and a ′ is the method of the present invention, that is, a powdered green compact is subjected to HDDR treatment. This is one of the features of the porous magnet obtained by
[0190] 次に、サンプルの表面を表面研削盤で研削し、寸法 10 X 11 X 12mmの角柱にカロ ェした。図 9は、研磨面の Kerr顕微鏡写真である。図 9において、曲線 Fに囲まれた 部分は、研磨面に現れた空隙の一部を示している。空隙の長径は 1 μ πι〜20 /ζ m程 度であることがわかる。図 9において、曲線 Gに囲まれた部分は、硬磁性相を示して いる。 [0190] Next, the surface of the sample was ground with a surface grinder and carved into a prism with dimensions of 10 X 11 X 12 mm. Figure 9 is a Kerr micrograph of the polished surface. In Figure 9, surrounded by curve F The part has shown the part of the space | gap which appeared on the grinding | polishing surface. It can be seen that the major axis of the void is about 1 μπι to 20 / ζ m. In FIG. 9, the part surrounded by the curve G indicates the hard magnetic phase.
[0191] なお、研磨カ卩ェによるサンプルの割れ、欠けは観察されなかった。  [0191] Note that no cracking or chipping of the sample due to the polishing cage was observed.
[0192] サンプルの寸法および単重からサンプルの密度を計算すると、 5. 46gZcm3であ つた。研削加工を行ったサンプルを 3. 2MAZmのパルス磁界で着磁した後、磁気 特性を BHトレーサー (装置名: MTR— 1412 (メトロン技研社製))で測定した。結果 を表 2に示す。 [0192] The density of the sample calculated from the sample dimensions and unit weight was 5.46 gZcm 3 . After the ground sample was magnetized with a 3.2 MAZm pulse magnetic field, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 2.
[0193] [表 2] [0193] [Table 2]
Figure imgf000038_0002
Figure imgf000038_0002
[0194] 表 2において、 J は、着磁したサンプルの着磁方向に 2テスラ (T)まで外部磁界 H [0194] In Table 2, J is the external magnetic field H up to 2 Tesla (T) in the magnetization direction of the magnetized sample.
max  max
を印加したときのサンプルの磁ィ ΰ (Τ)の最大測定値である。また、 Ηは Β Χ Ο. 9とな  This is the maximum measured value of the magnetic field サ ン プ ル (Τ) of when the sample is applied. And Η becomes Β Χ Ο. 9.
k r  k r
る外部磁界 Hの値であり、 H /H が高いほど、減磁曲線の角型性に優れている。  The higher the H / H, the better the squareness of the demagnetization curve.
k cj  k cj
[0195] 図 10は、本実施例および比較例について、減磁曲線を示すグラフである。グラフの 縦軸は磁ィ 横軸は外部磁界 Ηである。図 10に示される比較例は、平均粒径約 70 μ mの HDDR磁粉を用いて従来法によって作製したボンド磁石 (密度 5. 9g/cm3) のうち、 B , Hが実施例とほぼ同等のものの減磁曲線を示している。このボンド磁石 FIG. 10 is a graph showing a demagnetization curve for the present example and the comparative example. The vertical axis of the graph is magnetic and the horizontal axis is external magnetic field Η. The comparative example shown in Fig. 10 shows that B and H of bond magnets (density 5.9 g / cm 3 ) produced by conventional methods using HDDR magnetic powder with an average particle size of about 70 μm are almost the same as the examples. The demagnetization curve of the thing is shown. This bond magnet
r  r
は、 (BH) =0. 36という特性を示した。図 10から明らかな
Figure imgf000038_0001
Showed the characteristic of (BH) = 0.36. Clear from Figure 10
Figure imgf000038_0001
ように、本実施例は比較例に比べて減磁曲線の角形性に優れており、高い (BH) max が得られる。  Thus, the present example is superior in the squareness of the demagnetization curve as compared with the comparative example, and a high (BH) max is obtained.
[0196] [実施例 2] [0196] [Example 2]
次に、アルゴン雰囲気中において実施例 1の多孔質磁石を乳鉢で粉砕し、分級す ることにより、粒径 75〜300 mの粉末を作製した。この粉末を円筒型のホルダに投 入し、 800kAZmの磁界中で配向しながらパラフィンで固定した。得られたサンプル を 4. 8MAZmのパルス磁界で着磁した後、磁気特性を振動試料型磁束計 (VSM : 装置名 VSM5 (東英工業社製))で測定した。なお、反磁界補正は行っていない。測 定結果を表 3に示す。 Next, the porous magnet of Example 1 was pulverized in a mortar and classified in an argon atmosphere to prepare a powder having a particle size of 75 to 300 m. This powder was put into a cylindrical holder and fixed with paraffin while being oriented in a magnetic field of 800 kAZm. After magnetizing the obtained sample with a pulse magnetic field of 4.8 MAZm, the magnetic properties were measured using a vibrating sample magnetometer (VSM: Measurement was performed with an apparatus name VSM5 (manufactured by Toei Kogyo Co., Ltd.). Note that demagnetizing field correction is not performed. Table 3 shows the measurement results.
[0197] [表 3] [0197] [Table 3]
Figure imgf000039_0001
Figure imgf000039_0001
[0198] 表中の J および Bは、サンプルの真密度が 7. 6g/cm3であるとして計算によって max r [0198] J and B in the table are max r by calculation assuming that the true density of the sample is 7.6 g / cm 3
求めた。なお、 J は、着磁したサンプルの着磁方向に 2テスラ (T)まで外部磁界 Hを  Asked. J is an external magnetic field H up to 2 Tesla (T) in the magnetization direction of the magnetized sample.
max  max
印加したときのサンプルの磁ィ ΰ (Τ)の測定値を、 VSM測定における鏡像効果を考 慮して補正した値である。このように、多孔質焼結磁石を粉砕することによって得られ る磁石粉末も優れた磁気特性を発揮する。このような磁石粉末はボンド磁石に好適 に用いられる。  This is a value obtained by correcting the measured value of the magnetic field ΰ (Τ) of the sample when applied in consideration of the mirror image effect in VSM measurement. Thus, the magnet powder obtained by pulverizing the porous sintered magnet also exhibits excellent magnetic properties. Such magnet powder is suitably used for bonded magnets.
[0199] 上記の各実施例に関する測定'観察結果力 わ力るように、本発明の多孔質磁石 は、減磁曲線の角型性に優れる。また、加熱処理時における収縮の異方性が 1. 39 と小さい (通常の焼結磁石は 2以上になる)。また、機械加工が十分に可能な強度を 有しており、そのまま榭脂含浸を行うことなくバルタ磁石体として使用することが可能 である。さらに、多孔質磁石を粉砕し、粉末化しても、保磁力 Η の低下が少なぐボ  [0199] As described above, the porous magnet of the present invention is excellent in the squareness of the demagnetization curve. Also, the shrinkage anisotropy during heat treatment is as small as 1.39 (normal sintered magnets are 2 or more). Moreover, it has a strength sufficient for machining, and can be used as a Balta magnet body without being impregnated with grease. Furthermore, even if the porous magnet is pulverized and pulverized, the coercive force 低下 decreases little.
cj  cj
ンド磁石用の磁粉としても利用できる。  It can also be used as a magnetic powder for a windshield magnet.
[0200] [実施例 3]  [0200] [Example 3]
本実施例では、図 4に示すホットプレス装置を用いて実施例 1の多孔質磁石を高密 度化し、フルデンス磁石を作製した。具体的には、実施例 1の多孔質磁石を用意し、 その多孔質磁石を研削加工した後、カーボン製のダイス内にセットした。このダイスを ホットプレス装置内にセットし、真空中において 700°Cの条件下、 50MPaの圧力で 圧縮した。  In this example, the density of the porous magnet of Example 1 was increased using a hot press apparatus shown in FIG. Specifically, the porous magnet of Example 1 was prepared, the porous magnet was ground, and then set in a carbon die. This die was set in a hot press apparatus and compressed in a vacuum at a pressure of 50 MPa at 700 ° C.
[0201] ホットプレス後におけるフルデンス磁石の密度は 7. 58gZcm3であった。このフル デンス磁石の磁気特性を BHトレーサー(装置名: MTR- 1412 (メトロン技研社製) ) で測定した。結果を表 4に示す。なお、 J は、着磁したサンプルの着磁方向に 2テス ラ (T)まで外部磁界 Ηを印加したときのサンプルの磁ィ ΰ (Τ)の最大測定値である c [0202] [表 4] [0201] The density of the fluence magnet after hot pressing was 7.58 gZcm 3 . The magnetic properties of the full-fluid magnet were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 4. J is 2 test in the magnetization direction of the magnetized sample. C [0202] [Table 4] is the maximum measured value of the sample magnetic field ΰ (Τ) when an external magnetic field ま で is applied up to (T)
Figure imgf000040_0001
Figure imgf000040_0001
[0203] 以上の結果から、本発明の製造方法を用いることで、減磁曲線の角型性に優れ、 且つ加熱処理時における収縮の異方性が 1. 39と小さい(通常の焼結磁石は 2以上 になる)多孔質磁石が得られた。また、この多孔質磁石は機械加工が十分可能な強 度を有していた。また、焼結磁石に比べて一桁以上微細な結晶粒をもっため、薄物 に加工した際の表面劣化による磁気特性の低下が少ない。さらに、ホットプレス、熱 間圧延等の加熱圧縮により高密度化が容易に可能である。 [0203] From the above results, by using the production method of the present invention, the squareness of the demagnetization curve is excellent, and the shrinkage anisotropy during heat treatment is as small as 1.39 (normal sintered magnet) A porous magnet was obtained. Further, this porous magnet had a strength sufficient for machining. In addition, since it has crystal grains that are one or more orders of magnitude smaller than sintered magnets, there is little decrease in magnetic properties due to surface deterioration when processed into thin objects. Furthermore, high density can be easily achieved by hot pressing such as hot pressing and hot rolling.
[0204] このように本発明によ多孔質磁石を加熱圧縮して高密度化すれば、従来技術と比 較して、以下に示す有利な効果を得ることができる。  [0204] Thus, if the porous magnet according to the present invention is heated and compressed to increase the density, the following advantageous effects can be obtained as compared with the prior art.
[0205] (1)平均粒径 10 m以下の原料粉末を用いるため、従来の HDDR磁粉を用いた 場合に比べ、磁粉同士の接触面積が増えることで、相対的に低い圧粉体密度でも取 り回し可能となり、仮成形時のプレス圧を低減でき、工業的量産性に優れている。ま た、圧粉体の密度を抑えることで、圧粉体の密度を上昇させると共に生じる配向の乱 れを抑えることができる。  [0205] (1) Since the raw material powder having an average particle size of 10 m or less is used, the contact area between the magnetic powders is increased as compared with the conventional HDDR magnetic powders. This makes it possible to reduce the press pressure at the time of temporary molding and is excellent in industrial mass productivity. In addition, by suppressing the density of the green compact, it is possible to increase the density of the green compact and to suppress the orientation disturbance that occurs.
[0206] (2) HDDR処理を行う前の磁粉は低保磁力であるので、これを磁界中で成形して 圧粉体を作製すると、圧粉体の脱磁が容易である。また、圧粉体は HDDR処理によ り完全に消磁状態になるため、取り扱いが容易な状態で加熱圧縮 (熱間加工)を行う ことができる。  (2) Since the magnetic powder before the HDDR treatment has a low coercive force, it is easy to demagnetize the green compact by forming the green compact by molding it in a magnetic field. In addition, since the green compact is completely demagnetized by the HDDR process, it can be heat-compressed (hot working) in a state where it is easy to handle.
[0207] (3) HDDR反応後に得られる多孔質磁石は機械加工が可能な程度の強度を有し て 、るため、従来の HDDR磁粉を用いたフルデンス磁石で必要とした加熱圧縮時の 金型 (ダイス)への投入を必ずしも必要としない。また、多孔質磁石の段階で、すでに 配向させたものを得ることができるため、加熱圧縮直前に金型内で磁界配向させたり 、熱間塑性加工を行なったりして異方化させる必要がない等の理由で、工業的量産 性に優れていると共に、磁気特性、設計自由度のより高い磁石が得られる。 [0207] (3) The porous magnet obtained after the HDDR reaction is strong enough to be machined. Therefore, the mold at the time of heat compression required for a conventional full-fluid magnet using HDDR magnetic powder is used. (Dice) is not necessarily required. In addition, since it is possible to obtain an already oriented material at the porous magnet stage, it is not necessary to make it anisotropic by magnetic field orientation or hot plastic working in the mold immediately before heat compression. Industrial mass production for reasons such as It is possible to obtain a magnet with excellent magnetic properties and higher design flexibility.
[0208] (4)本発明で使用する多孔質磁石は、従来の HDDR磁粉に比べて良好な角型性 を示すため、フルデンス化のために加熱圧縮を行った後も良好な角型性を維持でき る。  [0208] (4) Since the porous magnet used in the present invention exhibits better squareness than conventional HDDR magnetic powder, it has good squareness even after heat compression for full condensation. Can be maintained.
[0209] (5)加熱圧縮の工程において、熱間塑性加工による異方化を適応した場合も、従 来磁粉を用いるよりも、高い異方性を有する磁石が高生産性で得られる。  [0209] (5) In the heating and compression process, even when anisotropy by hot plastic working is applied, a magnet having higher anisotropy can be obtained with higher productivity than using conventional magnetic powder.
[0210] [実施例 4]  [0210] [Example 4]
まず、実施例 1について説明した方法と同一の方法により、多孔質磁石 12a'およ び 12b'を得た。本実施例では、図 l l (a)〜(d)に示すように、これらの多孔質磁石 1 2a 'および 12b 'と鉄芯仮成形体 22 'とに対して「熱間プレス成形」を実施する。  First, porous magnets 12a ′ and 12b ′ were obtained by the same method as described in Example 1. In this example, as shown in FIGS. Ll (a) to (d), “hot press molding” was performed on these porous magnets 12a ′ and 12b ′ and the iron core temporary molded body 22 ′. To do.
[0211] 図 11 (a)に示す熱間プレス装置は、所定の形状のキヤビティを形成することができ る孔を有するダイ 32と、ダイ 32の孔内を移動することが可能な下パンチ 42a、 42bと 、センターシャフト 42cと、これらを支持するとともに必要に応じて上下に移動可能な 下ラム 52と、ダイ 32の孔内を移動することが可能な上パンチ 44a、 44bと、これらを支 持するとともに必要に応じて上下に移動可能な上ラム 54とを有している。下パンチ 42 aおよび上パンチ 44aは、多孔質磁石 12a' 12b'を加圧するためのもので、下パンチ 42bおよび上パンチ 44bは、鉄芯仮成形体 22'を加圧するためのものである。このよ うに、多孔質磁石 12a' 12b'と、鉄芯仮成形体 22'とに対して、独立に加圧できるプ レス装置(「多軸プレス装置」と呼ばれることもある。)を用いることによって、各仮成形 体に適した加圧プロセスを行うことは、圧縮初期に大きい、仮成形体間の圧縮変形 量の違いを吸収することができるので好ましい。また、図では省略しているが、熱間プ レス装置は、加熱装置を備えており、下ラム 52、ダイ 32および上下パンチ 42a、 42b 、 44a、 44bおよびセンターシャフト 42cは所定の温度に加熱される。  [0211] The hot press apparatus shown in Fig. 11 (a) includes a die 32 having a hole capable of forming a cavity having a predetermined shape, and a lower punch 42a capable of moving in the hole of the die 32. 42b, a center shaft 42c, a lower ram 52 that supports them and can be moved up and down as needed, and upper punches 44a and 44b that can move in the holes of the die 32, and support them. And an upper ram 54 that can be moved up and down as needed. The lower punch 42a and the upper punch 44a are for pressing the porous magnet 12a '12b', and the lower punch 42b and the upper punch 44b are for pressing the iron core temporary molded body 22 '. In this way, a press device (sometimes referred to as a “multi-axis press device”) that can pressurize the porous magnet 12a ′ 12b ′ and the iron core temporary molded body 22 ′ independently. Therefore, it is preferable to perform a pressing process suitable for each temporary molded body because a difference in the amount of compressive deformation between the temporary molded bodies, which is large in the initial stage of compression, can be absorbed. Although not shown in the figure, the hot press device includes a heating device, and the lower ram 52, the die 32, the upper and lower punches 42a, 42b, 44a, 44b and the center shaft 42c are heated to a predetermined temperature. Is done.
[0212] まず、図 11 (a)に示すように、多孔質磁石 12a'および 12b 'と鉄芯仮成形体 22'と をダイ 32の所定の位置に組み立てる。このとき、多孔質磁石 12a'および 12b 'と鉄芯 仮成形体 22 'は、図 6 (c)に示すように組み立てられ、鉄芯仮成形体の孔 22a'内を センターシャフト 42cが貫通する。  First, as shown in FIG. 11 (a), the porous magnets 12a ′ and 12b ′ and the iron core temporary molded body 22 ′ are assembled at predetermined positions of the die 32. At this time, the porous magnets 12a ′ and 12b ′ and the iron core temporary molded body 22 ′ are assembled as shown in FIG. 6 (c), and the center shaft 42c passes through the hole 22a ′ of the iron core temporary molded body. .
[0213] 次に、図 11 (b)〖こ示すように、下パンチ 42a、 42bおよび上パンチ 44a、 44bを上下 に移動し、組み立てられた多孔質磁石 12a'および 12b 'と鉄芯仮成形体 22'とをダ ィ 32内に形成されるキヤビティ内に挿入する。その後、キヤビティの温度を例えば約 8 00°Cに維持する。 [0213] Next, as shown in FIG. 11 (b), lower punches 42a, 42b and upper punches 44a, 44b are moved up and down. The assembled porous magnets 12a ′ and 12b ′ and the iron core temporary molded body 22 ′ are inserted into the cavity formed in the die 32. Thereafter, the temperature of the cavity is maintained at about 800 ° C, for example.
[0214] 次に、図 11 (c)〖こ示すように、下パンチ 42a、 42bおよび上パンチ 44a、 44bを上下 に移動することによって、多孔質磁石 12a 'および 12b 'と鉄芯仮成形体 22 'とを加圧 する。圧力は 2tonZcm2で、 5分間加圧する。 Next, as shown in FIG. 11 (c), the porous punches 12a ′ and 12b ′ and the iron core temporary molded body are moved by moving the lower punches 42a and 42b and the upper punches 44a and 44b up and down. 22 'and pressurize. The pressure is 2tonZcm 2 and pressurizes for 5 minutes.
[0215] 次に、図 11 (d)〖こ示すように、下パンチ 42a、 42bおよび上パンチ 44a、 44bを上下 に移動することによって、磁石部品 12a、 12bと鉄芯 (軟磁性部品) 22とが一体ィ匕され た回転子 100をダイ 32から取り出す。 Next, as shown in FIG. 11 (d), the magnet parts 12a and 12b and the iron core (soft magnetic part) 22 are moved by moving the lower punches 42a and 42b and the upper punches 44a and 44b up and down. Take out the rotor 100 with the die 32 from the die 32.
[0216] この後、室温まで冷却することによって、回転子 100が得られる。この後、焼結工程 を行う必要はない。 [0216] Thereafter, the rotor 100 is obtained by cooling to room temperature. After this, there is no need to perform a sintering process.
[0217] 上述の製造方法で試作した磁石部品 12a、 12bの密度は例えば 7. 4gZcm3で、 真密度(7. 6gZcm3)の 97. 4%であり通常の焼結磁石の密度と同等であった。また 、鉄芯 22の密度は 7. 7g/cm3で、真密度(7. 8gZcm3)の 98. 7%であった。 [0217] The density of the magnetic parts 12a and 12b prototyped by the above manufacturing method is, for example, 7.4 gZcm 3 , 97.4% of the true density (7.6 gZcm 3 ), which is equivalent to the density of a normal sintered magnet. there were. The density of the iron core 22 was 7.7 g / cm 3 , which was 98.7% of the true density (7.8 gZcm 3 ).
[0218] 試作した回転子は、例えば 33000回転でも破壊が起こらず、十分な接合強度を有 していた。せん断試験によって測定した磁石部品 12a、 12bと鉄芯 22との接合強度 は 57MPaであった。また、表面磁束密度は 0. 42Tを得ることができた。  [0218] The prototype rotor did not break even at 33,000 revolutions, for example, and had sufficient joint strength. The joint strength between the magnet parts 12a and 12b and the iron core 22 measured by the shear test was 57 MPa. The surface magnetic flux density was 0.42T.
[0219] なお、さらに量産性を向上するために、以下のようなプロセスにすることもできる。  [0219] In order to further improve the mass productivity, the following process can be performed.
[0220] まず、図 11 (a)に示した組み立て工程を熱間プレス装置とは別に用意したダイおよ びパンチのセット内で行 1、、結晶成長が起こらな!/、程度の温度 (例えば 600°C程度) まで予備的に加熱する。所定の温度に到達した後、当該セットを熱間プレス装置に 移動し、そこで高周波誘導加熱もしくは通電加熱により、短時間で最適な温度 (例え ば 800°C)まで昇温し、引き続き短時間一体ィ匕プレスを行う。また、上記のダイおよび パンチのセットを複数個準備し、上記の予備的な加熱工程から一体ィ匕プレス工程ま でを減圧あるいは不活性ガス雰囲気中で、例えばプッシヤー炉方式を用いて複数の 処理を連続的に行うことにより、さらに効率的な生産が可能である。  [0220] First, the assembly process shown in Fig. 11 (a) is performed in a line of a die and a punch set prepared separately from the hot press machine, line 1, no crystal growth occurs! Preheat to about 600 ° C, for example. After reaching the predetermined temperature, the set is moved to a hot press machine where it is heated to the optimum temperature (for example, 800 ° C) in a short time by high-frequency induction heating or current heating, and then integrated for a short time. Do the press. In addition, a plurality of die and punch sets are prepared, and a plurality of treatments are performed using, for example, a pusher furnace method in a reduced pressure or inert gas atmosphere from the preliminary heating process to the integrated press process. More efficient production is possible by continuously performing the above.
[0221] [実施例 5]  [0221] [Example 5]
まず、実施例 1の多孔質磁石と同一の多孔質材料を用意する。次に、この多孔質 材料を外周刃切断機および研削加工機により 7mm X 7mmX 5mmのサイズに加工 した。この加工による多孔質材料の割れ、欠けは観察されな力つた。多孔質材料に 対する超音波洗浄を行った後、ナノ粒子分散コロイド溶液に多孔質材料を浸潰した。 このコロイド溶液は、 Coナノ粒子を分散させたコロイド溶液であり、 Co粒子の平均粒 径:約 10 ;ζ ΐη、溶媒:テトラデカン、固形分濃度 60質量%であった。ナノ粒子分散コ ロイド溶液はガラス製容器内に入れられ、多孔質材料を浸漬させた状態で真空デシ ケータ内に挿入し、減圧下に置いた。処理中の雰囲気圧力は約 130Paに調整した。 First, the same porous material as the porous magnet of Example 1 is prepared. Then this porous The material was processed to a size of 7 mm X 7 mm X 5 mm by a peripheral cutting machine and grinding machine. Cracking and chipping of the porous material due to this processing were not observed. After performing ultrasonic cleaning on the porous material, the porous material was immersed in the nanoparticle-dispersed colloidal solution. This colloidal solution was a colloidal solution in which Co nanoparticles were dispersed. The average particle size of Co particles was about 10; ζ ΐη, the solvent was tetradecane, and the solid content concentration was 60% by mass. The nanoparticle-dispersed colloid solution was placed in a glass container, inserted into a vacuum desiccator with the porous material immersed therein, and placed under reduced pressure. The atmospheric pressure during the treatment was adjusted to about 130Pa.
[0222] 減圧により多孔質材料及びナノ粒子分散コロイド溶液内では気泡が発生した。気 泡の発生が止んだ後、大気圧に一旦戻した。その後、真空乾燥機内に多孔質材料 を挿入し、約 130Paの雰囲気圧力下で 200°Cに加熱し、溶媒を蒸発させ、乾燥を行 つた。こうして、本発明による複合バルタ材料のサンプルを得た。  [0222] Bubbles were generated in the porous material and the nanoparticle-dispersed colloidal solution due to the reduced pressure. After the generation of bubbles stopped, the pressure was returned to atmospheric pressure. Thereafter, the porous material was inserted into the vacuum dryer, heated to 200 ° C under an atmospheric pressure of about 130 Pa, the solvent was evaporated, and drying was performed. Thus, a sample of the composite Balta material according to the present invention was obtained.
[0223] 上記の方法により得られた複合バルタ材料をホットプレス装置内にセットし、真空中 において 700°Cの条件下、 50MPaの圧力で圧縮した。ホットプレス後におけるフル デンス複合バルタ磁石の密度は 7. 73g/cm3であった。 [0223] The composite Balta material obtained by the above method was set in a hot press apparatus and compressed in a vacuum at a pressure of 50 MPa at 700 ° C. The density of the full-density composite Balta magnet after hot pressing was 7.73 g / cm 3 .
[0224] 本実施例のサンプルについて、 3. 2MAZmのパルス磁界で着磁した後、磁気特 性を BHトレーサー(装置名: MTR- 1412 (メトロン技研社製) )で測定した。結果を 表 5に示す。  [0224] The sample of this example was magnetized with a pulse magnetic field of 3.2 MAZm, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 5.
[0225] [表 5]
Figure imgf000043_0001
[0225] [Table 5]
Figure imgf000043_0001
[0226] 本実施例では、ナノ粒子分散コロイド溶液に多孔質材料の全体を浸漬したが、毛 細管現象を利用して溶液を多孔質磁石材料の内部に浸透させることができるため、 多孔質材料の一部のみをナノ粒子分散コロイド溶液に浸漬させてもよい。 [0226] In this example, the entire porous material was immersed in the nanoparticle-dispersed colloidal solution. However, since the solution can permeate the inside of the porous magnet material using the capillary phenomenon, the porous material Only a part of the particle may be immersed in the nanoparticle-dispersed colloidal solution.
[0227] (参考例)  [0227] (Reference example)
まず、上記の実施例 1における方法と同一の方法により、多孔質材料を作製した。 ここでは、参考例として、多孔質材料に含浸処理を行うことなぐそのまま熱間成形法 にてフルデンス化した磁石を作製し、特性を評価した。具体的には、上記の方法によ り得られた多孔質材料をホットプレス装置内にセットし、真空中において 700°Cの条 件下、 50MPaの圧力で圧縮した。ホットプレス後におけるフルデンス磁石の密度は 7 . 58gZcm3であった。得られたフルデンス磁石に対して、 3. 2MAZm以上のパル ス磁界で着磁した後、磁気特性を BHトレーサー(装置名: MTR— 1412 (メトロン技 研社製)で測定した。結果を以下の表 6に示す。 First, a porous material was produced by the same method as in Example 1 above. Here, as a reference example, a magnet that was fully condensed by the hot forming method without impregnating the porous material was produced, and the characteristics were evaluated. Specifically, according to the above method. The obtained porous material was set in a hot press apparatus and compressed in a vacuum at a pressure of 50 MPa under the condition of 700 ° C. The density of the fluence magnet after hot pressing was 7.58 gZcm 3 . The obtained full-magnet magnet was magnetized with a pulse magnetic field of 3.2 MAZm or more, and the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.). Table 6 shows.
[0228] [表 6] [0228] [Table 6]
Figure imgf000044_0001
Figure imgf000044_0001
[0229] 以上の結果力もわ力るように、本発明の方法を用いて作製された複合バルタ磁石( コンポジット磁石)では、多孔質材料に含浸処理を行うことなぐそのまま熱間成形法 にてフルデンス化した参考例の磁石に比べて残留磁束密度 Bが向上した。また、実 施例では容易磁化方向の減磁曲線に変曲点が見られず、複合バルタ磁石が硬磁性 相(Nd Fe B型化合物)及び軟磁性相(金属ナノ粒子)が混在するコンポジット磁石[0229] The composite Balta magnet (composite magnet) produced by using the method of the present invention so as to have the above-mentioned force is also used as it is by the hot forming method without impregnating the porous material. The residual magnetic flux density B was improved compared to the magnet of the reference example. Also, in the examples, no inflection point is seen in the demagnetization curve in the easy magnetization direction, and the composite Balta magnet is a composite magnet in which a hard magnetic phase (Nd Fe B-type compound) and a soft magnetic phase (metal nanoparticles) are mixed.
2 14 2 14
として動作することを確認した。  Confirmed to work as.
[0230] [実施例 6] [Example 6]
まず、実施例 1の多孔質磁石と同一の多孔質材料を用意する。次に、この多孔質 材料を外周刃切断機および研削加工機により 20mm X 20mmX 20mmのサイズに 加工した。この加工による多孔質材料の割れ、欠けは観察されなカゝつた。多孔質材 料に対する超音波洗浄を行った後、 DyF微粒子分散液に多孔質材料を浸潰した。  First, the same porous material as the porous magnet of Example 1 is prepared. Next, this porous material was processed into a size of 20 mm × 20 mm × 20 mm by a peripheral blade cutting machine and a grinding machine. No cracking or chipping of the porous material due to this processing was observed. After performing ultrasonic cleaning on the porous material, the porous material was immersed in the DyF fine particle dispersion.
3  Three
これは、粒径 0· 05〜0. 5 mの DyF微粒子をドデカンに分散させた液である、 Dy  This is a liquid in which DyF microparticles with a particle size of 0 · 05 to 0.5 m are dispersed in dodecane.
3  Three
F微粒子分散液はガラス製容器内に入れられ、多孔質材料を浸潰させた状態で真 F Fine particle dispersion is placed in a glass container and is true with the porous material crushed.
3 Three
空デシケータ内に挿入し、減圧下に置いた。処理中の雰囲気圧力は約 130Paに調 整した。  It was inserted into an empty desiccator and placed under reduced pressure. The atmospheric pressure during the treatment was adjusted to about 130Pa.
[0231] 減圧により多孔質材料及び DyF微粒子分散液内では気泡が発生した。気泡の発  [0231] Bubbles were generated in the porous material and the DyF fine particle dispersion by the reduced pressure. Bubble generation
3  Three
生が止んだ後、大気圧に一旦戻した。その後、真空乾燥機内に多孔質材料を挿入し 、約 130Paの雰囲気圧力下で 200°Cに加熱し、溶媒を蒸発させ、乾燥を行った。こう して、本発明による複合バルタ材料のサンプルを得た。 After life stopped, it was returned to atmospheric pressure. Thereafter, the porous material was inserted into a vacuum dryer, heated to 200 ° C. under an atmospheric pressure of about 130 Pa, the solvent was evaporated, and drying was performed. like this Thus, a sample of the composite Balta material according to the present invention was obtained.
[0232] 上記の方法により得られた複合バルタ材料をホットプレス装置内にセットし、真空中 において 700°Cの条件下、 50MPaの圧力で圧縮した。ホットプレス後におけるフル デンス複合バルタ磁石の密度は 7. 55gZcm3であった。 [0232] The composite Balta material obtained by the above method was set in a hot press apparatus and compressed in a vacuum at a pressure of 50 MPa at 700 ° C. The density of the full-density composite Balta magnet after hot pressing was 7.55 gZcm 3 .
[0233] その後、得られたフルデンス複合バルタ磁石を 800°Cで 3時間加熱した後、冷却を 行った。  [0233] Thereafter, the obtained full-density composite Balta magnet was heated at 800 ° C for 3 hours, and then cooled.
[0234] 本実施例のサンプルについて、 3. 2MAZmのパルス磁界で着磁した後、磁気特 性を BHトレーサー(装置名: MTR- 1412 (メトロン技研社製) )で測定した。結果を 表 7に示す。  [0234] The sample of this example was magnetized with a 3.2 MAZm pulse magnetic field, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Giken)). The results are shown in Table 7.
[0235] [表 7]  [0235] [Table 7]
Figure imgf000045_0001
Figure imgf000045_0001
[0236] 本実施例では、 DyF微粒子分散液に多孔質材料の全体を浸漬したが、毛細管現 [0236] In this example, the entire porous material was immersed in the DyF fine particle dispersion.
3  Three
象を利用して溶液を多孔質磁石材料の内部に浸透させることができるため、多孔質 材料の一部のみを DyF微粒子分散液に浸漬させてもょ 、。  Since elephant can be used to infiltrate the solution inside the porous magnet material, only a part of the porous material can be immersed in the DyF fine particle dispersion.
3  Three
[0237] 以上の結果力もわ力るように、本発明の方法を用いて作製された複合バルタ磁石 では、多孔質材料に含浸処理を行うことなぐそのまま熱間成形法にてフルデンス化 した参考例の磁石に比べて固有保磁力 H が向上した。  [0237] In the composite Balta magnet produced by using the method of the present invention so that the resultant force is also reduced, a reference example in which the porous material is fully condensed by hot forming without impregnation treatment. The intrinsic coercive force H was improved compared to the magnets of
[0238] [実施例 7]  [0238] [Example 7]
以下の表 8に示す狙い組成の急冷凝固合金 B〜Fをストリップキャスト法で作製した 。得られた急冷凝固合金を実施例 1と同様の方法を用いて、粗粉砕および微粉砕、 磁界中での成形を行い、密度 4. 18〜4. 22gZcm3の圧粉体を作製した。なお、微 粉末の平均粒径は、表 8に示すとおりである(測定方法は実施例 1と同じで、 50%中 心粒径 (D )を平均粒径とする)。 Rapidly solidified alloys B to F having the target compositions shown in Table 8 below were produced by strip casting. The obtained rapidly solidified alloy was coarsely and finely pulverized and molded in a magnetic field using the same method as in Example 1 to produce a green compact with a density of 4.18 to 4.22 gZcm 3 . The average particle size of the fine powder is as shown in Table 8 (the measurement method is the same as in Example 1, and the 50% center particle size (D) is the average particle size).
50  50
[0239] [表 8]
Figure imgf000046_0001
[0239] [Table 8]
Figure imgf000046_0001
[0240] 次に、圧粉体に対して、前述の HDDR処理を行った。具体的には、圧粉体を 100k Pa (大気圧)のアルゴン流気中で表 8に示す HD温度まで加熱し、その後、雰囲気を lOOkPa (大気圧)の水素流気に切り替えた後、表 8に示す HD温度 ·時間で保持し て水素化'不均化反応を行った。その後、表 8の HD温度のまま、 5. 3kPaに減圧し たアルゴン流気中で 1時間保持し、脱水素、再結合反応を行った。次に、大気圧アル ゴン流気中で室温まで冷却し、実施例のサンプルを得た。得られた個々のサンプル の破断面を観察した結果、図 1の写真と同様の態様を有する微細結晶の集合組織と 細孔で構成されて ヽることを確認した。  [0240] Next, the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to an HD temperature shown in Table 8 in an argon stream of 100 kPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen stream of lOOkPa (atmospheric pressure). The hydrogenation disproportionation reaction was carried out while maintaining the HD temperature and time shown in Fig. 8. After that, while maintaining the HD temperature in Table 8, it was held for 1 hour in an argon stream depressurized to 5.3 kPa to perform dehydrogenation and recombination reactions. Next, the sample was cooled to room temperature in an atmospheric argon flow to obtain a sample of the example. As a result of observing the fracture surface of each obtained sample, it was confirmed that it was composed of fine crystal textures and pores having the same aspect as the photograph in FIG.
[0241] 次に、サンプルの表面を表面研削盤でカ卩ェし、加工後のサンプルの寸法および単 重力 サンプルの密度を計算した。結果を表 9に示す。なお、加工による磁石の割れ などは見られな 、ことから、サンプルは十分な機械強度を有して 、ることを確認した。 研削加工を行ったサンプルを 3. 2MAZmのパルス磁界で着磁した後、磁気特性を BHトレーサー(装置名: MTR— 1412 (メトロン技研社製))で測定した。結果を表 9 に示す。なお、表 10において、 J は、着磁したサンプルの着磁方向に 2テスラ (T)ま max  [0241] Next, the surface of the sample was covered with a surface grinder, and the size of the sample after processing and the density of the single gravity sample were calculated. The results are shown in Table 9. It was confirmed that the sample had sufficient mechanical strength because there were no cracks in the magnet due to processing. After the ground sample was magnetized with a 3.2 MAZm pulse magnetic field, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 9. In Table 10, J is 2 Tesla (T) or max in the magnetization direction of the magnetized sample.
で外部磁界 Hを印加したときのサンプルの磁ィ ΰ (Τ)の最大測定値である。また、 Η k は、実施例 1と同様、 B X 0. 9となる外部磁界 Hの値である。  This is the maximum measured value of the magnetic field サ ン プ ル (Τ) of the sample when an external magnetic field H is applied. Also, Η k is the value of the external magnetic field H that becomes B X 0.9, as in the first embodiment.
[0242] [表 9] ス Br Hcj (Bn)maX Bノ Jmax ム全 (g/cm3) (T) (kA/m) (kJ/m3) [0242] [Table 9] B r H c j ( Bn ) ma X B No J max m (g / cm 3 ) (T) (kA / m) (kJ / m 3 )
Β 5.93 1.08 285 155 0.98 0.89 Β 5.93 1.08 285 155 0.98 0.89
C 5.22 0.92 325 150 0.98 0.92C 5.22 0.92 325 150 0.98 0.92
D 5.88 0.85 1283 131 0.95 0.57D 5.88 0.85 1283 131 0.95 0.57
E 6.18 0.96 815 155 0.96 0.51E 6.18 0.96 815 155 0.96 0.51
F 5.93 0.96 865 173 0.97 0.62 F 5.93 0.96 865 173 0.97 0.62
[0243] 本検討の結果から、いずれの R— Fe— Q合金組成においても、本発明の効果であ る、優れた角形性を有した多孔質磁石が得られることを確認するとともに、 Feの一部 を Coや Niで置換しても同様の効果が得られることを確認した。 [0243] From the results of this study, it was confirmed that a porous magnet having excellent squareness, which is the effect of the present invention, can be obtained with any R-Fe-Q alloy composition. It was confirmed that the same effect can be obtained even if a part of it is replaced by Co or Ni.
[0244] [実施例 8]  [Example 8]
以下の表 10に示す狙い組成の急冷凝固合金 G〜Lをストリップキャスト法で作製し た。得られた急冷凝固合金を実施例 1と同様の方法を用いて、粗粉砕および微粉砕 、磁界中での成形を行い、密度 4. 18-4. 22g/cm3の圧粉体を作製した。なお、 微粉末の平均粒径は、表 10に示すとおりである (測定方法は実施例 1と同じで、 50 %中心粒径 (D )を平均粒径とする)。 Rapidly solidified alloys G to L having the target compositions shown in Table 10 below were produced by strip casting. The resulting rapidly solidified alloy using the same method as in Example 1, coarse grinding and fine grinding performed molded in a magnetic field, to produce a green compact density 4. 18-4. 22g / cm 3 . The average particle diameter of the fine powder is as shown in Table 10 (the measurement method is the same as in Example 1, and the 50% central particle diameter (D) is the average particle diameter).
[0245] [表 10]  [0245] [Table 10]
Figure imgf000047_0001
次に、圧粉体に対して、前述の HDDR処理を行った。具体的には、圧粉体を 100k Pa (大気圧)のアルゴン流気中で 860°Cまで加熱し、その後、雰囲気を lOOkPa (大 気圧)の水素流気に切り替えた後、 860°Cで 30分間保持して水素化 '不均化反応を 行った。その後、 860°Cのまま、 5. 3kPaに減圧したアルゴン流気中で 1時間保持し 、脱水素、再結合反応を行った。次に、大気圧アルゴン流気中で室温まで冷却し、 実施例のサンプルを得た。得られた個々のサンプルの破断面を観察した結果、図 1 の写真と同様の態様を有する微細結晶の集合組織と細孔で構成されていることを確 した ο
Figure imgf000047_0001
Next, the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 860 ° C in a 100 kPa (atmospheric pressure) argon flow, and then the atmosphere is switched to a lOOkPa (atmospheric pressure) hydrogen flow at 860 ° C. The hydrogenation 'disproportionation reaction was performed for 30 minutes. After that, keep it at 860 ° C for 1 hour in argon flow reduced to 5.3kPa. , Dehydrogenation and recombination reactions were performed. Next, the sample was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example. As a result of observing the fracture surface of each of the obtained samples, it was confirmed that it was composed of fine crystal textures and pores having the same form as the photograph in Fig. 1.
[0247] 次に、サンプルの表面を表面研削盤でカ卩ェし、加工後のサンプルの寸法および単 重力ゝらサンプルの密度を計算した。結果を表 11に示す。なお、加工による磁石の割 れなどは見られな ヽことから、サンプルは十分な機械強度を有して ヽることを確認し た。研削加工を行ったサンプルを 3. 2MAZmのパルス磁界で着磁した後、磁気特 性を BHトレーサー(装置名: MTR- 1412 (メトロン技研社製) )で測定した。結果を 表 11に示す。なお、表 11において、 J は、着磁したサンプルの着磁方向に 2テスラ max  [0247] Next, the surface of the sample was covered with a surface grinder, and the sample size after processing and the density of the sample were calculated from the single gravity. The results are shown in Table 11. In addition, it was confirmed that the sample had sufficient mechanical strength because there was no breakage of the magnet due to processing. The ground sample was magnetized with a 3.2 MAZm pulse magnetic field, and the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 11. In Table 11, J is 2 Tesla max in the magnetization direction of the magnetized sample.
(T)まで外部磁界 Hを印加したときのサンプルの磁ィ ΰ (Τ)の最大測定値である。ま た、 Ηは、実施例 1と同様、 Β Χ Ο. 9となる外部磁界 Ηの値である。  This is the maximum measured value of the sample magnetic field ΰ (Τ) when the external magnetic field H is applied up to (T). Also, Η is the value of the external magnetic field な る which becomes Β Χ Ο.
k r  k r
[0248] [表 11]  [0248] [Table 11]
Figure imgf000048_0001
Figure imgf000048_0001
[0249] 本検討の結果から、いずれの R— Fe— Q合金組成に種々の元素を添カ卩しても本発 明の効果である、優れた角形性を有した多孔質磁石が得られることを確認した。 [0249] From the results of this study, a porous magnet having excellent squareness, which is the effect of the present invention, can be obtained even if various elements are added to any R—Fe—Q alloy composition. It was confirmed.
[0250] [実施例 9]  [0250] [Example 9]
以下の表 12に示す狙い組成の急冷凝固合金 Mをストリップキャスト法で作製した。 得られた急冷凝固合金を実施例 1と同様の方法を用いて、粗粉砕および微粉砕、磁 界中での成形を行い、密度 4. 20gZcm3の圧粉体を作製した。なお、微粉末の平均 粒径は、表 12に示すとおりである(測定方法は実施例 1と同じで、 50%中心粒径 (D Rapidly solidified alloy M having the target composition shown in Table 12 below was produced by strip casting. The obtained rapidly solidified alloy was coarsely pulverized, finely pulverized and molded in a magnetic field using the same method as in Example 1 to produce a green compact with a density of 4.20 gZcm 3 . The average particle size of the fine powder is as shown in Table 12 (the measurement method is the same as in Example 1, and the 50% center particle size (D
5 Five
)を平均粒径とする)。 [0251] [表 12] ) Is the average particle size). [0251] [Table 12]
Figure imgf000049_0001
Figure imgf000049_0001
[0252] 次に、圧粉体に対して、前述の HDDR処理を行った。具体的には、圧粉体を 100k Pa (大気圧)のアルゴン流気中で 880°Cまで加熱し、その後、雰囲気を lOOkPa (大 気圧)の水素流気に切り替えた後、 880°Cで 30分間保持して水素化 *不均化反応を 行った。その後、 880°Cのまま、 5. 3kPaに減圧したアルゴン流気中で 1時間保持し 、脱水素、再結合反応を行った。次に、大気圧アルゴン流気中で室温まで冷却し、 実施例のサンプルを得た。得られた個々のサンプルの破断面を観察した結果、図 1 の写真と同様の態様を有する微細結晶の集合組織と細孔で構成されていることを確 した 0 [0252] Next, the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 880 ° C in an argon stream of 100 kPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen stream of lOOkPa (atmospheric pressure), and then at 880 ° C. Hydrogenation * disproportionation reaction was performed by holding for 30 minutes. Thereafter, the mixture was kept at 880 ° C for 1 hour in an argon flow reduced to 5.3 kPa, and dehydrogenation and recombination reaction were performed. Next, the sample was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example. The results obtained by observing the fracture surface of the individual samples, was sure to be composed of texture and pores of the fine crystals having a similar manner to pictures 1 0
[0253] 次に、サンプルの表面を表面研削盤でカ卩ェし、加工後のサンプルの寸法および単 重力ゝらサンプルの密度を計算した。結果を表 13に示す。なお、加工による磁石の割 れなどは見られな ことから、サンプルは十分な機械強度を有して ヽることを確認し た。研削加工を行ったサンプルを 3. 2MAZmのパルス磁界で着磁した後、磁気特 性を BHトレーサー(装置名: MTR- 1412 (メトロン技研社製) )で測定した。結果を 表 13に示す。なお、表 13において、 J は、着磁したサンプルの着磁方向に 2テスラ  [0253] Next, the surface of the sample was covered with a surface grinder, and the sample size after processing and the density of the sample were calculated from the single gravity. The results are shown in Table 13. In addition, it was confirmed that the sample had sufficient mechanical strength because there was no breakage of magnets due to processing. The ground sample was magnetized with a 3.2 MAZm pulse magnetic field, and the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 13. In Table 13, J is 2 Tesla in the magnetization direction of the magnetized sample.
max  max
(T)まで外部磁界 Hを印加したときのサンプルの磁ィ ΰ (Τ)の最大測定値である。ま た、 Ηは、実施例 1と同様、 Β Χ 0. 9となる外部磁界 Ηの値である。  This is the maximum measured value of the sample magnetic field ΰ (Τ) when the external magnetic field H is applied up to (T). Also, Η is the value of the external magnetic field な る which becomes Β Χ 0.9, as in Example 1.
k r  k r
[0254] [表 13]  [0254] [Table 13]
Figure imgf000049_0002
本検討の結果から、組成、添加元素、作製条件などを適切に選定することで、優れ た角形性に加え、従来の HDDR磁粉を用いたボンド磁石では到達し得ない、優れた (BH) を有する多孔質バルタ磁石が得られることがわ力つた。
Figure imgf000049_0002
From the results of this study, by selecting the composition, additive elements, production conditions, etc., in addition to excellent squareness, it is not possible to achieve with conventional bonded magnets using HDDR magnetic powder. It was found that a porous Balta magnet having (BH) can be obtained.
max  max
[0256] [実施例 10]  [0256] [Example 10]
以下の表 14に示す狙い組成の急冷凝固合金 N〜Qをストリップキャスト法で作製し た。得られた急冷凝固合金を実施例 1と同様の方法を用いて、粗粉砕および微粉砕 、磁界中での成形を行い、密度 4. 20g/cm3の圧粉体を作製した。なお、微粉末の 平均粒径は、表 14に示すとおりである(測定方法は実施例 1と同じで、 50%中心粒 径 (D )を平均粒径とする)。 Rapidly solidified alloys N to Q having the target compositions shown in Table 14 below were produced by strip casting. The obtained rapidly solidified alloy was coarsely and finely pulverized and molded in a magnetic field using the same method as in Example 1 to produce a green compact with a density of 4.20 g / cm 3 . The average particle size of the fine powder is as shown in Table 14 (the measurement method is the same as in Example 1, and the 50% central particle size (D) is the average particle size).
50  50
[0257] [表 14]  [0257] [Table 14]
Figure imgf000050_0001
Figure imgf000050_0001
[0258] 次に、圧粉体に対して、前述の HDDR処理を行った。具体的には、圧粉体を 100k Pa (大気圧)のアルゴン流気中で 860°Cまで加熱し、その後、雰囲気を lOOkPa (大 気圧)の水素流気に切り替えた後、 860°Cで 2時間保持して水素化 *不均化反応を 行った。その後、 860°Cのまま、 5. 3kPaに減圧したアルゴン流気中で 1時間保持し 、脱水素、再結合反応を行った。次に、大気圧アルゴン流気中で室温まで冷却し、 実施例のサンプルを得た。得られた個々のサンプルの破断面を観察した結果、図 1 の写真と同様の態様を有する微細結晶の集合組織と細孔で構成されていることを確 した 0 [0258] Next, the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 860 ° C in a 100 kPa (atmospheric pressure) argon flow, and then the atmosphere is switched to a lOOkPa (atmospheric pressure) hydrogen flow at 860 ° C. Hydrogenation * disproportionation reaction was carried out for 2 hours. After that, dehydrogenation and recombination reaction were carried out while maintaining at 860 ° C for 1 hour in an argon flow reduced to 5.3 kPa. Next, the sample was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example. The results obtained by observing the fracture surface of the individual samples, was sure to be composed of texture and pores of the fine crystals having a similar manner to pictures 1 0
[0259] 次に、サンプルの表面を表面研削盤でカ卩ェし、加工後のサンプルの成分を ICP発 光分光分析装置 (装置名 :ICPV-1017 ( (株)島津製作所製) )で、ならびに酸素量 をガス分析装置 (装置名: EGMA-620W ( (株)堀場製作所製) )で評価した結果、 ならびに、本結果力も算出した余剰希土類量 R'の値を表 15に示す。なお、余剰希 土類量の算出に当たっては、表 15に示す元素以外の不純物は全て Feとして計算を 行った。 [0260] [表 15] [0259] Next, the surface of the sample is covered with a surface grinder, and the processed sample components are analyzed with an ICP emission spectroscopic analyzer (device name: ICPV-1017 (manufactured by Shimadzu Corporation)). Table 15 shows the results of evaluating the oxygen content with a gas analyzer (equipment name: EGMA-620W (manufactured by Horiba, Ltd.)) and the surplus rare earth content R ′ for which the resultant force was also calculated. In calculating the amount of surplus rare earth, all impurities other than the elements shown in Table 15 were calculated as Fe. [0260] [Table 15]
Figure imgf000051_0001
Figure imgf000051_0001
[0261] 加工後のサンプルの寸法および単重力 サンプルの密度を計算した。結果を表 16 に示す。なお、加工による磁石の割れなどは見られないことから、サンプルは十分な 機械強度を有していることを確認した。研削加工を行ったサンプルを 3. 2MAZmの パルス磁界で着磁した後、磁気特性を BHトレーサー(装置名:MTR—1412 ( ^n ン技研社製))で測定した。結果を表 16に示す。なお、表 16において、 J は、着磁し [0261] The dimensions of the sample after processing and the density of the single gravity sample were calculated. The results are shown in Table 16. In addition, it was confirmed that the sample had sufficient mechanical strength because there was no crack of the magnet due to processing. The ground sample was magnetized with a 3.2 MAZm pulsed magnetic field, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by ^ n Giken)). The results are shown in Table 16. In Table 16, J is magnetized.
max  max
たサンプルの着磁方向に 2テスラ (T)まで外部磁界 Hを印加したときのサンプルの磁 ィ ΰ (Τ)の最大測定値である。また、 Ηは、実施例 1と同様、 Β Χ Ο. 9となる外部磁界  This is the maximum measured value of the magnetic field ΰ (Τ) of the sample when an external magnetic field H is applied up to 2 Tesla (T) in the magnetization direction of the sample. Also, Η is the external magnetic field that becomes 外部 Χ Ο. 9 as in Example 1.
k r  k r
Hの値である。  The value of H.
[0262] [表 16] [0262] [Table 16]
Figure imgf000051_0002
Figure imgf000051_0002
[0263] 本検討の結果から、種々の R量を有する各組成に対しても、本発明の効果である、 優れた角形性を有した多孔質磁石が得られることを確認した。また、余剰希土類量 R ,を 1原子%以上とすることにより、比較的高い保磁力 Hが得られることを確認した。 [0263] From the results of this study, it was confirmed that a porous magnet having excellent squareness, which is the effect of the present invention, can be obtained for each composition having various R contents. It was also confirmed that a relatively high coercive force H can be obtained by setting the surplus rare earth amount R to 1 atomic% or more.
cj  cj
[0264] [実施例 11]  [Example 11]
以下の表 17に示す狙い組成の合金 Oおよび Rを作製した。なお、合金 Oは表 15に 示す合金 Oと同一のものである。一方、合金 Rは合金 Nと同一の狙い組成の合金を 高周波溶解法によって溶解した後、水冷铸型に铸込んで作製したインゴットを Ar雰 囲気 1000°C X 8時間で均質ィ匕熱処理したものである。いずれの合金も実施例 1と同 様の方法を用いて、粗粉砕および微粉砕、磁界中での成形を行い、密度 4. 18〜4. 20g/cm3の圧粉体を作製した。なお、微粉末の平均粒径は、表 17に示すとおりで ある (測定方法は実施例 1と同じで、 50%中心粒径 (D )を平均粒径とする)。 Alloys O and R having the target composition shown in Table 17 below were prepared. Alloy O is the same as Alloy O shown in Table 15. On the other hand, alloy R is an alloy with the same target composition as alloy N, melted by high frequency melting method, and then ingot prepared by water-cooling mold and heat-treated in homogeneous atmosphere at 1000 ° C for 8 hours in Ar atmosphere. is there. Both alloys are the same as in Example 1. Using the same method, coarse pulverization, fine pulverization, and molding in a magnetic field were performed to produce a green compact having a density of 4.18 to 4.20 g / cm 3 . The average particle size of the fine powder is as shown in Table 17 (the measurement method is the same as in Example 1, and the 50% center particle size (D) is the average particle size).
50  50
[表 17] [Table 17]
Figure imgf000052_0001
Figure imgf000052_0001
[0266] 次に、圧粉体に対して、前述の HDDR処理を行った。具体的には、圧粉体を 100k Pa (大気圧)のアルゴン流気中で 860°Cまで加熱し、その後、雰囲気を lOOkPa (大 気圧)の水素流気に切り替えた後、 860°Cで 2時間保持して水素化 *不均化反応を 行った。その後、 860°Cのまま、 5. 3kPaに減圧したアルゴン流気中で 1時間保持し 、脱水素、再結合反応を行った。次に、大気圧アルゴン流気中で室温まで冷却し、 実施例のサンプルを得た。得られた個々のサンプルの破断面を観察した結果、図 1 の写真と同様の態様を有する微細結晶の集合組織と細孔で構成されていることを確 した 0 [0266] Next, the above-mentioned HDDR treatment was performed on the green compact. Specifically, the green compact is heated to 860 ° C in a 100 kPa (atmospheric pressure) argon flow, and then the atmosphere is switched to a lOOkPa (atmospheric pressure) hydrogen flow at 860 ° C. Hydrogenation * disproportionation reaction was carried out for 2 hours. After that, dehydrogenation and recombination reaction were carried out while maintaining at 860 ° C for 1 hour in an argon flow reduced to 5.3 kPa. Next, the sample was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example. The results obtained by observing the fracture surface of the individual samples, was sure to be composed of texture and pores of the fine crystals having a similar manner to pictures 1 0
[0267] 次に、サンプルの表面を表面研削盤でカ卩ェし、加工後のサンプルの寸法および単 重力もサンプルの密度を計算した。結果を表 18に示す。なお、加工による磁石の割 れなどは見られな ヽことから、サンプルは十分な機械強度を有して ヽることを確認し た。研削加工を行ったサンプルを 3. 2MAZmのパルス磁界で着磁した後、磁気特 性を BHトレーサー(装置名: MTR- 1412 (メトロン技研社製) )で測定した。結果を 表 18に示す。なお、表 18において、 J は、着磁したサンプルの着磁方向に 2テスラ max  [0267] Next, the surface of the sample was covered with a surface grinder, and the density of the sample was calculated based on the dimensions and single gravity of the sample after processing. The results are shown in Table 18. In addition, it was confirmed that the sample had sufficient mechanical strength because there was no breakage of the magnet due to processing. The ground sample was magnetized with a 3.2 MAZm pulse magnetic field, and the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 18. In Table 18, J is 2 Tesla max in the magnetization direction of the magnetized sample.
(T)まで外部磁界 Hを印加したときのサンプルの磁ィ ΰ (Τ)の最大測定値である。ま た、 Ηは、実施例 1と同様、 Β Χ 0. 9となる外部磁界 Ηの値である。  This is the maximum measured value of the sample magnetic field ΰ (Τ) when the external magnetic field H is applied up to (T). Also, Η is the value of the external magnetic field な る which becomes Β Χ 0.9, as in Example 1.
k r  k r
[0268] [表 18] 密度 Br Hcj (BH)max Br/ Jmax Hk/Hcj 全 [0268] [Table 18] Density B r H c j (BH) max B r / J max Hk / H c j Total
σ . (g/cm3) (T) (kA/m) (kJ/m3) σ. (g / cm 3 ) (T) (kA / m) (kJ / m 3 )
0 5.55 0.90 950 154 0.98 0.75 0 5.55 0.90 950 154 0.98 0.75
R 5.56 0.89 960 149 0.98 0.67 R 5.56 0.89 960 149 0.98 0.67
[0269] 本検討の結果から、種々の原料作製方法に対しても、本発明の効果である、優れ た角形性を有した多孔質磁石が得られることを確認した。また、 a—Fe相が生成しに くい急冷法としてストリップキャスト法を適用することにより、比較的高い H /H [0269] From the results of this study, it was confirmed that a porous magnet having excellent squareness, which is the effect of the present invention, can be obtained for various raw material production methods. In addition, by applying the strip casting method as a quenching method in which a-Fe phase is difficult to form, a relatively high H / H
k cjが得 られることを確認した。  It was confirmed that k cj was obtained.
[0270] [実施例 12]  [0270] [Example 12]
表 19に示す組成の合金を用 Vヽて以下の実験を行った。実施例 1と同様の方法を用 いて、粗粉砕および微粉砕を行った。なお、微粉末の平均粒径は、表 19に示すとお りである (測定方法は実施例 1と同じで、 50%中心粒径 (D )を平均粒径とする)。  The following experiments were conducted using alloys with the compositions shown in Table 19. Using the same method as in Example 1, coarse pulverization and fine pulverization were performed. The average particle size of the fine powder is as shown in Table 19 (the measurement method is the same as in Example 1, and the 50% center particle size (D) is the average particle size).
50  50
[0271] [表 19]  [0271] [Table 19]
Figure imgf000053_0001
Figure imgf000053_0001
[0272] 次に、表 20に示すとおり、無磁界中もしくは磁界中での成形を行い、密度 4. 19g Zcm3の圧粉体を作製した。次に、圧粉体に対して、種々の HDDR処理を行った。 具体的には、表 20に示す昇温雰囲気で 880°Cまで加熱し、その後、表 20に示す雰 囲気に切り替えた後、 880°Cで 30分間保持して水素化 '不均化反応を行った。その 後、 880°Cのまま、 5. 3kPaに減圧したアルゴン流気中で 1時間保持し、脱水素、再 結合反応を行った。次に、大気圧アルゴン流気中で室温まで冷却し、実施例のサン プルを得た。 [0272] Next, as shown in Table 20, molding was performed in the absence of a magnetic field or in a magnetic field to produce a green compact with a density of 4.19 g Zcm 3 . Next, various HDDR treatments were performed on the green compact. Specifically, after heating to 880 ° C in the temperature rising atmosphere shown in Table 20, and then switching to the atmosphere shown in Table 20, holding at 880 ° C for 30 minutes to perform the hydrogenation disproportionation reaction went. After that, it was kept at 880 ° C in an argon flow reduced to 5.3 kPa for 1 hour to perform dehydrogenation and recombination reaction. Next, it was cooled to room temperature in an atmospheric pressure argon flow to obtain a sample of the example.
[0273] [表 20] 成形時 升 囲 5¾ HD処理雰囲気 実験 No 合金 磁界付与 [0273] [Table 20] Forming range 5¾ HD treatment atmosphere Experiment No Alloy Applying magnetic field
输 H2 (大気圧) H2(大気圧) s-φ 有 H2+Ar(2:1 ,大気圧) H2+Ar(2:1,大気圧) S-② s 有 Ar (大気圧) H2(大気圧) s -③ Transport H 2 (Atmospheric pressure) H 2 (Atmospheric pressure) s-φ Yes H 2 + Ar (2: 1, Atmospheric pressure) H 2 + Ar (2: 1, Atmospheric pressure) S-② s Yes Ar (Atmospheric pressure) ) H 2 (atmospheric pressure) s -③
有 Ar (大気圧) H2+AK2:1,大気圧) S-④ 有 苜空 H2(125kPa (加圧》 s -⑤ Existence Ar (atmospheric pressure) H 2 + AK2: 1, atmospheric pressure) S-④ Existence H 2 (125kPa (pressurization) s -⑤
[0274] 得られた個々のサンプルの破断面を観察した結果、図 1の写真と同様の態様を有 する微細結晶の集合組織と細孔で構成されていることを確認した。 [0274] As a result of observing the fracture surface of each of the obtained samples, it was confirmed that the sample was composed of fine crystal textures and pores having the same aspect as the photograph in FIG.
[0275] 次に、サンプルの表面を表面研削盤でカ卩ェし、加工後のサンプルの寸法および単 重力ゝらサンプルの密度を計算した。結果を表 21に示す。なお、加工による磁石の割 れなどは見られな ヽことから、サンプルは十分な機械強度を有して ヽることを確認し た。研削加工を行ったサンプルを 3. 2MAZmのパルス磁界で着磁した後、磁気特 性を BHトレーサー(装置名: MTR- 1412 (メトロン技研社製) )で測定した。結果を 表 21に示す。なお、表 21において、 J は、着磁したサンプルの着磁方向に 2テスラ  [0275] Next, the surface of the sample was covered with a surface grinder, and the sample size after processing and the density of the sample were calculated from the single gravity. The results are shown in Table 21. In addition, it was confirmed that the sample had sufficient mechanical strength because there was no breakage of the magnet due to processing. The ground sample was magnetized with a 3.2 MAZm pulse magnetic field, and the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 21. In Table 21, J is 2 Tesla in the magnetization direction of the magnetized sample.
max  max
(T)まで外部磁界 Hを印加したときのサンプルの磁ィ ΰ (Τ)の最大測定値である。ま た、 Ηは、実施例 1と同様、 Β Χ 0. 9となる外部磁界 Ηの値である。  This is the maximum measured value of the sample magnetic field ΰ (Τ) when the external magnetic field H is applied up to (T). Also, Η is the value of the external magnetic field な る which becomes Β Χ 0.9, as in Example 1.
k r  k r
[0276] [表 21]  [0276] [Table 21]
Figure imgf000054_0001
Figure imgf000054_0001
[0277] 本検討の結果から、種々の処理方法に対しても、本発明の態様を有する多孔質磁 石が得られることを確認した。 [0277] From the results of this study, it was confirmed that porous magnets having the embodiments of the present invention can be obtained for various treatment methods.
[0278] [実施例 13]  [0278] [Example 13]
実施例 1と同様の方法によって作製した、多孔質材料 (磁石)を外周刃切断機およ び研削加工機により、 7mm X 7mm X 5mmのサイズに加工した。この加工による多 孔質材料の割れ、欠けは観察されなかった。多孔質材料に対する超音波洗浄を行つ た後、ナノ粒子分散コロイド溶液に多孔質材料を浸漬した。このコロイド溶液は、表面 が酸ィ匕された Feナノ粒子を分散させたコロイド溶液であり、 Fe粒子の平均粒径:約 7 nm、溶媒:ドデカン、固形分濃度 1. 5体積%であった。ナノ粒子分散溶液は、ガラス 製容器内に入れられ、多孔質材料を浸漬させた状態で真空デシケータ内に挿入し、 減圧下に置いた。処理中の雰囲気圧力は約 130kPaに調整した。 A porous material (magnet) produced by the same method as in Example 1 was processed into a size of 7 mm × 7 mm × 5 mm by a peripheral blade cutting machine and a grinding machine. No cracking or chipping of the porous material due to this processing was observed. Perform ultrasonic cleaning on porous materials Thereafter, the porous material was immersed in the nanoparticle-dispersed colloidal solution. This colloidal solution is a colloidal solution in which Fe nanoparticles with oxidized surfaces are dispersed. The average particle size of Fe particles is about 7 nm, the solvent is dodecane, and the solid content concentration is 1.5% by volume. . The nanoparticle dispersion solution was placed in a glass container, inserted into a vacuum desiccator with the porous material immersed therein, and placed under reduced pressure. The atmospheric pressure during the treatment was adjusted to about 130 kPa.
[0279] 減圧により多孔質材料及びナノ粒子分散コロイド溶液内では気泡が発生した。気 泡の発生が止んだ後、大気圧に一旦戻した。その後、真空乾燥機内に多孔質材料 を挿入し、約 130Paの雰囲気圧力下で 200°Cに加熱し、溶媒を蒸発させ、乾燥を行 つた。こうして、本発明による複合バルタ材料のサンプルを得た。  [0279] Bubbles were generated in the porous material and the nanoparticle-dispersed colloidal solution due to the reduced pressure. After the generation of bubbles stopped, the pressure was returned to atmospheric pressure. Thereafter, the porous material was inserted into the vacuum dryer, heated to 200 ° C under an atmospheric pressure of about 130 Pa, the solvent was evaporated, and drying was performed. Thus, a sample of the composite Balta material according to the present invention was obtained.
[0280] 得られたサンプルの破断面を走査型電子顕微鏡 (SEM)で観察した結果を図 12に 示す。図 5と同様、領域 D (多孔質材料の破断面)と領域 Eで特徴づけられる破断面 が観察された。エネルギー分散型検出器 (EDX)を用いて、領域 Dと領域 Eにおける Fe元素の強度 (存在量)を比較した結果、領域 Eの Feの強度が高いことから、領域 E には、ナノ粒子分散コロイド溶液中に分散されていた Feナノ粒子が溶媒とともに多孔 質材料の細孔を通って運ばれ、溶媒蒸発後も細孔内に残った微粒子によって形成さ れたものであると考えられる。  [0280] Fig. 12 shows the results of observation of the fracture surface of the obtained sample with a scanning electron microscope (SEM). As in Fig. 5, the fracture surface characterized by region D (fracture surface of porous material) and region E was observed. As a result of comparing the strength (abundance) of Fe element in region D and region E using an energy dispersive detector (EDX), the strength of Fe in region E is high. The Fe nanoparticles dispersed in the colloidal solution are transported through the pores of the porous material together with the solvent, and are thought to be formed by the fine particles remaining in the pores after evaporation of the solvent.
[0281] 以上の結果から、高磁ィ匕が期待できる軟磁性 Feナノ粒子と硬磁性材料である多孔 質磁石の複合バルタ体が作製できることを確認した。  [0281] From the above results, it was confirmed that a composite Balta body of soft magnetic Fe nanoparticles that can be expected to have high magnetic properties and a porous magnet that is a hard magnetic material could be produced.
産業上の利用可能性  Industrial applicability
[0282] 本発明の多孔質磁石は、ボンド磁石に比べて高 、磁気特性、特に優れた角型性を 示し、かつ、従来の焼結磁石よりも形状設計の自由度が高いため、従来のボンド磁 石や焼結磁石が用いられてきた種々の用途に好適に利用され得る。 [0282] The porous magnet of the present invention has high magnetic properties, particularly excellent squareness compared to the bonded magnet, and has a higher degree of freedom in shape design than conventional sintered magnets. It can be suitably used for various applications in which bonded magnets and sintered magnets have been used.

Claims

請求の範囲  The scope of the claims
[I] 平均結晶粒径 0. l /z m以上 以下の Nd Fe B型結晶相の集合組織を有し、  [I] It has an Nd Fe B-type crystal phase texture with an average crystal grain size of 0.1 l / z m or more,
2 14  2 14
少なくとも一部が長径 1 μ m以上 20 m以下の細孔を有する多孔質である、 R-Fe —B系多孔質磁石。  An R-Fe—B-based porous magnet, at least a part of which has a pore having a major axis of 1 μm or more and 20 m or less.
[2] 各々が前記 Nd Fe B型結晶相の集合組織を有する複数の粉末粒子が結合した  [2] A plurality of powder particles each having the texture of the Nd Fe B-type crystal phase are combined
2 14  2 14
構造を備え、前記粉末粒子の間に位置する空隙が前記細孔を形成している、請求 項 1に記載の R— Fe— B系多孔質磁石。  2. The R—Fe—B based porous magnet according to claim 1, comprising a structure, wherein voids located between the powder particles form the pores.
[3] 前記粉末粒子の平均粒径は 10 μ m未満である、請求項 2に記載の R— Fe— B系 多孔質磁石。 [3] The R—Fe—B based porous magnet according to claim 2, wherein an average particle size of the powder particles is less than 10 μm.
[4] 前記細孔は大気と連通している、請求項 1に記載の R— Fe— B系多孔質磁石。  [4] The R—Fe—B based porous magnet according to claim 1, wherein the pores communicate with the atmosphere.
[5] 前記細孔には榭脂が充填されていない、請求項 1に記載の R— Fe— B系多孔質磁 石。 [5] The R—Fe—B porous magnet according to claim 1, wherein the pores are not filled with rosin.
[6] 前記 Nd Fe B型結晶相の容易磁化軸が所定方向に配向している、請求項 1に記  6. The easy magnetization axis of the Nd Fe B-type crystal phase is oriented in a predetermined direction.
2 14  2 14
載の R— Fe— B系多孔質磁石。  R—Fe—B based porous magnet.
[7] ラジアル異方性または極異方性を有する請求項 6に記載の R— Fe— B系多孔質磁 石。 [7] The R—Fe—B based porous magnet according to claim 6, which has radial anisotropy or polar anisotropy.
[8] 密度が 3. 5g/cm3以上 7. Og/cm3以下である請求項 1に記載の R— Fe— B系多 孔質磁石。 [8] The R—Fe—B based porous magnet according to claim 1, wherein the density is 3.5 g / cm 3 or more and 7. Og / cm 3 or less.
[9] Rを希土類元素の組成比率、 Qを硼素および炭素の組成比率とするとき、 10原子 [9] When R is the composition ratio of rare earth elements and Q is the composition ratio of boron and carbon, 10 atoms
%≤R≤30原子%、および、 3原子%≤Q≤ 15原子%の関係を満足する希土類元 素と、硼素および Zまたは炭素とを含有する、請求項 1に記載の R— Fe— B系多孔 質磁石。 The R—Fe—B according to claim 1, comprising a rare earth element satisfying a relationship of% ≤R≤30 atomic% and 3 atomic% ≤Q≤ 15 atomic%, and boron and Z or carbon. Porous magnet.
[10] 請求項 1に記載の R— Fe— B系多孔質磁石を真密度の 95%以上に高密度化した R— Fe— B系磁石。  [10] An R—Fe—B based magnet obtained by densifying the R—Fe—B based porous magnet according to claim 1 to 95% or more of the true density.
[II] 前記 Nd Fe B型結晶相の集合組織において、個々の結晶粒の最短粒径 aと最長  [II] In the texture of the Nd Fe B-type crystal phase, the shortest grain size a and the longest grain size of each crystal grain
2 14  2 14
粒径 bの比 b/aが 2未満である結晶粒が全結晶粒の 50体積%以上存在する、請求項 10に記載の R— Fe— B系磁石。  11. The R—Fe—B magnet according to claim 10, wherein crystal grains having a ratio b / a of particle diameter b of less than 2 are present in an amount of 50% by volume or more of all crystal grains.
[12] 平均粒径 10 m未満の R—Fe— B系希土類合金粉末を用意する工程と、前記 R Fe— B系希土類合金粉末を成形して圧粉体を作製する工程と、水素ガス中にお いて前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理を施し、それによつ て水素化および不均化反応を起こす工程と、真空または不活性雰囲気中において 前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理を施し、それによつて脱 水素および再結合反応を起こす工程と、を含む R— Fe— B系多孔質磁石の製造方 法。 [12] preparing an R—Fe—B rare earth alloy powder having an average particle size of less than 10 m; A step of forming a green compact by forming Fe-B rare earth alloy powder, and heat-treating the green compact in hydrogen gas at a temperature of 650 ° C or higher and lower than 1000 ° C. The hydrogenation and disproportionation reactions, and heat treatment of the green compact in a vacuum or in an inert atmosphere at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby dehydrogenating and recombining. And a process for producing an R—Fe—B based porous magnet.
[13] 前記圧粉体を作製する工程は、磁界中で成形を行う工程を含む請求項 12に記載 の R— Fe— B系多孔質磁石の製造方法。  13. The method for producing an R—Fe—B based porous magnet according to claim 12, wherein the step of producing the green compact includes a step of forming in a magnetic field.
[14] 前記 R— Fe B系希土類合金粉末力 10原子%≤R≤30原子%、 3原子%≤Q[14] R—Fe B rare earth alloy powder force 10 atomic% ≤ R ≤ 30 atomic%, 3 atomic% ≤ Q
≤ 15原子% (Rは希土類元素、 Qは硼素または硼素と硼素の一部を置換した炭素の 総和)の関係を満足する組成を有している、請求項 12に記載の R— Fe— B系多孔質 磁石の製造方法。 13. R—Fe—B according to claim 12, having a composition satisfying a relationship of ≤15 atomic% (R is a rare earth element, Q is boron or a sum of boron and a part of boron-substituted carbon). A method for producing a porous magnet.
[15] 前記 R—Fe B系多孔質磁石における HD処理開始時の余剰希土類量 R,が R,  [15] The excess rare earth amount R at the start of HD processing in the R—Fe B porous magnet is R,
≥0原子%となるように、希土類元素 Rの組成を設定し、かつ、前記粉砕工程以後水 素化および不均化反応開始までの工程の酸素量を制御する請求項 12に記載の R Fe— B系多孔質磁石の製造方法。  The composition of the rare earth element R is set so that ≥0 atomic%, and the amount of oxygen in the process from the pulverization process to the start of the hydrogenation and disproportionation reactions is controlled. — Manufacturing method for B-based porous magnets.
[16] 前記 R Fe B系希土類合金粉末は急冷合金の粉砕粉である、請求項 12に記載 の R— Fe— B系多孔質磁石の製造方法。  16. The method for producing an R—Fe—B based porous magnet according to claim 12, wherein the R Fe B based rare earth alloy powder is a pulverized powder of a quenched alloy.
[17] 前記急冷合金がストリップキャスト合金である請求項 16に記載の R Fe B系多孔 質磁石の製造方法。  17. The method for producing an R Fe B-based porous magnet according to claim 16, wherein the quenched alloy is a strip cast alloy.
[18] 前記水素化および不均化反応を起こす工程は、不活性雰囲気または真空中で昇 温する工程と、 650°C以上 1000°C未満の温度で水素ガスを導入する工程と、を含 む請求項 12に記載の R— Fe— B系多孔質磁石の製造方法。  [18] The step of causing the hydrogenation and disproportionation reaction includes a step of raising the temperature in an inert atmosphere or vacuum, and a step of introducing hydrogen gas at a temperature of 650 ° C or higher and lower than 1000 ° C. A method for producing an R—Fe—B based porous magnet according to claim 12.
[19] 前記水素ガスの分圧は、 5kPa以上 lOOkPa以下である請求項 12に記載の R Fe [19] The R Fe according to claim 12, wherein the partial pressure of the hydrogen gas is 5 kPa or more and lOOkPa or less.
B系多孔質磁石の製造方法。  A method for producing a B-based porous magnet.
[20] 請求項 1に記載の R—Fe B系多孔質材料を準備する工程 (A)と、 [20] A step (A) of preparing the R—Fe B-based porous material according to claim 1, and
湿式処理により、前記 R— Fe— B系多孔質材料の細孔内部に前記 R— Fe— B系多 孔質材料とは異なる材料を導入する工程 (B)と、 を含む R— Fe— B系永久磁石用複合バルタ材料の製造方法。 A step (B) of introducing a material different from the R—Fe—B porous material into the pores of the R—Fe—B porous material by wet processing; Of a composite Balta material for an R—Fe—B permanent magnet containing
[21] 前記工程 (A)は、 [21] In the step (A),
平均粒径 10 m未満の R— Fe— B系希土類合金粉末を用意する工程と、 前記 R— Fe— B系希土類合金粉末を成形して、圧粉体を作製する工程と、 水素ガス中にぉ 、て前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理 を施し、それによつて水素化および不均化反応を起こして R—Fe— B系多孔質材料 を作製する工程と、  A step of preparing an R—Fe—B rare earth alloy powder having an average particle size of less than 10 m, a step of forming a green compact by molding the R—Fe—B rare earth alloy powder, and hydrogen gas工程 A process of producing an R-Fe-B porous material by heat-treating the green compact at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing hydrogenation and disproportionation reactions. When,
真空または不活性雰囲気中において前記圧粉体に対し 650°C以上 1000°C未満 の温度で熱処理を施し、それによつて脱水素および再結合反応を起こす工程と、 を含む、請求項 20に記載の R -Fe- B系永久磁石用複合バルタ材料の製造方法。  Applying heat treatment to the green compact in a vacuum or an inert atmosphere at a temperature not lower than 650 ° C and lower than 1000 ° C, thereby causing dehydrogenation and recombination reactions. Manufacturing method for composite Balta materials for R -Fe- B permanent magnets.
[22] 請求項 20に記載の製造方法で得られた R— Fe— B系永久磁石用複合バルタ材料 を用意する工程と、 [22] A step of preparing a composite Balta material for an R—Fe—B permanent magnet obtained by the production method according to claim 20,
前記 R— Fe— B系永久磁石用複合バルタ材料を更に加熱することにより R— Fe— B系永久磁石を形成する工程と、  Forming the R—Fe—B permanent magnet by further heating the composite Balta material for the R—Fe—B permanent magnet;
を含む R -Fe- B系永久磁石の製造方法。  Of manufacturing R 2 -Fe-B permanent magnets containing
[23] 平均結晶粒径が 0. 以上 以下の Nd Fe B型結晶相の集合組織を有し [23] It has a texture of Nd Fe B-type crystal phase with an average grain size of 0.
2 14  2 14
、少なくとも一部が平均長径 1 μ m以上 20 m以下の細孔を有する R— Fe— Β系多 孔質材料を準備する工程 (A)と、  A step (A) of preparing an R—Fe—Β-based porous material having at least a part of pores having an average major axis of 1 μm to 20 m,
前記 R—Fe— B系多孔質材料の表面および Zまたは細孔内部に、希土類金属、 希土類合金、希土類化合物のうち少なくとも 1種を導入する工程 (B)と、  A step (B) of introducing at least one of a rare earth metal, a rare earth alloy, and a rare earth compound into the surface and Z or pores of the R—Fe—B porous material;
を含む R— Fe— B系永久磁石用複合バルタ材料の製造方法。  Of a composite Balta material for an R—Fe—B permanent magnet containing
[24] 前記(B)工程において、前記 R— Fe— B系多孔質材料の表面および Zまたは細孔 内部に、希土類金属、希土類合金、希土類ィ匕合物のうち少なくとも 1種を導入すると 同時に、前記 R—Fe— B系多孔質材料を加熱する、請求項 23に記載の R— Fe— B 系永久磁石用複合バルタ材料の製造方法。 [24] In the step (B), at least one of a rare earth metal, a rare earth alloy, and a rare earth compound is introduced into the surface of the R—Fe—B based porous material and the inside of the Z or pores. 24. The method for producing a composite Balta material for an R—Fe—B based permanent magnet according to claim 23, wherein the R—Fe—B based porous material is heated.
[25] 前記 (B)工程の後に、さらに前記 R—Fe— B系多孔質材料を加熱する工程 (C)を 含む、請求項 23に記載の R— Fe— B系永久磁石用複合バルタ材料の製造方法。 25. The composite Balta material for R—Fe—B permanent magnets according to claim 23, further comprising a step (C) of heating the R—Fe—B porous material after the step (B). Manufacturing method.
[26] 前記工程 (A)は、 平均粒径 10 /z m未満の R— Fe— B系希土類合金粉末を用意する工程と、 前記 R— Fe— B系希土類合金粉末を成形して、圧粉体を作製する工程と、 水素ガス中にぉ 、て前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理 を施し、それによつて水素化および不均化反応を起こして R—Fe— B系多孔質材料 を作製する工程と、 [26] In the step (A), A step of preparing an R—Fe—B rare earth alloy powder having an average particle size of less than 10 / zm; a step of forming a green compact by molding the R—Fe—B rare earth alloy powder; and hydrogen gas On the other hand, the green compact is heat-treated at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing hydrogenation and disproportionation reactions to produce an R-Fe-B porous material. Process,
真空または不活性雰囲気中において前記圧粉体に対し 650°C以上 1000°C未満 の温度で熱処理を施し、それによつて脱水素および再結合反応を起こす工程と、 を含む、請求項 23に記載の R— Fe— B系永久磁石用複合バルタ材料の製造方法。  Applying a heat treatment to the green compact in a vacuum or an inert atmosphere at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing dehydrogenation and recombination reactions. Manufacturing method for composite Balta materials for R-Fe-B permanent magnets.
[27] 請求項 1に記載の R Fe B系多孔質磁石に対して、 600°C以上 900°C未満の温 度で加圧し、前記 R— Fe— B系多孔質磁石を真密度の 95 %以上に高密度化するェ 程を含む R -Fe- B系磁石の製造方法。  [27] The R Fe B porous magnet according to claim 1 is pressurized at a temperature of 600 ° C or higher and lower than 900 ° C, and the R-Fe-B porous magnet is heated to a true density of 95 ° C. A method for manufacturing R 2 -Fe-B magnets, which includes the process of increasing the density to over%.
[28] 平均粒径 10 μ m未満の R Fe Β系希土類合金粉末を成形して圧粉体を作製す る工程と、  [28] A step of forming a green compact by forming R Fe-based rare earth alloy powder having an average particle size of less than 10 μm;
水素ガス中にぉ 、て前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理 を施し、それによつて水素化および不均化反応を起こす工程と、  A step of heat-treating the green compact in a hydrogen gas at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing hydrogenation and disproportionation reactions;
真空または不活性雰囲気中において前記圧粉体に対し 650°C以上 1000°C未満 の温度で熱処理を施し、それによつて脱水素および再結合反応を起こし、 R-Fe- B系多孔質磁石を形成する工程と、  The green compact is heat-treated at a temperature of 650 ° C or higher and lower than 1000 ° C in a vacuum or in an inert atmosphere, thereby causing dehydrogenation and recombination reactions. Forming, and
前記 R— Fe— B系多孔質磁石を粉砕する工程と、  Crushing the R-Fe-B porous magnet;
を含む R -Fe- B系磁石粉末の製造方法。  Of manufacturing R 2 -Fe-B magnet powder containing
[29] 請求項 28に記載の R—Fe— B系磁石粉末の製造方法によって製造された R—Fe [29] R-Fe produced by the method for producing R-Fe-B magnet powder according to claim 28
B系磁石粉末を用意する工程と、  Preparing a B-based magnet powder;
前記 R—Fe— B系磁石粉末とバインダとを混合し、成形する工程と、  Mixing and molding the R-Fe-B magnet powder and a binder;
を含むボンド磁石の製造方法。  The manufacturing method of the bonded magnet containing this.
[30] 希土類磁石成形体と、軟磁性材料粉末の成形体とが一体化された磁気回路部品 の製造方法であって、 [30] A method for producing a magnetic circuit component in which a rare earth magnet compact and a soft magnetic material powder compact are integrated,
(a)希土類磁石成形体として平均結晶粒径が 0. 1 μ m以上 1 μ m以下の Nd Fe  (a) Nd Fe with an average grain size of 0.1 μm to 1 μm as a rare earth magnet compact
2 14 2 14
B型結晶相の集合組織を有し、少なくとも一部が長径 1 μ m以上 20 m以下の細孔 を有する多孔質である、複数の R—Fe— B系多孔質磁石を準備する工程と、 (b)前記多孔質磁石と、粉末状態の軟磁性材料粉末または軟磁性材料粉末の仮 成形体とを熱間プレス成形することによって、希土類磁石成形体と軟磁性材料粉末 の成形体とが一体化された成形品を得る工程と、 A pore having a texture of a B-type crystal phase, at least a part of which has a major axis of 1 μm to 20 m A step of preparing a plurality of R-Fe-B porous magnets having a porous structure, and (b) the porous magnet and a soft magnetic material powder in a powder state or a soft magnetic material powder temporary compact, and A step of obtaining a molded product in which the rare earth magnet molded body and the soft magnetic material powder molded body are integrated by hot press molding,
を含む、磁気回路部品の製造方法。  A method of manufacturing a magnetic circuit component, comprising:
[31] 前記 R—Fe— B系多孔質磁石を用意する工程は、 [31] The step of preparing the R-Fe-B porous magnet includes:
平均粒径 10 m未満の R— Fe— B系希土類合金粉末を用意する工程と、 前記 R— Fe— B系希土類合金粉末を成形して圧粉体を作製する工程と、 水素ガス中にぉ 、て前記圧粉体に対し 650°C以上 1000°C未満の温度で熱処理 を施し、それによつて水素化および不均化反応を起こす工程と、  A step of preparing an R—Fe—B rare earth alloy powder having an average particle size of less than 10 m, a step of forming a green compact by molding the R—Fe—B rare earth alloy powder, and A process of subjecting the green compact to a heat treatment at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing hydrogenation and disproportionation reactions;
真空または不活性雰囲気中において前記圧粉体に対し 650°C以上 1000°C未満 の温度で熱処理を施し、それによつて脱水素および再結合反応を起こす工程と、 を含む、請求項 30に記載の製造方法。  Applying a heat treatment to the green compact in a vacuum or an inert atmosphere at a temperature of 650 ° C or higher and lower than 1000 ° C, thereby causing dehydrogenation and recombination reactions. Manufacturing method.
[32] 前記工程 (b)における軟磁性材料粉末の仮成形体を用意する工程として、 [32] As a step of preparing a temporary compact of the soft magnetic material powder in the step (b),
前記軟磁性材料粉末をプレス成形することによって前記軟磁性材料粉末の仮成形 体を作製する工程 (c)をさらに包含し、  Further comprising a step (c) of producing a temporary compact of the soft magnetic material powder by press molding the soft magnetic material powder;
前記工程 (b)は、前記軟磁性材料粉末の仮成形体と前記複数の多孔質磁石とを 同時に熱間プレス成形することによって、前記希土類磁石成形体と軟磁性材料粉末 の成形体が一体化された成形品を得る工程である、請求項 30に記載の製造方法。  In the step (b), the rare-earth magnet compact and the soft magnetic material powder compact are integrated by simultaneously hot press-molding the temporary compact of the soft magnetic material powder and the plurality of porous magnets. The production method according to claim 30, which is a step of obtaining a molded product.
[33] 前記工程 (b)にお ヽて、前記軟磁性材料粉末は粉末状態で前記多孔質磁石と同 時に熱間プレス成形される、請求項 30に記載の製造方法。 [33] The production method according to claim 30, wherein in the step (b), the soft magnetic material powder is hot press-molded at the same time as the porous magnet in a powder state.
[34] 請求項 30の方法で作製された磁気回路部品。 34. A magnetic circuit component produced by the method of claim 30.
[35] 前記磁気回路部品は磁石回転子である、請求項 34に記載の磁気回路部品。  35. The magnetic circuit component according to claim 34, wherein the magnetic circuit component is a magnet rotor.
PCT/JP2007/060216 2006-05-18 2007-05-18 R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME WO2007135981A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008516664A JP4873008B2 (en) 2006-05-18 2007-05-18 R-Fe-B porous magnet and method for producing the same
CN2007800009112A CN101346780B (en) 2006-05-18 2007-05-18 R-Fe-B porous magnet and method for producing the same
EP07743651.7A EP1970916B1 (en) 2006-05-18 2007-05-18 R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
US12/092,300 US8268093B2 (en) 2006-05-18 2007-05-18 R-Fe-B porous magnet and method for producing the same
US13/586,917 US9418786B2 (en) 2006-05-18 2012-08-16 R—Fe—B porous magnet and method for producing the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006-139148 2006-05-18
JP2006139148 2006-05-18
JP2006181944 2006-06-30
JP2006-181944 2006-06-30
JP2006-223162 2006-08-18
JP2006223162 2006-08-18
JP2006240306 2006-09-05
JP2006-240306 2006-09-05
JP2006324298 2006-11-30
JP2006-324298 2006-11-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/092,300 A-371-Of-International US8268093B2 (en) 2006-05-18 2007-05-18 R-Fe-B porous magnet and method for producing the same
US13/586,917 Division US9418786B2 (en) 2006-05-18 2012-08-16 R—Fe—B porous magnet and method for producing the same

Publications (1)

Publication Number Publication Date
WO2007135981A1 true WO2007135981A1 (en) 2007-11-29

Family

ID=38723293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060216 WO2007135981A1 (en) 2006-05-18 2007-05-18 R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME

Country Status (5)

Country Link
US (2) US8268093B2 (en)
EP (1) EP1970916B1 (en)
JP (1) JP4873008B2 (en)
CN (1) CN101346780B (en)
WO (1) WO2007135981A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065903A1 (en) * 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2010258412A (en) * 2009-03-30 2010-11-11 Tdk Corp Method of producing rare-earth magnet
JP2011049441A (en) * 2009-08-28 2011-03-10 Hitachi Metals Ltd Method for manufacturing r-t-b based permanent magnet
JP2011049440A (en) * 2009-08-28 2011-03-10 Hitachi Metals Ltd Method for manufacturing r-t-b based permanent magnet
CN102107274A (en) * 2009-12-25 2011-06-29 北京中科三环高技术股份有限公司 Continuous smelting strip-casting and hydrogenation device and method
JP2012216807A (en) * 2011-03-29 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2014165228A (en) * 2013-02-22 2014-09-08 Hitachi Metals Ltd Method of manufacturing r-t-b based permanent magnet
WO2015121914A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
US20150287507A1 (en) * 2012-10-31 2015-10-08 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic body and method for manufacturing same
JP2019114715A (en) * 2017-12-25 2019-07-11 イビデン株式会社 Method of manufacturing sintered magnet, graphite mold for hot press, and method for manufacturing graphite mold for hot press

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324485B2 (en) * 2008-02-29 2016-04-26 Daido Steel Co., Ltd. Material for anisotropic magnet and method of manufacturing the same
JP5544928B2 (en) * 2010-02-26 2014-07-09 セイコーエプソン株式会社 Granulated powder and method for producing granulated powder
US20110217555A1 (en) * 2010-03-03 2011-09-08 Seiko Epson Corporation Granulated powder and method for producing granulated powder
US20130068992A1 (en) * 2010-05-20 2013-03-21 Kazuhiro Hono Method for producing rare earth permanent magnets, and rare earth permanent magnets
JP5413383B2 (en) * 2011-02-23 2014-02-12 トヨタ自動車株式会社 Rare earth magnet manufacturing method
US20130141197A1 (en) * 2011-06-24 2013-06-06 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
CN103782352B (en) * 2011-09-09 2018-04-24 户田工业株式会社 The manufacture method and bonded permanent magnet of R-T-B classes rare earth magnet powder, R-T-B class rare earth magnet powders
KR20130030896A (en) * 2011-09-20 2013-03-28 현대자동차주식회사 Manufacturing method for bonded magnet
JP5411956B2 (en) * 2012-03-12 2014-02-12 日東電工株式会社 Rare earth permanent magnet, rare earth permanent magnet manufacturing method, and rare earth permanent magnet manufacturing apparatus
DE102013207194A1 (en) * 2012-12-13 2014-06-18 Hyundai Motor Company Method for producing a magnetic powder and a magnet
JP6037128B2 (en) 2013-03-13 2016-11-30 戸田工業株式会社 R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
KR101451508B1 (en) * 2013-04-22 2014-10-15 삼성전기주식회사 Method for preparing Nd-Fe-B based rare earth sintered magnet
JP6508878B2 (en) * 2014-03-17 2019-05-08 株式会社トーキン Soft magnetic molding
JP5686213B1 (en) * 2014-03-28 2015-03-18 Tdk株式会社 R-T-B permanent magnet
CN106796835B (en) * 2014-08-12 2019-05-21 Abb瑞士股份有限公司 The magnet in the region with different magnetic properties and the method for being used to form this magnet
DE102016014464A1 (en) * 2016-12-06 2018-06-07 Minebea Co., Ltd. Permanent electric machine
FR3063921B1 (en) * 2017-03-16 2022-07-29 Office National Detudes Et De Rech Aerospatiales Onera SINTERED METALLIC MATERIAL WITH ORIENTATED POROSITY COMPRISING AT LEAST ONE FERROMAGNETIC PART AND METHOD OF MANUFACTURING
DE102018107491A1 (en) * 2017-03-31 2018-10-04 Tdk Corporation R-T-B BASED PERMANENT MAGNET
CN108412487B (en) * 2018-03-07 2021-06-11 河南省科学院同位素研究所有限责任公司 High-pressure-resistant radioactive isotope tracer and preparation method thereof
CN109935462B (en) * 2019-03-12 2022-02-11 宁波雄海稀土速凝技术有限公司 Preparation method of grain boundary diffusion heavy rare earth neodymium iron boron magnet and neodymium iron boron magnet
DE102020214335A1 (en) * 2020-11-13 2022-05-19 Mimplus Technologies Gmbh & Co. Kg Process for producing a permanent magnet from a magnetic starting material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024901A (en) * 1987-09-22 1990-01-09 Mitsubishi Metal Corp Manufacture of rare earth element-fe-b series alloy magnet powder
JPH02219207A (en) * 1989-02-20 1990-08-31 Daido Steel Co Ltd Manufacture of rare-earth magnet and rare-earth magnet
JPH0380508A (en) * 1989-08-23 1991-04-05 Seiko Electronic Components Ltd Manufacture of rare earth element magnet
JPH03129702A (en) * 1989-07-31 1991-06-03 Mitsubishi Materials Corp Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH0547528A (en) * 1990-08-16 1993-02-26 Inter Metallics Kk Manufacturing method of anisotropical rare earth bonded magnet
JPH06112027A (en) * 1992-09-25 1994-04-22 Fuji Elelctrochem Co Ltd Manufacture of high-quality magnet material
JPH06238500A (en) * 1991-05-15 1994-08-30 General Motors Corp <Gm> Magnet hot press molded by air opening type press machine
JPH08316014A (en) * 1995-05-16 1996-11-29 Tdk Corp Magnet and its manufacture
JPH09148163A (en) * 1995-11-20 1997-06-06 Sumitomo Special Metals Co Ltd Manufacture of r-t-b antisotropic bonded magnet
JPH09162054A (en) * 1995-12-01 1997-06-20 Sumitomo Special Metals Co Ltd Manufacture of r-t-b anisotropic bond magnet
JP2000173810A (en) * 1998-12-04 2000-06-23 Hitachi Metals Ltd Magnetic anisotropic bond magnet and its manufacture

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3850001T2 (en) 1987-08-19 1994-11-03 Mitsubishi Materials Corp Magnetic rare earth iron boron powder and its manufacturing process.
US5228930A (en) 1989-07-31 1993-07-20 Mitsubishi Materials Corporation Rare earth permanent magnet power, method for producing same and bonded magnet
JP2586198B2 (en) * 1990-09-26 1997-02-26 三菱マテリアル株式会社 Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2904571B2 (en) 1990-10-29 1999-06-14 信越化学工業株式会社 Manufacturing method of rare earth anisotropic sintered permanent magnet
US5395462A (en) 1991-01-28 1995-03-07 Mitsubishi Materials Corporation Anisotropic rare earth-Fe-B system and rare earth-Fe-Co-B system magnet
JP3969691B2 (en) * 1999-09-13 2007-09-05 三菱マテリアルPmg株式会社 Method for producing rare earth-Fe-Co-B magnet
JP3622652B2 (en) * 2000-09-01 2005-02-23 日産自動車株式会社 Anisotropic bulk exchange spring magnet and manufacturing method thereof
EP1447827A4 (en) * 2001-10-31 2011-03-02 Hitachi Metals Ltd Permanent magnet manufacturing method and press apparatus
AU2002354227A1 (en) * 2001-12-19 2003-06-30 Neomax Co., Ltd. Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof
AU2002346235A1 (en) * 2002-06-28 2004-01-19 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024901A (en) * 1987-09-22 1990-01-09 Mitsubishi Metal Corp Manufacture of rare earth element-fe-b series alloy magnet powder
JPH02219207A (en) * 1989-02-20 1990-08-31 Daido Steel Co Ltd Manufacture of rare-earth magnet and rare-earth magnet
JPH03129702A (en) * 1989-07-31 1991-06-03 Mitsubishi Materials Corp Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH0380508A (en) * 1989-08-23 1991-04-05 Seiko Electronic Components Ltd Manufacture of rare earth element magnet
JPH0547528A (en) * 1990-08-16 1993-02-26 Inter Metallics Kk Manufacturing method of anisotropical rare earth bonded magnet
JPH06238500A (en) * 1991-05-15 1994-08-30 General Motors Corp <Gm> Magnet hot press molded by air opening type press machine
JPH06112027A (en) * 1992-09-25 1994-04-22 Fuji Elelctrochem Co Ltd Manufacture of high-quality magnet material
JPH08316014A (en) * 1995-05-16 1996-11-29 Tdk Corp Magnet and its manufacture
JPH09148163A (en) * 1995-11-20 1997-06-06 Sumitomo Special Metals Co Ltd Manufacture of r-t-b antisotropic bonded magnet
JPH09162054A (en) * 1995-12-01 1997-06-20 Sumitomo Special Metals Co Ltd Manufacture of r-t-b anisotropic bond magnet
JP2000173810A (en) * 1998-12-04 2000-06-23 Hitachi Metals Ltd Magnetic anisotropic bond magnet and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1970916A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128758B2 (en) 2006-11-30 2012-03-06 Hitachi Metals, Ltd. R-Fe-B microcrystalline high-density magnet and process for production thereof
WO2008065903A1 (en) * 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2010258412A (en) * 2009-03-30 2010-11-11 Tdk Corp Method of producing rare-earth magnet
JP2011049441A (en) * 2009-08-28 2011-03-10 Hitachi Metals Ltd Method for manufacturing r-t-b based permanent magnet
JP2011049440A (en) * 2009-08-28 2011-03-10 Hitachi Metals Ltd Method for manufacturing r-t-b based permanent magnet
CN102107274B (en) * 2009-12-25 2014-10-22 北京中科三环高技术股份有限公司 Continuous smelting strip-casting and hydrogenation device and method
CN102107274A (en) * 2009-12-25 2011-06-29 北京中科三环高技术股份有限公司 Continuous smelting strip-casting and hydrogenation device and method
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2012216807A (en) * 2011-03-29 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
US20150287507A1 (en) * 2012-10-31 2015-10-08 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic body and method for manufacturing same
US9881722B2 (en) * 2012-10-31 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic body and method for manufacturing same
JP2014165228A (en) * 2013-02-22 2014-09-08 Hitachi Metals Ltd Method of manufacturing r-t-b based permanent magnet
WO2015121914A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
US10269475B2 (en) 2014-02-12 2019-04-23 Nitto Denko Corporation Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2019114715A (en) * 2017-12-25 2019-07-11 イビデン株式会社 Method of manufacturing sintered magnet, graphite mold for hot press, and method for manufacturing graphite mold for hot press

Also Published As

Publication number Publication date
EP1970916A4 (en) 2011-11-09
US9418786B2 (en) 2016-08-16
US8268093B2 (en) 2012-09-18
EP1970916A1 (en) 2008-09-17
JPWO2007135981A1 (en) 2009-10-01
CN101346780A (en) 2009-01-14
EP1970916B1 (en) 2015-04-01
JP4873008B2 (en) 2012-02-08
US20090123774A1 (en) 2009-05-14
CN101346780B (en) 2012-02-08
US20120306308A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
JP4872887B2 (en) Porous material for R-Fe-B permanent magnet and method for producing the same
US8211327B2 (en) Preparation of rare earth permanent magnet material
RU2389098C2 (en) Functional-gradient rare-earth permanent magnet
EP2034493B1 (en) R-t-b sintered magnet
EP2077567B1 (en) R-t-b sintered magnet
EP2388350A1 (en) Method for producing r-t-b sintered magnet
WO2012161189A1 (en) Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
CN112136192A (en) Method for producing rare earth sintered permanent magnet
JP6471669B2 (en) Manufacturing method of RTB-based magnet
JP2011049441A (en) Method for manufacturing r-t-b based permanent magnet
CN104488048B (en) The manufacture method of NdFeB based sintered magnets
WO2018101239A1 (en) R-fe-b sintered magnet and production method therefor
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
CN112119475B (en) Method for producing rare earth sintered permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP6198103B2 (en) Manufacturing method of RTB-based permanent magnet
JP2013115156A (en) Method of manufacturing r-t-b-based permanent magnet
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
EP2506270A1 (en) Permanent magnet and manufacturing method for permanent magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2011176216A (en) Rare earth magnet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000911.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2008516664

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12092300

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007743651

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE