WO2007135903A1 - Solid-state imaging device and electronic information apparatus - Google Patents

Solid-state imaging device and electronic information apparatus Download PDF

Info

Publication number
WO2007135903A1
WO2007135903A1 PCT/JP2007/059985 JP2007059985W WO2007135903A1 WO 2007135903 A1 WO2007135903 A1 WO 2007135903A1 JP 2007059985 W JP2007059985 W JP 2007059985W WO 2007135903 A1 WO2007135903 A1 WO 2007135903A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens
solid
imaging device
state imaging
light receiving
Prior art date
Application number
PCT/JP2007/059985
Other languages
French (fr)
Japanese (ja)
Inventor
Chie Tokumitsu
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007135903A1 publication Critical patent/WO2007135903A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Definitions

  • Solid-state imaging device and electronic information device are Solid-state imaging device and electronic information device
  • the present invention relates to a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor provided with a microlens above a light-receiving unit that photoelectrically converts light, and this solid-state imaging device as an image input device in an imaging unit.
  • the present invention relates to digital information cameras such as digital video cameras and digital still cameras used, and electronic information devices such as image input cameras, scanners, facsimiles, and mobile phone devices with power cameras.
  • a light receiving unit such as a photodiode is provided in a pixel cell arranged in an array, and photoelectric conversion is performed in the light receiving unit. Signal charge is output as an output imaging signal
  • the pixel cell includes the light receiving unit, a channel stop unit for separating adjacent pixels, and a signal charge read from the light receiving unit. And a plurality of vertical charge transfer units for transferring charges in the direction.
  • the signal charge transferred in the vertical charge is transferred in the horizontal direction by the horizontal charge transfer unit, converted into an electrical signal by the MOS transistor in the FD (floating 'diffusion) unit, and output as an imaging signal from the solid-state imaging device to the outside.
  • the pixel cell in order to photoelectrically convert a signal charge into an electric signal in each pixel, the pixel cell includes the light receiving unit, a channel stop unit for separating adjacent pixels, This light receiving unit force is also composed of a transfer gate unit for reading out signal charges, an FD (floating diffusion) unit for converting the read out signal charges into electric signals, a MOS transistor and metal wiring. .
  • each pixel cell is arranged above the light receiving unit in order to efficiently collect the light that becomes an invalid area on the light receiving unit.
  • a micro lens is provided.
  • the position of the light receiving unit in the unit pixel is arranged with the same pitch (arrangement interval) in the row direction or the column direction, in this case, the light of the central part of the light receiving unit and the light of the microlens There is a problem that the light receiving sensitivity is lowered due to a shift from the axis.
  • Patent Document 1 proposes the following conventional solid-state imaging device.
  • FIG. 11 is a top view showing a schematic configuration example of a main part of a conventional solid-state imaging device proposed in Patent Document 1
  • FIG. 12 shows the conventional solid-state imaging device shown in FIG.
  • FIG. 6 is a longitudinal sectional view when cut along a line A ′.
  • a conventional solid-state imaging device 20 includes photodiodes 22a to 22d constituting four pixels having periodicity among a plurality of pixel cells 21 arranged in an array.
  • An on-chip microlens 23 is formed so that the optical axis C is aligned with the central portion of each of the photodiodes 22a to 22d constituting the four pixels. ing.
  • one microlens 23 corresponds to the four photodiodes 22a to 22d, and the optical axis C of the microlens 23 separates the photodiodes 22a to 22d of four pixels in plan view 2 It is located at the cross part of the channel stop part 24 of the book!
  • FIG. 13 is a longitudinal sectional view showing a schematic configuration example of a main part of a conventional solid-state imaging device proposed in Patent Document 2.
  • a conventional solid-state imaging device 30 includes photodiodes 32a and 32b that form two pixels having periodicity in one direction as a group, and each photodiode 32a that forms two pixels. , 32b so as to condense at the central portion of each of the microlenses 33, the interlayer insulating film 34 disposed between the microlens 33 and the photodiodes 32a, 32b, the protective film 35 thereon, and the top thereof A color filter layer 36 is formed.
  • the interlayer insulating film 34 and the protective film 35 are made of light transmitting materials having different refractive indexes, and the interface between the interlayer insulating film 34 and the protective film 35 is connected to the microlens 33 and each photodiode 32a or It is configured so as to have an inclined portion corresponding to the amount of planar positional deviation from 32b.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-243543
  • Patent Document 2 JP 2005-150492 A Disclosure of the invention
  • the conventional solid-state imaging device 20 proposed in Patent Document 1 has the following problems.
  • FIG. 14 is a vertical cross-sectional view of the conventional solid-state imaging device 20 shown in FIG. 11 taken along the line AA ′, and FIG. 12 shows a light reception in which image light is incident from directly above. This figure shows how light is focused on each photodiode at the center of the area, whereas how light is focused on each photodiode at the periphery of the light receiving area where oblique force light is incident.
  • FIG. 14 is a vertical cross-sectional view of the conventional solid-state imaging device 20 shown in FIG. 11 taken along the line AA ′
  • FIG. 12 shows a light reception in which image light is incident from directly above. This figure shows how light is focused on each photodiode at the center of the area, whereas how light is focused on each photodiode at the periphery of the light receiving area where oblique force light is incident.
  • FIG. 14 is a vertical cross-sectional view of the conventional solid-state imaging device 20 shown in FIG. 11 taken along the line AA
  • the light when oblique light having a small F (focus) value and a large angle is incident, the light is contiguously arranged side by side as much as the light collecting direction by the microlens 23 is shifted.
  • the amount of light incident on the photodiodes 21c and 21d is different and the characteristics of each pixel are different.
  • image light from the color layer adjacent to the color layer of the corresponding color filter 25 may be incident on the photodiodes 22c and 22d and color mixing may occur.
  • the image light incident on the peripheral edge of the microlens 23 is blocked by the metal wiring layers 26a to 26c provided above the photodiodes 22c and 22d. In some cases, the incident on 22d is hindered.
  • the interfacial force between the interlayer insulating film 34 and the protective film 35 is shifted to the planar positional deviation amount between the microlens 33 and each photodiode 32a or 32b.
  • the valley-shaped inclined part is configured so that the condensing by the micro lens 33 is shifted only in one direction according to the degree of deviation of the photodiodes 32a and 32b. ing.
  • the pixels are collected in another direction different from one direction. Light protrudes from the light receiving section, resulting in a decrease in light reception sensitivity, and this causes the amount of light incident on adjacent photodiodes to be different, resulting in different pixel characteristics and color mixing.
  • the present invention solves the above-described conventional problems.
  • a solid-state imaging device in which the positions of the light receiving portions are periodically different, even when the pixel size is further reduced, the light receiving sensitivity of each pixel is further increased.
  • An object of the present invention is to provide a solid-state imaging device capable of improving and suppressing deterioration of pixel characteristics due to an F value and an electronic information device using the solid-state imaging device in an imaging unit.
  • a solid-state imaging device includes a plurality of light-receiving units arranged so that their positions are periodically different, and a microlens for collecting light on each of the plurality of light-receiving units.
  • the microlenses are grouped for each predetermined number of light receiving units having periodicity, and for each dulpe, the microlens is arranged with the first microlens arranged for each light receiving unit and the predetermined microlenses. And a second microlens that covers the upper part of the light receiving unit.
  • the second microlens in the solid-state imaging device of the present invention has a circular, elliptical, rectangular, or square planar view shape, and at least an outer peripheral force of the planar view shape S lens curved surface It is formed into a shape.
  • a central portion inside the outer peripheral portion of the planar view shape is formed into a lens curved surface shape force or a planar shape.
  • the second microlens in the solid-state imaging device of the present invention is provided between the predetermined number of light receiving portions and the first microlens.
  • the first microlens in the solid-state imaging device of the present invention is located in an upper layer than the second microlens.
  • the second microlens is configured to collect light by each first microlens arranged for each of the light receiving units, and the predetermined number of light receiving units having the periodicity. It is configured to be bent inward every time.
  • the cross-sectional shape of the second microlens in the solid-state imaging device of the present invention is a convex lens shape up, down or up and down.
  • the cross-sectional shape of the first microlens in the solid-state imaging device of the present invention is preferably a convex lens shape up, down or up and down.
  • the first microlens and the second microlens in the solid-state imaging device of the present invention are arranged so that light is condensed at the center of each of the light receiving units.
  • a metal wiring layer is provided between the light receiving unit and the first micro lens and the second micro lens above the light receiving unit. Is provided.
  • the first microlens is provided in an upper layer than the color filter layer, and the second microlens is provided in a lower layer than the color filter layer.
  • the plurality of light receiving units in the solid-state imaging device of the present invention are arranged so as to be periodically different in at least one of a direction and a direction intersecting the direction in a plan view. It has been.
  • the plurality of light receiving units in the solid-state imaging device of the present invention are provided in a matrix in the column direction and the row direction in a plan view, and periodically in at least one of the column direction and the row direction. Arranged differently.
  • the predetermined number of light receiving units having the periodicity is a single loop having a total of four pixels of two pixels each in the column direction and the row direction in plan view. It is said that.
  • the predetermined number of light receiving units having the periodicity are grouped with two pixels in the column direction or the row direction in plan view.
  • the grouped four-screen For each element four of the light receiving portions are formed evenly on the cross portion side of the channel stop portion between adjacent pixels.
  • the lower-layer microlens straddling the grouped four pixels is the channel stop unit that is the center of the four light receiving units constituting the four pixels. It is provided so that the optical axis coincides with the cross portion of the.
  • the two light receiving portions are formed evenly on the channel stop portion side between adjacent pixels. Has been.
  • the lower-layer microlens straddling the grouped two pixels is the channel stop unit that is the center between the two light receiving units constituting the two pixels. So that the optical axes coincide with each other.
  • the light incident on the first microlens is condensed through the second microlens at the same position on the light receiving unit corresponding to each.
  • the lens portions that overlap each other are cut out to be adjacent to each other. It is formed into a shape.
  • the first microphone mouth lenses adjacent to each other overlap at least a part of the peripheral portion of the first microlens with the adjacent first microphone mouth lens. Formed.
  • the first microphone lenses adjacent to each other are arranged such that the lens shapes obtained by cutting out the overlapping lens portions are in contact with each other.
  • the first microphone lenses adjacent to each other are separated from each other by a predetermined gap between the lens shapes obtained by cutting off the overlapping lens portions.
  • the position of the first microlens is arranged differently according to the interval between the light receiving portions.
  • the light receiving unit and the first micro lens are periodically changed in units of N pixels (N is an integer of 2 or more) so that the positions of the light receiving unit and the first micro lens are periodically different from each other It is arranged in
  • the positions of the light receiving unit and the first microlens are arranged in a matrix, respectively, and I pixels (I is an integer of 2 or more) in the row direction.
  • one output amplifier is shared for each of the predetermined number of light receiving units.
  • the light receiving unit is a photoelectric conversion unit that photoelectrically converts light.
  • the solid-state imaging device of the present invention is a CCD type image sensor or CMO.
  • An electronic information device uses the solid-state imaging device according to the present invention as an imaging unit, and thereby achieves the object.
  • a predetermined number for example, periodicity 2 or 4
  • pixels are grouped, and for each group, a first microlens arranged for each pixel and a second arranged over a predetermined number of pixels grouped.
  • the light receiving invalid area is reduced and collected while condensing by the upper and lower microlenses. It is possible to improve the light receiving sensitivity of each pixel by increasing the light rate and condensing the image light efficiently on the central part of the light receiving unit. Even when oblique light is incident on the periphery of the light receiving area, the upper first microlens emits image light, and the lower second microlens sets the center of the optical axis to the center of the light receiving area of each pixel. Since it can be easily and reliably adjusted to the top, it is possible to reduce variations in light collection rate and color mixing from pixel to pixel, thereby reducing the characteristics of each pixel. It becomes possible to suppress.
  • the first microlenses in the upper layer adjacent to each other in a group can be arranged close to the position where the outer peripheral portions overlap, the pixel size can be further reduced when the pixel size is further reduced. Thus, it is possible to improve the light receiving sensitivity and suppress the deterioration of the pixel characteristics.
  • the first microlens and the second microlens are formed above the metal wiring layer, it is possible to prevent light collection from being hindered by the metal wiring above the light receiving portion. .
  • the present invention in the solid-state imaging device in which the arrangement intervals of the plurality of light receiving units are periodically different, even when the pixel size is further reduced, the upper and lower first microlenses and While condensing by the second microlens, the light receiving invalid area is reduced to increase the light collecting rate and improve the light receiving sensitivity in each pixel, and when oblique light with a large angle is incident on the periphery of the light receiving area, etc. It is possible to improve the pixel characteristics, such as reducing the variation in light collection rate and color mixing that occur in the image and suppressing the deterioration of the characteristics of each pixel.
  • FIG. 1 is a plan view showing a schematic configuration example of a main part of a solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the main part of the central portion of the light receiving region where light is incident from directly above, when the solid-state imaging device of FIG. 1 is cut along the line BB ′.
  • FIG. 3 is a cross-sectional view of the main part of the periphery of the light receiving region where light is incident from an oblique direction when the solid-state imaging device of FIG. 1 is cut along the line BB ′.
  • FIG. 4A is a longitudinal sectional view of an essential part for explaining the manufacturing process (No. 1) of the manufacturing method of the solid-state imaging device according to the first embodiment.
  • FIG. 4B is a longitudinal sectional view of an essential part for explaining the production process (No. 2) in the method for producing the solid-state imaging device of Embodiment 1.
  • FIG. 4C is a longitudinal sectional view of an essential part for explaining the manufacturing process (No. 3) in the manufacturing method of the solid-state imaging device according to Embodiment 1;
  • FIG. 5 is a solid-state imaging device according to Embodiment 2 of the present invention, in which light is received from directly above. It is principal part sectional drawing of the optical region center part.
  • a solid-state imaging device according to Embodiment 2 of the present invention, which is a cross-sectional view of the main part of the periphery of the light receiving region where light is also incident in an oblique direction force.
  • FIG. 7A A longitudinal sectional view of a main part for explaining the manufacturing process (part 1) of the manufacturing method of the solid-state imaging device according to the second embodiment.
  • FIG. 7B A longitudinal sectional view of an essential part for explaining a manufacturing process (No. 2) of the manufacturing method of the solid-state imaging device according to the second embodiment.
  • FIG. 7C A longitudinal sectional view of an essential part for explaining the manufacturing process (No. 3) of the manufacturing method of the solid-state imaging device according to the second embodiment.
  • FIG. 7D is a longitudinal sectional view of an essential part for explaining the manufacturing process (No. 4) of the manufacturing method of the solid-state imaging device according to the second embodiment.
  • FIG. 7E A longitudinal sectional view of an essential part for explaining the manufacturing process (No. 5) of the manufacturing method of the solid-state imaging device according to the second embodiment.
  • FIG. 7F A longitudinal sectional view of an essential part for explaining a manufacturing process (No. 6) of the manufacturing method of the solid-state imaging device according to the second embodiment.
  • the solid-state imaging device according to Embodiment 3 of the present invention is a main part longitudinal sectional view similar to that cut along the line BB ′ shown in FIG. It is a figure which shows the mode of condensing to each photodiode at the time.
  • the solid-state imaging device according to Embodiment 4 of the present invention is a main part longitudinal sectional view similar to that cut along the line BB ′ shown in FIG. It is a figure which shows the mode of condensing to each photodiode at the time.
  • the solid-state imaging device according to Embodiment 5 of the present invention is a main part longitudinal sectional view similar to that cut at the BB ′ line portion shown in FIG. It is a figure which shows the mode of condensing to each photodiode at the time.
  • FIG. 11 is a top view showing a schematic configuration example of a main part of a conventional solid-state imaging device.
  • FIG. 12 is a cross-sectional view of the central portion of the light receiving region where light is incident from directly above, when the conventional solid-state imaging device of FIG. 11 is cut along the line AA ′.
  • FIG. 13 is a top view illustrating a schematic configuration example of a main part of another conventional solid-state imaging device.
  • FIG. 14 is a cross-sectional view of the periphery of the light receiving region where light is incident from an oblique direction when the conventional solid-state imaging device of FIG. 11 is cut along the line AA ′.
  • FIG. 1 is a plan view illustrating a schematic configuration example of a main part of a solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the solid-state imaging device illustrated in FIG. FIG.
  • the solid-state imaging device 10 of Embodiment 1 includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that their positions are periodically different, and the plurality of photo diodes. And a microlens 12 for condensing image light on each diode 11 ing.
  • the plurality of photodiodes 11 are photoelectric conversion units that photoelectrically convert light, and are arranged so as to be periodically different in the row direction and the column direction in a plan view, and have periodicity 4
  • the two photodiodes 11a ⁇ : L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
  • the microlens 12 includes an upper microlens 12A as a first microlens arranged for each photodiode 11, and four periodically grouped four photodiodes 11a to lId.
  • the lower microlens 12B is a second microlens that covers the upper side, and the lower microlens 12B has a predetermined number of periodic light collections by the four upper microlenses 12A.
  • the four centered photodiodes 11 (here four) are bent with respect to each other.
  • the lower-layer microlens 12B is provided between the photodiode 11 and the upper-layer microlens 12A.
  • the upper-layer microlens 12A and the lower-layer microlens 12B have a rectangular shape or a square shape in plan view, and a cross section thereof.
  • the shape is a convex lens shape (lower surface is flat).
  • These photodiodes 11a to: L id and the micro lens 12 form a matrix array of pixel cells 14 (14a to 14d) separated by two channel stop portions 13 in the form of stripes.
  • Each photodiode cell 14a to 14d corresponds to one photodiode 11 and one upper layer microlens 12A.
  • the upper microlens 12A is provided for each pixel so as to substantially cover each of the pixel cells 14a to 14d.
  • Photodiodes 11a in each of the pixel cells 14a to 14d The interval between Lids is periodically different in the row direction and the column direction. In the first embodiment, every four pixels grouped together are used.
  • the channel stop portion 13 between adjacent pixel cells 14a to 14d is formed close to the cross portion. That is, the four microlenses 14a to 14d that are adjacent to and close to the channel stop portion 13 are grouped as one gnole, and each lower layer microlens 12B that covers four pixels for one group.
  • the four pixel cells 14a to 14d are shared.
  • Lower microlens 12 B is provided such that the optical axis C coincides with the center of the four-pixel cells 14a to 14d (cross portion of the channel stop portion 13).
  • FIG. 3 is a cross-sectional view of the solid-state imaging device 10 of FIG. 1 taken along the line BB ′.
  • FIG. 2 shows the concentration of the solid-state imaging device 10 on the photodiode when light is incident directly above it.
  • FIG. 6 is a diagram showing how light is condensed onto a photodiode when image light is incident from an oblique direction.
  • the conventional solid-state imaging device 20 will be described in detail in comparison with FIG. 11 and FIG.
  • the conventional solid-state imaging device 20 has an optical axis as shown in FIG. Although the center of C is located at the center of four pixels having periodicity, this portion corresponds to the cross portion of the channel stop unit 24 for separating the four pixels. Therefore, the image light condensed on the cross portion cannot be photoelectrically converted by the photodiodes 22a to 22d, and the light receiving sensitivity is lowered in each pixel.
  • two upper-layer microlenses on the left and right sides are formed by two upper and lower microlenses of the upper-layer microlens 12A and the lower-layer microlens 12B. Since the image light condensed to some extent by 12A can be bent so as to be brought inward by one lower layer microlens 12B, the center of the optical axis of each of the left and right upper layer microlenses 12A is centered on each photodiode 22c and 12d. Each center can be easily and surely matched, and the image light can be condensed on the photodiode 1 la ⁇ : L Id with higher light receiving efficiency.
  • each pixel cell 14 is in the periphery of the light receiving region and image light is incident on each pixel cell 14 from an oblique direction, in the conventional solid-state imaging device 20, as shown in FIG.
  • the amount of light incident on the left photodiode 22c is larger than that on the right photodiode 22d, and is collected for each pixel cell.
  • Variation in optical characteristics occurs.
  • the color filter 25 is provided, image light that has passed through different color layers is incident on the photodiode 22 of the adjacent pixel, and there is a possibility that color mixing occurs in the photodiode 22.
  • the image light force collected by the upper microlens 12A is a light receiving unit by the lower microlens 12B below it. Since the light is focused so that the optical axis C is aligned with the center of the photodiode 11, even when oblique light is incident in the upper right force or the lower left direction, the right photodiode l id and the left photodiode 11c As a result, there is no difference in the amount of light incident on the light source, and it is possible to reduce color mixing with less condensing variation for each pixel.
  • the lower microlens 12B is formed in an upper layer than the metal wirings 8 to 10, the lower microlens 12B is provided above the grouped photodiodes l la to l id and the photodiodes l la to l ld.
  • the metal wirings 16a to 16c can prevent light condensing on the photodiodes lla to lId from being hindered.
  • FIG. 4A to FIG. 4C show the respective manufacturing steps (part 1) of the manufacturing method of the solid-state imaging device 10 of the first embodiment.
  • a flat film 17 is formed thereon, and then Then, the microlens material 12b is transferred and developed in a predetermined pattern of the lower layer microlens 12B.
  • the microlens material 12b is subjected to beta (heat treatment) to form a lower microlens 12B that is convex upward.
  • the flattening film 18 is formed on the flat film 17 and the lower microlens 12B, and the microlens material 12a is transferred in a predetermined pattern on the upper microlens 12A. And develop. Further, the microlens material 12a is beta-treated (heat treatment) to form four upper-layer microlenses 12A that are convex upward for each lower-layer microlens 12B.
  • the upper microlens 12A arranged for each pixel and the lower microlens 12B covering the four pixels are covered.
  • the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction). Therefore, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
  • the upper microlens 12A has a convex lens shape.
  • the lower-layer microlens 12C having a convex lens shape is used instead of the lower-layer microphone lens 12B having a convex lens shape.
  • FIGS. 5 and 6 are longitudinal sectional views of the main part of the solid-state imaging device according to the second embodiment of the present invention, similar to the case where the solid-state imaging device is cut along the line BB ′ shown in FIG. Fig. 6 shows how light is collected on each photodiode when image light is incident from directly above, and Fig. 6 shows how light is collected on each photodiode when image light is incident from an oblique direction.
  • FIG. 5 and FIG. 6 correspond to FIG. 2 and FIG. 3 of the first embodiment, and members having the same operational effects as those of FIG. 2 and FIG. It is attached.
  • the solid-state imaging device 10A of Embodiment 2 includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that their positions are periodically different, and the plurality of photodiodes. 11 is provided with a microlens 121 for condensing image light.
  • the plurality of photodiodes 11 are photoelectric conversion units that photoelectrically convert light, and are arranged so as to be periodically different in the row direction and the column direction in plan view, and have periodicity 4
  • the two photodiodes 11a ⁇ : L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
  • the microlens 121 covers the upper microlens 12A as the first microlens arranged for each photodiode 11 and the upper part of each of the grouped four photodiodes lla to lid.
  • the lower microlens 12C as a second microlens is also provided.
  • the lower-layer microlens 12C is provided between the photodiode 11 and the upper-layer microlens 12A.
  • the upper-layer microlens 12A is rectangular or square in plan view, and its cross-sectional shape is convex upward (Lower surface is flat), the lower microlens 12C is rectangular or square in plan view, and its cross-sectional shape is a convex (upward on both sides) lens shape.
  • FIG. 7A to FIG. 7F are main part longitudinal cross-sectional views for explaining each manufacturing process (Nos. 1 to 6) of the manufacturing method of the solid-state imaging device 10A of the second embodiment.
  • a method of forming the lower microlens 12C having a convex lens shape in the vertical direction and the upper microlens 12A having a convex lens shape in the upward direction will be described.
  • a flat film 17 is formed thereon, and the flat film A resist film 7 having a selection ratio with respect to the planarizing film 17 of about 0.5 to 2.0 is transferred onto the film 17 and developed.
  • the resist film 7 is formed in a predetermined pattern so that the opening of the resist film 7 is arranged on the cross portion of the channel stop portion 13 between the photodiodes 1 lc and 1 Id adjacent to the left and right.
  • this resist film 7 is subjected to beta (heat treatment) so that the resist film 7a has a concave-convex lens surface shape in which the channel stop portion 13 is directly recessed.
  • beta heat treatment
  • force anisotropic etching is performed on the concavo-convex resist film 7a to transfer the concavo-convex shape of the resist film 7a to the flat film 17 and thereby the flat film 17a.
  • the microlens material 12a is transferred onto the flat film 17a in a predetermined pattern of the lower microphone aperture lens 12C and developed. Thereafter, as shown in FIG. 7E, the microlens material 12a is beta-treated (heat treatment) to form a lower-layer microlens 12C that is convex upward and downward (both sides convex).
  • the flattening film 18 is formed on the flat film 17a and the lower microlens 12C, and the microlens material 12a is transferred in a predetermined pattern on the upper microlens 12A. And develop. Further, the microlens material 12a is beta-treated (heat treatment) to form four upper-layer microlenses 12A that are convex upward for each lower-layer microlens 12C.
  • the upper microlens 12A arranged for each pixel and the lower microlens 12C that covers the four pixels. Accordingly, even in the solid-state imaging device 10A in which the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction), As in the case, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
  • the upper microlens 12A has a convex lens shape.
  • the upper microlens 12A has a convex lens shape in the upper and lower sides (both sides) instead of the lower microlens 12B in the convex lens shape on the upper side (single side). Since the lower microlens 12C is convex on both sides, the condensing rate on each photodiode 11a: L id is higher than that of the single-sided convex in Embodiment 1 above. Even when the pixel size is further reduced and the pixel size is further reduced, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
  • the lower-layer microlens 12D having a convex lens shape the description will be given.
  • FIG. 8 is a longitudinal sectional view of the main part of the solid-state imaging device according to Embodiment 3 of the present invention, similar to that cut along the line BB ′ shown in FIG. It is a figure which shows the mode of condensing to each photodiode when is incident.
  • FIG. This corresponds to FIG. 3 of the first embodiment, and members having the same functions and effects as those of FIG. 3 are denoted by the same reference numerals.
  • a solid-state imaging device 10B includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that positions thereof are periodically different, and a plurality of photodiodes 11 on the plurality of photodiodes 11. And a microlens 122 for condensing image light.
  • the plurality of photodiodes 11 are photoelectric conversion units that photoelectrically convert light, and are arranged so as to be periodically different in the row direction and the column direction in plan view, and have periodicity 4
  • the two photodiodes 11a ⁇ : L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
  • the microlens 122 covers the upper microlens 12A as the first microlens arranged for each photodiode 11 and the upper part of each of the grouped four photodiodes lla to lid.
  • the lower microlens 12D as the second microlens is also provided.
  • the lower layer microlens 12D is provided between the photodiode 11 and the upper layer microlens 12A.
  • the upper layer microlens 12A is rectangular or square in plan view, and its cross-sectional shape is convex upward. (Lower surface is flat), the lower microlens 12D is rectangular or square in plan view, and its cross-sectional shape is convex downward (single surface convex) (The upper surface is a plane).
  • the lower-layer microlens 12D is convex downward, as in the case of the lower-layer microlens 12B convex above Embodiment 1, the grouped photodiodes 11c and lid are matched.
  • the light condensing by the upper microlens 12A can be bent toward the inside (condensed light close to each other).
  • the refractive index power of the transparent material of the lower layer microlens 12D is set larger than the refractive index of the transparent material in contact with the lens curved surface side of the lower layer microlens 12D.
  • the two types of microlenses that is, the upper microlens 12A arranged for each pixel and the lower microlens 12D covering the four pixels are covered.
  • the solid-state imaging device 1OB in which the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction), As in the case of the first embodiment, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
  • the lower microlens 12E that is convex downward and only the outer peripheral portion has a curved surface the description will be given.
  • FIG. 9 is a longitudinal sectional view of the main part of the solid-state imaging device according to Embodiment 4 of the present invention, which is the same as that cut along the line BB ′ shown in FIG. It is a figure which shows the mode of condensing to each photodiode when is incident.
  • FIG. 9 corresponds to FIG. 2 of the first embodiment, and members having the same operational effects as those of FIG. 2 are denoted by the same reference numerals.
  • 12B may be replaced with the lower-layer microlens 12E that is convex downward and only the outer peripheral portion has a curved surface.
  • a solid-state imaging device 10C includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that positions thereof are periodically different, and a plurality of photodiodes 11 on the plurality of photodiodes 11. And a microlens 123 for condensing image light.
  • the plurality of photodiodes 11 are photoelectric conversion units that photoelectrically convert light, and are arranged so as to be periodically different in the row direction and the column direction in plan view, and have periodicity 4
  • the two photodiodes 11a ⁇ : L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
  • the microlens 123 covers the upper microlens 12A as the first microlens arranged for each photodiode 11 and the upper part of each of the grouped four photodiodes lla to lid.
  • the lower microlens 12E as the second microlens is also provided.
  • the lower-layer microlens 12E is provided between the photodiode 11 and the upper-layer microlens 12A.
  • the upper-layer microlens 12A has a rectangular shape or a square shape in plan view, and its cross-sectional shape is convex upward.
  • the lower microlens 12E is rectangular or square in plan view, and its cross-sectional shape is convex downward (single-sided convex) (The upper surface is a plane).
  • a circular or elliptical outer peripheral portion 12Ea is formed in a convex lens curved surface shape
  • a circular or elliptical central portion 12Eb is formed in a planar shape in a planar view.
  • the lower microlens 12E when the lower microlens 12E is convex downward and only the outer peripheral portion has a convex lens curved surface shape in plan view, only the grouped photodiodes 11c, l ld d lc, l id are shown in the figure.
  • the light collected by the upper microlens 12A on the outer peripheral portion of 1 la ⁇ can be bent toward each other (the light collected can be made closer to each other).
  • the refractive index of the transparent material of the lower layer microlens 12E is set to be larger than the refractive index of the transparent material in contact with the lens curved surface side of the lower layer microlens 12E.
  • adjacent to each other as a microlens force group they will overlap each other, such as overlapping each other, and will be described.
  • FIG. 10 shows a BB ′ line shown in FIG. 1 for the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 5 is a vertical cross-sectional view of a main part similar to the case of cutting at a portion, and showing how light is focused on each photodiode when image light is incident from directly above.
  • FIG. 10 corresponds to FIG. 2 of the first embodiment, and members having the same effects as those of FIG. 2 are denoted by the same reference numerals. Further, the state of light condensing on each photodiode when the image light is incident from an oblique direction corresponding to FIG. 3 of the first embodiment is omitted here.
  • a solid-state imaging device 10D includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that positions thereof are periodically different, and a plurality of photodiodes 11 on the plurality of photodiodes 11. Each has a microlens 124 for condensing image light
  • Each of the plurality of photodiodes 11 is a photoelectric conversion unit that photoelectrically converts light, and is arranged to be periodically different in the row direction and the column direction in a plan view, and has periodicity 4
  • the two photodiodes 11a ⁇ : L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
  • the microlens 124 covers the upper microlens 12F as the first microlens arranged for each photodiode 11, and the upper part of each of the grouped four photodiodes lla to lId.
  • the lower microlens 12B as the second microlens is also provided.
  • the upper microlenses 12F are adjacent to each other so that the incident light is condensed at the same position on each of the four photodiodes 1la to lId of each corresponding group. Part of 12F (for example, 2 out of 4) or all (for example, all 4) force When approaching beyond the peripheral edge of each lens (If the photodiodes are too close, the lens itself When the lenses are brought closer to each other even if they overlap, the overlapping lens portions are cut out and formed into adjacent lens shapes.
  • the upper microlenses 12F adjacent to each other are formed so that at least a part of the peripheral edge of the upper microlens 12F overlaps the adjacent upper microlens 12F.
  • the upper microlenses 12F adjacent to each other are arranged such that the same lens shape obtained by cutting out the overlapping lens portions is in contact with or separated by a predetermined gap.
  • each photodio The position of the upper microlens 12F is different according to the distance of the card 11!
  • the lower microlens 12B is provided between the photodiode 11 and the upper microlens 12F.
  • the upper microlens 12F is rectangular or square in plan view, and its cross-sectional shape is convex upward (Lower surface is flat), and the lower microlens 12B is rectangular or square in plan view, and its cross-sectional shape is convex upward (single-sided convex) (The lower surface is a plane).
  • the lower-layer microlens 12 B causes the condensing by the upper-layer microphone lens 12F to bend inward toward each other in accordance with the positions of the grouped photodiodes 11a to: L id (the condensing is mutually shifted). Can be brought close).
  • the refractive index of the transparent material of the lower layer microlens 12B is set to be larger than the refractive index of the transparent material in contact with the lens curved surface side of the lower layer microlens 12B.
  • the upper microlens 12F By forming the upper microlens 12F separately in two steps, such as forming and hardening (if the four upper microlenses 12F are grouped, form and harden them two at a time) Even when one of the above problems is solved and one of them overlaps the other, the position of the adjacent upper-layer microlens 12F can be made arbitrarily close so that the interval between the optical axes C can be easily set.
  • the method of forming the upper microlens 12F includes the first step of forming the upper microlenses 12F that are not in contact with each other out of the upper microlenses 12F, The microlenses 12F do not come into contact with each other!
  • the upper microlens 12F at a position is already formed in at least one of the row direction and the column direction (here, both the row direction and the column direction).
  • the second step is formed so as to overlap or be in contact with the adjacent upper-layer microlens 12F, and the second step is repeated until the upper-layer microlens 12F disappears.
  • the overlapping lens portions were cut off.
  • the lens shapes are arranged with a minute gap by a predetermined gap, they are adjacent to each other in at least one direction (here, both the row direction and the column direction) in the row direction and the column direction.
  • the upper microlens 12F there is a step of forming the lens shapes obtained by cutting the overlapping lens portions apart from each other by a predetermined gap.
  • each photon 11 is considered in consideration of the position, light receiving sensitivity, and shading characteristics. It can be easily arranged at the optimum position of the upper microlens 12F so that the center position C1 of the diode 11 coincides with the optical axis position C2 of the upper microlens 12F.
  • the two types of microlenses 124 are formed, that is, the upper microlens 12F arranged for each pixel and the lower microlens 12B covering the four pixels.
  • the pixel size is further reduced in the solid-state imaging device 10 D in which the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction). Even in this case, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
  • the solid-state imaging device includes the pixel cells 14 in which the photodiodes 11 are biased so that the arrangement of the photodiodes 11 is periodically different in the row direction and the column direction.
  • 10 or 10A, 10B, 10C, 10D
  • four pixels having periodicity are grouped, and each group is arranged for each pixel, and the upper microlens 12A (or a lens for collecting image light) is collected.
  • 12F and a lower-layer microlens 12B (or 12C, 12D, 12E) for covering the four pixels and bending the light collected by the upper-layer microphone lens 12A (or 12F) inward. Because of this, the pixel size
  • the light receiving invalid area is reduced while condensing with the two upper and lower microlenses to improve the light receiving sensitivity of each pixel, and the pixel characteristics deteriorate due to the F value. Can be suppressed.
  • the central color of the light-receiving area, the peripheral area, and the peripheral area of the RGB color mixture of three primary colors differed. According to Embodiments 1 to 4 above, even in the central part of the light receiving part region, However, since it can be easily and reliably focused on the center of the light receiving section (each photodiode 11), not only the light receiving sensitivity but also the luminance shading characteristics can be prevented from being uneven. Therefore, complicated correction control is not necessary to solve this problem by correction processing.
  • the lower microlenses 12B to 12D have a rectangular or square plan view shape, and both the outer peripheral portion of the plan view shape and the inner central portion thereof are lens curved surfaces.
  • the lower microlens 12E has a rectangular or square plan view shape, and the outer peripheral portion of the plan view shape is a lens curved surface shape, and the inner side of the outer peripheral portion of the plan view shape.
  • the central portion has a planar shape
  • the present invention is not limited to this, and the lower layer microlens of the present invention may have a circular (including approximate circular) or elliptical planar view shape.
  • Both the outer peripheral portion in the plan view shape and the inner central portion thereof may be a lens curved surface shape, or the central portion may be a planar shape.
  • the lower layer microlens of the present invention is a circle (including an approximate circle), an ellipse (including an approximate ellipse), a rectangle (including an approximate rectangle), and at least one of the four corners is rounded. Or a square (including an approximate square; at least one corner is in the shape of a ball, etc.), and at least the outer peripheral portion of the planar view is formed into a lens curved surface!
  • the plurality of photodiodes 11 as the plurality of light receiving portions are provided in a matrix (two-dimensional) in the column direction and the row direction in plan view.
  • the force described in the case where they are arranged so as to be periodically different in the row direction is not limited to this, and the position of the light receiving portion (photodiode 11) in the pixel cell 14 is
  • the present invention can also be applied to all solid-state imaging devices that are periodically shifted in one direction.
  • the plurality of photodiodes 11 are periodically arranged in one direction and at least one direction intersecting the one direction in plan view.
  • the present invention can also be applied to a case where they are arranged differently.
  • Embodiments 1 to 5 above four pixels are grouped as a plurality of pixels having periodicity.
  • the present invention is not limited to this, and a plurality of pixels having two or more having periodicity is used. of The present invention can be applied to all solid-state imaging devices provided with pixels.
  • two pixels may be grouped in the column direction or the row direction in plan view.
  • every doubled pixel is formed equally on the channel stop 13 side between adjacent pixels of the light receiving section (photodiode 11).
  • the lower-layer microlens that extends over the two pixels grouped together is such that the optical axis C coincides with the channel stop portion 13 that is the center between the two light receiving portions (photodiodes 11) constituting the two pixels. Is provided.
  • a predetermined number of light-receiving portions (photodiodes 11) having periodicity, a total of four pixels of two pixels each in the column direction and the row direction in a plan view are grouped together.
  • every four grouped pixels are formed evenly on the cross part side of the two channel stop portions 13 between the adjacent four pixels of the light receiving portion (photodiode 11).
  • the grouped lower microlens that spans four pixels constitutes four pixels.
  • the optical axis C is arranged so that it matches the center position of the cross section of the two channel stop sections 13 which are the centers of the four light receiving sections (photodiodes 11).
  • the cross-sectional shape of the upper microlens 12 A (or 12F) as the first microlens is an upward convex lens shape, and the lower microlens 12B or 12C as the second microlens.
  • the cross-sectional shape of 12D, 12E is a convex lens shape up, down or up and down has been described (the combination of the upper microlens 12F and the lower microlens 12B or 12C, 12D, 12E may be used)
  • the cross-sectional shape of the upper-layer microlens 12A (or 12F) is not limited to the above, and may be a convex lens shape below or above and below, and any of these forces is combined with the lower-layer microlenses 12B or 12C, 12D, and 12E. It may be.
  • the present invention has been described in the first to fifth embodiments, but the positions of the photodiodes 11 and the upper microlenses 12A or 12F are periodically different from each other.
  • N is an integer of 2 or more.
  • each position of each photodiode 11 and each upper microlens 12A or 12F is a matrix.
  • K pixels I XJ
  • the present invention is not limited to the manufacturing method described in the first, second, and fifth embodiments, but can be applied to all solid-state imaging devices in which microlenses are formed by a known process technique such as photolithography or etching. Can be applied.
  • the present invention is not particularly described in Embodiments 1 to 5, but can be applied to any of a CCD image sensor and a CMOS image sensor.
  • the solid-state imaging device 10 (or 10A, 10B, 10C, and 10D) of Embodiments 1 to 4 is used as an imaging unit.
  • An electronic information device having an image input device such as a digital camera such as a digital video camera or a digital still camera, an image input camera, a scanner, a facsimile, or a camera-equipped mobile phone will be described.
  • the electronic information device of the present invention is, for example, a high-quality image obtained by using any of the solid-state imaging devices 10 (or 10A, 10B, 10C, and 10D) of Embodiments 1 to 5 of the present invention as the imaging unit.
  • a memory unit such as a recording medium for recording data after the image data has been subjected to predetermined signal processing for recording, and a liquid crystal display device for displaying the image data on a display screen such as a liquid crystal display screen after performing predetermined signal processing for display Display means, etc .
  • communication means such as a transmission / reception device for performing communication processing after the image data is subjected to predetermined signal processing for communication
  • image output means for printing (printing) and outputting (printing out) the image data And at least one of the above.
  • the present invention relates to a CCD type image sensor or a CMOS type pixel having a microlens on a light receiving portion.
  • Pixel sizes are further reduced in the field of solid-state imaging devices such as image sensors and electronic information devices such as digital cameras for image input devices, image input cameras, scanners, facsimiles, and camera-equipped mobile phone devices.
  • the light receiving invalid area is reduced to increase the light collection rate by condensing light by the two upper and lower first microlenses and the second microlens.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Provided is a solid-state imaging device wherein the position of the light receiving section periodically varies. In the solid-state imaging device, light receiving sensitivity of each pixel is further improved and deterioration of the characteristics of the pixel due to an F value is suppressed even when the pixel size is further reduced. The solid-state imaging device (10) has a pixel cell wherein photodiodes (11) are disproportionately arranged so that the arrangement of the photodiodes (11) periodically varies in a row direction and a column direction. In the solid-state imaging device, four pixels having periodicity are grouped, and each group is provided with an upper layer microlens (12A) arranged for each pixel, for collecting image light, and a lower layer microlens (12B) covering over the four pixels, for bending the light collected by the upper layer microlens (12A).

Description

明 細 書  Specification
固体撮像装置および電子情報機器  Solid-state imaging device and electronic information device
技術分野  Technical field
[0001] 本発明は、光を光電変換する受光部上方にマイクロレンズを備えた CCD型ィメー ジセンサや CMOS型イメージセンサなどの固体撮像装置および、この固体撮像装置 を、画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジ タルスチルカメラなどのデジタルカメラや、画像入力カメラ、スキャナ、ファクシミリ、力 メラ付き携帯電話装置などの電子情報機器に関する。  The present invention relates to a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor provided with a microlens above a light-receiving unit that photoelectrically converts light, and this solid-state imaging device as an image input device in an imaging unit. The present invention relates to digital information cameras such as digital video cameras and digital still cameras used, and electronic information devices such as image input cameras, scanners, facsimiles, and mobile phone devices with power cameras.
背景技術  Background art
[0002] 一般に、 CCD型イメージセンサや CMOS型イメージセンサなどの従来の固体撮像 装置では、アレイ状に配置された画素セル内にフォトダイオードなどの受光部が設け られ、その受光部で光電変換された信号電荷が出力撮像信号として出力されている  In general, in a conventional solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor, a light receiving unit such as a photodiode is provided in a pixel cell arranged in an array, and photoelectric conversion is performed in the light receiving unit. Signal charge is output as an output imaging signal
[0003] 例えば、 CCD型イメージセンサの場合、上記画素セルは、上記受光部と、隣接す る画素同士の分離を行うためのチャネルストップ部と、この受光部から信号電荷を読 み出して垂直方向に電荷転送するための複数の垂直電荷転送部とによって構成さ れている。垂直電荷転送された信号電荷は、水平電荷転送部によって水平方向に 電荷転送され、 FD (フローティング 'ディフュージョン)部において MOSトランジスタ により電気信号に変換されて、固体撮像装置から外部に撮像信号として出力される。 [0003] For example, in the case of a CCD type image sensor, the pixel cell includes the light receiving unit, a channel stop unit for separating adjacent pixels, and a signal charge read from the light receiving unit. And a plurality of vertical charge transfer units for transferring charges in the direction. The signal charge transferred in the vertical charge is transferred in the horizontal direction by the horizontal charge transfer unit, converted into an electrical signal by the MOS transistor in the FD (floating 'diffusion) unit, and output as an imaging signal from the solid-state imaging device to the outside. The
[0004] CMOS型イメージセンサの場合、各画素で信号電荷を電気信号に光電変換する ため、上記画素セルは、上記受光部と、隣接する画素同士の分離を行うためのチヤ ネルストップ部と、この受光部力も信号電荷を読み出すためのトランスファーゲート部 と、読み出された信号電荷を電気信号に変換するための FD (フローティング ·ディフ ユージョン)部と、 MOSトランジスタおよび金属配線とによって構成されている。  [0004] In the case of a CMOS type image sensor, in order to photoelectrically convert a signal charge into an electric signal in each pixel, the pixel cell includes the light receiving unit, a channel stop unit for separating adjacent pixels, This light receiving unit force is also composed of a transfer gate unit for reading out signal charges, an FD (floating diffusion) unit for converting the read out signal charges into electric signals, a MOS transistor and metal wiring. .
[0005] さらに、受光部以外の部分に照射された光は光電変換されないため、各画素セル には、無効領域となる光をも効率よく受光部上に集光させるために、受光部の上方に マイクロレンズが設けられて 、る。 [0006] し力しながら、単位画素における受光部の位置が行方向または列方向に同一ピッ チ(配置間隔)で配置されて 、な 、場合には、受光部の中央部とマイクロレンズの光 軸とがずれて、受光感度が低下するという問題がある。 [0005] Further, since the light irradiated to the part other than the light receiving unit is not photoelectrically converted, each pixel cell is arranged above the light receiving unit in order to efficiently collect the light that becomes an invalid area on the light receiving unit. A micro lens is provided. However, in the case where the position of the light receiving unit in the unit pixel is arranged with the same pitch (arrangement interval) in the row direction or the column direction, in this case, the light of the central part of the light receiving unit and the light of the microlens There is a problem that the light receiving sensitivity is lowered due to a shift from the axis.
[0007] この問題を解決するために、例えば特許文献 1には、次のような従来の固体撮像装 置が提案されている。  In order to solve this problem, for example, Patent Document 1 proposes the following conventional solid-state imaging device.
[0008] 図 11は、特許文献 1において提案されている従来の固体撮像装置の概略要部構 成例を示す上面図であり、図 12は、図 11に示す従来の固体撮像装置を A—A'線部 分で切断した場合の縦断面図である。  FIG. 11 is a top view showing a schematic configuration example of a main part of a conventional solid-state imaging device proposed in Patent Document 1, and FIG. 12 shows the conventional solid-state imaging device shown in FIG. FIG. 6 is a longitudinal sectional view when cut along a line A ′.
[0009] 図 11および図 12において、従来の固体撮像装置 20は、アレイ状に配置された複 数の画素セル 21のうち、周期性を有する 4画素を構成する各フォトダイオード 22a〜 22dがーつのグループとしてまとめられており、この一つのグループに対して、 4画素 を構成する各フォトダイオード 22a〜22dの中心部分に光軸 Cがー致するように、ォ ンチップマイクロレンズ 23が形成されている。この場合、 4つのフォトダイオード 22a〜 22dに対して 1つのマイクロレンズ 23が対応しており、マイクロレンズ 23の光軸 Cが、 平面視で、 4画素の各フォトダイオード 22a〜22dを分離する 2本のチャネル ストップ部 24のクロス部分に位置して!/、る。  In FIG. 11 and FIG. 12, a conventional solid-state imaging device 20 includes photodiodes 22a to 22d constituting four pixels having periodicity among a plurality of pixel cells 21 arranged in an array. An on-chip microlens 23 is formed so that the optical axis C is aligned with the central portion of each of the photodiodes 22a to 22d constituting the four pixels. ing. In this case, one microlens 23 corresponds to the four photodiodes 22a to 22d, and the optical axis C of the microlens 23 separates the photodiodes 22a to 22d of four pixels in plan view 2 It is located at the cross part of the channel stop part 24 of the book!
[0010] 図 13は、特許文献 2において提案されている従来の固体撮像装置の概略要部構 成例を示す縦断面図である。  FIG. 13 is a longitudinal sectional view showing a schematic configuration example of a main part of a conventional solid-state imaging device proposed in Patent Document 2.
[0011] 図 13において、従来の固体撮像装置 30は、一方向に周期性を有する 2画素を構 成する各フォトダイオード 32a, 32bがーつのグループとして、 2画素を構成する各フ オトダイオード 32a, 32bの中心部分にそれぞれ集光するように、各マイクロレンズ 33 と、このマイクロレンズ 33と各フォトダイオード 32a, 32b間に配された層間絶縁膜 34 、その上の保護膜 35およびその上のカラーフィルタ層 36とが形成されている。この場 合に、層間絶縁膜 34および保護膜 35は、互いに異なる屈折率を持つ光透過材料か らなり、層間絶縁膜 34と保護膜 35との界面が、マイクロレンズ 33と各フォトダイオード 32aまたは 32bとの平面位置ずれ量に応じた傾斜部を有するように構成されて 、る。 特許文献 1:特開平 5 - 243543号公報  Referring to FIG. 13, a conventional solid-state imaging device 30 includes photodiodes 32a and 32b that form two pixels having periodicity in one direction as a group, and each photodiode 32a that forms two pixels. , 32b so as to condense at the central portion of each of the microlenses 33, the interlayer insulating film 34 disposed between the microlens 33 and the photodiodes 32a, 32b, the protective film 35 thereon, and the top thereof A color filter layer 36 is formed. In this case, the interlayer insulating film 34 and the protective film 35 are made of light transmitting materials having different refractive indexes, and the interface between the interlayer insulating film 34 and the protective film 35 is connected to the microlens 33 and each photodiode 32a or It is configured so as to have an inclined portion corresponding to the amount of planar positional deviation from 32b. Patent Document 1: Japanese Patent Application Laid-Open No. 5-243543
特許文献 2 :特開 2005— 150492号公報 発明の開示 Patent Document 2: JP 2005-150492 A Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] しカゝしながら、上記特許文献 1において提案されている従来の固体撮像装置 20〖こ は、次のような問題がある。  [0012] However, the conventional solid-state imaging device 20 proposed in Patent Document 1 has the following problems.
[0013] 図 14は、図 11に示す従来の固体撮像装置 20を A—A'線部分で切断した場合の 縦断面図であって、図 12が、真上から画像光が入射される受光領域の中央部分で の各フォトダイオードへの集光の様子を示す図であるのに対して、斜め方向力 光が 入射される受光領域の周辺部分での各フォトダイオードへの集光の様子を示す図で ある。  FIG. 14 is a vertical cross-sectional view of the conventional solid-state imaging device 20 shown in FIG. 11 taken along the line AA ′, and FIG. 12 shows a light reception in which image light is incident from directly above. This figure shows how light is focused on each photodiode at the center of the area, whereas how light is focused on each photodiode at the periphery of the light receiving area where oblique force light is incident. FIG.
[0014] 図 12に示すように、従来の固体撮像装置 20では、光軸 Cを中心として、マイクロレ ンズ 23からチャンネルストップ部 24のクロス部分上に集光する画像光は、各フォトダ ィオード 22a〜22dによりそれぞれ光電変換できな 、ために、そのクロス部分上の光 の分だけ各画素において受光感度が低下することになる。  [0014] As shown in FIG. 12, in the conventional solid-state imaging device 20, the image light condensed on the cross portion of the channel stop portion 24 from the microlens 23 around the optical axis C is received by each photodiode 22a. Therefore, the light receiving sensitivity is lowered in each pixel by the amount of light on the cross portion.
[0015] また、図 14に示すように、 F (フォーカス)値が小さぐ角度が大きい斜め光が入射し たときに、マイクロレンズ 23による集光方向がずれる分だけ、隣接して並んで寄った フォトダイオード 21c, 21dに入射される光量が異なり、画素毎の特性が異なってしま う。特に、カラーフィルタ 25が設けられている場合には、対応するカラーフィルタ 25の 色層と隣接する色層からの画像光がフォトダイオード 22c, 22dに入射されて、混色 が生じる虞がある。さら〖こ、マイクロレンズ 23の周縁部に入射された画像光は、入射 方向によっては、フォトダイオード 22c, 22d間の上方に設けられた金属配線層 26a 〜26cにより遮ぎられ、フォトダイオード 22cまたは 22dへの入射が妨げられる虡もぁ る。  Further, as shown in FIG. 14, when oblique light having a small F (focus) value and a large angle is incident, the light is contiguously arranged side by side as much as the light collecting direction by the microlens 23 is shifted. The amount of light incident on the photodiodes 21c and 21d is different and the characteristics of each pixel are different. In particular, when the color filter 25 is provided, image light from the color layer adjacent to the color layer of the corresponding color filter 25 may be incident on the photodiodes 22c and 22d and color mixing may occur. Furthermore, depending on the incident direction, the image light incident on the peripheral edge of the microlens 23 is blocked by the metal wiring layers 26a to 26c provided above the photodiodes 22c and 22d. In some cases, the incident on 22d is hindered.
[0016] また、特許文献 2の固体撮像装置では、図 13に示すように、層間絶縁膜 34と保護 膜 35との界面力 マイクロレンズ 33と各フォトダイオード 32aまたは 32bとの平面位置 ずれ量に応じた傾斜部を有しているが、この谷型の傾斜部により、このマイクロレンズ 33による集光を、各フォトダイオード 32a, 32bの寄り具合に応じて一方向にのみ寄 るように構成している。ところが、この固体撮像装置では、周期性を有する画素が 2画 素の場合ではなぐ図 11のように 4画素の場合には、一方向と異なる他の方向で集 光が受光部からはみ出して受光感度が低下したり、これによつて、隣接して並んで寄 つたフォトダイオードに入射される光量が異なって、画素毎の特性が異なってしまつ たり、混色 Further, in the solid-state imaging device of Patent Document 2, as shown in FIG. 13, the interfacial force between the interlayer insulating film 34 and the protective film 35 is shifted to the planar positional deviation amount between the microlens 33 and each photodiode 32a or 32b. The valley-shaped inclined part is configured so that the condensing by the micro lens 33 is shifted only in one direction according to the degree of deviation of the photodiodes 32a and 32b. ing. However, in this solid-state imaging device, when there are four pixels as shown in FIG. 11 in which the pixels having periodicity are not two pixels, the pixels are collected in another direction different from one direction. Light protrudes from the light receiving section, resulting in a decrease in light reception sensitivity, and this causes the amount of light incident on adjacent photodiodes to be different, resulting in different pixel characteristics and color mixing.
が生じたりする。さらには、画素サイズが更に縮小化される場合には、上記一方向に おいても、集光が受光部からはみ出して受光感度が低下したり、これによつて、隣接 して並んで寄った各フォトダイオードに入射される光量が異なって、画素毎の特性が 異なってしまったり、混色が生じたりする。  May occur. In addition, when the pixel size is further reduced, the light collected from the light receiving part is reduced even in the one direction, and the light receiving sensitivity is lowered. The amount of light incident on each photodiode is different, resulting in different pixel characteristics and color mixing.
[0017] 本発明は、上記従来の問題を解決するもので、受光部の位置が周期的に異なる固 体撮像装置において、画素サイズが更に縮小される場合にも、各画素の受光感度を より向上させ、 F値による画素の特性劣化を抑制できる固体撮像装置および、この固 体撮像装置を撮像部に用いた電子情報機器を提供することを目的とする。  [0017] The present invention solves the above-described conventional problems. In a solid-state imaging device in which the positions of the light receiving portions are periodically different, even when the pixel size is further reduced, the light receiving sensitivity of each pixel is further increased. An object of the present invention is to provide a solid-state imaging device capable of improving and suppressing deterioration of pixel characteristics due to an F value and an electronic information device using the solid-state imaging device in an imaging unit.
課題を解決するための手段  Means for solving the problem
[0018] 本発明の固体撮像装置は、位置が周期的に異なるように配置された複数の受光部 と、該複数の受光部上にそれぞれ光を集光するためのマイクロレンズとを備えた固体 撮像装置において、周期性を有する所定数の受光部毎にグループ化され、各ダル ープに対してそれぞれ、該マイクロレンズは、該受光部毎に配置される第 1マイクロレ ンズと、該所定数の受光部上方を覆うようにまたがる第 2マイクロレンズとを有しており[0018] A solid-state imaging device according to the present invention includes a plurality of light-receiving units arranged so that their positions are periodically different, and a microlens for collecting light on each of the plurality of light-receiving units. In the imaging apparatus, the microlenses are grouped for each predetermined number of light receiving units having periodicity, and for each dulpe, the microlens is arranged with the first microlens arranged for each light receiving unit and the predetermined microlenses. And a second microlens that covers the upper part of the light receiving unit.
、そのことにより上記目的が達成される。 This achieves the above object.
[0019] また、好ましくは、本発明の固体撮像装置における第 2マイクロレンズは、円、楕円、 矩形または正方形の平面視形状を有しており、該平面視形状の少なくとも外周部分 力 Sレンズ曲面形状に形成されている。 [0019] Preferably, the second microlens in the solid-state imaging device of the present invention has a circular, elliptical, rectangular, or square planar view shape, and at least an outer peripheral force of the planar view shape S lens curved surface It is formed into a shape.
[0020] さらに、好ましくは、本発明の固体撮像装置における第 2マイクロレンズは、前記平 面視形状の外周部分の内側の中央部分がレンズ曲面形状力または平面形状に形 成されている。 [0020] Further preferably, in the second microlens in the solid-state imaging device of the present invention, a central portion inside the outer peripheral portion of the planar view shape is formed into a lens curved surface shape force or a planar shape.
[0021] さらに、好ましくは、本発明の固体撮像装置における第 2マイクロレンズは、前記所 定数の受光部と前記第 1マイクロレンズとの間に設けられている。  [0021] Further, preferably, the second microlens in the solid-state imaging device of the present invention is provided between the predetermined number of light receiving portions and the first microlens.
[0022] さらに、好ましくは、本発明の固体撮像装置における第 1マイクロレンズは、前記第 2マイクロレンズよりも上層に位置して 、る。 [0023] さらに、好ましくは、本発明の固体撮像装置における第 2マイクロレンズは、前記受 光部毎に配置された各第 1マイクロレンズによる集光を、前記周期性を有する所定数 の受光部毎に内側に曲げる構成となっている。 [0022] Further preferably, the first microlens in the solid-state imaging device of the present invention is located in an upper layer than the second microlens. [0023] Further preferably, in the solid-state imaging device of the present invention, the second microlens is configured to collect light by each first microlens arranged for each of the light receiving units, and the predetermined number of light receiving units having the periodicity. It is configured to be bent inward every time.
[0024] さらに、好ましくは、本発明の固体撮像装置における第 2マイクロレンズの断面形状 力 上、下または上下に凸レンズ形状である。 [0024] Furthermore, preferably, the cross-sectional shape of the second microlens in the solid-state imaging device of the present invention is a convex lens shape up, down or up and down.
[0025] さらに、好ましくは、本発明の固体撮像装置における第 1マイクロレンズの断面形状 力 上、下または上下に凸レンズ形状である。 [0025] Furthermore, the cross-sectional shape of the first microlens in the solid-state imaging device of the present invention is preferably a convex lens shape up, down or up and down.
[0026] さらに、好ましくは、本発明の固体撮像装置における第 1マイクロレンズおよび第 2 マイクロレンズは、前記各受光部の中央部に光が集光されるように配置されている。 [0026] Furthermore, preferably, the first microlens and the second microlens in the solid-state imaging device of the present invention are arranged so that light is condensed at the center of each of the light receiving units.
[0027] さらに、好ましくは、本発明の固体撮像装置において、前記受光部間の上方にあつ て、該受光部と前記第 1マイクロレンズおよび前記第 2マイクロレンズとの間に金属配 線層が設けられている。  [0027] Further preferably, in the solid-state imaging device of the present invention, a metal wiring layer is provided between the light receiving unit and the first micro lens and the second micro lens above the light receiving unit. Is provided.
[0028] さらに、好ましくは、本発明の固体撮像装置における第 1マイクロレンズがカラーフィ ルタ層よりも上層に設けられ、前記第 2マイクロレンズが該カラーフィルタ層よりも下層 に設けられている。 [0028] Furthermore, preferably, in the solid-state imaging device of the present invention, the first microlens is provided in an upper layer than the color filter layer, and the second microlens is provided in a lower layer than the color filter layer.
[0029] さらに、好ましくは、本発明の固体撮像装置における複数の受光部は、平面視でー 方向および該ー方向と交差する方向のうちの少なくともいずれかの方向に周期的に 異なるように配置されて 、る。  [0029] Further, preferably, the plurality of light receiving units in the solid-state imaging device of the present invention are arranged so as to be periodically different in at least one of a direction and a direction intersecting the direction in a plan view. It has been.
[0030] さらに、好ましくは、本発明の固体撮像装置における複数の受光部は、平面視で列 方向および行方向にマトリクス状に設けられ、該列方向および行方向の少なくとも一 方向に周期的に異なるように配置されて 、る。 [0030] Further preferably, the plurality of light receiving units in the solid-state imaging device of the present invention are provided in a matrix in the column direction and the row direction in a plan view, and periodically in at least one of the column direction and the row direction. Arranged differently.
[0031] さらに、好ましくは、本発明の固体撮像装置において、前記周期性を有する所定数 の受光部は、平面視で列方向および行方向に各 2画素の合計 4画素が一つのダル ープとされている。 [0031] Further preferably, in the solid-state imaging device of the present invention, the predetermined number of light receiving units having the periodicity is a single loop having a total of four pixels of two pixels each in the column direction and the row direction in plan view. It is said that.
[0032] さらに、好ましくは、本発明の固体撮像装置において、前記周期性を有する所定数 の受光部は、平面視で列方向または行方向に 2画素が一つのグループとされている  [0032] Further preferably, in the solid-state imaging device of the present invention, the predetermined number of light receiving units having the periodicity are grouped with two pixels in the column direction or the row direction in plan view.
[0033] さらに、好ましくは、本発明の固体撮像装置において、前記グループ化された 4画 素毎に、前記受光部の 4つが、隣接する各画素間のチャンネルストップ部のクロス部 分側に均等に寄って形成されている。 [0033] Further preferably, in the solid-state imaging device of the present invention, the grouped four-screen For each element, four of the light receiving portions are formed evenly on the cross portion side of the channel stop portion between adjacent pixels.
[0034] さらに、好ましくは、本発明の固体撮像装置において、前記グループ化された 4画 素にまたがる下層マイクロレンズは、前記 4画素を構成する 4つの受光部の中心であ る前記チャンネルストップ部のクロス部分に光軸が一致するように設けられて 、る。  [0034] Further preferably, in the solid-state imaging device of the present invention, the lower-layer microlens straddling the grouped four pixels is the channel stop unit that is the center of the four light receiving units constituting the four pixels. It is provided so that the optical axis coincides with the cross portion of the.
[0035] さらに、好ましくは、本発明の固体撮像装置において、前記グループ化された 2画 素毎に、前記受光部の 2つが、隣接する各画素間のチャンネルストップ部側に均等 に寄って形成されている。  [0035] Further, preferably, in the solid-state imaging device of the present invention, for each of the two grouped pixels, the two light receiving portions are formed evenly on the channel stop portion side between adjacent pixels. Has been.
[0036] さらに、好ましくは、本発明の固体撮像装置において、前記グループ化された 2画 素にまたがる下層マイクロレンズは、前記 2画素を構成する 2つの受光部間の中心で ある前記チャンネルストップ部に光軸が一致するように設けられている。  [0036] Further preferably, in the solid-state imaging device of the present invention, the lower-layer microlens straddling the grouped two pixels is the channel stop unit that is the center between the two light receiving units constituting the two pixels. So that the optical axes coincide with each other.
[0037] さらに、好ましくは、本発明の固体撮像装置において、前記第 1マイクロレンズに入 射された光がそれぞれに対応する受光部上の同じ位置に前記第 2マイクロレンズを 通して集光されるように、前記グループィ匕した互いに隣接する第 1マイクロレンズのう ちの一部または全部力 互いのレンズ周端部を超えて接近させる場合に、互いに重 なるレンズ部分を切り取って隣接させたレンズ形状に形成されている。  [0037] Furthermore, preferably, in the solid-state imaging device of the present invention, the light incident on the first microlens is condensed through the second microlens at the same position on the light receiving unit corresponding to each. As described above, when a part or all of the first microlenses adjacent to each other in the group are made to approach each other beyond the peripheral edge portions of the lenses, the lens portions that overlap each other are cut out to be adjacent to each other. It is formed into a shape.
[0038] さらに、好ましくは、本発明の固体撮像装置において、前記互いに隣接する第 1マ イク口レンズは、該第 1マイクロレンズの周縁部の少なくとも一部が隣接する第 1マイク 口レンズと重なって形成されて 、る。  [0038] Furthermore, preferably, in the solid-state imaging device of the present invention, the first microphone mouth lenses adjacent to each other overlap at least a part of the peripheral portion of the first microlens with the adjacent first microphone mouth lens. Formed.
[0039] さらに、好ましくは、本発明の固体撮像装置において、前記互いに隣接する第 1マ イク口レンズは、前記重なったレンズ部分を切り取ったレンズ形状同士を接触させて 配置されている。 [0039] Further preferably, in the solid-state imaging device of the present invention, the first microphone lenses adjacent to each other are arranged such that the lens shapes obtained by cutting out the overlapping lens portions are in contact with each other.
[0040] さらに、好ましくは、本発明の固体撮像装置において、前記互いに隣接する第 1マ イク口レンズは、前記重なったレンズ部分を切り取ったレンズ形状同士を所定隙間分 だけ離間  [0040] Further preferably, in the solid-state imaging device of the present invention, the first microphone lenses adjacent to each other are separated from each other by a predetermined gap between the lens shapes obtained by cutting off the overlapping lens portions.
させて配置されている。  Are arranged.
[0041] さらに、好ましくは、本発明の固体撮像装置において、前記受光部の間隔に応じて 前記第 1マイクロレンズの位置が異なって配置されている。 [0042] さらに、好ましくは、本発明の固体撮像装置において、前記受光部および前記第 1 マイクロレンズの各位置がそれぞれ周期的に異なるように N画素単位 (Nは 2以上の 整数)で周期的に配置されて 、る。 [0041] Further preferably, in the solid-state imaging device of the present invention, the position of the first microlens is arranged differently according to the interval between the light receiving portions. [0042] Further preferably, in the solid-state imaging device of the present invention, it is preferable that the light receiving unit and the first micro lens are periodically changed in units of N pixels (N is an integer of 2 or more) so that the positions of the light receiving unit and the first micro lens are periodically different from each other It is arranged in
[0043] さらに、好ましくは、本発明の固体撮像装置において、前記受光部および前記第 1 マイクロレンズの各位置がそれぞれマトリクス状に配列されており、行方向に I画素 (I は 2以上の整数)、列方向に J画素 CFは 2以上の整数)の K画素単位 (K=I XJ)で周 期的に配置されている。  Further preferably, in the solid-state imaging device of the present invention, the positions of the light receiving unit and the first microlens are arranged in a matrix, respectively, and I pixels (I is an integer of 2 or more) in the row direction. In the column direction, J pixel CF is an integer of 2 or more) and is periodically arranged in K pixel units (K = I XJ).
[0044] さらに、好ましくは、本発明の固体撮像装置において、前記所定数の受光部毎に 一つの出力アンプが共有して設けられて!/、る。 [0044] Further, preferably, in the solid-state imaging device of the present invention, one output amplifier is shared for each of the predetermined number of light receiving units.
[0045] さらに、好ましくは、本発明の固体撮像装置における受光部は光を光電変換する光 電変換部である。 [0045] Further preferably, in the solid-state imaging device of the present invention, the light receiving unit is a photoelectric conversion unit that photoelectrically converts light.
[0046] さらに、好ましくは、本発明の固体撮像装置は CCD型イメージセンサまたは CMO [0046] Further preferably, the solid-state imaging device of the present invention is a CCD type image sensor or CMO.
S型イメージセンサである。 S-type image sensor.
[0047] 本発明の電子情報機器は、本発明の上記固体撮像装置を撮像部に用いたもので あり、そのことにより上記目的が達成される。 [0047] An electronic information device according to the present invention uses the solid-state imaging device according to the present invention as an imaging unit, and thereby achieves the object.
[0048] 上記構成により、以下に、本発明の作用について説明する。 [0048] With the above configuration, the operation of the present invention will be described below.
[0049] 本発明にあっては、複数の受光部の配置間隔が行方向および列方向のうちの少な くとも一方向に周期的に異なる固体撮像装置において、周期性を有する所定数 (例 えば 2または 4)の画素がグループィ匕され、各グループに対してそれぞれ、各画素毎 に配置される第 1マイクロレンズと、グループィ匕された所定数の画素にまたがって配 置される第 2マイクロレンズとを有して!/、る。  In the present invention, in a solid-state imaging device in which arrangement intervals of a plurality of light receiving portions are periodically different in at least one of the row direction and the column direction, a predetermined number (for example, periodicity) 2 or 4) pixels are grouped, and for each group, a first microlens arranged for each pixel and a second arranged over a predetermined number of pixels grouped. Have a micro lens!
[0050] このように、 2種類以上のマイクロレンズを設けることによって、画素サイズが更に縮 小される場合にも、上下二つのマイクロレンズにより集光しつつ、受光無効領域を縮 小して集光率を高めて、受光部の中央部上に効率良く画像光を集光させ、各画素の 受光感度を向上させることが可能となる。また、受光領域周辺部など、斜め光が入射 されたときでも、上層の第 1マイクロレンズにより画像光^^光し、下層の第 2マイクロ レンズにより光軸の中心を各画素の受光部の中央部上に合わせることが容易かつ確 実にできるため、画素毎の集光率のばらつきや混色を低減して各画素の特性劣化を 抑制することが可能となる。 [0050] As described above, even when the pixel size is further reduced by providing two or more types of microlenses, the light receiving invalid area is reduced and collected while condensing by the upper and lower microlenses. It is possible to improve the light receiving sensitivity of each pixel by increasing the light rate and condensing the image light efficiently on the central part of the light receiving unit. Even when oblique light is incident on the periphery of the light receiving area, the upper first microlens emits image light, and the lower second microlens sets the center of the optical axis to the center of the light receiving area of each pixel. Since it can be easily and reliably adjusted to the top, it is possible to reduce variations in light collection rate and color mixing from pixel to pixel, thereby reducing the characteristics of each pixel. It becomes possible to suppress.
[0051] また、グループィ匕して隣接する上層の各第 1マイクロレンズをその外周部分が重な る位置まで近づけて配置することができるため、画素サイズを更にいつそう縮小化す る場合にも、受光感度の向上と共に画素の特性劣化の抑制を行うことが可能となる。  [0051] In addition, since the first microlenses in the upper layer adjacent to each other in a group can be arranged close to the position where the outer peripheral portions overlap, the pixel size can be further reduced when the pixel size is further reduced. Thus, it is possible to improve the light receiving sensitivity and suppress the deterioration of the pixel characteristics.
[0052] 第 1マイクロレンズおよび第 2マイクロレンズが金属配線層よりも上層に形成されて いることにより、受光部間の上方の金属配線により集光が妨げられることをも防ぐこと が可能となる。  [0052] Since the first microlens and the second microlens are formed above the metal wiring layer, it is possible to prevent light collection from being hindered by the metal wiring above the light receiving portion. .
発明の効果  The invention's effect
[0053] 以上により、本発明によれば、複数の受光部の配置間隔が周期的に異なる固体撮 像装置において、画素サイズが更に縮小される場合にも、上下二つの第 1マイクロレ ンズおよび第 2マイクロレンズにより集光しつつ、受光無効領域を縮小して集光率を 高めて各画素における受光感度を向上させると共に、受光領域周辺部などにおいて 、角度が大きい斜め光が入射されたときに生じる集光率のばらつきや混色を低減で きて各画素の特性劣化を抑制できるなど、画素の特性向上を図ることできる。  [0053] As described above, according to the present invention, in the solid-state imaging device in which the arrangement intervals of the plurality of light receiving units are periodically different, even when the pixel size is further reduced, the upper and lower first microlenses and While condensing by the second microlens, the light receiving invalid area is reduced to increase the light collecting rate and improve the light receiving sensitivity in each pixel, and when oblique light with a large angle is incident on the periphery of the light receiving area, etc. It is possible to improve the pixel characteristics, such as reducing the variation in light collection rate and color mixing that occur in the image and suppressing the deterioration of the characteristics of each pixel.
図面の簡単な説明  Brief Description of Drawings
[0054] [図 1]本発明の実施形態 1に係る固体撮像装置の概略要部構成例を示す平面図で ある。  FIG. 1 is a plan view showing a schematic configuration example of a main part of a solid-state imaging device according to Embodiment 1 of the present invention.
[図 2]図 1の固体撮像装置を B— B'線部分で切断した場合であって、真上から光が 入射される受光領域中央部分の要部断面図である。  FIG. 2 is a cross-sectional view of the main part of the central portion of the light receiving region where light is incident from directly above, when the solid-state imaging device of FIG. 1 is cut along the line BB ′.
[図 3]図 1の固体撮像装置を B— B'線部分で切断した場合であって、斜め方向から 光が入射する受光領域周辺部分の要部断面図である。  FIG. 3 is a cross-sectional view of the main part of the periphery of the light receiving region where light is incident from an oblique direction when the solid-state imaging device of FIG. 1 is cut along the line BB ′.
[図 4A]本実施形態 1の固体撮像装置の製造方法の製造工程 (その 1)について説明 するための要部縦断面図である。  FIG. 4A is a longitudinal sectional view of an essential part for explaining the manufacturing process (No. 1) of the manufacturing method of the solid-state imaging device according to the first embodiment.
[図 4B]本実施形態 1の固体撮像装置の製造方法の製造工程 (その 2)について説明 するための要部縦断面図である。  FIG. 4B is a longitudinal sectional view of an essential part for explaining the production process (No. 2) in the method for producing the solid-state imaging device of Embodiment 1.
[図 4C]本実施形態 1の固体撮像装置の製造方法の製造工程 (その 3)について説明 するための要部縦断面図である。  FIG. 4C is a longitudinal sectional view of an essential part for explaining the manufacturing process (No. 3) in the manufacturing method of the solid-state imaging device according to Embodiment 1;
[図 5]本発明の実施形態 2に係る固体撮像装置であって、真上から光が入射される受 光領域中央部分の要部断面図である。 FIG. 5 is a solid-state imaging device according to Embodiment 2 of the present invention, in which light is received from directly above. It is principal part sectional drawing of the optical region center part.
圆 6]本発明の実施形態 2に係る固体撮像装置であって、斜め方向力も光が入射す る受光領域周辺部分の要部断面図である。 6] A solid-state imaging device according to Embodiment 2 of the present invention, which is a cross-sectional view of the main part of the periphery of the light receiving region where light is also incident in an oblique direction force.
圆 7A]本実施形態 2の固体撮像装置の製造方法の製造工程 (その 1)について説明 するための要部縦断面図である。 7A] A longitudinal sectional view of a main part for explaining the manufacturing process (part 1) of the manufacturing method of the solid-state imaging device according to the second embodiment.
圆 7B]本実施形態 2の固体撮像装置の製造方法の製造工程 (その 2)について説明 するための要部縦断面図である。 FIG. 7B] A longitudinal sectional view of an essential part for explaining a manufacturing process (No. 2) of the manufacturing method of the solid-state imaging device according to the second embodiment.
圆 7C]本実施形態 2の固体撮像装置の製造方法の製造工程 (その 3)について説明 するための要部縦断面図である。 FIG. 7C] A longitudinal sectional view of an essential part for explaining the manufacturing process (No. 3) of the manufacturing method of the solid-state imaging device according to the second embodiment.
[図 7D]本実施形態 2の固体撮像装置の製造方法の製造工程 (その 4)につ 、て説明 するための要部縦断面図である。  FIG. 7D is a longitudinal sectional view of an essential part for explaining the manufacturing process (No. 4) of the manufacturing method of the solid-state imaging device according to the second embodiment.
圆 7E]本実施形態 2の固体撮像装置の製造方法の製造工程 (その 5)について説明 するための要部縦断面図である。 FIG. 7E] A longitudinal sectional view of an essential part for explaining the manufacturing process (No. 5) of the manufacturing method of the solid-state imaging device according to the second embodiment.
圆 7F]本実施形態 2の固体撮像装置の製造方法の製造工程 (その 6)について説明 するための要部縦断面図である。 FIG. 7F] A longitudinal sectional view of an essential part for explaining a manufacturing process (No. 6) of the manufacturing method of the solid-state imaging device according to the second embodiment.
圆 8]本発明の実施形態 3に係る固体撮像装置について、図 1に示す B— B'線部分 で切断した場合と同様の要部縦断面図であり、真上力 画像光が入射されたときの 各フォトダイオードへの集光の様子を示す図である。 圆 8] The solid-state imaging device according to Embodiment 3 of the present invention is a main part longitudinal sectional view similar to that cut along the line BB ′ shown in FIG. It is a figure which shows the mode of condensing to each photodiode at the time.
圆 9]本発明の実施形態 4に係る固体撮像装置について、図 1に示す B— B'線部分 で切断した場合と同様の要部縦断面図であり、真上力 画像光が入射されたときの 各フォトダイオードへの集光の様子を示す図である。 9] The solid-state imaging device according to Embodiment 4 of the present invention is a main part longitudinal sectional view similar to that cut along the line BB ′ shown in FIG. It is a figure which shows the mode of condensing to each photodiode at the time.
圆 10]本発明の実施形態 5に係る固体撮像装置について、図 1に示す B— B'線部分 で切断した場合と同様の要部縦断面図であり、真上力 画像光が入射されたときの 各フォトダイオードへの集光の様子を示す図である。 圆 10] The solid-state imaging device according to Embodiment 5 of the present invention is a main part longitudinal sectional view similar to that cut at the BB ′ line portion shown in FIG. It is a figure which shows the mode of condensing to each photodiode at the time.
圆 11]従来の固体撮像装置の概略要部構成例を示す上面図である。 [11] FIG. 11 is a top view showing a schematic configuration example of a main part of a conventional solid-state imaging device.
[図 12]図 11の従来の固体撮像装置を A—A'線部分で切断した場合であって、真上 から光が入射する受光領域中央部分の断面図である。  FIG. 12 is a cross-sectional view of the central portion of the light receiving region where light is incident from directly above, when the conventional solid-state imaging device of FIG. 11 is cut along the line AA ′.
[図 13]従来の他の固体撮像装置の概略要部構成例を示す上面図である。 [図 14]図 11の従来の固体撮像装置を A— A'線部分で切断した場合であって、斜め 方向から光が入射する受光領域周辺部分の断面図である。 FIG. 13 is a top view illustrating a schematic configuration example of a main part of another conventional solid-state imaging device. FIG. 14 is a cross-sectional view of the periphery of the light receiving region where light is incident from an oblique direction when the conventional solid-state imaging device of FIG. 11 is cut along the line AA ′.
符号の説明  Explanation of symbols
[0055] 10、 10A、 10B、 10C、 10D 固体撮像装置  [0055] 10, 10A, 10B, 10C, 10D solid-state imaging device
11、 l la〜l ld フォトダイオード(受光部)  11, l la ~ l ld photodiode (light receiving part)
12、 121、 122、 123、 124 マイクロレンズ  12, 121, 122, 123, 124 Micro lens
12a マイクロレンズ材  12a Micro lens material
12A、 12F 上層マイクロレンズ  12A, 12F Upper micro lens
12Bゝ 12C、 12Dゝ 12E 下層マイクロレンズ  12B ゝ 12C, 12D ゝ 12E Lower layer micro lens
13 チャネルストップ部  13 Channel stop section
14、 14a〜14d 画素セル  14, 14a-14d pixel cell
15 カラーフィルタ  15 Color filter
16a 金属配線(1層目)  16a Metal wiring (first layer)
16b 金属配線(2層目)  16b Metal wiring (2nd layer)
16c 金属配線(3層目)  16c metal wiring (3rd layer)
17〜19 平坦化膜  17-19 Flattened film
17a 凹凸状の平坦ィ匕膜  17a Uneven flat film
7、 7a レジス卜膜  7, 7a Regis capsule
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0056] 以下に、本発明の固体撮像装置の実施形態 1〜5について、図面を参照しながら 詳細に説明する。 Hereinafter, embodiments 1 to 5 of the solid-state imaging device of the present invention will be described in detail with reference to the drawings.
(実施形態 1)  (Embodiment 1)
図 1は、本発明の実施形態 1に係る固体撮像装置の概略要部構成例を示す平面 図であり、図 2は、図 1に示す固体撮像装置を B— B'線部分で切断した場合の断面 図である。  FIG. 1 is a plan view illustrating a schematic configuration example of a main part of a solid-state imaging device according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the solid-state imaging device illustrated in FIG. FIG.
[0057] 図 1および図 2において、本実施形態 1の固体撮像装置 10は、位置が周期的に異 なるように配置された複数の受光部としての複数のフォトダイオード 11と、この複数の フォトダイオード 11上にそれぞれ画像光を集光するためのマイクロレンズ 12とを備え ている。 In FIG. 1 and FIG. 2, the solid-state imaging device 10 of Embodiment 1 includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that their positions are periodically different, and the plurality of photo diodes. And a microlens 12 for condensing image light on each diode 11 ing.
[0058] 複数のフォトダイオード 11は、光をそれぞれ光電変換する各光電変換部であって、 平面視で行方向および列方向に周期的に異なるように配置されており、周期性を有 する 4つのフォトダイオード 11a〜: L idは、平面視で行方向および列方向に各 2画素 の合計 4画素毎に一つのグループを構成している。  The plurality of photodiodes 11 are photoelectric conversion units that photoelectrically convert light, and are arranged so as to be periodically different in the row direction and the column direction in a plan view, and have periodicity 4 The two photodiodes 11a˜: L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
[0059] マイクロレンズ 12は、フォトダイオード 11毎に配置される第 1マイクロレンズとしての 上層マイクロレンズ 12Aと、周期性を有しグループ化された 4つのフォトダイオード 11 a〜l Id毎にこれらの上方を覆うようにまたがる第 2マイクロレンズとしての下層マイク 口レンズ 12Bとを有しており、下層マイクロレンズ 12Bは、 4つの上層マイクロレンズ 12 Aによる各集光をそれぞれ、周期性を有する所定数 (ここでは 4つ)の互いに寄ったフ オトダイオード 11の各中央部に対して曲げるようになつている。  [0059] The microlens 12 includes an upper microlens 12A as a first microlens arranged for each photodiode 11, and four periodically grouped four photodiodes 11a to lId. The lower microlens 12B is a second microlens that covers the upper side, and the lower microlens 12B has a predetermined number of periodic light collections by the four upper microlenses 12A. The four centered photodiodes 11 (here four) are bent with respect to each other.
[0060] 下層マイクロレンズ 12Bは、フォトダイオード 11と上層マイクロレンズ 12Aとの間に 設けられており、上層マイクロレンズ 12Aおよび下層マイクロレンズ 12Bは、平面視で 矩形状または正方形状であり、その断面形状は共に上に凸のレンズ形状 (下面は平 面)である。  [0060] The lower-layer microlens 12B is provided between the photodiode 11 and the upper-layer microlens 12A. The upper-layer microlens 12A and the lower-layer microlens 12B have a rectangular shape or a square shape in plan view, and a cross section thereof. The shape is a convex lens shape (lower surface is flat).
[0061] これらのフォトダイオード 11a〜: L idおよびマイクロレンズ 12により、ストライプ状の 2 本のチャンネルストップ部 13で区切られたマトリクス状でアレイ状の画素セル 14 (14a 〜14d)が構成されており、それぞれの画素セル 14a〜14dにはそれぞれ、一つのフ オトダイオード 11と一つの上層マイクロレンズ 12Aとが対応している。上層マイクロレ ンズ 12Aは、各画素セル 14a〜14dをそれぞれほぼ覆うように各画素毎に設けられ ている。  [0061] These photodiodes 11a to: L id and the micro lens 12 form a matrix array of pixel cells 14 (14a to 14d) separated by two channel stop portions 13 in the form of stripes. Each photodiode cell 14a to 14d corresponds to one photodiode 11 and one upper layer microlens 12A. The upper microlens 12A is provided for each pixel so as to substantially cover each of the pixel cells 14a to 14d.
[0062] 各画素セル 14a〜14d内におけるフォトダイオード 11a〜: L idの配置間隔は、行方 向および列方向に周期的に異なっており、本実施形態 1では、グループィヒされた 4画 素毎に、隣接する画素セル 14a〜14d間のチャンネルストップ部 13のクロス部分に近 い部分に寄って形成されている。即ち、チャンネルストップ部 13に近づいて隣接して いる 4つの画素セノレ 14a〜14d毎に一つのグノレープとしてまとめられており、一つの グループに対してそれぞれ、 4画素を覆うようにまたがる下層マイクロレンズ 12Bがー つ設けられて、 4画素セル 14a〜14d毎に共有化されている。下層マイクロレンズ 12 Bは、 4画素セル 14a〜14dの中心(チャンネルストップ部 13のクロス部分)に光軸 C がー致するように設けられて 、る。 [0062] Photodiodes 11a in each of the pixel cells 14a to 14d: The interval between Lids is periodically different in the row direction and the column direction. In the first embodiment, every four pixels grouped together are used. The channel stop portion 13 between adjacent pixel cells 14a to 14d is formed close to the cross portion. That is, the four microlenses 14a to 14d that are adjacent to and close to the channel stop portion 13 are grouped as one gnole, and each lower layer microlens 12B that covers four pixels for one group. The four pixel cells 14a to 14d are shared. Lower microlens 12 B is provided such that the optical axis C coincides with the center of the four-pixel cells 14a to 14d (cross portion of the channel stop portion 13).
[0063] 上記構成により、以下に、その作用について説明する。 [0063] The operation of the above configuration will be described below.
[0064] 図 3は、図 1の固体撮像装置 10を B—B'線部分で切断した場合の断面図であって 、図 2が真上力も光が入射されたときのフォトダイオードへの集光の様子を示して 、る のに対して、斜め方向から画像光が入射されたときのフォトダイオードへの集光の様 子を示す図である。ここでは、従来の固体撮像装置 20を示した図 11および図 13と比 較して詳細に説明する。  FIG. 3 is a cross-sectional view of the solid-state imaging device 10 of FIG. 1 taken along the line BB ′. FIG. 2 shows the concentration of the solid-state imaging device 10 on the photodiode when light is incident directly above it. On the other hand, FIG. 6 is a diagram showing how light is condensed onto a photodiode when image light is incident from an oblique direction. Here, the conventional solid-state imaging device 20 will be described in detail in comparison with FIG. 11 and FIG.
[0065] まず、各画素セル 14が受光領域中央部分で、真上から画像光が各画素セル 14に 入射される場合、従来の固体撮像装置 20では、図 12に示したように、光軸 Cの中心 が周期性を有する 4画素の中心に位置するが、この部分は、 4画素を分離するための チャネルストップ部 24のクロス部分に相当する。よって、このクロス部分に集光された 画像光は、フォトダイオード 22a〜22dでは光電変換することができず、各画素にお いて受光感度が低下する。  First, when each pixel cell 14 is a central portion of the light receiving region and image light is incident on each pixel cell 14 from directly above, the conventional solid-state imaging device 20 has an optical axis as shown in FIG. Although the center of C is located at the center of four pixels having periodicity, this portion corresponds to the cross portion of the channel stop unit 24 for separating the four pixels. Therefore, the image light condensed on the cross portion cannot be photoelectrically converted by the photodiodes 22a to 22d, and the light receiving sensitivity is lowered in each pixel.
[0066] これに対して、本実施形態 1の固体撮像装置 10では、図 2に示すように、上層マイ クロレンズ 12Aおよび下層マイクロレンズ 12Bの上下の 2つのマイクロレンズによって 、左右二つの上層マイクロレンズ 12Aによってある程度集光した画像光を、一つの下 層マイクロレンズ 12Bによって内側に寄せるように曲げることができるため、左右の各 上層マイクロレンズ 12Aの光軸じの中心を各フォトダイオード 22cおよび 12dの各中 央部に容易かつ確実にそれぞれ合わせることができて、より受光効率よく画像光をフ オトダイオード 1 la〜: L Id上にそれぞれ集光させることができる。  On the other hand, in the solid-state imaging device 10 of Embodiment 1, as shown in FIG. 2, two upper-layer microlenses on the left and right sides are formed by two upper and lower microlenses of the upper-layer microlens 12A and the lower-layer microlens 12B. Since the image light condensed to some extent by 12A can be bent so as to be brought inward by one lower layer microlens 12B, the center of the optical axis of each of the left and right upper layer microlenses 12A is centered on each photodiode 22c and 12d. Each center can be easily and surely matched, and the image light can be condensed on the photodiode 1 la˜: L Id with higher light receiving efficiency.
[0067] 次に、各画素セル 14が受光領域周辺部分で、斜め方向から画像光が各画素セル 14に入射される場合、従来の固体撮像装置 20では、図 14に示したように、 F値が小 さぐ角度が大きい斜め光が右上力 左下方向に入射されたときに、右側のフォトダイ オード 22dよりも左側のフォトダイオード 22cに入射される光量が多くなつて、画素セ ル毎に集光特性にばらつきが生じる。特に、カラーフィルタ 25が設けられている場合 には、異なる色層を通った画像光が隣接する画素のフォトダイオード 22に入射され てしま 、、そのフォトダイオード 22にて混色が生じる虞がある。 [0068] これに対して、本実施形態 1の固体撮像装置 10では、図 3に示すように、上層マイ クロレンズ 12Aで集光された画像光力 その下の下層マイクロレンズ 12Bにより受光 部であるフォトダイオード 11の中央部にその光軸 Cを合わせるように集光されるため 、斜め光が右上力も左下方向に入射されたときにも、右側のフォトダイオード l idと左 側のフォトダイオード 11cとに入射される光量に差がなくなって、画素毎の集光ばらつ きが少なぐ混色も低減することができる。さらに、上記下層マイクロレンズ 12Bは、金 属配線 8〜10よりも上層に形成されるため、グループ化されたフォトダイオード l la〜 l idとフォトダイオード l la〜l ldとの間上方に設けられた金属配線 16a〜16cにより 、各フォトダイオード l la〜l Idへの集光が妨げられることを防ぐことができる。 Next, when each pixel cell 14 is in the periphery of the light receiving region and image light is incident on each pixel cell 14 from an oblique direction, in the conventional solid-state imaging device 20, as shown in FIG. When oblique light with a small angle and a large angle is incident in the upper right force, lower left direction, the amount of light incident on the left photodiode 22c is larger than that on the right photodiode 22d, and is collected for each pixel cell. Variation in optical characteristics occurs. In particular, when the color filter 25 is provided, image light that has passed through different color layers is incident on the photodiode 22 of the adjacent pixel, and there is a possibility that color mixing occurs in the photodiode 22. In contrast, in the solid-state imaging device 10 of the first embodiment, as shown in FIG. 3, the image light force collected by the upper microlens 12A is a light receiving unit by the lower microlens 12B below it. Since the light is focused so that the optical axis C is aligned with the center of the photodiode 11, even when oblique light is incident in the upper right force or the lower left direction, the right photodiode l id and the left photodiode 11c As a result, there is no difference in the amount of light incident on the light source, and it is possible to reduce color mixing with less condensing variation for each pixel. Further, since the lower microlens 12B is formed in an upper layer than the metal wirings 8 to 10, the lower microlens 12B is provided above the grouped photodiodes l la to l id and the photodiodes l la to l ld. The metal wirings 16a to 16c can prevent light condensing on the photodiodes lla to lId from being hindered.
[0069] 次に、本実施形態 1の固体撮像装置 10の製造方法について図 4A〜図 4Cを用い て説明する。  Next, a method for manufacturing the solid-state imaging device 10 of Embodiment 1 will be described with reference to FIGS. 4A to 4C.
[0070] 図 4A〜図 4Cは、本実施形態 1の固体撮像装置 10の製造方法の各製造工程 (そ の 1  FIG. 4A to FIG. 4C show the respective manufacturing steps (part 1) of the manufacturing method of the solid-state imaging device 10 of the first embodiment.
〜3)について説明するための要部縦断面図である。ここでは、上に凸のレンズ形状 となった下層マイクロレンズ 12Bおよび上層マイクロレンズ 12Aの形成方法について 説明する。  It is a principal part longitudinal cross-sectional view for demonstrating -3). Here, a method of forming the lower-layer microlens 12B and the upper-layer microlens 12A having an upwardly convex lens shape will be described.
[0071] まず、図 4Aに示すように、 3層目の金属配線 16cをエッチングカ卩ェして所定のパタ ーン形成にした後、その上に平坦ィ匕膜 17を形成し、その上にマイクロレンズ材 12bを 、下層マイクロレンズ 12Bの所定パターンで転写して現像する。  First, as shown in FIG. 4A, after etching the third-layer metal wiring 16c to form a predetermined pattern, a flat film 17 is formed thereon, and then Then, the microlens material 12b is transferred and developed in a predetermined pattern of the lower layer microlens 12B.
[0072] 次に、図 4Bに示すように、マイクロレンズ材 12bをベータ(熱処理)して、上に凸状と なった下層マイクロレンズ 12Bを形成する。  Next, as shown in FIG. 4B, the microlens material 12b is subjected to beta (heat treatment) to form a lower microlens 12B that is convex upward.
[0073] その後、図 4Cに示すように、平坦ィ匕膜 17および下層マイクロレンズ 12B上に平坦 化膜 18を形成し、その上にマイクロレンズ材 12aを、上層マイクロレンズ 12Aの所定 パターンで転写して現像する。さらに、マイクロレンズ材 12aをベータ(熱処理)して、 一つの下層マイクロレンズ 12B毎に、上に凸状となった 4つの上層マイクロレンズ 12 Aをそれぞれ形成する。  Thereafter, as shown in FIG. 4C, the flattening film 18 is formed on the flat film 17 and the lower microlens 12B, and the microlens material 12a is transferred in a predetermined pattern on the upper microlens 12A. And develop. Further, the microlens material 12a is beta-treated (heat treatment) to form four upper-layer microlenses 12A that are convex upward for each lower-layer microlens 12B.
[0074] 以上により、上記実施形態 1によれば、各画素毎に配置される上層マイクロレンズ 1 2Aと、 4画素を覆うようにまたがる下層マイクロレンズ 12Bとの 2種類のマイクロレンズ 12を形成することにより、画素セル 14内の受光部としての各フォトダイオード 11の配 置が行方向 (横方向)および列方向(縦方向)で周期的に異なる固体撮像装置 10に おいても、各画素の受光感度を向上させ、画素毎の集光のばらつきを少なくして、混 色を低減することができる。 [0074] As described above, according to the first embodiment, two types of microlenses, that is, the upper microlens 12A arranged for each pixel and the lower microlens 12B covering the four pixels are covered. In the solid-state imaging device 10 in which the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction). Therefore, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
(実施形態 2)  (Embodiment 2)
上記実施形態 1では、上に凸状のレンズ形状の上層マイクロレンズ 12Aおよび下 層マイクロレンズ 12Bの場合について説明した力 本実施形態 2では、上層マイクロ レンズ 12Aは上に凸状のレンズ形状である力 上に凸状のレンズ形状の下層マイク 口レンズ 12Bに代えて上下に凸レンズ形状の下層マイクロレンズ 12Cとする場合につ いて説明する。  In the first embodiment, the force described in the case of the upper microlens 12A and the lower microlens 12B having a convex lens shape in the first embodiment. In the second embodiment, the upper microlens 12A has a convex lens shape. A case will be described in which the lower-layer microlens 12C having a convex lens shape is used instead of the lower-layer microphone lens 12B having a convex lens shape.
[0075] 図 5および図 6は、本発明の実施形態 2に係る固体撮像装置について、図 1に示す B— B '線部分で切断した場合と同様の要部縦断面図であり、図 5は真上から画像光 が入射されたときの各フォトダイオードへの集光の様子を示す図、図 6は斜め方向か ら画像光が入射されたときの各フォトダイオードへの集光の様子を示す図である。な お、図 5および図 6では、上記実施形態 1の図 2および図 3に対応しており、図 2およ び図 3の作用効果と同一の作用効果を奏する部材には同一の符号を付している。  FIGS. 5 and 6 are longitudinal sectional views of the main part of the solid-state imaging device according to the second embodiment of the present invention, similar to the case where the solid-state imaging device is cut along the line BB ′ shown in FIG. Fig. 6 shows how light is collected on each photodiode when image light is incident from directly above, and Fig. 6 shows how light is collected on each photodiode when image light is incident from an oblique direction. FIG. 5 and FIG. 6 correspond to FIG. 2 and FIG. 3 of the first embodiment, and members having the same operational effects as those of FIG. 2 and FIG. It is attached.
[0076] 図 5および図 6において、本実施形態 2の固体撮像装置 10Aは、位置が周期的に 異なるように配置された複数の受光部としての複数のフォトダイオード 11と、この複数 のフォトダイオード 11上にそれぞれ画像光を集光するためのマイクロレンズ 121とを 備えている。  In FIG. 5 and FIG. 6, the solid-state imaging device 10A of Embodiment 2 includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that their positions are periodically different, and the plurality of photodiodes. 11 is provided with a microlens 121 for condensing image light.
[0077] 複数のフォトダイオード 11は、光をそれぞれ光電変換する各光電変換部であって、 平面視で行方向および列方向に周期的に異なるように配置されており、周期性を有 する 4つのフォトダイオード 11a〜: L idは、平面視で行方向および列方向に各 2画素 の合計 4画素毎に一つのグループを構成している。  The plurality of photodiodes 11 are photoelectric conversion units that photoelectrically convert light, and are arranged so as to be periodically different in the row direction and the column direction in plan view, and have periodicity 4 The two photodiodes 11a˜: L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
[0078] マイクロレンズ 121は、フォトダイオード 11毎に配置される第 1マイクロレンズとして の上層マイクロレンズ 12Aと、グループ化された 4つのフォトダイオード l la〜 l id毎 にこれらの上方を覆うようにまたがる第 2マイクロレンズとしての下層マイクロ レンズ 12Cとを有している。 [0079] 下層マイクロレンズ 12Cは、フォトダイオード 11と上層マイクロレンズ 12Aとの間に 設けられており、上層マイクロレンズ 12Aは、平面視で矩形状または正方形状であり 、その断面形状は上に凸状 (片面凸状)のレンズ形状 (下面は平面)であり、下層マイ クロレンズ 12Cは、平面視で矩形状または正方形状であり、その断面形状は上下に 凸状(両面凸状)のレンズ形状である。このように、下層マイクロレンズ 12Cが両面凸 状の場合には、上記実施形態 1の下層マイクロレンズ 12Bが片面凸状の場合に比べ て、フォトダイオード 11上への集光率がより良好なものとなる。 [0078] The microlens 121 covers the upper microlens 12A as the first microlens arranged for each photodiode 11 and the upper part of each of the grouped four photodiodes lla to lid. The lower microlens 12C as a second microlens is also provided. [0079] The lower-layer microlens 12C is provided between the photodiode 11 and the upper-layer microlens 12A. The upper-layer microlens 12A is rectangular or square in plan view, and its cross-sectional shape is convex upward (Lower surface is flat), the lower microlens 12C is rectangular or square in plan view, and its cross-sectional shape is a convex (upward on both sides) lens shape. It is. Thus, when the lower microlens 12C is convex on both sides, the condensing rate on the photodiode 11 is better than when the lower microlens 12B of Embodiment 1 is convex on one side. It becomes.
[0080] 次に、本実施形態 2の固体撮像装置 10Aの製造方法について図 7A〜図 7Eを用 いて説明する。  [0080] Next, a method for manufacturing the solid-state imaging device 10A of Embodiment 2 will be described with reference to FIGS. 7A to 7E.
[0081] 図 7A〜図 7Fは、本実施形態 2の固体撮像装置 10Aの製造方法の各製造工程( その 1〜6)について説明するための要部縦断面図である。ここでは、上下に凸状の レンズ形状となった下層マイクロレンズ 12Cおよび、上に凸状のレンズ形状となった 上層マイクロレンズ 12Aの形成方法について説明する。  FIG. 7A to FIG. 7F are main part longitudinal cross-sectional views for explaining each manufacturing process (Nos. 1 to 6) of the manufacturing method of the solid-state imaging device 10A of the second embodiment. Here, a method of forming the lower microlens 12C having a convex lens shape in the vertical direction and the upper microlens 12A having a convex lens shape in the upward direction will be described.
[0082] まず、図 7Aに示すように、 3層目の金属配線 16cをエッチングカ卩ェして所定パター ンに形成した後、その上に平坦ィ匕膜 17を形成し、その平坦化膜 17上に、平坦化膜 1 7との選択比が 0. 5〜2. 0程度のレジスト膜 7を転写して現像する。このとき、左右に 隣接して 、るフォトダイオード 1 lc、 1 Idの間のチャンネルストップ部 13のクロス部分 上にレジスト膜 7の開口部が配置されるように、レジスト膜 7を所定のパターンに形成 する。  First, as shown in FIG. 7A, after the third-layer metal wiring 16c is etched and formed into a predetermined pattern, a flat film 17 is formed thereon, and the flat film A resist film 7 having a selection ratio with respect to the planarizing film 17 of about 0.5 to 2.0 is transferred onto the film 17 and developed. At this time, the resist film 7 is formed in a predetermined pattern so that the opening of the resist film 7 is arranged on the cross portion of the channel stop portion 13 between the photodiodes 1 lc and 1 Id adjacent to the left and right. Form.
[0083] 次に、図 7Bに示すように、このレジスト膜 7をベータ (熱処理)して、レジスト膜 7aとし て、チャンネルストップ部 13の真上が最も凹んだ凹凸状のレンズ面形状を有するよう に形成する。このとき、左右に隣接するフォトダイオード l lc、 l id間のチャンネルスト ップ部 13のクロス部分上方に凹部の最も低位置(レンズ中央部)が設けられ、その両 側(レンズ周囲)に凸部が設けられている。  Next, as shown in FIG. 7B, this resist film 7 is subjected to beta (heat treatment) so that the resist film 7a has a concave-convex lens surface shape in which the channel stop portion 13 is directly recessed. Form as follows. At this time, the lowest position of the recess (center part of the lens) is provided above the cross part of the channel stop part 13 between the photodiodes l lc and l id adjacent to the left and right, and convex on both sides (around the lens). Is provided.
[0084] さらに、図 7Cに示すように、凹凸状のレジスト膜 7a上力 異方性エッチングを行つ て、レジスト膜 7aの凹凸形状を平坦ィ匕膜 17に転写して平坦ィ匕膜 17aとする。  Further, as shown in FIG. 7C, force anisotropic etching is performed on the concavo-convex resist film 7a to transfer the concavo-convex shape of the resist film 7a to the flat film 17 and thereby the flat film 17a. And
[0085] 続いて、図 7Dに示すように、平坦ィ匕膜 17a上にマイクロレンズ材 12aを、下層マイク 口レンズ 12Cの所定パターンで転写して現像する。 [0086] その後、図 7Eに示すように、マイクロレンズ材 12aをベータ(熱処理)して、上下に 凸状(両面凸)となった下層マイクロレンズ 12Cを形成する。 Subsequently, as shown in FIG. 7D, the microlens material 12a is transferred onto the flat film 17a in a predetermined pattern of the lower microphone aperture lens 12C and developed. Thereafter, as shown in FIG. 7E, the microlens material 12a is beta-treated (heat treatment) to form a lower-layer microlens 12C that is convex upward and downward (both sides convex).
[0087] さらに、図 7Fに示すように、平坦ィ匕膜 17aおよび下層マイクロレンズ 12C上に平坦 化膜 18を形成し、その上にマイクロレンズ材 12aを、上層マイクロレンズ 12Aの所定 パターンで転写して現像する。さらに、マイクロレンズ材 12aをベータ(熱処理)して、 一つの下層マイクロレンズ 12C毎に、上に凸状となった 4つの上層マイクロレンズ 12 Aをそれぞれ形成する。  Further, as shown in FIG. 7F, the flattening film 18 is formed on the flat film 17a and the lower microlens 12C, and the microlens material 12a is transferred in a predetermined pattern on the upper microlens 12A. And develop. Further, the microlens material 12a is beta-treated (heat treatment) to form four upper-layer microlenses 12A that are convex upward for each lower-layer microlens 12C.
[0088] 以上により、上記実施形態 2によれば、各画素毎に配置される上層マイクロレンズ 1 2Aと、 4画素を覆うようにまたがる下層マイクロレンズ 12Cとの 2種類のマイクロレンズ 121を形成することにより、画素セル 14内の受光部としての各フォトダイオード 11の 配置が行方向 (横方向)および列方向(縦方向)で周期的に異なる固体撮像装置 10 Aにおいても、上記実施形態 1の場合と同様に、各画素の受光感度を向上させ、画 素毎の集光のばらつきを少なくして、混色を低減することができる。本実施形態 2で は、上層マイクロレンズ 12Aは上に凸状のレンズ形状である力 上記実施形態 1の上 (片面)に凸レンズ形状の下層マイクロレンズ 12Bに代えて上下(両面)に凸レンズ形 状の下層マイクロレンズ 12Cとしており、この下層マイクロレンズ 12Cが両面凸状であ るため、上記実施形態 1の片面凸状の場合に比べて、各フォトダイオード 11a〜: L id 上への集光率が更に良好なものとなって、画素サイズが更に縮小された場合にも、 各画素の受光感度を向上させ、画素毎の集光のばらつきを少なくして、混色を低減 することができる。  As described above, according to the second embodiment, two types of microlenses 121 are formed, that is, the upper microlens 12A arranged for each pixel and the lower microlens 12C that covers the four pixels. Accordingly, even in the solid-state imaging device 10A in which the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction), As in the case, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing. In the second embodiment, the upper microlens 12A has a convex lens shape. The upper microlens 12A has a convex lens shape in the upper and lower sides (both sides) instead of the lower microlens 12B in the convex lens shape on the upper side (single side). Since the lower microlens 12C is convex on both sides, the condensing rate on each photodiode 11a: L id is higher than that of the single-sided convex in Embodiment 1 above. Even when the pixel size is further reduced and the pixel size is further reduced, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
(実施形態 3)  (Embodiment 3)
上記実施形態 1では、上に凸状のレンズ形状の上層マイクロレンズ 12Aおよび下 層マイクロレンズ 12Bの場合について説明した力 本実施形態 3では、上に凸状のレ ンズ形状の上層マイクロレンズ 12Aおよび、下に凸状のレンズ形状の下層マイクロレ ンズ 12Dの場合にっ 、て説明につ 、て説明する。  In the first embodiment, the force described in the case of the upper microlens 12A and the lower microlens 12B having a convex lens shape in the first embodiment. In the third embodiment, the upper microlens 12A and the upper microlens 12A having a convex lens shape. In the case of the lower-layer microlens 12D having a convex lens shape, the description will be given.
[0089] 図 8は、本発明の実施形態 3に係る固体撮像装置について、図 1に示す B— B'線 部分で切断した場合と同様の要部縦断面図であり、斜め方向から画像光が入射され たときの各フォトダイオードへの集光の様子を示す図である。なお、図 8では、上記実 施形態 1の図 3に対応しており、図 3の作用効果と同一の作用効果を奏する部材には 同一の符号を付している。また、上記実施形態 1の図 2に対応する真上から画像光が 入射されたときの各フォトダイオードへの集光の様子については、図 2において、上 に凸状のレンズ形状の下層マイクロレンズ 12Bを、図 8で後述するが、下に凸状のレ ンズ形状の下層マイクロレンズ 12Dに代えればよい。 FIG. 8 is a longitudinal sectional view of the main part of the solid-state imaging device according to Embodiment 3 of the present invention, similar to that cut along the line BB ′ shown in FIG. It is a figure which shows the mode of condensing to each photodiode when is incident. In FIG. This corresponds to FIG. 3 of the first embodiment, and members having the same functions and effects as those of FIG. 3 are denoted by the same reference numerals. In addition, regarding the state of light condensing on each photodiode when image light is incident from directly above corresponding to FIG. 2 of the first embodiment, the lower microlens having a lens shape convex upward in FIG. As will be described later with reference to FIG. 8, 12B may be replaced with a lower convex lens-shaped microlens 12D.
[0090] 図 8において、本実施形態 3の固体撮像装置 10Bは、位置が周期的に異なるように 配置された複数の受光部としての複数のフォトダイオード 11と、この複数のフォトダイ オード 11上にそれぞれ画像光を集光するためのマイクロレンズ 122とを備えている。  In FIG. 8, a solid-state imaging device 10B according to the third embodiment includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that positions thereof are periodically different, and a plurality of photodiodes 11 on the plurality of photodiodes 11. And a microlens 122 for condensing image light.
[0091] 複数のフォトダイオード 11は、光をそれぞれ光電変換する各光電変換部であって、 平面視で行方向および列方向に周期的に異なるように配置されており、周期性を有 する 4つのフォトダイオード 11a〜: L idは、平面視で行方向および列方向に各 2画素 の合計 4画素毎に一つのグループを構成している。  The plurality of photodiodes 11 are photoelectric conversion units that photoelectrically convert light, and are arranged so as to be periodically different in the row direction and the column direction in plan view, and have periodicity 4 The two photodiodes 11a˜: L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
[0092] マイクロレンズ 122は、フォトダイオード 11毎に配置される第 1マイクロレンズとして の上層マイクロレンズ 12Aと、グループ化された 4つのフォトダイオード l la〜 l id毎 にこれらの上方を覆うようにまたがる第 2マイクロレンズとしての下層マイクロレンズ 12 Dとを有している。  [0092] The microlens 122 covers the upper microlens 12A as the first microlens arranged for each photodiode 11 and the upper part of each of the grouped four photodiodes lla to lid. The lower microlens 12D as the second microlens is also provided.
[0093] 下層マイクロレンズ 12Dは、フォトダイオード 11と上層マイクロレンズ 12Aとの間に 設けられており、上層マイクロレンズ 12Aは、平面視で矩形状または正方形状であり 、その断面形状は上に凸状 (片面凸状)のレンズ形状 (下面は平面)であり、下層マイ クロレンズ 12Dは、平面視で矩形状または正方形状であり、その断面形状は下に凸 状 (片面凸状)のレンズ形状 (上面は平面)である。このように、下層マイクロレンズ 12 Dが下に凸状の場合には、上記実施形態 1の上に凸状の下層マイクロレンズ 12Bの 場合と同様に、グループ化したフォトダイオード 11c, l idに合わせて、上層マイクロ レンズ 12Aによる集光を互 、に内側に曲げて寄らせる (集光を互 、に近づける)こと ができる。また、下層マイクロレンズ 12Dの透明材料の屈折率力 下層マイクロレンズ 12Dのレンズ曲面側に接する透明材料の屈折率よりも大きく設定されている。  [0093] The lower layer microlens 12D is provided between the photodiode 11 and the upper layer microlens 12A. The upper layer microlens 12A is rectangular or square in plan view, and its cross-sectional shape is convex upward. (Lower surface is flat), the lower microlens 12D is rectangular or square in plan view, and its cross-sectional shape is convex downward (single surface convex) (The upper surface is a plane). As described above, when the lower-layer microlens 12D is convex downward, as in the case of the lower-layer microlens 12B convex above Embodiment 1, the grouped photodiodes 11c and lid are matched. Thus, the light condensing by the upper microlens 12A can be bent toward the inside (condensed light close to each other). Further, the refractive index power of the transparent material of the lower layer microlens 12D is set larger than the refractive index of the transparent material in contact with the lens curved surface side of the lower layer microlens 12D.
[0094] 以上により、上記実施形態 3によれば、各画素毎に配置される上層マイクロレンズ 1 2Aと、 4画素を覆うようにまたがる下層マイクロレンズ 12Dとの 2種類のマイクロレン ズ 122を形成することにより、画素セル 14内の受光部としての各フォトダイオード 11 の配置が行方向 (横方向)および列方向(縦方向)で周期的に異なる固体撮像装置 1 OBにおいても、上記実施形態 1の場合と同様に、各画素の受光感度を向上させ、画 素毎の集光のばらつきを少なくして、混色を低減することができる。 As described above, according to the third embodiment, the two types of microlenses, that is, the upper microlens 12A arranged for each pixel and the lower microlens 12D covering the four pixels are covered. In the solid-state imaging device 1OB in which the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction), As in the case of the first embodiment, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
(実施形態 4)  (Embodiment 4)
上記実施形態 1では、上に凸状のレンズ形状の上層マイクロレンズ 12Aおよび下 層マイクロレンズ 12Bの場合について説明した力 本実施形態 3では、上に凸状のレ ンズ形状の上層マイクロレンズ 12Aおよび、下に凸状で外周部分のみがレンズ曲面 形状の下層マイクロレンズ 12Eの場合にっ 、て説明につ 、て説明する。  In the first embodiment, the force described in the case of the upper microlens 12A and the lower microlens 12B having a convex lens shape in the first embodiment. In the third embodiment, the upper microlens 12A and the upper microlens 12A having a convex lens shape. In the case of the lower microlens 12E that is convex downward and only the outer peripheral portion has a curved surface, the description will be given.
[0095] 図 9は、本発明の実施形態 4に係る固体撮像装置について、図 1に示す B— B'線 部分で切断した場合と同様の要部縦断面図であり、真上力 画像光が入射されたと きの各フォトダイオードへの集光の様子を示す図である。なお、図 9では、上記実施 形態 1の図 2に対応しており、図 2の作用効果と同一の作用効果を奏する部材には同 一の符号を付している。また、上記実施形態 1の図 3に対応する斜め方向から画像光 が入射されたときの各フォトダイオードへの集光の様子については、図 3において、 上に凸状のレンズ形状の下層マイクロレンズ 12Bを、図 9で後述するが、下に凸状で 外周部分のみがレンズ曲面形状の下層マイクロレンズ 12Eに代えればよい。  FIG. 9 is a longitudinal sectional view of the main part of the solid-state imaging device according to Embodiment 4 of the present invention, which is the same as that cut along the line BB ′ shown in FIG. It is a figure which shows the mode of condensing to each photodiode when is incident. Note that FIG. 9 corresponds to FIG. 2 of the first embodiment, and members having the same operational effects as those of FIG. 2 are denoted by the same reference numerals. In addition, regarding the state of light condensing on each photodiode when image light is incident from an oblique direction corresponding to FIG. 3 of Embodiment 1, the lower microlens having a lens shape convex upward in FIG. As will be described later with reference to FIG. 9, 12B may be replaced with the lower-layer microlens 12E that is convex downward and only the outer peripheral portion has a curved surface.
[0096] 図 9において、本実施形態 4の固体撮像装置 10Cは、位置が周期的に異なるように 配置された複数の受光部としての複数のフォトダイオード 11と、この複数のフォトダイ オード 11上にそれぞれ画像光を集光するためのマイクロレンズ 123とを備えている。  In FIG. 9, a solid-state imaging device 10C according to the fourth embodiment includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that positions thereof are periodically different, and a plurality of photodiodes 11 on the plurality of photodiodes 11. And a microlens 123 for condensing image light.
[0097] 複数のフォトダイオード 11は、光をそれぞれ光電変換する各光電変換部であって、 平面視で行方向および列方向に周期的に異なるように配置されており、周期性を有 する 4つのフォトダイオード 11a〜: L idは、平面視で行方向および列方向に各 2画素 の合計 4画素毎に一つのグループを構成している。  The plurality of photodiodes 11 are photoelectric conversion units that photoelectrically convert light, and are arranged so as to be periodically different in the row direction and the column direction in plan view, and have periodicity 4 The two photodiodes 11a˜: L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
[0098] マイクロレンズ 123は、フォトダイオード 11毎に配置される第 1マイクロレンズとして の上層マイクロレンズ 12Aと、グループ化された 4つのフォトダイオード l la〜 l id毎 にこれらの上方を覆うようにまたがる第 2マイクロレンズとしての下層マイクロレンズ 12 Eとを有している。 [0099] 下層マイクロレンズ 12Eは、フォトダイオード 11と上層マイクロレンズ 12Aとの間に 設けられており、上層マイクロレンズ 12Aは、平面視で矩形状または正方形状であり 、その断面形状は上に凸状 (片面凸状)のレンズ形状 (下面は平面)であり、下層マイ クロレンズ 12Eは、平面視で矩形状または正方形状であり、その断面形状は下に凸 状 (片面凸状)のレンズ形状 (上面は平面)である。また、下層マイクロレンズ 12Eは、 平面視円形または楕円形の外周部分 12Eaが凸レンズ曲面形状に形成され、平面 視円形または楕円形の中央部分 12Ebが平面状に形成されている。このように、下層 マイクロレンズ 12Eが下に凸状でその平面視で外周部分のみが凸レンズ曲面形状の 場合には、グループ化したフォトダイオード 11c, l ld d lc, l idのみが図示されて V、るが実際には 1 la〜: L Idの 4つ全部)の外周部分の上層マイクロレンズ 12Aによる 集光を互いに内側に曲げて寄らせる (集光を互いに近づける)ことができる。また、下 層マイクロレンズ 12Eの透明材料の屈折率が、下層マイクロレンズ 12Eのレンズ曲面 側に接する透明材料の屈折率よりも大きく設定されている。 [0098] The microlens 123 covers the upper microlens 12A as the first microlens arranged for each photodiode 11 and the upper part of each of the grouped four photodiodes lla to lid. The lower microlens 12E as the second microlens is also provided. [0099] The lower-layer microlens 12E is provided between the photodiode 11 and the upper-layer microlens 12A. The upper-layer microlens 12A has a rectangular shape or a square shape in plan view, and its cross-sectional shape is convex upward. (Lower surface is flat), the lower microlens 12E is rectangular or square in plan view, and its cross-sectional shape is convex downward (single-sided convex) (The upper surface is a plane). In the lower microlens 12E, a circular or elliptical outer peripheral portion 12Ea is formed in a convex lens curved surface shape, and a circular or elliptical central portion 12Eb is formed in a planar shape in a planar view. Thus, when the lower microlens 12E is convex downward and only the outer peripheral portion has a convex lens curved surface shape in plan view, only the grouped photodiodes 11c, l ld d lc, l id are shown in the figure. However, in practice, the light collected by the upper microlens 12A on the outer peripheral portion of 1 la ~ (all four of L Id) can be bent toward each other (the light collected can be made closer to each other). Further, the refractive index of the transparent material of the lower layer microlens 12E is set to be larger than the refractive index of the transparent material in contact with the lens curved surface side of the lower layer microlens 12E.
[0100] したがって、上記実施形態 4によれば、各画素毎に配置される上層マイクロレンズ 1 2Aと、 4画素毎に画素上方を覆うようにまたがる下層マイクロレンズ 12Eとの 2種類の マイクロレンズ 123を形成することにより、画素セル 14内の受光部としての各フォト ダイオード 11の配置が行方向(横方向)および列方向(縦方向)で周期的に異なる固 体撮像装置 10Cにおいても、上記実施形態 1の場合と同様に、各画素の受光感度を 向上させ、画素毎の集光のばらつきを少なくして、混色を低減することができる。この 場合に、大きい下層マイクロレンズ 12Eを製造する場合に、中央部分が平面であるた め、その形成がより容易になる。  [0100] Therefore, according to Embodiment 4 described above, two types of microlenses 123, that is, the upper layer microlens 12A arranged for each pixel and the lower layer microlens 12E covering the upper portion of the pixel every four pixels. In the solid-state imaging device 10C, the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction). As in the case of Form 1, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing. In this case, when the large lower layer microlens 12E is manufactured, since the central portion is flat, the formation becomes easier.
(実施形態 5)  (Embodiment 5)
上記実施形態 1では、上に凸状のレンズ形状の上層マイクロレンズ 12Aがそれぞ れ単独で設けられている場合について説明した力 本実施形態 5では、上に凸状の レンズ形状の四つの上層マイクロレンズ力 グループとして隣接する場合に、互いに 重なるなど、互!、のレンズ周端部を超えて接近する場合につ!、て説明につ!、て説明 する。  In the first embodiment, the force described in the case where the upper microlens 12A having a convex lens shape is provided individually, in the fifth embodiment, the four upper layers having a convex lens shape are used in the fifth embodiment. When adjacent to each other as a microlens force group, they will overlap each other, such as overlapping each other, and will be described.
[0101] 図 10は、本発明の実施形態 5に係る固体撮像装置について、図 1に示す B— B'線 部分で切断した場合と類似の要部縦断面図であり、真上方向から画像光が入射され たときの各フォトダイオードへの集光の様子を示す図である。なお、図 10では、上記 実施形態 1の図 2に対応しており、図 2の作用効果と同一の作用効果を奏する部材に は同一の符号を付している。また、上記実施形態 1の図 3に対応する斜め方向から画 像光が入射されたときの各フォトダイオードへの集光の様子についてはここでは省略 している。 FIG. 10 shows a BB ′ line shown in FIG. 1 for the solid-state imaging device according to Embodiment 5 of the present invention. FIG. 5 is a vertical cross-sectional view of a main part similar to the case of cutting at a portion, and showing how light is focused on each photodiode when image light is incident from directly above. Note that FIG. 10 corresponds to FIG. 2 of the first embodiment, and members having the same effects as those of FIG. 2 are denoted by the same reference numerals. Further, the state of light condensing on each photodiode when the image light is incident from an oblique direction corresponding to FIG. 3 of the first embodiment is omitted here.
[0102] 図 10において、本実施形態 5の固体撮像装置 10Dは、位置が周期的に異なるよう に配置された複数の受光部としての複数のフォトダイオード 11と、この複数のフォトダ ィオード 11上にそれぞれ画像光を集光するためのマイクロレンズ 124とを備えている  In FIG. 10, a solid-state imaging device 10D according to the fifth embodiment includes a plurality of photodiodes 11 as a plurality of light receiving units arranged so that positions thereof are periodically different, and a plurality of photodiodes 11 on the plurality of photodiodes 11. Each has a microlens 124 for condensing image light
[0103] 複数のフォトダイオード 11は、光をそれぞれ光電変換する各光電変換部であって、 平面視で行方向および列方向に周期的に異なるように配置されており、周期性を有 する 4つのフォトダイオード 11a〜: L idは、平面視で行方向および列方向に各 2画素 の合計 4画素毎に一つのグループを構成している。 [0103] Each of the plurality of photodiodes 11 is a photoelectric conversion unit that photoelectrically converts light, and is arranged to be periodically different in the row direction and the column direction in a plan view, and has periodicity 4 The two photodiodes 11a˜: L id form one group for every four pixels in total in the row direction and the column direction in the row direction and the column direction.
[0104] マイクロレンズ 124は、フォトダイオード 11毎に配置される第 1マイクロレンズとして の上層マイクロレンズ 12Fと、グループ化された 4つのフォトダイオード l la〜l Id毎 にこれらの上方を覆うようにまたがる第 2マイクロレンズとしての下層マイクロレンズ 12 Bとを有している。  [0104] The microlens 124 covers the upper microlens 12F as the first microlens arranged for each photodiode 11, and the upper part of each of the grouped four photodiodes lla to lId. The lower microlens 12B as the second microlens is also provided.
[0105] 上層マイクロレンズ 12Fは、入射された光がそれぞれに対応するグループ毎の 4つ の各フォトダイオード 1 la〜l Id上の同じ位置に集光されるように、互いに隣接する 上層マイクロレンズ 12Fのうちの一部(例えば 4つのうちの 2つなど)または全部(例え ば 4つ全部)力 互いのレンズ周端部を超えて接近させる場合 (フォトダイオード同士 が接近しすぎる場合にレンズ自体が重なってもレンズを更に接近させる場合)に、互 いに重なるレンズ部分を切り取って隣接させたレンズ形状に形成されている。この互 いに隣接する上層マイクロレンズ 12Fは、上層マイクロレンズ 12Fの周縁部の少なく とも一部が隣接する上層マイクロレンズ 12Fと重なって形成されている。また、互いに 隣接する上層マイクロレンズ 12Fは、重なったレンズ部分を切り取ったレンズ形状同 士を接触、または所定隙間分だけ離間させて配置されている。さらに、各フォトダイォ ード 11の間隔に応じて上層マイクロレンズ 12Fの位置が異なつて配置されて!、る。 [0105] The upper microlenses 12F are adjacent to each other so that the incident light is condensed at the same position on each of the four photodiodes 1la to lId of each corresponding group. Part of 12F (for example, 2 out of 4) or all (for example, all 4) force When approaching beyond the peripheral edge of each lens (If the photodiodes are too close, the lens itself When the lenses are brought closer to each other even if they overlap, the overlapping lens portions are cut out and formed into adjacent lens shapes. The upper microlenses 12F adjacent to each other are formed so that at least a part of the peripheral edge of the upper microlens 12F overlaps the adjacent upper microlens 12F. The upper microlenses 12F adjacent to each other are arranged such that the same lens shape obtained by cutting out the overlapping lens portions is in contact with or separated by a predetermined gap. In addition, each photodio The position of the upper microlens 12F is different according to the distance of the card 11!
[0106] 下層マイクロレンズ 12Bは、フォトダイオード 11と上層マイクロレンズ 12Fとの間に 設けられており、上層マイクロレンズ 12Fは、平面視で矩形状または正方形状であり 、その断面形状は上に凸状 (片面凸状)のレンズ形状 (下面は平面)であり、下層マイ クロレンズ 12Bは、平面視で矩形状または正方形状であり、その断面形状は上に凸 状 (片面凸状)のレンズ形状(下面は平面)である。このように、下層マイクロレンズ 12 Bは、グループ化したフォトダイオード 11a〜: L idの各位置に合わせて、各上層マイク 口レンズ 12Fによる集光を互いに内側に曲げて寄らせる (集光を互いに近づける)こと ができる。また、下層マイクロレンズ 12Bの透明材料の屈折率は、下層マイクロレンズ 12Bのレンズ曲面側に接する透明材料の屈折率よりも大きく設定されている。 [0106] The lower microlens 12B is provided between the photodiode 11 and the upper microlens 12F. The upper microlens 12F is rectangular or square in plan view, and its cross-sectional shape is convex upward (Lower surface is flat), and the lower microlens 12B is rectangular or square in plan view, and its cross-sectional shape is convex upward (single-sided convex) (The lower surface is a plane). In this way, the lower-layer microlens 12 B causes the condensing by the upper-layer microphone lens 12F to bend inward toward each other in accordance with the positions of the grouped photodiodes 11a to: L id (the condensing is mutually shifted). Can be brought close). The refractive index of the transparent material of the lower layer microlens 12B is set to be larger than the refractive index of the transparent material in contact with the lens curved surface side of the lower layer microlens 12B.
[0107] 上層マイクロレンズ 12Fの形成方法の一例について簡単に説明する。 An example of a method for forming the upper microlens 12F will be briefly described.
[0108] 従来、マイクロレンズ同士を重ねてくっ付ける場合には、固まった後に互いに引つ 張られて表面が変形したり内部応力が生じてクラックの原因になったり、レンズとして 使えない状態になる場合があるので、本実施形態 5では、上層マイクロレンズ 12Fの 配置間隔を縮小して互いに重ねる場合には、重なる一方の上層マイクロレンズ 12F を形成して固まってから、他方の上層マイクロレンズ 12Fを形成して固めるというよう に、 2回に分けて別々に上層マイクロレンズ 12Fを形成すること(4つの上層マイクロレ ンズ 12Fがグループ化している場合には、 2つづつ形成して固めること)によって、上 記問題を解決し、一方が他方に重なる場合にも、隣接する上層マイクロレンズ 12Fの 位置を任意に近づけて光軸 Cの間隔を容易に設定できる。 [0108] Conventionally, when microlenses are stacked on top of each other, they are stretched and then pulled together to deform the surface or cause internal stress to cause cracks or become unusable as a lens. Therefore, in the fifth embodiment, when the arrangement interval of the upper microlenses 12F is reduced and overlapped with each other, the upper microlenses 12F that overlap each other are formed and solidified, and then the upper microlens 12F of the other upper layer is fixed. By forming the upper microlens 12F separately in two steps, such as forming and hardening (if the four upper microlenses 12F are grouped, form and harden them two at a time) Even when one of the above problems is solved and one of them overlaps the other, the position of the adjacent upper-layer microlens 12F can be made arbitrarily close so that the interval between the optical axes C can be easily set.
[0109] 即ち、上層マイクロレンズ 12Fの形成方法は、各上層マイクロレンズ 12Fのうち互い に接触しない位置にある各上層マイクロレンズ 12Fを形成する第 1工程と、形成して Vヽな 、各上層マイクロレンズ 12Fのうち互いに接触しな!、位置にある上層マイクロレ ンズ 12Fを、少なくとも行方向および列方向のいずれか一方向(ここでは行方向およ び列方向の両方向)に、既に形成された隣接する上層マイクロレンズ 12Fと重なるか または接触するように形成する第 2工程とを有し、形成して!/ヽな 、上層マイクロレンズ 12Fがなくなるまでこの第 2の工程を繰り返す。 That is, the method of forming the upper microlens 12F includes the first step of forming the upper microlenses 12F that are not in contact with each other out of the upper microlenses 12F, The microlenses 12F do not come into contact with each other! The upper microlens 12F at a position is already formed in at least one of the row direction and the column direction (here, both the row direction and the column direction). The second step is formed so as to overlap or be in contact with the adjacent upper-layer microlens 12F, and the second step is repeated until the upper-layer microlens 12F disappears.
[0110] また、上層マイクロレンズ 12Fの形成方法として、重なったレンズ部分を切り取った レンズ形状同士を所定隙間分だけ微細な隙間を開けて配置する場合には、少なくと も行方向および列方向の 、ずれか一方向(ここでは行方向および列方向の両方向) に、互いに隣接する上層マイクロレンズ 12Fとして、重なったレンズ部分を切り取った レンズ形状同士を、所定隙間分だけ離間させて形成する工程を有する。 [0110] Also, as a method of forming the upper microlens 12F, the overlapping lens portions were cut off. When the lens shapes are arranged with a minute gap by a predetermined gap, they are adjacent to each other in at least one direction (here, both the row direction and the column direction) in the row direction and the column direction. As the upper microlens 12F, there is a step of forming the lens shapes obtained by cutting the overlapping lens portions apart from each other by a predetermined gap.
[0111] このように、各上層マイクロレンズ 12Fの間隔を任意に縮小をして設定することがで きるため、各フォトダイオード 11の位置、受光感度およびシェーディング特性を考慮 して、例えば、各フォトダイオード 11の中心位置 C1が上層マイクロレンズ 12Fの光軸 位置 C2と一致するように、上層マイクロレンズ 12Fの最適位置に、容易に配置するこ とがでさる。 [0111] Since the interval between the upper microlenses 12F can be arbitrarily reduced and set as described above, for example, each photon 11 is considered in consideration of the position, light receiving sensitivity, and shading characteristics. It can be easily arranged at the optimum position of the upper microlens 12F so that the center position C1 of the diode 11 coincides with the optical axis position C2 of the upper microlens 12F.
[0112] したがって、上記実施形態 5によれば、各画素毎に配置される上層マイクロレンズ 1 2Fと、 4画素を覆うようにまたがる下層マイクロレンズ 12Bとの 2種類のマイクロレンズ 124を形成することにより、画素セル 14内の受光部としての各フォトダイオード 11の 配置が行方向 (横方向)および列方向(縦方向)で周期的に異なる固体撮像装置 10 Dにおいて、画素サイズが更に縮小される場合にも、各画素の受光感度を向上させ、 画素毎の集光のばらつきを少なくして、混色を低減することができる。  Therefore, according to the fifth embodiment, the two types of microlenses 124 are formed, that is, the upper microlens 12F arranged for each pixel and the lower microlens 12B covering the four pixels. Thus, the pixel size is further reduced in the solid-state imaging device 10 D in which the arrangement of the photodiodes 11 as the light receiving portions in the pixel cell 14 is periodically different in the row direction (horizontal direction) and the column direction (vertical direction). Even in this case, it is possible to improve the light receiving sensitivity of each pixel, reduce the variation in light collection for each pixel, and reduce color mixing.
[0113] 以上により、上記実施形態 1〜5によれば、各フォトダイオード 11の配置が行方向 および列方向で周期的に異なるように各フォトダイオード 11が偏った画素セル 14を 有する固体撮像装置 10 (または 10A、 10B、 10C、 10D)において、周期性を有する 4画素をグループ化し、一つのグループ毎に、各画素毎に配置され、画像光を集光 するための上層マイクロレンズ 12A (または 12F)と、 4画素を覆ってまたがり、上層マ イク口レンズ 12A (または 12F)による集光を内側に曲げるための下層マイクロレンズ 1 2B (または 12C、 12D、 12E)とを有している。これによつて、画素サイズ  As described above, according to the first to fifth embodiments, the solid-state imaging device includes the pixel cells 14 in which the photodiodes 11 are biased so that the arrangement of the photodiodes 11 is periodically different in the row direction and the column direction. In 10 (or 10A, 10B, 10C, 10D), four pixels having periodicity are grouped, and each group is arranged for each pixel, and the upper microlens 12A (or a lens for collecting image light) is collected. 12F) and a lower-layer microlens 12B (or 12C, 12D, 12E) for covering the four pixels and bending the light collected by the upper-layer microphone lens 12A (or 12F) inward. Because of this, the pixel size
が更に縮小される場合にも、上下二つのマイクロレンズにより集光しつつ、受光無効 領域を縮小して集光率を高めて各画素の受光感度を向上させ、 F値による画素の特 性劣化を抑制することができる。  Even when the image is further reduced, the light receiving invalid area is reduced while condensing with the two upper and lower microlenses to improve the light receiving sensitivity of each pixel, and the pixel characteristics deteriorate due to the F value. Can be suppressed.
[0114] また、受光部領域の中央部分とその周辺部分、その周辺部分でも位置によって三 原色の RGBの混色の様子(Gに Rが混ざったり Gに B混ざったりする様子)が異なって いたが、上記実施形態 1〜4によれば、受光部領域の中央部分でもその周辺部分で も、受光部(各フォトダイオード 11)の中央部分に容易かつ確実に集光させることがで きるため、受光感度はもちろんのこと、輝度シェーディング特性の低下ゃ不均一を防 ぐことができ。よって、これを補正処理で解決しょうとすると複雑な補正制御は必要な くなる。 [0114] In addition, the central color of the light-receiving area, the peripheral area, and the peripheral area of the RGB color mixture of three primary colors (G mixed with R and G mixed with B) differed. According to Embodiments 1 to 4 above, even in the central part of the light receiving part region, However, since it can be easily and reliably focused on the center of the light receiving section (each photodiode 11), not only the light receiving sensitivity but also the luminance shading characteristics can be prevented from being uneven. Therefore, complicated correction control is not necessary to solve this problem by correction processing.
[0115] なお、上記実施形態 1〜5では、下層マイクロレンズ 12B〜12Dは、矩形または正 方形の平面視形状を有し、この平面視形状の外周部分およびその内側の中央部分 が共にレンズ曲面形状の場合について説明し、また、下層マイクロレンズ 12Eは、矩 形または正方形の平面視形状を有し、この平面視形状の外周部分がレンズ曲面形 状で、平面視形状の外周部分の内側の中央部分が平面形状の場合について説明し たが、これに限らず、本発明の下層マイクロレンズは、円形 (近似円形を含む)または 楕円形の平面視形状を有しておてもよぐこの平面視形状の外周部分およびその内 側の中央部分が共にレンズ曲面形状であってもよぐその中央部分が平面形状であ つてもよい。要するに、本発明の下層マイクロレンズは、円(近似円形を含む)、楕円( 近似楕円形を含む)、矩形 (近似矩形を含む;四隅の角のうち少なくとも一つの角が アール状になって 、る)または正方形 (近似正方形を含む;少なくとも一つの角がァ ール状など)の平面視形状を有しており、該平面視形状の少なくとも外周部分がレン ズ曲面形状に形成されて!、る。  [0115] In the first to fifth embodiments, the lower microlenses 12B to 12D have a rectangular or square plan view shape, and both the outer peripheral portion of the plan view shape and the inner central portion thereof are lens curved surfaces. In the case of the shape, the lower microlens 12E has a rectangular or square plan view shape, and the outer peripheral portion of the plan view shape is a lens curved surface shape, and the inner side of the outer peripheral portion of the plan view shape. Although the case where the central portion has a planar shape has been described, the present invention is not limited to this, and the lower layer microlens of the present invention may have a circular (including approximate circular) or elliptical planar view shape. Both the outer peripheral portion in the plan view shape and the inner central portion thereof may be a lens curved surface shape, or the central portion may be a planar shape. In short, the lower layer microlens of the present invention is a circle (including an approximate circle), an ellipse (including an approximate ellipse), a rectangle (including an approximate rectangle), and at least one of the four corners is rounded. Or a square (including an approximate square; at least one corner is in the shape of a ball, etc.), and at least the outer peripheral portion of the planar view is formed into a lens curved surface! The
[0116] また、上記実施形態 1〜5では、複数の受光部としての複数のフォトダイオード 11は 、平面視で列方向および行方向にマトリクス状(2次元状)に設けられ、この列方向お よび行方向に共に周期的に異なるように配置されている場合について説明した力 こ れに限らず、画素セル 14内の受光部(フォトダイオード 11)の位置が行方向および 列方向のうちの ヽずれか一方向に周期的に異なる全ての固体撮像装置にも適用す ることができる。また、このような列方向および行方向の直交する方向に限らず、複数 のフォトダイオード 11は、平面視で一方向およびこの一方向と交差する方向のうちの 少なくともいずれかの方向に周期的に異なるように配置されている場合にも本発明を 適用することができる。 In the first to fifth embodiments, the plurality of photodiodes 11 as the plurality of light receiving portions are provided in a matrix (two-dimensional) in the column direction and the row direction in plan view. In addition, the force described in the case where they are arranged so as to be periodically different in the row direction is not limited to this, and the position of the light receiving portion (photodiode 11) in the pixel cell 14 is The present invention can also be applied to all solid-state imaging devices that are periodically shifted in one direction. In addition to the direction orthogonal to the column direction and the row direction, the plurality of photodiodes 11 are periodically arranged in one direction and at least one direction intersecting the one direction in plan view. The present invention can also be applied to a case where they are arranged differently.
[0117] さらに、上記実施形態 1〜5では、周期性を有する複数の画素として、 4画素を一つ のグループとしたが、本発明はこれに限らず、周期性を有する 2画素以上の複数の 画素が設けられた全ての固体撮像装置に適用することができる。 Furthermore, in Embodiments 1 to 5 above, four pixels are grouped as a plurality of pixels having periodicity. However, the present invention is not limited to this, and a plurality of pixels having two or more having periodicity is used. of The present invention can be applied to all solid-state imaging devices provided with pixels.
[0118] 例えば、周期性を有する所定数の受光部(フォトダイオード 11)として、平面視で列 方向または行方向に 2画素が一つのグループとされていてもよい。この場合に、ダル ープ化された 2画素毎に、受光部(フォトダイオード 11)の 2つ力 隣接する各画素間 のチャンネルストップ部 13側に均等に寄って形成されている。また、グループィ匕され た 2画素にまたがる下層マイクロレンズは、 2画素を構成する 2つの受光部(フォトダイ オード 11)間の中心であるチャンネルストップ部 13上に光軸 Cがー致するように設け られている。  [0118] For example, as a predetermined number of light-receiving portions (photodiodes 11) having periodicity, two pixels may be grouped in the column direction or the row direction in plan view. In this case, every doubled pixel is formed equally on the channel stop 13 side between adjacent pixels of the light receiving section (photodiode 11). In addition, the lower-layer microlens that extends over the two pixels grouped together is such that the optical axis C coincides with the channel stop portion 13 that is the center between the two light receiving portions (photodiodes 11) constituting the two pixels. Is provided.
[0119] また、前述したが、周期性を有する所定数の受光部 (フォトダイオード 11)として、平 面視で列方向および行方向に各 2画素の合計 4画素が一つのグループとされて 、る 場合には、グループ化された 4画素毎に、受光部(フォトダイオード 11)の 4つ力 隣 接する各画素間の 2本のチャンネルストップ部 13のクロス部分側に均等に寄って形 成されている。また、グループ化された 4画素にまたがる下層マイクロレンズは、 4画 素を構成す  [0119] Further, as described above, a predetermined number of light-receiving portions (photodiodes 11) having periodicity, a total of four pixels of two pixels each in the column direction and the row direction in a plan view are grouped together. In this case, every four grouped pixels are formed evenly on the cross part side of the two channel stop portions 13 between the adjacent four pixels of the light receiving portion (photodiode 11). ing. In addition, the grouped lower microlens that spans four pixels constitutes four pixels.
る 4つの受光部(フォトダイオード 11)の中心である 2本のチャンネルストップ部 13のク ロス部分の中心位置に光軸 Cがー致するように設けられて 、る。  The optical axis C is arranged so that it matches the center position of the cross section of the two channel stop sections 13 which are the centers of the four light receiving sections (photodiodes 11).
[0120] さらに、上記実施形態 1〜5では、第 1マイクロレンズとしての上層マイクロレンズ 12 A (または 12F)の断面形状が上に凸レンズ形状で、第 2マイクロレンズとしての下層 マイクロレンズ 12Bまたは 12C、 12D, 12Eの断面形状が、上、下または上下に凸レ ンズ形状である場合について説明したが(上層マイクロレンズ 12Fと下層マイクロレン ズ 12Bまたは 12C、 12D, 12Eの組合せでもよい)、これに限らず、上層マイクロレン ズ 12A (または 12F)の断面形状として、下または上下に凸レンズ形状であってもよく 、これらのいずれ力と上記下層マイクロレンズ 12Bまたは 12C、 12D, 12Eとの組合 せであってもよい。 Furthermore, in Embodiments 1 to 5 above, the cross-sectional shape of the upper microlens 12 A (or 12F) as the first microlens is an upward convex lens shape, and the lower microlens 12B or 12C as the second microlens. Although the case where the cross-sectional shape of 12D, 12E is a convex lens shape up, down or up and down has been described (the combination of the upper microlens 12F and the lower microlens 12B or 12C, 12D, 12E may be used) The cross-sectional shape of the upper-layer microlens 12A (or 12F) is not limited to the above, and may be a convex lens shape below or above and below, and any of these forces is combined with the lower-layer microlenses 12B or 12C, 12D, and 12E. It may be.
[0121] さらに、本発明は、上記実施形態 1〜5では、特に説明しな力つたが、各フォトダイ オード 11と各上層マイクロレンズ 12Aまたは 12Fとの各位置がそれぞれ周期的に異 なるように N画素単位 (Nは 2以上の整数)で周期的に配置されている。また、各フォト ダイオード 11と各上層マイクロレンズ 12Aまたは 12Fとの各位置がそれぞれマトリクス 状に配列されており、行方向に I画素 (Iは 2以上の整数)、列方向に J画素 Ciは 2以上 の整数)の合計 K画素単位 (K=I XJ)で周期的に配置されて 、る。これらの N画素単 位または K画素単位で所定数の画素としてグループ化されている。 [0121] Furthermore, the present invention has been described in the first to fifth embodiments, but the positions of the photodiodes 11 and the upper microlenses 12A or 12F are periodically different from each other. Are periodically arranged in N pixel units (N is an integer of 2 or more). Also, each position of each photodiode 11 and each upper microlens 12A or 12F is a matrix. The pixels are arranged periodically in a unit of K pixels (K = I XJ) of I pixels in the row direction (I is an integer of 2 or more) and J pixels Ci in the column direction is an integer of 2 or more. And These N pixels or K pixels are grouped as a predetermined number of pixels.
[0122] さらに、本発明は、上記実施形態 1, 2, 5で説明した製造方法に限定されず、フォト リソグラフィー、エッチングなど、周知のプロセス技法によりマイクロレンズが形成され た全ての固体撮像装置に適用することができる。  Furthermore, the present invention is not limited to the manufacturing method described in the first, second, and fifth embodiments, but can be applied to all solid-state imaging devices in which microlenses are formed by a known process technique such as photolithography or etching. Can be applied.
[0123] さらに、本発明は、上記実施形態 1〜5では、特に説明しな力つたが、 CCD型ィメ ージセンサや CMOS型イメージセンサのいずれにも適用することができる。  [0123] Furthermore, the present invention is not particularly described in Embodiments 1 to 5, but can be applied to any of a CCD image sensor and a CMOS image sensor.
[0124] さらに、上記実施形態 1〜5では、特に説明しな力つたが、次に、上記実施形態 1〜 4の固体撮像装置 10 (または 10A、 10B、 10C、 10D)を撮像部に用いた例えばデ ジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、画像入力カメラ、 スキャナ、ファクシミリ、カメラ付き携帯電話装置などの画像入力デバイスを有した電 子情報機器について説明する。本発明の電子情報機器は、例えば、本発明の上記 実施形態 1〜5の固体撮像装置 10 (または 10A、 10B、 10C、 10D)のいずれかを撮 像部に用 、て得た高品位な画像データを記録用に所定の信号処理した後にデータ 記録する記録メディアなどのメモリ部と、この画像データを表示用に所定の信号処理 した後に液晶表示画面などの表示画面上に表示する液晶表示装置などの表示手段 と、この画像データを通信用に所定の信号処理をした後に通信処理する送受信装置 などの通信手段と、この画像データを印刷(印字)して出力(プリントアウト)する画像 出力手段とのうちの少なくともいずれかを有している。  [0124] Further, in Embodiments 1 to 5 described above, there was no particular explanation. Next, the solid-state imaging device 10 (or 10A, 10B, 10C, and 10D) of Embodiments 1 to 4 is used as an imaging unit. An electronic information device having an image input device such as a digital camera such as a digital video camera or a digital still camera, an image input camera, a scanner, a facsimile, or a camera-equipped mobile phone will be described. The electronic information device of the present invention is, for example, a high-quality image obtained by using any of the solid-state imaging devices 10 (or 10A, 10B, 10C, and 10D) of Embodiments 1 to 5 of the present invention as the imaging unit. A memory unit such as a recording medium for recording data after the image data has been subjected to predetermined signal processing for recording, and a liquid crystal display device for displaying the image data on a display screen such as a liquid crystal display screen after performing predetermined signal processing for display Display means, etc .; communication means such as a transmission / reception device for performing communication processing after the image data is subjected to predetermined signal processing for communication; and image output means for printing (printing) and outputting (printing out) the image data And at least one of the above.
[0125] 以上のように、本発明の好ましい実施形態 1〜5を用いて本発明を例示してきた力 本発明は、この実施形態 1〜5に限定して解釈されるべきものではない。本発明は、 特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当 業者は、本発明の具体的な好ましい実施形態 1〜5の記載から、本発明の記載およ び技術常識に基づ 、て等価な範囲を実施することができることが理解される。本明細 書において引用した特許、特許出願および文献は、その内容自体が具体的に本明 細書に記載されているのと同様にその内容が本明細書に対する参考として援用され るべきであることが理解される。 産業上の利用可能性 [0125] As described above, the power that has exemplified the present invention using the preferred embodiments 1 to 5 of the present invention. The present invention should not be construed as being limited to the embodiments 1 to 5. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range from the description of specific preferred embodiments 1 to 5 of the present invention based on the description of the present invention and the common general technical knowledge. Patents, patent applications and documents cited in this specification should be incorporated by reference in their entirety, as if the contents themselves were specifically described in this specification. Understood. Industrial applicability
本発明は、受光部上にマイクロレンズを備えた CCD型イメージセンサや CMOS型 ィ  The present invention relates to a CCD type image sensor or a CMOS type pixel having a microlens on a light receiving portion.
メージセンサなどの固体撮像装置および、この固体撮像装置を、画像入力デバイス のデジタルカメラや、画像入力カメラ、スキャナ、ファクシミリ、カメラ付き携帯電話装置 などの電子情報機器の分野において、画素サイズが更に縮小される場合にも、上下 二つの第 1マイクロレンズおよび第 2マイクロレンズにより集光しつつ、受光無効領域 を縮小して集光率を高めて各画素における受光感度を向上させると共に、受光領域 周辺部などにおいて、角度が大きい斜め光が入射されたときに生じる集光率のばら つきや混色を低減できて各画素の特性劣化を抑制できるなど、画素の特性向上を図 ることでさる。 Pixel sizes are further reduced in the field of solid-state imaging devices such as image sensors and electronic information devices such as digital cameras for image input devices, image input cameras, scanners, facsimiles, and camera-equipped mobile phone devices. In this case, the light receiving invalid area is reduced to increase the light collection rate by condensing light by the two upper and lower first microlenses and the second microlens. For example, it is possible to improve the pixel characteristics, such as reducing variations in light collection rate and color mixing that occur when oblique light with a large angle is incident, thereby suppressing deterioration of the characteristics of each pixel.

Claims

請求の範囲 The scope of the claims
[I] 位置が周期的に異なるように配置された複数の受光部と、該複数の受光部上にそ れぞれ光を集光するためのマイクロレンズとを備えた固体撮像装置において、 周期性を有する所定数の受光部毎にグループィヒされ、各グループに対してそれぞ れ、該マイクロレンズは、該受光部毎に配置される第 1マイクロレンズと、該所定数の 受光部上方を覆うようにまたがる第 2マイクロレンズとを有している固体撮像装置。  [I] In a solid-state imaging device including a plurality of light receiving units arranged so that their positions are periodically different, and a microlens for condensing light on each of the plurality of light receiving units, Grouped for each predetermined number of light-receiving units having the same property, and for each group, the microlens covers the first microlens arranged for each light-receiving unit and the upper part of the predetermined number of light-receiving units. A solid-state imaging device having a second microlens that straddles.
[2] 前記第 2マイクロレンズは、円、楕円、矩形または正方形の平面視形状を有しており[2] The second microlens has a circular, elliptical, rectangular or square plan view shape.
、該平面視形状の少なくとも外周部分がレンズ曲面形状に形成されている請求項 1 に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein at least an outer peripheral portion of the planar view shape is formed in a lens curved surface shape.
[3] 前記第 2マイクロレンズは、前記平面視形状の外周部分の内側の中央部分がレン ズ曲面形状力または平面形状に形成されている請求項 2に記載の固体撮像装置。 [3] The solid-state imaging device according to [2], wherein the second micro lens has a lens curved surface shape force or a planar shape at a central portion inside the outer peripheral portion of the planar view shape.
[4] 前記第 2マイクロレンズは、前記所定数の受光部と前記第 1マイクロレンズとの間に 設けられて 、る請求項 1〜3の 、ずれかに記載の固体撮像装置。 [4] The solid-state imaging device according to any one of claims 1 to 3, wherein the second microlens is provided between the predetermined number of light receiving units and the first microlens.
[5] 前記第 1マイクロレンズは、前記第 2マイクロレンズよりも上層に位置している請求項[5] The first microlens is located in an upper layer than the second microlens.
1〜3のいずれかに記載の固体撮像装置。 The solid-state imaging device according to any one of 1 to 3.
[6] 前記第 2マイクロレンズは、前記受光部毎に配置された各第 1マイクロレンズによる 集光を、前記周期性を有する所定数の受光部毎に内側に曲げる構成となっている請 求項 1〜5のいずれかに記載の固体撮像装置。 [6] The second microlens is configured to be configured to bend the light collected by each first microlens arranged for each light receiving unit inward for each predetermined number of light receiving units having the periodicity. Item 6. The solid-state imaging device according to any one of Items 1 to 5.
[7] 前記第 2マイクロレンズの断面形状が、上、下または上下に凸レンズ形状である請 求項 1〜6のいずれかに記載の固体撮像装置。 [7] The solid-state imaging device according to any one of [1] to [6], wherein a cross-sectional shape of the second microlens is a convex lens shape up, down, or up and down.
[8] 前記第 1マイクロレンズの断面形状が、上、下または上下に凸レンズ形状である請 求項 1〜6のいずれかに記載の固体撮像装置。 [8] The solid-state imaging device according to any one of claims 1 to 6, wherein a cross-sectional shape of the first microlens is a convex lens shape upward, downward, or vertically.
[9] 前記第 1マイクロレンズおよび前記第 2マイクロレンズは、前記各受光部の中央部に 光が集光されるように配置されて 、る請求項 1に記載の固体撮像装置。 [9] The solid-state imaging device according to [1], wherein the first microlens and the second microlens are arranged so that light is collected at a central portion of each of the light receiving portions.
[10] 前記受光部間の上方にあって、該受光部と前記第 1マイクロレンズおよび前記第 2 マイクロレンズとの間に金属配線層が設けられている請求項 1に記載の固体撮像装 置。 10. The solid-state imaging device according to claim 1, wherein a metal wiring layer is provided between the light receiving part and the first micro lens and the second micro lens above the light receiving part. .
[II] 前記第 1マイクロレンズがカラーフィルタ層よりも上層に設けられ、前記第 2マイクロ レンズが該カラーフィルタ層よりも下層に設けられて 、る請求項 1に記載の固体撮像 装置。 [II] The first microlens is provided above the color filter layer, and the second microlens The solid-state imaging device according to claim 1, wherein the lens is provided below the color filter layer.
[12] 前記複数の受光部は、平面視で一方向および該ー方向と交差する方向のうちの少 なくとも 、ずれかの方向に周期的に異なるように配置されて 、る請求項 1に記載の固 体撮像装置。  [12] The plurality of light receiving units may be arranged so as to be periodically different in at least one of a direction and a direction crossing the negative direction in a plan view. The solid-state imaging device described.
[13] 前記複数の受光部は、平面視で列方向および行方向にマトリクス状に設けられ、該 列方向および行方向の少なくとも一方向に周期的に異なるように配置されている請 求項 1または 12に記載の固体撮像装置。  [13] The plurality of light receiving units are provided in a matrix in the column direction and the row direction in a plan view, and are arranged so as to be periodically different in at least one direction of the column direction and the row direction. Or the solid-state imaging device of 12.
[14] 前記周期性を有する所定数の受光部は、平面視で列方向および行方向に各 2画 素の合計  [14] The predetermined number of light receiving units having periodicity is a sum of two pixels in the column direction and the row direction in plan view.
4画素が一つのグループとされている請求項 1、 12および 13のいずれかに記載の固 体撮像装置。  14. The solid-state imaging device according to claim 1, wherein four pixels are grouped into one group.
[15] 前記周期性を有する所定数の受光部は、平面視で列方向または行方向に 2画素 がーつのグループとされている請求項 1、 12および 13のいずれかに記載の固体撮 像装置。  [15] The solid-state imaging according to any one of [1], [12], and [13], wherein the predetermined number of light-receiving portions having periodicity are grouped with two pixels in the column direction or the row direction in plan view. apparatus.
[16] 前記グループィ匕された 4画素毎に、前記受光部の 4つが、隣接する各画素間のチ ヤンネルストップ部のクロス部分側に均等に寄って形成されている請求項 14に記載 の固体撮像装置。  [16] The four-sided light-receiving portions of the four pixels grouped are formed so as to be evenly offset toward the cross portion side of the channel stop portion between adjacent pixels. Solid-state imaging device.
[17] 前記グループィ匕された 4画素にまたがる下層マイクロレンズは、前記 4画素を構成 する 4つの受光部の中心である前記チャンネルストップ部のクロス部分に光軸が一致 するように設けられて 、る請求項 16に記載の固体撮像装。  [17] The lower-layer microlens straddling the grouped four pixels is provided so that the optical axis coincides with the cross portion of the channel stop portion that is the center of the four light receiving portions constituting the four pixels. The solid-state imaging device according to claim 16.
[18] 前記グループィ匕された 2画素毎に、前記受光部の 2つが、隣接する各画素間のチ ヤンネルストップ部側に均等に寄って形成されて ヽる請求項 15に記載の固体撮像装 置。 18. The solid according to claim 15, wherein, for every two pixels grouped, two of the light receiving portions are formed evenly on the channel stop portion side between adjacent pixels. Imaging device.
[19] 前記グループィ匕された 2画素にまたがる下層マイクロレンズは、前記 2画素を構成 する 2つの受光部間の中心である前記チャンネルストップ部に光軸が一致するように 設けられている請求項 18に記載の固体撮像装。  [19] The lower-layer microlens straddling the grouped two pixels is provided so that an optical axis thereof coincides with the channel stop portion which is a center between two light receiving portions constituting the two pixels. Item 18. The solid-state imaging device according to Item 18.
[20] 前記第 1マイクロレンズに入射された光がそれぞれに対応する受光部上の同じ位 置に前記第 2マイクロレンズを通して集光されるように、前記グループィ匕した互いに隣 接する第 1マイクロレンズのうちの一部または全部力 互いのレンズ周端部を超えて 接近させる場合に、互いに重なるレンズ部分を切り取って隣接させたレンズ形状に形 成されて!/ヽる請求項 1に記載の固体撮像装置。 [20] The light incident on the first microlens is in the same position on the corresponding light receiving unit. In the case where some or all of the grouped first microlenses adjacent to each other are made to approach each other beyond the peripheral edge of each other so as to be condensed through the second microlens. 2. The solid-state imaging device according to claim 1, wherein the overlapping lens portions are cut out and formed into a lens shape adjacent to each other.
[21] 前記互いに隣接する第 1マイクロレンズは、該第 1マイクロレンズの周縁部の少なく とも一部が隣接する第 1マイクロレンズと重なって形成されている請求項 20に記載の 固体撮像装置。 21. The solid-state imaging device according to claim 20, wherein the first microlenses adjacent to each other are formed so that at least a part of a peripheral edge of the first microlens overlaps the adjacent first microlens.
[22] 前記互いに隣接する第 1マイクロレンズは、前記重なったレンズ部分を切り取ったレ ンズ形状同士を接触させて配置されて ヽる請求項 20に記載の固体撮像装置。  22. The solid-state imaging device according to claim 20, wherein the first microlenses adjacent to each other are arranged in contact with lens shapes obtained by cutting out the overlapping lens portions.
[23] 前記互いに隣接する第 1マイクロレンズは、前記重なったレンズ部分を切り取ったレ ンズ形状同士を所定隙間分だけ離間させて配置されている請求項 20に記載の固体 撮像装置。  23. The solid-state imaging device according to claim 20, wherein the first microlenses adjacent to each other are arranged such that lens shapes obtained by cutting out the overlapping lens portions are separated by a predetermined gap.
[24] 前記受光部の間隔に応じて前記第 1マイクロレンズの位置が異なって配置されてい る請求項 20に記載の固体撮像装置。  24. The solid-state imaging device according to claim 20, wherein the position of the first microlens is arranged differently according to the interval between the light receiving portions.
[25] 前記受光部および前記第 1マイクロレンズの各位置がそれぞれ周期的に異なるよう に N画素単位 (Nは 2以上の整数)で周期的に配置されている請求項 1または 20に記 載の固体撮像装置。 [25] The configuration according to claim 1 or 20, wherein each position of the light receiving unit and the first microlens is periodically arranged in units of N pixels (N is an integer of 2 or more) so as to be periodically different. Solid-state imaging device.
[26] 前記受光部および前記第 1マイクロレンズの各位置がそれぞれマトリクス状に配列 されており、行方向に I画素 (Iは 2以上の整数)、列方向に J画素 CFは 2以上の整数) の K画素単位 (K=I XJ)で周期的に配置されている請求項 1または 20に記載の固 体撮像装置。  [26] The positions of the light receiving unit and the first microlens are arranged in a matrix, respectively, I pixels in the row direction (I is an integer of 2 or more), J pixels CF in the column direction are integers of 2 or more 21. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is periodically arranged in K pixel units (K = I XJ).
[27] 前記所定数の受光部毎に一つの出力アンプが共有して設けられている請求項 1ま たは 20に記載の固体撮像装置。  27. The solid-state imaging device according to claim 1, wherein one output amplifier is shared for each of the predetermined number of light receiving units.
[28] 前記受光部は光を光電変換する光電変換部である請求項 1または 20に記載の固 体撮像装置。 28. The solid-state imaging device according to claim 1, wherein the light receiving unit is a photoelectric conversion unit that photoelectrically converts light.
[29] CCD型イメージセンサまたは CMOS型イメージセンサである請求項 1または 20に 記載の固体撮像装置。  [29] The solid-state imaging device according to [1] or [20], which is a CCD type image sensor or a CMOS type image sensor.
[30] 請求項 1〜29のいずれかに記載の固体撮像装置を撮像部に用いた電子情報機器 [30] An electronic information device using the solid-state imaging device according to any one of claims 1 to 29 as an imaging unit
PCT/JP2007/059985 2006-05-18 2007-05-15 Solid-state imaging device and electronic information apparatus WO2007135903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006139299A JP2007311563A (en) 2006-05-18 2006-05-18 Solid-state imaging apparatus, and electronic information equipment
JP2006-139299 2006-05-18

Publications (1)

Publication Number Publication Date
WO2007135903A1 true WO2007135903A1 (en) 2007-11-29

Family

ID=38723217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059985 WO2007135903A1 (en) 2006-05-18 2007-05-15 Solid-state imaging device and electronic information apparatus

Country Status (3)

Country Link
JP (1) JP2007311563A (en)
TW (1) TW200818477A (en)
WO (1) WO2007135903A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852921B2 (en) * 2005-07-26 2012-01-11 凸版印刷株式会社 Solid-state imaging device and manufacturing method thereof
KR20110008762A (en) 2009-07-21 2011-01-27 삼성전자주식회사 Unit pixel and cmos image sensor having the same
JP5741012B2 (en) * 2011-01-26 2015-07-01 ソニー株式会社 Method for manufacturing solid-state imaging device
US9837455B2 (en) * 2016-01-20 2017-12-05 Visera Technologies Company Limited Image sensor
US20220293655A1 (en) * 2021-03-11 2022-09-15 Visera Technologies Company Limited Semiconductor device
US20230104190A1 (en) * 2021-10-01 2023-04-06 Visera Technologies Company Limited Image sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243543A (en) * 1992-02-26 1993-09-21 Nikon Corp Solid-state image sensing device
JPH06163866A (en) * 1992-11-24 1994-06-10 Nikon Corp Solid-state image pickup device and its manufacture
JPH10229180A (en) * 1997-02-14 1998-08-25 Sony Corp Solid-state image sensor
JP2000039503A (en) * 1998-07-22 2000-02-08 Matsushita Electric Ind Co Ltd Lens array
JP2001094086A (en) * 1999-09-22 2001-04-06 Canon Inc Photoelectric converter and fabrication method thereof
JP2005260242A (en) * 2004-03-10 2005-09-22 Samsung Electronics Co Ltd Cmos image element having high light condensing efficiency and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927023B2 (en) * 1991-03-01 1999-07-28 新日本理化株式会社 Method for producing aromatic tetracarboxylic acid
JP2000174244A (en) * 1998-12-04 2000-06-23 Sony Corp Solid-state imaging element
EP1557886A3 (en) * 2004-01-26 2006-06-07 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device and camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243543A (en) * 1992-02-26 1993-09-21 Nikon Corp Solid-state image sensing device
JPH06163866A (en) * 1992-11-24 1994-06-10 Nikon Corp Solid-state image pickup device and its manufacture
JPH10229180A (en) * 1997-02-14 1998-08-25 Sony Corp Solid-state image sensor
JP2000039503A (en) * 1998-07-22 2000-02-08 Matsushita Electric Ind Co Ltd Lens array
JP2001094086A (en) * 1999-09-22 2001-04-06 Canon Inc Photoelectric converter and fabrication method thereof
JP2005260242A (en) * 2004-03-10 2005-09-22 Samsung Electronics Co Ltd Cmos image element having high light condensing efficiency and manufacturing method therefor

Also Published As

Publication number Publication date
TW200818477A (en) 2008-04-16
JP2007311563A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
US11233083B2 (en) Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations
JP4796287B2 (en) Solid-state imaging device
JP4576412B2 (en) Manufacturing method of colored microlens array, color solid-state imaging device and manufacturing method thereof, manufacturing method of color display device, manufacturing method of electronic information device
JP5086877B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP4936429B2 (en) Method for manufacturing solid-state imaging device
CN101561520B (en) Microlens array and image sensing device using the same
JP2011103359A (en) Solid-state image sensor and electronic information apparatus
WO2008065952A1 (en) Solid-state imaging device, its manufacturing method, and electronic information device
WO2007135903A1 (en) Solid-state imaging device and electronic information apparatus
JP2014027178A (en) Solid state image sensor and electronic information equipment
JP5504382B2 (en) Solid-state imaging device and imaging apparatus
WO2012086163A1 (en) Lens, method for producing same, solid-state imaging element, method for producing same, and electronic information apparatus
JP5705462B2 (en) Solid-state imaging device and electronic information device
JP5325202B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP2007047569A (en) Microlens device, solid state image pickup element, display device, and electronic information equipment
JP2008244225A (en) Solid-state imaging apparatus, gray scale mask, color filter and microlens
JP2015111781A (en) Solid-state image sensor and imaging device
JP2006202907A (en) Image pickup element
JP2012049270A (en) In-layer lens and formation method thereof, solid photographing element and manufacturing method thereof, and electronic information equipment
JP5408964B2 (en) Solid-state imaging device and electronic information device
JP4419658B2 (en) Solid-state imaging device
JP2008305872A (en) Solid-state imaging device and electronic information device
JP2019106548A (en) Solid-state imaging element and imaging device
JP2012156212A (en) Solid state image pickup element and its manufacturing method and electronic information apparatus
JP2010114227A (en) Solid imaging device and method of manufacturing the same, and electronic information apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743420

Country of ref document: EP

Kind code of ref document: A1