WO2007132754A1 - Bismuth-based sealing material and bismuth-base paste material - Google Patents

Bismuth-based sealing material and bismuth-base paste material Download PDF

Info

Publication number
WO2007132754A1
WO2007132754A1 PCT/JP2007/059713 JP2007059713W WO2007132754A1 WO 2007132754 A1 WO2007132754 A1 WO 2007132754A1 JP 2007059713 W JP2007059713 W JP 2007059713W WO 2007132754 A1 WO2007132754 A1 WO 2007132754A1
Authority
WO
WIPO (PCT)
Prior art keywords
bismuth
glass
sealing material
refractory filler
based sealing
Prior art date
Application number
PCT/JP2007/059713
Other languages
French (fr)
Japanese (ja)
Inventor
Noriaki Masuda
Original Assignee
Nippon Electric Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co., Ltd. filed Critical Nippon Electric Glass Co., Ltd.
Publication of WO2007132754A1 publication Critical patent/WO2007132754A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/20Seals between parts of vessels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/26Sealing parts of the vessel to provide a vacuum enclosure
    • H01J2209/264Materials for sealing vessels, e.g. frit glass compounds, resins or structures

Definitions

  • the present invention relates to a bismuth-based sealing material suitable for sealing electronic parts and flat display devices, and more particularly to a bismuth-based sealing material suitable for sealing a plasma display panel. .
  • glass has been used as a sealing material for electronic components, flat display devices, and the like.
  • Glass is excellent in chemical durability and heat resistance as compared with a resin-based adhesive, and is suitable for securing airtightness of a display or the like.
  • the sealing material is a composite powder containing glass powder and refractory filler powder, and low expansion lead titanate has been used as a refractory filler.
  • the refractory filler As with glass, it is desirable to replace the refractory filler with a refractory filler that does not contain PbO.
  • Patent Document 3 includes a lead-free low melting glass powder 50 to 50 And 95 vol 0/0, the sealing material containing zirconium powder phosphate tungstate 5-50 volume 0/0 is disclosed, that you use the phosphoric acid zirconium tungstate is disclosed as refractory FILLER one ing.
  • a sealing material used for a plasma display panel (hereinafter referred to as PDP) which is a flat display device undergoes the following heat treatment process.
  • a paste-like sealing material dispersed in a vehicle is applied to the outer periphery of the back panel of the PDP, and the vehicle components are pyrolyzed or incinerated at a high temperature to perform primary firing (glazing process, temporary (Also referred to as a firing step).
  • a vehicle that uniformly disperses the sealing material contains an organic solvent and a resin.
  • the resin used in vehicles trocellulose, acrylic resin, etc., which decomposes well at temperatures below the softening point of glass are generally used.
  • the sealing material and the vehicle are uniformly dispersed using a kneading apparatus such as a three-roll mill.
  • the primary firing is performed under a temperature condition where the resin used for the sealing material is completely pyrolyzed. If the resin is not completely thermally decomposed, then the secondary firing is performed (sealing process, sealing process). Resin residue remains in the sealing material, which can lead to fatal defects in securing the PDP airtightness such as devitrification or bubbles in the sealing material. become.
  • the sealing material is secondarily fired to seal the front panel and the rear panel of the PDP. Finally, after evacuating the inside of the PDP through the exhaust pipe, the required amount of rare gas is injected and the exhaust pipe is sealed. In this way, a PDP is produced.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-315536
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-095697
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-35840
  • Patent Document 2 exemplifies a bismuth-based glass composition that can be used for applications such as sealing and coating of electronic components.
  • this bismuth-based glass composition has poor fluidity of glass with a high soft saddle point compared to glass containing PbO.
  • this bismuth-based glass composition can be applied to applications that undergo multiple heat treatment steps where the thermal stability of the glass is poor. I can't.
  • the refractory filler used by adding to bismuth glass has the following technical problems.
  • a method called a crystallized glass method is known.
  • This crystallized glass method is first prepared to have a desired chemical composition.
  • This is a method in which glass raw materials are melted, molded and pulverized to produce crystallized glass powder, which are then fired to crystallize.
  • the crystalline glass powders are welded to each other in the baking step of the crystalline glass powder and strongly baked into a lump of hard crystalline material. Therefore, it is necessary to regrind and regrind Through the process, fine particles with a particle size of 0.5 ⁇ m or less are inevitably generated.
  • the specific surface area of the refractory filler increases, and as a result, the reaction area with the glass increases, and the refractory filler easily dissolves in the glass. If the refractory filler dissolves in the glass, when the sealing material is fired, the fine powder may act as a crystal nucleus, which may impair the thermal stability of the glass.
  • the refractory filler described in Patent Document 3 is produced by wet mixing raw material powders and firing them under predetermined conditions to obtain a zirconium phosphate tungstate sintered body, which is then pulverized.
  • this refractory filler is pulverized with a ball mill, fine particles with a particle size of 0.5 / zm or less are unavoidably present in the refractory filler. In addition, the thermal stability of the bismuth-based sealing material is impaired.
  • the primary firing of the phosphor material and the sealing material may be performed at the same time due to work efficiency.
  • the primary firing temperature of both materials In comparison, the firing temperature of the phosphor material is higher, about 480-500 ° C. Therefore, if the sealing material has low thermal stability, devitrification occurs in this temperature range (about 480 to 500 ° C), and the fluidity in the subsequent secondary firing (450 to 500 ° C) is impaired. I could't wear it tightly.
  • an object of the present invention is to provide a bismuth-based sealing material having good thermal stability in a bismuth-based sealing material containing bismuth-based glass and a refractory filler, specifically, In the PDP manufacturing process, a bismuth-based sealing material that can be hermetically sealed in a secondary firing at 450 to 500 ° C does not cause crystals to precipitate even after primary firing at around 500 ° C. Is to provide.
  • the inventor of the bismuth-based sealing material containing bismuth-based glass and a refractory filler has a composition in which the refractory filler is SiO 30- : L00%, Al O 0
  • the present inventors have found that the above technical problem can be solved by regulating the ratio of particles having a particle diameter of 5 m or less to 15 to 70%.
  • particle diameter and “particle ratio” as used in the present invention are values calculated by a measuring apparatus using a laser diffraction scattering method, and indicate values obtained by calculating the data force of the integrated particle size distribution.
  • the fire resistant filler includes both crystalline materials such as ceramics and amorphous materials such as glass.
  • the refractory filler is a crystalline material, it is determined that the refractory filler is a refractory filler according to the present invention if the constituent (crystal composition) of the crystalline material is in the above range in terms of weight%. It should be noted that the components of the refractory filler are not intended to exclude the inclusion of unspecified components.
  • the inventors limited the composition of the refractory filler to the above composition range, and when firing the bismuth-based sealing material, a part of the refractory filler was dissolved into the bismuth-based glass, It has been found that this dissolved component improves the thermal stability of the bismuth-based sealing material. That is, the refractory filler having the above composition range has extremely good compatibility with the bismuth glass, and the fine powder in the refractory filler when the bismuth sealing material is fired. Even if it dissolves in the glass, the thermal stability of the bismuth-based sealing material is not impaired, and the fine powder present in the refractory filler is actively dissolved in the bismuth-based glass. The thermal stability of the bismuth-based sealing material can be improved.
  • the proportion of particles with a particle size of 5 ⁇ m or less among the refractory filler is regulated to 15 to 70%, the amount of the refractory filler leached to an appropriate value when firing the bismuth-based sealing material. It can be regulated. If the amount of refractory filler leaching is set to an appropriate value, the thermal stability of the bismuth-based glass can be reliably improved. As a result, the thermal stability is poor as compared with the lead borate glass as described above, and the bismuth glass can be improved to the same or higher thermal stability as the lead borate glass. In particular, in the manufacturing process of PDP, crystals do not precipitate even when primary firing is performed at about 500 ° C.
  • the bismuth-based sealing material of the present invention is excellent in the front glass and the back glass that do not impair the fluidity of the bismuth-based sealing material by secondary firing at 450 to 500 ° C. Can be sealed.
  • the specific surface area of the refractory filler is 0.5 to 4.
  • the “specific surface area” as used in the present invention refers to a value measured with a BET specific surface area measuring device.
  • the bismuth-based sealing material of the present invention is characterized in that the refractory filler is a crystalline material having cordierite as a main crystal.
  • the bismuth-based sealing material of the present invention has a volume% display and bismuth-based glass 40-9.
  • the bismuth-based sealing material of the present invention has a glass composition of BiO 30-60%, BO 10-40%, ZnO 10
  • the bismuth-based sealing material of the present invention is characterized in that it contains substantially no PbO.
  • substantially no PbO means a case where the content of PbO is lOOOppm or less.
  • the bismuth sealing material of the present invention has a crystallization temperature of bismuth glass T (° C
  • crystal precipitation temperature in the present invention refers to a temperature at which an exothermic peak due to crystal precipitation is detected by a differential thermal analysis (DTA) apparatus.
  • DTA differential thermal analysis
  • the temperature is raised from room temperature in 10 ° CZ minutes, and the atmosphere is an air atmosphere.
  • the same bismuth glass used for the measurement of T and T is used.
  • the bismuth-based sealing material of the present invention is a bismuth-based sealing material containing bismuth-based glass and a refractory filler, and the refractory filler has the following oxide conversion as a composition: SiO 30-100%, ⁇ 1 ⁇ 0-45%, ZnO 0-35%, ZrO
  • the 10% particle size D of the natural filler is characterized by 0.3 to 5.5 m. here,
  • “10% particle size D” refers to the value measured by the laser diffraction method.
  • the bismuth-based sealing material of the present invention is a bismuth-based sealing material containing bismuth-based glass and a refractory filler, and the refractory filler has the following oxide conversion as a composition: SiO 30-100%, ⁇ 1 ⁇ 0-45%, ZnO 0-35%, ZrO
  • ⁇ % Particle size D '' refers to the value measured by the laser diffraction method, and the cumulative particle amount is 90%
  • the bismuth-based sealing material of the present invention is characterized by being used for sealing an electronic component or a flat display device.
  • the bismuth-based sealing material of the present invention is characterized by being used for sealing a PDP.
  • the bismuth-based paste material of the present invention is characterized by containing the bismuth-based sealing material, a solvent, and a resin.
  • SiO is a component that increases the thermal stability of the bismuth-based sealing material, and has a fire resistance.
  • SiO can also be used alone as a refractory filler.
  • Al 2 O is a component that lowers the thermal expansion coefficient of the refractory filler, and its content is 0
  • ZnO is a component for accelerating the dissolution of the refractory filler in the sealing step, and its content is 0 to 35 wt%, preferably 0 to 30 wt%. ZnO content is 35 wt.
  • ZrO is a component for reducing the thermal expansion coefficient of the refractory filler, and its content
  • the amount is 0-20% by weight. If the ZrO content exceeds 20% by weight, the glass
  • Crystals are likely to precipitate on the surface.
  • TiO is a component for reducing the thermal expansion coefficient of the refractory filler, and its content
  • Crystals are likely to precipitate.
  • Li O is a component for promoting the dissolution of the refractory filler in the sealing process
  • the content is 0 to 10% by weight. If the Li O content is more than 10% by weight, it will bind to the glass. Crystals are likely to precipitate.
  • MgO is a component for promoting dissolution of the refractory filler after the sealing step, and its content is 0 to 25% by weight, preferably 0 to 20% by weight, more preferably 10 to 20%. % By weight. If the content of MgO is more than 25% by weight, crystals tend to precipitate on the glass during the sealing process.
  • the refractory filler As long as the refractory filler is within the above composition range, both glass and crystalline materials can be used. This is preferable because the mechanical strength of the bismuth-based sealing material having a low coefficient of thermal expansion can be improved. If glass is used as the refractory filler, the amount of refractory filler that has melted can be increased, and as a result, the effect of improving the thermal stability of the bismuth-based sealing material after the sealing process is greatly increased. Become.
  • the refractory filler according to the present invention is a crystalline substance mainly composed of cordierite, ⁇ -quartz solid solution, zinc petalite, ⁇ -eucryptite, garnite, etc. Two or more are preferable. These refractory fillers are suitable because they have a small thermal expansion coefficient and a large effect of improving the thermal stability of the bismuth-based sealing material.
  • the crystalline material with cordierite as the main crystal has good compatibility with bismuth glass, so the amount of refractory filler dissolved in the glass during the sealing process is large. This is preferable because crystals having Bi 2 O as a constituent component do not precipitate in the sealing step which has only a large effect of improving stability. Also glass machine
  • a refractory filler other than the refractory filler having the above composition for example, tin oxide, zirconium oxide, alumina, etc.
  • a refractory filler having the above composition for example, tin oxide, zirconium oxide, alumina, etc.
  • the proportion of particles having a particle diameter of 5 m or less as measured by a laser diffraction scattering method is 15 to 70%, preferably 15 to 60%, more preferably 20%. -60%, more preferably 25-50%. If the proportion of particles with a particle size of 5 ⁇ m or less is less than 15%, the amount of the refractory filler dissolved when the bismuth-based sealing material is baked. As a result, the effect of improving the thermal stability of the bismuth-based sealing material is obtained.
  • the proportion of particles with a particle size of 5 m or less is larger than 70%, the penetration of the refractory filler becomes excessive in the sealing process, and the fluidity of the bismuth-based sealing material becomes poor, particularly in the PDP manufacturing process.
  • the secondary firing at 450 to 500 ° C. the bismuth-based sealing material is easily slid smoothly, making it difficult to seal the front panel and the rear panel at a low temperature.
  • the 10% particle diameter D is preferably 0.3 to 5.5 m.
  • the refractory filler will be excessively melted in the sealing process, and the fluidity of the bismuth-based sealing material will be poor.
  • secondary firing at 450 to 500 ° C will occur.
  • Bismuth-based sealing material is soft and difficult to flow, making it difficult to seal the front panel and the back panel at low temperatures. Also, it takes a long time to pulverize the refractory filler, which reduces the production efficiency of the refractory filler.
  • 10% particle size D is larger than 5.5 m
  • the amount of the refractory filler to be melted decreases, and it becomes difficult to obtain the effect of improving the thermal stability of the bismuth-based sealing material, and microcracks are likely to occur in the sealing layer after the sealing process.
  • the 90% particle size D is 8 to 45 ⁇ m, preferably
  • the thickness is 10 to 32 ⁇ m, more preferably 15 to 30 ⁇ m. 90 0/0 der particle size of less than D 1 mu m
  • the specific surface area of the refractory filler when measured with a BET specific surface area measuring device is about 0.5 to 4.0 m 2 / g force S, preferably 0.5 to 3.5 m 2 / g force S is preferable, and 0.6 to 2.3 m 2 Zg is more preferable.
  • the specific surface area of the refractory filler is greater than 4.0 m 2 Zg.
  • the amount of the refractory filler that dissolves in the glass becomes excessive, and the fluidity of the biomass-based sealing material may be hindered.
  • the specific surface area value of the refractory filler is less than 0.5 m 2 / g, the amount of the refractory filler that dissolves in the glass during firing of the bismuth-based sealing material is reduced. The effect of improving the thermal stability becomes difficult to obtain.
  • sealing materials such as high strain point glass (85 X 10 " 7 Z ° C) and soda plate glass (90 X 10" V ° O) that do not match the thermal expansion coefficient of bismuth glass It is necessary to mix bismuth glass powder and refractory filler powder to form a composite material, which is used as a sealing material.
  • the thermal expansion coefficient of the sealing material is 10 to 30 X 10 with respect to the object to be sealed. It is important to design it as low as _7 Z ° C in order to prevent the sealing layer from being destroyed by setting the strain applied to the sealing layer after sealing to the compression (compression) side.
  • a refractory filler powder can be added to improve mechanical strength.
  • the mixing ratio, bismuth glass powder is 40-95 volume 0/0
  • the refractory filler powder 5-60 is preferred instrument bismuth glass that is the volume% More preferably, the powder is 40 to 90% by volume and the refractory filler powder is 10 to 60% by volume.
  • the reason for specifying the ratio of the two in this way is that if the amount of the refractory filler powder is less than 5% by volume, it is difficult to obtain the effect of adding the refractory filler. This is because there is a possibility that airtight sealing or the like cannot be performed.
  • the refractory filler powder is coated with fine powders such as alumina, zinc oxide, zircon, titer, and zircoure, the reaction between the bismuth glass powder and the refractory filler powder can be suppressed. Therefore, when the refractory filler powder is covered with fine powders such as alumina, zinc oxide, zircon, titer, and zircoyu, the amount of the refractory filler powder leached out can be adjusted.
  • fine powders such as alumina, zinc oxide, zircon, titer, and zircoyu
  • Bi 2 O is a main component for lowering the softening point. Its content is 30 to 60 mole 0/0,
  • the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
  • B 2 O is a component that forms a glass network of bismuth-based glass, and is an essential component.
  • Its content is 10 to 40 mole 0/0, preferably from 12 to 35 mole 0/0, more preferably 15-30 mol%, more preferably 15 to 25 mol%.
  • the glass becomes thermally unstable and the glass tends to devitrify when melted or fired.
  • the content of B 2 O is more than 0 mol%, the viscosity of the glass becomes too high.
  • ZnO is a component that has an effect of suppressing devitrification when the glass is melted or fired.
  • Its content is 10 to 50 mole 0/0, preferably from 12 to 45 mole 0/0, more preferably 15 to 40 molar 0/0, more preferably 20 to 35 mole 0/0.
  • the content of ZnO is less than 10 mole 0/0, the effect of suppressing devitrification at the time of melting or during sintering of the glass is difficult to obtain.
  • the content of ZnO is more than 50 mol%, the balance in the glass composition is lost, and conversely, the thermal stability of the glass is impaired, and as a result, the glass is easily devitrified.
  • BaO, SrO, MgO, and CaO have an effect of suppressing devitrification when the glass is melted or fired. These components can be contained in a total amount of up to 15 mol%. If the total amount of these components exceeds 15 mol%, the soft spot of the glass becomes too high and it becomes difficult to seal at a low temperature of 500 ° C or lower.
  • the content of BaO is more preferably 1 to 10 mol 0/0 preferably fixture 2-6 mol 0/0.
  • the content of BaO is less than 1 mol%! /, It becomes difficult to obtain the effect of suppressing devitrification when the glass is melted or fired.
  • the content of ZnO is more than 10 mole 0/0, lack the balance of the glass composition, the thermal stability of the glass is impaired to the contrary, the result, the glass tends to be devitrified.
  • SrO, MgO, the content of each of CaO is more preferably 0 to 5 mole 0/0 preferably fixture 0-2 mol 0/0. If the content of each component is more than 5 mol%, the glass tends to devitrify and phase separation.
  • CuO has an effect of suppressing devitrification when the glass is melted or fired, and can be added up to 10 mol%. If the CuO content is higher than 10 mol%, the glass is easily devitrified. And the fluidity of the glass tends to be impaired.
  • Fe 2 O has an effect of suppressing devitrification when the glass is melted or fired, and its content
  • the balance in the glass composition will be lost, and conversely, the thermal stability of the glass will be impaired, and as a result, the glass will be easily devitrified.
  • SiO and Al 2 O are components that improve the weather resistance of glass. Its content is the total amount
  • the content of SiO is preferably 0 to 10 mol%, more preferably 0 to 5 mol%.
  • the content of Al 2 O is preferably 0 to 5 mol%, more preferably 0 to 2 mol%.
  • WO is a component for suppressing devitrification of glass, and its content is 0 to 5 mol%.
  • Preferred is 0 to 2 mol%.
  • SbO is a component for suppressing devitrification of glass, and its content is 0 to 5 mol%.
  • SbO is a network structure of bismuth glass
  • O and Ga O are not essential components, but are components for suppressing devitrification of glass.
  • the total content is preferably 0 to 5 mol%, more preferably 0.1 to 3 mol%.
  • Ga O has the effect of stabilizing the network structure of bismuth glass, By adding In O and Ga O appropriately to the glass, the content power of BiO is 0 mol% or less.
  • the content of Ga 2 O is more preferably 0 to 2 mol%.
  • the acid oxides of Li, Na, K, and Cs have the effect of promoting the devitrification of the glass at the time of melting, which is a component that lowers the soft melting point of the glass. It is preferable that:
  • P 2 O is a component that suppresses devitrification at the time of melting.
  • MoO La O, Y 2 O, CeO and Gd 2 O suppress glass phase separation during melting
  • the softness point of the glass becomes high, and the glass is fired at a temperature of 500 ° C or lower.
  • the bismuth glass having the above glass composition is a non-crystalline (amorphous) glass exhibiting good fluidity at a temperature of 500 ° C or lower, and has a thermal expansion coefficient at 30 to 300 ° C. About 100-120 x 10—So. C.
  • the bismuth-based sealing material of the present invention does not exclude the embodiment containing PbO, but as described above, it is preferable that the environmental reason is substantially free of PbO.
  • PbO is contained in the glass, Pb 2+ present in the glass may diffuse to lower the electrical insulation.
  • the bismuth-based sealing material of the present invention has a crystallization temperature of bismuth-based glass as T (° C) and the crystallization temperature of the bismuth-based sealing material as T (° C). — Meets the relationship of T ⁇ 5 ° C
  • the bismuth-based sealing material of the present invention is preferably used for sealing electronic parts or flat display devices.
  • An electronic component may use a member whose characteristics deteriorate at a high temperature.
  • the bismuth-based sealing material of the present invention can be sealed at a low temperature, it is preferable not to deteriorate the characteristics of the member having poor heat resistance.
  • the bismuth-based sealing material of the present invention has excellent thermal stability, so that devitrification of the glass can be suppressed in the sealing process.
  • the flat display device can be sealed at as low a temperature as possible, the production efficiency can be improved and the deterioration of other members such as phosphors can be prevented. Since the bismuth sealing material of the present invention can be sealed at a low temperature, it is suitable for a flat display device. Further, the bismuth-based sealing material of the present invention is excellent in thermal stability even when the flat display device is sealed at a high temperature, and thus can prevent the glass from devitrifying in the sealing step.
  • the bismuth-based sealing material of the present invention is preferably used for sealing PDP.
  • the bismuth-based sealing material of the present invention can be hermetically sealed by secondary firing at 450 to 500 ° C, in which crystals do not precipitate even after primary firing at about 500 ° C in the PDP manufacturing process. This can contribute to improving the manufacturing efficiency and characteristics of PDP.
  • the sealing material in which the bismuth-based glass powder and the refractory filler powder are mixed may be used as the sealing material as it is, but the sealing material and the vehicle are uniformly kneaded as a paste. Easy to handle when used.
  • the vehicle mainly consists of an organic solvent and rosin, which is added for the purpose of adjusting the viscosity of the paste. If necessary, a surfactant, a thickener, etc. can be added.
  • the prepared paste is applied using a dispenser such as a dispenser screen printer.
  • Examples of the organic solvent include N, N, monodimethylformamide (DMF), a-terpineol, higher alcohol, butyl latatatone ( ⁇ BL), tetralin, butyl carbitol phosphate, ethyl acetate, isoamyl acetate, diethylene glycol mono Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monomonobutyl Nore ether, tripropylene glycol monomethino ether, tripropylene glycol nomonobutino ether, propylene carbonate, dimethyl Rulsulfoxide (DMSO), N-methyl-2-pyrrolidone, etc. can be used.
  • oc tervineol is preferable
  • acrylic resin acrylic resin, ethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used.
  • acrylic resin and nitrocellulose are preferable because they have good thermal decomposability.
  • Samples A to 0 described in Tables 1 to 3 were prepared as follows.
  • a glass batch prepared by preparing raw materials such as various oxides and carbonates so as to have the glass composition shown in Tables 1 to 3 was prepared and placed in a platinum crucible at 900 to 1000 ° C. At 1 to 2 hours.
  • a part of the molten glass was poured into a stainless steel mold as a sample for a push rod type thermal expansion measurement (TMA) apparatus, and the other molten glass was formed into a flake shape with a water-cooled roller.
  • TMA push rod type thermal expansion measurement
  • the sample for measuring the thermal expansion coefficient was subjected to a predetermined slow cooling treatment (anneal) after molding.
  • the glass flakes were pulverized with a ball mill and passed through a sieve having an aperture of 75 ⁇ m to obtain samples having an average particle diameter of about 10 / zm.
  • the softening point was determined by a differential thermal analysis (DTA) apparatus using a powder sample.
  • DTA differential thermal analysis
  • Samples A to M in Tables 1 to 3 had a glass transition point of 335 to 375 ° C and a softening point of 392 to 442 ° C, and had low melting point characteristics. Samples A to M have a thermal expansion coefficient of 103 to 119 X 1
  • Samples A to M had a good evaluation of the devitrification state and had good thermal stability.
  • Sample N in Table 3 had a glass transition point of 389 ° C and a soft melting point of 480 ° C, and had a higher melting point than the glass samples of Examples.
  • Sample O in Table 3 was poorly evaluated for devitrification, and was poor in thermal stability.
  • a bismuth-based sealing material shown in -6 was obtained.
  • Sample Nos. 1 to 10 in Tables 4 and 5 show examples.
  • Sample Nos. 11 to 15 in Table 6 show comparative examples. Samples Nos. 1 to 15 were evaluated for thermal expansion coefficient, softening point, flow diameter, and thermal stability. The thermal expansion coefficient and softening point were measured by the same method as in the case of the glass sample.
  • Cordierite is magnesium oxide, aluminum oxide, pure silica powder 2MgO '2Al O-5SiO
  • Zirconium phosphate is prepared by mixing Zr OC ⁇ 8 ⁇ ⁇ with an aqueous solution of phosphoric acid at a specified molar ratio, and then the resulting precipitate at 1400 ° C.
  • the fired product obtained after firing was pulverized and classified to obtain a powder having a predetermined particle size.
  • the particle size distribution of the refractory filler was measured with a measuring apparatus using a laser diffraction scattering method (SALD2000, manufactured by Shimadzu Corporation).
  • the specific surface area of the refractory filler was measured with a BET specific surface area measuring device.
  • the flow diameter was dry-pressed into a button shape with an outer diameter of 20 mm using a die, with a weight corresponding to the composite density of each sample, and this was placed on a 40 mm X 40 mm X 2.8 mm thick high strain point glass substrate.
  • the diameter of the button obtained after being heated at a rate of 10 ° CZ in air, fired under the firing conditions shown in Tables 5 to 8, and then cooled to room temperature in 10 ° CZ minutes It was evaluated by measuring.
  • the synthetic density is a theoretical density calculated by mixing the density of the glass and the density of the refractory filler at a predetermined volume ratio. Further, if the flow diameter is 19 mm or more, it means that the film can be satisfactorily sealed under the firing conditions tested.
  • the temperature refers to a temperature at which an exothermic peak due to crystal precipitation is detected by a differential thermal analyzer. In differential thermal analysis, the temperature is raised from room temperature in 10 ° CZ minutes, and the atmosphere is an air atmosphere.
  • AT>0 the thermal stability of the bismuth-based sealing material can be improved by adding a refractory filler. This means that qualitative improvement has been achieved. In the case of ⁇ 0, it means that the thermal stability of the bismuth glass is deteriorated by the addition of the refractory filler.
  • Samples Nos. 1 to 10 in Tables 4 and 5 had a soft saddle point force of 02 to 445 ° C, and had low melting point characteristics that allowed them to flow well at temperatures of 500 ° C or less .
  • Sample Nos. 1 to 10 had a coefficient of thermal expansion of 66.7 to 72.0 X 10 _7 Z ° C, and had a coefficient of thermal expansion suitable for high strain point glass. Further, Sample Nos. 1 to 10 had a flow diameter of 19.5-21. 5 mm under the firing conditions in the table, and had low melting point characteristics that could be sealed at a temperature of 500 ° C or lower.
  • was 7 to 26 ° C, and the thermal stability of the bismuth-based sealing material was improved by the addition of the refractory filler.
  • Sample Nos. 11 to 15 in Table 6 have a soft spot strength of 91 to 434 and a thermal expansion coefficient of 1 to 73.3 X 10 _7 Z ° C.
  • the flow diameter was 20.5 to 21.5 mm.
  • was 13 to 16 ° C, and the addition of the refractory filler added bismuth glass.
  • the ratio of particles with a particle size of 5 m or less in the refractory filler was not regulated within the specified range, so ⁇ was a small value of 4 ° C, which is one of the refractory fillers.
  • the thermal stability of the bismuth-based sealing material has not been greatly improved by drought o
  • the bismuth-based sealing material of the present invention can obtain good fluidity in a wide temperature range, so that it can be used in other applications, that is, a plurality of heat treatment steps.
  • the bismuth-based sealing material of the present invention is used for sealing a flat display device such as a field emission display (FED), for sealing a display such as a cathode ray tube (CRT), and for a fluorescent display tube (VFD).
  • FED field emission display
  • CRT cathode ray tube
  • VFD fluorescent display tube
  • PDP and other insulating dielectric layer formation PDP noria rib use, magnetic head core-to-core or slider-to-slider use, and sealing of electronic components such as crystal units and IC packages.

Abstract

[PROBLEMS] To provide a bismuth-base sealing material which is substantially free from PbO and excellent in thermal stability, particularly, a bismuth-base sealing material useful in the production of PDP which does not cause devitrification or crystallization even when subjected to primary baking at about 500°C and attains hermetical sealing by secondary baking at 450 to 500°C. [MEANS FOR SOLVING PROBLEMS] A bismuth-base sealing material containing a bismuth-base glass and a refractory filler, wherein the refractory filler has a composition consisting of, in terms of the following oxides and by weight, 30-100% SiO2, 0 to 45% Al2O3, 0 to 35% ZnO, 0 to 20% ZrO2, 0 to 20% TiO2, 0 to 10% Li2O and 0 to 25% MgO and a content of particles having sizes of 5μm or below of 15 to 70% by volume.

Description

明 細 書  Specification
ビスマス系封着材料およびビスマス系ペースト材料  Bismuth-based sealing material and bismuth-based paste material
技術分野  Technical field
[0001] 本発明は、電子部品および平面表示装置等の封着等に好適なビスマス系封着材 料に関し、特に、プラズマディスプレイパネルの封着に好適なビスマス系封着材料に 関するものである。  TECHNICAL FIELD [0001] The present invention relates to a bismuth-based sealing material suitable for sealing electronic parts and flat display devices, and more particularly to a bismuth-based sealing material suitable for sealing a plasma display panel. .
背景技術  Background art
[0002] 従来から電子部品および平面表示装置等の封着材料としてガラスが用いられてい る。ガラスは、榭脂系の接着剤に比べ、化学的耐久性および耐熱性が優れるとともに 、ディスプレイ等の気密性を確保するのに適している。  Conventionally, glass has been used as a sealing material for electronic components, flat display devices, and the like. Glass is excellent in chemical durability and heat resistance as compared with a resin-based adhesive, and is suitable for securing airtightness of a display or the like.
[0003] これらのガラスは、用途によっては機械的強度、流動性、電気絶縁性等様々な特性 が要求されるが、少なくとも平面表示装置等に使用される蛍光体の蛍光特性等を劣 ィ匕させない温度で使用可能であることが要求される。それゆえ、上記特性を満足する ガラスとして、ガラスの融点を下げる効果が極めて大き 、PbOを多量に含有する鉛ホ ゥ酸系ガラス (例えば、特許文献 1参照)が広く用いられてきた。  [0003] These glasses are required to have various properties such as mechanical strength, fluidity, and electrical insulation depending on the application, but at least the fluorescence properties of phosphors used in flat display devices are inferior. It is required to be usable at a temperature that does not allow them to be used. Therefore, as a glass satisfying the above characteristics, a lead fluoric acid-based glass containing a large amount of PbO (see, for example, Patent Document 1) has been widely used.
[0004] ところが、最近、鉛ホウ酸系ガラスに含まれる PbOに対して環境上の問題が指摘さ れており、鉛ホウ酸系ガラス力も PbOを含まないガラスに置き換えることが望まれてい る。そのため、鉛ホウ酸系ガラスの代替品として、様々な低融点ガラスが開発されて いる。その中でも、特許文献 2等に記載されているビスマス系ガラス (Bi O— B O系  [0004] However, recently, environmental problems have been pointed out with respect to PbO contained in lead borate glass, and it is desired to replace the lead borate glass power with glass containing no PbO. For this reason, various low-melting-point glasses have been developed as substitutes for lead borate glasses. Among them, bismuth glass (Bi O— B O system) described in Patent Document 2 etc.
2 3 2 3 ガラスとも称される)は、熱膨張係数等の諸特性において鉛ホウ酸系ガラスと略同等 の特性を有するため、その代替候補として期待されているが、流動性および熱的安 定性等の特性にぉ 、て、依然として鉛ホウ酸系ガラスの特性に及ばな 、のが実情で ある。  2 3 2 3) is also expected as an alternative candidate because it has almost the same characteristics as lead borate glass in terms of various properties such as thermal expansion coefficient. The actual situation is that the characteristics such as qualitative characteristics still do not reach the characteristics of lead borate glass.
[0005] さらに、一般的に、封着材料は、ガラス粉末と耐火性フィラー粉末を含有する複合 体粉末であり、耐火性フイラ一として、低膨張のチタン酸鉛等が使用されてきた。しか し、ガラスの場合と同様にして、耐火性フィラーも PbOを含まない耐火性フィラーに置 き換えることが望まれている。例えば、特許文献 3には、無鉛低融点ガラス粉末 50〜 95体積0 /0と、リン酸タングステン酸ジルコニウム粉末 5〜50体積0 /0とを含む封着材料 が開示されており、耐火性フイラ一としてリン酸タングステン酸ジルコニウムを使用す ることが開示されている。 [0005] Furthermore, generally, the sealing material is a composite powder containing glass powder and refractory filler powder, and low expansion lead titanate has been used as a refractory filler. However, as with glass, it is desirable to replace the refractory filler with a refractory filler that does not contain PbO. For example, Patent Document 3 includes a lead-free low melting glass powder 50 to 50 And 95 vol 0/0, the sealing material containing zirconium powder phosphate tungstate 5-50 volume 0/0 is disclosed, that you use the phosphoric acid zirconium tungstate is disclosed as refractory FILLER one ing.
[0006] ところで、平面表示装置であるプラズマディスプレイパネル(以下、 PDPと称する)に 使用される封着材料は、以下のような熱処理工程を経る。  [0006] By the way, a sealing material used for a plasma display panel (hereinafter referred to as PDP) which is a flat display device undergoes the following heat treatment process.
[0007] まず、 PDPの背面板パネルの外周辺部にビークル内に分散されたペースト状の封 着材料を塗布し、高温でビークル成分を熱分解または焼却して、一次焼成 (グレーズ 工程、仮焼成工程とも称される)を行う。封着材料を均一に分散させるビークルは、有 機溶媒や榭脂を含有している。ビークルに使用される榭脂は、ガラスの軟化点以下 の温度で良好に熱分解する-トロセルロースまたはアクリル榭脂等が一般的に使用 されている。封着材料とビークルは、三本ロールミル等の混練装置を用いて、均一に 分散される。一次焼成は、封着材料に使用する榭脂が完全に熱分解する温度条件 で行われ、仮に樹脂の熱分解が不完全であると、その後に供させる二次焼成 (封着 工程、シール工程とも称される)で封着材料内に樹脂の残渣が残存し、その結果、封 着材料に失透または泡等の PDPの気密性を確保する上で致命的な欠陥を招来し得 ることになる。  [0007] First, a paste-like sealing material dispersed in a vehicle is applied to the outer periphery of the back panel of the PDP, and the vehicle components are pyrolyzed or incinerated at a high temperature to perform primary firing (glazing process, temporary (Also referred to as a firing step). A vehicle that uniformly disperses the sealing material contains an organic solvent and a resin. As the resin used in vehicles, trocellulose, acrylic resin, etc., which decomposes well at temperatures below the softening point of glass are generally used. The sealing material and the vehicle are uniformly dispersed using a kneading apparatus such as a three-roll mill. The primary firing is performed under a temperature condition where the resin used for the sealing material is completely pyrolyzed. If the resin is not completely thermally decomposed, then the secondary firing is performed (sealing process, sealing process). Resin residue remains in the sealing material, which can lead to fatal defects in securing the PDP airtightness such as devitrification or bubbles in the sealing material. become.
[0008] 次に、封着材料の二次焼成が行なわれ、 PDPの前面板パネルと背面板パネルを 封着する。最後に、排気管を通して PDP内部を真空排気した後、希ガスを必要量注 入して排気管を封止する。このよう〖こして PDPは作製される。  [0008] Next, the sealing material is secondarily fired to seal the front panel and the rear panel of the PDP. Finally, after evacuating the inside of the PDP through the exhaust pipe, the required amount of rare gas is injected and the exhaust pipe is sealed. In this way, a PDP is produced.
特許文献 1 :特開昭 63— 315536号公報  Patent Document 1: Japanese Patent Laid-Open No. 63-315536
特許文献 2 :特開 2003— 095697号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-095697
特許文献 3:特開 2005 - 35840号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-35840
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 特許文献 2には、電子部品の封着、被覆等の用途に使用できるビスマス系ガラス組 成物が例示されている。しかし、このビスマス系ガラス組成物は、 PbOを含有するガラ スと比較して軟ィ匕点が高ぐガラスの流動性が乏しい。さらに、このビスマス系ガラス 組成物は、ガラスの熱的安定性が乏しぐ複数回の熱処理工程を経る用途に適用で きない。 [0009] Patent Document 2 exemplifies a bismuth-based glass composition that can be used for applications such as sealing and coating of electronic components. However, this bismuth-based glass composition has poor fluidity of glass with a high soft saddle point compared to glass containing PbO. Furthermore, this bismuth-based glass composition can be applied to applications that undergo multiple heat treatment steps where the thermal stability of the glass is poor. I can't.
[0010] ガラスの軟ィ匕点を低くするためには、主要成分である Bi Oの含有量を多くする必  [0010] In order to lower the soft spot of glass, it is necessary to increase the content of BiO, which is the main component.
2 3  twenty three
要があるが、 Bi Oの含有量を多くすると、 Bi Oを構成成分とする結晶が焼成時に  However, if the content of BiO is increased, crystals containing BiO will be
2 3 2 3  2 3 2 3
析出しやすく流動性が損なわれやすい。そのため、 Bi Oの含有量を多くするだけで  It tends to precipitate and fluidity is likely to be impaired. Therefore, just increasing the content of BiO
2 3  twenty three
は、流動性を向上させにくい。一方、 Bi Oの含有量を少なくすれば、熱的安定性が  Is difficult to improve fluidity. On the other hand, if the content of BiO is reduced, thermal stability is improved.
2 3  twenty three
向上する力 軟ィ匕点が上昇するため、ガラスの流動性が損なわれる。したがって、ビ スマス系ガラスにおいて、ガラスの熱的安定性と流動性を両立させることが困難であ つた o  Improving force Since the soft spot increases, the fluidity of the glass is impaired. Therefore, it is difficult to achieve both glass thermal stability and fluidity in bismuth glass.
[0011] さらに、ビスマス系ガラスに添加して使用される耐火性フィラーにも下記のような技 術的課題がある。  Furthermore, the refractory filler used by adding to bismuth glass has the following technical problems.
[0012] 耐火性フィラーの製造方法として、種々の方法があるが、例えば結晶化ガラス法と 呼ばれる方法が知られており、この結晶化ガラス法は、まず所望の化学組成を有する ように調合されたガラス原料を溶融し、成形、粉砕して結晶化ガラス粉末を作製した 後、これらを焼成して結晶化させる方法である。しかし、このような方法では、結晶性 ガラス粉末の焼成工程でこれらが互 、に溶着して強く焼き締まり、堅い結晶物の塊と なってしまうため、これを再粉砕する必要があり、再粉砕工程を経ると、粒径が 0. 5 μ m以下の微粉が不可避的に発生する。このような微粉が封着材料中に存在すると、 耐火性フィラーの比表面積が増大し、その結果、ガラスとの反応面積が大きくなり、耐 火性フイラ一がガラスに溶け込みやすくなる。耐火性フィラーがガラスに溶け込むと、 封着材料を焼成する際、微粉が結晶核として作用し、ガラスの熱的安定性が損なわ れる場合がある。また、特許文献 3に記載の耐火性フイラ一は、原料粉末を湿式混合 した後に所定条件で焼成し、リン酸タングステン酸ジルコニウム焼結体を得た上で粉 砕することで作製されている。この耐火性フイラ一は、ボールミルで粉砕されているた め、耐火性フィラーの中に粒径が 0. 5 /z m以下の微粉が不可避的に存在しており、 これとビスマス系ガラスを混合すると、ビスマス系封着材料の熱的安定性が損なわれ る。  [0012] There are various methods for producing a refractory filler. For example, a method called a crystallized glass method is known. This crystallized glass method is first prepared to have a desired chemical composition. This is a method in which glass raw materials are melted, molded and pulverized to produce crystallized glass powder, which are then fired to crystallize. However, in such a method, the crystalline glass powders are welded to each other in the baking step of the crystalline glass powder and strongly baked into a lump of hard crystalline material. Therefore, it is necessary to regrind and regrind Through the process, fine particles with a particle size of 0.5 μm or less are inevitably generated. When such fine powder is present in the sealing material, the specific surface area of the refractory filler increases, and as a result, the reaction area with the glass increases, and the refractory filler easily dissolves in the glass. If the refractory filler dissolves in the glass, when the sealing material is fired, the fine powder may act as a crystal nucleus, which may impair the thermal stability of the glass. In addition, the refractory filler described in Patent Document 3 is produced by wet mixing raw material powders and firing them under predetermined conditions to obtain a zirconium phosphate tungstate sintered body, which is then pulverized. Since this refractory filler is pulverized with a ball mill, fine particles with a particle size of 0.5 / zm or less are unavoidably present in the refractory filler. In addition, the thermal stability of the bismuth-based sealing material is impaired.
[0013] また、 PDPの製造工程にお 、て、蛍光体材料と封着材料の一次焼成は、作業の効 率ィ匕のため、同時に行なわれる場合がある。一般的に、両材料の一次焼成温度を比 較すると、蛍光体材料の焼成温度の方が高く 480〜500°C程度である。そのため、 封着材料の熱的安定性が低 、場合、この温度域 (480〜500°C程度)で失透が生じ 、その後の二次焼成 (450〜500°C)での流動性が損なわれ、気密封着できないこと かあつた。 [0013] In the PDP manufacturing process, the primary firing of the phosphor material and the sealing material may be performed at the same time due to work efficiency. In general, the primary firing temperature of both materials In comparison, the firing temperature of the phosphor material is higher, about 480-500 ° C. Therefore, if the sealing material has low thermal stability, devitrification occurs in this temperature range (about 480 to 500 ° C), and the fluidity in the subsequent secondary firing (450 to 500 ° C) is impaired. I couldn't wear it tightly.
[0014] そこで、本発明の目的は、ビスマス系ガラスと耐火'性フイラ一を含有するビスマス系 封着材料において、熱的安定性が良好なビスマス系封着材料を提供すること、具体 的には、 PDPの製造工程において、 500°C程度で一次焼成しても、ガラスに結晶が 析出することがなぐ 450〜500°Cの二次焼成で良好に気密封着できるビスマス系封 着材料を提供することである。  [0014] Therefore, an object of the present invention is to provide a bismuth-based sealing material having good thermal stability in a bismuth-based sealing material containing bismuth-based glass and a refractory filler, specifically, In the PDP manufacturing process, a bismuth-based sealing material that can be hermetically sealed in a secondary firing at 450 to 500 ° C does not cause crystals to precipitate even after primary firing at around 500 ° C. Is to provide.
課題を解決するための手段  Means for solving the problem
[0015] 発明者は、鋭意努力の結果、ビスマス系ガラスと耐火性フィラーを含有するビスマス 系封着材料において、耐火性フィラーが、組成として、下記酸化物換算の重量%表 示で SiO 30〜: L00%、Al O 0  [0015] As a result of diligent efforts, the inventor of the bismuth-based sealing material containing bismuth-based glass and a refractory filler has a composition in which the refractory filler is SiO 30- : L00%, Al O 0
2 3 〜45%、 ZnO 0〜35%、 ZrO 0  2 3 to 45%, ZnO 0 to 35%, ZrO 0
2 〜20% 2-20%
2 、 Ti2, Ti
O 0〜20%、Li O 0〜10%、MgO 0〜25%を含有させるとともに、耐火性フィO 0-20%, LiO 0-10%, MgO 0-25%
2 2 twenty two
ラーのうち、粒子径 5 m以下の粒子の割合を 15〜70%に規制することで、上記技 術的課題を解決できることを見出し、本発明として提案するものである。ここで、本発 明でいう「粒子径」、「粒子の割合」は、レーザー回折散乱法を用いた測定装置で算 出した値であり、積算粒度分布のデータ力 算出した値を指す。また、耐火性フイラ 一には、セラミック等の結晶物、ガラス等の非晶質の双方が含まれる。耐火性フィラー が結晶物の場合、結晶物の構成成分 (結晶組成)が重量%換算で上記範囲内であ れば、本発明に係る耐火性フィラーであると判断する。なお、耐火性フィラーの構成 成分は、明示されていない成分の含有を排除するものではなぐ明示されていない成 分は、 ZrO  The present inventors have found that the above technical problem can be solved by regulating the ratio of particles having a particle diameter of 5 m or less to 15 to 70%. Here, “particle diameter” and “particle ratio” as used in the present invention are values calculated by a measuring apparatus using a laser diffraction scattering method, and indicate values obtained by calculating the data force of the integrated particle size distribution. The fire resistant filler includes both crystalline materials such as ceramics and amorphous materials such as glass. When the refractory filler is a crystalline material, it is determined that the refractory filler is a refractory filler according to the present invention if the constituent (crystal composition) of the crystalline material is in the above range in terms of weight%. It should be noted that the components of the refractory filler are not intended to exclude the inclusion of unspecified components.
2、 TiO  2, TiO
2、 Li 0  2, Li 0
2 、 MgOと同様に任意成分である。  2 Like MgO, it is an optional component.
[0016] 発明者は、鋭意努力の結果、耐火性フィラーの組成を上記組成範囲に限定すると 、ビスマス系封着材料を焼成する際、耐火性フィラーの一部がビスマス系ガラスに溶 け出し、この溶け出した成分が、ビスマス系封着材料の熱的安定性を向上させること を見出した。すなわち、上記組成範囲の耐火性フイラ一は、ビスマス系ガラスと相性 が極めて良好であり、ビスマス系封着材料の焼成の際、耐火性フィラーの中の微粉 がガラス中に溶け出しても、ビスマス系封着材料の熱的安定性を損なうことがないとと もに、耐火性フィラーの中に存在する微粉を積極的にビスマス系ガラスに溶解させる ことにより、ビスマス系封着材料の熱的安定性を向上させることができる。 [0016] As a result of diligent efforts, the inventors limited the composition of the refractory filler to the above composition range, and when firing the bismuth-based sealing material, a part of the refractory filler was dissolved into the bismuth-based glass, It has been found that this dissolved component improves the thermal stability of the bismuth-based sealing material. That is, the refractory filler having the above composition range has extremely good compatibility with the bismuth glass, and the fine powder in the refractory filler when the bismuth sealing material is fired. Even if it dissolves in the glass, the thermal stability of the bismuth-based sealing material is not impaired, and the fine powder present in the refractory filler is actively dissolved in the bismuth-based glass. The thermal stability of the bismuth-based sealing material can be improved.
[0017] 耐火性フィラーのうち、粒子径 5 μ m以下の粒子の割合を 15〜70%に規制すると、 ビスマス系封着材料の焼成の際、耐火性フィラーの溶け出し量を適切な値に規制す ることができる。耐火性フィラーの溶け出し量を適切な値に設定すれば、ビスマス系 ガラスの熱的安定性を確実に向上させることができる。その結果、上記のように鉛ホウ 酸系ガラスと比較して、熱的安定性が乏し 、ビスマス系ガラスを鉛ホウ酸系ガラスと同 等以上の熱的安定性まで向上させることができる。特に、 PDPの製造工程において 、 500°C程度で一次焼成しても結晶が析出することがなぐ 450〜500°Cの二次焼成 で良好に気密封着できるビスマス系封着材料を得ることができる。すなわち、ビスマス 系ガラスの主要成分である Bi Oの含有量を多くしても、 Bi Oを構成成分とする結  [0017] If the proportion of particles with a particle size of 5 μm or less among the refractory filler is regulated to 15 to 70%, the amount of the refractory filler leached to an appropriate value when firing the bismuth-based sealing material. It can be regulated. If the amount of refractory filler leaching is set to an appropriate value, the thermal stability of the bismuth-based glass can be reliably improved. As a result, the thermal stability is poor as compared with the lead borate glass as described above, and the bismuth glass can be improved to the same or higher thermal stability as the lead borate glass. In particular, in the manufacturing process of PDP, crystals do not precipitate even when primary firing is performed at about 500 ° C. It is possible to obtain a bismuth-based sealing material that can be hermetically sealed by secondary firing at 450 to 500 ° C. it can. In other words, even if the content of BiO, which is the main component of bismuth-based glass, is increased, the composition containing BiO as a constituent component.
2 3 2 3  2 3 2 3
晶が焼成時に析出することがなぐ Bi Oの含有量を多くすることによるメリット、具体  Advantages of increasing the amount of BiO that prevents crystals from precipitating during firing
2 3  twenty three
的にはビスマス系封着材料の流動性を向上させる効果を的確に享受することができ る。  In particular, the effect of improving the fluidity of the bismuth-based sealing material can be enjoyed accurately.
[0018] また、粒子径 5 μ m以下の粒子の割合を 15〜70%に規制すると、微粉が多いこと に起因する流動性の低下を招くこともない。したがって、ビスマス系封着材料が本来 有する低温封着性を損なうことなぐ的確に享受することができる。その結果、 PDPの 製造工程において、本発明のビスマス系封着材料は、 450〜500°Cの二次焼成でビ スマス系封着材料が流動性を損なうことなぐ前面板ガラスと背面板ガラスを良好に 封着することができる。  [0018] Further, when the ratio of particles having a particle diameter of 5 µm or less is regulated to 15 to 70%, fluidity due to a large amount of fine powder is not caused. Therefore, the bismuth-based sealing material can be properly enjoyed without impairing the inherent low-temperature sealing property. As a result, in the manufacturing process of PDP, the bismuth-based sealing material of the present invention is excellent in the front glass and the back glass that do not impair the fluidity of the bismuth-based sealing material by secondary firing at 450 to 500 ° C. Can be sealed.
[0019] 第二に、本発明のビスマス系封着材料は、耐火性フィラーの比表面積が 0. 5〜4.  [0019] Secondly, in the bismuth-based sealing material of the present invention, the specific surface area of the refractory filler is 0.5 to 4.
0m2Zgであることに特徴付けられる。ここで、本発明でいう「比表面積」は、 BET比表 面積測定装置で測定した値を指す。 Characterized by 0m 2 Zg. Here, the “specific surface area” as used in the present invention refers to a value measured with a BET specific surface area measuring device.
[0020] 第三に、本発明のビスマス系封着材料は、耐火性フィラーがコーディエライトを主結 晶とする結晶物であることに特徴付けられる。 [0020] Thirdly, the bismuth-based sealing material of the present invention is characterized in that the refractory filler is a crystalline material having cordierite as a main crystal.
[0021] 第四に、本発明のビスマス系封着材料は、体積%表示で、ビスマス系ガラス 40〜9[0021] Fourthly, the bismuth-based sealing material of the present invention has a volume% display and bismuth-based glass 40-9.
5%、耐火性フィラー 5〜60%含有することに特徴付けられる。 [0022] 第五に、本発明のビスマス系封着材料は、ビスマス系ガラスが、ガラス組成として、 下記酸化物換算のモル%表示で Bi O 30〜60%、 B O 10〜40%、 ZnO 10 It is characterized by containing 5%, fireproof filler 5-60%. [0022] Fifthly, in the bismuth-based sealing material of the present invention, the bismuth-based glass has a glass composition of BiO 30-60%, BO 10-40%, ZnO 10
2 3 2 3  2 3 2 3
〜50%、 BaO + SrO + MgO + CaO 0〜15%、 CuO 0〜10%、 Fe O 0〜5%  ~ 50%, BaO + SrO + MgO + CaO 0-15%, CuO 0-10%, FeO 0-5%
2 3 twenty three
、 SiO +A1 O 0〜15%、 WO 0〜5%、 Sb O 0〜5%、 In O +Ga O 0〜, SiO + A1 O 0-15%, WO 0-5%, SbO 0-5%, In O + GaO 0-
2 2 3 3 2 3 2 3 2 32 2 3 3 2 3 2 3 2 3
5%を含有することに特徴付けられる。 Characterized by containing 5%.
[0023] 第六に、本発明のビスマス系封着材料は、実質的に PbOを含有しないことに特徴 付けられる。ここで、本発明において、「実質的に PbOを含有しない」とは、 PbOの含 有量が lOOOppm以下の場合を指す。 [0023] Sixth, the bismuth-based sealing material of the present invention is characterized in that it contains substantially no PbO. Here, in the present invention, “substantially no PbO” means a case where the content of PbO is lOOOppm or less.
[0024] 第七に、本発明のビスマス系封着材料は、ビスマス系ガラスの結晶化温度を T (°C[0024] Seventh, the bismuth sealing material of the present invention has a crystallization temperature of bismuth glass T (° C
)とし、ビスマス系封着材料の結晶化温度を T (°C)としたときに、 T— T≥5°Cの関 ) And the crystallization temperature of the bismuth-based sealing material is T (° C).
2 2 1  2 2 1
係を満たすことに特徴付けられる。ここで、本発明でいう「結晶化温度」とは、示差熱 分析 (DTA)装置で結晶析出による発熱ピークが検出される温度を指す。なお、示差 熱分析は、室温から 10°CZ分で昇温を行い、雰囲気は空気雰囲気とする。また、 T と Tの測定に用いるビスマス系ガラスは、当然のことながら、同様のものを使用する。  Characterized by satisfying the clerk. Here, “crystallization temperature” in the present invention refers to a temperature at which an exothermic peak due to crystal precipitation is detected by a differential thermal analysis (DTA) apparatus. In differential thermal analysis, the temperature is raised from room temperature in 10 ° CZ minutes, and the atmosphere is an air atmosphere. Of course, the same bismuth glass used for the measurement of T and T is used.
2  2
[0025] 第八に、本発明のビスマス系封着材料は、ビスマス系ガラスと耐火性フィラーを含 有するビスマス系封着材料であって、耐火性フイラ一は、組成として、下記酸化物換 算の重量%表示で SiO 30〜100%、Α1 Ο 0〜45%、 ZnO 0〜35%、 ZrO  Eighth, the bismuth-based sealing material of the present invention is a bismuth-based sealing material containing bismuth-based glass and a refractory filler, and the refractory filler has the following oxide conversion as a composition: SiO 30-100%, Α1 Ο 0-45%, ZnO 0-35%, ZrO
2 2 3 2 2 2 3 2
0〜20%、 TiO 0〜20%、 Li O 0〜10%、 MgO 0〜25%を含有し、且つ而火 Contains 0-20%, TiO 0-20%, LiO 0-10%, MgO 0-25%, and metaphysical
2 2  twenty two
性フイラ一の 10%粒子径 D が 0. 3〜5. 5 mであることに特徴付けられる。ここで、  The 10% particle size D of the natural filler is characterized by 0.3 to 5.5 m. here,
10  Ten
「10%粒子径 D 」は、レーザー回折法で測定した値を指し、積算粒子量が 10%に  “10% particle size D” refers to the value measured by the laser diffraction method.
10  Ten
なる粒子径である。  Is the particle diameter.
[0026] 第九に、本発明のビスマス系封着材料は、ビスマス系ガラスと耐火性フィラーを含 有するビスマス系封着材料であって、耐火性フイラ一は、組成として、下記酸化物換 算の重量%表示で SiO 30〜100%、Α1 Ο 0〜45%、 ZnO 0〜35%、 ZrO  Ninth, the bismuth-based sealing material of the present invention is a bismuth-based sealing material containing bismuth-based glass and a refractory filler, and the refractory filler has the following oxide conversion as a composition: SiO 30-100%, Α1 Ο 0-45%, ZnO 0-35%, ZrO
2 2 3 2 2 2 3 2
0〜20%、 TiO 0〜20%、 Li O 0〜10%、 MgO 0〜25%を含有し、且つ而火 Contains 0-20%, TiO 0-20%, LiO 0-10%, MgO 0-25%, and metaphysical
2 2  twenty two
性フイラ一の 90%粒子径 D 力 ¾〜45 mであることに特徴付けられる。ここで、「90  It is characterized by a 90% particle diameter D force of ¾ to 45 m. Here, "90
90  90
%粒子径 D 」は、レーザー回折法で測定した値を指し、積算粒子量が 90%になる  ``% Particle size D '' refers to the value measured by the laser diffraction method, and the cumulative particle amount is 90%
90  90
粒子径である。 [0027] 第十に、本発明のビスマス系封着材料は、電子部品または平面表示装置の封着に 使用することに特徴付けられる。 The particle size. [0027] Tenth, the bismuth-based sealing material of the present invention is characterized by being used for sealing an electronic component or a flat display device.
[0028] 第十一に、本発明のビスマス系封着材料は、 PDPの封着に使用することに特徴付 けられる。 [0028] Eleventh, the bismuth-based sealing material of the present invention is characterized by being used for sealing a PDP.
[0029] 第十二に、本発明のビスマス系ペースト材料は、前記ビスマス系封着材料と、溶剤 と、榭脂とを含有することに特徴付けられる。  Twelfth, the bismuth-based paste material of the present invention is characterized by containing the bismuth-based sealing material, a solvent, and a resin.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 本発明のビスマス系封着材料において、耐火性フィラーの組成を上記のように限定 した理由を下記に示す。 [0030] The reason for limiting the composition of the refractory filler as described above in the bismuth-based sealing material of the present invention will be described below.
[0031] SiOは、ビスマス系封着材料の熱的安定性を上昇させる成分であるとともに、耐火 [0031] SiO is a component that increases the thermal stability of the bismuth-based sealing material, and has a fire resistance.
2  2
性フイラ一の熱膨張係数を低下させる成分であり、その含有量は 30〜: L00重量%、 好ましくは 35〜85重量%、より好ましくは 40〜70重量%である。 SiOの含有量が 3  It is a component that lowers the thermal expansion coefficient of the natural filler, and its content is 30 to: L00% by weight, preferably 35 to 85% by weight, more preferably 40 to 70% by weight. SiO content is 3
2  2
0重量%よりも少な 、と、ビスマス系封着材料の熱的安定性を上昇させる効果が乏し くなる。なお、 SiOは、単独で耐火性フィラーとして使用することもできる。  If it is less than 0% by weight, the effect of increasing the thermal stability of the bismuth-based sealing material will be poor. In addition, SiO can also be used alone as a refractory filler.
2  2
[0032] Al Oは、耐火性フィラーの熱膨張係数を低下させる成分であり、その含有量は 0  [0032] Al 2 O is a component that lowers the thermal expansion coefficient of the refractory filler, and its content is 0
2 3  twenty three
〜45重量%、好ましくは 10〜40重量%である。 Al Oの含有量が 45重量%よりも多  -45 wt%, preferably 10-40 wt%. Al O content greater than 45% by weight
2 3  twenty three
いと、封着工程でガラスに結晶が析出しやすくなる。  If so, crystals are likely to precipitate on the glass in the sealing step.
[0033] ZnOは、封着工程で耐火性フィラーの溶け出しを促進するための成分であり、その 含有量は 0〜35重量%、好ましくは 0〜30重量%である。 ZnOの含有量が 35重量[0033] ZnO is a component for accelerating the dissolution of the refractory filler in the sealing step, and its content is 0 to 35 wt%, preferably 0 to 30 wt%. ZnO content is 35 wt.
%よりも多いと、封着工程でガラスに結晶が析出しやすくなる。 If it is more than%, crystals tend to precipitate on the glass in the sealing step.
[0034] ZrOは、耐火性フィラーの熱膨張係数を低下させるための成分であり、その含有 [0034] ZrO is a component for reducing the thermal expansion coefficient of the refractory filler, and its content
2  2
量は 0〜20重量%である。 ZrOの含有量が 20重量%よりも多いと、封着工程でガラ  The amount is 0-20% by weight. If the ZrO content exceeds 20% by weight, the glass
2  2
スに結晶が析出しやすくなる。  Crystals are likely to precipitate on the surface.
[0035] TiOは、耐火性フィラーの熱膨張係数を低下させるための成分であり、その含有量 [0035] TiO is a component for reducing the thermal expansion coefficient of the refractory filler, and its content
2  2
は 0〜20重量%である。 TiOの含有量が 20重量%よりも多いと、封着工程でガラス  Is 0 to 20% by weight. If the TiO content is more than 20% by weight, glass will be used in the sealing process.
2  2
に結晶が析出しやすくなる。  Crystals are likely to precipitate.
[0036] Li Oは、封着工程で耐火性フィラーの溶け出しを促進するための成分であり、その [0036] Li O is a component for promoting the dissolution of the refractory filler in the sealing process,
2  2
含有量は 0〜10重量%である。 Li Oの含有量が 10重量%よりも多いと、ガラスに結 晶が析出しやすくなる。 The content is 0 to 10% by weight. If the Li O content is more than 10% by weight, it will bind to the glass. Crystals are likely to precipitate.
[0037] MgOは、封着工程後における耐火性フィラーの溶け出しを促進するための成分で あり、その含有量は 0〜25重量%、好ましくは 0〜20重量%、より好ましくは 10〜20 重量%である。 MgOの含有量が 25重量%よりも多いと、封着工程でガラスに結晶が 析出しやすくなる。  [0037] MgO is a component for promoting dissolution of the refractory filler after the sealing step, and its content is 0 to 25% by weight, preferably 0 to 20% by weight, more preferably 10 to 20%. % By weight. If the content of MgO is more than 25% by weight, crystals tend to precipitate on the glass during the sealing process.
[0038] また、その他の成分であっても、耐火性フィラーの特性を損なわない範囲で 5重量 %まで添加することができる。  [0038] Even other components may be added up to 5 wt% within a range not impairing the properties of the refractory filler.
[0039] 本発明のビスマス系封着材料において、耐火性フイラ一は、上記組成範囲内であ れば、ガラスおよび結晶物のいずれも使用することができる力 結晶物の耐火性フィ ラーは、熱膨張係数が低ぐビスマス系封着材料の機械的強度を向上できるため、好 ましい。なお、耐火性フイラ一としてガラスを使用すると、耐火性フィラーの溶け出し量 を多くすることができ、結果として、封着工程後のビスマス系封着材料の熱的安定性 を向上させる効果が大きくなる。  [0039] In the bismuth-based sealing material of the present invention, as long as the refractory filler is within the above composition range, both glass and crystalline materials can be used. This is preferable because the mechanical strength of the bismuth-based sealing material having a low coefficient of thermal expansion can be improved. If glass is used as the refractory filler, the amount of refractory filler that has melted can be increased, and as a result, the effect of improving the thermal stability of the bismuth-based sealing material after the sealing process is greatly increased. Become.
[0040] 本発明に係る耐火性フイラ一は、コーディエライト、 β クォーツ固溶体、亜鉛ぺタ ライト、 β ユークリプタイト、ガーナイト等を主結晶とする結晶物、石英ガラス力 選 択される一種または二種以上であることが好ましい。これらの耐火性フイラ一は、熱膨 張係数が小さいとともに、ビスマス系封着材料の熱的安定性向上効果が大きいため 、好適である。特に、コーディエライトを主結晶とする結晶物は、ビスマス系ガラスと相 性が良好であるため、封着工程で耐火性フィラーがガラスに溶け込む量が多ぐビス マス系封着材料の熱的安定性を向上させる効果が大きいだけでなぐ封着工程で Bi Oを構成成分とする結晶が析出することがないため、好適である。また、ガラスの機 [0040] The refractory filler according to the present invention is a crystalline substance mainly composed of cordierite, β-quartz solid solution, zinc petalite, β-eucryptite, garnite, etc. Two or more are preferable. These refractory fillers are suitable because they have a small thermal expansion coefficient and a large effect of improving the thermal stability of the bismuth-based sealing material. In particular, the crystalline material with cordierite as the main crystal has good compatibility with bismuth glass, so the amount of refractory filler dissolved in the glass during the sealing process is large. This is preferable because crystals having Bi 2 O as a constituent component do not precipitate in the sealing step which has only a large effect of improving stability. Also glass machine
2 3 twenty three
械的強度等を上昇させる目的で上記組成を有する耐火性フィラー以外の耐火性フィ ラー (例えば、酸化錫、ジルコユア、アルミナ等)を特性を損なわない範囲で適宜添加 することができる。  For the purpose of increasing the mechanical strength and the like, a refractory filler other than the refractory filler having the above composition (for example, tin oxide, zirconium oxide, alumina, etc.) can be appropriately added as long as the characteristics are not impaired.
[0041] 本発明に係る耐火性フィラーにおいて、レーザー回折散乱法で測定したときの粒 子径 5 m以下の粒子の割合は、 15〜70%、好ましくは 15〜60%、より好ましくは 2 0〜60%、更に好ましくは 25〜50%である。粒子径 5 μ m以下の粒子の割合が 15 %より小さいと、ビスマス系封着材料を焼成した際、耐火性フィラーの溶け込み量が 少なくなり、ビスマス系封着材料の熱的安定性を向上させる効果が得られに《なる。 粒子径 5 m以下の粒子の割合が 70%より大きいと、封着工程で耐火性フィラーの 溶け込みが多くなり過ぎ、ビスマス系封着材料の流動性が乏しくなり、特に PDPの製 造工程にぉ 、て、 450〜500°Cの二次焼成でビスマス系封着材料が良好に軟ィ匕流 動しに《なり、前面板パネルと背面板パネルを低温で封着し難くなる。 [0041] In the refractory filler according to the present invention, the proportion of particles having a particle diameter of 5 m or less as measured by a laser diffraction scattering method is 15 to 70%, preferably 15 to 60%, more preferably 20%. -60%, more preferably 25-50%. If the proportion of particles with a particle size of 5 μm or less is less than 15%, the amount of the refractory filler dissolved when the bismuth-based sealing material is baked. As a result, the effect of improving the thermal stability of the bismuth-based sealing material is obtained. If the proportion of particles with a particle size of 5 m or less is larger than 70%, the penetration of the refractory filler becomes excessive in the sealing process, and the fluidity of the bismuth-based sealing material becomes poor, particularly in the PDP manufacturing process. By the secondary firing at 450 to 500 ° C., the bismuth-based sealing material is easily slid smoothly, making it difficult to seal the front panel and the rear panel at a low temperature.
[0042] 本発明に係る耐火性フィラーにおいて、 10%粒子径 D は 0. 3〜5. 5 m、好まし [0042] In the refractory filler according to the present invention, the 10% particle diameter D is preferably 0.3 to 5.5 m.
10  Ten
く ίま 0. 5〜4. O ^ m,より好ましく ίま 1. 0〜3. 5 mである。 100/0粒子径 D 力^). 3 It is preferably 0.5 to 4. O ^ m, more preferably 1.0 to 3.5 m. 10 0/0 particle diameter D force ^). 3
10 m未満であると、封着工程で耐火性フィラーの溶け込みが多くなり過ぎ、ビスマス 系封着材料の流動性が乏しくなり、特に PDPの製造工程において、 450〜500°Cの 二次焼成でビスマス系封着材料が良好に軟ィ匕流動しにくくなり、前面板パネルと背 面板パネルを低温で封着し難くなる。また、耐火性フィラーの粉砕に長時間を要し、 耐火性フィラーの生産効率が低下する。一方、 10%粒子径 D が 5. 5 mより大き  If it is less than 10 m, the refractory filler will be excessively melted in the sealing process, and the fluidity of the bismuth-based sealing material will be poor.In particular, in the PDP manufacturing process, secondary firing at 450 to 500 ° C will occur. Bismuth-based sealing material is soft and difficult to flow, making it difficult to seal the front panel and the back panel at low temperatures. Also, it takes a long time to pulverize the refractory filler, which reduces the production efficiency of the refractory filler. On the other hand, 10% particle size D is larger than 5.5 m
10  Ten
いと、耐火性フィラーの溶け込み量が少なくなり、ビスマス系封着材料の熱的安定性 を向上させる効果が得られにくくなり、また封着工程後の封着層にマイクロクラックが 発生しやすくなる。  As a result, the amount of the refractory filler to be melted decreases, and it becomes difficult to obtain the effect of improving the thermal stability of the bismuth-based sealing material, and microcracks are likely to occur in the sealing layer after the sealing process.
[0043] 本発明に係る耐火性フイラ一にお 、て、 90%粒子径 D は 8〜45 μ m、好ましくは  [0043] In the refractory filler according to the present invention, the 90% particle size D is 8 to 45 µm, preferably
90  90
10〜32 μ m、より好ましくは 15〜30 μ mである。 900/0粒子径 D 1 μ m未満であ The thickness is 10 to 32 μm, more preferably 15 to 30 μm. 90 0/0 der particle size of less than D 1 mu m
90  90
ると、封着工程で耐火性フィラーの溶け込みが多くなり過ぎ、ビスマス系封着材料の 流動性が乏しくなり、特に PDPの製造工程において、 450〜500°Cの二次焼成でビ スマス系封着材料が良好に軟ィ匕流動しにくくなり、前面板パネルと背面板パネルを 低温で封着し難くなる。また、耐火性フィラーの分級効率が低下する。一方、 90%粒 子径 D が 45 μ mより大き 、と、封着工程後の封着層にマイクロクラックが発生しや In this case, too much refractory filler is melted in the sealing process, and the fluidity of the bismuth-based sealing material is poor. Especially in the PDP manufacturing process, secondary firing at 450 to 500 ° C is used for bismuth-based sealing. Adhesive material is soft and difficult to flow, making it difficult to seal the front panel and back panel at low temperatures. In addition, the classification efficiency of the refractory filler decreases. On the other hand, if the 90% particle diameter D is greater than 45 μm, microcracks may occur in the sealing layer after the sealing process.
90 90
すくなる。  I'm going to be.
[0044] ビスマス系封着材料の焼成の際、耐火性フィラーの比表面積が大き 、ほど、ガラス と接する面積が大きくなり、耐火性フィラーがガラスに溶け込む量が多くなる。本発明 に係る耐火性フイラ一にお 、て、 BET比表面積測定装置で測定したときの比表面積 値 ίま 0. 5〜4. 0m2/g力 S好ましく、 0. 5〜3. 5m2/g力 Sより好ましく、 0. 6〜2. 3m2 Zgが更に好ましい。耐火性フィラーの比表面積値が 4. 0m2Zgより大きいと、ビスマ ス系封着材料の焼成の際、耐火性フィラーがガラスに溶け込む量が多くなり過ぎ、ビ スマス系封着材料の流動性が阻害されるおそれがある。耐火性フィラーの比表面積 値が 0. 5m2/gより小さいと、ビスマス系封着材料の焼成の際、耐火性フィラーがガ ラスに溶け込む量が少なくなり、その結果、ビスマス系封着材料の熱的安定性を向上 させる効果が得られにくくなる。 [0044] When the bismuth-based sealing material is fired, the larger the specific surface area of the refractory filler, the larger the area in contact with the glass, and the greater the amount of the refractory filler dissolved in the glass. In the refractory filler according to the present invention, the specific surface area when measured with a BET specific surface area measuring device is about 0.5 to 4.0 m 2 / g force S, preferably 0.5 to 3.5 m 2 / g force S is preferable, and 0.6 to 2.3 m 2 Zg is more preferable. If the specific surface area of the refractory filler is greater than 4.0 m 2 Zg, When firing a glass-based sealing material, the amount of the refractory filler that dissolves in the glass becomes excessive, and the fluidity of the biomass-based sealing material may be hindered. When the specific surface area value of the refractory filler is less than 0.5 m 2 / g, the amount of the refractory filler that dissolves in the glass during firing of the bismuth-based sealing material is reduced. The effect of improving the thermal stability becomes difficult to obtain.
[0045] ビスマス系ガラスと熱膨張係数の適合しな 、材料、例えば高歪点ガラス (85 X 10"7 Z°C)、ソーダ板ガラス (90 X 10"V°O等の封着を行う場合、ビスマス系ガラス粉末 と耐火性フィラー粉末とを混合して複合材料とし、これを封着材料とする必要がある。 封着材料の熱膨張係数は、被封着物に対して 10〜30 X 10_7Z°C程度低く設計す ることが重要である。これは、封着後の封着層に力かる歪をコンプレツシヨン (圧縮)側 にして封着層の破壊を防ぐためである。また、熱膨張係数の調整以外にも、例えば 機械的強度の向上のために耐火性フィラー粉末を添加することもできる。 [0045] When sealing materials such as high strain point glass (85 X 10 " 7 Z ° C) and soda plate glass (90 X 10" V ° O) that do not match the thermal expansion coefficient of bismuth glass It is necessary to mix bismuth glass powder and refractory filler powder to form a composite material, which is used as a sealing material.The thermal expansion coefficient of the sealing material is 10 to 30 X 10 with respect to the object to be sealed. It is important to design it as low as _7 Z ° C in order to prevent the sealing layer from being destroyed by setting the strain applied to the sealing layer after sealing to the compression (compression) side. In addition to adjusting the thermal expansion coefficient, for example, a refractory filler powder can be added to improve mechanical strength.
[0046] 耐火性フィラー粉末を混合する場合、その混合割合は、ビスマス系ガラス粉末が 40 〜95体積0 /0、耐火性フィラー粉末 5〜60体積%であることが好ましぐビスマス系ガ ラス粉末が 40〜90体積%、耐火性フィラー粉末 10〜60体積%であることが更に好 ましい。両者の割合をこのように規定した理由は、耐火性フィラー粉末が 5体積%より も少ないと耐火性フィラーを添加したことによる効果が得られにくぐ 60体積%より多 くなると流動性が悪くなり気密封着等できなくなるおそれがあるからである。 [0046] When mixing the refractory filler powder, the mixing ratio, bismuth glass powder is 40-95 volume 0/0, the refractory filler powder 5-60 is preferred instrument bismuth glass that is the volume% More preferably, the powder is 40 to 90% by volume and the refractory filler powder is 10 to 60% by volume. The reason for specifying the ratio of the two in this way is that if the amount of the refractory filler powder is less than 5% by volume, it is difficult to obtain the effect of adding the refractory filler. This is because there is a possibility that airtight sealing or the like cannot be performed.
[0047] また、耐火性フィラー粉末をアルミナ、酸化亜鉛、ジルコン、チタ-ァ、ジルコユア等 の微粉末によって被覆すると、ビスマス系ガラス粉末と耐火性フィラー粉末との間で の反応を抑制できる。したがって、耐火性フィラー粉末をアルミナ、酸化亜鉛、ジルコ ン、チタ-ァ、ジルコユア等の微粉末によって被覆すると、耐火性フィラー粉末の溶け 出し量を調節することができる。  [0047] Further, when the refractory filler powder is coated with fine powders such as alumina, zinc oxide, zircon, titer, and zircoure, the reaction between the bismuth glass powder and the refractory filler powder can be suppressed. Therefore, when the refractory filler powder is covered with fine powders such as alumina, zinc oxide, zircon, titer, and zircoyu, the amount of the refractory filler powder leached out can be adjusted.
[0048] 本発明のビスマス系封着材料において、ビスマス系ガラスのガラス組成を上記のよ うに限定した理由を下記に示す。  [0048] The reason why the glass composition of the bismuth glass in the bismuth sealing material of the present invention is limited as described above will be described below.
[0049] Bi Oは、軟化点を下げるための主要成分である。その含有量は 30〜60モル0 /0[0049] Bi 2 O is a main component for lowering the softening point. Its content is 30 to 60 mole 0/0,
2 3  twenty three
好ましくは 35〜55モル0 /0、より好ましくは 35〜50モル0 /0、更に好ましくは 35〜45モ ル%である。 Bi Oの含有量が 30モル%より少ないと、ガラスの軟化点が高くなり過 ぎ、 500°C以下の低温で封着しにくくなる。一方、 Bi Oの含有量が 60モル%より多 Preferably 35 to 55 moles 0/0, more preferably 35 to 50 mole 0/0, more preferably from 35 to 45 molar%. If the content of BiO is less than 30 mol%, the softening point of the glass becomes high. It becomes difficult to seal at a low temperature of 500 ° C or less. On the other hand, the content of BiO is more than 60 mol%
2 3  twenty three
いと、ガラスが熱的に不安定になり、溶融時または焼成時にガラスが失透しやすくな る。  In such a case, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
[0050] B Oは、ビスマス系ガラスのガラスネットワークを形成する成分であり、必須成分で  [0050] B 2 O is a component that forms a glass network of bismuth-based glass, and is an essential component.
2 3  twenty three
ある。その含有量は 10〜40モル0 /0、好ましくは 12〜35モル0 /0、より好ましくは 15〜 30モル%、更に好ましくは 15〜25モル%である。 B Oの含有量が 10モル%ょり少 is there. Its content is 10 to 40 mole 0/0, preferably from 12 to 35 mole 0/0, more preferably 15-30 mol%, more preferably 15 to 25 mol%. Low BO content by 10 mol%
2 3  twenty three
ないと、ガラスが熱的に不安定になり、溶融時または焼成時にガラスが失透しやすく なる。一方、 B Oの含有量力 0モル%より多いと、ガラスの粘性が高くなり過ぎ、 50  Otherwise, the glass becomes thermally unstable and the glass tends to devitrify when melted or fired. On the other hand, when the content of B 2 O is more than 0 mol%, the viscosity of the glass becomes too high.
2 3  twenty three
o°c以下の低温で封着することが困難になる。  It becomes difficult to seal at a low temperature of o ° c or less.
[0051] ZnOは、ガラスの溶融時または焼成時の失透を抑制する効果がある成分である。  [0051] ZnO is a component that has an effect of suppressing devitrification when the glass is melted or fired.
その含有量は 10〜50モル0 /0、好ましくは 12〜45モル0 /0、より好ましくは 15〜40モ ル0 /0、更に好ましくは 20〜35モル0 /0である。 ZnOの含有量が 10モル0 /0より少ないと 、ガラスの溶融時または焼成時の失透を抑制する効果が得られにくくなる。 ZnOの含 有量が 50モル%より多いと、ガラス組成内のバランスを欠き、逆にガラスの熱的安定 性が損なわれ、その結果、ガラスが失透しやすくなる。 Its content is 10 to 50 mole 0/0, preferably from 12 to 45 mole 0/0, more preferably 15 to 40 molar 0/0, more preferably 20 to 35 mole 0/0. When the content of ZnO is less than 10 mole 0/0, the effect of suppressing devitrification at the time of melting or during sintering of the glass is difficult to obtain. When the content of ZnO is more than 50 mol%, the balance in the glass composition is lost, and conversely, the thermal stability of the glass is impaired, and as a result, the glass is easily devitrified.
[0052] BaO、 SrO、 MgO、 CaOはガラスの溶融時または焼成時の失透を抑制する効果が ある。これらの成分は、合量で 15モル%まで含有させることができる。これらの成分の 合量が 15モル%より多くなると、ガラスの軟ィ匕点が高くなり過ぎ、 500°C以下の低温 で封着することが困難になる。  [0052] BaO, SrO, MgO, and CaO have an effect of suppressing devitrification when the glass is melted or fired. These components can be contained in a total amount of up to 15 mol%. If the total amount of these components exceeds 15 mol%, the soft spot of the glass becomes too high and it becomes difficult to seal at a low temperature of 500 ° C or lower.
[0053] BaOの含有量は 1〜10モル0 /0が好ましぐ 2〜6モル0 /0がより好ましい。 BaOの含 有量が 1モル%より少な!/、と、ガラスの溶融時または焼成時の失透を抑制する効果が 得られにくくなる。 ZnOの含有量が 10モル0 /0より多いと、ガラス組成内のバランスを 欠き、逆にガラスの熱的安定性が損なわれ、その結果、ガラスが失透しやすくなる。 [0053] The content of BaO is more preferably 1 to 10 mol 0/0 preferably fixture 2-6 mol 0/0. When the content of BaO is less than 1 mol%! /, It becomes difficult to obtain the effect of suppressing devitrification when the glass is melted or fired. When the content of ZnO is more than 10 mole 0/0, lack the balance of the glass composition, the thermal stability of the glass is impaired to the contrary, the result, the glass tends to be devitrified.
[0054] SrO、 MgO、 CaOのそれぞれの含有量は 0〜5モル0 /0が好ましぐ 0〜2モル0 /0が より好ましい。各成分の含有量が 5モル%より多いと、ガラスが失透や分相しやすくな る。 [0054] SrO, MgO, the content of each of CaO is more preferably 0 to 5 mole 0/0 preferably fixture 0-2 mol 0/0. If the content of each component is more than 5 mol%, the glass tends to devitrify and phase separation.
[0055] CuOは、ガラスの溶融時または焼成時の失透を抑制する効果があり、 10モル%ま で添加することができる。 CuOの含有量が 10モル%より多いと、ガラスが失透しやす くなり、ガラスの流動性が損なわれやすくなる。 [0055] CuO has an effect of suppressing devitrification when the glass is melted or fired, and can be added up to 10 mol%. If the CuO content is higher than 10 mol%, the glass is easily devitrified. And the fluidity of the glass tends to be impaired.
[0056] Fe Oは、ガラスの溶融時または焼成時の失透を抑制する効果があり、その含有量 [0056] Fe 2 O has an effect of suppressing devitrification when the glass is melted or fired, and its content
2 3  twenty three
は 0〜5モル%が好ましぐ 0. 1〜2モル%がより好ましい。 Fe Oの含有量が 5モル  Is preferably 0 to 5 mol%, more preferably 0.1 to 2 mol%. Fe O content is 5 mol
2 3  twenty three
%より多いと、ガラス組成内のバランスを欠き、逆にガラスの熱的安定性が損なわれ、 その結果、ガラスが失透しやすくなる。  If it is more than%, the balance in the glass composition will be lost, and conversely, the thermal stability of the glass will be impaired, and as a result, the glass will be easily devitrified.
[0057] SiO、 Al Oは、ガラスの耐候性を向上させる成分である。その含有量は、合量で [0057] SiO and Al 2 O are components that improve the weather resistance of glass. Its content is the total amount
2 2 3  2 2 3
0〜15モル0 /0力 S好ましく、 0〜10モル0 /0がより好ましい。これらの成分の合量が 15モ ル%より多いと、ガラスの軟ィ匕点が高くなり過ぎ、 500°C以下の低温で封着することが 困難となる。特に、 SiOの含有量は、 0〜10モル%が好ましぐ 0〜5モル%がより好 15 mol 0/0 force S, and more preferably from 0 to 10 mol 0/0. If the total amount of these components is more than 15 mol%, the soft softness point of the glass becomes too high, and it becomes difficult to seal at a low temperature of 500 ° C or lower. In particular, the content of SiO is preferably 0 to 10 mol%, more preferably 0 to 5 mol%.
2  2
ましい。 Al Oの含有量は 0〜5モル%が好ましぐ 0〜2モル%がより好ましい。  Good. The content of Al 2 O is preferably 0 to 5 mol%, more preferably 0 to 2 mol%.
2 3  twenty three
[0058] WOは、ガラスの失透を抑制するための成分であり、その含有量は 0〜5モル%が  [0058] WO is a component for suppressing devitrification of glass, and its content is 0 to 5 mol%.
3  Three
好ましぐ 0〜2モル%がより好ましい。ビスマス系ガラスにおいて、ガラスの軟ィ匕点を 下げるためには、 Bi Oの含有量を多くする必要がある力 Bi Oの含有量が多くな  Preferred is 0 to 2 mol%. In bismuth glass, in order to lower the soft spot of the glass, it is necessary to increase the content of BiO.
2 3 2 3  2 3 2 3
ると、焼成中にガラス力も結晶が析出して、ガラスの流動性が阻害される。特に、 Bi  As a result, crystals are also deposited during the firing, and the fluidity of the glass is hindered. In particular, Bi
2 2
Oの含有量力 0モル%以上の場合、その傾向が顕著になる。しかし、ビスマス系ガWhen the content of O is 0 mol% or more, the tendency becomes remarkable. However, bismuth-based gas
3 Three
ラスにおいて、 WOを適宜添加すれば、 Bi Oの含有量が 40モル%以上であっても  In the lath, if WO is appropriately added, even if the content of BiO is 40 mol% or more
3 2 3  3 2 3
、ガラスの熱的安定性が低下しに《なる。ただし、 WOの含有量が 5モル%より多く  The thermal stability of the glass is reduced. However, the content of WO is more than 5 mol%
3  Three
なると、ガラス糸且成内のバランスを欠き、逆にガラスの熱的安定性が損なわれ、その 結果、ガラスが失透しやすくなる。  In such a case, the balance between the glass yarn and the inside is lost, and conversely, the thermal stability of the glass is impaired, and as a result, the glass is easily devitrified.
[0059] Sb Oは、ガラスの失透を抑制するための成分であり、その含有量は 0〜5モル% [0059] SbO is a component for suppressing devitrification of glass, and its content is 0 to 5 mol%.
2 3  twenty three
が好ましぐ 0〜2モル0 /0がより好ましい。 Sb Oはビスマス系ガラスのネットワーク構 It is preferred instrument 0-2 mole 0/0 is more preferable. SbO is a network structure of bismuth glass
2 3  twenty three
造を安定ィ匕させる効果があり、ビスマス系ガラスに Sb oを適宜添加することにより、  It has the effect of stabilizing the structure, and by adding Sbo appropriately to bismuth glass,
2 3  twenty three
Bi Oの含有量力 0モル%以上であっても、ガラスの熱的安定性が低下しにくくなる Even if the content power of BiO is 0 mol% or more, the thermal stability of the glass is hardly lowered.
2 3 twenty three
。ただし、 Sb Oの含有量が 5モル0 /0より多くなると、ガラス組成内のバランスを欠き、 . However, when the content of Sb O is more than 5 mole 0/0, lack the balance of the glass composition,
2 3  twenty three
逆にガラスの熱的安定性が損なわれ、その結果、ガラスが失透しやすくなる。  Conversely, the thermal stability of the glass is impaired, and as a result, the glass is easily devitrified.
[0060] In O、 Ga Oは必須成分ではないが、ガラスの失透を抑制するための成分であり [0060] In O and Ga O are not essential components, but are components for suppressing devitrification of glass.
2 3 2 3  2 3 2 3
、その含有量は合量で 0〜5モル%が好ましぐ 0. 1〜3モル%がより好ましい。 In O  The total content is preferably 0 to 5 mol%, more preferably 0.1 to 3 mol%. In O
2 2
、 Ga O はビスマス系ガラスのネットワーク構造を安定化させる効果があり、ビスマス 系ガラスに In O、 Ga Oを適宜添カ卩することにより、 Bi Oの含有量力 0モル%以Ga O has the effect of stabilizing the network structure of bismuth glass, By adding In O and Ga O appropriately to the glass, the content power of BiO is 0 mol% or less.
2 3 2 3 2 3 2 3 2 3 2 3
上であっても、ガラスの熱的安定性が低下しにくくなる。ただし、 In O、 Ga Oの含  Even if it is above, the thermal stability of the glass is unlikely to decrease. However, including In O and Ga O
2 3 2 3 有量が 5モル%より多くなると、ガラス組成内のバランスを欠き、逆にガラスの熱的安 定性が損なわれ、その結果、ガラスが失透しやすくなる。なお、 In Oの含有量は 0〜  2 3 2 3 When the content is more than 5 mol%, the balance in the glass composition is lost, and conversely, the thermal stability of the glass is impaired, and as a result, the glass is easily devitrified. In O content is 0 ~
2 3  twenty three
5モル%がより好ましぐ Ga Oの含有量は 0〜2モル%がより好ましい。  5 mol% is more preferable The content of Ga 2 O is more preferably 0 to 2 mol%.
2 3  twenty three
[0061] Li、 Na、 Kおよび Csの酸ィ匕物は、ガラスの軟ィ匕点を低くする成分である力 溶融時 にガラスの失透を促進する作用を有するため合量で 2モル%以下であることが好まし い。  [0061] The acid oxides of Li, Na, K, and Cs have the effect of promoting the devitrification of the glass at the time of melting, which is a component that lowers the soft melting point of the glass. It is preferable that:
[0062] P Oは、溶融時の失透を抑制する成分であるが、添加量が 1モル%よりも多いと溶  [0062] P 2 O is a component that suppresses devitrification at the time of melting.
2 5  twenty five
融時にガラスが分相しやす 、ため好ましくな 、。  This is preferable because the glass is likely to phase separate during melting.
[0063] MoO、: La O、 Y O、 CeOおよび Gd Oは、溶融時にガラスの分相を抑制する [0063] MoO: La O, Y 2 O, CeO and Gd 2 O suppress glass phase separation during melting
3 2 3 2 5 2 2 3  3 2 3 2 5 2 2 3
成分であるが、これらの合量が 3モル%よりも多いとガラスの軟ィ匕点が高くなり、 500 °C以下の温度で焼成しに《なる。  Although it is a component, if the total amount of these components is more than 3 mol%, the softness point of the glass becomes high, and the glass is fired at a temperature of 500 ° C or lower.
[0064] また、その他の成分であっても、ガラスの特性を損なわない範囲で 5モル%まで添 カロすることがでさる。 [0064] Even with other components, it is possible to add up to 5 mol% within a range that does not impair the properties of the glass.
[0065] 以上のガラス組成を有するビスマス系ガラスは、 500°C以下の温度で良好な流動 性を示す非結晶性 (非晶質)のガラスであり、 30〜300°Cにおける熱膨張係数が約 1 00〜120 X 10—ソ。 Cである。  [0065] The bismuth glass having the above glass composition is a non-crystalline (amorphous) glass exhibiting good fluidity at a temperature of 500 ° C or lower, and has a thermal expansion coefficient at 30 to 300 ° C. About 100-120 x 10—So. C.
[0066] 本発明のビスマス系封着材料は、 PbOを含有する態様を排除するものではないが 、既述の通り、環境上の理由力も PbOは実質的に含有しないことが好ましい。また、 ガラスに PbOを含有させると、ガラス中に存在する Pb2+が拡散して電気絶縁性を低 下させる場合がある。 [0066] The bismuth-based sealing material of the present invention does not exclude the embodiment containing PbO, but as described above, it is preferable that the environmental reason is substantially free of PbO. In addition, if PbO is contained in the glass, Pb 2+ present in the glass may diffuse to lower the electrical insulation.
[0067] 本発明のビスマス系封着材料は、ビスマス系ガラスの結晶化温度を T (°C)とし、ビ スマス系封着材料の結晶化温度を T (°C)としたときに、 T— T≥5°Cの関係を満た  [0067] The bismuth-based sealing material of the present invention has a crystallization temperature of bismuth-based glass as T (° C) and the crystallization temperature of the bismuth-based sealing material as T (° C). — Meets the relationship of T≥5 ° C
2 2 1  2 2 1
すことが好ましぐ T T≥7°Cの関係を満たすことがより好ましぐ T T≥10°Cの  It is more preferable to satisfy the relationship T T≥7 ° C T T≥10 ° C
2 1 2 1 関係を満たすことが更に好ましい。 T— Tく 5°Cであると、ビスマス系封着材料の熱  It is more preferable to satisfy the 2 1 2 1 relationship. When T—T is 5 ° C, the heat of the bismuth-based sealing material
2 1  twenty one
的安定性を向上させる効果が得られに《なり、例えば 500°C30分で焼成した時に、 ガラスが失透しやすくなる。 [0068] 本発明のビスマス系封着材料は、電子部品または平面表示装置の封着に使用す ることが好ましい。電子部品は、高温で特性が劣化する部材を使用する場合がある。 その場合、本発明のビスマス系封着材料は、低温で封着できるため、耐熱性の乏し い部材の特性を劣化させることなぐ好適である。また、電子部品の封着を高温で行 つたとしても、本発明のビスマス系封着材料は、熱的安定性が優れるため、封着工程 でガラスの失透を抑止できる。平面表示装置は、できるだけ低温で封着することがで きれば、それだけ製造効率が向上するとともに、蛍光体等の他部材の変質を防止で きる。本発明のビスマス系封着材料は低温で封着できるため、平面表示装置に好適 である。また、本発明のビスマス系封着材料は、平面表示装置の封着を高温で行つ たとしても、熱的安定性が優れるため、封着工程でガラスの失透を防止できる。 The effect of improving the mechanical stability is obtained, and for example, when baked at 500 ° C. for 30 minutes, the glass tends to devitrify. [0068] The bismuth-based sealing material of the present invention is preferably used for sealing electronic parts or flat display devices. An electronic component may use a member whose characteristics deteriorate at a high temperature. In that case, since the bismuth-based sealing material of the present invention can be sealed at a low temperature, it is preferable not to deteriorate the characteristics of the member having poor heat resistance. Further, even when the electronic component is sealed at a high temperature, the bismuth-based sealing material of the present invention has excellent thermal stability, so that devitrification of the glass can be suppressed in the sealing process. If the flat display device can be sealed at as low a temperature as possible, the production efficiency can be improved and the deterioration of other members such as phosphors can be prevented. Since the bismuth sealing material of the present invention can be sealed at a low temperature, it is suitable for a flat display device. Further, the bismuth-based sealing material of the present invention is excellent in thermal stability even when the flat display device is sealed at a high temperature, and thus can prevent the glass from devitrifying in the sealing step.
[0069] 本発明のビスマス系封着材料は、 PDPの封着に使用することが好ましい。本発明 のビスマス系封着材料は、 PDPの製造工程において、 500°C程度で一次焼成しても 結晶が析出することがなぐ 450〜500°Cの二次焼成で良好に気密封着できるため 、 PDPの製造効率の向上、特性向上に寄与することができる。  [0069] The bismuth-based sealing material of the present invention is preferably used for sealing PDP. The bismuth-based sealing material of the present invention can be hermetically sealed by secondary firing at 450 to 500 ° C, in which crystals do not precipitate even after primary firing at about 500 ° C in the PDP manufacturing process. This can contribute to improving the manufacturing efficiency and characteristics of PDP.
[0070] ビスマス系ガラス粉末と耐火性フィラー粉末とを混合した封着材料は、粉末のまま 封着材料として使用しても良 ヽが、封着材料とビークルとを均一に混練してペースト として使用すると取り扱いやすい。ビークルは、主に有機溶媒と榭脂とからなり、榭脂 はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、 増粘剤等を添加することもできる。作製されたペーストは、ディスペンサーゃスクリー ン印刷機等の塗布機を用いて塗布される。  [0070] The sealing material in which the bismuth-based glass powder and the refractory filler powder are mixed may be used as the sealing material as it is, but the sealing material and the vehicle are uniformly kneaded as a paste. Easy to handle when used. The vehicle mainly consists of an organic solvent and rosin, which is added for the purpose of adjusting the viscosity of the paste. If necessary, a surfactant, a thickener, etc. can be added. The prepared paste is applied using a dispenser such as a dispenser screen printer.
[0071] 有機溶媒としては、 N、 N,一ジメチルホルムアミド(DMF)、 a—タービネオール、 高級アルコール、 Ί ブチルラタトン(Ύ BL)、テトラリン、ブチルカルビトールァセ テート、酢酸ェチル、酢酸イソァミル、ジエチレングリコールモノェチルエーテル、ジ エチレングリコールモノェチルエーテルアセテート、ベンジルアルコール、トルエン、 3 ーメトキシー 3—メチルブタノール、水、トリエチレングリコールモノメチルエーテル、ト リエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、 ジプロピレングリコーノレモノブチノレエーテル、トリプロピレングリコーノレモノメチノレエー テル、トリプロピレングリコーノレモノブチノレエーテル、プロピレンカーボネート、ジメチ ルスルホキシド(DMSO)、 N—メチル—2—ピロリドン等が使用可能である。特に、 oc タービネオールは、高粘性であり、榭脂等の溶解性も良好であるため、好ましい。 [0071] Examples of the organic solvent include N, N, monodimethylformamide (DMF), a-terpineol, higher alcohol, butyl latatatone ( Ύ BL), tetralin, butyl carbitol phosphate, ethyl acetate, isoamyl acetate, diethylene glycol mono Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monomonobutyl Nore ether, tripropylene glycol monomethino ether, tripropylene glycol nomonobutino ether, propylene carbonate, dimethyl Rulsulfoxide (DMSO), N-methyl-2-pyrrolidone, etc. can be used. In particular, oc tervineol is preferable because it is highly viscous and has good solubility for rosin and the like.
[0072] 榭脂としては、アクリル榭脂、ェチルセルロース、ポリエチレングリコール誘導体、二 トロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル 等が使用可能である。特に、アクリル榭脂、ニトロセルロースは、熱分解性が良好であ るため、好ましい。 [0072] As the resin, acrylic resin, ethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic resin and nitrocellulose are preferable because they have good thermal decomposability.
実施例 1  Example 1
[0073] 以下、実施例に基づいて本発明を詳細に説明する。  [0073] Hereinafter, the present invention will be described in detail based on examples.
[0074] 表 1〜3に記載の各試料 A〜0は、次のようにして調製した。 [0074] Samples A to 0 described in Tables 1 to 3 were prepared as follows.
[0075] まず、表 1〜3に示したガラス組成となるように各種酸ィ匕物、炭酸塩等の原料を調合 したガラスバッチを準備し、これを白金坩堝に入れて 900〜 1000°Cで 1〜 2時間溶 融した。次に、溶融ガラスの一部を押棒式熱膨張測定 (TMA)装置用サンプルとして ステンレス製の金型に流し出し、その他の溶融ガラスは、水冷ローラーにより薄片状 に成形した。なお、熱膨張係数測定用サンプルは、成形後に所定の徐冷処理 (ァニ ール)を行った。最後に、薄片状のガラスをボールミルにて粉砕後、 目開き 75 μ mの 篩いを通過させて、平均粒径約 10 /z mの各試料を得た。  [0075] First, a glass batch prepared by preparing raw materials such as various oxides and carbonates so as to have the glass composition shown in Tables 1 to 3 was prepared and placed in a platinum crucible at 900 to 1000 ° C. At 1 to 2 hours. Next, a part of the molten glass was poured into a stainless steel mold as a sample for a push rod type thermal expansion measurement (TMA) apparatus, and the other molten glass was formed into a flake shape with a water-cooled roller. The sample for measuring the thermal expansion coefficient was subjected to a predetermined slow cooling treatment (anneal) after molding. Finally, the glass flakes were pulverized with a ball mill and passed through a sieve having an aperture of 75 μm to obtain samples having an average particle diameter of about 10 / zm.
[0076] 以上の試料を用いて、熱膨張係数、ガラス転移点、軟化点および失透状態を評価 した。その結果を表 1〜3に示す。  [0076] Using the above samples, the thermal expansion coefficient, glass transition point, softening point, and devitrification state were evaluated. The results are shown in Tables 1-3.
[0077] [表 1]  [0077] [Table 1]
Figure imgf000016_0001
[0078] [表 2]
Figure imgf000016_0001
[0078] [Table 2]
Figure imgf000017_0002
Figure imgf000017_0002
[0079] [表 3] [0079] [Table 3]
Figure imgf000017_0001
[0080] 軟化点は、粉末試料を用いて、示差熱分析 (DTA)装置により求めた。
Figure imgf000017_0001
[0080] The softening point was determined by a differential thermal analysis (DTA) apparatus using a powder sample.
[0081] ガラス転移点および熱膨張係数は、 TMA装置により求めた。熱膨張係数は、 30〜 [0081] The glass transition point and the thermal expansion coefficient were determined by a TMA apparatus. Thermal expansion coefficient is 30 ~
300°Cの温度範囲にて測定した。 Measurements were made at a temperature range of 300 ° C.
[0082] 表 1〜3の試料 A〜0は、粉末加圧成形体を焼成炉で 500°C30分保持した後、光 学顕微鏡 (倍率 100倍)を用いて試料の表面結晶を目視で観察することにより、失透 状態を評価した。失透が認められなカゝつたものを「〇」、失透が認められたものを「X」 とした。なお、昇降温速度は、 10°CZ分とした。 [0082] In Samples A to 0 in Tables 1 to 3, the powder pressure-molded body was held in a baking furnace at 500 ° C for 30 minutes, and then the surface crystals of the sample were visually observed using an optical microscope (magnification 100 times). By doing so, the devitrification state was evaluated. A case where devitrification was not observed was designated as “◯”, and a case where devitrification was observed was designated as “X”. The heating / cooling rate was 10 ° CZ.
[0083] 表 1〜3の試料 A〜Mは、ガラス転移点が 335〜375°C、軟化点が 392〜442°Cで あり、低融点特性を有していた。また、試料 A〜Mは、熱膨張係数が 103〜119 X 1[0083] Samples A to M in Tables 1 to 3 had a glass transition point of 335 to 375 ° C and a softening point of 392 to 442 ° C, and had low melting point characteristics. Samples A to M have a thermal expansion coefficient of 103 to 119 X 1
0_7Z°Cであった。さらに、試料 A〜Mは、失透状態の評価が良好であり、良好な熱 的安定性を備えていた。 0 _7 Z ° C. In addition, Samples A to M had a good evaluation of the devitrification state and had good thermal stability.
[0084] 表 3の試料 Nは、ガラス転移点が 389°C、軟ィ匕点が 480°Cであり、実施例のガラス 試料と比較して、高融点であった。表 3の試料 Oは、失透状態の評価が不良であり、 熱的安定性が乏し力つた。 [0084] Sample N in Table 3 had a glass transition point of 389 ° C and a soft melting point of 480 ° C, and had a higher melting point than the glass samples of Examples. Sample O in Table 3 was poorly evaluated for devitrification, and was poor in thermal stability.
[0085] 表 1〜3のガラス粉末試料 A〜Mと表中所定の耐火性フィラー粉末を混合し、表 4[0085] Glass powder samples A to M in Tables 1 to 3 were mixed with predetermined refractory filler powders in the table, and Table 4
〜6に示すビスマス系封着材料を得た。表 4、 5の試料 No. 1〜10は、実施例を示しA bismuth-based sealing material shown in -6 was obtained. Sample Nos. 1 to 10 in Tables 4 and 5 show examples.
、表 6の試料 No. 11〜15は、比較例を示している。試料 No. 1〜15について、熱膨 張係数、軟化点、流動径および熱的安定性を評価した。なお、熱膨張係数、軟化点 は、上記ガラス試料の場合と同様の方法で測定した。 Sample Nos. 11 to 15 in Table 6 show comparative examples. Samples Nos. 1 to 15 were evaluated for thermal expansion coefficient, softening point, flow diameter, and thermal stability. The thermal expansion coefficient and softening point were measured by the same method as in the case of the glass sample.
[0086] [表 4] [0086] [Table 4]
¾ §3 ¾ §3
Figure imgf000019_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0002
( (
Figure imgf000021_0001
Figure imgf000021_0001
間焼成し、次いでこの焼成物を粉砕し、所定の粒度を有する粉末を得た。コーデイエ ライトは、酸化マグネシウム、酸化アルミニウム、純珪粉を 2MgO' 2Al O - 5SiOの Then, the fired product was pulverized to obtain a powder having a predetermined particle size. Cordierite is magnesium oxide, aluminum oxide, pure silica powder 2MgO '2Al O-5SiO
2 3 2 割合になるように調合し、混合後、 1400°Cで 10時間焼成し、次いでこの焼成物を粉 砕し、所定の粒度を有する粉末を得た。 β —ユークリプタイトは、 SiO 74. 3  After mixing and mixing, the mixture was fired at 1400 ° C. for 10 hours, and then the fired product was pulverized to obtain a powder having a predetermined particle size. β — Eucryptite is SiO 74.3
2 重量% 2% by weight
、 Al O 21. 0重量%、 Li O 1. 7重量%となるようにバッチ成分を混合し、 1650Mix the batch ingredients so that AlO 21.0 wt%, LiO 1.7 wt%, 1650
2 3 2 2 3 2
°Cで 3時間溶融した。次いで溶融ガラス粉砕後、所定の結晶核を添加し、 1100°Cで 7時間焼成した上で得られた焼成物を粉砕し、所定の粒度を有する粉末を得た。 β —クォーツ固溶体は、 SiO 46. 5重量0 /0、 Al O 23. 3重量0 /0、 ZnO 23. 3重量 Melted at ° C for 3 hours. Next, after pulverizing the molten glass, a predetermined crystal nucleus was added, and the fired product obtained after calcination at 1100 ° C. for 7 hours was pulverized to obtain a powder having a predetermined particle size. beta - quartz solid solution, SiO 46. 5 wt 0/0, Al O 23. 3 wt 0/0, ZnO 23. 3 weight
2 2 3  2 2 3
%、 ZrO 6. 9重量%となるようにバッチ成分を混合し、 1550°Cで 3時間溶融した。  %, ZrO 6.9 wt%, and the batch components were mixed and melted at 1550 ° C for 3 hours.
2  2
次いで溶融ガラス粉砕後、所定の結晶核を添加し、 900°Cで 2時間焼成した上で得 られた焼成物を粉砕し、所定の粒度を有する粉末を得た。リン酸ジルコニウムは、 Zr OC · 8Η Οとリン酸の水溶液を所定のモル比で混合後、生成沈殿物を 1400°Cで Next, after pulverizing the molten glass, a predetermined crystal nucleus was added, and the fired product obtained after calcination at 900 ° C. for 2 hours was pulverized to obtain a powder having a predetermined particle size. Zirconium phosphate is prepared by mixing Zr OC · 8Η Ο with an aqueous solution of phosphoric acid at a specified molar ratio, and then the resulting precipitate at 1400 ° C.
12 2 12 2
焼成した上で得られた焼成物を粉砕、分級し、所定の粒度を有する粉末を得た。  The fired product obtained after firing was pulverized and classified to obtain a powder having a predetermined particle size.
[0090] 耐火性フィラーの粒度分布は、レーザー回折散乱法を用いた測定装置(島津製作 所製 SALD2000)で測定した。 [0090] The particle size distribution of the refractory filler was measured with a measuring apparatus using a laser diffraction scattering method (SALD2000, manufactured by Shimadzu Corporation).
[0091] 耐火性フィラーの比表面積は、 BET比表面積測定装置で測定した。 [0091] The specific surface area of the refractory filler was measured with a BET specific surface area measuring device.
[0092] 流動径は、各試料の合成密度に相当する重量の粉末を金型により外径 20mmの ボタン状に乾式プレスし、これを 40mm X 40mm X 2. 8mm厚の高歪点ガラス基板 上に載置し、空気中で 10°CZ分の速度で昇温した後、表 5〜8に記載の焼成条件で 焼成した上で室温まで 10°CZ分で降温し、得られたボタンの直径を測定することで 評価した。なお、合成密度とは、ガラスの密度と耐火物フイラ一の密度を、所定の体 積比で混合させて算出される理論上の密度である。また、流動径が 19mm以上であ ると、試験した焼成条件で良好に封着できることを意味する。 [0092] The flow diameter was dry-pressed into a button shape with an outer diameter of 20 mm using a die, with a weight corresponding to the composite density of each sample, and this was placed on a 40 mm X 40 mm X 2.8 mm thick high strain point glass substrate. The diameter of the button obtained after being heated at a rate of 10 ° CZ in air, fired under the firing conditions shown in Tables 5 to 8, and then cooled to room temperature in 10 ° CZ minutes It was evaluated by measuring. The synthetic density is a theoretical density calculated by mixing the density of the glass and the density of the refractory filler at a predetermined volume ratio. Further, if the flow diameter is 19 mm or more, it means that the film can be satisfactorily sealed under the firing conditions tested.
[0093] 熱的安定性は、ビスマス系ガラスの結晶化温度を T (°C)とし、ビスマス系封着材料 の結晶化温度を T (°C)としたときに、 ΔΤ=Τ— Τの値を示している。なお、結晶化 [0093] Thermal stability is expressed as follows: ΔΤ = Τ—Τ when the crystallization temperature of the bismuth glass is T (° C) and the crystallization temperature of the bismuth sealing material is T (° C). The value is shown. Crystallization
2 2 1  2 2 1
温度とは、示差熱分析装置で結晶析出による発熱ピークが検出される温度を指す。 なお、示差熱分析は、室温から 10°CZ分で昇温を行い、雰囲気は空気雰囲気であ る。 AT>0の場合、耐火性フィラーの添カ卩によって、ビスマス系封着材料の熱的安 定性が向上したことを意味している。 ΔΤく 0の場合、耐火性フィラーの添カ卩によって 、ビスマス系ガラスの熱的安定性が悪ィ匕したことを意味して 、る。 The temperature refers to a temperature at which an exothermic peak due to crystal precipitation is detected by a differential thermal analyzer. In differential thermal analysis, the temperature is raised from room temperature in 10 ° CZ minutes, and the atmosphere is an air atmosphere. When AT> 0, the thermal stability of the bismuth-based sealing material can be improved by adding a refractory filler. This means that qualitative improvement has been achieved. In the case of ΔΤ0, it means that the thermal stability of the bismuth glass is deteriorated by the addition of the refractory filler.
[0094] 表 4、 5の試料 No. 1〜10は、軟ィ匕点力 02〜445°Cであり、 500°C以下の温度で 良好に流動する程度の低融点特性を有していた。また、試料 No. 1〜10は、熱膨張 係数が 66. 7〜72. 0 X 10_7Z°Cであり、高歪点ガラス等に適合した熱膨張係数を 備えていた。さらに、試料 No. 1〜10は、表中の焼成条件で流動径が 19. 5-21. 5 mmであり、 500°C以下の温度で封着できる程度の低融点特性を備えていた。また、 表 4、 5の試料 No. 1〜10は、 ΔΤが 7〜26°Cであり、耐火性フィラーの添カ卩によって 、ビスマス系封着材料の熱的安定性が向上した。 [0094] Samples Nos. 1 to 10 in Tables 4 and 5 had a soft saddle point force of 02 to 445 ° C, and had low melting point characteristics that allowed them to flow well at temperatures of 500 ° C or less . Sample Nos. 1 to 10 had a coefficient of thermal expansion of 66.7 to 72.0 X 10 _7 Z ° C, and had a coefficient of thermal expansion suitable for high strain point glass. Further, Sample Nos. 1 to 10 had a flow diameter of 19.5-21. 5 mm under the firing conditions in the table, and had low melting point characteristics that could be sealed at a temperature of 500 ° C or lower. In Samples Nos. 1 to 10 in Tables 4 and 5, ΔΤ was 7 to 26 ° C, and the thermal stability of the bismuth-based sealing material was improved by the addition of the refractory filler.
[0095] 表 6の試料 No. 11〜15は、軟ィ匕点力 91〜434であり、熱膨張係数力 1〜73 . 3 X 10_7Z°Cであり、表中所定の焼成条件で流動径が 20. 5〜21. 5mmであった 。しかし、試料 No. 11〜14は、耐火性フィラーの組成を所定範囲に規制しな力つた ため、 ΔΤが一 13〜一 6°Cであり、耐火性フィラーの添カ卩によって、ビスマス系ガラス の熱的安定性が悪化した。試料 No. 15は、耐火性フィラーのうち、粒子径 5 m以 下の粒子の割合を所定範囲に規制しな力 たため、 ΔΤが 4°Cと小さな値となり、耐 火性フイラ一の添カ卩によって、ビスマス系封着材料の熱的安定性があまり向上しなか つた o [0095] Sample Nos. 11 to 15 in Table 6 have a soft spot strength of 91 to 434 and a thermal expansion coefficient of 1 to 73.3 X 10 _7 Z ° C. The flow diameter was 20.5 to 21.5 mm. However, since Samples Nos. 11 to 14 did not restrict the composition of the refractory filler to a predetermined range, ΔΤ was 13 to 16 ° C, and the addition of the refractory filler added bismuth glass. The thermal stability of deteriorated. In Sample No. 15, the ratio of particles with a particle size of 5 m or less in the refractory filler was not regulated within the specified range, so ΔΤ was a small value of 4 ° C, which is one of the refractory fillers. The thermal stability of the bismuth-based sealing material has not been greatly improved by drought o
産業上の利用可能性  Industrial applicability
[0096] 以上の説明から明らかなように、本発明のビスマス系封着材料は、広範な温度範囲 において、良好な流動性を得ることができるため、その他の用途、すなわち複数の熱 処理工程を経る電子部品および平面表示装置の封着、被覆等に的確に対処できる だけでなぐ高温の熱処理工程を経る電子部品および平面表示装置の封着、被覆 等に的確に対処することができる。具体的には、本発明のビスマス系封着材料は、フ ィールドエミッションディスプレイ (FED)等の平面表示装置の封着用途、陰極線管( CRT)等のディスプレイの封着用途、蛍光表示管 (VFD)、 PDP等の絶縁誘電体層 形成用途、 PDPのノリアリブ用途、磁気ヘッド コア同士またはコアとスライダーの封 着用途、水晶振動子や ICパッケージ等の電子部品の封着に好適である。  [0096] As is clear from the above description, the bismuth-based sealing material of the present invention can obtain good fluidity in a wide temperature range, so that it can be used in other applications, that is, a plurality of heat treatment steps. In addition to being able to accurately deal with the sealing and covering of electronic parts and flat display devices that have passed through, it is possible to accurately cope with the sealing and covering of electronic components and flat display devices that have undergone a high-temperature heat treatment process. Specifically, the bismuth-based sealing material of the present invention is used for sealing a flat display device such as a field emission display (FED), for sealing a display such as a cathode ray tube (CRT), and for a fluorescent display tube (VFD). ), PDP and other insulating dielectric layer formation, PDP noria rib use, magnetic head core-to-core or slider-to-slider use, and sealing of electronic components such as crystal units and IC packages.

Claims

請求の範囲 The scope of the claims
[1] ビスマス系ガラスと耐火性フィラーを含有するビスマス系封着材料にぉ ヽて、耐火 性フイラ一は、組成として、下記酸化物換算の重量%表示で SiO 30〜: L00%、 A1  [1] Compared to a bismuth-based sealing material containing bismuth-based glass and a refractory filler, the refractory filler is composed of SiO 30 in terms of the following oxide equivalent weight%: L00%, A1
2 2 twenty two
O 0〜45%、ZnO 0〜35%、ZrO 0〜20%、 TiO 0〜20%、 Li O 0〜10O 0-45%, ZnO 0-35%, ZrO 0-20%, TiO 0-20%, Li O 0-10
3 2 2 23 2 2 2
%、 MgO 0〜25%を含有し、且つ耐火性フィラーのうち、粒子径 5 μ m以下の粒子 の割合が 15〜70%であることを特徴とするビスマス系封着材料。 %, MgO 0 to 25%, and the proportion of particles having a particle diameter of 5 μm or less in the refractory filler is 15 to 70%.
[2] 耐火性フィラーの比表面積が 0. 5〜4. 0m2Zgであることを特徴とする請求項 1に 記載のビスマス系封着材料。 [2] The bismuth-based sealing material according to claim 1, wherein the refractory filler has a specific surface area of 0.5 to 4.0 m 2 Zg.
[3] 耐火性フィラーがコーディエライトを主結晶とする結晶物であることを特徴とする請 求項 1または 2に記載のビスマス系封着材料。 [3] The bismuth-based sealing material according to claim 1 or 2, wherein the refractory filler is a crystalline material having cordierite as a main crystal.
[4] 体積0 /0表示で、ビスマス系ガラス 40〜95%、耐火性フィラー 5〜60%含有すること を特徴とする請求項 1〜3のいずれか〖こ記載のビスマス系封着材料。 [4] The volume 0/0 on the display, bismuth glass 40% to 95%, bismuth sealing material according to any 〖This of claims 1 to 3, characterized in that it contains 5% to 60% refractory filler.
[5] ビスマス系ガラスは、ガラス組成として、下記酸ィ匕物換算のモル%表示で Bi O 3 [5] Bismuth-based glass has a glass composition of BiO 3 in terms of mol% in terms of the following oxides.
2 3 twenty three
0〜60%、B O 10〜40%、ZnO 10〜50%、 BaO + SrO + MgO + CaO 0〜1 0-60%, BO 10-40%, ZnO 10-50%, BaO + SrO + MgO + CaO 0-1
2 3  twenty three
5%、 CuO 0〜10%、 Fe O 0〜5%、 SiO +A1 O 0〜15%、 WO 0〜5%、  5%, CuO 0-10%, FeO 0-5%, SiO + A1 O 0-15%, WO 0-5%,
2 3 2 2 3 3  2 3 2 2 3 3
Sb O 0〜5%、 In O +Ga O 0〜5%を含有することを特徴とする請求項 1〜4 It contains SbO 0-5%, InO + GaO 0-5%,
2 3 2 3 2 3 2 3 2 3 2 3
の!、ずれかに記載のビスマス系封着材料。  of! The bismuth-based sealing material according to any one of the above.
[6] 実質的に PbOを含有しないことを特徴とする請求項 1〜5のいずれかに記載のビス マス系封着材料。  [6] The bismuth-based sealing material according to any one of claims 1 to 5, which does not substantially contain PbO.
[7] ビスマス系ガラスの結晶化温度を T (°C)とし、ビスマス系封着材料の結晶化温度を T (°C)としたときに、 T— T≥5°Cの関係を満たすことを特徴とするビスマス系封着 [7] When the crystallization temperature of the bismuth glass is T (° C) and the crystallization temperature of the bismuth sealing material is T (° C), the relationship of T—T≥5 ° C must be satisfied. Bismuth seal
2 2 1 2 2 1
材料。  material.
[8] ビスマス系ガラスと耐火性フィラーを含有するビスマス系封着材料において、耐火 性フイラ一は、組成として、下記酸化物換算の重量%表示で SiO 30〜: L00%、 A1  [8] In a bismuth-based sealing material containing bismuth-based glass and a refractory filler, the refractory filler is composed of SiO 30-: L00%, A1 in terms of the following oxide equivalent weight%
2 2 twenty two
O 0〜45%、ZnO 0〜35%、ZrO 0〜20%、 TiO 0〜20%、 Li O 0〜10O 0-45%, ZnO 0-35%, ZrO 0-20%, TiO 0-20%, Li O 0-10
3 2 2 23 2 2 2
%、MgO 0〜25%を含有し、且つ耐火性フィラーの 10%粒子径 D 力 . 3〜5. 5 %, MgO 0 to 25%, and 10% particle diameter of refractory filler D force. 3 to 5.5
10  Ten
μ mであることを特徴とするビスマス系封着材料。  A bismuth-based sealing material characterized by being μm.
[9] ビスマス系ガラスと耐火性フィラーを含有するビスマス系封着材料にぉ ヽて、耐火 性フイラ一は、組成として、下記酸化物換算の重量%表示で SiO 30〜: L00%、 A1 [9] A bismuth sealing material containing bismuth glass and a refractory filler As for the composition of the filler, it is SiO 30 ~: L00%, A1 in terms of weight% in terms of the following oxides
2 : 2:
O 0〜45%、ZnO 0〜35%、ZrO 0〜20%、 TiO 0〜20%、 Li O 0〜10O 0-45%, ZnO 0-35%, ZrO 0-20%, TiO 0-20%, Li O 0-10
3 2 2 23 2 2 2
%、MgO 0〜25%を含有し、且つ耐火性フィラーの 90%粒子径 D 力 ¾〜45 /ζ πι %, MgO 0 to 25%, and 90% particle diameter of refractory filler D force ¾ to 45 / ζ πι
90  90
であることを特徴とするビスマス系封着材料。  A bismuth-based sealing material characterized by
[10] 電子部品または平面表示装置の封着に使用することを特徴とする請求項 1〜9の[10] The method according to any one of claims 1 to 9, wherein the electronic device or the flat display device is used for sealing.
V、ずれかに記載のビスマス系封着材料。 V, a bismuth-based sealing material described in any of the above.
[11] プラズマディスプレイの封着に使用することを特徴とする請求項 1〜10のいずれか に記載のビスマス系封着材料。 [11] The bismuth-based sealing material according to any one of claims 1 to 10, which is used for sealing a plasma display.
[12] 請求項 1〜11のいずれかに記載のビスマス系封着材料と、溶剤と、榭脂とを含有 することを特徴とするビスマス系ペースト材料。 [12] A bismuth paste material comprising the bismuth sealant according to any one of claims 1 to 11, a solvent, and a resin.
PCT/JP2007/059713 2006-05-15 2007-05-11 Bismuth-based sealing material and bismuth-base paste material WO2007132754A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006135045 2006-05-15
JP2006-135045 2006-05-15
JP2007-096309 2007-04-02
JP2007096309A JP5212884B2 (en) 2006-05-15 2007-04-02 Bismuth-based sealing material and bismuth-based paste material

Publications (1)

Publication Number Publication Date
WO2007132754A1 true WO2007132754A1 (en) 2007-11-22

Family

ID=38693848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059713 WO2007132754A1 (en) 2006-05-15 2007-05-11 Bismuth-based sealing material and bismuth-base paste material

Country Status (3)

Country Link
JP (1) JP5212884B2 (en)
KR (1) KR101020143B1 (en)
WO (1) WO2007132754A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477893A (en) * 2016-10-11 2017-03-08 常州市鼎日环保科技有限公司 A kind of preparation method of barium crown sealed glass
CN107840575A (en) * 2017-11-29 2018-03-27 苏州福莱威封装技术有限公司 A kind of glass powder with low melting point and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025975B2 (en) * 2007-11-20 2011-09-27 Corning Incorporated Frit-containing pastes for producing sintered frit patterns on glass sheets
KR101064228B1 (en) * 2008-11-24 2011-09-14 신세라믹 주식회사 Lead-free glass frit composition for use in sealing
US8871664B2 (en) 2010-05-10 2014-10-28 Nippon Electric Glass Co., Ltd. Refractory filler, sealing material using same, and manufacturing method for refractory filler
WO2012144334A1 (en) * 2011-04-20 2012-10-26 日本電気硝子株式会社 Sealing material and glass beads for sealing
JP5757460B2 (en) * 2011-04-20 2015-07-29 日本電気硝子株式会社 Sealing material
KR101848009B1 (en) * 2011-11-03 2018-04-12 동우 화인켐 주식회사 Silver paste composition and electrode using the same
JP7148877B2 (en) * 2016-04-21 2022-10-06 日本電気硝子株式会社 ceramic powder
JP6873393B2 (en) * 2016-12-01 2021-05-19 日本電気硝子株式会社 Sealing material paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095697A (en) * 2001-09-18 2003-04-03 Nihon Yamamura Glass Co Ltd Sealing composition
JP2004284934A (en) * 2002-04-24 2004-10-14 Central Glass Co Ltd Lead-free low-melting point glass
JP2005314136A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Sealing material for air tightly sealing and glass paste composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998776B2 (en) * 2003-04-16 2006-02-14 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
JP4556624B2 (en) * 2004-11-12 2010-10-06 日本電気硝子株式会社 Sealing powder and sealing paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095697A (en) * 2001-09-18 2003-04-03 Nihon Yamamura Glass Co Ltd Sealing composition
JP2004284934A (en) * 2002-04-24 2004-10-14 Central Glass Co Ltd Lead-free low-melting point glass
JP2005314136A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Sealing material for air tightly sealing and glass paste composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477893A (en) * 2016-10-11 2017-03-08 常州市鼎日环保科技有限公司 A kind of preparation method of barium crown sealed glass
CN106477893B (en) * 2016-10-11 2019-04-05 中山市春光玻璃有限公司 A kind of preparation method of barium crown sealed glass
CN107840575A (en) * 2017-11-29 2018-03-27 苏州福莱威封装技术有限公司 A kind of glass powder with low melting point and preparation method thereof

Also Published As

Publication number Publication date
KR20080085070A (en) 2008-09-22
JP5212884B2 (en) 2013-06-19
KR101020143B1 (en) 2011-03-08
JP2007332018A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
WO2007132754A1 (en) Bismuth-based sealing material and bismuth-base paste material
JP5413562B2 (en) Sealing material
JP4972954B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP4930897B2 (en) Bi2O3-B2O3 sealing material
JP5257827B2 (en) Sealing material
JP5257824B2 (en) Non-crystalline glass tablet and tablet integrated exhaust pipe
JP5013317B2 (en) Flat panel display
JP5083706B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP2003192378A (en) Lead-free low-melting glass for sealing
JPWO2003045864A1 (en) SEALING COMPOSITION AND SEALING MATERIAL
JP5083704B2 (en) Bismuth sealing material
JP2003146691A (en) Low melting point glass, and production method therefor
JP2006143480A (en) Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL
JP5299834B2 (en) Support frame forming glass powder, support frame forming material, support frame, and method of manufacturing support frame
JP5545589B2 (en) Manufacturing method of sealing material
JP5419249B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP2009073729A (en) Sealing material
JP2000264676A (en) Low melting point glass
TWI751146B (en) Manufacturing method of ceramic powder
WO2008007570A1 (en) Lead-free glass composition
KR101224513B1 (en) Bismuth-based glass composition and bismuth-based sealing material
JP2008063160A (en) Glass composition for forming supporting frame and material for forming supporting frame
JP4840980B2 (en) Low-melting lead-free glass material
JP7020335B2 (en) Glass composition
JP4836075B2 (en) Low-melting lead-free glass material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087018845

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743148

Country of ref document: EP

Kind code of ref document: A1