WO2007132689A1 - 放射性フッ素標識有機化合物の製造方法 - Google Patents

放射性フッ素標識有機化合物の製造方法 Download PDF

Info

Publication number
WO2007132689A1
WO2007132689A1 PCT/JP2007/059459 JP2007059459W WO2007132689A1 WO 2007132689 A1 WO2007132689 A1 WO 2007132689A1 JP 2007059459 W JP2007059459 W JP 2007059459W WO 2007132689 A1 WO2007132689 A1 WO 2007132689A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
solution
reaction
deesterification
compound
Prior art date
Application number
PCT/JP2007/059459
Other languages
English (en)
French (fr)
Inventor
Akio Hayashi
Fumie Kurosaki
Masahito Toyama
Toshiyuki Shinmura
Emi Kaneko
Original Assignee
Nihon Medi-Physics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT07742894T priority Critical patent/ATE549312T1/de
Priority to CA2651786A priority patent/CA2651786C/en
Application filed by Nihon Medi-Physics Co., Ltd. filed Critical Nihon Medi-Physics Co., Ltd.
Priority to CN2007800171253A priority patent/CN101443307B/zh
Priority to ES07742894T priority patent/ES2380372T3/es
Priority to US12/227,240 priority patent/US7897811B2/en
Priority to NZ572936A priority patent/NZ572936A/en
Priority to AU2007251015A priority patent/AU2007251015B2/en
Priority to DK07742894.4T priority patent/DK2017258T3/da
Priority to EP07742894A priority patent/EP2017258B1/en
Priority to JP2008515492A priority patent/JP4550141B2/ja
Priority to KR1020087027346A priority patent/KR101317258B1/ko
Priority to BRPI0711144A priority patent/BRPI0711144B1/pt
Publication of WO2007132689A1 publication Critical patent/WO2007132689A1/ja
Priority to IL195187A priority patent/IL195187A/en
Priority to NO20085076A priority patent/NO341173B1/no
Priority to HK09107695.4A priority patent/HK1129884A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • C07C227/20Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters by hydrolysis of N-acylated amino-acids or derivatives thereof, e.g. hydrolysis of carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/46Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C229/48Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups and carboxyl groups bound to carbon atoms of the same non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a radioactive fluorine-labeled organic compound. More specifically, the present invention relates to a method for producing a radioactive fluorine-labeled organic compound useful for detecting a tumor by positron emission tomography.
  • Nuclear medicine examinations represented by positron emission tomography (hereinafter referred to as PET) and single photon emission tomography (hereinafter referred to as SPE CT) It is effective for diagnosis of various diseases including heart disease and cancer. These methods are methods of administering a drug labeled with a specific radioisotope (hereinafter referred to as “radiopharmaceutical”) and detecting ⁇ -rays released directly or indirectly from the drug. .
  • Radiopharmaceutical a specific radioisotope
  • Nuclear medicine testing has a high specificity and sensitivity to disease V, and has excellent properties! / If it is possible to obtain information on the function of the lesion, it is possible to obtain other tests. The method has its own characteristics.
  • FDG 2-Furuoro - 2 - Dokishi - D-glucose
  • a nuclear medicine test is a method performed by tracking the distribution of administered radiopharmaceuticals, the information obtained varies depending on the nature of the radiopharmaceutical. For this reason, radiopharmaceuticals for various diseases have been developed, and some have been clinically applied. For example, various tumor diagnostic agents, blood flow diagnostic agents, receptor mapping agents and the like have been developed.
  • [ 18 F] FACBC radiohalogen-labeled amino acids
  • the compound is designed and studied for clinical application (Patent Document 1, Non- Patent Document 1, Non-Patent Document 2). Since [ 18 F] FACBC has the property of being specifically incorporated into amino acid transporters, it is considered to be effective as a diagnostic agent for tumors with high growth ability.
  • FACBC can be prepared by using 1— (N— (t-butoxycarbol) amino) 3— [(((trifluoromethyl) sulfo-oxy) oxy] -cyclobutane 1
  • a method is disclosed in which a triflate group at the 3-position is used as a labeling precursor, substituted with radioactive fluorine, and subjected to a deesterification group and a de-Boc group reaction under acidic conditions in solution (patent) Reference 1, Non-patent document 1, Non-patent document 2).
  • Patent Document 1 Japanese Translation of Special Publication 2000-500442
  • Patent Document 2 Japanese Patent Publication No. 11-508923
  • Non-Patent Document 2 Timothy M. Shoup et al., Synthesis and Evaluation of [18F] 1- Amino-3-fluorocyclobutane- 1-carboxylic Acid to Image Brain Tumors. ", The Journal of Nuclear Medicine, 1999, 40, p.331—338
  • a radioactive fluorinating step of adding a radioactive fluorine-labeled precursor, intermediate I ⁇ produced by the radioactive fluorinating step per It may include a deesterification and deprotection step for deesterification and deprotection.
  • radioactive fluorine labeling Since the half life of radioactive fluorine is as short as about 110 minutes, it is not preferable to increase the process time after radioactive fluorine labeling for industrial production of radioactive fluorine labeled compounds.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing [ 18 F] FACBC capable of reducing the amount of non-radioactive impurities produced.
  • the inventors conducted the deesterification process of the ester group, which is a carboxyl protecting group, in a reversed-phase solid phase column, thereby easily and effectively reducing the amount of impurities in the target product.
  • the present invention has been completed.
  • the solid-phase deprotection method has been used mainly for the purpose of shortening the production time (for example, see JP-T-11-5 08923).
  • the inventor has discovered and applied a new effect that the amount of impurities present in the target product can be reduced by using the solid-phase deprotection method.
  • R 1 is a linear or branched alkyl chain having 1 to 10 carbon atoms or an aromatic substituent, and R 2 is a protecting group
  • a compound represented by the following formula is held in a reverse phase column, and the column is filled with an alkaline solution to deesterify the compound, and then the alkaline solution is discharged from the column force.
  • a deesterification step for obtaining a compound represented by formula (1) and a compound obtained in the deesterification step are deprotected with an amino protecting group to obtain the following formula (3):
  • a method for producing a radioactive fluorine-labeled organic compound comprising: a deprotection step for obtaining a compound represented by:
  • R 1 is a linear or branched alkyl chain having 1 to 10 carbon atoms or an aromatic substituent, and is selected from a methyl group, an ethyl group, a t-butyl group, or a phenyl group. Substituents can be preferably used.
  • R 2 in the above formula is a protecting group and is not particularly limited as long as it can prevent the reaction between the radioactive fluorine and the amino group. Specifically, those selected from the group consisting of various force rubamate substituents, various amide substituents, various imide substituents and various ammine substituent forces can be used. Having a linear or branched alkyloxycarbonyl substituent of ⁇ 7, a linear or branched alkenyloxycarbonyl substituent of 3 to 7 carbon atoms, and a modifying group, may have 7 to 12 carbon atoms.
  • Benzyloxy substitution Group an alkyldithioxycarbonyl substituent having 2 to 7 carbon atoms, a linear or branched alkylamide substituent having 1 to 6 carbon atoms, and a linear or branched alkenyl amide having 2 to 6 carbon atoms. It may have a substituent, a modifying group, a benzamide substituent having 6 to 11 carbon atoms, a cyclic imide substituent having 4 to 10 carbon atoms, or a substituent! It has 6-11 aromatic imine substituents, linear or branched alkylamine substituents having 1 to 6 carbon atoms, straight or branched alkenylamine substituents having 2 to 6 carbon atoms, and modifying groups.
  • those selected from the group having a benzylamine substituent having 6 to 11 carbon atoms can be used. More preferably, one selected from t-butoxycarbonyl group, allyloxycarbol group, phthalimide group, N-benzylideneamine substituent can be used, and most preferably t-butoxycarbonyl. Groups or phthalimide groups can be used.
  • X in the above formula is a cation contained in the alkali used in the deesterification step, and is selected according to the type of alkali.
  • sodium hydroxide is used when sodium hydroxide is used
  • potassium hydroxide is used when potassium hydroxide is used.
  • the reverse phase column may be a column having a structure in which an alkyl chain having 2 to 18 carbon atoms is bonded to a carrier via a carrier.
  • Specific examples of the reverse phase column include those having an octadecylsilyl group as a functional group.
  • the compound represented by the formula (1) can be retained on the reversed-phase column by various methods. Specifically, a method of diluting a solution of the compound of the above formula (1) obtained from the radiofluorination step with water and passing the resulting solution through a reverse phase column can be used. The amount of water required for dilution may be sufficient to fix the compound of the above formula (1) to the reverse phase column.
  • Various alkaline solutions can be used, and preferably a sodium hydroxide sodium solution can be used.
  • the amount of the alkaline solution is preferably equal to or greater than the packing capacity of the solid phase column.
  • the concentration of the alkali solution need not be limited as long as a sufficient amount of alkali can be introduced into the column for deesterification, but if it is too much, more acid must be used in the next deprotection step. Care must be taken because of this.
  • Esthetic In the Louis cocoon process the reverse phase column holds the compound of the above formula (1) and is held for a certain period of time while being filled with the alkaline solution, but the time for holding the state where the reverse phase column is filled with the alkaline solution is maintained. As long as there is sufficient time to carry out the deesterification reaction, there is no need to be particularly limited.
  • a known method for example, a method described in the literature (J. McConathy et al., Applied Radiation an d Isotopes, 2003, 58, p.657-666) can be used. Can be applied by giving acidic conditions to the reaction solution after the step of deesterification.
  • the radiofluorination step may be a known method or a method in which known conditions are combined with a known method. Specifically, in the mixture containing a phase transfer catalyst, 18 F ions and potassium ions, the following formula (4):
  • reaction solution is prepared by adding a compound represented by the following formula and an inert organic solvent, and reaction conditions such as heating and stirring are given thereto, the following method can be used.
  • R 1 and R 2 are the same as above, and R 3 is a linear or branched carbon number of 1 to: a haloalkylsulfonic acid substituent of L0, a linear or branched carbon number of 1 to It is selected from the group consisting of 10 alkyl sulfonic acid substituents, fluorosulfonic acid substituents and aromatic sulfonic acid substituents.
  • a substituent selected from sulfonic acid, fluorosulfonic acid, and perfluoroalkylsulfonic acid can be preferably used.
  • inert organic solvents can be used. Force Amphiphilic organic solvent must be used. Specifically, a solvent selected from the group consisting of tetrahydrofuran, 1,4-dioxane, acetone, dimethylformamide, dimethyl sulfoxide and acetonitrile can be used, and particularly preferably acetonitrile can be used.
  • the amount of the inert organic solvent to be used is preferable when the concentration of the labeling precursor in the reaction solution in the radiofluorination reaction is adjusted to 40 mmolZL or more because the yield in the radiofluorination reaction is particularly improved.
  • reaction conditions in the radiofluorination step can be used as the reaction conditions in the radiofluorination step.
  • the conditions obtained when the reaction solution is heated and stirred can be used.
  • the heating temperature at this time needs to be equal to or lower than the transpiration temperature of the inert organic solvent added to the reaction solution.
  • the heating temperature can be set to 70 to 90 ° C. .
  • the production method according to the present invention comprises (1) reacting a mixture containing a phase transfer catalyst, 18 F ions and potassium ions with a labeling precursor, and converting the labeling precursor into radioactive fluorine.
  • a radioactive fluorine-labeled ester by labeling radioactive fluorine-labeled ester by labeling
  • Step to deesterify the radioactive fluorine-labeled ester in a solid phase column deesterification step
  • a step of deprotecting the amino protecting group for the compound obtained in the deesterification step deprotection step.
  • Radioactive fluorine can be irradiated with protons using a known method, for example, H 180 concentrated water as a target.
  • radioactive fluorine was used as a target.
  • H 180 is present in concentrated water.
  • This H 180 concentrated water containing radioactive fluorine is anion
  • a potassium carbonate solution is passed through the column to elute radioactive fluorine, and the elution
  • a phase transfer catalyst By adding a phase transfer catalyst to the liquid and allowing it to dry, a mixture containing the phase transfer catalyst, 18 F ions and potassium ions can be obtained.
  • the amount of potassium carbonate used here may be equal to or more than the same amount as the labeling precursor used in the subsequent radiofluorination step. However, if the amount is too large, the reaction is generated due to the influence of carbonate ions. This is preferable because it may cause decomposition of the product. Most preferably, in the embodiment, the concentration and amount of the potassium carbonate solution are adjusted so that the potassium ion is approximately equal to the labeling precursor.
  • phase transfer catalyst various compounds having the property of forming inclusion bodies with 18 F ions can be used. Specifically, various compounds used for the production of radioactive fluorine-labeled organic compounds can be used, and 18 crown 6 ethers and other various aminopolyethers can be used. In the most preferred embodiment, 4, 7, 13, 16, 21, 24 hexoxa-1, 10 diazabicyclo [8.8.8] hexacosane can be used.
  • the total amount of the phase transfer catalyst may be 0.2 mmol or less.
  • the amount of the label precursor used is 80 mol, the molar ratio with the label precursor is 2.5 or less.
  • the labeling precursor and 18 F ions are reacted to perform radiofluorination.
  • various methods can be used. For example, 1— (N— (t-butoxycarbon) amino) 3 (((trifluoromethyl) sulfo-l) oxy) -cyclobutane is added to the mixture. 1Strengthen rubonic acid ethyl ester and inert organic solvent to prepare a reaction solution, and give it reaction conditions such as heating and stirring.
  • [ 18 F] 1— (N— (t-butoxycarbol) amino) A method of obtaining 3-fluorocyclobutane-1-carboxylic acid ethyl ester (hereinafter referred to as [ 18 F] Boc-FACB C) can be used.
  • the inert organic solvent used in the radiofluorination step is not reactive with [ 18 F] fluoride ions, phase transfer catalysts, potassium ions, and labeled precursor compounds!
  • a solvent selected from the group consisting of tetrahydrofuran, 1,4-dioxane, acetone, dimethylformamide, dimethyl sulfoxide and acetonitrile power can be used, and particularly preferably acetonitrile is used. it can.
  • the amount of the inert organic solvent to be used is preferable because the yield in the radiofluorination reaction is particularly improved when the concentration of the label precursor in the reaction solution in the radiofluorination reaction is adjusted to 40 mmolZL or more. .
  • reaction conditions in the radioactive fluorination step can be used.
  • the heating temperature at this time is preferably not more than the boiling point of the inert organic solvent added to the reaction solution.
  • the heating temperature may be 70 to 90 ° C. it can.
  • the reaction time varies depending on the reaction temperature, for example, when the reaction temperature is 83 ° C, it is sufficient to set it for 3 minutes or more. If the reaction time is lengthened, the labeling reaction with radioactive fluorine may proceed accordingly, but care should be taken because the decay of radioactive fluorine also proceeds at the same time.
  • the deesterification step is performed to obtain [ 18 F] 1- (N— (t-butoxycarbol) amino) -3-fluorofluorobutane-1
  • An acid hereinafter referred to as [ 18 F] DE—Boc—FACBC
  • the present invention is characterized in that the deesterification reaction in this step is performed in a solid phase column.
  • [ 18 F] Boc-FACBC which is a sample to be subjected to deesterification, is collected in a solid phase column.
  • the reaction solution containing [ 18 F] Boc-FACBC obtained in the radiofluorination step is used.
  • the solid phase column used in the deesterification step needs to use a column packed with a reverse-phase packing.
  • a column packing material having a hydrophobic group such as a phenyl group, a cyclohexyl group, or an alkyl group as a functional group can be used. More preferably, the column has 2 to 18 carbon atoms. Can be used in which the alkyl group is bonded to the carrier via a cage.
  • a column packed with a packing having an octadecylsilyl group as a functional group can be used.
  • the column is filled with an alkaline solution.
  • the alkali solution is filled by introducing the alkali solution directly into the column, and confirming that the alkali solution has started to leak from the column outlet and then stopping the liquid supply of the alkali solution and closing the column outlet. It is done by the operation.
  • the alkali used herein include sodium hydroxide and potassium hydroxide, and sodium hydroxide is preferred in view of the fact that the object of the present invention is used for injections.
  • the amount of the alkaline solution is approximately equal to the capacity of the column.
  • the sample previously deesterified may be discharged together with the waste liquid, which causes a decrease in yield.
  • the concentration of the alkali solution to be used need not be limited as long as sufficient alkali can be introduced into the column for deesterification. It is determined in consideration of the amount of alkali solution that can be used and the required amount of alkali. It should be noted that if the amount of alkali is too large, it is necessary to use more acid for neutralization in the subsequent deprotection step.
  • the sample is deesterified in the column by maintaining the state for a certain period of time.
  • the column temperature can be operated at room temperature without the need for control.
  • the time to maintain should just be sufficient time for a deesterification trap. The longer this time, the more the deesterification reaction proceeds, but at the same time, the decay of radioactive fluorine also proceeds, so care must be taken.
  • Boc-FACBC is retained on an ODS column with 400 mg of rosin and 0.8 mL of 4 mol ZL of sodium hydroxide solution is injected to perform deesterification, 1-5 minutes is sufficient.
  • the deprotection step is performed to deprotect the amino protecting group to obtain [ 18 F] FACBC which is the target product in the present invention.
  • the deprotection step can be performed by a known method, for example, a method described in the literature (J. McConathy et al, Applied Radiation and Isotopes, 2003, 58, p.657-666).
  • the deprotection step can be performed by subjecting the reaction solution containing [ 18 F] DE-Boc-FACBC to acidic conditions.
  • the acidic condition can be given by various methods.
  • a method of adding an acid to a liquid containing [ 18 F] DE-Boc-F ACBC can be used.
  • the acid to be used is not particularly limited, an acid selected from organic acids such as inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid and perfluoroalkyl carboxylic acids (for example, trifluoroacetic acid) can be preferably used.
  • the amount of acid added should be sufficient to reduce the pH of the solution containing [ 18 F] DE- Boc-FACBC to 1 or less. Specifically, it should be an amount that neutralizes the alkali in the [ 18 F] DE-Boc-FACBC solution obtained in the deesterification process and gives sufficient acid conditions to the sample solution. .
  • reaction solution was cooled to room temperature, and about 24 mL of ImolZmL sulfuric acid was removed and neutralized. After neutralization, the mixture was further stirred at room temperature for 5 minutes, and the resulting precipitate was filtered off. The filtrate was concentrated, and 5.67 g of syn-1-amino-3-benzyloxycyclobutane-1-carboxylic acid was obtained as white crystals. Obtained.
  • reaction solution was concentrated under reduced pressure to obtain white crystals as a residue.
  • 150 mL of cold ethyl acetate and 150 mL of 0.5 mol ZL of cold hydrochloric acid were added, stirred at room temperature for 5 minutes, and then allowed to stand still.
  • the organic layer was extracted and washed in the order of 150 mL of water, 150 mL of saturated aqueous sodium hydrogen carbonate solution, 150 mL of water, 150 mL of water and 2, 150 mL of saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a yellow oil. Obtained.
  • the aqueous layer was extracted and washed with 150 mL X 2 of ethyl acetate, 150 mL X 2 of water, and 150 mL of saturated brine in that order, dried over anhydrous sodium sulfate and concentrated under reduced pressure to recover a small amount of yellow oil. Through a series of operations, 8.82 g of a pale yellow oil was obtained.
  • TLC plate Silica Gel 60F254 (trade name, film thickness: 0.25mm, manufactured by Merck & Co., Ltd.) Development length: 10cm
  • the comparison of the amount of non-radioactive impurities in the target product was obtained by correcting the area value of each impurity peak confirmed by HPLC analysis under the following conditions using the following formula (2) (hereinafter, The correction area value is used.
  • the sample solution used for HPLC analysis was appropriately diluted with a physiological saline solution (dilution ratio: 2.1 to 9.9).
  • HPLC measurement conditions Column: CAPCELLPAK C18 MG (Product name, manufactured by Shiseido Co., Ltd., Size: 5 ⁇ m, 4.6 mml. D. X 250 mm)
  • Reaction solution 0.3 mol ZL borate buffer ( ⁇ . 4), 6 mmol / L o-phthalaldehyde, 6 mmol / L N-acetyl-L-cystine
  • Fluorescence detector Type: Waters2475M (Nihon Waters Co., Ltd.) excitation Wavelength: 330nm, Fluorescence wavelength: 430nm
  • the column was filled with 0.8 mL of 4 mol ZL sodium hydroxide solution and the column outlet was closed. After 3 minutes, the column outlet was opened, and the alkaline solution was eluted from the solid phase column and collected in a vial. Further, 0.8 mL of 4 mol ZL sodium hydroxide solution was charged, and the same operation was repeated. Next, the solid phase column was washed with 3 mL of water, and the washing solution was combined with the recovered alkaline solution.
  • the method for producing a radioactive fluorine-labeled organic compound according to the present invention can be used in the field of producing radiopharmaceuticals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

明 細 書
放射性フッ素標識有機化合物の製造方法
技術分野
[0001] 本発明は、放射性フッ素標識有機化合物の製造方法に関する。より詳しくは、陽電 子放出型断層撮像にて腫瘍を検出するために有用な、放射性フッ素標識有機化合 物の製造方法に関する。
背景技術
[0002] 陽電子放出型断層撮像 (Positron Emission Tomography) (以下、 PETと称す)及び単 光子放出型断層撮像(Single Photon Emission Computed Tomography) (以下、 SPE CTと称す)に代表される核医学検査は、心臓疾患や癌をはじめとする種々の疾患の 診断に有効である。これらの方法は、特定の放射性同位元素でラベルされた薬剤( 以下、「放射性医薬品」と称す)を投与し、該薬剤より直接的または間接的に放出さ れた γ線を検出する方法である。核医学検査は、疾患に対する特異度や感度が高 V、と 、う優れた性質を有して!/、るばかりでなぐ病変部の機能に関する情報を得ること ができると 、う、他の検査方法にはな 、特徴を有して 、る。
[0003] 例えば、 PET検査に用いられる放射性医薬品の一つである、 [18F] 2—フルォロ— 2 —デォキシ— D—グルコース(以下、 [18F]— FDGと称す)は、糖代謝の盛んな部位 に集積する性質があるため、糖代謝が盛んな腫瘍を特異的に検出することが可能と なる。
[0004] 核医学検査は、投与した放射性医薬品の分布を追跡することによりなされる方法で あるため、得られる情報は、放射性医薬品の性質に応じて変化する。そのため、種々 の疾患を対象とした放射性医薬品が開発されており、一部については臨床応用され ている。例えば、種々の腫瘍診断剤、血流診断剤、レセプターマッピング剤等が開発 されている。
[0005] 近年、新規放射性医薬品として、 [18F] 1—アミノー 3—フルォロシクロブタンカルボン 酸 (以下、 [18F] FACBCと 、う)を初めとする放射性ハロゲン標識された一連のァミノ 酸ィ匕合物がデザインされ、臨床応用に向けて検討が行われている(特許文献 1、非 特許文献 1、非特許文献 2)。 [18F]FACBCはアミノ酸トランスポーターに特異的に 取り込まれる性質を有しているので、増殖能の高い腫瘍の診断剤として有効であると 考えられている。
[0006] [18F]FACBCの製法としては、 1— (N— (t—ブトキシカルボ-ル)ァミノ) 3— [ ( (ト リフルォロメチル)スルフォ -ル)ォキシ]ーシクロブタン 1一力ルボン酸エステルを 標識前駆体として用い、その 3位のトリフレート基を放射性フッ素で置換し、これに溶 液下にて酸性条件を与えて脱エステル基及び脱 Boc基反応を行う方法が開示され ている (特許文献 1、非特許文献 1、非特許文献 2)。
[0007] また、 [18F]— FDGの製法においては、固相にて脱保護工程を行う合成法が開示さ れており、合成時間を短縮し、試薬数を減らし、製造装置の部品数を減らすことを可 能としている (特許文献 2)。
特許文献 1:特表 2000 - 500442号公報
特許文献 2:特表平 11― 508923号公報
特干文献 1: Jonathan McConathy et al, improved synthesis of anti— [18F]FAし Bし : improved preparation of labeling precursor and automated radiosynthesis.", Applie d Radiation and Isotopes, (Netherlands), 2003, 58, p.657- 666
非特許文献 2 : Timothy M. Shoup et al., Synthesis and Evaluation of [18F]1- Amino - 3- fluorocyclobutane- 1- carboxylic Acid to Image Brain Tumors.", The Journal of N uclear Medicine, 1999, 40, p.331— 338
発明の開示
発明が解決しょうとする課題
[0008] これまでに開示された [18F]FACBCの製法では、製造収率が 12〜24%であり (J. M cし onathy et al., Applied Radiation and Isotopes, 2003, 58, p.657— 66bノ、工業的生 産の見地からは、十分に高い製造収率が達成されているとはいえない。すなわち、 工業的に [18F] FACBCを製造するには、安定してより高収率が得られる製法な ヽし は製造条件を用いることが望まし 、。
[0009] [18F]FACBCの製造は、主たる工程として、標識前駆体に放射性フッ素を付加する 放射性フッ素化工程と、放射性フッ素化工程により製造された中間体ィ匕合物につき 脱エステル化及び脱保護を行う脱エステル化脱保護工程を含んで ヽる。発明者らは
、製造収率を向上させるベぐ放射性フッ素化工程の検討を行い、従来法において 2 4. 16%であったフッ素化工程の収率を 73. 79%にまで向上させ得る技術を確立し た。その結果、 [18F]FACBCの製造収率を、 54. 8±4. 8% (N=15)にまで向上させ ることが可能となった。しかし、発明者等による詳細な検討の結果、得られた [18F]F ACBC水溶液中には、多数の非放射性不純物が存在して!/、ることが明ら力となった ( 後述の比較例参照)。医薬品においては、不純物の量は一定レベル以下におさえる 必要があるため、反応終了後に一定レベル以上の不純物が存在する場合は、その 不純物を後の工程にて除去する必要がある。しかし、不純物を減少させるための新 たな精製工程の追加は、放射性フッ素標識後の製造工程に要する時間を長くしてし まう原因となる。放射性フッ素の半減期は約 110分間と短いため、放射性フッ素標識 後における工程の時間を長くすることは、放射性フッ素標識ィ匕合物を工業生産する 上で好ましくない。
[0010] 本発明は上記事情に鑑みてなされたものであり、生成する非放射性不純物の量を減 ずることができる、 [18F]FACBCの製造方法を提供することを目的とした。
課題を解決するための手段
[0011] 発明者等は検討の結果、カルボキシル保護基であるエステル基の脱エステル化工 程を、逆相系固相カラム中で行うことにより、目的物中における不純物の量を簡便か つ効果的に減ずることが可能であることを見出し、本発明を完成した。従来、固相脱 保護法は、主に製造時間を短縮する目的で用いられてきた (例えば、特表平 11— 5 08923号公報参照)。発明者は、固相脱保護法を用いることによって、目的物中に 存する不純物の量を減ずることができるといった新たな効果を見出し、これを応用し たものである。
[0012] 本発明によると、下記式(1):
[0013] [化 4]
Figure imgf000006_0001
(式中、 R1は、直鎖若しくは分岐鎖の炭素数 1〜10のアルキル鎖又は芳香族置換基 、 R2は、保護基である)
[0014] で表される化合物を逆相カラムに保持して該カラムにアルカリ溶液を充填して前記化 合物を脱エステル化し、次いで該カラム力ゝら該アルカリ溶液を排出することにより下記 式 (2) :
[0015] [化 5]
Figure imgf000007_0001
(式中、 Xはナトリウム又はカリウムであり、 R2は、保護基である)
[0016] で表される化合物を得る脱エステルイ匕工程と、脱エステル化工程にて得られた化合 物につきアミノ保護基の脱保護を行って下記式 (3):
[0017] [化 6]
Figure imgf000007_0002
[0018] で表される化合物を得る脱保護工程と、を含むことを特徴とする放射性フッ素標識有 機化合物の製造方法が提供される。
[0019] 上記式中の R1は直鎖若しくは分岐鎖の炭素数 1〜10のアルキル鎖又は芳香族置換 基であり、メチル基、ェチル基、 t ブチル基又はフエ-ル基より選ばれた置換基を好 ましく用いることができる。
[0020] 上記式中の R2は保護基であり、放射性フッ素とァミノ基との間の反応を防ぎ得るもの であれば特に限定する必要は無い。具体的には、種々の力ルバメート置換基、種々 のアミド置換基、種々のイミド置換基、種々のァミン置換基力もなる群より選ばれたも のを用いることができ、好ましくは、炭素数 2〜7の直鎖又は分岐鎖のアルキルォキシ カルボニル置換基、炭素数 3〜7の直鎖又は分岐鎖のアルケニルォキシカルボニル 置換基、修飾基を有して 、ても良 、炭素数 7〜 12のべンジルォキシカルボ-ル置換 基、炭素数 2〜7のアルキルジチォォキシカルボニル置換基、炭素数 1〜6の直鎖又 は分岐鎖のアルキルアミド置換基、炭素数 2〜6の直鎖又は分岐鎖のアルケニルアミ ド置換基、修飾基を有していても良い炭素数 6〜 11のべンズアミド置換基、炭素数 4 〜 10の環式イミド置換基、置換基を有して!/、ても良 、炭素数 6〜 11の芳香族ィミン 置換基、炭素数 1〜6の直鎖又は分岐鎖のアルキルアミン置換基、炭素数 2〜6の直 鎖又は分岐鎖のアルケニルァミン置換基、修飾基を有して 、ても良 、炭素数 6〜 11 のベンジルァミン置換基力もなる群より選ばれたものを用いることができる。より好まし くは、 t ブトキシカルボ-ル基、ァリルォキシカルボ-ル基、フタルイミド基、 N ベン ジリデンァミン置換基より選ばれたものを用いることができ、最も好ましくは、 t—ブトキ シカルボニル基又はフタルイミド基を用いることができる。
[0021] 上記式中の Xは、脱エステルイ匕工程で用いるアルカリに含まれる陽イオンであり、ァ ルカリの種類に応じて選択される。例えば、水酸ィ匕ナトリウムを用いた場合はナトリウ ムとなり、水酸ィ匕カリウムを用いた場合はカリウムとなる。
[0022] 脱エステルイ匕工程において、逆相カラムは、充填剤の官能基がフエ-ル基、シクロへ キシル基、アルキル基等の疎水性基である種々のカラムを用いることができる。好ま しくは、前記逆相カラムは、充填剤が炭素数 2〜18のアルキル鎖がケィ素を介して担 体と結合した構造を有するものを用いることができる。逆相カラムの具体例としては、 ォクタデシルシリル基を官能基として有するものを挙げることができる。
[0023] 上記式(1)記載の化合物の当該逆相カラムへの保持は、種々の方法によって行うこ とができる。具体的には、放射性フッ素化工程から得られる上記式(1)の化合物の溶 液を水で希釈し、得られた溶液を逆相カラムに通液する方法を用いることができる。 希釈に要する水は、上記式(1)の化合物を逆相カラムに固定させるために十分な量 であればよい。
[0024] アルカリ溶液は、種々のものを用いることができ、好ましくは水酸ィ匕ナトリウム溶液を用 いることができる。アルカリ溶液の液量は、前記固相カラムの充填容量と同等以上と することが好ましい。アルカリ溶液の濃度は、脱エステルイ匕を行うために十分な量の アルカリをカラムに導入できる限りにおいて限定する必要はないが、多すぎると、次の 脱保護工程にてより多くの酸を用いる必要が生じるため注意が必要である。脱エステ ルイ匕工程において、逆相カラムは、上記式(1)の化合物を保持するとともにアルカリ 溶液が充填された状態で一定時間保持されるが、逆相カラムにアルカリ溶液を充填 した状態を保持する時間は、脱エステルイ匕反応を行うために十分な時間である限り にお!/、て特に限定する必要はな 、。
[0025] 前記カラム力 アルカリ溶液を排出することにより、上記式(2)で示される化合物が、 アルカリ溶液と共に排出される。このとき、アルカリ溶液排出後のカラムにさらに水を 通液して残存した前記化合物(2)を洗い出す操作を実施しても良い。この洗い出し 操作を行うことにより、前記化合物(2)の収率をより向上させることができる。
[0026] 脱保護工程は、公知の方法、例えば文献(J. McConathy et al., Applied Radiation an d Isotopes, 2003, 58, p.657-666)記載の方法を用いることができ、具体的には脱エス テルィ匕工程後の反応溶液に酸性条件を与えるといった方法をとることができる。
[0027] なお、放射性フッ素化工程は公知の方法または公知の方法に我々の確立した条件 を組み合わせた方法を用いることができる。具体的には、相間移動触媒と18 Fイオン 及びカリウムイオンとを含有する前記混合物に、下記式 (4):
[0028]
Figure imgf000009_0001
[0029] にて表される化合物及び不活性有機溶媒を添加して反応溶液を調製し、これに加熱 攪拌等の反応条件を与えると 、つた方法を用いることができる。
[0030] ここで、 R1及び R2は上記と同様であり、 R3は直鎖若しくは分岐鎖の炭素数 1〜: L0の ハロアルキルスルホン酸置換基、直鎖若しくは分岐鎖の炭素数 1〜10のアルキルス ルホン酸置換基、フルォロスルホン酸置換基及び芳香族スルホン酸置換基からなる 群より選ばれたものであり、メタンスルホン酸、トルエンスルホン酸、ニトロベンゼンス ルホン酸、ベンゼンスルホン酸、トリフルォロメタンスルホン酸、フルォロスルホン酸、 パーフルォロアルキルスルホン酸より選ばれた置換基を好ましく用いることができる。
[0031] 放射性フッ素化工程において、不活性有機溶媒は種々のものを用いることができる 力 両親媒性有機溶媒を用いる必要がある。具体的には、テトラヒドロフラン、 1, 4— ジォキサン、アセトン、ジメチルホルムアミド、ジメチルスルホキシド及びァセトニトリル 力もなる群より選択される溶媒を用いることができ、特に好ましくはァセトニトリルを用 いることができる。用いる不活性有機溶媒の量は、放射性フッ素化反応における反応 溶液中における標識前駆体濃度が、 40mmolZL以上となるように調整すると、放射 性フッ素化反応における収率が特に向上するため、好ましい。
[0032] 放射性フッ素化工程における反応条件としては、種々の条件を用いることができ、例 えば、前記反応溶液を加熱して攪拌するといつた条件を用いることができる。このとき の加熱温度は、反応溶液に添加した不活性有機溶媒の蒸散温度以下とする必要が あり、例えば、不活性有機溶媒としてァセトニトリルを用いた場合は、 70〜90°Cとする ことができる。
発明の効果
[0033] 本発明に係る製造方法を用いることにより、 [18F]FACBCを初めとする放射性フッ素 標識アミノ酸ィ匕合物の製造にぉ 、て、生成する非放射性不純物の量を減ずることが 可能となり、放射性フッ素標識アミノ酸ィ匕合物の精製方法としても有用である。
発明を実施するための最良の形態
[0034] 以下、本発明に係る放射性フッ素標識アミノ酸の製造方法につき、詳しく説明する。
[0035] 最も好ましい形態において、本発明に係る製造方法は、(1)相間移動触媒、 18Fイオン 及びカリウムイオンを含有する混合物と標識前駆体とを反応させ、標識前駆体を放射 性フッ素にて標識することにより放射性フッ素標識体エステルを得る工程 (放射性フ ッ素化工程)、(2)前記放射性フッ素標識体エステルにっき固相カラム中で脱エステ ル化を行う工程 (脱エステル化工程)、(3)前記脱エステル化工程にて得られた化合 物につきアミノ保護基の脱保護を行う工程 (脱保護工程)とを含んでいる。
[0036] 放射性フッ素は、公知の方法、例えば H 180濃縮水をターゲットとしてプロトン照射を
2
行うといった方法により、得ることができる。このとき、放射性フッ素はターゲットとした
H 180濃縮水中に存在している。この放射性フッ素を含む H 180濃縮水を陰イオン
2 2
交換カラムに通液して該カラムに放射性フッ素を吸着捕集し、 H 180濃縮水と分離す
2
る。その後、該カラムに炭酸カリウム溶液を流して放射性フッ素を溶出させ、該溶出 液に相間移動触媒を加えて乾固させることにより、相間移動触媒と18 Fイオン及びカリ ゥムイオンとを含有する混合物を得ることができる。
[0037] ここで用いる炭酸カリウムの量は、後の放射性フッ素化工程にて用いる標識前駆体と 、カリウムイオンとして等量以上であれば良いが、量が多すぎると炭酸イオンの影響 により反応生成物の分解が生ずる場合があるため好ましくな 、。最も好まし 、態様に おいては、カリウムイオンが標識前駆体と等量程度となるように、前記炭酸カリウム溶 液の濃度及び量を調整する。
[0038] 相間移動触媒としては、 18Fイオンとの間で包摂体を形成する性質を有する種々の化 合物を用いることができる。具体的には、放射性フッ素標識有機化合物の製造に用 V、られて 、る種々の化合物を用いることができ、 18クラウン 6エーテル及びその他の 種々のァミノポリエーテルを用いることができる。最も好ましい態様としては、 4、 7、 13 、 16、 21、 24 へキサォキサ 1、 10 ジァザビシクロ [8. 8. 8]へキサコサンを用 いることがでさる。
[0039] 相間移動触媒の量は、多いほど収率が向上する力 あまり多すぎると、過剰に添加し た相間移動触媒の除去が不十分となりやすくなるため、好ましくない。好ましい態様と しては、相間移動触媒の総量が 0. 2mmol以下となるように用いればよぐ例えば、 標識前駆体の使用量を 80 molとする場合であれば、標識前駆体とのモル比にして 2. 5以下とする。
[0040] 相間移動触媒と18 Fイオン及びカリウムイオンとを含有する混合物が得られたら、標識 前駆体と18 Fイオンを反応させて、放射性フッ素化を行う。放射性フッ素化工程は種 々の方法を用いることができ、例えば、前記混合物に 1— (N— (t—ブトキシカルボ- ル)ァミノ) 3 ( (トリフルォロメチル)スルフォ -ル)ォキシ]ーシクロブタン 1一力 ルボン酸ェチルエステル及び不活性有機溶媒を添加して反応溶液を調製し、これに 加熱攪拌等の反応条件を与えて [18F] 1—(N—(t ブトキシカルボ-ル)ァミノ) 3 —フルォロシクロブタン— 1—カルボン酸ェチルエステル(以下、 [18F]Boc— FACB Cという)を得るといった方法を用いることができる。最も好ましい態様において、標識 前駆体である 1— (N— (t—ブトキシカルボ-ル)ァミノ)—3— [ ( (トリフルォロメチル) スルフォ -ル)ォキシ]ーシクロブタン 1一力ルボン酸ェチルエステルは、予め不活 性有機溶媒に溶解させて、前記混合物に添加することができる。
[0041] 放射性フッ素化工程にて用いる不活性有機溶媒は、 [18F]フッ化物イオン、相間移動 触媒、カリウムイオン及び標識前駆体化合物との間で反応性を有さな!/ヽ種々の溶媒 を用いることができ、好ましくは、テトラヒドロフラン、 1, 4—ジォキサン、アセトン、ジメ チルホルムアミド、ジメチルスルホキシド及びァセトニトリル力 なる群より選択される 溶媒を用いることができ、特に好ましくはァセトニトリルを用いることができる。用いる 不活性有機溶媒の量は、放射性フッ素化反応における反応溶液中における標識前 駆体濃度が、 40mmolZL以上となるように調整すると、放射性フッ素化反応におけ る収率が特に向上するため、好ましい。
[0042] 放射性フッ素化工程における反応条件としては、種々の条件を用いることができ、例 えば、前記反応溶液を加熱して攪拌するといつた条件を用いることができる。このとき の加熱温度は、反応溶液に添加した不活性有機溶媒の沸点以下とすることが好まし ぐ例えば、不活性有機溶媒としてァセトニトリルを用いた場合は、 70〜90°Cとするこ とができる。反応時間は反応温度により異なるが、例えば、反応温度を 83°Cとした場 合には、 3分以上とすれば十分である。反応時間を長くすると、その分放射性フッ素 による標識反応が進行することが考えられるが、同時に放射性フッ素の崩壊も進行す るため、注意が必要である。
[0043] 放射性フッ素化工程が完了したら、脱エステル化工程を行って、 [18F] 1一(N— (t- ブトキシカルボ-ル)ァミノ)ー3—フルォロシクロブタンー1一力ルボン酸(以下、 [18F ]DE— Boc— FACBCという)を得る。本発明は、この工程における脱エステル化反 応を、固相カラム中で行うことを特徴とするものである。最も好ましい形態において、 脱エステルイ匕に供する試料である [18F]Boc— FACBCの固相カラムへの捕集は、 放射性フッ素化工程にて得られた [18F]Boc— FACBCを含む反応液を水で希釈し 、得られた溶液を試料として固相カラムに通液する事により行われる。この反応溶液 の希釈は、試料を固相カラムに通液した際に、カラムに [18F] Boc— FACBCが捕集 されずに溶出されてしまうことを防ぐために行う操作である。従って、前記希釈操作に 用いる水は、 [18F]Boc— FACBCを固相カラムの充填剤に捕集させるために十分な 量とすればよぐ反応溶液における溶媒がァセトニトリルの場合であれば、溶媒の 5倍 量とすれば十分である。
[0044] また、脱エステルイ匕工程に用いる前記固相カラムは、逆相系の充填剤を充填したも のを用いる必要がある。好ましくは、カラムの充填剤として、フエ-ル基、シクロへキシ ル基、アルキル基等の疎水性基を官能基として有するものを用いることができ、より好 ましくは、炭素数 2〜18のアルキル基がケィ素を介して担体と結合した構造を有する ものを用いることができる。最も好ましい形態において、ォクタデシルシリル基を官能 基として有する充填剤を充填したカラムを用いることができる。また、カラムの充填剤 は、水系の反応条件及び長時間の脱エステルイ匕反応において、官能基が担体から 切れにく 、構造を有したものを用いることが望ま 、。
[0045] 試料の固相カラムへの捕集が完了したら、当該カラムにアルカリ溶液を充填する。最 も好ましい形態において、アルカリ溶液の充填は、アルカリ溶液をカラムに直接導入 し、カラム出口カゝらアルカリ溶液が漏出し始めたことを確認後にアルカリ溶液の送液 を止めてカラム出口を閉鎖するといつた操作によって行われる。ここで用いるアルカリ としては、水酸ィ匕ナトリウム又は水酸ィ匕カリウムが挙げられ、本発明における目的物が 注射剤に用いられるものであることを考慮すると、水酸ィ匕ナトリウムが好ましい。
[0046] 最も好ましい形態において、アルカリ溶液の液量はカラムの容量と同等程度とする。
このとき、用いるアルカリ溶液の液量が多すぎると、先に脱エステル化した試料が廃 液と共に排出される場合があり、収率低下の原因となるため注意が必要である。
[0047] 用いるアルカリ溶液の濃度は、脱エステルイ匕するために十分なアルカリを前記カラム に導入できる限りにおいて、限定する必要はない。用い得るアルカリ溶液の液量およ びアルカリの必要量を勘案して決定される。ここでアルカリの量が多すぎると、後の脱 保護工程において中和のためにより多くの酸を用いる必要が生ずるため注意を要す る。
[0048] 固相カラムへのアルカリ溶液の充填が完了したら、その状態を一定時間維持すること により、カラム中で試料の脱エステルイ匕を行う。このとき、カラムの温度は特にコント口 ールする必要はなぐ室温にて操作を行うことができる。また、維持する時間は、脱ェ ステルイ匕をするために十分な時間であれば良い。この時間は、長いほど脱エステル 化反応が進行するが、同時に放射性フッ素の崩壊も進行するため、注意が必要であ る。例えば、榭脂量 400mgの ODSカラムに [18F]Boc— FACBCを保持した場合であ つて、 4molZLの水酸ィ匕ナトリウム溶液 0. 8mLを注入して脱エステル化を行う場合 であれば、 1〜5分間とすれば十分である。
[0049] 脱エステルイ匕が終了したら、カラム出口を開放し、脱エステル化によって得られた [18 F]DE— Boc— FACBCをアルカリ溶液と共に排出する。ここで、アルカリ溶液排出 後の前記カラムにさらにアルカリ溶液を添加し同様の操作を繰り返すことにより、逆相 カラムに残存した [18F]Boc— FACBCをより完全に脱エステルイ匕することが可能とな り、収率を向上させることができる。次いで、排出後の前記カラムを水でフラッシング すると、カラム中に残存している [18F]DE— Boc— FACBCを排出することができ、よ り収率が向上するため好ましい。
[0050] 脱エステル化工程が終了したら、脱保護工程を行ってァミノ保護基の脱保護を行い、 本発明における目的物である [18F] FACBCを得る。脱保護工程は、公知の方法、 例えば文献(J. McConathy et al, Applied Radiation and Isotopes, 2003, 58, p.657- 666)記載の方法により行うことができる。好ましい形態において、脱保護工程は、 [18 F]DE— Boc— FACBCを含む反応溶液に酸性条件を与えることにより行うことがで きる。酸性条件は種々の方法によって与えることができ、例えば [18F]DE— Boc— F ACBCを含む液に酸を添加する方法を用いることができる。このとき、用いる酸は特 に限定されないが、塩酸、硫酸、硝酸といった無機酸やパーフルォロアルキルカルボ ン酸 (例えばトリフルォロ酢酸)と 、つた有機酸力 選択される酸を好ましく用いること ができる。酸の添カ卩量は、 [18F]DE— Boc— FACBCを含む液の pHを、 1以下とする のに十分な量とする必要がある。具体的には、脱エステルイ匕工程にて得られた [18F] DE— Boc— FACBC溶液中のアルカリを中和し、かつ、試料溶液に十分な酸性条 件を与える量とすべきである。例えば、 [18F]Boc— FACBCにっき 4molZLの水酸 化ナトリウム溶液 0. 8mLを用いた脱エステルイ匕を 2回繰り返し行った場合であれば、 溶出された反応液に、 6molZLの塩酸 2. 2mLを添加すればよい。なお、脱保護ェ 程において、反応溶液を加温すると、より早く反応が進行するため好ましい。反応時 間は、反応温度等の条件によって異なるが、前記条件の脱保護反応を 60°Cで行う 場合であれば、 5分とすれば十分である。なお、脱保護工程にて得られた [18F]FAC BC溶液は、所望によりイオン遅滞カラム、アルミナカラム、逆相カラムを用いて精製し ても良い。
実施例
[0051] 以下に、実施例及び比較例を示して本発明をより詳細に説明するが、本発明はこれ らに限定されるものではない。
[0052] 参考例 1
syn—l—(N— (t—ブトキシカルボ-ル)ァミノ) 3— [ ( (トリフルォロメチル)スルフ ォ -ル)ォキシ]ーシクロブタン 1一力ルボン酸ェチルエステルの合成
[0053] svn—ヒダントインの加水分解(闵 1、工程 1)
syn- 5- (3 ベンジルォキシシクロブタン)ヒダントイン 6. 15g (25mmol相当)に、 飽和水酸化バリウム水溶液 250 mLを加え、 114°Cの油浴にて 24時間以上加熱還流 した。クロ口ホルム:メタノール = 5 : 1 (syn—ヒダントインの Rf値 =0. 6付近)及びクロ 口ホルム:メタノール = 95 : 1 (syn—ヒダントインの Rf値 =0. 3付近)の 2種類の系を 展開溶媒として使用した TLC分析を行 、、反応終了の確認を行った (UVとリンモリ ブデン酸による呈色によって確認)。
[0054] 反応終了を確認した後、反応液を室温まで冷却し、 ImolZmL硫酸約 24mLをカロえ 中和した。中和後、さらに室温で 5分攪拌し、生成した沈殿を濾去した後、濾液を濃 縮し、 syn— 1—アミノー 3 ベンジルォキシシクロブタン一 1—カルボン酸 5. 67gを、 白色結晶として得た。
[0055] ェチルエステル化(図 1、工程 2)
充分に乾燥させ水分を取り除 、た syn— 1 ァミノ 3 ベンジルォキシシクロブタン —1—カルボン酸 5. 67gを、エタノール 200mLに溶解させた。この液に、トリェチル ァミン 9. 5mL (75mmol相当)を加え、 -78°Cにて 20分間冷却し、塩化チォ -ル 4. 6mL (62. 5mmol相当)を加えた。反応液を、 0°Cで 1時間、室温で 1時間それぞ れ攪拌した後、 95°Cの油浴にて、 1晚加熱還流した。クロ口ホルム:メタノール = 95 : 1 (目的物の Rf値 =0. 6付近)を展開溶媒として使用した TLC分析 (UVとリンモリブ デン酸による呈色にて確認)により、反応終了の確認を行った。反応終了確認後、反 応液を減圧濃縮して syn— 1 アミノー 3 ベンジルォキシシクロブタン 1 カルボ ン酸ェチルエステル 7. 64gを白色結晶として得た。
[0056] Boc化(図 1、工程 3)
syn— 1 アミノー 3 ベンジルォキシシクロブタン 1 カルボン酸ェチルエステル 7. 64gを、エタノール:トリェチルァミン = 9 : 1混液 250mLに溶解させた。この溶液を 氷浴で 15分冷却した後、二炭酸ジー t ブチル 8. 6mL (37. 5mmol相当)をカロえ、 室温下 1晚攪拌した。へキサン:酢酸ェチル = 1: 1 (反応目的物の Rf値 =0. 6付近) を展開溶媒として使用した TLC (UV及びモリブデン酸による呈色にて確認)にて、反 応終了を確認した。反応終了確認後、反応液を減圧濃縮し、残渣として白色結晶を 得た。この残渣に、冷酢酸ェチル 150mLと 0. 5molZLの冷塩酸 150mLを加え、 室温で 5分攪拌し、次いで静置分離した。有機層を水 150mL X 2、飽和炭酸水素ナ トリウム水溶液 150mL、水 150mL X 2,飽和食塩水 150mL X 2の順で抽出'洗浄し 、無水硫酸ナトリウムで乾燥後、減圧濃縮し、黄色油状物を得た。別に、水層を酢酸 ェチル 150mL X 2、水 150mL X 2、飽和食塩水 150mLの順で抽出.洗浄し、無水 硫酸ナトリウムで乾燥後減圧濃縮することにより、少量の黄色油状物を回収した。一 連の操作により、淡黄色油状物 8. 82gを得た。残渣をシリカゲルカラムクロマトグラフ ィ一により分離精製 (へキサン:酢酸ェチル = 1 : 1)することにより、白色結晶の syn— 1— (N— (t—ブトキシカルボ-ル)ァミノ)—3 ベンジルォキシ—シクロブタン— 1— カルボン酸ェチルエステル 8. 04g (23mmol相当)を得た。
[0057] 脱ベンジル化(闵 2、工程 4)
syn— 1— (N— (t—ブトキシカルボ-ル)ァミノ)—3 ベンジルォキシ—シクロブタン —1—カルボン酸ェチルエステル 8. 04g (23mmol相当)にエタノール 150mLをカロ えた後、パラジウム—活性炭素 (パラジウム 10%) 960mgを加え、水素置換、室温下 で一晩攪拌した。反応後、セライトを用いた濾過によりパラジウム—活性炭素を濾去 して濾液を減圧濃縮し、残渣として白色結晶 5. 74gを得た。なお、へキサン:酢酸ェ チル = 1: 1 (反応目的物の Rf値 =0. 2付近)を展開溶媒として使用した TLC分析 ( UVと-ンヒドリンによる呈色にて確認)にて反応追跡を行い、反応終了を確認した。 次いで残渣をシリカゲルカラムクロマトグラフィー(へキサン:酢酸ェチル = 1 : 1,へキ サン:酢酸ェチル =4 : 1)により分離精製し、白色結晶として syn— 1— (N— (t—ブト キシカルボ-ル)ァミノ) 3 ヒドロキシーシクロブタン 1一力ルボン酸ェチルエス テル 5. 36g (20. 7mmol相当)を得た。
[0058] トリフレート化(図 3、工程 5)
syn— 1— (N— (t—ブトキシカルボ-ル)ァミノ) 3 ヒドロキシ一シクロブタン一 1— カルボン酸ェチルエステル 2. 07g (8mmol)をピリジン 26mLに溶解させ、氷浴下 2 0分間攪拌した。無水トリフルォロメタンスルホン酸 2. 0mL (12mmol相当)をカロえ、 そのまま 30分間攪拌した。へキサン:ジェチルエーテル = 1: 1を展開溶媒 (反応目 的物の Rf値 =0. 6付近)とした TLC分析 (ニンヒドリンの呈色にて確認)を用いて反 応を追跡し、反応終了を確認した。反応終了を確認後、反応液に水 lOOmLとエーテ ル lOOmLを加え、 ImolZL塩酸 100mL X 2、水 100mL X 2、飽和食塩水 lOOmL X 2の順で抽出洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮することにより、淡 黄色結晶 2. 78gを得た。この反応混合物をシリカゲルカラムクロマトグラフィーにより 分離精製 (へキサン:ジェチルエーテル = 3: 1)することにより得られた白色結晶につ き、さらにペンタン:ジェチルエーテルを用いて再結晶を行うことにより、 syn—l— (N 一(t ブトキシカルボ-ル)ァミノ) 3— [ ( (トリフルォロメチル)スルフォ -ル)ォキシ ]ーシクロブタン 1一力ルボン酸ェチルエステル 1. 84g (4. 7mmol相当)を得た。
[0059] 比較例
[18F]フッ化物イオン含有 H 180 (13〜182GBq)を、陰イオン交換カラムに通液し、
2
[18F]フッ化物イオンを吸着捕集した。次いで、該カラムに炭酸カリウム溶液を通液し て [18F]フッ化物イオンを溶出し、さらに水でフラッシングを行って溶出液と合わせた 。この液に、 4、 7、 13、 16、 21、 24 へキサォキサ— 1、 10 ジァザビシクロ [8. 8. 8]へキサコサン(商品名:クリプトフィックス 222、メルク社製)のァセトニトリル溶液を 加え、加熱蒸散を行って乾固させた。
[0060] 乾固させた上記混合物に、 1一(N— (t—ブトキシカルボ-ル)ァミノ)ー3 [ ( (トリフ ルォロメチル)スルフォ -ル)ォキシ]ーシクロブタン 1 カルボン酸ェチルエステル 32mgをァセトニトリル lmLに溶解させた液をカ卩え、 83°Cにて 3分間攪拌し、放射性 フッ素化反応を進行させた。室温下で 5分間放冷し、ジェチルエーテル 4mLをカロえ て Silica Sep— Pak (登録商標、ゥオターズ'インヴエストメンッ 'リミテッド)(商品名、 日本ウォーターズ株式会社製)に通液し、 [18F] Boc— FACBCのァセトニトリル/ジ ェチルエーテル溶液を得た。
[0061] 得られた [18F] Boc—FACBCのァセトニトリル Zジェチルエーテル溶液に、 4molZ L塩酸 1. 5mLをカ卩え、 120°Cで 15分間加熱して脱保護を行った。その後、イオン遅 滞カラム(商品名: AG11A8、日本バイオ'ラッドラボラトリーズ株式会社製)、アルミ ナカラム(商品名: Sep— Pak (登録商標、ゥオターズ'インヴエストメンッ 'リミテッド) lig ht ALUMN、日本ウォーターズ株式会社製)、逆相カラム (製品名:オアシス HLB プラス EXTRACTIONカートリッジカラム、 日本ウォーターズ株式会社製)の順に通 液して精製を行い、 [18F] FACBC溶液を得た。 [18F] FACBC溶液の収量は 9. 4〜 13. 4mLであった。得られた [18F] FACBCにっき、下記の条件による TLC分析を 行い、式(1)に従って放射化学的純度を求めた。
[0062] TLC分析条件:
展開相:ァセトニトリル Zメタノール Z水 Z酢酸 = 20Z5Z5Z1
TLCプレート: Silica Gel 60F254 (商品名、膜厚: 0. 25mm、メルク社製) 展開長: 10cm
TLCスキャナー: Rita Star (Raytest社製)
[0063] [数 1] 續匕学瞧 ( ¾
Figure imgf000018_0001
[0064] また、目的物中の非放射性不純物量の比較は、下記の条件の HPLC分析にて確認 された各不純物ピークの面積値を、下記式 (2)を用いて補正した値 (以下、補正面積 値という)を用いて行った。なお、 HPLC分析に供する試料溶液は、生理食塩溶液を 用いて適宜希釈した (希釈倍率 : 2. 1〜9. 9)。
[0065] [数 2] 補正面積値 各不純 :^ 面積値 希釈倍率 [l ]^CBC溶液の収量 ( 2 )
[0066] HPLC測定条件: カラム: CAPCELLPAK C18 MG (製品名、株式会社資生堂製、サイズ: 5 μ m 、 4. 6mml. D. X 250mm)
カラム温度:室温 (約 25°C)
移動相: 5mmol/Lオクタンスルホン酸ナトリウム含有リン酸緩衝液 (pH2. 1)を A 液、ァセトニトリルを B液とし、 A液と B液の混合比を表 1のように変えて濃度勾配制御 を行った。
[0067] [表 1] 表 1 H P L C分析における移動相
注入後からの時間 (分) 移動相 A (%) 移動相 B ( ¾)
0〜10 † 5→10
o
10〜40 90 10
40〜41 90—95 10→5
[0068] 移動相流量: 1. OmLZ分
試料注入量: 10 /z L
ポストカラム誘導体化条件:
反応液: 0. 3molZLホウ酸緩衝液(ρΗΙΟ. 4) , 6mmol/L o—フタルアルデヒド 、 6mmol/L N—ァセチルー L—システィン
反応液流量: 1. OmLZ分
反応温度: 50°C
検出器:蛍光検出器 (形式: Waters2475M (日本ウォーターズ株式会社製)励起 波長: 330nm、蛍光波長: 430nm)
[0069] 比較例の実験は、 19回繰り返し行った。
[0070] 製造した [18F]FACBCの放射化学的純度は、 98. 8±0. 4%であった。 HPLCチヤ ート上にて確認された不純物ピークを、表 2の様に定義した。各不純物ピークの補正 面積値は、表 3に示す通りであった。
[0071] [表 2] 表 2 各不純物名
Figure imgf000020_0001
[0072] [表 3] 各不純物の補正面積値
Figure imgf000020_0002
[0073] 実施例 1、実施例 2
[18F]フッ化物イオン含有 H 180 (7〜36GBq)を、陰イオン交換カラムに通液し、
2
F]フッ化物イオンを、吸着捕集した。次いで、該カラムに炭酸カリウム溶液を通液して [18F]フッ化物イオンを溶出し、さらに水でフラッシングを行い溶出液と合わせた。こ の液に、 4、 7、 13、 16、 21、 24 へキサォキサ— 1、 10 ジァザビシクロ [8. 8. 8] へキサコサン(商品名:クリプトフィックス 222、メルク社製)のァセトニトリル溶液をカロえ 、加熱蒸散を行って乾固させた。
[0074] 乾固させた上記混合物に、 1一(N— (t—ブトキシカルボ-ル)ァミノ)ー3 [ ( (トリフ ルォロメチル)スルフォ -ル)ォキシ]ーシクロブタン 1 カルボン酸ェチルエステル 32mgをァセトニトリル lmLに溶解させた液をカ卩え、攪拌しながら 83°Cで 3分間加熱 した。
[0075] 上記反応液を室温下で 5分間放冷後、水 14mLを加えて希釈し、表 4記載の Sep P ak (登録商標、ゥオターズ'インヴエストメンッ 'リミテッド)カートリッジ(日本ウォーター ズ株式会社製)に通液し、さらに水 10mLを用いて洗いこみを行った。 [0076] [表 4] 各実施例にて用いた固相カラム
Figure imgf000021_0001
[0077] この固相カラムに空気を流して乾燥させた後、該カラムに 4molZL水酸ィ匕ナトリウム 溶液を 0. 8mL充填し、カラム出口を閉鎖した。 3分間経過後、カラム出口を開放し、 固相カラムカゝらアルカリ溶液を溶出させ、バイアルに回収した。さらに 4molZL水酸 化ナトリウム溶液を 0. 8mL充填し、同操作を繰り返した。次いで、固相カラムを水 3m Lで洗浄し、洗浄液を前記回収したアルカリ溶液と合わせた。
[0078] 前記で回収された液に 6molZL塩酸 2. 2mLをカ卩えて、 60°Cで 5分間脱保護反応 を行った。その後、イオン遅滞カラム (商品名: AG11A8、 日本バイオ'ラッドラボラトリ ーズ株式会社製)、アルミナカラム (商品名: Sep— Pak (登録商標、ゥオターズ'イン ヴエストメンッ 'リミテッド) light ALUMN、日本ウォーターズ株式会社製)、逆相カラ ム(製品名:オアシス HLBプラス EXTRACTIONカートリッジカラム、日本ウォーター ズ株式会社製)の順に通液して精製を行い、 [18F]FACBC溶液を得た。 [18F]FAC BC溶液の収量は、 11. 9〜17. OmLであった。
[0079] 得られた [18F]FACBC溶液につき、比較例と同様の条件にて [18F]FACBCの放射 化学的純度と各不純物の補正面積値を求めた。なお、 HPLC分析に供する試料溶 液は、生理食塩溶液を用いて適宜希釈した (希釈倍率: 3. 0〜4. 7)。
[0080] 実施例 1および実施例 2にて製造された [18F]FACBCの放射化学的純度は、それ ぞれ 99. 4%および 99. 3%であった。各不純物ピークの補正面積値を表 5に示す。 この表に示すように、実施例 1および実施例 2のいずれにおいても、従来法によって 製造された試料 (比較例 1)と比較し、不純物 D以外の全ての非放射性不純物量が 減少し、各不純物における補正面積値の合計は半分以下に減少していた。この結果 より、本発明に係る [18F]FACBCの製造法により、非放射性不純物の量を減少させ 得ることが確認された。
[0081] [表 5] 表 5 各不純物の補正面積値
Figure imgf000022_0001
産業上の利用可能性
[0082] 本発明に係る放射性フッ素標識有機化合物の製造方法は、放射性医薬品の製造分 野において利用することができる。
図面の簡単な説明
[0083] [図 l]syn— 1— (N— (t—ブトキシカルボ-ル)ァミノ)—3 ベンジルォキシ—シクロ ブタン 1一力ルボン酸ェチルエステルの合成スキーム
[図 2]syn— 1— (N— (t—ブトキシカルボ-ル)ァミノ) 3 ヒドロキシ一シクロブタン 1一力ルボン酸ェチルエステルの合成スキーム
[図 3]syn—l—(N— (t—ブトキシカルボ-ル)ァミノ) 3— [ ( (トリフルォロメチル)ス ルフォ -ル)ォキシ]ーシクロブタン 1一力ルボン酸ェチルエステルの合成スキーム

Claims

請求の範囲 下記式(1)
[化 1]
Figure imgf000023_0001
( D
(式中、 R1は、直鎖若しくは分岐鎖の炭素数 1〜10のアルキル鎖又は芳香族置換基 、 R2は、保護基である)で表される化合物を逆相カラムに保持して該カラムにアルカリ 溶液を充填して前記化合物を脱エステルイ匕し、次 、で該カラム力ゝら該アルカリ溶液を 排出することにより下記式(2):
[化 2]
Figure imgf000023_0002
(式中、 Xはナトリウム又はカリウムであり、 R2は、保護基である)
で表される化合物を得る脱エステルイ匕工程と、
脱エステル化工程にて得られた前記化合物につきアミノ保護基の脱保護を行って下 記式(3) :
[化 3]
Figure imgf000023_0003
で表される化合物を得る脱保護工程と、
を含むことを特徴とする、放射性フッ素標識有機化合物の製造方法。
[2] 脱エステルイ匕工程にて用いる逆相カラムにおける充填剤力 炭素数 1〜18のアルキ ル鎖がケィ素を介して担体と結合した構造を有するものである、請求項 1に記載の放 射性フッ素標識有機化合物の製造方法。
脱エステルイ匕工程に用いるアルカリ溶液力 水酸ィ匕ナトリウム水溶液である
1又は 2に記載の放射性フッ素標識有機化合物の製造方法。
PCT/JP2007/059459 2006-05-11 2007-05-07 放射性フッ素標識有機化合物の製造方法 WO2007132689A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
EP07742894A EP2017258B1 (en) 2006-05-11 2007-05-07 Process for production of radioactive fluorine-labeled organic compound
DK07742894.4T DK2017258T3 (da) 2006-05-11 2007-05-07 Fremgangsmåde til fremstilling af en radioaktiv fluormærket organisk forbindelse
CN2007800171253A CN101443307B (zh) 2006-05-11 2007-05-07 放射性氟标记有机化合物的制备方法
CA2651786A CA2651786C (en) 2006-05-11 2007-05-07 Process for production of radioactive fluorine-labeled organic compound
US12/227,240 US7897811B2 (en) 2006-05-11 2007-05-07 Process for production of radioactive fluorine-labeled organic compound
NZ572936A NZ572936A (en) 2006-05-11 2007-05-07 Process for production of [18F]1-amino-3-fluorocyclobutanecarboxylic acid, [18F]FACBC
JP2008515492A JP4550141B2 (ja) 2006-05-11 2007-05-07 放射性フッ素標識有機化合物の製造方法
AT07742894T ATE549312T1 (de) 2006-05-11 2007-05-07 Verfahren zur herstellung einer radioaktiven, mit fluor markierten organischen verbindung
ES07742894T ES2380372T3 (es) 2006-05-11 2007-05-07 Procedimiento para la producción de compuesto orgánico marcado con flúor radioactivo
AU2007251015A AU2007251015B2 (en) 2006-05-11 2007-05-07 Process for production of radioactive fluorine-labeled organic compound
KR1020087027346A KR101317258B1 (ko) 2006-05-11 2007-05-07 방사성 불소 표식 유기 화합물의 제조 방법
BRPI0711144A BRPI0711144B1 (pt) 2006-05-11 2007-05-07 processo para produção de um composto orgânico marcado com flúor radioativo
IL195187A IL195187A (en) 2006-05-11 2008-11-10 A process for producing an organic compound marked with radioactive fluorine
NO20085076A NO341173B1 (no) 2006-05-11 2008-12-04 Fremgangsmåte for fremstilling av radioaktive, fluormerkede organiske forbindelser
HK09107695.4A HK1129884A1 (en) 2006-05-11 2009-08-21 Process for production of radioactive fluorine-labeled organic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006132089 2006-05-11
JP2006-132089 2006-05-11

Publications (1)

Publication Number Publication Date
WO2007132689A1 true WO2007132689A1 (ja) 2007-11-22

Family

ID=38693787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059459 WO2007132689A1 (ja) 2006-05-11 2007-05-07 放射性フッ素標識有機化合物の製造方法

Country Status (19)

Country Link
US (1) US7897811B2 (ja)
EP (1) EP2017258B1 (ja)
JP (1) JP4550141B2 (ja)
KR (1) KR101317258B1 (ja)
CN (1) CN101443307B (ja)
AT (1) ATE549312T1 (ja)
AU (1) AU2007251015B2 (ja)
BR (1) BRPI0711144B1 (ja)
CA (1) CA2651786C (ja)
DK (1) DK2017258T3 (ja)
ES (1) ES2380372T3 (ja)
HK (1) HK1129884A1 (ja)
IL (1) IL195187A (ja)
NO (1) NO341173B1 (ja)
NZ (1) NZ572936A (ja)
PT (1) PT2017258E (ja)
RU (1) RU2434846C2 (ja)
TW (1) TWI389872B (ja)
WO (1) WO2007132689A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078589A1 (ja) * 2006-12-27 2008-07-03 Nihon Medi-Physics Co., Ltd. 放射性ハロゲン標識有機化合物の前駆体化合物の製造方法
WO2008099800A1 (ja) * 2007-02-13 2008-08-21 Nihon Medi-Physics Co., Ltd. 放射性画像診断剤の製造方法
WO2009078396A1 (ja) * 2007-12-19 2009-06-25 Nihon Medi-Physics Co., Ltd. 放射性フッ素標識有機化合物の製造方法
JP2014509303A (ja) * 2010-12-20 2014-04-17 ジーイー・ヘルスケア・リミテッド 結晶化による前駆体化合物の精製
JP2014509299A (ja) * 2010-12-20 2014-04-17 ジーイー・ヘルスケア・リミテッド 前駆体化合物に対するプロセス簡略化
JP2015530985A (ja) * 2012-08-09 2015-10-29 ジーイー・ヘルスケア・リミテッド 18f−フルシクロビンの製造
JP2016515564A (ja) * 2013-03-28 2016-05-30 ジーイー・ヘルスケア・リミテッド 放射標識法
WO2016194586A1 (ja) * 2015-06-05 2016-12-08 日本メジフィジックス株式会社 放射性標識化合物の製造装置及び製造方法
JP2017081847A (ja) * 2015-10-28 2017-05-18 日本メジフィジックス株式会社 フルテメタモルの製造方法
JP2017214389A (ja) * 2010-12-20 2017-12-07 ジーイー・ヘルスケア・リミテッド 結晶化による前駆体化合物の精製

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006319987B2 (en) 2005-11-29 2012-09-06 Nihon Medi-Physics Co., Ltd. Precursor compound of radioactive halogen labeled organic compound
GB0812923D0 (en) * 2008-07-15 2008-08-20 Isis Innovation Preparation of flourine-labelled compounds
WO2012072567A1 (en) * 2010-11-29 2012-06-07 Ge Healthcare Limited Preparation of pet precursor
US11534494B2 (en) 2011-12-21 2022-12-27 Ge Healthcare Limited Formulation and method of synthesis
RU2623163C2 (ru) * 2011-12-21 2017-06-22 ДжиИ ХЕЛТКЕР ЛИМИТЕД Композиция 18f- флуцикловина в цитратных буферах
GB201411569D0 (en) 2014-06-30 2014-08-13 Ge Healthcare Ltd Novel formulation and method of synthesis
GB2561122B (en) * 2012-12-21 2019-07-17 Ge Healthcare Ltd Composition comprising [18F]-Fluciclovine
CN106770883B (zh) * 2017-01-03 2019-01-29 原子高科股份有限公司 一种氟[18f]化钠注射液放化纯的薄层色谱分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508923A (ja) 1996-05-02 1999-08-03 コインシデンス エス.アー. ラベル化化合物を合成する方法及び装置
JP2000500442A (ja) 1995-11-09 2000-01-18 エモリー ユニバーシティ 腫瘍画像化のためのアミノ酸アナログ
WO2005030677A1 (ja) * 2003-09-30 2005-04-07 Nihon Medi-Physics Co., Ltd. 放射性フッ素化合物の製造方法
JP2006510706A (ja) * 2002-12-20 2006-03-30 ジーイー・ヘルスケア・リミテッド 18f−標識アミノ酸の固相製造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000500442A (ja) 1995-11-09 2000-01-18 エモリー ユニバーシティ 腫瘍画像化のためのアミノ酸アナログ
JPH11508923A (ja) 1996-05-02 1999-08-03 コインシデンス エス.アー. ラベル化化合物を合成する方法及び装置
JP2006510706A (ja) * 2002-12-20 2006-03-30 ジーイー・ヘルスケア・リミテッド 18f−標識アミノ酸の固相製造
WO2005030677A1 (ja) * 2003-09-30 2005-04-07 Nihon Medi-Physics Co., Ltd. 放射性フッ素化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. MCCONATHY ET AL., APPLIED RADIATION AND ISOTOPES, vol. 58, 2003, pages 657 - 666
JONATHAN MCCONATHY ET AL.: "Improved synthesis of anti-[18F] FACBC: improved preparation of labeling precursor and automated radiosynthesis", APPLIED RADIATION AND ISOTOPES, (NETHERLANDS, vol. 58, 2003, pages 657 - 666, XP055266777, DOI: doi:10.1016/S0969-8043(03)00029-0
TIMOTHY M. SHOUP ET AL.: "Synthesis and Evaluation of [18F]1-Amino-3-fluorocyclobutane-1-carboxylic Acid to Image Brain Tumors", THE JOURNAL OF NUCLEAR MEDICINE, vol. 40, 1999, pages 331 - 338

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078589A1 (ja) * 2006-12-27 2008-07-03 Nihon Medi-Physics Co., Ltd. 放射性ハロゲン標識有機化合物の前駆体化合物の製造方法
US8563771B2 (en) 2006-12-27 2013-10-22 Nihon Medi-Physics Co., Ltd. Process for production of precursor compound for radioactive halogen-labeled organic compound
WO2008099800A1 (ja) * 2007-02-13 2008-08-21 Nihon Medi-Physics Co., Ltd. 放射性画像診断剤の製造方法
US8658132B2 (en) 2007-02-13 2014-02-25 Nihon Medi-Physics Co., Ltd. Method for production of radiation diagnostic imaging agent
US8343459B2 (en) 2007-02-13 2013-01-01 Nihon Medi-Physics Co., Ltd. Method for production of radiation diagnostic imaging agent
AU2008339435B2 (en) * 2007-12-19 2012-08-16 Nihon Medi-Physics Co., Ltd. Process for production of radioactive-fluorine-labeled organic compound
JP5732198B2 (ja) * 2007-12-19 2015-06-10 日本メジフィジックス株式会社 放射性フッ素標識有機化合物の製造方法
JPWO2009078396A1 (ja) * 2007-12-19 2011-04-28 日本メジフィジックス株式会社 放射性フッ素標識有機化合物の製造方法
RU2476423C2 (ru) * 2007-12-19 2013-02-27 Нихон Меди-Физикс Ко., Лтд. Способ получения радиоактивного, меченного фтором органического соединения
KR20100108519A (ko) * 2007-12-19 2010-10-07 니혼 메디피직스 가부시키가이샤 방사성 불소 표식 유기 화합물의 제조방법
WO2009078396A1 (ja) * 2007-12-19 2009-06-25 Nihon Medi-Physics Co., Ltd. 放射性フッ素標識有機化合物の製造方法
KR101583544B1 (ko) 2007-12-19 2016-01-08 니혼 메디피직스 가부시키가이샤 방사성 불소 표식 유기 화합물의 제조방법
US8269035B2 (en) 2007-12-19 2012-09-18 Nihon Medi-Physics Co., Ltd. Process for production of radioactive-fluorine-labeled organic compound
TWI458494B (zh) * 2007-12-19 2014-11-01 Nihon Mediphysics Co Ltd Radioactive fluorine labeling organic compounds manufacturing methods (a)
JP2014509299A (ja) * 2010-12-20 2014-04-17 ジーイー・ヘルスケア・リミテッド 前駆体化合物に対するプロセス簡略化
JP2014509303A (ja) * 2010-12-20 2014-04-17 ジーイー・ヘルスケア・リミテッド 結晶化による前駆体化合物の精製
JP2017214389A (ja) * 2010-12-20 2017-12-07 ジーイー・ヘルスケア・リミテッド 結晶化による前駆体化合物の精製
JP2015530985A (ja) * 2012-08-09 2015-10-29 ジーイー・ヘルスケア・リミテッド 18f−フルシクロビンの製造
US10023525B2 (en) 2012-08-09 2018-07-17 Ge Healthcare Limited Preparation of 18F-fluciclovine
JP2016515564A (ja) * 2013-03-28 2016-05-30 ジーイー・ヘルスケア・リミテッド 放射標識法
WO2016194586A1 (ja) * 2015-06-05 2016-12-08 日本メジフィジックス株式会社 放射性標識化合物の製造装置及び製造方法
JPWO2016194586A1 (ja) * 2015-06-05 2018-03-22 日本メジフィジックス株式会社 放射性標識化合物の製造装置及び製造方法
JP2017081847A (ja) * 2015-10-28 2017-05-18 日本メジフィジックス株式会社 フルテメタモルの製造方法

Also Published As

Publication number Publication date
EP2017258A1 (en) 2009-01-21
CN101443307B (zh) 2012-05-16
EP2017258B1 (en) 2012-03-14
TW200811084A (en) 2008-03-01
JP4550141B2 (ja) 2010-09-22
AU2007251015A1 (en) 2007-11-22
CA2651786C (en) 2014-11-04
ATE549312T1 (de) 2012-03-15
HK1129884A1 (en) 2009-12-11
NZ572936A (en) 2011-01-28
EP2017258A4 (en) 2011-05-25
NO20085076L (no) 2009-02-10
BRPI0711144B1 (pt) 2017-03-28
JPWO2007132689A1 (ja) 2009-09-24
RU2434846C2 (ru) 2011-11-27
NO341173B1 (no) 2017-09-04
KR101317258B1 (ko) 2013-10-14
PT2017258E (pt) 2012-04-12
ES2380372T3 (es) 2012-05-11
KR20090034805A (ko) 2009-04-08
US7897811B2 (en) 2011-03-01
CN101443307A (zh) 2009-05-27
IL195187A (en) 2013-04-30
AU2007251015B2 (en) 2011-09-01
TWI389872B (zh) 2013-03-21
IL195187A0 (en) 2009-08-03
DK2017258T3 (da) 2012-07-09
BRPI0711144A2 (pt) 2011-08-23
CA2651786A1 (en) 2007-11-22
US20090198085A1 (en) 2009-08-06
RU2008148851A (ru) 2010-06-20

Similar Documents

Publication Publication Date Title
WO2007132689A1 (ja) 放射性フッ素標識有機化合物の製造方法
JP5732198B2 (ja) 放射性フッ素標識有機化合物の製造方法
JP5684333B2 (ja) 放射性ハロゲン標識有機化合物の製造方法
TWI410396B (zh) A new method for the production of organic compounds and the use of the compounds for radioactive halogen calibration of organic compounds
US8487077B2 (en) Simplified one-pot synthesis of [18F]SFB for radiolabeling
JP5106118B2 (ja) 放射性フッ素標識有機化合物の製造方法
CN109320500B (zh) 一种18f标记的苯并咪唑类化合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008515492

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087027346

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2651786

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780017125.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12227240

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007742894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 572936

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 9717/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007251015

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008148851

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2007251015

Country of ref document: AU

Date of ref document: 20070507

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0711144

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081031