WO2007132610A1 - Exposure apparatus - Google Patents

Exposure apparatus Download PDF

Info

Publication number
WO2007132610A1
WO2007132610A1 PCT/JP2007/058111 JP2007058111W WO2007132610A1 WO 2007132610 A1 WO2007132610 A1 WO 2007132610A1 JP 2007058111 W JP2007058111 W JP 2007058111W WO 2007132610 A1 WO2007132610 A1 WO 2007132610A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
light
light shielding
shielding member
substrate
Prior art date
Application number
PCT/JP2007/058111
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhito Saji
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to CN200780012149XA priority Critical patent/CN101416115B/en
Publication of WO2007132610A1 publication Critical patent/WO2007132610A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus

Definitions

  • the present invention relates to an exposure apparatus, and more particularly to an exposure apparatus suitable for exposing and transferring a mask pattern of a mask onto a substrate of a large flat panel display such as a liquid crystal display or a plasma display.
  • Large flat panel displays such as liquid crystal displays and plasma displays used in large thin televisions and the like are manufactured by transferring a mask pattern onto a substrate by proximity exposure transfer using a divided sequential exposure method.
  • a mask smaller than the substrate as the material to be exposed is used, the mask is held on the mask stage and the substrate is held on the work stage, and both are placed close to each other.
  • the work stage is moved stepwise with respect to the mask, and the substrate is irradiated with light for pattern exposure from the mask side at each step, so that a plurality of mask patterns drawn on the mask are placed on the substrate.
  • a plurality of displays are formed on a single substrate by exposure and transfer.
  • a mask pattern can be exposed to a large substrate by moving a smaller mask and a light source synchronously with respect to the substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-237744
  • the present invention can appropriately shield the non-exposure region using a light shielding member when performing pattern exposure by moving the substrate and the mask relative to each other.
  • the purpose is to provide.
  • a substrate driving unit that holds a substrate having an exposure region and a non-exposure region, and moves the substrate in a predetermined direction across the exposure light emitted from the irradiation unit;
  • a first light shielding member that is disposed between the irradiation unit and the substrate, extends in a direction intersecting the predetermined direction, and shields light;
  • a first drive unit that moves the first light shielding member to a position that blocks the exposure light emitted from the irradiation unit
  • a second light shielding member that is disposed between the irradiation unit and the substrate, extends in a direction intersecting the predetermined direction, and shields light;
  • a second drive unit that holds the second light shielding member and moves the exposure light emitted from the irradiation unit to a position that blocks the first light shielding member independently of the first light shielding member.
  • the first drive unit traverses the light from the irradiation unit in a direction opposite to the predetermined direction at least once while the irradiation unit force also irradiates the exposure area with light. Driving the first light shielding member to move,
  • the exposure apparatus wherein the second driving unit drives the second light shielding member in accordance with the operation of the first light shielding member.
  • the first light shielding member is formed with an edge in accordance with the intermediate imaging region.
  • the exposure apparatus according to (1) which is characterized.
  • the first and second driving units drive the first and second light shielding members so that an exposure amount in an exposure region of the substrate is constant.
  • the exposure region of the substrate is shielded by moving the first light shielding member across the light of the irradiation unit force while irradiating the exposure region with light from the irradiation unit. Having a cross section,
  • the first and second drive units drive the first and second light shielding members so that an exposure amount in the exposure region is equal to an exposure amount in the transverse portion. ) Exposure apparatus.
  • the first drive unit traverses the light from the irradiation unit at least once while irradiating the exposure region from the irradiation unit. Since the first light shielding member is driven so as to move in the direction opposite to the predetermined direction, only a single first light shielding member can be used for exposure light regardless of the width and number of non-exposed areas. The light can be shielded appropriately so that it does not reach. In addition, since the structure is compact and lightweight, the exposure apparatus as a whole can be simplified. Further, since the second driving unit drives the second light shielding member in accordance with the operation of the first light shielding member, for example, the first light shielding member crosses the light from the irradiation unit. When moving in the direction opposite to the predetermined direction, it is possible to suppress variations in the exposure amount by disposing a part of the light from the irradiation unit.
  • the first light shielding member has one strip-shaped light shielding portion, and the second light shielding member has two strip-shaped light shielding portions.
  • the second light shielding member may have a U shape or a mouth shape.
  • the first light shielding member can perform appropriate light shielding regardless of the width of the non-exposed region. Also, cross the light from the irradiation part before If the width is reduced when moving in the direction opposite to the predetermined direction, a decrease in the exposure amount in the exposure region can also be suppressed.
  • the first light shielding member has an edge formed in accordance with the intermediate image formation region because blurring at the boundary can be suppressed.
  • the predetermined light crosses the light of the irradiation unit force. It is possible to suppress a decrease in exposure when moving in the direction opposite to the direction.
  • FIG. 1 is a top view of an exposure apparatus that works on the first embodiment.
  • FIG. 2 is a side view showing a state during exposure of the exposure apparatus that works according to the present embodiment.
  • FIG. 3 is a perspective view showing a blind, an aperture member, and a substrate.
  • FIG. 4 is a view of the blind 20, the aperture member 30, and the substrate W in the Z-axis direction.
  • FIG. 5 is a flowchart showing an exposure operation.
  • FIG. 6 is a time chart of the movement of the blind 20.
  • FIG. 7 is a view of the substrate W as viewed in the Z-axis direction.
  • FIG. 8 is a time chart of the movement of the blind 20 which is helpful in the modification.
  • Fig. 9 is a time chart of the movement of the blind 20 which is helpful in the modification.
  • FIG. 10 is a time chart of the movement of the blind 20 which is helpful in the modification.
  • FIG. 11 is a time chart of the movement of the blind 20 which is helpful in the modification.
  • FIG. 12 is a time chart of the movement of the blind 20 which is helpful in the modification.
  • FIG. 13 is a view of the blind 20, which is used in another modification, as viewed in the Y-axis direction.
  • FIG. 14 is a view of the blind 20 acting in another modification as seen in the Y-axis direction.
  • FIG. 1 is a top view of an exposure apparatus that works according to the present embodiment
  • FIG. 2 is a side view showing a state during exposure of the exposure apparatus that works according to the present embodiment.
  • the horizontal plane is defined by the X-axis direction and the Y-axis direction
  • the Z-axis direction defines the vertical direction.
  • the large thin plate-like substrate W is gripped by the substrate chuck (substrate driving unit) 2 and can move from the left to the right along with the substrate chuck 2 along the rail 2a.
  • holding device that holds and holds mask M 10 force Mask transfer line (both mask transfer path! ⁇ ⁇ ) 7 on left side (upstream side) and 6 on right side (downstream side) 13 in total).
  • the masks M that are smaller than the substrate W held by the holding device 10 are alternately arranged in a staggered manner with the mask transfer line L in between.
  • the seven holding devices 10 on the left side and the three holding devices 10 on the right side are in the exposure position, and the three holding devices 10 on the right side are the mask delivery.
  • MSI and MS2 are mask stockers
  • RBT is a transfer robot
  • AM is a transfer arm.
  • Each holding device 10 is in the X-axis direction on the base 1 in the left-right direction in FIG. 2 (the direction perpendicular to the mask transport line L in FIG. Arm 11 arranged to be movable with respect to a frame (not shown) and a holding part that is arranged at the tip of arm 11 and holds mask M by suction on the bottom surface 12 and the Z-axis moving device 13 that drives the holding unit 12 in the Z-axis direction (vertical direction in FIG.
  • the holding part 12 has a rectangular opening (not shown).
  • a discharge suction unit (not shown) is attached to the base 1 so as to face the lower surface of the substrate W.
  • the substrate W is moved from the left to the right along with the substrate chuck 2 along the rail 2a from a drive unit (not shown). At this time, The substrate W is transported in the X-axis direction in a state where the upper surface force of the discharge unit (not shown) is floated, and the lower surface side of the substrate w is prevented from being damaged.
  • the exposure light EL is projected from the light source LS in the upper exposure unit (irradiation unit) OPU while the substrate W is moved to a predetermined position
  • the generated exposure light EL is held by the holding device 10.
  • the pattern passes through the mask M, and the pattern is exposed and transferred to the substrate W.
  • the displacement of the pattern due to the movement error of the substrate W is corrected by finely adjusting the position of the mask M by the Z-axis moving device 13, the ⁇ -axis moving device 14, and the Y-axis moving device 15 of the holding device 10. can do.
  • pattern exposure can be performed on the entire substrate W by continuous exposure.
  • the masks M held on both sides of the mask transfer line L are arranged in a staggered manner, even if the masks M on one side of the mask transfer line L are arranged apart from each other, A pattern can be formed on the substrate W without a gap.
  • the blind 20 and the aperture member 30 are arranged between the fixed exposure unit OPU and the substrate W.
  • FIG. 3 is a perspective view showing a blind, an aperture member, and a substrate, and a force mask and the like are omitted.
  • the substrate is depicted as having only one line of exposure area, but there are actually multiple lines.
  • a blind member 20 as a first light shielding member has two plate members (light shielding portions) 21 and 22 extending perpendicular to the X-axis direction (that is, in the Y-axis direction).
  • the plate members 21 and 22 can be moved relative to each other in the X-axis direction by a drive mechanism (not shown) provided on one of them, and have a single straight belt shape in an overlapped state. Is connected to the linear motor LM1.
  • the linear motor LM1 which is the first drive unit, is movable in the X-axis direction along the guide rail GS1 by a driver (not shown). By moving the plates 21, 22 relative to each other in the X-axis direction, the width of the light-shielding part can be changed arbitrarily according to the non-exposed area.
  • a substantially square aperture member 30 as a second light shielding member connects a pair of vertical members 31, 32 extending in the X-axis direction and both ends of the vertical members 31, 32, respectively. Extends in the Y-axis direction It consists of two strip-shaped horizontal members (light-shielding portions) 33 and 34 and a connecting member 35 formed by connecting the center of the vertical member 31 to the linear motor LM2.
  • the linear motor LM2 which is the second drive unit, is movable in the X-axis direction along the guide rail GS2 by a driver (not shown).
  • the blind member 20 and the aperture member 30 are movable to a position where the exposure light EL can be shielded.
  • FIG. 4 is a view of the blind member 20, the aperture member 30, and the substrate W in the Z-axis direction, and schematically shows the operation during exposure.
  • Fig. 5 is a flowchart showing the exposure operation. Note that when using an optical system with intermediate imaging, the movement of the blind member 20 and aperture member 30 and the movement direction of the non-exposed area (shadow) that is shielded may be reversed. For the sake of simplicity, the movement of the shadow will be described as the operation of the blind member 20 and the aperture member 30. In addition, when an optical system having intermediate imaging is used, the movement amount of the blind member 20 and the aperture member 30 and the movement of the non-exposed area (shadow) to be shielded from light! Here, for the sake of easy understanding, the amount of movement of the shadow will be described as the amount of movement of the blind member 20 and the aperture member 30.
  • FIG. 4A shows the relationship between the shape and relative position of the blind member 20, the aperture member 30, and the substrate W with respect to the exposure light EL.
  • the exposed areas (ER1, ER2, ER3) of the substrate W are indicated by hatching
  • the non-exposed areas (NR1, NR2, NR3, NR4) are indicated by white.
  • the blind member 20 and the aperture member 30 can move in both directions in the X-axis direction by driving the linear motors LM1, LM2 (Fig. 3) in synchronization with the movement of the substrate W. It becomes.
  • the first non-exposure area NR1 is Approach the irradiation area of the exposure light EL. Therefore, as shown in FIG. 4B, the aperture member 30 is moved in the X-axis direction (leftward in the figure), and the exposure light EL is shielded by the lateral member 33 (step S101 in FIG. 5). By exposing the substrate W to the lower side of the aperture member 30 in such a light-shielded state, exposure of the non-exposure region NR1 can be avoided.
  • the exposure area ER1 becomes the irradiation area of the exposure light EL. Approaching the area.
  • the aperture member 30 is kept stationary relative to the substrate W, and the exposure light EL is kept blocked by the horizontal member 33, the exposure of the exposure region ER1 cannot be performed. Therefore, as shown in FIGS. 4C and 4D, the transverse member 33 of the aperture member 30 is moved to the right in the drawing in synchronization with the movement of the non-exposure region NR1, and the exposure light EL is exposed.
  • Area ERI is irradiated (steps S102 and S103 in FIG. 5). The aperture member 30 is stopped when the transverse member 33 passes through the irradiation area of the exposure light EL.
  • the exposure of the exposure area ER1 approaches the end, and the non-exposure area NR2 becomes the irradiation area of the exposure light EL. approach.
  • the transverse member 33 of the aperture member 30 is positioned on the opposite side of the irradiation region of the exposure light EL, the non-exposure region NR2 cannot be shielded by using this. Therefore, as shown in FIG. 4 (f), exposure is performed by the blind member 20 that is kept on the upstream side of the irradiation region of the exposure light EL (including the state of moving in synchronization with the substrate W, the same applies hereinafter).
  • the light EL is blocked out (Step S105 in Fig. 5). Exposure of the non-exposure area NR2 can be avoided by allowing the substrate W to enter under the blind member 20 while being blocked by the blind member 20.
  • the exposure region ER2 approaches the irradiation region of the exposure light EL.
  • the blind member 20 By moving the blind member 20 corresponding to the width of the non-exposure area NR2 in the same direction at the same speed as the substrate W, exposure is continued in the non-exposure area NR2 as shown in FIG. Area ER2 is exposed (step S106 in FIG. 5).
  • the blind member 20 is moved from the downstream side to the upstream side of the irradiation area of the exposure light EL (from the right side to the left side across the irradiation area). Move.
  • the blind member 20 while exposing the exposure region ER2, the blind member 20 passes downstream across the irradiation region of the exposure light EL. Move from side to upstream (step S107 in Fig. 5). At this time, the influence on the exposure can be minimized by narrowing the width of the blind member 20 by superimposing the plate materials 21 and 22. wear.
  • the exposure in the exposure area ER2 approaches the end, and the non-exposure area NR3 becomes the irradiation area of the exposure light EL. approach.
  • the blind member 20 stands by on the upstream side of the irradiation area of the exposure light EL, and therefore, as shown in FIG. Step S105 in Fig. 5).
  • the exposure area ER3 approaches the irradiation area of the exposure light EL.
  • the blind member 20 corresponding to the width of the non-exposure region NR3 is moved in the same direction at the same speed as the substrate W, so that the exposure region ER3 is exposed following the non-exposure region NR3 ( Step S106 in FIG.
  • the blind member 20 is moved across the irradiation area of the exposure light EL to the downstream force upstream side (FIG. 5). Step S1 07). At this time, the influence on the exposure can be minimized by narrowing the width of the blind member 20 by overlapping the plate materials 21 and 22.
  • step S108 in FIG. 5 If the exposure area force is greater than or equal to this, the same operation is repeated, and after the exposure of all the exposure areas is completed (step S108 in FIG. 5), as shown in FIG. 30 can be moved in the X-axis direction, and the light EL for exposure can be blocked by the transverse member 34, thereby avoiding exposure of the non-exposure region NR4 (step S110 in FIG. 5).
  • the non-exposure area NR4 may be shielded by moving the blind member 20 upstream.
  • the exposure light EL is moved across the blind member 20 to the upstream side, regardless of the number of exposure areas. Using a single blind member 20, it is possible to avoid exposure in non-exposed areas.
  • the exposure light EL is not irradiated on the entire exposure area ER1, but the unexposed remainder (upper and lower parts (upwardly hatched part in FIG. 4 (m))) is downstream ( Alternatively, the light is exposed to the exposure light EL on the upstream side (see Fig. 1).
  • the average exposure amount is larger than in the exposure area (ER1) when the blind member 20 does not cross during exposure. Decreases. Therefore, in the present embodiment, the unbalance of the exposure amount in the exposure area is suppressed by causing the blind member 20 and the aperture member 30 to protrude from the irradiation area in accordance with the operation of the blind member 20. .
  • the embodiment to be worked on will be described.
  • FIG. 6 is a time chart showing the positions of the blind member 20 and the aperture member 30 on the horizontal axis and the time on the vertical axis. The area shielded by the blind member 20 and the aperture member 30 are shown in FIG. These are shown separately from the regions shielded by the horizontal members 33 and 34.
  • FIG. 7 is a view of the substrate W viewed in the Z-axis direction.
  • the non-exposure area is shielded by the aperture member 30 and is ready for exposure, but the blind member 20 protrudes by a width ⁇ upstream of the irradiation area of the exposure light EL.
  • the exposure time time during which the exposure light EL is exposed
  • the transverse member 33 of the aperture member 30 is moved in the X-axis direction and overlapped with the blind member 20.
  • the blind member 20 moves to the upstream side for the purpose of running, so that the lateral member 33 is disposed so as to protrude by a width ⁇ on the upstream side of the irradiation area of the exposure light EL. State. Therefore, the exposure time is also ET at point B (FIG. 7) on the subsequent side of the exposure area ER1.
  • the blind member 20 moves to the downstream side while accelerating from the upstream side. Therefore, at time t5, the substrate moves in synchronization with the substrate W at a constant speed. As a result, the non-exposed area NR 1 (point C in FIG. 7) is shielded from light.
  • the width of the blind member 20 at this time is D1. During this time, the transverse member 33 of the aperture member 30 is retracted upstream.
  • the lateral member 34 of the aperture member 30 is disposed so as to protrude by a width ⁇ on the downstream side of the irradiation region of the exposure light EL.
  • the reason why the aperture member 30 protrudes on the downstream side is that deceleration after the movement of the blind member 20 is performed in the non-exposure area.
  • the exposure time is also ET at point D (Fig. 7) on the leading side of the exposure region ER2 where the blind member 20 does not pass.
  • the blind member 20 overstrokes and changes its direction to return to the upstream side, and starts acceleration. Therefore, at time t9, at a constant speed Moves in the opposite direction to the substrate.
  • the width of the blind member 20 at this time is D2 ( ⁇ D1).
  • the point E (crossing portion) in the center of the exposure region ER2 is shielded from light by the blind member 20 that runs backward, so that the exposure amount decreases for the time it passes.
  • the transverse member 34 of the aperture member 30 is retracted to the downstream side of the irradiation region of the exposure light EL, so that at the center point E (FIG. 7), the exposure light EL
  • the exposure amount in all exposure areas is constant.
  • the transverse member 33 of the aperture member 30 is disposed so as to protrude by a width ⁇ on the upstream side of the irradiation area of the exposure light EL, and is located on the downstream side of the exposure area ER2.
  • the exposure time is ET. Thereafter, the same operation is repeated.
  • Figs. 8 to 12 are charts similar to Fig. 6 that are applied to another embodiment. Force symbols a to e correspond to the dimensions shown in Fig. 4 (a). Further, in the examples of FIGS. 8 to 11, the blind member 20 is stationary relative to the substrate W before passing through the irradiation area of the exposure light EL, and the blind member 20 instead of the aperture 30 is placed in the irradiation area. It sticks out and is shielded from light.
  • the front and rear protrusion amounts ⁇ can be obtained by the following equation.
  • Vb Blind member return speed (mmZs)
  • Lb Blind member return width (mm) [0042]
  • the width in the X-axis direction of the irradiation region of the exposure light EL is set to 50 mm
  • the width of the blind member 20 is constant at 20 mm
  • the blind member 20 and the substrate W are connected to lOOmmZs.
  • the blind member 20 is moved in the opposite direction by lOOmmZs, and the amount of protrusion ⁇ of the blind member 20 is 10 mm.
  • the exposure amount is reduced by 20% compared to the case where the blind member 20 does not cross the exposure region.
  • the width in the X-axis direction of the irradiation area of the exposure light EL is set to 50 mm
  • the force to set the width of the blind member 20 at the time of light shielding to 20 mm, and the width at the time of return to 10 mm, 20 and the substrate W are moved in the X-axis direction by lOOmmZs, and then the blind member 20 is moved in the opposite direction by lOOmmZs.
  • the amount of protrusion ⁇ of the blind member 20 is 5 mm.
  • the exposure amount is reduced by 10% compared to the case where the blind member 20 does not cross the exposure region. That is, when the width of the blind member 20 is narrowed at the time of return, the exposure amount can be suppressed from decreasing.
  • the width in the X-axis direction of the irradiation area of the exposure light EL is set to 50 mm
  • the force of setting the width of the blind member 20 at the time of light shielding to 20 mm, and the width at the time of returning to 10 mm, and the blind member 20 and the substrate W are moved in the X-axis direction by lOOmmZs, and then the blind member 20 is moved in the opposite direction by 200 mmZs.
  • the protruding amount ⁇ of the blind member 20 is 3.3 mm.
  • the amount of exposure light is reduced by 6.7% compared to the case where the blind member 20 does not cross the exposure area. That is, when the speed at which the blind member 20 is returned is increased, a decrease in the amount of exposure can be suppressed.
  • the width in the X-axis direction of the irradiation area of the exposure light EL is set to 50 mm
  • the force to set the width of the blind member 20 at the time of light shielding to 20 mm and the width at the time of return to 10 mm
  • the force to increase the speed of the blind member 20 to 200mmZs and the acceleration at that time is 0.2G.
  • the protruding amount ⁇ of the blind member 20 is 3.3 mm.
  • the minimum exposure amount is 98.9% with respect to the maximum exposure amount, and the influence of acceleration is limited. If more precise exposure is desired, the example of FIG. 12 described below is preferable.
  • the blind member 20 is overstroked with respect to the example of FIG. Instead, the aperture member 30 protrudes into the irradiation area and is shielded from light.
  • the amount of protrusion is 3.3 mm.
  • the force apparent from Fig. 12 If the acceleration / deceleration of the blind member 20 is performed outside the irradiation area of the exposure light EL and moves at a constant speed within the irradiation area, the amount of exposure does not decrease.
  • FIG. 13 is a view of the blind 20, which works as a modification, viewed in the Y-axis direction.
  • a blade 20 shown in FIG. 13 has four blade members 20a to 20d stacked.
  • the light shielding range SR can be set to an arbitrary length (in this example, from the minimum). (Up to about 4 times) can be adjusted.
  • the edge EG is formed by using the side edges of the blade members 20a and 20b that determine both ends in the X-axis direction as tapered surfaces, and the striking edge EG is made to coincide with the intermediate imaging position FP of the exposure apparatus in the Z-axis direction. Thus, exposure with high resolution can be performed.
  • FIG. 14 is a view of the blind 20, which is used in another modification, as viewed in the Y-axis direction.
  • the blind 20 shown in FIG. 14 has a shape obtained by bending one plate material.
  • the light shielding range SR can be adjusted to an arbitrary length by changing the bending angle ⁇ .
  • the blind 20 can perform exposure with high resolution by matching the edge EG that determines both ends in the X-axis direction with the intermediate imaging position FP of the exposure apparatus in the Z-axis direction.
  • the present invention has been described above with reference to the embodiment. However, the present invention should not be construed as being limited to the above embodiment, and can be modified or improved as appropriate.
  • the exposure unevenness can be made inconspicuous by changing the timing of returning the blinds.
  • the width of the blind member may be fixed instead of being changed, and the blind member may be replaced with a corresponding width depending on the non-exposure region of the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Provided is an exposure apparatus by which light is suitably blocked for a non-exposure region, at the time of performing pattern exposure by relatively moving a substrate and a mask. While an exposure region is being exposed, a blind member (20) is shifted to the upstream by having the blind member pass over light (EL) used for exposure. Thus, irrespective of the number of exposure regions, exposure of the non-exposure region can be eliminated by using the one blind member (20).

Description

明 細 書  Specification
露光装置  Exposure equipment
技術分野  Technical field
[0001] 本発明は、露光装置に関し、例えば液晶ディスプレイやプラズマディスプレイ等の 大型のフラットパネルディスプレイの基板上にマスクのマスクパターンを露光転写する のに好適な露光装置に関する。  The present invention relates to an exposure apparatus, and more particularly to an exposure apparatus suitable for exposing and transferring a mask pattern of a mask onto a substrate of a large flat panel display such as a liquid crystal display or a plasma display.
背景技術  Background art
[0002] 大型の薄形テレビ等に用いられる液晶ディスプレイやプラズマディスプレイ等の大 型のフラットパネルディスプレイは、基板上にマスクのパターンを分割逐次露光方式 で近接露光転写することで製造される。従来のこの種の分割逐次露光装置としては、 例えば、被露光材としての基板より小さいマスクを用い、該マスクをマスクステージで 保持すると共に基板をワークステージで保持して両者を近接して対向配置し、この状 態でワークステージをマスクに対してステップ移動させて各ステップ毎にマスク側から 基板にパターン露光用の光を照射することにより、マスクに描かれた複数のマスクパ ターンを基板上に露光転写して一枚の基板に複数のディスプレイ等を作成するよう にしたものが知られている。特に、特許文献 1の技術では、基板に対して、それより小 型のマスクと光源とを同期して移動させることで、大型の基板にマスクのパターンを露 光できるようになつている。  [0002] Large flat panel displays such as liquid crystal displays and plasma displays used in large thin televisions and the like are manufactured by transferring a mask pattern onto a substrate by proximity exposure transfer using a divided sequential exposure method. As this type of conventional sequential sequential exposure apparatus, for example, a mask smaller than the substrate as the material to be exposed is used, the mask is held on the mask stage and the substrate is held on the work stage, and both are placed close to each other. In this state, the work stage is moved stepwise with respect to the mask, and the substrate is irradiated with light for pattern exposure from the mask side at each step, so that a plurality of mask patterns drawn on the mask are placed on the substrate. It is known that a plurality of displays are formed on a single substrate by exposure and transfer. In particular, in the technique of Patent Document 1, a mask pattern can be exposed to a large substrate by moving a smaller mask and a light source synchronously with respect to the substrate.
特許文献 1:特開平 11― 237744号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-237744
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、大型のガラス基板カゝら複数のパネルを切り出す場合、パネルに対応する ガラス基板上の領域には、露光パターンを露光転写するが、隣接するパネル同士の 間に対応する領域は、露光用の光を照射してはならない非露光領域である。そこで、 光源とガラス基板との間に遮光部材を設けて、非露光領域を覆うようにすることで、非 露光領域に露光用の光が到達しないようにすることが考えられる。ところが、 1枚のガ ラス基板カゝら切り出すパネルの種類や数が異なる場合、それに応じて多種多様な形 状の遮光部材を設けなくてはならず、コストの増大やスペースが嵩む等の問題がある By the way, when a plurality of panels such as a large glass substrate are cut out, an exposure pattern is exposed and transferred to an area on the glass substrate corresponding to the panel. This is a non-exposure area that should not be irradiated with exposure light. Therefore, it is conceivable that a light shielding member is provided between the light source and the glass substrate so as to cover the non-exposed area so that the exposure light does not reach the non-exposed area. However, if the types and number of panels to be cut out from a single glass substrate cover are different, there are a wide variety of shapes. A light-shielding member must be provided, and there are problems such as increased cost and increased space
[0004] そこで本発明は、カゝかる従来技術の課題に鑑み、基板とマスクとを相対移動させる ことでパターン露光を行う際に、遮光部材を用いて非露光領域を適切に遮光できる 露光装置を提供することを目的とする。 Therefore, in view of the problems of the related art, the present invention can appropriately shield the non-exposure region using a light shielding member when performing pattern exposure by moving the substrate and the mask relative to each other. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0005] 上述の目的は、以下の構成により達成される。 [0005] The above object is achieved by the following configurations.
(1) 露光用の光を照射する照射部と、  (1) an irradiation unit that emits light for exposure;
露光領域と非露光領域とを有する基板を保持して、該基板を前記照射部から出射 された露光用の光を横切って所定の方向に移動させる基板駆動部と、  A substrate driving unit that holds a substrate having an exposure region and a non-exposure region, and moves the substrate in a predetermined direction across the exposure light emitted from the irradiation unit;
前記照射部と前記基板との間に配置され、前記所定方向に対して交差する方向に 延在し、光を遮光する第 1の遮光部材と、  A first light shielding member that is disposed between the irradiation unit and the substrate, extends in a direction intersecting the predetermined direction, and shields light;
前記第 1の遮光部材を、前記照射部から出射された露光用の光を遮る位置に移動 させる第 1の駆動部と、  A first drive unit that moves the first light shielding member to a position that blocks the exposure light emitted from the irradiation unit;
前記照射部と前記基板との間に配置され、前記所定方向に対して交差する方向に 延在し、光を遮光する第 2の遮光部材と、  A second light shielding member that is disposed between the irradiation unit and the substrate, extends in a direction intersecting the predetermined direction, and shields light;
前記第 2の遮光部材を保持して、前記第 1の遮光部材に対して独立して前記照射 部から出射された露光用の光を遮る位置に移動させる第 2の駆動部と、を有し、 前記第 1の駆動部は、前記照射部力も前記露光領域に光を照射している間に、少 なくとも 1度、前記照射部からの光を横切って前記所定の方向とは逆方向に移動する ように前記第 1の遮光部材を駆動し、  A second drive unit that holds the second light shielding member and moves the exposure light emitted from the irradiation unit to a position that blocks the first light shielding member independently of the first light shielding member. The first drive unit traverses the light from the irradiation unit in a direction opposite to the predetermined direction at least once while the irradiation unit force also irradiates the exposure area with light. Driving the first light shielding member to move,
前記第 2の駆動部は、前記第 1の遮光部材の動作に応じて前記第 2の遮光部材を 駆動することを特徴とする露光装置。  The exposure apparatus, wherein the second driving unit drives the second light shielding member in accordance with the operation of the first light shielding member.
(2) 前記第 1の遮光部材は、 1本の帯状の遮光部を有し、前記第 2の遮光部材は、 2本の帯状の遮光部を有することを特徴とする(1)に記載の露光装置。  (2) The first light-shielding member has one strip-shaped light-shielding portion, and the second light-shielding member has two strip-shaped light-shielding portions. Exposure device.
(3) 前記第 1の遮光部材は、前記所定方向における幅を可変とすることを特徴とす る(1)に記載の露光装置。  (3) The exposure apparatus according to (1), wherein the first light shielding member has a variable width in the predetermined direction.
(4) 前記第 1の遮光部材は、中間結像領域に合わせてエッジを形成していることを 特徴とする(1)に記載の露光装置。 (4) The first light shielding member is formed with an edge in accordance with the intermediate imaging region. The exposure apparatus according to (1), which is characterized.
(5) 前記第 1の遮光部材の速度又は加速度に応じて、前記照射部から前記露光領 域に向力う光の一部が遮光されることを特徴とする(1)に記載の露光装置。  (5) The exposure apparatus according to (1), wherein a part of the light directed from the irradiation unit to the exposure region is shielded according to the speed or acceleration of the first light shielding member. .
(6) 前記第 1及び第 2の駆動部は、前記基板の露光領域における露光量が一定と なるように、前記第 1及び第 2の遮光部材を駆動することを特徴とする(1)に記載の露 光装置。  (6) According to (1), the first and second driving units drive the first and second light shielding members so that an exposure amount in an exposure region of the substrate is constant. The described exposure apparatus.
(7) 前記基板の露光領域は、前記照射部から前記露光領域に光を照射している間 に、前記第 1の遮光部材が前記照射部力 の光を横切って移動することで遮光され る横断部分を有し、  (7) The exposure region of the substrate is shielded by moving the first light shielding member across the light of the irradiation unit force while irradiating the exposure region with light from the irradiation unit. Having a cross section,
前記第 1及び第 2の駆動部は、前記露光領域における露光量が該横断部分におけ る露光量と等しくなるように前記第 1及び第 2の遮光部材を駆動することを特徴とする (6)に記載の露光装置。  The first and second drive units drive the first and second light shielding members so that an exposure amount in the exposure region is equal to an exposure amount in the transverse portion. ) Exposure apparatus.
発明の効果  The invention's effect
[0006] 本発明の露光装置によれば、前記第 1の駆動部は、前記照射部から前記露光領域 に光を照射している間に、少なくとも 1度、前記照射部からの光を横切って前記所定 の方向とは逆方向に移動するように前記第 1の遮光部材を駆動するので、単一の第 1の遮光部材のみで、非露光領域の幅や数に関わらず、露光用の光が到達しないよ うに適切に遮光できる。又、コンパクトで軽量な構成であるため、露光装置全体の簡 素化'コンパクトィ匕を図れる。更に、前記第 2の駆動部は、前記第 1の遮光部材の動 作に応じて前記第 2の遮光部材を駆動するので、例えば前記第 1の遮光部材が前記 照射部からの光を横切って前記所定の方向とは逆方向に移動する際に、前記照射 部からの光の一部を遮るように配置することで露光量のバラツキを抑制することがで きる。  [0006] According to the exposure apparatus of the present invention, the first drive unit traverses the light from the irradiation unit at least once while irradiating the exposure region from the irradiation unit. Since the first light shielding member is driven so as to move in the direction opposite to the predetermined direction, only a single first light shielding member can be used for exposure light regardless of the width and number of non-exposed areas. The light can be shielded appropriately so that it does not reach. In addition, since the structure is compact and lightweight, the exposure apparatus as a whole can be simplified. Further, since the second driving unit drives the second light shielding member in accordance with the operation of the first light shielding member, for example, the first light shielding member crosses the light from the irradiation unit. When moving in the direction opposite to the predetermined direction, it is possible to suppress variations in the exposure amount by disposing a part of the light from the irradiation unit.
[0007] 前記第 1の遮光部材は、 1本の帯状の遮光部を有し、前記第 2の遮光部材は、 2本 の帯状の遮光部を有すると好ましい。前記第 2の遮光部材は、コ字状もしくは口字状 としてちよい。  [0007] It is preferable that the first light shielding member has one strip-shaped light shielding portion, and the second light shielding member has two strip-shaped light shielding portions. The second light shielding member may have a U shape or a mouth shape.
[0008] 前記第 1の遮光部材は、前記所定方向における幅を可変とすると、非露光領域の 幅に関わらず適切な遮光を行うことができる。又、前記照射部からの光を横切って前 記所定の方向とは逆方向に移動する際に幅を小さくすれば、露光領域における露光 量の低下も抑制できる。 [0008] If the width in the predetermined direction is variable, the first light shielding member can perform appropriate light shielding regardless of the width of the non-exposed region. Also, cross the light from the irradiation part before If the width is reduced when moving in the direction opposite to the predetermined direction, a decrease in the exposure amount in the exposure region can also be suppressed.
[0009] 前記第 1の遮光部材は、中間結像領域に合わせてエッジを形成していると、境界の ボケなどを抑制できるので好まし 、。  [0009] It is preferable that the first light shielding member has an edge formed in accordance with the intermediate image formation region because blurring at the boundary can be suppressed.
[0010] 前記第 1の遮光部材の速度又は加速度に応じて、前記照射部から前記露光領域 に向力う光の一部が遮光されると、前記照射部力 の光を横切って前記所定の方向 とは逆方向に移動する際の露光量の減少を抑制できる。 [0010] When a part of the light directed from the irradiation unit to the exposure region is blocked according to the speed or acceleration of the first light shielding member, the predetermined light crosses the light of the irradiation unit force. It is possible to suppress a decrease in exposure when moving in the direction opposite to the direction.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は、第 1の実施の形態に力かる露光装置の上面図である。  [0011] FIG. 1 is a top view of an exposure apparatus that works on the first embodiment.
[図 2]図 2は、本実施の形態に力かる露光装置の露光時の状態を示す側面図である  [FIG. 2] FIG. 2 is a side view showing a state during exposure of the exposure apparatus that works according to the present embodiment.
[図 3]図 3は、ブラインドとアパーチャ部材と基板とを示す斜視図である。 FIG. 3 is a perspective view showing a blind, an aperture member, and a substrate.
[図 4]図 4は、 Z軸方向にブラインド 20とアパーチャ部材 30と基板 Wとを見た図である  [FIG. 4] FIG. 4 is a view of the blind 20, the aperture member 30, and the substrate W in the Z-axis direction.
[図 5]図 5は、露光動作を示すフローチャートである。 FIG. 5 is a flowchart showing an exposure operation.
[図 6]図 6は、ブラインド 20の移動のタイムチャート図である。  FIG. 6 is a time chart of the movement of the blind 20.
[図 7]図 7は、基板 Wを Z軸方向に見た図である。  FIG. 7 is a view of the substrate W as viewed in the Z-axis direction.
[図 8]図 8は、変形例に力かるブラインド 20の移動のタイムチャート図である。  [FIG. 8] FIG. 8 is a time chart of the movement of the blind 20 which is helpful in the modification.
[図 9]図 9は、変形例に力かるブラインド 20の移動のタイムチャート図である。  [Fig. 9] Fig. 9 is a time chart of the movement of the blind 20 which is helpful in the modification.
[図 10]図 10は、変形例に力かるブラインド 20の移動のタイムチャート図である。  [FIG. 10] FIG. 10 is a time chart of the movement of the blind 20 which is helpful in the modification.
[図 11]図 11は、変形例に力かるブラインド 20の移動のタイムチャート図である。  [FIG. 11] FIG. 11 is a time chart of the movement of the blind 20 which is helpful in the modification.
[図 12]図 12は、変形例に力かるブラインド 20の移動のタイムチャート図である。  [FIG. 12] FIG. 12 is a time chart of the movement of the blind 20 which is helpful in the modification.
[図 13]図 13は、別な変形例に力かるブラインド 20を Y軸方向に見た図である。  [FIG. 13] FIG. 13 is a view of the blind 20, which is used in another modification, as viewed in the Y-axis direction.
[図 14]図 14は、別な変形例に力かるブラインド 20を Y軸方向に見た図である。  [FIG. 14] FIG. 14 is a view of the blind 20 acting in another modification as seen in the Y-axis direction.
符号の説明  Explanation of symbols
[0012] 1ベース [0012] 1 base
2基板チャック  2 substrate chuck
2aレーノレ 10保持装置 2a Lenore 10 Holding device
11アーム  11 arms
12保持部  12 Holding part
13 Z軸移動装置 13 Z-axis moving device
14 Θ軸移動装置14 Θ-axis moving device
15 Y軸移動装置 20ブラインド 15 Y-axis moving device 20 Blind
20a〜20d羽根部材 21, 22板材  20a ~ 20d blade member 21, 22 plate material
30アパーチャ部材 30 aperture member
31、 32縦部材 31, 32 vertical members
33、 34横部材  33, 34 transverse member
35連結部材  35 connecting members
EGエッジ EG edge
EL露光用の光 Light for EL exposure
ER1露光領域 ER1 exposure area
ER2露光領域 ER2 exposure area
ER3露光領域 ER3 exposure area
FP中間結像位置 GS1ガイドレール GS2ガイドレール Lマスク搬送ライン LM1, LM2リニアモータ LS光源 FP intermediate imaging position GS1 guide rail GS2 guide rail L mask transfer line LM1, LM2 linear motor LS light source
Mマスク M mask
NR1非露光領域 NR2非露光領域 NR3非露光領域 NR4非露光領域 NR1 non-exposed area NR2 non-exposed area NR3 non-exposed area NR4 non-exposure area
OPU露光ユニット  OPU exposure unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、図面を参照して、本発明の好適な実施の形態について説明する。図 1は、本 実施の形態に力かる露光装置の上面図であり、図 2は、本実施の形態に力かる露光 装置の露光時の状態を示す側面図である。尚、以下の実施の形態で、 X軸方向と Y 軸方向とで水平面が規定され、 Z軸方向が垂直方向を規定するものとする。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a top view of an exposure apparatus that works according to the present embodiment, and FIG. 2 is a side view showing a state during exposure of the exposure apparatus that works according to the present embodiment. In the following embodiments, the horizontal plane is defined by the X-axis direction and the Y-axis direction, and the Z-axis direction defines the vertical direction.
[0014] 図 1において、ベース 1上で、大版薄板状の基板 Wは基板チャック (基板駆動部) 2 により把持され、レール 2aに沿って、基板チャック 2と共に左から右に移動可能となつ ている。ベース 1上には、マスク Mを吸着保持する保持装置 10力 マスク搬送ライン( マスク搬送路とも!ヽぅ) Lを挟んで左側 (上流側)に 7個、右側(下流側)に 6個 (計 13 個)配置されている。保持装置 10により保持された、基板 Wに比較すると小型のマス ク Mは、マスク搬送ライン Lを挟んで千鳥状に交互に配置される。なお、図 1において は、左側の 7個の保持装置 10と、右側の上から 3個の保持装置 10は、露光位置にあ り、右側の下から 3個の保持装置 10は、マスクの受け渡し位置にある。また、図 1中、 MSI, MS2は、マスクストッカであり、 RBTは、搬送ロボットであり、 AMは、搬送ァー ムを示す。  [0014] In FIG. 1, on the base 1, the large thin plate-like substrate W is gripped by the substrate chuck (substrate driving unit) 2 and can move from the left to the right along with the substrate chuck 2 along the rail 2a. ing. On base 1, holding device that holds and holds mask M 10 force Mask transfer line (both mask transfer path! ヽ ぅ) 7 on left side (upstream side) and 6 on right side (downstream side) 13 in total). The masks M that are smaller than the substrate W held by the holding device 10 are alternately arranged in a staggered manner with the mask transfer line L in between. In FIG. 1, the seven holding devices 10 on the left side and the three holding devices 10 on the right side are in the exposure position, and the three holding devices 10 on the right side are the mask delivery. In position. In FIG. 1, MSI and MS2 are mask stockers, RBT is a transfer robot, and AM is a transfer arm.
[0015] 各保持装置 10は、ベース 1上で X軸方向となる図 2の左右方向(図 1のマスク搬送ラ イン Lに対して直交する方向であり、基板 Wは X軸方向に沿って左力 右へと移動す るものとする)に不図示のフレームに対して移動可能に配置されたアーム 11と、ァー ム 11の先端に配置され、下面にマスク Mを吸着保持する保持部 12と、アーム 11に 対して保持部 12を Z軸方向(図 2で上下方向)に駆動する Z軸移動装置 13と、ベース 1の上面の法線回りに保持部 12を回転駆動する Θ軸移動装置 14と、アーム 11に対 して保持部 12を Y軸方向(図 2で紙面垂直方向)に駆動する Y軸移動装置 15とを有 する。保持部 12は、不図示の矩形開口を有している。ベース 1には、基板 Wの下面 に対向して吐出吸引ユニット(不図示)を取り付けている。  [0015] Each holding device 10 is in the X-axis direction on the base 1 in the left-right direction in FIG. 2 (the direction perpendicular to the mask transport line L in FIG. Arm 11 arranged to be movable with respect to a frame (not shown) and a holding part that is arranged at the tip of arm 11 and holds mask M by suction on the bottom surface 12 and the Z-axis moving device 13 that drives the holding unit 12 in the Z-axis direction (vertical direction in FIG. 2) with respect to the arm 11, and the Θ-axis that drives the holding unit 12 to rotate around the normal of the upper surface of the base 1 A moving device 14 and a Y-axis moving device 15 that drives the holding unit 12 in the Y-axis direction (the direction perpendicular to the paper surface in FIG. 2) with respect to the arm 11 are provided. The holding part 12 has a rectangular opening (not shown). A discharge suction unit (not shown) is attached to the base 1 so as to face the lower surface of the substrate W.
[0016] 本実施の形態の露光装置を用いて行う露光動作時には、まず不図示の駆動部より 、レール 2aに沿って、基板チャック 2と共に基板 Wを左から右に移動する。このとき、 基板 Wは吐出ユニット (不図示)の上面力 浮上した状態で X軸方向に搬送され、基 板 wの下面側に傷等が付くことを防止されている。 [0016] During an exposure operation performed using the exposure apparatus of the present embodiment, first, the substrate W is moved from the left to the right along with the substrate chuck 2 along the rail 2a from a drive unit (not shown). At this time, The substrate W is transported in the X-axis direction in a state where the upper surface force of the discharge unit (not shown) is floated, and the lower surface side of the substrate w is prevented from being damaged.
[0017] 基板 Wを所定位置に移動させながら、上方の露光ユニット(照射部) OPU内の光源 LSから露光用光 ELを投射すると、カゝかる露光用光 ELは、保持装置 10により保持さ れたマスク Mを通過し、そのパターンを基板 Wに露光転写する。このとき、基板 Wの 移動誤差によるパターンのズレは、保持装置 10の Z軸移動装置 13、 Θ軸移動装置 1 4,及び Y軸移動装置 15により、マスク Mの位置を微調整することで補正することが できる。同様にして、連続露光することで、基板 W全体にパターンの露光を行うことが できる。なお、本実施の形態において、マスク搬送ライン Lの両側で保持されたマスク Mが千鳥状に配置されているので、マスク搬送ライン Lの片側におけるマスク Mが隔 置して並べられていても、基板 W上に隙間なくパターンを形成することができる。  [0017] When the exposure light EL is projected from the light source LS in the upper exposure unit (irradiation unit) OPU while the substrate W is moved to a predetermined position, the generated exposure light EL is held by the holding device 10. The pattern passes through the mask M, and the pattern is exposed and transferred to the substrate W. At this time, the displacement of the pattern due to the movement error of the substrate W is corrected by finely adjusting the position of the mask M by the Z-axis moving device 13, the Θ-axis moving device 14, and the Y-axis moving device 15 of the holding device 10. can do. Similarly, pattern exposure can be performed on the entire substrate W by continuous exposure. In the present embodiment, since the masks M held on both sides of the mask transfer line L are arranged in a staggered manner, even if the masks M on one side of the mask transfer line L are arranged apart from each other, A pattern can be formed on the substrate W without a gap.
[0018] ところで、基板 Wから複数のパネルを切り出す場合、パネルに対応する基板 W上の 領域には、露光パターンを露光転写するが、隣接するパネル同士の間に対応する領 域は、露光用の光を照射してはならない非露光領域となる。そこで、本実施の形態に おいては、固定された露光ユニット OPUと基板 Wとの間に、ブラインド 20とァパーチ ャ部材 30とを配置して 、る。  [0018] By the way, when a plurality of panels are cut out from the substrate W, an exposure pattern is exposed and transferred to an area on the substrate W corresponding to the panel, but the area corresponding to the adjacent panels is exposed. This is a non-exposed area that should not be irradiated with light. Therefore, in the present embodiment, the blind 20 and the aperture member 30 are arranged between the fixed exposure unit OPU and the substrate W.
[0019] 図 3は、ブラインドとアパーチャ部材と基板とを示す斜視図である力 マスク等は省 略している。以下、理解しやすいように基板は一列の露光領域のみ有するものとして 描いているが、実際には複数列が存在する。図 3において、第 1の遮光部材であるブ ラインド部材 20は、 X軸方向に直交して (すなわち Y軸方向に)延在する 2枚の板材 ( 遮光部) 21, 22を有する。板材 21, 22は、いずれか一方に設けられた不図示の駆 動機構によって X軸方向に互いに相対移動可能であって、重ねられた状態で一本の 直線帯状を有し、それらの端部はリニアモータ LM1に連結されている。第 1の駆動部 であるリニアモータ LM1は、不図示のドライバにより、ガイドレール GS1に沿って X軸 方向に移動自在となっている。板材 21, 22を X軸方向に相対移動させることで、非 露光領域に合わせて遮光部の幅を任意に変更可能となっている。  FIG. 3 is a perspective view showing a blind, an aperture member, and a substrate, and a force mask and the like are omitted. In the following, for ease of understanding, the substrate is depicted as having only one line of exposure area, but there are actually multiple lines. In FIG. 3, a blind member 20 as a first light shielding member has two plate members (light shielding portions) 21 and 22 extending perpendicular to the X-axis direction (that is, in the Y-axis direction). The plate members 21 and 22 can be moved relative to each other in the X-axis direction by a drive mechanism (not shown) provided on one of them, and have a single straight belt shape in an overlapped state. Is connected to the linear motor LM1. The linear motor LM1, which is the first drive unit, is movable in the X-axis direction along the guide rail GS1 by a driver (not shown). By moving the plates 21, 22 relative to each other in the X-axis direction, the width of the light-shielding part can be changed arbitrarily according to the non-exposed area.
[0020] 一方、第 2の遮光部材である略口字状のアパーチャ部材 30は、 X軸方向に延在す る一対の縦部材 31, 32と、縦部材 31, 32の両端をそれぞれ連結し Y軸方向に延在 する 2本帯状の横部材 (遮光部) 33, 34と、縦部材 31の中央をリニアモータ LM2に 連結してなる連結部材 35とからなる。第 2の駆動部であるリニアモータ LM2は、不図 示のドライバにより、ガイドレール GS2に沿って X軸方向に移動自在となっている。ブ ラインド部材 20とアパーチャ部材 30とは、露光用の光 ELを遮光可能な位置に移動 自在となっている。 On the other hand, a substantially square aperture member 30 as a second light shielding member connects a pair of vertical members 31, 32 extending in the X-axis direction and both ends of the vertical members 31, 32, respectively. Extends in the Y-axis direction It consists of two strip-shaped horizontal members (light-shielding portions) 33 and 34 and a connecting member 35 formed by connecting the center of the vertical member 31 to the linear motor LM2. The linear motor LM2, which is the second drive unit, is movable in the X-axis direction along the guide rail GS2 by a driver (not shown). The blind member 20 and the aperture member 30 are movable to a position where the exposure light EL can be shielded.
[0021] 次に、露光時におけるブラインド部材 20とアパーチャ部材 30の動作について説明 する。図 4は、 Z軸方向にブラインド部材 20とアパーチャ部材 30と基板 Wとを見た図 であり、露光時の動作を概略的に示している。図 5は、露光動作を示すフローチヤ一 トである。尚、中間結像を有する光学系を用いた場合、ブラインド部材 20及びァパー チヤ部材 30の動作と、遮光される非露光領域 (影)の動く向きが逆になる場合がある 力 ここでは理解を容易とするために、影の動きをブラインド部材 20及びアパーチャ 部材 30の動作として説明する。又、中間結像を有する光学系を用いた場合、ブライ ンド部材 20及びアパーチャ部材 30の移動量と、遮光される非露光領域 (影)の動!、 た量とが異なる場合がある力 ここでは理解を容易とするために、影の動いた量をブ ラインド部材 20及びアパーチャ部材 30の移動量として説明する。  Next, operations of the blind member 20 and the aperture member 30 during exposure will be described. FIG. 4 is a view of the blind member 20, the aperture member 30, and the substrate W in the Z-axis direction, and schematically shows the operation during exposure. Fig. 5 is a flowchart showing the exposure operation. Note that when using an optical system with intermediate imaging, the movement of the blind member 20 and aperture member 30 and the movement direction of the non-exposed area (shadow) that is shielded may be reversed. For the sake of simplicity, the movement of the shadow will be described as the operation of the blind member 20 and the aperture member 30. In addition, when an optical system having intermediate imaging is used, the movement amount of the blind member 20 and the aperture member 30 and the movement of the non-exposed area (shadow) to be shielded from light! Here, for the sake of easy understanding, the amount of movement of the shadow will be described as the amount of movement of the blind member 20 and the aperture member 30.
[0022] 図 4 (a)は、露光用の光 ELに対する、ブラインド部材 20とアパーチャ部材 30と基板 Wの形状及び相対位置の関係を示している。ここで、基板 Wの露光領域 (ER1、 ER 2, ER3)をハッチングで示し、非露光領域(NR1, NR2, NR3、 NR4)を白抜きで示 す。尚、以下に詳細は示さないが、ブラインド部材 20とアパーチャ部材 30とは、基板 Wの移動に同期して、リニアモータ LM1, LM2 (図 3)を駆動することにより X軸方向 両方向に移動可能となって 、る。  FIG. 4A shows the relationship between the shape and relative position of the blind member 20, the aperture member 30, and the substrate W with respect to the exposure light EL. Here, the exposed areas (ER1, ER2, ER3) of the substrate W are indicated by hatching, and the non-exposed areas (NR1, NR2, NR3, NR4) are indicated by white. Although details are not shown below, the blind member 20 and the aperture member 30 can move in both directions in the X-axis direction by driving the linear motors LM1, LM2 (Fig. 3) in synchronization with the movement of the substrate W. It becomes.
[0023] ここで、基板 Wが露光用の光 ELの照射領域 (一点鎖線で図示)に向力つて X軸方 向(図で右方)に移動すると、まず最初の非露光領域 NR1が、露光用の光 ELの照射 領域に接近する。そこで、図 4 (b)に示すように、アパーチャ部材 30を X軸方向(図で 左方)に移動させ、横部材 33により露光用の光 ELを遮光する(図 5のステップ S101 )。かかる遮光状態で、基板 Wをアパーチャ部材 30の下方に侵入させることにより、 非露光領域 NR1の露光を回避できる。  [0023] Here, when the substrate W moves toward the X-axis direction (right side in the figure) by directing the exposure light EL irradiation area (shown by the alternate long and short dash line), the first non-exposure area NR1 is Approach the irradiation area of the exposure light EL. Therefore, as shown in FIG. 4B, the aperture member 30 is moved in the X-axis direction (leftward in the figure), and the exposure light EL is shielded by the lateral member 33 (step S101 in FIG. 5). By exposing the substrate W to the lower side of the aperture member 30 in such a light-shielded state, exposure of the non-exposure region NR1 can be avoided.
[0024] 更に基板 Wが同方向に移動することで、露光領域 ER1が露光用の光 ELの照射領 域に接近してくる。このとき、アパーチャ部材 30を基板 Wに対して相対的に静止させ て、横部材 33で露光用の光 ELを遮光し続けると、露光領域 ER1の露光を行えない 。そこで、図 4 (c)、(d)に示すように、アパーチャ部材 30の横部材 33を、非露光領域 NR1の移動に同期させて図で右方に移動させ、露光用の光 ELが露光領域 ERI 照射されるようにする(図 5のステップ S102、 S103)。アパーチャ部材 30は、横部材 33が露光用の光 ELの照射領域を抜けた時点で停止される。 [0024] Further, when the substrate W moves in the same direction, the exposure area ER1 becomes the irradiation area of the exposure light EL. Approaching the area. At this time, if the aperture member 30 is kept stationary relative to the substrate W, and the exposure light EL is kept blocked by the horizontal member 33, the exposure of the exposure region ER1 cannot be performed. Therefore, as shown in FIGS. 4C and 4D, the transverse member 33 of the aperture member 30 is moved to the right in the drawing in synchronization with the movement of the non-exposure region NR1, and the exposure light EL is exposed. Area ERI is irradiated (steps S102 and S103 in FIG. 5). The aperture member 30 is stopped when the transverse member 33 passes through the irradiation area of the exposure light EL.
[0025] 更に基板 Wが同方向に移動することで、図 4 (e)に示すように、露光領域 ER1の露 光が終了に近づき、非露光領域 NR2が露光用の光 ELの照射領域に接近する。この とき、アパーチャ部材 30の横部材 33は、露光用の光 ELの照射領域の反対側に位 置するので、これを用いて、非露光領域 NR2を遮光することはできない。そこで、図 4 (f)に示すように、露光用の光 ELの照射領域の上流側で待機させておいた (基板 W と同期して移動する状態を含む、以下同じ)ブラインド部材 20により露光用の光 ELを 遮光する(図 5のステップ S105)。ブラインド部材 20により遮光したまま、基板 Wをブ ラインド部材 20の下方に侵入させることにより、非露光領域 NR2の露光を回避できる [0025] Further, as the substrate W moves in the same direction, as shown in FIG. 4 (e), the exposure of the exposure area ER1 approaches the end, and the non-exposure area NR2 becomes the irradiation area of the exposure light EL. approach. At this time, since the transverse member 33 of the aperture member 30 is positioned on the opposite side of the irradiation region of the exposure light EL, the non-exposure region NR2 cannot be shielded by using this. Therefore, as shown in FIG. 4 (f), exposure is performed by the blind member 20 that is kept on the upstream side of the irradiation region of the exposure light EL (including the state of moving in synchronization with the substrate W, the same applies hereinafter). The light EL is blocked out (Step S105 in Fig. 5). Exposure of the non-exposure area NR2 can be avoided by allowing the substrate W to enter under the blind member 20 while being blocked by the blind member 20.
[0026] 更に基板 Wが同方向に移動することで、露光領域 ER2が露光用の光 ELの照射領 域に接近する。非露光領域 NR2の幅に対応させたブラインド部材 20を、基板 Wと同 じ速度で同方向に移動させることで、図 4 (g)に示すように、非露光領域 NR2に引き 続 、て露光領域 ER2の露光が行なわれる(図 5のステップ S 106)。 [0026] Further, when the substrate W moves in the same direction, the exposure region ER2 approaches the irradiation region of the exposure light EL. By moving the blind member 20 corresponding to the width of the non-exposure area NR2 in the same direction at the same speed as the substrate W, exposure is continued in the non-exposure area NR2 as shown in FIG. Area ER2 is exposed (step S106 in FIG. 5).
[0027] ところで、ブラインド部材 20が、露光用の光 ELの照射領域の下流側に位置したま までは、次の非露光領域 NR3を遮光する遮光部がないこととなる。そこで、本実施の 形態においては、露光領域 ER2を露光中に、ブラインド部材 20を露光用の光 ELの 照射領域の下流側から上流側に向かって (右側から左側に照射領域を横切って)移 動させる。  [0027] By the way, there is no light-shielding portion that shields the next non-exposure region NR3 until the blind member 20 is positioned downstream of the irradiation region of the exposure light EL. Therefore, in the present embodiment, while exposing the exposure area ER2, the blind member 20 is moved from the downstream side to the upstream side of the irradiation area of the exposure light EL (from the right side to the left side across the irradiation area). Move.
[0028] より具体的に説明すると、図 4 (h)及び図 4 (i)に示すように、露光領域 ER2を露光 中に、ブラインド部材 20を露光用の光 ELの照射領域を横切って下流側から上流側 へと移動させる(図 5のステップ S107)。このとき、板材 21, 22を重ね合わせるように して、ブラインド部材 20の幅を狭めることで、露光への影響を極力小さくすることがで きる。 More specifically, as shown in FIG. 4 (h) and FIG. 4 (i), while exposing the exposure region ER2, the blind member 20 passes downstream across the irradiation region of the exposure light EL. Move from side to upstream (step S107 in Fig. 5). At this time, the influence on the exposure can be minimized by narrowing the width of the blind member 20 by superimposing the plate materials 21 and 22. wear.
[0029] 更に基板 Wが同方向に移動することで、図 4 (j)に示すように、露光領域 ER2の露 光が終了に近づき、非露光領域 NR3が露光用の光 ELの照射領域に接近する。この 時点では、ブラインド部材 20が露光用の光 ELの照射領域の上流側で待機して 、る ので、図 4 (k)に示すように、これを用いて露光用の光 ELを遮光する(図 5のステップ S105)。ブラインド部材 20により遮光したまま、基板 Wをブラインド部材 20の下方に 侵入させることにより、非露光領域 NR3の露光を回避できる。  Further, as the substrate W moves in the same direction, as shown in FIG. 4 (j), the exposure in the exposure area ER2 approaches the end, and the non-exposure area NR3 becomes the irradiation area of the exposure light EL. approach. At this time, the blind member 20 stands by on the upstream side of the irradiation area of the exposure light EL, and therefore, as shown in FIG. Step S105 in Fig. 5). By exposing the substrate W to the lower side of the blind member 20 while being blocked by the blind member 20, exposure of the non-exposure region NR3 can be avoided.
[0030] 更に基板 Wが同方向に移動することで、露光領域 ER3が露光用の光 ELの照射領 域に接近する。上述と同様に、非露光領域 NR3の幅に対応させたブラインド部材 20 を、基板 Wと同じ速度で同方向に移動させることで、非露光領域 NR3に引き続いて 露光領域 ER3の露光が行なわれる(図 5のステップ S106)。  [0030] Further, when the substrate W moves in the same direction, the exposure area ER3 approaches the irradiation area of the exposure light EL. Similarly to the above, the blind member 20 corresponding to the width of the non-exposure region NR3 is moved in the same direction at the same speed as the substrate W, so that the exposure region ER3 is exposed following the non-exposure region NR3 ( Step S106 in FIG.
[0031] 更に、図 4 (1)に示すように、露光領域 ER3を露光中に、ブラインド部材 20を露光用 の光 ELの照射領域を横切って下流側力 上流側へと移動させる(図 5のステップ S1 07)。このとき、板材 21, 22を重ね合わせるようにして、ブラインド部材 20の幅を狭め ることで、露光への影響を極力小さくすることができる。  Further, as shown in FIG. 4 (1), during exposure of the exposure area ER3, the blind member 20 is moved across the irradiation area of the exposure light EL to the downstream force upstream side (FIG. 5). Step S1 07). At this time, the influence on the exposure can be minimized by narrowing the width of the blind member 20 by overlapping the plate materials 21 and 22.
[0032] 露光領域力 以上である場合には、同様な動作を繰り返し、全ての露光領域の露 光が終了した後(図 5のステップ S108)、図 4 (m)に示すように、アパーチャ部材 30 を X軸方向に移動させ、横部材 34により露光用の光 ELを遮光することができ、これ により非露光領域 NR4の露光を回避できる(図 5のステップ S110)。尚、非露光領域 NR4は、ブラインド部材 20を上流側に移動させて遮光しても良 、。  [0032] If the exposure area force is greater than or equal to this, the same operation is repeated, and after the exposure of all the exposure areas is completed (step S108 in FIG. 5), as shown in FIG. 30 can be moved in the X-axis direction, and the light EL for exposure can be blocked by the transverse member 34, thereby avoiding exposure of the non-exposure region NR4 (step S110 in FIG. 5). The non-exposure area NR4 may be shielded by moving the blind member 20 upstream.
[0033] 本実施の形態によれば、露光領域の露光中に、その露光用の光 ELに対してブライ ンド部材 20を横切って上流側へ移動させることにより、露光領域の数に関わらず、一 本のブラインド部材 20を用いて非露光領域の露光を回避できる。尚、図 4では、露光 用の光 ELが露光領域 ER1全体に照射されていないが、露光されなかった残り(上下 の部分(図 4 (m)の右上がりハッチング部))は、下流側 (もしくは上流側)の露光用の 光 ELで露光されることとなる(図 1参照)。  [0033] According to the present embodiment, during exposure of an exposure area, the exposure light EL is moved across the blind member 20 to the upstream side, regardless of the number of exposure areas. Using a single blind member 20, it is possible to avoid exposure in non-exposed areas. In FIG. 4, the exposure light EL is not irradiated on the entire exposure area ER1, but the unexposed remainder (upper and lower parts (upwardly hatched part in FIG. 4 (m))) is downstream ( Alternatively, the light is exposed to the exposure light EL on the upstream side (see Fig. 1).
[0034] ところで、露光中にブラインド部材 20が横切って移動する露光領域 (ER2等)にお V、ては、露光中にブラインド部材 20が横切らな 、露光領域 (ER1)よりも平均露光量 が低下する。そこで、本実施の形態では、ブラインド部材 20の動作に応じて、ブライ ンド部材 20やアパーチャ部材 30を照射領域に所定量はみ出させることで、露光領 域における露光量のアンバランスを抑えて 、る。力かる実施の態様にっ 、て説明す る。 [0034] By the way, in the exposure area (such as ER2) in which the blind member 20 moves across during exposure, the average exposure amount is larger than in the exposure area (ER1) when the blind member 20 does not cross during exposure. Decreases. Therefore, in the present embodiment, the unbalance of the exposure amount in the exposure area is suppressed by causing the blind member 20 and the aperture member 30 to protrude from the irradiation area in accordance with the operation of the blind member 20. . The embodiment to be worked on will be described.
[0035] 図 6は、ブラインド部材 20とアパーチャ部材 30の位置を横軸に、時間を縦軸にとつ て示すタイムチャート図であるが、ブラインド部材 20で遮光される領域と、アパーチャ 部材 30の横部材 33, 34により遮光される領域とを区別して示している。図 7は、基板 Wを Z軸方向に見た図である。  FIG. 6 is a time chart showing the positions of the blind member 20 and the aperture member 30 on the horizontal axis and the time on the vertical axis. The area shielded by the blind member 20 and the aperture member 30 are shown in FIG. These are shown separately from the regions shielded by the horizontal members 33 and 34. FIG. 7 is a view of the substrate W viewed in the Z-axis direction.
[0036] まず、図 6の時刻 tlでは、非露光領域をアパーチャ部材 30で遮光して露光準備に 入るが、ブラインド部材 20を露光用の光 ELの照射領域の上流側に幅 Δだけはみ出 して配置する。時刻 t2から露光領域 ER1の露光を開始すると、露光領域 ER1の先行 する側にある点 A (図 7)は、露光時間(露光用の光 ELに曝されている時間)が ETと なる。更に、時刻 t3において、アパーチャ部材 30の横部材 33を X軸方向に移動させ 、ブラインド部材 20に重ねる。  First, at time tl in FIG. 6, the non-exposure area is shielded by the aperture member 30 and is ready for exposure, but the blind member 20 protrudes by a width Δ upstream of the irradiation area of the exposure light EL. Arrange. When exposure of the exposure area ER1 is started from time t2, the exposure time (time during which the exposure light EL is exposed) is ET at the point A (FIG. 7) on the preceding side of the exposure area ER1. Further, at time t3, the transverse member 33 of the aperture member 30 is moved in the X-axis direction and overlapped with the blind member 20.
[0037] 時刻 t4で、ブラインド部材 20は助走のために、ー且上流側へ移動するため、横部 材 33が露光用の光 ELの照射領域の上流側に幅 Δだけはみ出して配置された状態 になる。従って、露光領域 ER1の後行する側にある点 B (図 7)においても、露光時間 は ETとなる。ブラインド部材 20は上流側から加速しながら下流側へと移動する。従つ て、時刻 t5では一定速度で基板 Wに同期して移動する。これにより、非露光領域 NR 1 (図 7の点 C)は遮光されることとなる。このときのブラインド部材 20の幅を D1とする。 この間にアパーチャ部材 30の横部材 33は上流側に退避する。  [0037] At time t4, the blind member 20 moves to the upstream side for the purpose of running, so that the lateral member 33 is disposed so as to protrude by a width Δ on the upstream side of the irradiation area of the exposure light EL. State. Therefore, the exposure time is also ET at point B (FIG. 7) on the subsequent side of the exposure area ER1. The blind member 20 moves to the downstream side while accelerating from the upstream side. Therefore, at time t5, the substrate moves in synchronization with the substrate W at a constant speed. As a result, the non-exposed area NR 1 (point C in FIG. 7) is shielded from light. The width of the blind member 20 at this time is D1. During this time, the transverse member 33 of the aperture member 30 is retracted upstream.
[0038] 時刻 t6で、露光領域 ER2の露光を開始する。時刻 t7で、アパーチャ部材 30の横 部材 34を、露光用の光 ELの照射領域の下流側に幅 Δだけはみ出して配置する。下 流側においてアパーチャ部材 30をはみ出させた理由は、ブラインド部材 20の移動 後の減速を非露光域で行うためである。露光領域 ER2の先行する側にあってブライ ンド部材 20が通過しない点 D (図 7)においても、露光時間は ETとなる。時刻 t8で非 露光領域 NR1の遮光が終了した後、ブラインド部材 20はオーバーストロークし、更に 上流側へ戻るために方向を変えて加速を開始する。従って、時刻 t9では一定速度で 基板と逆方向に同期して移動する。このときのブラインド部材 20の幅は D2 (≤D1)と する。 [0038] At time t6, exposure of exposure area ER2 is started. At time t7, the lateral member 34 of the aperture member 30 is disposed so as to protrude by a width Δ on the downstream side of the irradiation region of the exposure light EL. The reason why the aperture member 30 protrudes on the downstream side is that deceleration after the movement of the blind member 20 is performed in the non-exposure area. The exposure time is also ET at point D (Fig. 7) on the leading side of the exposure region ER2 where the blind member 20 does not pass. After the light shielding of the non-exposure area NR1 is completed at time t8, the blind member 20 overstrokes and changes its direction to return to the upstream side, and starts acceleration. Therefore, at time t9, at a constant speed Moves in the opposite direction to the substrate. The width of the blind member 20 at this time is D2 (≤D1).
[0039] ここで、露光領域 ER2の中央にある点 E (横断部分)は、逆走するブラインド部材 20 に遮光されるので、それが通過する時間だけ露光量が低下する。し力しながら、時刻 tlOで、アパーチャ部材 30の横部材 34を、露光用の光 ELの照射領域の下流側に 退避させるので、その中央の点 E (図 7)では露光用の光 ELの照射領域の端力も端ま で使って露光されることとなる。即ち、点 E上をブラインド部材 20が通過する前の露光 時間を ET1、ブラインド部材 20が通過した後の露光時間を ET2とすると、 ET1 +ET 2=ETとなって、ブラインド部材 20に遮光される力否かを問わず、全ての露光領域 における露光量は一定となる。その後、時刻 ti lで、アパーチャ部材 30の横部材 33 が露光用の光 ELの照射領域の上流側に幅 Δだけはみ出して配置された状態になり 、露光領域 ER2の後行する側にある点 F (図 7)においても、露光時間は ETとなる。 以下同様の動作が繰り返される。  Here, the point E (crossing portion) in the center of the exposure region ER2 is shielded from light by the blind member 20 that runs backward, so that the exposure amount decreases for the time it passes. However, at time tlO, the transverse member 34 of the aperture member 30 is retracted to the downstream side of the irradiation region of the exposure light EL, so that at the center point E (FIG. 7), the exposure light EL The exposure is performed using the end force of the irradiated area. That is, if the exposure time before the blind member 20 passes over the point E is ET1, and the exposure time after the blind member 20 passes is ET2, ET1 + ET 2 = ET, and the blind member 20 is shielded from light. Regardless of whether or not the force is sufficient, the exposure amount in all exposure areas is constant. After that, at time ti l, the transverse member 33 of the aperture member 30 is disposed so as to protrude by a width Δ on the upstream side of the irradiation area of the exposure light EL, and is located on the downstream side of the exposure area ER2. In F (Fig. 7), the exposure time is ET. Thereafter, the same operation is repeated.
[0040] 図 8〜図 12は、別な実施の形態に力かる図 6と同様なチャート図である力 符号 a 〜eは図 4 (a)に示す寸法に対応する。又、図 8〜図 11の例では、露光用の光 ELの 照射領域を抜ける手前でブラインド部材 20を基板 Wに対して相対的に静止させ、ァ パーチヤ 30でなくブラインド部材 20を照射領域内にはみ出させて遮光している。  [0040] Figs. 8 to 12 are charts similar to Fig. 6 that are applied to another embodiment. Force symbols a to e correspond to the dimensions shown in Fig. 4 (a). Further, in the examples of FIGS. 8 to 11, the blind member 20 is stationary relative to the substrate W before passing through the irradiation area of the exposure light EL, and the blind member 20 instead of the aperture 30 is placed in the irradiation area. It sticks out and is shielded from light.
[0041] 前、後部のはみ出し量 Δは、以下の式により求めることができる。  [0041] The front and rear protrusion amounts Δ can be obtained by the following equation.
Lm=Lb X (Vw/ (Vw+Vb) ) (1)  Lm = Lb X (Vw / (Vw + Vb)) (1)
Lu = Lb X (Vw/ (Vw+Vb) ) (2)  Lu = Lb X (Vw / (Vw + Vb)) (2)
但し、  However,
Lm:前部遮光長さ(mm)  Lm: Front shading length (mm)
=ブラインド部材 20,アパーチャ部材 30のはみ出し量 Δ  = Projection amount of blind member 20, aperture member 30 Δ
Lu:後部遮光長さ(mm)  Lu: Rear shading length (mm)
=ブラインド部材 20,アパーチャ部材 30のはみ出し量 Δ  = Projection amount of blind member 20, aperture member 30 Δ
Vw:ワーク移動速度(mmZs)  Vw: Work speed (mmZs)
Vb:ブラインド部材戻し速度 (mmZs)  Vb: Blind member return speed (mmZs)
Lb:ブラインド部材戻し幅(mm) [0042] まず、図 8の例では、露光用の光 ELの照射領域の X軸方向の幅を 50mmとし、ブラ インド部材 20の幅を 20mmで一定とし、ブラインド部材 20と基板 Wとを lOOmmZs で X軸方向に移動させ、その後ブラインド部材 20を逆方向に lOOmmZsで移動させ ており、このときブラインド部材 20のはみ出し量 Δは 10mmとする。この例では、ブラ インド部材 20が露光領域を横切らな 、場合と比べ、露光量が 20%低下する。 Lb: Blind member return width (mm) [0042] First, in the example of Fig. 8, the width in the X-axis direction of the irradiation region of the exposure light EL is set to 50 mm, the width of the blind member 20 is constant at 20 mm, and the blind member 20 and the substrate W are connected to lOOmmZs. Then, the blind member 20 is moved in the opposite direction by lOOmmZs, and the amount of protrusion Δ of the blind member 20 is 10 mm. In this example, the exposure amount is reduced by 20% compared to the case where the blind member 20 does not cross the exposure region.
[0043] 図 9の例では、露光用の光 ELの照射領域の X軸方向の幅を 50mmとし、遮光時の ブラインド部材 20の幅を 20mmとする力 戻り時の幅を 10mmとし、ブラインド部材 2 0と基板 Wとを lOOmmZsで X軸方向に移動させ、その後ブラインド部材 20を逆方 向に lOOmmZsで移動させており、このときブラインド部材 20のはみ出し量 Δは 5m mとする。この例では、ブラインド部材 20が露光領域を横切らない場合と比べ、露光 量が 10%低下する。即ち、ブラインド部材 20の幅を戻り時に狭めると、露光量の低 下を抑えることができる。  In the example of FIG. 9, the width in the X-axis direction of the irradiation area of the exposure light EL is set to 50 mm, the force to set the width of the blind member 20 at the time of light shielding to 20 mm, and the width at the time of return to 10 mm, 20 and the substrate W are moved in the X-axis direction by lOOmmZs, and then the blind member 20 is moved in the opposite direction by lOOmmZs. At this time, the amount of protrusion Δ of the blind member 20 is 5 mm. In this example, the exposure amount is reduced by 10% compared to the case where the blind member 20 does not cross the exposure region. That is, when the width of the blind member 20 is narrowed at the time of return, the exposure amount can be suppressed from decreasing.
[0044] 図 10の例では、露光用の光 ELの照射領域の X軸方向の幅を 50mmとし、遮光時 のブラインド部材 20の幅を 20mmとする力 戻り時の幅を 10mmとし、ブラインド部材 20と基板 Wとを lOOmmZsで X軸方向に移動させ、その後ブラインド部材 20を逆方 向に 200mmZsで移動させており、このときブラインド部材 20のはみ出し量 Δは 3. 3mmとする。この例では、ブラインド部材 20が露光領域を横切らない場合と比べ、露 光量が 6. 7%低下する。即ち、ブラインド部材 20の戻り時の速度を増大させると、露 光量の低下を抑えることができる。  In the example of FIG. 10, the width in the X-axis direction of the irradiation area of the exposure light EL is set to 50 mm, the force of setting the width of the blind member 20 at the time of light shielding to 20 mm, and the width at the time of returning to 10 mm, and the blind member 20 and the substrate W are moved in the X-axis direction by lOOmmZs, and then the blind member 20 is moved in the opposite direction by 200 mmZs. At this time, the protruding amount Δ of the blind member 20 is 3.3 mm. In this example, the amount of exposure light is reduced by 6.7% compared to the case where the blind member 20 does not cross the exposure area. That is, when the speed at which the blind member 20 is returned is increased, a decrease in the amount of exposure can be suppressed.
[0045] 図 11の例では、露光用の光 ELの照射領域の X軸方向の幅を 50mmとし、遮光時 のブラインド部材 20の幅を 20mmとする力 戻り時の幅を 10mmとし、ブラインド部材 20と基板 Wとを lOOmmZsで X軸方向に移動させた後、ブラインド部材 20の速度を 200mmZsと増大させて戻す力 その際の加速度を 0. 2Gとしている。このときブライ ンド部材 20のはみ出し量 Δは 3. 3mmとする。この例では、ブラインド部材 20の加減 速による露光量の減少が生じるものの、最大露光量に対して最小露光量は 98. 9% で、加速度の影響は限定的であり、実用的といえるが、より高精度な露光を所望する 場合、以下に述べる図 12の例が好適である。  In the example of FIG. 11, the width in the X-axis direction of the irradiation area of the exposure light EL is set to 50 mm, the force to set the width of the blind member 20 at the time of light shielding to 20 mm, and the width at the time of return to 10 mm, After moving 20 and the substrate W in the X-axis direction with lOOmmZs, the force to increase the speed of the blind member 20 to 200mmZs and the acceleration at that time is 0.2G. At this time, the protruding amount Δ of the blind member 20 is 3.3 mm. In this example, although the exposure amount decreases due to acceleration / deceleration of the blind member 20, the minimum exposure amount is 98.9% with respect to the maximum exposure amount, and the influence of acceleration is limited. If more precise exposure is desired, the example of FIG. 12 described below is preferable.
[0046] 図 12の例では、図 11の例に対して、ブラインド部材 20をオーバーストロークさせ、 代わりにアパーチャ部材 30を照射領域内にはみ出させて遮光している。そのはみ出 し量は 3. 3mmである。図 12から明らかである力 露光用の光 ELの照射領域外でブ ラインド部材 20の加減速が行われ、照射領域内では一定速度で移動するようにすれ ば、露光量の減少は生じない。 In the example of FIG. 12, the blind member 20 is overstroked with respect to the example of FIG. Instead, the aperture member 30 protrudes into the irradiation area and is shielded from light. The amount of protrusion is 3.3 mm. The force apparent from Fig. 12 If the acceleration / deceleration of the blind member 20 is performed outside the irradiation area of the exposure light EL and moves at a constant speed within the irradiation area, the amount of exposure does not decrease.
[0047] 図 13は、変形例に力かるブラインド 20を Y軸方向に見た図である。図 13に示すブ ラインド 20は、積層された 4枚の羽根部材 20a〜20dを有する。図 13に示すように、 互 、の間隔をあけな 、ようにして羽根部材 20a〜20dを X軸方向に相対移動させるこ とで、遮光範囲 SRを任意の長さに (この例では最小から約 4倍まで)調整することが できる。尚、 X軸方向において両端を決定する羽根部材 20a、 20bの側縁をテーパ 面としてエッジ EGを形成し、力かるエッジ EGを、 Z軸方向において露光装置の中間 結像位置 FPに一致させることで、解像度の高い露光を行うことができる。  [0047] FIG. 13 is a view of the blind 20, which works as a modification, viewed in the Y-axis direction. A blade 20 shown in FIG. 13 has four blade members 20a to 20d stacked. As shown in FIG. 13, by moving the blade members 20a to 20d relative to each other in the X-axis direction without leaving a gap therebetween, the light shielding range SR can be set to an arbitrary length (in this example, from the minimum). (Up to about 4 times) can be adjusted. Note that the edge EG is formed by using the side edges of the blade members 20a and 20b that determine both ends in the X-axis direction as tapered surfaces, and the striking edge EG is made to coincide with the intermediate imaging position FP of the exposure apparatus in the Z-axis direction. Thus, exposure with high resolution can be performed.
[0048] 図 14は、別な変形例に力かるブラインド 20を Y軸方向に見た図である。図 14に示 すブラインド 20は、 1枚の板材を折り曲げた形状を有する。図 14に示すように、折り 曲げ角度 Θを変更することで、遮光範囲 SRを任意の長さに調整することができる。 尚、ブラインド 20は、 X軸方向において両端を決定するエッジ EGを、 Z軸方向におい て露光装置の中間結像位置 FPに一致させることで、解像度の高い露光を行うことが できる。  [0048] FIG. 14 is a view of the blind 20, which is used in another modification, as viewed in the Y-axis direction. The blind 20 shown in FIG. 14 has a shape obtained by bending one plate material. As shown in FIG. 14, the light shielding range SR can be adjusted to an arbitrary length by changing the bending angle Θ. The blind 20 can perform exposure with high resolution by matching the edge EG that determines both ends in the X-axis direction with the intermediate imaging position FP of the exposure apparatus in the Z-axis direction.
[0049] 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態 に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であることはもちろんであ る。例えば露光領域と非露光領域の数は任意である。又、複数のブラインドを併設す る場合、ブラインドを戻すタイミングを変えることで、露光ムラを目立たなくすることが できる。更に、ブラインド部材の幅は可変でなく固定とし、基板の非露光領域に応じ て、対応する幅のブラインド部材に交換しても良い。  The present invention has been described above with reference to the embodiment. However, the present invention should not be construed as being limited to the above embodiment, and can be modified or improved as appropriate. The For example, the number of exposure areas and non-exposure areas is arbitrary. In addition, when a plurality of blinds are provided, the exposure unevenness can be made inconspicuous by changing the timing of returning the blinds. Furthermore, the width of the blind member may be fixed instead of being changed, and the blind member may be replaced with a corresponding width depending on the non-exposure region of the substrate.
[0050] 本出願は、 2006年 5月 16日出願の日本特許出願(特願 2006— 136591)に基づ くものであり、その内容はここに参照として取り込まれる。  [0050] This application is based on a Japanese patent application filed on May 16, 2006 (Japanese Patent Application No. 2006-136591), the contents of which are incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] 露光用の光を照射する照射部と、  [1] an irradiating unit for irradiating light for exposure;
露光領域と非露光領域とを有する基板を保持して、該基板を前記照射部から出射 された露光用の光を横切って所定の方向に移動させる基板駆動部と、  A substrate driving unit that holds a substrate having an exposure region and a non-exposure region, and moves the substrate in a predetermined direction across the exposure light emitted from the irradiation unit;
前記照射部と前記基板との間に配置され、前記所定方向に対して交差する方向に 延在し、光を遮光する第 1の遮光部材と、  A first light shielding member that is disposed between the irradiation unit and the substrate, extends in a direction intersecting the predetermined direction, and shields light;
前記第 1の遮光部材を、前記照射部から出射された露光用の光を遮る位置に移動 させる第 1の駆動部と、  A first drive unit that moves the first light shielding member to a position that blocks the exposure light emitted from the irradiation unit;
前記照射部と前記基板との間に配置され、前記所定方向に対して交差する方向に 延在し、光を遮光する第 2の遮光部材と、  A second light shielding member that is disposed between the irradiation unit and the substrate, extends in a direction intersecting the predetermined direction, and shields light;
前記第 2の遮光部材を保持して、前記第 1の遮光部材に対して独立して前記照射 部から出射された露光用の光を遮る位置に移動させる第 2の駆動部と、を有し、 前記第 1の駆動部は、前記照射部力も前記露光領域に光を照射している間に、少 なくとも 1度、前記照射部からの光を横切って前記所定の方向とは逆方向に移動する ように前記第 1の遮光部材を駆動し、  A second drive unit that holds the second light shielding member and moves the exposure light emitted from the irradiation unit to a position that blocks the first light shielding member independently of the first light shielding member. The first drive unit traverses the light from the irradiation unit in a direction opposite to the predetermined direction at least once while the irradiation unit force also irradiates the exposure area with light. Driving the first light shielding member to move,
前記第 2の駆動部は、前記第 1の遮光部材の動作に応じて前記第 2の遮光部材を 駆動することを特徴とする露光装置。  The exposure apparatus, wherein the second driving unit drives the second light shielding member in accordance with the operation of the first light shielding member.
[2] 前記第 1の遮光部材は、 1本の帯状の遮光部を有し、前記第 2の遮光部材は、 2本 の帯状の遮光部を有することを特徴とする請求項 1に記載の露光装置。 [2] The first light shielding member according to claim 1, wherein the first light shielding member includes one belt-shaped light shielding portion, and the second light shielding member includes two belt-shaped light shielding portions. Exposure device.
[3] 前記第 1の遮光部材は、前記所定方向における幅を可変とすることを特徴とする請 求項 1に記載の露光装置。 [3] The exposure apparatus according to claim 1, wherein the first light shielding member has a variable width in the predetermined direction.
[4] 前記第 1の遮光部材は、中間結像領域に合わせてエッジを形成していることを特徴 とする請求項 1に記載の露光装置。 4. The exposure apparatus according to claim 1, wherein the first light shielding member forms an edge in accordance with the intermediate image formation region.
[5] 前記第 1の遮光部材の速度又は加速度に応じて、前記照射部から前記露光領域 に向かう光の一部が遮光されることを特徴とする請求項 1に記載の露光装置。 5. The exposure apparatus according to claim 1, wherein a part of the light traveling from the irradiation unit toward the exposure region is shielded according to the speed or acceleration of the first light shielding member.
[6] 前記第 1及び第 2の駆動部は、前記基板の露光領域における露光量が一定となる ように、前記第 1及び第 2の遮光部材を駆動することを特徴とする請求項 1に記載の 露光装置。 前記基板の露光領域は、前記照射部から前記露光領域に光を照射している間に、 前記第 1の遮光部材が前記照射部からの光を横切って移動することで遮光される横 断部分を有し、 6. The first and second drive units drive the first and second light shielding members so that an exposure amount in an exposure region of the substrate is constant. The exposure apparatus described. The exposure area of the substrate is a transverse section that is shielded by the first light shielding member moving across the light from the irradiation section while the exposure section irradiates light from the irradiation section. Have
前記第 1及び第 2の駆動部は、前記露光領域における露光量が該横断部分におけ る露光量と等しくなるように前記第 1及び第 2の遮光部材を駆動することを特徴とする 請求項 6に記載の露光装置。  The first and second driving units drive the first and second light shielding members so that an exposure amount in the exposure region is equal to an exposure amount in the transverse portion. 6. The exposure apparatus according to 6.
PCT/JP2007/058111 2006-05-16 2007-04-12 Exposure apparatus WO2007132610A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200780012149XA CN101416115B (en) 2006-05-16 2007-04-12 Exposure apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-136591 2006-05-16
JP2006136591A JP2007310007A (en) 2006-05-16 2006-05-16 Exposure apparatus

Publications (1)

Publication Number Publication Date
WO2007132610A1 true WO2007132610A1 (en) 2007-11-22

Family

ID=38693711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058111 WO2007132610A1 (en) 2006-05-16 2007-04-12 Exposure apparatus

Country Status (4)

Country Link
JP (1) JP2007310007A (en)
KR (1) KR20080113394A (en)
CN (1) CN101416115B (en)
WO (1) WO2007132610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316923B2 (en) 2010-07-19 2016-04-19 Samsung Display Co., Ltd. Exposure apparatus and exposure method using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265244A (en) * 2008-04-23 2009-11-12 Nsk Ltd Scanning exposure device and scanning exposure method
JP2009295950A (en) * 2008-05-09 2009-12-17 Nsk Ltd Scan exposure equipment and scan exposure method
JP5164007B2 (en) * 2008-10-09 2013-03-13 株式会社ブイ・テクノロジー Proximity exposure equipment
CN102402122B (en) * 2010-09-07 2013-09-18 无锡华润上华半导体有限公司 Mask aligner light leakage detection method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196513A (en) * 1990-11-28 1992-07-16 Nikon Corp Projection aligner
JP2001125284A (en) * 1999-10-29 2001-05-11 Nsk Ltd Split successive approximation aligner
JP2002365810A (en) * 2001-06-12 2002-12-18 Nsk Ltd Divided sequential proximity exposure device
JP2004062079A (en) * 2002-07-31 2004-02-26 Nsk Ltd Proximity exposure device
JP2004349494A (en) * 2003-05-22 2004-12-09 Nsk Ltd Work stage and method for measuring its position, and exposure device equipped with this

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473410A (en) * 1990-11-28 1995-12-05 Nikon Corporation Projection exposure apparatus
KR0145147B1 (en) * 1994-10-21 1998-08-17 김주용 Blocking method of light in stepper
FR2831765B1 (en) * 2001-10-31 2004-02-13 Automa Tech Sa DEVICE FOR INSOLATING A FACE OF A PANEL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196513A (en) * 1990-11-28 1992-07-16 Nikon Corp Projection aligner
JP2001125284A (en) * 1999-10-29 2001-05-11 Nsk Ltd Split successive approximation aligner
JP2002365810A (en) * 2001-06-12 2002-12-18 Nsk Ltd Divided sequential proximity exposure device
JP2004062079A (en) * 2002-07-31 2004-02-26 Nsk Ltd Proximity exposure device
JP2004349494A (en) * 2003-05-22 2004-12-09 Nsk Ltd Work stage and method for measuring its position, and exposure device equipped with this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316923B2 (en) 2010-07-19 2016-04-19 Samsung Display Co., Ltd. Exposure apparatus and exposure method using the same

Also Published As

Publication number Publication date
KR20080113394A (en) 2008-12-30
JP2007310007A (en) 2007-11-29
CN101416115B (en) 2011-03-02
CN101416115A (en) 2009-04-22

Similar Documents

Publication Publication Date Title
JP4342524B2 (en) Filter system for filtering particles from radiation emitted by a radiation source, radiation system and filter system for filtering particles from radiation emitted by the radiation source and processing system for processing radiation Apparatus, a lithographic apparatus having such an apparatus, and a method of filtering particles from radiation emitted from a radiation source and propagating
TWI602004B (en) Polarization polarized light irradiation device
JP2008529079A (en) Exposure method and apparatus
WO2008065977A1 (en) Exposure method, pattern forming method, exposure device, and device manufacturing method
WO2007132610A1 (en) Exposure apparatus
KR100849870B1 (en) Scanning exposure method and scanning exposure apparatus
JPH0864522A (en) Charged particle beam transfer method
JP4342663B2 (en) Peripheral exposure equipment
US8431328B2 (en) Exposure method, method for manufacturing flat panel display substrate, and exposure apparatus
JP2008040066A (en) Exposure device
JP2009150919A (en) Exposure apparatus and method for manufacturing substrate
JP5935294B2 (en) Proximity exposure apparatus and proximity exposure method
KR101707263B1 (en) Exposure method and exposure apparatus
JP2008224754A (en) Division sequential proximity exposure method and division sequential proximity exposure device
JP6729954B1 (en) Exposure equipment
KR101766251B1 (en) Exposure apparatus having blind and method of driving the same
JP2008020844A (en) Proximity exposure apparatus
CN113439236B (en) Exposure apparatus, illumination optical system, and device manufacturing method
JP6738054B2 (en) Exposure apparatus, and display and device manufacturing method
JP6723112B2 (en) Exposure apparatus and exposure method
JP2011123263A (en) Proximity exposure device and proximity exposure method
JP2008310230A (en) Exposure apparatus
KR101883186B1 (en) Exposure apparatus having blind and method of driving the same
JP5352433B2 (en) Exposure equipment
JP5288104B2 (en) Scan exposure apparatus and scan exposure method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087024076

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780012149.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741547

Country of ref document: EP

Kind code of ref document: A1