WO2007125924A1 - 電気化学セル電極用バインダー - Google Patents

電気化学セル電極用バインダー Download PDF

Info

Publication number
WO2007125924A1
WO2007125924A1 PCT/JP2007/058867 JP2007058867W WO2007125924A1 WO 2007125924 A1 WO2007125924 A1 WO 2007125924A1 JP 2007058867 W JP2007058867 W JP 2007058867W WO 2007125924 A1 WO2007125924 A1 WO 2007125924A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
binder
electrochemical cell
acrylic
olefin
Prior art date
Application number
PCT/JP2007/058867
Other languages
English (en)
French (fr)
Inventor
Kazuo Yamamoto
Tatsuya Kiyomiya
Makoto Nakano
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2008513226A priority Critical patent/JP5227169B2/ja
Publication of WO2007125924A1 publication Critical patent/WO2007125924A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for an electrochemical cell electrode comprising an aqueous emulsion composition containing an olefin polymer and an acrylic polymer.
  • Electrochemical cells such as secondary batteries and electrochemical double layer capacitors are used in various fields.
  • Secondary batteries that can be used repeatedly by charging are widely used, for example, as power sources for cordless electronic devices such as mobile phones, notebook computers, and power tools, and as power sources for driving automobiles such as environmentally friendly hybrid vehicles.
  • Alkaline secondary batteries (Ni-MH batteries) obtained using hydrogen storage alloys, non-aqueous electrolyte secondary batteries (lithium ion batteries) using lithium compounds, and the like have been put into practical use.
  • the electric double layer capacitor is an electronic component that has been widely used in various fields such as the electronics industry, home appliances, and automobiles as a backup power source for ICs, LSI memories, and actuators. In recent years, expectations for improving the performance of electrochemical cells such as secondary batteries and electric double layer capacitors are increasing.
  • Positive and negative electrodes of secondary batteries such as Ni_MH batteries and lithium ion batteries are produced by binding each active material for positive and negative electrodes to a current collector with a binder.
  • the positive and negative electrodes of the electric double layer capacitor use activated carbon as the positive and negative electrode active materials, and like the secondary battery, the active materials for positive and negative electrodes are bound to the metal current collector by the binder. It is produced by making it.
  • a positive electrode binder is a solution of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone (NMP) or an aqueous dispersion of polytetrafluoroethylene (PTFE). PVDF or styrene-butadiene rubber (SBR) aqueous dispersion (Patent Document 1) is used as the binder for the negative electrode.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • PTFE polytetrafluoroethylene
  • PVDF or styrene-butadiene rubber (SBR) aqueous dispersion Patent Document 1 is used as the binder for the negative electrode.
  • Fluorocarbon resins such as PVDF and PTFE have low adhesion to active materials and metal current collectors . Therefore, it is necessary to add a large amount as a binder, and there is a problem of covering the surface of the active material and deteriorating battery characteristics. In addition, since the fluororesin has low adhesion to the active material and metal current collector, repeated charging and discharging of the secondary battery and capacitor will cause the active material to fall out of the metal current collector, reducing the battery capacity. There is a problem to make.
  • Patent Document 2 an olefin-based polymer that is electrochemically stable and has a low swelling property with respect to an electrolytic solution
  • Patent Document 3 a method of copolymerizing an olefin monomer and an acrylate ester or methacrylate ester monomer (Patent Document 3), and a method of adding an acrylic resin to olefin (Patent Document 3) 4) is disclosed, but the acrylic resin part swells with respect to the electrolyte solvent, so that the contact with the active material and the current collector is lost, and the battery and capacitor characteristics are deteriorated.
  • the binder is aggregated in the paste for forming the electrode, so that a large amount of surfactant needs to be added, and there is a problem that a large amount of the free surfactant in the paste deteriorates the battery characteristics. Therefore, the adhesion to the active material and the metal current collector, the high-rate discharge characteristics and cycle characteristics of the secondary battery, and the electrostatic capacity and internal resistance of the electric double layer capacitor were still insufficient.
  • Patent Document 1 Japanese Patent No. 3101775
  • Patent Document 2 JP 2002-251998
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2005-63735
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-327064
  • the present invention provides sufficient adhesion to a metal current collector, a positive electrode active material, and a negative electrode active material.
  • the present invention provides a binder for an electrochemical cell electrode that can improve the high rate discharge characteristics, cycle characteristics, and capacitance of the electrochemical cell and reduce the internal resistance. Means for solving the problem
  • a binder for an electrochemical cell electrode comprising an emulsion composition in which resin particles formed from an olefin polymer (A) and an acrylic polymer (B) having an internally crosslinked structure are dispersed in water .
  • the binder for an electrochemical cell electrode according to (1) which is produced from a monomer containing a polyfunctional monomer (b-2).
  • Acrylic polymer (B) having an internal cross-linked structure is composed of an acrylic monofunctional monomer (b—12) having a reactive group, the acrylic monomer (b— (1)
  • the binder for an electrochemical cell electrode according to (1) which is produced from a compound containing the compound (c) having two or more groups capable of reacting with the reactive group of 2).
  • the acrylic monofunctional monomer (b-12) having the reactive group is a reactive lpoxyl group and / or a hydroxyl group, and the acrylic group of the compound (c)
  • An acrylic polymer (B) having an internal cross-linked structure is formed from an allylic monofunctional monomer (b-1 1 2) having a reactive group (1), a reactive group (1
  • the binder for electrochemical cell electrodes according to (1) which is produced from a monomer containing an acrylic monofunctional monomer having a reactive group (2) that reacts with (2).
  • olefin polymer (A) comprises a copolymer of an olefin monomer (a-1) Cell electrode binder.
  • the olefin polymer (A) comprises an olefin monomer (a-1) and an olefin monomer.
  • the binder for an electrochemical cell electrode according to any one of (1) to (6), which contains a copolymer of another monomer (a-2) that can be copolymerized.
  • the ratio of the olefin-based monomer (a-1) to the other monomer (a_2) copolymerizable with the olefin-based monomer is (a_l) and (a_2) (A_l) force S99. 9-35.0% by weight, (a-2) is 0.1-65.0% by weight based on the total weight, and the electrochemical cell electrode bar according to (7). Inder.
  • the olefin polymer (A) is 95 to 30% by weight, and the acrylic polymer ( The binder for electrochemical cell electrodes according to any one of (1) to (8), wherein B) is 5 to 70% by weight.
  • an electrochemical cell electrode that has sufficient adhesion to a metal current collector, a positive electrode active material, and a negative electrode active material, and can improve high rate discharge characteristics and cycle characteristics.
  • a binder can be obtained.
  • the olefin polymer used in the present invention is a homopolymer of an olefin monomer (a-1), a copolymer of an olefin monomer (a-1), an olefin monomer (a—). It is a copolymer with other monomer (a-2) that can be copolymerized with 1).
  • the olefin-based monomer (a-1) is not particularly limited, and examples thereof include ethylene, propylene, 1-butene, 1 pentene, 1-hexene, 4-methinole 1 pentene.
  • the other monomer (a-2) copolymerizable with the olefin monomer (a-1) is not particularly limited as long as it is copolymerizable, Examples include styrene, methyl acrylate, methyl methacrylate, butylacetate, butyalcohol, and unsaturated carboxylic acids such as maleic acid, acrylic acid, and methacrylic acid. These monomers can be used alone or in combination of two or more.
  • ethylene and propylene are used as the monomer (a_l), and maleic acid, acrylic acid, methacrylic acid S as the monomer (a_2), and cycle characteristics of the electrochemical cell. From the point of view, it is preferable.
  • homopolymer of the olefin-based monomer (a-1) and the copolymer of the olefin-based monomer (a-1) include low-density polyethylene, high-density polyethylene, polypropylene, polymer, and the like.
  • ethylene / propylene copolymer and propylene / 1-butene copolymer are preferable from the viewpoint of cycle characteristics of the electrochemical cell.
  • copolymer of the olefin-based monomer (a-1) and the other monomer (a-2) that can be copolymerized include ethylene 'Butyl acetate copolymer, ethylene' Ethylene.unsaturated carboxylic acid copolymers such as butyl alcohol copolymer and ethylene 'methacrylic acid copolymer And propylene'maleic anhydride copolymer.
  • ethylene.unsaturated carboxylic acid copolymers such as ethylene'methacrylic acid copolymer and propylene'maleic anhydride copolymer are preferable in view of cycle characteristics of the electrochemical cell.
  • the olefin-based polymer (A) can be used alone or in combination of two or more.
  • the acrylic polymer (B) is characterized by having an internal cross-linked structure.
  • the binder for an electrochemical cell electrode containing the acrylic polymer (B) having an internally cross-linked structure is suppressed from swelling with respect to the electrolyte solvent, and further, the metal current collector, the positive electrode active material, and the negative electrode Sufficient adhesion to the active material.
  • the method for producing the acrylic polymer (B) having an internally crosslinked structure is not particularly limited, but the acrylic monofunctional monomer (b-1) and the polyfunctional monomer (b- 2)
  • a method for producing an acrylic polymer (B) from a monomer containing the above (hereinafter, the polymer obtained by this production method is also referred to as an acrylic polymer (B1)), which has a reactive group An acrylic monofunctional monomer (b-1 1 2) and a compound (c) having two or more groups that react with the reactive group of the acrylic monomer (b-1 1 2)
  • a method for producing an acrylic polymer (B) from a compound containing the same hereinafter, the polymer obtained by this production method is also referred to as an acrylic polymer (B2)
  • an acrylic monofunctional monomer having a reactive group The monomer (b-1 1 2) is polymerized using two or more monomers, and the reactive groups of the monomer (b-1 1 2) are reacted with each other.
  • the acrylic polymer (B) of the present invention is produced from a monomer containing at least an acrylic monofunctional monomer (b-1).
  • the acrylic monofunctional monomer (b-1) includes an acrylic monofunctional monomer ( b 1 1 _; L) having no reactive group and an acrylic monofunctional monomer having a reactive group. It is classified as a monofunctional monomer (b— 1 1 2).
  • the reactive group in the acrylic monofunctional monomer (b 1 1) is a group that the compound (c) described later has, for example, a group that reacts with an epoxy group. That means.
  • the acrylic polymer (B3) two or more of the above-mentioned acrylic monofunctional monomers (b_l) are used, and the two monomers include the reactive group. There is no particular limitation as long as they react with each other. For example, when one monomer (b_l) has an epoxy group, a monomer having a carboxyl group can be used as the other monomer (b-1).
  • acrylic monofunctional monomer (b-11) having no reactive group methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, acrylic acid 2- Alkyl (meth) acrylates such as ethyl hexyl, lauryl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate; acrylamide, Examples include N-alkyl-substituted (meth) acrylamides such as methacrylamide, N, N dimethylacrylamide, N, N jetylacrylamide, and N-isopropylacrylamide.
  • the monomers (b-11) can be used singly or in combination of two or more.
  • the acrylic monofunctional monomer (b-12) having a reactive group may be any acrylic monofunctional monomer having a group that reacts with the compound (c) described later. There is no particular limitation.
  • the compound (c) is a compound having an epoxy group
  • an acrylic monofunctional monomer having a carboxyl group such as acrylic acid or methacrylic acid, hydroxyethyl propyl methacrylate, etc.
  • Hydroxyl groups represented by hydroxyalkyl (meth) atalylate examples thereof include acrylic monofunctional monomers.
  • a carboxyl group such as acrylic acid or methacrylic acid is used as one of the acrylic monofunctional monomers (b-12) having a reactive group.
  • an acrylic monofunctional monomer having an epoxy group is used, an acrylic monofunctional monomer having an epoxy group, such as glycidino raretailate or glycidyl methacrylate, is used as a monofunctional monomer. It can be used as another kind of (b_1-2).
  • the polyfunctional monomer (b_2) that is, the above-described acrylic polymer (B1)
  • monomers having two or more bur groups include ethylene glycolonoresyl methacrylate, propylene glycolonoresimethacrylate, diethylene glycol ditalylate, triethylene glycol ditalylate, tetraethylene glycol ditalylate, divinyl. Examples include benzene.
  • the monomer (b-2) may be used alone or in combination of two or more.
  • the acrylic monofunctional monomer (b-12) in addition to the above-mentioned acrylic monofunctional monomer having a reactive group, the acrylic monofunctional monomer (b-12), The compound (c) having two or more groups that react with the reactive group of the acrylic monomer (b-12) is used.
  • the reactive group of the monomer (b-12) is, for example, a hydroxyl group or a carboxyl group
  • an epoxy is used.
  • an epoxy group is preferable from the viewpoint of reaction rate.
  • Examples of the compound (c) having two or more epoxy groups include glycidyl ether compounds such as bisphenol 1 type A epoxy resin and phenol novolac type epoxy resin, darisidyl ester compounds, and glycidylamine compounds. Etc. Among these compounds, diglycidyl ether compounds such as bisphenol-A type epoxy resins are preferred from the viewpoint of reaction rate.
  • Examples of commercially available products of the diglycidinole ether compound include epomic (manufactured by Mitsui Chemicals, Inc.).
  • the compound (c) can be used singly or in combination of two or more.
  • acrylic polymer (B3) two or more kinds of acrylic monofunctional monomers (b_l_2) having a reactive group are used.
  • the acrylic polymer (B3) can be produced by polymerizing these monomers (b_l_2) and reacting the reactive groups of the monomer (b_l_2). Therefore, in producing the acrylic polymer (B3), one monomer (b—12) having a reactive group (1) and a reactive group that reacts with the reactive group (1). It is necessary to use another monomer (b-1-2) having (2).
  • an acrylic monofunctional monomer having a carboxyl group such as acrylic acid or methacrylic acid is used as the acrylic monofunctional monomer (b-12) having a reactive group (1).
  • an acrylic monofunctional monomer having an epoxy group such as glycidyl acrylate or glycidyl methacrylate, is converted into a monofunctional monomer (b— 1 2) having a reactive group (2).
  • the acrylic polymer (B3) is produced, as described above, the acryl-based monofunctional monomer (b-1-12) having the reactive group (1), the reactive group It is necessary to use another monomer having (2) (b-1 -2), but if necessary, an acrylic monofunctional monomer having no reactive group (B— 1 1 1), attalinole monofunctional monomers (b— 1 1 2) having other reactive groups, and polyfunctional monomers (b— 2) may be used. Les.
  • (3) may be a group that reacts with both the reactive group (1) and the reactive group (2), or may be a group that reacts with one of them, or both. No, no response to any deviation It may be.
  • a non-acrylic monomer having a reactive group (b) that can be copolymerized with the acrylic monofunctional monomer (b-1). You can use 3).
  • the monomer (b_3) include a carboxyl group such as crotonic acid, itaconic acid, fumaric acid, and maleic acid when the compound (c) is a compound having an epoxy group.
  • Monomer For example, when the acrylic polymer (B2) is produced using the compound (c) having an epoxy group, the internal crosslinking structure is further controlled by further using the monomer (b_3). be able to.
  • an acrylic polymer (B3) when producing an acrylic polymer (B3), an acrylic monofunctional monomer (b-12) having an epoxy group as a reactive group is used.
  • the acrylic polymer (B3) is produced, the internal crosslinking structure can be further controlled by further using the monomer (b_3).
  • the monomer (b-3) may be used alone or in combination of two or more.
  • Examples of the monomer (b-4) include polar group-containing monomers such as acrylonitrile and methacrylonitrile; aromatic monomers such as styrene and ⁇ -methylstyrene.
  • the above monomer (b-4) excludes olefin-based monomers such as ethylene, propylene and 1-butene.
  • the monomer (b-4) can be used singly or in combination of two or more.
  • an acrylic monofunctional monomer (b-1), a polyfunctional monomer (b-2), and a monomer (b) used as necessary Based on the total weight of b-3) and (b-4), the usual amounts of use are (b_l) 10-99.5 wt%, (b_2) 0.5-30 wt% (B_3) is 0 to 60% by weight, and (b_4) is 0 to 60% by weight.
  • the amount used is in the above range, the resulting binder has a tendency to be less swellable with respect to the electrolyte while maintaining adhesion to the electrode, and the binder was used. The battery characteristics of the battery tend to be lower.
  • the resulting binder has a tendency to be less swellable with respect to the electrolyte while maintaining adhesion to the electrode, and the battery characteristics of the battery using the binder are as follows. There is a tendency not to lower.
  • an acrylic monofunctional monomer (b_l_2) having a reactive group and an acrylic monofunctional monomer having no reactive group which is used as necessary.
  • (B-1 2) is 1 to: 100 wt%, (b-1 1) is 0 to 99 wt%, (b-2) is 0 to 50 wt%, (b-3) is 0 to 50 wt% %, (B-4) is 0 to 50% by weight.
  • the resulting binder has a tendency to be less swellable with respect to the electrolyte while maintaining adhesion to the electrode, and the battery characteristics of the battery using the binder are more significant. There is a tendency not to decrease.
  • the initiator used in the polymerization of the acrylic polymer (B) is not particularly limited as long as the above-mentioned monomer can be polymerized.
  • the initiator used in the polymerization of the acrylic polymer (B) for example, any initiator generally used in emulsion polymerization can be used.
  • Typical initiators used in emulsion polymerization include persulfates such as persulfate, ammonium persulfate; tamenno, id-peroxide, t_petit-norehydride peroxide, benzoyl peroxide, t_ Organic peroxides such as butyl peroxide _ 2_ethylhexanoate, t_butyl peroxybenzoate, lauroyl peroxide; azo compounds such as azobisisoptyronitrile; or these persulfates, organic peroxides Zo compounds, metal ions such as iron ions, sodium sulfoxylate, honolemuanolide, sodium pyrosulfite, sodium bisulfite, L-asco And redox initiators in combination with reducing agents such as rubic acid and Rongalite. These initiators can be used alone or in combination of two or more.
  • the molecular weight of mercaptans such as t-decyl mercaptan and n-dodecyl mercaptan, and aryl compounds such as allylic sulfonic acid, methallylic sulfonic acid and soda salts thereof are adjusted as necessary. It can be used as an agent.
  • resin particles formed from an olefin polymer (A) and an acrylic polymer (B) having an internal cross-linked structure are dispersed in water.
  • an olefin polymer (A) and an acrylic polymer are placed inside the resin particles.
  • (B) may be an emulsion composition composed of resin particles containing both, and resin particles composed of an olefin polymer (A) and resin particles composed of an acrylic polymer (B).
  • the emulsion composition to contain may be sufficient.
  • the resin particles that are the constituent components of the emulsion composition may be composed of a single type of polymer, or may be a mixture of two or more types of polymers.
  • the emulsion composition containing the olefin polymer (A) and the acrylic polymer (B) in the same particle is the particles of the olefin polymer (A). Is produced by polymerizing the acrylic polymer (B) from the monomers and compounds described above using the initiator in the presence of emulsion dispersed in water. During this polymerization, an acrylic polymer (B) is formed in the resin particles containing the olefin polymer (A).
  • the emulsion composition containing the resin particles made of the olefin polymer (A) and the resin particles made of the acrylic polymer (B) is usually used in an emulsion polymerization method.
  • an acrylic polymer (B) emulsion from the initiator, monomer, and compound, and the resulting acrylic polymer (B) emulsion and olefin polymer (A) are water.
  • the olefin-based emulsion in which the particles of the olefin-based polymer (A) are dispersed in water is not particularly limited by its production method.
  • a melted resin can be forcibly broken by stirring in water or an extruder.
  • adding water to the molten and kneaded resin As shown in Japanese Patent Publication No. 42-000275, Japanese Patent Publication No. 7-008933, etc.
  • the acrylic polymer ( ⁇ ) In order to improve the stability of the particles when the acrylic polymer ( ⁇ ) is polymerized in the presence of the emulsion of the olefin-based polymer ( ⁇ ), or when the acrylic polymer ( ⁇ ) alone is produced. It is also possible to use a surfactant used in a usual emulsion polymerization method. Specific examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and other reactive surfactants. These surfactants can be used singly or in combination of two or more.
  • nonionic surfactant examples include, for example, polyoxyethylene lauryl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene oxyphenyl ether, and polyoxyethylene noluyl phenyl ether.
  • anionic surfactant examples include sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium alkyldiphenyl ether sulfonate, sodium alkylnaphthalene sulfonate, sodium dialkylsulfosuccinate, stearic acid.
  • cationic surfactant examples include lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, and the like.
  • the amount of the surfactant used is not particularly limited, but when producing an emulsion composition in which the olefin polymer (A) and the acrylic polymer (B) are contained in the same particle. If the amount of the surfactant used is increased, particles consisting only of the acrylic polymer (B) are produced. In addition, when the amount of the surfactant used is large, the amount of the surfactant released in the obtained binder is relatively increased, resulting in deterioration of the electrochemical cell characteristics. Therefore, the acrylic polymer (B) is polymerized in the presence of the olefin polymer (A) emulsion.
  • the amount of the surfactant used is the monomer (b-1), (b—) used for the acrylic polymer (B). It is preferably 0 to 5% by weight based on the total weight of 2), (b-3), (b-4) and compound (c).
  • the acrylic polymer (B) is polymerized at a temperature of usually 0 to 100 ° C, preferably 30 to 90 ° C, in the presence of the initiator.
  • the form of the resin particles constituting the emulsion composition is not particularly limited.
  • the shape of the particle may be a core / shell structure, a composite structure, a localized structure, or a dharma shape. Examples include a structure and a raspberry structure.
  • the weight average particle diameter of the resin particles constituting the emulsion composition is preferably 10 nm to 10 / im, more preferably 10 nm to 2 / im.
  • the particle diameter exceeds 10 / im, the adhesive strength with the active material and the metal current collector is reduced, and the electrochemical cell characteristics are deteriorated.
  • the weight ratio of the olefin polymer (A) to the acrylic polymer (B) in the emulsion composition is based on the total weight of the olefin polymer (A) and the acrylic polymer (B).
  • (A) is 95 to 30% by weight
  • (B) is 5 to 70% by weight, more preferably (A) is 95 to 50% by weight, and (B) is 5 to 50% by weight.
  • the weight ratio of (A) to (B) is in the above range, it is preferable in terms of electrochemical stability and adhesiveness.
  • constituent materials other than the binder used for the electrode for an electrochemical cell are not particularly limited.
  • the binder of the present invention when used for an electrode for a secondary battery and an electric double layer capacitor, the positive electrode active material and the binder are used for the positive electrode, and the negative electrode active material and the binder are used for the negative electrode.
  • Material strength Other materials such as carbon black, amorphous whisker carbon, graphite, etc. Conductive aids made of these carbon materials may be added.
  • Examples of the negative electrode active material for the secondary battery include metallic lithium, a lithium alloy, a carbon material that can be doubed and dedoped with lithium ions, tin oxide that can be doped and dedoped with lithium ions, Doped with niobium oxide, vanadium oxide, lithium ions' Titanium oxide that can be undope or silicon ions that can be doped or dedoped with lithium ions Transition metal nitrides can be used. Among these, carbon materials that can dope and dedope lithium ions are preferable.
  • Such carbon material may be graphite or amorphous carbon, and carbon black such as activated carbon, carbon fiber, acetylene black, ketjen black, mesocarbon microbeads, natural graphite, etc. are used. It is done.
  • the binder for an electrochemical cell electrode of the present invention may further contain a thickener such as carboxymethyl cellulose and sodium polyacrylate.
  • positive electrode active materials for secondary batteries include transition metal oxidation such as MoS, TiS, MnO, and V 2 O
  • transition metal sulfides LiCoO, LiMnO, LiMn O, LiNiO, LiNi Co O
  • a composite oxide composed of lithium and a transition metal is particularly preferable.
  • a carbon material can be used as the positive electrode.
  • a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
  • the secondary battery in order to correspond to the usage pattern of the secondary battery, is made of the above-described positive electrode, negative electrode, and separator, which are cylindrical, coin-shaped, rectangular, film-type, etc. It can be manufactured by enclosing a non-aqueous electrolyte in a shape and stacking the above-mentioned positive electrode and negative electrode inside the battery can with the separator as the center.
  • the electric double layer capacitor has an arbitrary shape such as a cylindrical shape or a coin shape so as to correspond to the usage in the battery, and the above-described electrode is provided inside the battery can.
  • the electrolyte is encapsulated in a layer that is stacked on both sides of the separator. It can be produced more.
  • the separator used in the secondary battery is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions.
  • a porous film or a polymer electrolyte is used as the separator.
  • a porous polymer film is preferably used as the porous film, and examples of the material of the film include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
  • a porous polyolefin film is preferred.
  • a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and polypropylene is exemplified. be able to.
  • the surface of porous polyolefin film is coated with another resin with excellent thermal stability.
  • a porous film containing electrolytic capacitor paper inorganic ceramic powder can be used as the separator of the electric double layer capacitor.
  • Examples of the electrolyte used in the secondary battery include LiPF, LiBF, LiCIO, and LiAsF.
  • CF SO Li (CF 2 SO 4) N / Li, and the like. These electrolytes can be used alone or in combination of two or more.
  • electrolytes are used after being dissolved in an electrolyte such as a non-aqueous electrolyte (organic solvent).
  • an electrolyte such as a non-aqueous electrolyte (organic solvent).
  • Examples of the electrolyte used in the electric double layer capacitor include tetraethyl ammonium tetrafluoroborate and triethyl monomethyl ammonium tetrafluoroborate. These electrolytes can be used alone or in combination of two or more. These electrolytes are used after being dissolved in an electrolytic solution.
  • any electrolytic solution capable of exerting its performance can be used, but a non-aqueous electrolytic solution is preferred as the electrolytic solution.
  • Non-aqueous electrolytes used for secondary batteries and electric double layer capacitors include, for example, propylene carbonate, ethylene carbonate, y-butarate rataton, dimethyl sulfoxide, dimethylolene carbonate, ethinolemethinorecarbonate, Examples include organic solvents such as tinole carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, and tetrahydrofuran. These non-aqueous electrolytes can be used alone or in combination of two or more. used.
  • a reaction vessel was charged with 83 parts of deionized water and 0.2 part of sodium dodecinolebenzenesulfonate, and the temperature was raised to 80 ° C under a nitrogen stream. After raising the temperature, 0.5 part of potassium persulfate was poured into the reaction vessel.
  • Chemipearl S650 (ethylene monounsaturated carboxylic acid copolymer, neutralized sodium hydroxide, non-volatile content 27% by weight, manufactured by Mitsui Chemicals, Inc.) 346 parts by weight in a reaction vessel under nitrogen flow And 93 parts by weight of deionized water were charged, and the temperature of the reactor was raised to 80 ° C. To the reactor at 80 ° C, 0.2 parts by weight of ammonium persulfate was further added.
  • emulsion mixture 16 parts by weight of deionized water, 16 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of hydroxyethyl methacrylate, 11 parts by weight of styrene, 3 parts by weight of divinylbenzene, and emulsifier
  • An emulsion mixture was prepared by adding 0.2 parts by weight of sodium dodecylbenzenesulfonate. This emulsified mixture was dropped into the reaction vessel maintained at 80 ° C. for 3 hours, and then further reacted at the same temperature for 2 hours to complete the polymerization.
  • the obtained emulsion composition had a nonvolatile content of 27% by weight and a pH of 9.5, and the weight average particle diameter measured by light scattering was lOOnm.
  • Chemipearl S650 a polyolefin emulsion
  • acrylic emulsion prepared in Example 5 was stirred, and distilled water was further added to prepare an emulsion composition having a solid content of 25% by weight. did.
  • olefin fin emulsion prepared in Example 1 and 325 parts of deionized water were charged into a reaction vessel, heated to 80 ° C. under a nitrogen stream, and 0.7 part of ammonium persulfate was added.
  • An emulsion mixture was prepared, and this emulsion mixture was added dropwise to the reaction vessel in 3 hours, and then kept at the same temperature for 2 hours to complete the polymerization.
  • the obtained emulsion had a non-volatile content of 27%, a pH of 9.5, and a weight average particle size of 60 nm as measured by light scattering.
  • a reaction vessel was charged with 83 parts of deionized water and 0.2 part of sodium dodecinolebenzenesulfonate, and the temperature was raised to 80 ° C under a nitrogen stream. After the temperature rise, throw 0.5 parts of potassium persulfate into the reaction vessel.
  • Epocomic R140 Mitsubishi Chemicals Co., Ltd., diglycidinoreetherified product 10 parts, styrene 50 parts, 2-ethyl hexyl acrylate is 40 parts deionized water in deionized water 40 parts
  • An emulsified mixture was prepared by using 0.4 part of soda, and this emulsified mixture was dropped into the reaction vessel in 4 hours, and then kept at the same temperature for 3 hours to complete the polymerization.
  • a polymerization solution comprising this acrylic emulsion was adjusted to pH 8 with 5% sodium hydroxide.
  • the non-volatile content of the resulting acrylic emulsion is 45. / 0 ,
  • the weight average particle diameter measured by light scattering was lOOnm.
  • Natural graphite (LF18A manufactured by Chuetsu Graphite Co., Ltd.) Thickener carboxymethylcellulose solution (Daicel Chemical Co., Ltd. CMC Daicel 1160) adjusted to 1.2% by weight with 97 parts by weight is converted to solid content 1
  • the emulsion composition prepared in Example 1 was mixed with 2 parts by weight in terms of solid content, and distilled water was further added to prepare a negative electrode mixture slurry having a solid content concentration of 50% by weight.
  • this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 / m, and then dried and compression molded to produce a negative electrode having a thickness of 70 / m.
  • a negative electrode having a thickness of 70 ⁇ m was produced in the same manner as in Example A except that the emulsion composition was changed to the emulsion prepared in Example 2.
  • a negative electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example A except that the emulsion composition was changed to the emulsion prepared in Example 3.
  • a negative electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example A except that the emulsion composition was changed to the emulsion prepared in Example 4. [0113] [Example]
  • a negative electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example A except that the emulsion composition was changed to the emulsion prepared in Example 5.
  • a negative electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example A except that the emulsion composition was changed to the emulsion prepared in Example 6.
  • a negative electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example A except that the emulsion composition was changed to the emulsion prepared in Example 7.
  • a negative electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example A except that the emulsion composition was changed to the emulsion prepared in Comparative Example 1.
  • a negative electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example A except that the emulsion composition was changed to the emulsion prepared in Comparative Example 2.
  • NMP N-methyl-2-pyrrolidone solution of natural graphite (LF18A made by Chuetsu Graphite Co., Ltd.) 98 parts by weight and non-volatile content 8% by weight (polyvinylidene fluoride) (Kureha Chemical Industry Co., Ltd.) KF Polymer # 1120) 25 parts by weight was added, and NMP for viscosity adjustment was further mixed to prepare a negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ ⁇ ⁇ , and then dried and compression molded to produce a negative electrode having a thickness of 70 / m.
  • a negative electrode having a thickness of 70 zm was prepared in the same manner as in Example A except that the emulsion composition was changed to an aqueous dispersion of SBR having a nonvolatile content of 48% by weight (SR143 manufactured by Nippon A & L Co., Ltd.).
  • Example H LiCoO (Honsho FMC Energy Systems Co., Ltd. HLC—22) 85 ⁇ 5 parts by weight, graphite 8 parts by weight, acetylene black 3 parts by weight and carboxymethylcellulose (Daicel Chemical Co., Ltd. 1160) 1.5 parts by weight in terms of solid content Then, 2 parts of the emulsion composition prepared in Example 1 in terms of solid content was added to prepare a LiCoO mixture slurry. This LiCoO mixture slurry was applied to an aluminum foil with a thickness of 20 ⁇ m, dried and compression molded to produce a positive electrode with a thickness of 70 am.
  • a positive electrode having a thickness of 70 ⁇ m was produced in the same manner as in Example H except that the emulsion composition was changed to the emulsion prepared in Example 2.
  • a positive electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example H except that the emulsion composition was changed to the emulsion prepared in Example 3.
  • a positive electrode having a thickness of 70 ⁇ m was produced in the same manner as in Example H except that the emulsion composition was changed to the emulsion prepared in Example 4.
  • a positive electrode having a thickness of 70 ⁇ m was produced in the same manner as in Example H except that the emulsion composition was changed to the emulsion prepared in Example 5.
  • a positive electrode having a thickness of 70 ⁇ m was produced in the same manner as in Example H except that the emulsion composition was changed to the emulsion prepared in Example 6.
  • a positive electrode having a thickness of 70 ⁇ m was produced in the same manner as in Example H except that the emulsion composition was changed to the emulsion prepared in Example 7.
  • a positive electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example H except that the emulsion composition was changed to the emulsion prepared in Comparative Example 1.
  • Example F A positive electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example H except that the emulsion composition was changed to the emulsion prepared in Comparative Example 2.
  • LiCoO Hydrofluorescence Chemical Energy Systems Co., Ltd. HLC_22
  • 87 parts by weight 8 parts by weight of graphite, 3 parts by weight of acetylene black and 8% by weight of non-volatile PVDF NMP solution (KF Polymer, Kureha Chemical Industry Co., Ltd.) # 1120)
  • NMP for viscosity adjustment was further mixed to prepare a LiCoO mixture slurry.
  • This LiCoO mixture slurry was applied to an aluminum foil having a thickness of 20 am, and then dried and compression molded to produce a positive electrode having a thickness of 70 am.
  • the electrodes prepared in Examples A to G and Comparative Examples A to G were cut and attached to a glass preparation with an instantaneous adhesive to fix the electrodes to obtain samples for evaluation.
  • the sample for evaluation was cut with the coating film peel strength measuring device Cycus DN20 (Daibrowintes Co., Ltd.) at the horizontal speed of 2 ⁇ m / sec.
  • the peel strength between the composite layer and the current collector interface was measured from the horizontal force.
  • Adhesiveness was evaluated by taking an average value of peel strength three times. The results are shown in Table 1.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • a non-aqueous electrolyte was prepared so that 6 was dissolved and the electrolyte concentration was 1.0 mol Z liter.
  • the negative electrode made in Examples A, B, D, C, E, and Comparative Examples A and B as a negative electrode for a coin-type battery was punched into a disk shape with a diameter of 14 mm, and a coin-shaped negative electrode with a weight of 20 mg / l4 mm ci) was formed. Obtained.
  • the positive electrode produced in Examples F, G, H, I, J, and Comparative Examples C and D as a positive electrode for a coin-type battery was punched out into a disk shape having a diameter of 13.5 mm, and the weight was 42 mg / l 3.5 mm ⁇ . A coin-shaped positive electrode was obtained.
  • the above-mentioned coin-shaped negative electrode, positive electrode, and separator made of porous polypropylene film with a thickness of 25 / im and a diameter of 16 mm are placed in the negative electrode can of a stainless steel 2032 size battery can. Laminated in order.
  • a coin-type battery having a diameter of 20 mm and a height of 3.2 mm was produced.
  • Activated carbon 100 parts by weight, acetylene black (Electrochemical Co., Ltd. Denka Black) 3 parts by weight, Ketjen Black (Ketjen Black International Co., Ltd. EC600JD) 1.2 parts by weight Mix 1.5 parts by weight of the adjusted thickener carboxymethyl cellulose (Daicel Chemical Co., Ltd. CMC1160) in terms of solid content.
  • 5 parts of the emulsion composition prepared in Example 1 was mixed in terms of solid content, and distilled water was further added to prepare a mixture slurry having a solid content concentration of 50% by weight.
  • this negative electrode mixture slurry was applied to a current collector made of a strip-shaped aluminum foil having a thickness of 20 ⁇ , dried, and compression molded to produce a 70 ⁇ m thick electrode.
  • An electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example O except that the emulsion composition was changed to the emulsion prepared in Example 2.
  • An electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example O except that the emulsion composition was changed to the emulsion prepared in Example 3.
  • An electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example O except that the emulsion composition was changed to the emulsion prepared in Example 4.
  • An electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example O except that the emulsion composition was changed to the emulsion prepared in Example 5.
  • An electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example O except that the emulsion composition was changed to the emulsion prepared in Example 6.
  • An electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example O except that the emulsion composition was changed to the emulsion prepared in Example 7.
  • An electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example O except that the emulsion composition was changed to the emulsion prepared in Comparative Example 1.
  • An electrode having a thickness of 70 ⁇ m was prepared in the same manner as in Example O except that the emulsion composition was changed to a PTFE aqueous dispersion (Daikin Kogyo D-2C).
  • An electrolyte was prepared by dissolving tetraethylammonium tetrafluoroborate, an electrolyte, in propylene carbonate, so that the electrolyte concentration was 1.5 mol / liter.
  • Examples 0 to U Comparative Examples The electrodes prepared in H to J were punched into a disk shape having a diameter of 14 mm to obtain a coin-shaped electrode having a weight of 20 mg / 14 mm ⁇ .
  • the battery was charged at a constant current of 10 mA to 2.7 V for 10 minutes and then discharged at a constant current of 1 mA.
  • the capacitance was determined from the obtained charge / discharge characteristics.
  • the internal resistance was calculated according to the calculation method of standard RC-2377 established by the Japan Electronics and Information Technology Industries Association based on the charge / discharge characteristics. Table 4 shows the evaluation results for capacitors using each electrode.
  • Electrode Composition Electrostatic capacity (F / g) Internal resistance (Q F)
  • Example o Example 1 45 4.0
  • Example P Example 2 44 4.0
  • Example R Example 4 44 4.0
  • Example S Example 5 45 4.0
  • Example T Example 6 45 4.0

Abstract

 本発明は、オレフィン系重合体(A)と内部架橋構造を有するアクリル系重合体(B)とから形成される樹脂粒子が水に分散したエマルション組成物からなる電気化学セル電極用バインダーである。  本発明によれば、金属集電体、正極活物質、および負極活物質に対して十分な密着性を有し、高率放電特性やサイクル特性を向上させることができる電気化学セル電極用バインダーを得ることができる。

Description

明 細 書
電気化学セル電極用バインダー
技術分野
[0001] 本発明は、ォレフィン系重合体とアクリル系重合体とを含む水性エマルシヨン組成 物からなる電気化学セル電極用バインダーに関する。
背景技術
[0002] 二次電池、電気化学二重層キャパシタなどの電気化学セルは、様々な分野で活用 されている。充電により繰り返し使用が可能な二次電池は、例えば、携帯電話やノー トパソコン、電動工具等のコードレスな電子機器の電源として、また、環境に配慮した ハイブリッド自動車等の自動車駆動用電源として広く使用されており、水素吸蔵合金 を用いて得られるアルカリ二次電池(Ni— MH電池)、リチウム化合物を用いた非水 電解液二次電池(リチウムイオン電池)等が実用化されている。また、電気二重層キヤ パシタは、 ICや LSIメモリおよびァクチユエータ等のバックアップ電源として、最近、電 子工業、家電、 自動車等の種々の分野で広く利用されている電子部品である。近年 、これら二次電池、電気二重層キャパシタなどの電気化学セルに関する性能向上へ の期待が高まっている。
[0003] Ni_MH電池、リチウムイオン電池などの二次電池の正、負極は、正、負極用の各 活物質をバインダーによって、集電体に結着させることにより作製されている。
[0004] また、電気二重層キャパシタの正、負極は、正、負極の活物質として活性炭を用い 、二次電池同様、正、負極用の各活物質をバインダーによって、金属集電体に結着 させることにより作製されている。
[0005] これら電極のバインダーとして、従来から種々の樹脂組成物が用いられてきている 。リチウムイオン電池で例をあげると、正極のバインダーとしてはポリフッ化ビニリデン( PVDF)を N—メチルー 2ピロリドン (NMP)に溶解させた溶液あるいはポリテトラフロロ エチレン (PTFE)の水分散液が用いられ、負極のバインダーとしては、 PVDFまたは スチレン-ブタジエンラバー (SBR)の水分散液(特許文献 1)が用いられている。
[0006] PVDF, PTFE等のフッ素系樹脂は、活物質や金属集電体に対する接着力が低い 。そのため、バインダーとして多量に添加する必要があり、活物質の表面を覆い、電 池特性を低下させる問題がある。また、フッ素系樹脂は、活物質や金属集電体に対 する接着力が低いので、二次電池およびキャパシタの充放電を繰り返すと、活物質 が金属集電体から脱落し、電池容量を減少させる問題がある。
[0007] また、 SBRは主鎖に二重結合を有するため、正極に使用した場合は二次電池およ びキャパシタの充放電を繰り返すと二重結合部が酸化劣化し、活物質が金属集電体 力 脱落し、電池やキャパシタ容量を減少させる問題がある。また、負極に使用した 場合には電解液に対する膨潤性が高いため、活物質ゃ集電体とのコンタクトが失わ れることで高率放電特性やサイクル特性が低下する問題があった。
[0008] かかる問題を解決するために、電気化学的に安定で電解液に対して膨潤性が小さ ぃォレフイン系重合体をバインダーとして用いる検討 (特許文献 2)が行われているが 、活物質や金属集電体に対する接着力がまだ十分とは言えない。接着力を向上させ る手段として、ォレフィン単量体とアクリル酸エステルまたはメタクリル酸エステル単量 体とを共重合する方法 (特許文献 3)、また、ォレフィンにアクリル樹脂を添加する方 法 (特許文献 4)が開示されているが、アクリル樹脂部が電解液溶媒に対して膨潤し てしまうため、活物質ゃ集電体とのコンタクトが失われることで電池やキャパシタ特性 を低下させる問題や、さらに後者では電極を作成するためのペースト中でバインダー が凝集するため界面活性剤を多量に添加する必要があり、ペースト中に多量にある フリーの界面活性剤が電池特性を低下させる問題があった。したがって、依然として 活物質や金属集電体に対する接着性および二次電池の高率放電特性やサイクル特 性や電気二重層キャパシタの静電容量や内部抵抗が不十分であった。
特許文献 1 :特許 3101775号公報
特許文献 2 :特開 2002— 251998号公報
特許文献 3 :特開 2005— 63735号公報
特許文献 4:特開 2004— 327064号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、金属集電体、正極活物質、および負極活物質に対して十分な密着性を 有し、電気化学セルの高率放電特性やサイクル特性、静電容量を向上させ、内部抵 抗を小さくすることができる電気化学セル電極用バインダーを提供するものである。 課題を解決するための手段
[0010] 本発明者らは、上記従来技術の課題等について鋭意検討した結果、以下のェマル シヨン組成物からなる電気化学セル電極用バインダーがこれらの問題を解決し得るこ とを見出し本発明の完成に至った。即ち、本発明は以下に記載される項目によって 特定される。
[0011] (1)ォレフィン系重合体 (A)と内部架橋構造を有するアクリル系重合体 (B)とから形 成される樹脂粒子が水に分散したエマルシヨン組成物からなる電気化学セル電極用 バインダー。
[0012] (2)内部架橋構造を有するアクリル系重合体 (B) アクリル系単官能性単量体 (b
1)、多官能性単量体 (b— 2)を含む単量体から製造されることを特徴とする(1)に 記載の電気化学セル電極用バインダー。
[0013] (3)内部架橋構造を有するアクリル系重合体 (B)が、反応性基を有するアクリル系 単官能性単量体 (b— 1 2)、該アクリル系系単量体 (b— 1 2)の反応性基と反応 する基を 2つ以上有する化合物(c)を含む化合物より製造されることを特徴とする(1) に記載の電気化学セル電極用バインダー。
[0014] (4)前記反応性基を有するアクリル系単官能性単量体 (b— 1一 2)の反応性基が力 ルポキシル基および/または水酸基であり、前記化合物(c)のアクリル系系単量体 (b _ 1 _ 2)の反応性基と反応する基がエポキシ基である、 (3)に記載の電気化学セル 電極用バインダー。
[0015] (5)内部架橋構造を有するアクリル系重合体 (B)が、反応性基(1)を有するアタリ ル系単官能性単量体 (b— 1一 2)、反応性基(1)と反応をする反応性基 (2)を有する アクリル系単官能性単量体を含む単量体より製造されることを特徴とする(1)に記載 の電気化学セル電極用バインダー。
[0016] (6)ォレフィン系重合体 (A)がォレフイン系単量体(a— 1)の共重合体を含むことを 特徴とする(1)〜(5)のいずれかに記載の電気化学セル電極用バインダー。
[0017] (7)ォレフィン系重合体 (A)が、ォレフィン系単量体(a— 1)とォレフイン系単量体と 共重合可能な他の単量体(a— 2)の共重合体を含む(1)〜(6)のいずれかに記載の 電気化学セル電極用バインダー。
[0018] (8)ォレフィン系単量体(a— 1)とォレフイン系単量体と共重合可能な他の単量体( a_ 2)の比率が、(a_ l)と(a_ 2)の合計重量を基準として(a_ l)力 S99. 9-35. 0 重量%、(a— 2)が 0. 1 -65. 0重量%である、(7)に記載の電気化学セル電極用バ インダー。
[0019] (9)エマルシヨン中のォレフィン系重合体(A)とアクリル系重合体(B)の合計重量を 基準として、ォレフィン系重合体 (A)が 95〜30重量%、アクリル系重合体(B)が 5〜 70重量%であることを特徴とする(1)〜(8)のレ、ずれかに記載の電気化学セル電極 用バインダー。
[0020] (10) (1)〜(9)の何れかに記載のバインダーを含有してなる電極。
[0021] (11) (10)に記載の電極を正および/または負極として使用した電気化学セル。
[0022] (12)前記電気化学セルが二次電池である(11)に記載の電気化学セル。
[0023] (13)前記電気化学セルが電気二重層キャパシタである(11)に記載の電気化学セ ノレ。
発明の効果
[0024] 本発明により、金属集電体、正極活物質、および負極活物質に対して十分な密着 性を有し、高率放電特性やサイクル特性を向上させることができる電気化学セル電 極用バインダーを得ることができる。
発明を実施するための最良の形態
[0025] 以下、本発明を詳細に述べる。
[0026] ォレフィン系重合体(A)
本発明で用いられるォレフィン系重合体とは、ォレフィン系単量体 (a— 1)の単独重 合体、ォレフィン系単量体(a— 1)の共重合体、ォレフィン系単量体 (a— 1)と共重合 可能な他の単量体(a— 2)との共重合体のことである。
[0027] 前記ォレフィン系単量体(a— 1)としては、特に制限されるものでなぐ例えば、ェチ レン、プロピレン、 1ーブテン、 1 ペンテン、 1一へキセン、 4ーメチノレー 1 ペンテン
、 3—メチル一1—ペンテン、 1—ヘプテン、 1—へキセン、 1—デセン、 1—ドデセン 等の α—ォレフイン、ブタジエン、ェチリデンノルボルネン、ジシクロペンタジェン、 1 , 5—へキサジェン等の共役ジェン、非共役ジェン等が挙げられる。なお、これら単量 体は 1種単独で、あるいは 2種以上混合して用いることができる。
[0028] また、ォレフィン系単量体(a— 1)と共重合可能な他の単量体(a— 2)は、共重合可 能である限り特に制限されるものではなレ、が、スチレン、アクリル酸メチル、メタアタリ ノレ酸メチル、酢酸ビュル、ビュルアルコール、および、マレイン酸、アクリル酸、メタァ クリル酸などの不飽和カルボン酸等が挙げられる。なお、これら単量体は 1種単独で 、あるいは 2種以上混合して用いることができる。
[0029] これらの中でも、単量体(a _ l)としてはエチレン、プロピレンが、単量体(a_ 2)とし てはマレイン酸、アクリル酸、メタアクリル酸力 S、電気化学セルのサイクル特性の点で 好ましい。
[0030] 前記ォレフィン系単量体(a— 1)の単独重合体、ォレフィン系単量体(a— 1)の共重 合体の具体例としては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポ リ 1—ブテン、ポリ— 3—メチル—1—ブテン、ポリ— 4—メチル—1—ペンテン、あるい はエチレン.プロピレン共重合体、エチレン · 1ーブテン共重合体、プロピレン · 1ーブ テン共重合体、プロピレン · 1—ブテン'エチレン共重合体で代表されるエチレン、プ ロピレン、 1—ブテン、 3—メチル 1—ブテン、 4—メチル 1—ペンテン、 3—メチル — 1—ペンテン、 1 ヘプテン、 1—へキセン、 1—デセン、 1—ドデセン等の α—ォレ フィン系重合体;エチレン 'ブタジエン共重合体、エチレン'ェチリデンノルボルネン共 重合体等の α—ォレフイン'ジェン共重合体;エチレン 'プロピレン 'ブタジエン 3元共 重合体、エチレン.プロピレン.ェチリデンノルボルネン 3元共重合体、エチレン 'プロ ピレン · 1 , 5 _へキサジェン 3元共重合体等のひ一ォレフィン 2種以上とジェンとの共 重合体などが挙げられる。
[0031] これらの中でも、エチレン 'プロピレン共重合体、プロピレン · 1—ブテン共重合体が 電気化学セルのサイクル特性の点で好ましい。
[0032] 前記ォレフィン系単量体(a— 1 )と共重合可能な他の単量体(a— 2)との共重合体 の具体例としては、エチレン '酢酸ビュル共重合体、エチレン'ビュルアルコール共重 合体、エチレン 'メタアクリル酸共重合体などのエチレン.不飽和カルボン酸共重合体 、プロピレン '無水マレイン酸共重合体が挙げられる。
[0033] これらの中でも、エチレン 'メタアクリル酸共重合体などのエチレン.不飽和カルボン 酸共重合体、プロピレン '無水マレイン酸共重合体が電気化学セルのサイクル特性 の点で好ましい。
[0034] 前記ォレフィン系単量体(a— 1 )と共重合可能な他の単量体(a— 2)との共重合体 の場合には、ォレフィン系単量体(a_ 1)とォレフイン系単量体と共重合可能な他の 単量体 (a_ 2)との比率は、(a_ l )と(a_ 2)との全重量を基準として、通常(a_ l) が 99. 9〜35. 0重量%、(a_ 2)が 0.ト 65. 0重量%であり、好ましくは、 (a_ l) が 99. 9〜50重量%、 (a_ 2)が 0. 1〜50重量%であり、さらに好ましくは、 (a_ l) が 99. 9〜70重量%、(a_ 2)が 0. 1〜30重量%である。 (a_ 1)と(a_ 2)との比率 が上記範囲であると、ォレフィンとしての特性が発現され、電気化学的安定性が維持 でき、電気化学セル特性が低下するとレ、う問題が生じなレ、。
[0035] 前記ォレフィン系重合体 (A)は 1種単独で、あるいは 2種以上混合して用いることが できる。
[0036] アクリル系重合体(B)
本発明において、アクリル系重合体 (B)は内部架橋構造を有する点に特徴がある。
[0037] このように、内部架橋構造を有するアクリル系重合体 (B)を含む電気化学セル電極 用バインダーは、電解液溶媒に対する膨潤が抑制され、しかも金属集電体、正極活 物質、および負極活物質に対して十分な密着性を有する。
[0038] 内部架橋構造を有するアクリル系重合体 (B)の製造方法については特に制限はな いが、アクリル系単官能性単量体 (b— 1)と多官能性単量体 (b— 2)とを含む単量体 からアクリル系重合体 (B)を製造する方法(以下、この製造方法により得られた重合 体をアクリル系重合体 (B1)ともいう。)、反応性基を有するアクリル系単官能性単量 体 (b— 1一 2)と、該アクリル系系単量体 (b— 1一 2)の反応性基と反応する基を 2つ 以上有する化合物(c)とを含む化合物よりアクリル系重合体 (B)製造する方法(以下 、この製造方法により得られた重合体をアクリル系重合体 (B2)ともいう。)、反応性基 を有するアクリル系単官能性単量体 (b— 1一 2) 2種以上を使用して、単量体を重合 するとともに、単量体 (b— 1一 2)の有する反応性基同士を反応させてアクリル系重合 体 (B)を製造する方法 (以下、この製造方法により得られた重合体をアクリル系重合 体 (B3)ともいう。)などが挙げられる。
[0039] 本発明のアクリル系重合体 (B)は、少なくとも、アクリル系単官能性単量体 (b— 1) を含む単量体より製造される。
[0040] このアクリル系単官能性単量体 (b— 1)は、反応性基を有しないアクリル系単官能 性単量体 (b一 1 _ ;L )と、反応性基を有するアクリル系単官能性単量体 (b— 1一 2)と に分類される。なお、アクリル系重合体 (B2)において、アクリル系単官能単量体 (b 一 1)における反応性基とは、後述する化合物(c)が有する基、例えば、エポキシ基と 反応をする基のことをいう。
[0041] また、アクリル系重合体(B3)においては、上述したアクリル系単官能単量体 (b_ l )を 2種以上使用するが、その 2種の単量体としては、その反応性基同士が反応する 限り特に制限はない。例えば、 1つの単量体 (b_ l)がエポキシ基を有する場合、他 の単量体 (b— 1)として、カルボキシル基を有する単量体が使用できる。
[0042] 反応性基を有しないアクリル系単官能性単量体 (b— 1 1)としては、アクリル酸メ チル、アクリル酸ェチル、アクリル酸 n—ブチル、アクリル酸 iーブチル、アクリル酸 2— ェチルへキシル、アクリル酸ラウリル、メタクリル酸メチル、メタクリル酸ェチル、メタタリ ノレ酸 n—ブチル、メタクリル酸 iーブチル、メタクリル酸 2—ェチルへキシル、メタクリル 酸ラウリルなどの(メタ)アクリル酸アルキル;アクリルアミド、メタクリルアミド、 N, N ジ メチルアクリルアミド、 N, N ジェチルアクリルアミド、 N—イソプロピルアクリルアミド などの N—アルキル置換 (メタ)アクリルアミドなどが挙げられる。
[0043] 上記単量体 (b— 1 1)は、 1種単独で、あるいは 2種以上混合して使用することが できる。
[0044] 反応性基を有するアクリル系単官能性単量体 (b— 1一 2)としては、後述する化合 物(c)と反応する基を有するアクリル系単官能性単量体であれば特に制限はない。
[0045] 例えば、化合物(c)がエポキシ基を有する化合物である場合には、アクリル酸、メタ クリル酸などのカルボキシル基を有するアクリル系単官能性単量体、ヒドロキシェチル プロピルメタタリレート等のヒドロキシアルキル (メタ)アタリレートに代表される水酸基を 有するアクリル系単官能性単量体などが挙げられる。
[0046] また、アクリル系重合体 (B3)を製造するにあたり、反応性基を有するアクリル系単 官能性単量体 (b— 1 2)の 1種として、アクリル酸、メタクリル酸などのカルボキシル 基を有するアクリル系単官能性単量体を使用した場合には、グリシジノレアタリレート、 グリシジルメタタリレートなどの、エポキシ基を有するアクリル系単官能単量体を、単官 能性単量体 (b_ 1—2)のもう 1種として使用できる。
[0047] 上記単量体 (b_ l _ 2)は、 1種単独で、あるいは 2種以上混合して使用することが できる。
[0048] 上述したアクリル系重合体 (B1)の製造には、上述したアクリル系単官能性単量体( b- 1)に加えて、さらに多官能性単量体 (b_ 2)、すなわち、ビニル基を 2つ以上有 する単量体を使用する。ビュル基を 2つ以上有する単量体の具体例としては、ェチレ ングリコーノレジメタクリレート、プロピレングリコーノレジメタクリレート、ジエチレングリコ ールジアタリレート、トリエチレングリコールジアタリレート、テトラエチレングリコールジ アタリレート、ジビニルベンゼンなどが挙げられる。
[0049] 上記単量体 (b— 2)は、 1種単独で、あるいは 2種以上混合して使用することができ る。
[0050] 上述したアクリル系重合体 (B2)の製造には、上述した反応性基を有するアクリル 系単官能性単量体アクリル系単官能性単量体 (b— 1 2)に加えて、アクリル系単量 体 (b— 1 2)の反応性基と反応する基を 2つ以上有する化合物(c)を使用する。
[0051] アクリル系単量体 (b— 1 2)と反応する基としては、その単量体 (b— 1 2)の反応 性基が、例えば、水酸基、カルボキシル基である場合には、エポキシ基、カルボジィ ミド基、ォキサゾリン基などが挙げられる力 これら基の中でも、反応率の観点からは 、エポキシ基が好ましい。
[0052] エポキシ基を 2つ以上有する上記化合物(c)としては、ビスフエノール一A型ェポキ シ樹脂、フエノールノボラック型エポキシ樹脂などのグリシジルエーテルィ匕合物、ダリ シジルエステル化合物、グリシジルァミン化合物などが挙げられる。これら化合物の 中でも、反応率という観点からは、ビスフエノール— A型エポキシ樹脂などのジグリシ ジルエーテル化合物が好ましレ、。 [0053] 上記ジグリシジノレエーテル化合物の市販品としては、ェポミック(三井化学株式会 社製)が挙げられる。
[0054] 上記化合物(c)は、 1種単独で、あるいは 2種以上混合して使用することができる。
[0055] このような化合物を用いることにより、アクリル系重合体 (B1)および (B2)を製造す ること力 Sできる。
[0056] なお、アクリル系重合体 (B2)を製造する際には、反応性基を有するアクリル系単官 能性単量体 (b_ l _ 2)、および化合物(c)を使用することが必須であるが、さらに必 要に応じて、反応性基を有しないアクリル系単官能性単量体 (b_ l _ l)、および多 官能性単量体 (b - 2)を使用してもよレ、。
[0057] また、上述したアクリル系重合体 (B3)の製造には、反応性基を有するアクリル系単 官能性単量体 (b_ l _ 2)を 2種以上使用する。そして、このアクリル系重合体 (B3) は、これら単量体 (b_ l _ 2)を重合するとともに、単量体 (b_ l _ 2)の有する反応性 基同士を反応させることにより製造できる。したがって、アクリル系重合体 (B3)を製造 するにあたっては、反応性基(1)を有する 1つ単量体 (b— 1 2)と、その反応性基( 1)と反応をする反応性基(2)を有するもう 1つの単量体 (b— 1— 2)を使用することが 必要である。例えば、反応性基(1)を有するアクリル系単官能性単量体 (b— 1 2)と して、アクリル酸、メタクリル酸などのカルボキシノレ基を有するアクリル系単官能性単 量体を使用した場合には、グリシジルアタリレート、グリシジルメタタリレートなどの、ェ ポキシ基を有するアクリル系単官能単量体を、反応性基(2)を有する単官能性単量 体 (b— 1 2)として使用できる。
[0058] アクリル系重合体 (B3)を製造する際には、上述のように、反応性基(1)を有するァ クリル系単官能性単量体 (b— 1一 2)、反応性基(2)を有するもう 1つの単量体 (b— 1 —2)を有する単量体を使用する必要があるが、さらに必要に応じて、反応性基を有 しないアクリル系単官能性単量体 (b— 1一 1)、その他の反応性基を有するアタリノレ 系単官能性単量体 (b— 1一 2)、および多官能性単量体 (b— 2)を使用してもよレ、。
[0059] なお、その他の反応性基を有するアクリル系単官能性単量体に含まれる反応性基
(3)は、反応性基(1)および反応性基(2)の両方に反応する基であってもよいし、そ の一方に反応する基であってもよレ、し、あるいはその両方のレ、ずれとも反応しなレ、も のであってもよい。
[0060] さらに、上記アクリル系重合体 (B)を製造するにあたっては、アクリル系単官能性単 量体 (b— 1 )と共重合できる、反応性基を有する非アクリル系単量体 (b— 3)を使用し てもよレ、。上記単量体 (b_ 3)としては、例えば、化合物(c)がエポキシ基を有するィ匕 合物である場合には、クロトン酸、ィタコン酸、フマル酸、マレイン酸などのカルボキシ ル基を有する単量体が挙げられる。例えば、エポキシ基を有する化合物(c)を用いて アクリル系重合体 (B2)を製造する場合には、上記単量体 (b_ 3)をさらに併用するこ とで、内部架橋構造をさらに制御することができる。
[0061] また、例えば、アクリル系重合体 (B3)を製造する場合、特に、反応性基としてェポ キシ基を有するアクリル系単官能性単量体 (b— 1一 2)を使用してアクリル系重合体( B3)を製造する場合には、上記単量体 (b_ 3)をさらに併用することで、内部架橋構 造をさらに制御することができる。
[0062] 上記単量体 (b— 3)は、 1種単独で、あるいは 2種以上混合して使用することができ る。
[0063] また、上記アクリル系重合体 (B)を製造するにあたっては、さらに、アクリル系単官 能性単量体 (b— 1)と共重合できるその他単量体 (b— 4)を使用してもよい。
[0064] 上記単量体 (b— 4)としては、アクリロニトリル、メタタリロニトリル等の極性基含有単 量体;スチレン、 α—メチルスチレン等の芳香族系単量体などが挙げられる。ただし、 上記単量体(b— 4)からは、エチレン、プロピレン、 1ーブテン等のォレフィン系単量 体は除かれる。
[0065] 上記単量体 (b— 4)は、 1種単独で、あるいは 2種以上混合して使用することができ る。
[0066] アクリル系重合体(B1)において、アクリル系単官能性単量体 (b— 1)、多官能性単 量体 (b— 2)、さらに必要に応じて使用する、単量体 (b— 3)および (b— 4)の全重量 を基準として、各々の通常の使用量は、(b_ l)は 10〜99. 5重量%、(b_ 2)は 0. 5〜30重量%、(b_ 3)は 0〜60重量%、(b_4)は 0〜60重量%である。使用量が 前記範囲であると、得られるバインダーは、電極に対する密着性を保ちながら、電解 液に対する膨潤性が低くなる傾向がより顕著となり、またそのバインダーを使用した 電池の電池特性はより低下しなレ、傾向にある。
[0067] アクリル系重合体 (B2)においては、反応性基を有するアクリル系単官能性単量体
(b— 1 2)、化合物(c)、さらに必要に応じて使用する、反応性基を有しないアクリル 系単官能性単量体 (b— 1一 1)、多官能性単量体 (b— 2)、単量体 (b— 3)および (b _4)の全重量を基準として、各々の通常の使用量は、 _ 1 _ 2)は1〜70重量%、 (b_ l _ l)は 0〜98. 5重量%、 (b_ 2)は 0〜50重量%、 (b_ 3)は 0〜50重量% 、(b_4)は 0〜50重量%、化合物(c)は 0. 5〜30重量%である。使用量が前記範 囲であると、得られるバインダーは、電極に対する密着性を保ちながら、電解液に対 する膨潤性が低くなる傾向がより顕著となり、またそのバインダーを使用した電池の 電池特性はより低下しない傾向にある。
またアクリル系重合体 (B3)においては、反応性基を有するアクリル系単官能性単量 体 (b_ l _ 2)、さらに必要に応じて使用する、反応性基を有しないアクリル系単官能 性単量体 (b— 1 1)、多官能性単量体 (b— 2)、単量体 (b— 3)および (b— 4)の全 重量を基準として、各々の通常の使用量は、(b— 1 2)は 1〜: 100重量%、 (b- 1 1)は 0〜99重量%、(b— 2)は 0〜50重量%、(b— 3)は 0〜50重量%、(b— 4) は 0〜50重量%、である。使用量が前記範囲であると、得られるバインダーは、電極 に対する密着性を保ちながら、電解液に対する膨潤性が低くなる傾向がより顕著とな り、またそのバインダーを使用した電池の電池特性はより低下しない傾向にある。
[0068] アクリル系重合体 (B)の重合時に使用される開始剤は、上述の単量体を重合でき る限り特に限定されるものではなレ、。アクリル系重合体 (B)の重合時に使用される開 始剤の具体例としては、例えば、一般に乳化重合に使用されるものであれば、すべ て使用すること力 Sできる。乳化重合に使用される代表的な開始剤としては、過硫酸力 リウムゃ過硫酸アンモニゥムなどの過硫酸塩;タメンノ、イド口パーオキサイド、 t_プチ ノレハイド口パーオキサイド、ベンゾィルパーオキサイド、 t_ブチルパーォキシ _ 2_ ェチルへキサノエート、 t_ブチルパーォキシベンゾエート、ラウロイルパーオキサイド 等の有機過酸化物;ァゾビスイソプチロニトリル等のァゾ化合物;あるいはこれら過硫 酸塩、有機過酸化物またはァゾ化合物と、鉄イオン等の金属イオン、ナトリウムスルホ キシレート、ホノレムァノレデヒド、ピロ亜硫酸ソーダ、亜硫酸水素ナトリウム、 L—ァスコ ルビン酸、ロンガリット等の還元剤との組み合わせによるレドックス開始剤等が挙げら れる。これら開始剤は 1種単独で、もしくは 2種以上混合して使用できる。
[0069] また、必要に応じて tードデシルメルカプタン、 n—ドデシルメルカプタン等のメルカ プタン類、ァリルスルフォン酸、メタァリルスルフォン酸およびこれらのソーダ塩等のァ リルィ匕合物などを分子量調節剤として用レ、ることができる。
[0070] 本発明のエマルシヨン組成物は、ォレフィン系重合体 (A)と内部架橋構造を有する アクリル系重合体 (B)とから形成される樹脂粒子が水に分散をしている。
[0071] 本発明においては、樹脂粒子の内部にォレフィン系重合体 (A)とアクリル系重合体
(B)との両方を含有した樹脂粒子からなるエマルシヨン組成物であってもよいし、ォレ フィン系重合体 (A)からなる樹脂粒子とアクリル系重合体 (B)からなる樹脂粒子とを 含有するエマルシヨン組成物であってもよい。また、エマルシヨン組成物の構成成分 である樹脂粒子が単一の種類の重合体からなるものであっても良ぐ 2種類以上の重 合体が混合したものであってもよい。
[0072] 本発明に係るエマルシヨン組成物のうち、ォレフィン系重合体 (A)とアクリル系重合 体(B)を同一粒子内に含有するエマルシヨン組成物については、ォレフィン系重合 体 (A)の粒子が水に分散したエマルシヨンの存在下で、前記開始剤を用いて上述し た単量体および化合物から、アクリル系重合体 (B)を重合することにより製造される。 そして、この重合の際に、ォレフィン系重合体 (A)を含む樹脂粒子内に、アクリル重 合体 (B)が生成する。
[0073] 本発明に係るエマルシヨン組成物のうち、ォレフィン重合体 (A)からなる樹脂粒子と アクリル系重合体 (B)からなる樹脂粒子とを含有するエマルシヨン組成物については 、通常の乳化重合法により、前記開始剤、単量体、および化合物から、アクリル系重 合体(B)のエマルシヨンを作製し、得られたアクリル系重合体(B)のエマルシヨンとォ レフイン系重合体 (A)が水に分散したエマルシヨンとを混合することにより製造される
[0074] ォレフィン系重合体 (A)の粒子が水に分散したォレフィン系エマルシヨンは、特に その製造方法に制限されるものはなぐ溶融状態の樹脂を水中で攪拌によって強制 的に引きちぎる方法や押出機による溶融混鍊した樹脂に水を添加する方法などが挙 げられ、 ί列えば、特公昭 42— 000275号、特公平 7— 008933号等に開示されてレヽ る。
[0075] ォレフィン系重合体 (Α)のエマルシヨン存在下でアクリル重合体(Β)を重合する際 、また、アクリル重合体 (Β)単独のエマルシヨンを製造する際、粒子の安定性を向上 させるため、通常の乳化重合法で用いられる界面活性剤を使用することも可能である 。界面活性剤の具体例としては、例えば、ァニオン系界面活性剤、非イオン系界面 活性剤、カチオン系界面活性剤、その他の反応性界面活性剤などが挙げられる。こ れら界面活性剤は、 1種単独で、もしくは 2種以上混合して使用することができる。
[0076] 非イオン系界面活性剤の具体例としては、例えば、ポリオキシエチレンラウリルエー テル、ポリオキシエチレンォクチルフヱニルエーテル、ポリオキシエチレンォレイルフ ェニルエーテル、ポリオキシエチレンノユルフェニルエーテル、ォキシエチレン'ォキ シプロピレンブロックコポリマー、 tert—ォクチルフエノキシェチルポリエトキシェタノ ール、ノニルフエノキシェチルポリエトキシエタノール等が挙げられる。
[0077] ァニオン系界面活性剤の具体例としては、例えば、ドデシルベンゼンスルホン酸ナ トリウム、ラウリル硫酸ナトリウム、アルキルジフヱニルエーテルスルホン酸ナトリウム、 アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ステ アリン酸ナトリウム、ォレイン酸カリウム、ナトリウムジォクチルスルホサクシネート、ポリ ォキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルフエ二 ルエーテル硫酸ナトリウムジアルキルスルホコハク酸ナトリウム、 tert—ォクチルフエノ キシエトキシポリエトキシェチル硫酸ナトリウム塩等が挙げられる。
カチオン性界面活性剤の具体例としては、例えばラウリルトリメチルアンモニゥムクロ ライド、ステアリルトリメチルアンモニゥムクロライド等が挙げられる。
[0078] 界面活性剤の使用量は特に制限されなレ、が、ォレフィン系重合体 (A)とアクリル系 重合体 (B)とが同一粒子内に含有されるエマルシヨン組成物を製造する場合には、 界面活性剤の使用量が多くなるとアクリル系重合体 (B)のみからなる粒子が生成して しまう。また界面活性剤の使用量が多い場合には、得られるバインダー中の遊離した 界面活性剤量が相対的に増えてしまうため、電気化学セル特性の低下を招く。その ため、ォレフィン系重合体(A)エマルシヨンの存在下でアクリル系重合体(B)を重合 する場合、アクリル重合体 (B)を単独で重合する場合とも、界面活性剤の使用量とし ては、アクリル系重合体 (B)に使用する、単量体 (b— 1)、 (b— 2)、 (b— 3)、 (b-4) および化合物(c)の全重量を基準として、好ましくは 0〜5重量%である。
[0079] ォレフィン系重合体 (A)とアクリル系重合体 (B)とが同一粒子内に含有されたエマ ルシヨン組成物を製造する場合、ォレフィン系重合体 (A)からなる樹脂粒子とアクリル 系重合体 (B)からなる樹脂粒子とを含有するエマルシヨン組成物を製造する場合とも 、前記した各種の単量体および化合物はこれを一括して、もしくは分割して、あるレヽ は連続的に滴下してカ卩えることができる。
[0080] アクリル系重合体 (B)は、前記した開始剤存在下に、通常 0〜: 100°C、好ましくは 3 0〜90°Cの温度で重合される。
[0081] 上記エマルシヨン組成物を構成する樹脂粒子の形態については特に限定されない 。例えば、同一粒子内にォレフィン系重合体 (A)とアクリル系重合体 (B)とを含有す るエマルシヨンについては、その粒子の形態として、コア/シェル構造、複合構造、 局在構造、だるま状構造、ラズベリー構造等が挙げられる。
[0082] 本発明において、エマルシヨン組成物を構成する樹脂粒子の重量平均粒子径 (Mic rotrac UPA: Honneywell社 により測定)は好ましくは 10nm〜10 /i mであることが好 ましぐさらに好ましくは 10nm〜2 /i mである。粒子径が 10 /i mを超えると、活物質 や金属集電体との接着力が低下し、電気化学セル特性を低下させる。
[0083] エマルシヨン組成物中のォレフィン系重合体 (A)とアクリル系重合体(B)との重量比 は、ォレフィン系重合体 (A)とアクリル系重合体 (B)との合計重量を基準として、好ま しくは (A)が 95〜30重量%、(B)が 5〜70重量%、より好ましくは (A)が 95〜50重 量%、(B)が 5〜50重量%である。(A)と(B)との重量比が上記範囲であると、電気化 学的な安定性および接着性の点で好ましレ、。
[0084] 本発明においては、電気化学セル用電極に用いるバインダー以外の構成材料に ついては、特に限定をしない。例えば、二次電池および電気二重層キャパシタ用電 極に、本発明のバインダーを使用する場合には、正極では正極活物質とバインダー とを、負極では負極活物質とバインダーとを、それぞれ、その構成材料とする力 その 他材料、例えば、カーボンブラック、アモルファスゥイスカーカーボン、グラフアイトなど の炭素材料からなる導電助剤などを添加してもよい。
[0085] 上記二次電池用負極活物質としては、金属リチウム、リチウム合金、リチウムイオン をドーブ '脱ドーブすることが可能な炭素材料、リチウムイオンをドープ '脱ドープする ことが可能な酸化スズ、酸化ニオブ、酸化バナジウム、リチウムイオンをドープ '脱ドー プすることが可能な酸化チタン、またはリチウムイオンをドープ ·脱ドープすることが可 能なシリコン、リチウムイオンをドープ'脱ドープする事が可能な遷移金属窒素化物を 用いることができる。これらの中でもリチウムイオンをドーブ.脱ドーブすることが可能 な炭素材料が好ましい。このような炭素材料は、グラフアイトであっても非晶質炭素で あってもよく、活性炭、炭素繊維、アセチレンブラック、ケッチェンブラックなどのカー ボンブラック、メソカーボンマイクロビーズ、天然黒鉛などが用いられる。
[0086] また、本発明の電気化学セル電極用バインダーには、さらに、カルボキシメチルセ ルロース、ポリアクリル酸ナトリウムなどの増粘剤などを添カ卩してもょレ、。
[0087] 二次電池用正極活物質としては、 MoS、 TiS、 MnO、 V Oなどの遷移金属酸化
2 2 2 2 5
物および遷移金属硫化物; LiCoO、 LiMnO、 LiMn O、 LiNiO、 LiNi Co O
2 2 2 4 2 X (1-X) 2 などのリチウムと遷移金属とからなる複合酸化物;ポリア二リン、ポリチォフェン、ポリピ ロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール /ポリア二リン複合 体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金 属とからなる複合酸化物が好ましい。負極力 Sリチウム金属またはリチウム合金である 場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移 金属の複合酸化物と炭素材料との混合物を用いることもできる。
[0088] 電気二重層キャパシタ用正、負極活物質としては、種々の活性炭が用いられる。
[0089] 本発明においては、二次電池は、その電池での使用形態に対応させるために、前 述の正極、負極、およびセパレーターを、円筒型、コイン型、角型、フィルム型その他 任意の形状とし、電池缶の内部に、前述の正極および負極を、セパレーターを中心 として、重ねたものに、非水電解液を封入することにより作製できる。
[0090] また、本発明においては、電気二重層キャパシタは、その電池での使用形態に対 応させるために、円筒型、コイン型等任意の形状とし、電池缶の内部に、前述した電 極を、セパレーターを中心としてその両側に重ねたものに、電解液を封入することに より作製できる。
[0091] 二次電池で使用されるセパレーターは、正極と負極とを電気的に絶縁し、リチウムィ オンを透過する膜であり、セパレーターとしては、例えば多孔性膜や高分子電解質 が用いられる。上記多孔性膜としては、多孔性高分子フィルムが好適に使用され、そ のフィルムの材質としては、ポリオレフイン、ポリイミド、ポリフッ化ビニリデン、ポリエス テル等が例示される。これら多孔性高分子フィルムの中でも、特に、多孔性ポリオレフ インフィルムが好ましぐ具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレ ンフィルム、または多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルムを 例示することができる。なお、多孔性ポリオレフインフィルムは、その表面が熱安定性 に優れる他の樹脂によりコーティングされてレ、てもよレ、。
[0092] また、電気二重層キャパシタのセパレーターとしては、二次電池同様のセパレータ 一に加えて、電解コンデンサー紙無機セラミック粉末を含む多孔質膜等を使用できる
[0093] 二次電池に使用される電解質としては、例えば、 LiPF、 LiBF、 LiCIO、 LiAsF
6 4 4 6
、 CF SO Li、 (CF SO )N/Li等が挙げられる。これら電解質は単独でまたは 2種以
3 3 3 2
上組み合わせて使用できる。これら電解質は、非水系電解液 (有機溶媒)などの電解 液に溶解して使用する。
[0094] 電気二重層キャパシタに使用される電解質としては、例えば、テトラエチルアンモニ ゥムテトラフルォロボレート、トリェチルモノメチルアンモニゥムテトラフルォロボレート 等が挙げられる。これら電解質は、単独でまたは 2種以上組み合わせて使用できる。 これら電解質は電解液に溶解して使用する。
[0095] 電気二重層キャパシタには、その性能が発揮できる任意の電解液が使用できるが 、電解液としては非水系電解液が好ましレ、。
[0096] 二次電池および電気二重層キャパシタに使用する非水系電解液としては、例えば 、プロピレンカーボネート、エチレンカーボネート、 y—ブチ口ラタトン、ジメチルスル ホキシド、ジメチノレカーボネート、ェチノレメチノレカーボネート、ジェチノレカーボネート、 1 , 2—ジメトキシェタン、 1, 2—ジエトキシェタン、テトラヒドロフラン等の有機溶媒が 挙げられる。これら非水系電解液は、いずれか単独で、あるいは 2種以上を混合して 使用される。
実施例
[0097] 以下、実施例および比較例により本発明をより具体的に説明するが、本発明はこれ ら実施例に限定されるものではない。
[0098] <エマルシヨン組成物の作成 >
[実施例 1]
オートクレープにエチレン'メタクリル酸共重合体(三井デュポンポリケミカル株式会 社製二ュクレノレ N2060、メタクリノレ酸 20部) 263部、水酸化ナトリウム 25部、脱イオン 水 712部を仕込み、 150°Cで 2時間攪拌後、冷却し、粒子径 20nm、不揮発分 27% のォレフインエマルシヨンを得た。このエマノレシヨンを 519部、脱イオン水 325部を反 応容器に仕込み、窒素気流下で 80°Cに昇温し、過硫酸アンモニゥム 0. 7部を添加し た。これとは別に、 2—ェチルへキシノレアタリレート 32部、スチレン 63部、ヒドロキシェ チルメタタリレート 42部、エチレングリコールジメタタリレート 3部を脱イオン水 56部中 にドデシルベンゼンスルホン酸ソーダ 0. 3部を使って乳化させた乳化混合物を作り、 この乳化混合物を 3時間で反応容器に滴下して、その後、更に同温度で 2時間保持 して重合を完結させた。得られたエマルシヨンは不揮発分 27%、 pH9. 5で光散乱測 定による重量平均粒子径は 60nmであった。
[0099] [実施例 2]
実施例 1で得たォレフィンエマルシヨンを 735部、脱イオン水 198部を反応容器に 仕込み、窒素気流下で 80°Cに昇温し、過硫酸アンモニゥム 0. 4部を添カ卩した。これ とは別に、 2—ェチルへキシルアタリレート 19.4部、スチレン 38.3部、ヒドロキシェチ ノレメタタリレート 25.5部、エチレングリコールジメタタリレート 1.8部を脱イオン水 34部 中にドデシルベンゼンスルホン酸ソーダ 0. 2部を使って乳化させた乳化混合物を作 り、この乳化混合物を 2時間で反応容器に滴下して、その後、更に同温度で 2時間保 持して重合を完結させた。得られたエマルシヨンは不揮発分 27%、 pH9. 5で光散乱 測定による重量平均粒子径は 60nmであった。
[0100] [実施例 3]
実施例 1で得たォレフィンエマルシヨンを 519部、脱イオン水 325部を反応容器に 仕込み、窒素気流下で 80°Cに昇温し、過硫酸アンモニゥム 0. 7部を添加した。これ とは別に、 2—ェチルへキシルアタリレート 49部、メチルメタタリレート 90部、ジビニル ベンゼン 1部を脱イオン水 56部中にドデシルベンゼンスルホン酸ソーダ 0. 3部を使 つて乳化させた乳化混合物を作り、この乳化混合物を 3時間で反応容器に滴下して 、その後、更に同温度で 2時間保持して重合を完結させた。得られたエマルシヨンは 不揮発分 27%、 pH9. 5で光散乱測定による重量平均粒子径は 120nmであった。
[0101] [実施例 4]
実施例 1で得たォレフィンエマルシヨンを 519部、脱イオン水 325部を反応容器に 仕込み、窒素気流下で 80°Cに昇温し、過硫酸アンモニゥム 0. 7部を添カ卩した。これと は另 IJに、 2_ェチルへキシルアタリレート 49部、スチレン 81部、メタクリル酸 7部、ダリ シジルメタタリレート 3部を脱イオン水 56部中にドデシルベンゼンスルホン酸ソーダ 0 . 3部を使って乳化させた乳化混合物を作り、この乳化混合物を 3時間で反応容器に 滴下して、その後、更に同温度で 2時間保持して重合を完結させた。得られたェマル シヨンは不揮発分 27%、 pH9. 5、光散乱測定による重量平均粒子径は 60nmであ つに。
[0102] [実施例 5]
脱イオン水 83部、ドデシノレベンゼンスルホン酸ソーダ 0. 2部を反応容器に仕込み 、窒素気流下で 80°Cに昇温した。昇温後、過硫酸カリウム 0. 5部を反応容器に投じ 、これとは別に、メタアクリル酸 3部、ェポミック R140 (三井化学株式会社製、ジグリシ ジルエーテル化物) 10部、スチレン 47部、 2—ェチルへキシルアタリレート 40部を脱 イオン水 40部中にドデシルベンゼンスルホン酸ソーダ 0. 4部を使って乳化させた乳 化混合物を作り、この乳化混合物を 4時間で反応容器に滴下して、その後、更に同 温度で 3時間保持して重合を完結させた。このアクリル系エマルシヨン力 なる重合 液を 5%水酸化ナトリウムで pH8に調製した。得られたアクリル系エマルシヨンの不揮 発分は 40%、光散乱測定による重量平均粒子径は lOOnmであった。
[0103] 上記のように調製したアクリル系エマルシヨンを不揮発分換算で 30部と実施例 1で 作成したォレフィンエマルシヨンを不揮発分換算で 70部添加し攪拌した後、蒸留水 を添加し固形分 25%のエマルシヨン組成物を調製した。 [0104] [実施例 6]
窒素気流下の反応容器中に、ォレフィン系エマルシヨンであるケミパール S650 (ェ チレン一不飽和カルボン酸共重合体、水酸化ナトリウム中和品、不揮発分 27重量% 、三井化学株式会社製) 346重量部、および脱イオン水 93重量部を仕込み、反応器 を 80°Cに昇温した。 80°Cとなった反応器に、さらに過硫酸アンモニゥム 0. 2重量部 を添カ卩した。これとは別に、脱イオン水 16重量部中に、 2_ェチルへキシルアタリレ ート 16重量部、ヒドロキシェチルメタタリレート 10重量部、スチレン 11重量部、ジビニ ルベンゼン 3重量部、および乳化剤であるドデシルベンゼンスルホン酸ソーダ 0. 2重 量部を添加し、乳化混合物を作製した。この乳化混合物を、 3時間で 80°Cに保持し た上記反応容器に滴下し、その後、さらに同温度で 2時間反応させ重合を完結させ た。得られたエマルシヨン組成物は不揮発分 27重量%、 pH9. 5で、光散乱測定に よる重量平均粒子径は lOOnmであった。
[0105] [実施例 7]
実施例 5で作成したアクリル系エマルシヨン 30重量部に、ポリオレフイン系エマルシ ヨンであるケミパール S650 70重量部を添加して攪拌した後、さらに蒸留水を添加し 固形分 25重量%のエマルシヨン組成物を調製した。
[0106] [比較例 1]
実施例 1で調製したォレフィンエマルシヨンを 519部、脱イオン水 325部を反応容器 に仕込み、窒素気流下で 80°Cに昇温し、過硫酸アンモニゥム 0. 7部を添加した。こ れとは別に、 2—ェチノレへキシノレアタリレート 32部、スチレン 63部、ヒドロキシェチノレ メタタリレート 42部を脱イオン水 56部中にドデシルベンゼンスルホン酸ソーダ 0. 3部 を使って乳化させた乳化混合物を作り、この乳化混合物を 3時間で反応容器に滴下 して、その後、更に同温度で 2時間保持して重合を完結させた。得られたエマルショ ンは不揮発分 27%、 pH9. 5で光散乱測定による重量平均粒子径は 60nmであった
[0107] [比較例 2]
脱イオン水 83部、ドデシノレベンゼンスルホン酸ソーダ 0. 2部を反応容器に仕込み 、窒素気流下で 80°Cに昇温した。昇温後、過硫酸カリウム 0. 5部を反応容器に投じ 、これとは別に、ェポミック R140 (三井化学株式会社製、ジグリシジノレエーテル化物) 10部、スチレン 50部、 2—ェチルへキシルアタリレート 40部を脱イオン水 40部中にド デシルベンゼンスルホン酸ソーダ 0. 4部を使って乳化させた乳化混合物を作り、この 乳化混合物を 4時間で反応容器に滴下して、その後、更に同温度で 3時間保持して 重合を完結させた。このアクリル系エマルシヨンからなる重合液を 5%水酸化ナトリウ ムで pH8に調製した。得られたアクリル系エマルシヨンの不揮発分は 45。/0、光散乱 測定による重量平均粒子径は lOOnmであった。
[0108] 上記のように調製したアクリル系エマルシヨンを不揮発分換算で 30部と実施例 1で 作成したォレフィンエマルシヨンを不揮発分換算で 70部添加し攪拌した後、蒸留水 を添加し固形分 25%のエマルシヨン組成物を調製した。
[0109] <二次電池負極の作製 >
[実施例 A]
天然黒鉛((株)中越黒鉛工業所製 LF18A) 97重量部に水により 1. 2重量%に調 整した増粘剤カルボキシメチルセルロース溶液(ダイセル化学株式会社 CMCダイ セル 1160)を固形分換算で 1重量部混合した後、実施例 1で作成したエマルシヨン 組成物を固形分換算で 2重量部を混合した後、さらに蒸留水を添加し固形分濃度 50 重量%の負極合剤スラリーを調製した。次に、この負極合剤スラリーを厚さ 18 / mの 帯状銅箔製の負極集電体に塗布した後、乾燥、圧縮成型して、厚さ 70 / mの負極を 作製した。
[0110] [実施例 B]
実施例 Aにおいてエマルシヨン組成物を実施例 2で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの負極を作製した。
[0111] [実施例 C]
実施例 Aにおいてエマルシヨン組成物を実施例 3で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの負極を作製した。
[0112] [実施例 D]
実施例 Aにおいてエマルシヨン組成物を実施例 4で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの負極を作成した。 [0113] [実施例
実施例 Aにおいてエマルシヨン組成物を実施例 5で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの負極を作成した。
[0114] [実施例 F]
実施例 Aにおいてエマルシヨン組成物を実施例 6で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの負極を作成した。
[0115] [実施例 G]
実施例 Aにおいてエマルシヨン組成物を実施例 7で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの負極を作成した。
[0116] [比較例 A]
実施例 Aにおいてエマルシヨン組成物を比較例 1で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの負極を作成した。
[0117] [比較例 B]
実施例 Aにおいてエマルシヨン組成物を比較例 2で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの負極を作成した。
[0118] [比較例 C]
天然黒鉛((株)中越黒鉛工業所製 LF18A) 98重量部に、不揮発分 8重量%の P VDF (ポリフッ化ビニリデン)の NMP (N—メチルー 2—ピロリドン)溶解液(呉羽化学 工業 (株)製 KFポリマー # 1120) 25重量部を添加し、さらに粘度調整用 NMPを混 合し、負極合剤スラリーを調製した。次に、この負極合剤スラリーを厚さ 18 μ ΐηの帯 状銅箔製の負極集電体に塗布した後、乾燥、圧縮成型して、厚さ 70 / mの負極を作 製した。
[0119] [比較例 D]
エマルシヨン組成物を不揮発分 48重量%の SBRの水分散液(日本エイアンドエル (株)製 SR143)に変える以外は実施例 Aと同様の操作を行レ、、厚さ 70 z mの負極 を作製した。
[0120] <二次電池正極の作製 >
[実施例 H] LiCoO (本荘 FMCエナジーシステムズ (株)製 HLC— 22) 85· 5重量部、黒鉛 8 重量部、アセチレンブラック 3重量部及びカルボキシメチルセルロース(ダイセル化学 株式会社 1160)を固形分換算で 1. 5重量部、実施例 1で作成したエマルシヨン組成 物を固形分換算で 2部を添加し LiCoO合剤スラリーを調製した。この LiCoO合剤ス ラリーを厚さ 20 μ mのアルミ箔に塗布し、乾燥し、圧縮成型して、厚さ 70 a mの正極 を作製した。
[0121] [実施例 I]
実施例 Hにおいてエマルシヨン組成物を実施例 2で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの正極を作製した。
[0122] [実施例 J]
実施例 Hにおいてエマルシヨン組成物を実施例 3で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの正極を作製した。
[0123] [実施例 K]
実施例 Hにおいてエマルシヨン組成物を実施例 4で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの正極を作製した。
[0124] [実施例し]
実施例 Hにおいてエマルシヨン組成物を実施例 5で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの正極を作製した。
[0125] [実施例 M]
実施例 Hにおいてエマルシヨン組成物を実施例 6で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの正極を作製した。
[0126] [実施例 N]
実施例 Hにおいてエマルシヨン組成物を実施例 7で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの正極を作製した。
[0127] [比較例 E]
実施例 Hにおいてエマルシヨン組成物を比較例 1で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの正極を作成した。
[0128] [比較例 F] 実施例 Hにおいてエマルシヨン組成物を比較例 2で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの正極を作成した。
[0129] [比較例 G]
LiCoO (本荘 FMCエナジーシステムズ (株)製 HLC_ 22) 87重量部、黒鉛 8重 量部、アセチレンブラック 3重量部および不揮発分 8重量%の PVDFの NMP溶解液 (呉羽化学工業 (株)製 KFポリマー # 1120) 25重量部を混合した後、さらに粘度調 整用 NMPを混合し、 LiCoO合剤スラリーを調製した。この LiCoO合剤スラリーを厚 さ 20 a mのアルミ箔に塗布した後、乾燥、圧縮成型して、厚さ 70 a mの正極を作製 した。
[0130] <二次電池密着性評価 >
実施例 A〜G、比較例 A〜Gで作成した電極を切り、瞬間接着剤にてガラスプレパ ラートに貼り付け電極を固定し評価用サンプルとした。評価用サンプルを塗膜剥離強 度測定装置サイカス DN20型 (ダイブラウインテス (株)製)で合材層と集電体界面を 水平速度 2 μ m/秒の速度で切削し、切削に必要な水平方向の力から合材層と集電 体界面の剥離強度を測定した。剥離強度の 3回の平均値をとり密着性を評価した。 結果を表 1に示す。
[0131] [表 1]
【表 1】
Figure imgf000025_0001
[0132] <二次電池非水電解液の調製 >
非水溶媒として、エチレンカーボネート(EC)とェチルメチルカーボネート (EMC)を 、 EC : MEC = 4 : 6 (重量比)の割合で混合したものを用レ、、次に電解質である LiPF
6 を溶解し電解質濃度が 1. 0モル Zリットルとなるように非水電解液を調製した。
[0133] <コイン型二次電池の作製 >
コイン型電池用負極として実施例 A、 B、 D、 C、 E、比較例 A、 Bで作成した負極を、 直径 14mmの円盤状に打ち抜いて、重量 20mg/l4mm ci)のコイン状の負極を得 た。
[0134] コイン型電池用正極として実施例 F、 G、 H、 I、 J、比較例 C、 Dで作成した正極を、 直径 13. 5mmの円盤状にうちぬき、重量 42mg/l 3. 5mm φのコイン状の正極を 得た。上述のコイン状の負極、正極、および厚さ 25 /i m、直径 16mmの多孔性ポリ プロピレンフィルムからできたセパレータを、ステンレス製の 2032サイズ電池缶の負 極缶内に、負極、セパレータ、正極の順序で積層した。その後、セパレータに前記非 水電解液 0. 04mlを注入した後に、その積層体の上にアルミニウム製の板 (厚さ 1. 2 mm、直径 16mm)、およびバネを重ねた。最後に、ポリプロピレン製のガスケットを介 して電池の正極缶をかぶせて、缶蓋を力しめることにより、電池内の気密性を保持し
、直径 20mm、高さ 3. 2mmのコイン型電池を作製した。
[0135] <電池サイクル特性の評価 >
上述の様に作製したコイン電池を使用し、この電池を 0. 5mA定電流、 4. 2V定電 圧の条件で、 4. 2V定電圧の時の電流値が 0. 05mAになるまで充電し、その後、 1 mA定電流 3. 0V定電圧の条件で、 3. 0V定電圧の時の電流値が 0. 05mAになる まで放電した。このサイクルを 200回繰り返し、初期の電池容量に対する 200サイク ル後の容量%を評価した。各電極を使用した電池の評価結果を表 2に示す。
[0136] [表 2]
【表 2】
Figure imgf000027_0001
<電気二重層キャパシタ電極の作製 >
[実施例〇]
活性炭(クラレ株式会社 RP— 20) 100重量部、アセチレンブラック(電気化学株式 会社デンカブラック) 3重量部、ケッチェンブラック(ケッチェンブラックインターナショナ ル株式会社 EC600JD) 2重量部に 1. 2重量%に調整した増粘剤カルボキシメチル セルロース(ダイセル化学株式会社 CMC1160)を固形分換算で 1. 5重量部混合し に実施例 1で作成したエマルション組成物を固形分換算で 5部を混合しさらに蒸留水 を添加し固形分濃度 50重量%の合剤スラリーを調製した。次に、この負極合剤スラリ 一を厚さ 20 μ ΐηの帯状アルミ箔製の集電体に塗布し、乾燥し、圧縮成型して、厚さ 7 0 μ mの電極を作製した。
[0138] [実施例 P]
実施例 Oにおいてエマルシヨン組成物を実施例 2で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの電極を作製した。
[0139] [実施例 Q]
実施例 Oにおいてエマルシヨン組成物を実施例 3で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの電極を作製した。
[0140] [実施例 R]
実施例 Oにおいてエマルシヨン組成物を実施例 4で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの電極を作製した。
[0141] [実施例 S]
実施例 Oにおいてエマルシヨン組成物を実施例 5で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの電極を作製した。
[0142] [実施例 T]
実施例 Oにおいてエマルシヨン組成物を実施例 6で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの電極を作製した。
[0143] [実施例 U]
実施例 Oにおいてエマルシヨン組成物を実施例 7で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの電極を作製した。
[0144] [比較例 H]
実施例 Oにおいてエマルシヨン組成物を比較例 1で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの電極を作製した。
[0145] [比較例 I]
実施例 Oにおいてエマルシヨン組成物を比較例 2で作成したエマルシヨンに変える 以外同様の操作を行い、厚さ 70 μ mの電極を作製した。 [0146] [比較例 J]
実施例 Oにおレ、てエマルシヨン組成物を PTFE水分散体 (ダイキン工業株式会社 D - 2C)に変える以外同様の操作を行レ、、厚さ 70 μ mの電極を作製した。
[0147] <電気二重層キャパシタ密着性評価 >
実施例 0〜T比較例 H〜Jで作成した電極を二次電池密着性評価と同様の方法で 評価した。結果を表 3に示す。
[0148] [表 3]
【表 3】
Figure imgf000029_0001
[0149] <電気二重層キャパシタ電解液の調製 >
電解質であるテトラエチルアンモニゥムテトラフルォロボレートをプロピレンカーボネ ートに溶解し、電解質濃度が電解質濃度が 1. 5モル/リットルとなるように電解液を 調製した。
[0150] <コイン型電気二重層キャパシタの作製 >
実施例 0〜U比較例 H〜Jで作成した電極を、直径 14mmの円盤状に打ち抜いて 、重量 20mg/14mm φのコイン状の電極を得た。 [0151] 上述のコイン状の電極および厚さ 25 μ m、直径 16mmの多孔性ポリプロピレンフィ ルムからできたセパレータを、ステンレス製の 2032サイズ電池缶の負極缶内に、電 極、セパレータ、電極の順序で積層した。その後、セパレータに前記電解液 0. 04ml を注入した後に、その積層体の上にアルミニウム製の板(厚さ 1. 2mm、直径 16mm )、およびバネを重ねた。最後に、ポリプロピレン製のガスケットを介して電池の缶をか ぶせて、缶蓋をかしめることにより、電池内の気密性を保持し、直径 20mm、高さ 3. 2 mmのコイン型電池を作製した。
[0152] <電気二重層キャパシタ特性の評価 >
上述の様に作製したコイン型電気二重層キャパシタを使用し、 10mAの定電流で 2 . 7Vまで 10分間充電を行った後、 1mAの定電流で放電をおこなった。得られた充 放電特性より静電容量を求めた。また、内部抵抗は、充放電特性より社団法人電子 情報技術産業協会が定める規格 RC— 2377の計算方法に従って算出した。各電極 を使用したキャパシタの評価結果を表 4に示す。
[0153] [表 4]
【表 4】
電極 使用組成物 静電容量 (F/g) 内部抵抗(Q F)
実施例 o 実施例 1 45 4.0
実施例 P 実施例 2 44 4.0
実施例 Q 実施例 3 45 3.9
実施例 R 実施例 4 44 4.0
実施例 S 実施例 5 45 4.0
実施例 T 実施例 6 45 4.0
実施例 u 実施例 7 44 4.0
比較例 H 比較例 1 32 4.4
比較例 I 比較例 2 30 4.6
比較例 J 比較例 3 32 4.4

Claims

請求の範囲
[1] ォレフィン系重合体 (A)と内部架橋構造を有するアクリル系重合体 (B)とから形成 される樹脂粒子が水に分散したエマルシヨン組成物からなる電気化学セル電極用バ インダー。
[2] 内部架橋構造を有するアクリル系重合体 (B)が、アクリル系単官能性単量体 (b— 1 )、多官能性単量体 (b - 2)を含む単量体から製造されることを特徴とする請求項 1に 記載の電気化学セル電極用バインダー。
[3] 内部架橋構造を有するアクリル系重合体 (B)が、反応性基を有するアクリル系単官 能性単量体 (b— 1 2)、該アクリル系系単量体 (b— 1 2)の反応性基と反応する 基を 2つ以上有する化合物(c)を含む化合物より製造されることを特徴とする請求項 1に記載の電気化学セル電極用バインダー。
[4] 前記反応性基を有するアクリル系単官能性単量体 (b— 1 2)の反応性基がカル ボキシル基および/または水酸基であり、前記化合物(c)のアクリル系系単量体 (b— 1 2)の反応性基と反応する基がエポキシ基である、請求項 3に記載の電気化学セ ル電極用バインダー。
[5] 内部架橋構造を有するアクリル系重合体 (B)が、反応性基(1)を有するアクリル系 単官能性単量体 (b— 1一 2)、反応性基( 1 )と反応をする反応性基 (2)を有するァク リル系単官能性単量体を含む単量体より製造されることを特徴とする請求項 1に記載 の電気化学セル電極用バインダー。
[6] ォレフィン系重合体 (A)がォレフイン系単量体(a_ l)の共重合体を含むことを特 徴とする請求項:!〜 5のいずれかに記載の電気化学セル電極用バインダー。
[7] ォレフィン系重合体 (A)が、ォレフィン系単量体(a_ l)とォレフイン系単量体と共 重合可能な他の単量体(a— 2)の共重合体を含む請求項:!〜 6のレ、ずれかに記載の 電気化学セル電極用バインダー。
[8] ォレフィン系単量体(a— 1 )とォレフイン系単量体と共重合可能な他の単量体 (a—
2)の比率が、(a— 1)と(a— 2)の合計重量を基準として(a— 1)が 99.
9〜35. 0重 量%、(a— 2)が 0. 1 -65. 0重量%である、請求項 7に記載の電気化学セル電極用 バインダー。 [9] エマルシヨン中のォレフィン系重合体 (A)とアクリル系重合体(B)の合計重量を基 準として、ォレフィン系重合体 (A)が 95〜30重量%、アクリル系重合体(B)が 5〜70 重量%であることを特徴とする請求項 1〜8のいずれかに記載の電気化学セル電極 用バインダー。
[10] 請求項 1〜9の何れかに記載のバインダーを含有してなる電極。
[11] 請求項 10に記載の電極を正および/または負極として使用した電気化学セル。
[12] 前記電気化学セルが二次電池である請求項 11に記載の電気化学セル。
[13] 前記電気化学セルが電気二重層キャパシタである請求項 11に記載の電気化学セ ノレ。
PCT/JP2007/058867 2006-04-26 2007-04-24 電気化学セル電極用バインダー WO2007125924A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008513226A JP5227169B2 (ja) 2006-04-26 2007-04-24 電気化学セル電極用バインダー

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006122352 2006-04-26
JP2006-122352 2006-04-26
JP2006-225240 2006-08-22
JP2006225240 2006-08-22

Publications (1)

Publication Number Publication Date
WO2007125924A1 true WO2007125924A1 (ja) 2007-11-08

Family

ID=38655450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058867 WO2007125924A1 (ja) 2006-04-26 2007-04-24 電気化学セル電極用バインダー

Country Status (3)

Country Link
JP (1) JP5227169B2 (ja)
TW (1) TW200804551A (ja)
WO (1) WO2007125924A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066274A (ja) * 2006-08-08 2008-03-21 Hitachi Chem Co Ltd エネルギーデバイス電極用バインダ樹脂エマルション及びこれを用いたエネルギーデバイス電極並びにエネルギーデバイス
JP2008077837A (ja) * 2006-08-22 2008-04-03 Mitsui Chemicals Inc 二次電池または電気二重層キャパシタ用バインダー
WO2012115096A1 (ja) * 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
US20140205904A1 (en) * 2011-08-30 2014-07-24 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
JP2017033871A (ja) * 2015-08-05 2017-02-09 株式会社豊田自動織機 負極及びリチウムイオン二次電池並びにその製造方法
JP2017510044A (ja) * 2014-04-01 2017-04-06 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. リチウムイオン蓄電デバイス用の電極バインダー組成物
WO2018135562A1 (ja) 2017-01-20 2018-07-26 三井化学株式会社 積層体及びテープワインディングパイプ
WO2018181290A1 (ja) 2017-03-29 2018-10-04 三井化学株式会社 積層体及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011016563A1 (ja) * 2009-08-07 2013-01-17 Jsr株式会社 電気化学デバイス及びバインダー組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283853A (ja) * 2000-03-30 2001-10-12 Nippon Zeon Co Ltd アルカリ二次電池負極用バインダー組成物およびその利用
JP2002042819A (ja) * 2000-07-31 2002-02-08 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2002050360A (ja) * 2000-08-07 2002-02-15 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー及びその利用
JP2002256129A (ja) * 2000-11-10 2002-09-11 Sanyo Chem Ind Ltd 電気化学素子の電極用結合剤および電極の製造方法
WO2006085416A1 (ja) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. エネルギーデバイス電極用バインダ樹脂エマルション及びこれを用いたエネルギーデバイス電極並びにエネルギーデバイス
JP5083109B2 (ja) * 2008-08-07 2012-11-28 富士通株式会社 ネットワーク情報収集装置、ネットワーク情報提供装置、及びネットワーク計測システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161078A (ja) * 1987-12-18 1989-06-23 Toagosei Chem Ind Co Ltd エマルジョン型粘着剤の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283853A (ja) * 2000-03-30 2001-10-12 Nippon Zeon Co Ltd アルカリ二次電池負極用バインダー組成物およびその利用
JP2002042819A (ja) * 2000-07-31 2002-02-08 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2002050360A (ja) * 2000-08-07 2002-02-15 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー及びその利用
JP2002256129A (ja) * 2000-11-10 2002-09-11 Sanyo Chem Ind Ltd 電気化学素子の電極用結合剤および電極の製造方法
WO2006085416A1 (ja) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. エネルギーデバイス電極用バインダ樹脂エマルション及びこれを用いたエネルギーデバイス電極並びにエネルギーデバイス
JP5083109B2 (ja) * 2008-08-07 2012-11-28 富士通株式会社 ネットワーク情報収集装置、ネットワーク情報提供装置、及びネットワーク計測システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066274A (ja) * 2006-08-08 2008-03-21 Hitachi Chem Co Ltd エネルギーデバイス電極用バインダ樹脂エマルション及びこれを用いたエネルギーデバイス電極並びにエネルギーデバイス
JP2008077837A (ja) * 2006-08-22 2008-04-03 Mitsui Chemicals Inc 二次電池または電気二重層キャパシタ用バインダー
WO2012115096A1 (ja) * 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
US20140205904A1 (en) * 2011-08-30 2014-07-24 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
US10224549B2 (en) * 2011-08-30 2019-03-05 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
JP2017510044A (ja) * 2014-04-01 2017-04-06 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. リチウムイオン蓄電デバイス用の電極バインダー組成物
JP2017033871A (ja) * 2015-08-05 2017-02-09 株式会社豊田自動織機 負極及びリチウムイオン二次電池並びにその製造方法
WO2018135562A1 (ja) 2017-01-20 2018-07-26 三井化学株式会社 積層体及びテープワインディングパイプ
EP4230398A1 (en) 2017-01-20 2023-08-23 Mitsui Chemicals, Inc. Laminate and tape winding pipe
WO2018181290A1 (ja) 2017-03-29 2018-10-04 三井化学株式会社 積層体及びその製造方法

Also Published As

Publication number Publication date
TW200804551A (en) 2008-01-16
JP5227169B2 (ja) 2013-07-03
JPWO2007125924A1 (ja) 2009-09-10

Similar Documents

Publication Publication Date Title
JP6191597B2 (ja) 二次電池用セパレータ
KR102156702B1 (ko) 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지용 부극 및 그 제조 방법, 그리고 리튬 이온 이차 전지
JP5328034B2 (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
JP5227169B2 (ja) 電気化学セル電極用バインダー
JP4461659B2 (ja) リチウムイオン二次電池電極用バインダー組成物、およびその利用
JP5325413B2 (ja) 電気化学セル用バインダー
JP6327251B2 (ja) リチウムイオン二次電池用多孔膜スラリー組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極及びリチウムイオン二次電池
KR20230034420A (ko) 전고체 이차전지
CN111864208B (zh) 粘合剂、包括其的负极浆料、负极和可再充电电池
WO2015064411A1 (ja) リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物
JPWO2014196547A1 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2015028842A (ja) リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
JPWO2006101182A1 (ja) 非水電解質二次電池電極用バインダー、電極、ならびに非水電解質二次電池
JP4809159B2 (ja) 二次電池または電気二重層キャパシタ用バインダー
WO2015111663A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2014146471A (ja) 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池
JP2019192340A (ja) 二次電池用セパレータ、これを含む二次電池用積層体および捲回体、ならびに非水二次電池
JP6236964B2 (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP6974930B2 (ja) 非水電解質二次電池
JP2019192339A (ja) 二次電池用セパレータ、これを含む二次電池用積層体および捲回体、ならびに非水二次電池
JP2008204829A (ja) 電気化学セル電極用バインダー
CN110741495B (zh) 电化学元件用粘结剂组合物、功能层用浆料组合物、粘接层用浆料组合物以及复合膜
JP6728653B2 (ja) 非水系二次電池およびその製造方法
JP2015041570A (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用多孔膜、リチウムイオン二次電池、およびリチウムイオン二次電池用多孔膜の製造方法
JP4725163B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008513226

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742302

Country of ref document: EP

Kind code of ref document: A1