WO2007125699A1 - ドラッグデリバリーシステム、及びそれを制御するためのコンピュータプログラム - Google Patents

ドラッグデリバリーシステム、及びそれを制御するためのコンピュータプログラム Download PDF

Info

Publication number
WO2007125699A1
WO2007125699A1 PCT/JP2007/055808 JP2007055808W WO2007125699A1 WO 2007125699 A1 WO2007125699 A1 WO 2007125699A1 JP 2007055808 W JP2007055808 W JP 2007055808W WO 2007125699 A1 WO2007125699 A1 WO 2007125699A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
magnetic
magnetic field
blood vessel
retention amount
Prior art date
Application number
PCT/JP2007/055808
Other languages
English (en)
French (fr)
Inventor
Norihide Saho
Akira Sasaki
Kenichi Kawabata
Hisashi Isogami
Hiroyuki Tanaka
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Publication of WO2007125699A1 publication Critical patent/WO2007125699A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/733Arrangement of the coils or magnets arranged only on one side of the patient, e.g. under a table

Definitions

  • the present invention relates to a drug delivery system utilizing magnetism, and more particularly to a new drug delivery system for efficiently guiding a magnetic drug to an affected area.
  • a drug for destroying cancer cells, preventing growth of cancer cells, or preventing metastasis of cancer cells is used as a dosing means such as a syringe or the like in a blood vessel of a subject.
  • the dosing means is constituted by an elongated catheter, and the elongated catheter is inserted, for example, from a blood vessel in the thigh, and the inside of the blood vessel is obtained by a two-dimensional or three-dimensional in-vivo imaging device such as MRI (nuclear magnetic resonance imaging).
  • the catheter's tip is pushed forward in a given direction in the direction of the blood vessel bifurcation while the catheter tip is moved from outside the subject, and the catheter near the cancer cells located at the end of the blood vessel circuit network.
  • Patent Document 1 includes a stage for fixing a part or the whole of a living body in a magnetic field space and, for example, a coil type superconducting magnet for providing the magnetic field space disposed around the stage,
  • a system has been disclosed which controls the position space distribution of a drug by providing the distribution of magnetic field maxima or minima in an affected area in a living body by three-dimensionally controlling a magnet.
  • a liquid film jelly-like nonmagnetic drug is caused to stay by magnetic force by being enclosed in a capsule in a magnetic gradient generated by a superconducting magnet.
  • Patent Document 2 As another drug delivery system utilizing magnetic force, as disclosed in Patent Document 2, for example, a drug and a magnetic particle are combined, and a magnetic drug is injected into a blood vessel of a subject.
  • the medicine is placed in a container, a magnet is placed near the cancer cells of the subject, and the magnetic drug that happens to pass through the magnetic field is captured by magnetic force by the blood circulation circulating in the subject's body.
  • a thin tube and a catheter are inserted into the blood vessel of the predetermined site, and an MRI apparatus and X-ray CT The catheter will be advanced while confirming the tip position of the catheter with the device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-229844
  • Patent Document 2 Japanese Patent Application Laid-Open No. 09-328438
  • the stiffness of the catheter traveling through the blood vessel is considerably larger than that of the passing blood vessel, and therefore, the catheter is deformed depending on the shape of the catheter. For this reason, the three-dimensional position of the blood vessel bifurcation point differs before and after the insertion of the force table. Therefore, in order to control the moving direction of the catheter tip at the bifurcation point of the blood vessel, an MRI apparatus or X-ray CT The device must always detect both tip and vessel bifurcation position information. Such control is cumbersome and very inefficient.
  • the catheter can not pass through a blood vessel having a diameter smaller than the diameter of its tip. Can not guide the catheter up. Therefore, there is a problem that it is not possible to detect how much the dosed medicine remains at the blood vessel bifurcation, and it can not be determined whether the necessary amount remains in the affected area. This makes it impossible to know if the proper amount of drug has been administered.
  • the present invention has been made in view of such problems, and it is intended to prevent the formation of thrombus in blood vessels while confirming the position of the magnetic drug to the details of the body by magnetic force.
  • the present invention provides a magnetic dosing guidance system capable of precisely guiding the magnetic drug to the affected area.
  • the present invention places a part or the whole of a living body on a stage, injects a drug having a magnetic substance injected into the living body, and guides it to the affected part of the living body.
  • a delivery system is provided.
  • This drug delivery system comprises a blood vessel information acquiring means for acquiring blood vessel information including the position of a blood vessel bifurcation in a living body, and a magnetic field for generating a magnetic field for guiding movement of a drug in the blood vessel of the living body by magnetic force.
  • a control means for controlling the magnetic field generation means to be disposed at the blood vessel bifurcation based on the blood vessel information; and a retention amount detection means for detecting the retention amount of the drug at the blood vessel bifurcation; And adjusting the magnetic force of the magnetic field generation means in accordance with the amount of retention of the drug detected by the amount-of-stop detection means.
  • the drug of magnetic substance has a substance that causes an acoustic impedance difference
  • the means for detecting the staying amount is an ultrasonic probe, and the drug impedance is detected by detecting the acoustic impedance difference of the drug. Let's detect the amount.
  • the magnetic force of the magnetic field generating means is weakened and then the retention amount of the drug The magnetic force of the magnetic field generation means is restored to its original state again when the threshold value becomes 2 or less.
  • the blood vessel route from the dosing position to the affected area is determined, and based on the information, the magnetic field generating means for supplying the magnetic field to the blood vessel bifurcation is arranged.
  • the presence of the magnetic agent is detected by ultrasonic search means at each blood vessel bifurcation.
  • a magnet arranged at a predetermined position generates a predetermined magnetic field, and the amount of magnetic drug trapped and retained at the site is After the amount of retention is measured using a probe, the magnetic force of the magnet at the branch is reduced to guide the magnetic agent to a predetermined vascular circuit.
  • the magnetic index of the magnetic drug can be controlled appropriately based on the results of measurement of the amount of trapped and fixed magnetic drug, and the magnetic drug can be precisely guided to the details of the body by the magnetic force.
  • FIG. 1 is an external view of an MRI apparatus 1 for measuring a three-dimensional vascular circuit.
  • FIG. 2 A diagram showing a three-dimensional vascular circuit of the head of a patient measured by an MRI apparatus 1.
  • FIG. 3 is a diagram showing an example in which the MRI apparatus 1, the drug delivery apparatus 100 and the database 300 are connected to a network.
  • FIG. 4 is a diagram showing the configuration of a magnetic induction drug delivery system 100 according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining the structure in the superconducting magnet container 7 according to the first embodiment.
  • FIG. 6 is a view for explaining magnetic induction of a magnetic agent at a blood vessel bifurcation of a patient's head in the first embodiment.
  • FIG. 7 is a flowchart for explaining the operation of the drug delivery system 100 according to the present invention.
  • FIG. 8 is a view for explaining the structure in a superconducting magnet container 7 using a high temperature superconducting valve body according to a second embodiment of the present invention.
  • FIG. 9 is a view showing a side cross section of a high temperature superconducting valve body according to a second embodiment of the present invention.
  • FIG. 10 is a front view of a high-temperature superconducting valve body according to a second embodiment of the present invention.
  • FIG. 11 is a view for explaining magnetic induction of a magnetic agent at a blood vessel bifurcation of a patient's head in the second embodiment of the present invention.
  • FIG. 12 is a view showing a side cross section of a high-temperature superconducting valve body according to a third embodiment of the present invention.
  • FIG. 13 is a front view of a high-temperature superconducting valve according to a third embodiment of the present invention.
  • FIG. 1 shows the appearance of a nuclear magnetic resonance imaging (MRI) apparatus 1 using, for example, a superconducting magnet or a permanent magnet.
  • the MRI apparatus 1 is generally used to image a cross section of the patient 2 in the body.
  • a contrast medium containing weak magnetic particles is injected into the blood vessel of the patient 2, and the blood is detected by detecting the contrast medium mixed in the blood. The image is taken, and from this information the blood flowing blood vessels are imaged in detail.
  • FIG. 2 shows an example of a blood vessel image imaged by the MRI apparatus 1 and is a projection two-dimensional image of a three-dimensional image of the blood vessel group 4 connected to the head 3 of the patient 2.
  • the blood flow from the trunk part is divided into two directions and flows into a predetermined part of the head.
  • the drug delivery system it is important for the drug delivery system according to the present embodiment to obtain information (position, angle of branch, shape of branch, etc.) related to such a branch.
  • the imaged blood vessel information is sent to the processing unit 10, and is stored in a memory, not shown, provided in the processing unit 10.
  • the MRI apparatus 1 may be connected to the drug delivery system 100 and the database 300 according to the present embodiment via a local area network (LAN) 200.
  • LAN local area network
  • the patient's blood vessel information acquired by the MRI apparatus 1 is transmitted to the database 300 via the LAN 200 and stored.
  • the network may be the Internet, a wireless network or the like besides the LAN.
  • FIG. 4 is a schematic view showing the configuration of a drug delivery system 100 according to the present embodiment.
  • the drug delivery system 100 uses magnetism to guide a magnetic drug to the affected area of the patient 2 and checks whether it can be properly guided using ultrasound.
  • the arithmetic and control unit 70 acquires blood vessel route information of the patient 2 measured by the MRI apparatus 1 and stored in the database 300, and communicates the magnetic drug injection position to the affected area. Check the vascular route.
  • a method of acquiring blood vessel route information to the affected area of the patient 2 will be described. First, after the affected area has been identified (specifically, imaging is performed by imaging the patient with an MRI apparatus, an X-ray CT apparatus, an X-ray imaging apparatus, etc.), the doctor sends an imaging diagnostic device to the technician.
  • the engineer who received a request for 3-dimensional blood flow imaging from a doctor goes to sleep on patient 2 in MRI apparatus 1.
  • the patient 2 is positioned on the measurement space of the magnetic field generator so that the region from the heart to the affected area can be imaged as an ROI (Region of Interest) on a table.
  • a pulse sequence for three-dimensional blood flow imaging is selected to prepare for MR imaging. Since a pulse sequence for three-dimensional blood flow imaging only needs to be able to extract blood vessels from the heart to the affected area and draw blood vessel bifurcations between them, patients with MR contrast media containing cadmium prior to imaging 2 It may be injected into or without injection.
  • the R ⁇ I of three-dimensional blood flow imaging is the maximum of the MRI apparatus 1 If it exceeds F ⁇ V, it is necessary to divide the imaging several times.
  • imaging techniques such as the Manolechi Station MRA method and the MOTSA (Multi-overlapping thin trac- ance acquisition) method can be used.
  • imaging parameters are set, and for controlling the position of the magnet on the surface of the patient 2's body.
  • This marker consists of a medium that is suitably sensitive to the magnetic resonance phenomenon, for example, a thin tubular body enclosing water, and a position information transmitter coupled to the tubular body.
  • the position information transmitter can use, for example, a magnetic sensor or an optical sensor, a magnetic transmitter or an infrared transmitter.
  • the tubular body in which water is enclosed is within the FOV of MR imaging, and when the patient is viewed planarly (synonymous with imaging in the supine position), the blood vessel, affected area and tubular body to be imaged. Are placed in such a way as to be superimposed on the three-dimensional bloodstream image.
  • Extraction of the blood vessel bifurcation is performed based on this three-dimensional blood flow image.
  • the three-dimensional blood flow image of the patient 2 obtained by the MRI apparatus 1 is sent to an image analysis apparatus built in the operation console of the MRI apparatus 1 and displayed on the display screen.
  • the real space seat of the magnetic induction drug delivery system to 3D blood flow image A three-dimensional coordinate system orthogonal to the target system is given.
  • the vascular system and the like connected to the heart and the affected area are specified and extracted on the three-dimensional blood flow image.
  • Identification and extraction of this vascular system are performed by the doctor visually observing the 3D blood flow image displayed on the display and operating the pointing device such as a mouse in the displayed 3D blood flow image.
  • This can be realized by designating the blood flow region between the designated two points by a known region extraction method, for example, the region expansion method.
  • the bifurcations identified here are targets for magnet positioning.
  • Extraction of blood vessel bifurcation can be performed as follows. For example, it is based on a method in which the doctor extracts the bifurcation of the blood vessel while observing the three-dimensional blood flow imaging displayed on the display of the image analysis device. In this case, extraction of the bifurcated portion of the blood vessel is performed by the doctor visually observing a three-dimensional blood flow image and inputting a cursor or coordinate point or the like to the bifurcated portion with a mouse or the like.
  • the vascular route information of the patient 2 acquired as described above is stored in the database 300.
  • the arithmetic and control unit 70 determines the magnetic field strength, the position, the angle, etc. of the superconducting magnet at each of a plurality of branch parts of the blood vessel included in the determined blood vessel route. Then, the arithmetic and control unit 70 holds the superconducting magnet container 7 containing the superconducting magnet for generating a predetermined magnetic field at the tip of the magnet container position control unit 8, based on the determined contents. The magnet part at the tip is arranged while adjusting the excitation power supply to the determined predetermined three-dimensional position, the determined angle, and the determined magnetic field strength.
  • the injection of the magnetic drug is performed to the blood vessel at a predetermined site (for example, the thigh) using a syringe or the like.
  • the magnet container position control device 8 is controlled by the arithmetic control device 70, for example, by a wireless signal.
  • the magnet container position control device 8 is positioned at a predetermined position of a car 12 which is rotationally driven by a drive unit storage box 11 having a motor (not shown) on the movable base 10 in the vicinity of a bed 9 on which a patient 2 is placed.
  • the magnet container position control device 8 is a rotary motor at the upper part of the support column 99
  • Each superconducting magnet container 7 is operated by operating the rotary drive unit 13 (not shown), the arm 14, the revolute joint 15, the arm 16, the revolute joint 17, the arm 18 and the superconducting magnet container holder 19. Is set to the desired three-dimensional position and angle.
  • a helicopter compressor 29 and an excitation power supply (not shown) shown in FIG. 5 described later are disposed in the drive unit storage box 11 and high pressure piping 30, low pressure piping 31, excitation power supply, power lead wire 45 columns.
  • a protection tube 46 made of a bellows-like polymer material After passing through the rotary drive part 13 in and above 99, it is bundled and flexible, for example, housed in a protection tube 46 made of a bellows-like polymer material, and connected to the superconducting magnet container 7 There is.
  • a protective tube (not shown) is passed through and held in a support ring 47 mounted on the arm.
  • FIG. 5 is a view showing the configuration of the superconducting magnet container 7.
  • a core wire of a high-temperature superconducting conductor mainly composed of YBCO is coiled in a large number in a coil form on the outside of a copper bobbin 20 having a diameter of about 25 mm to form a solenoidal magnet 21. Fix by fixing with adhesive etc. between coil wire and bobbin by immersion.
  • the bobbin 20 is thermally integrated on a heat transfer flange 22 made of, for example, copper via a soft sheet having a large thermal conductivity such as in-geum through the heat transfer flange 22 via a bolt (not shown) or the like. ing.
  • the heat transfer flange 22 is airtightly joined to the cylindrical body 23 made of, for example, stainless steel having a small thermal conductivity by welding or silver solder so as to be vacuum airtight, and the other end is airtightly joined to the flange 24 by welding or the like.
  • the flange 24 is airtightly fixed to the room temperature flange 25 by an o-ring and a bolt (not shown).
  • the refrigerator fixing flange 26 is metallurgically and airtightly integrated with the room temperature flange 25, and the refrigerator fixing flange 26 and the gas flow path switching mechanism of high pressure gas and low pressure gas via the vacuum tight bellows 27
  • a Hefford 'McMahon-type helium refrigerator head 28 containing a not shown is airtightly fixed by an O-ring and a bolt (not shown).
  • the helium refrigerator head 28 is connected to a high pressure helium gas pipe 30 and a low pressure helium gas pipe 31 from a helium gas compressor 29.
  • Connected to the head 28 of the helium refrigerator is a cylinder 32 for adiabatic compression and expansion of helium gas and a cold stage 33 of a cold generation part.
  • a vacuum vessel cover 34 is disposed on the outer periphery of the solenoid magnet 21 for vacuum insulation, and the vacuum vessel cover 34 is a flange 35, and an airtight ring is fixed to the flanges 24 and 25 by a ring (not shown). Be done.
  • the solenoid magnet 21, the heat transfer flange 22, and the cold stage 33 which have a temperature of about minus minus 230 degrees Celsius, laminated radiation is applied around the room temperature component to prevent radiation heat from entering. Heat insulation 36.
  • Spaces 37, 38 are evacuated by vacuum pump 39 through vacuum piping 40, valve 41, vacuum piping 42, and valve 43 to form a vacuum adiabatic space. After being cryogenically cooled by the refrigerator, the valves 41 and 43 can be closed to separate the superconducting magnet container 7 and the vacuum pipes 40 and 42.
  • the helium refrigerator is pressed against the heat transfer flange 22 by atmospheric pressure, and heat conduction between the cold stage 33 and the heat transfer flange 22 such as an engine sheet or grease is generated. A medium is applied, and the heat transfer flange 22 is well cooled by the cold of the cold stage 33 by the pressing force.
  • the helium refrigerator is operated while evacuating the spaces 37 and 38, and after the superconducting magnet 21 is cooled to a very low temperature, the exciting power supply 44 supplies power to the superconducting magnet 21 through the power lead wire 45.
  • a magnetic field of, for example, 5 Tesla can be generated continuously in the center of the solenoid of the superconducting magnet 21.
  • the magnetic field distribution is as shown in FIG. 6, and the magnetic field strength is strongest near the outer periphery of the tip of the superconducting magnet container 7 near the affected area, and the magnetic gradient in the axial and radial directions of the magnet is also near the outer periphery. Becomes larger. Therefore, the magnetic force is large even in the vicinity of the outer periphery.
  • the flange 24 and the flange 35 are integrated with the flange 25 independently with the bolt (not shown), and the component members associated with the two flanges are integrated as one flange. Since various types of superconducting magnets 21 with different diameters, magnet axial lengths, magnetic field strengths, etc. are manufactured, superconducting magnets 21 of the required specifications can be used in combination with a helium refrigerator, and the refrigerator can be shared It can reduce the cost of magnetic and ultrasound guided drug delivery systems.
  • Each superconducting magnet container 7 having the above-described configuration and set at a desired position is disposed at each branch portion 5 as shown in FIG.
  • the magnetic field ⁇ ⁇ generated by the superconducting magnet in the superconducting magnet container 7 as the magnetic field generating means is from inside the skin of the patient 2 Penetrate and reach the bifurcation 5 of the blood vessel 2.
  • the magnetic field strength and the magnetic field gradient on the side of the branch blood vessel a become large in the branch blood vessel a and the branch blood vessel b of the blood vessel 2.
  • the attraction magnetic force on the side of the branch vessel a on the magnet installation side acting on the magnetic drug particles 6 flowing into the branch part 5 along the blood flow indicated by the arrow is larger than that on the side of the branch vessel b. Acting on the side, most of the magnetic drug particles 6 are controlled to flow into the branched blood vessel a.
  • the magnetic drug particles themselves play the role of a magnet and capture another magnetic drug particle. If the number of magnetic drug particles to be captured increases, there is a risk of causing a thrombus in the vicinity of the bifurcation 5.
  • the amount of retention of the magnetic agent in the vicinity of the branch portion 5 is monitored using the ultrasonic probe 48, and based on the monitoring result, the magnetic field strength of the superconducting magnet is determined. It is a form of wholesale and wholesale.
  • the ultrasonic probe 48 moves from the location of the blood vessel bifurcation group to the position where the magnetic agent is located at the upstream branch, on the movable platen 49,
  • the vehicle 12 is driven to rotate by a drive storage box 50 having a motor (not shown), and moved to a desired position (a position where the tip of the ultrasonic probe is directed to the branch 5).
  • a three-dimensional position to the blood vessel bifurcation by a rotary drive unit 52 incorporating a rotary motor (not shown) at the top of the support 51, an arm 53, and an ultrasonic probe holder 54 having a rotation function.
  • the arrangement of the ultrasonic terminal element 48 is preferably set at a position where the detected image can be clearly recognized.
  • the ultrasonic probe 48 can measure a quantitative value of the amount of magnetic agent based on the magnitude of the reflection of the ultrasonic wave because of the difference in the acoustic impedance of the magnetic agent.
  • the measurement result of the amount of retention of the magnetic agent measured by the ultrasonic probe 48 is connected with the ultrasonic diagnostic apparatus 56 by the signal wiring 55, and the data is transmitted by the cable 57 to the arithmetic and control unit 70. If the capture and retention of the magnetic agent at the bifurcation of the blood vessel occurs based on the measurement results, the amount of retention should be greater than a predetermined amount.
  • the magnet for magnetic induction is moved away from the blood vessel bifurcation, and the excitation power of the magnet is turned off to reduce the magnetic force of the relevant site, Induced by the bloodstream.
  • the magnetic induction magnet is returned to the state of the base, and the magnetic drug to be circulated is further induced.
  • the ultrasonic probe 48 can be moved to the blood vessel bifurcation further downstream to measure the amount of trapped and retained magnetic drug.
  • a drug having a magnetic substance is added with a density difference generator for generating a substance that generates an acoustic impedance difference due to the addition or external stimulation of an object having an acoustic impedance difference with blood, a magnetic field is generated.
  • Means An object at a branch point in the magnetic field is detected by the ultrasonic probe 48.
  • the magnetic drug particle or the micro bubble group in which nitrogen gas bubbles having a size of several microns or less or a micro bubble group such as helium gas are added to the magnetic drug particles at the time of injection into the body or in advance.
  • Magnetic colloid particles containing magnetic drug particles, and magnetic colloid particles containing magnetic particles and a drug can be used. Then, the magnetic colloid particles are induced to the branch portion 5 leading to the affected area of the cancer cell by the magnetic particle induction system.
  • the magnetic field of the magnet is larger than the calculation, the position of the magnet is closer to the branch point than the calculation, the amount of the magnetic particles of the magnetic drug particles is large, and If the stronger magnetic force is greater than the calculated value, it is possible that the magnetic agent is trapped on the inner wall of the blood vessel at the bifurcation, and the magnetic agent is not induced beyond that.
  • ultrasonic detection means (ultrasound probe 48) is provided on the patient's body surface near each branch point by ultrasonic generation, and the branch portion 5 where a magnetic field is present is searched by ultrasonic waves that are not affected by the magnetic field. Thus, it is detected whether or not the magnetic colloid particle group is captured.
  • an ultrasonic impedance of a frequency that induces foaming before irradiation is emitted to the branch point, whereby an acoustic impedance difference is generated in the magnetic colloid particle group. It is also possible to generate the substance possessed.
  • the drug by ultrasonic vibration To briefly describe the principle of phase shift and change to the gas phase, a phase change is caused by resonating liquid phase particles by applying ultrasonic vibration to the particles. As a result, the acoustic impedance can be changed.
  • the ultrasonic imaging apparatus is constituted by a sensor unit 48 and an image diagnostic apparatus 56, and is an apparatus for visualizing a reflection echo generated by a difference in acoustic impedance by pulse transmission.
  • a wave to be applied to the ultrasonic transducer as a burst wave, it is possible to change particles from the liquid phase to the gas phase and generate a microbubble group to make an image.
  • an ultrasonic probe is used according to the density difference.
  • the position of the magnetic drug can be detected by the feeler 48).
  • magnetic force is generated by the magnetic field for magnetic induction also to these micro bubble groups, and it acts in the same magnetic force direction as the medicine having the magnetic substance to increase the magnetic force and improve the better induction function. Can be expected to be effective.
  • the ultrasonic diagnostic apparatus can detect and confirm how much the magnetic colloid particles are trapped and retained in the blood vessel wall of the blood vessel bifurcation.
  • the magnetic drug is appropriately induced to the affected area by moving predetermined magnetic generation means away from the branch point in order to separate the magnetic colloid particles from the blood vessel wall based on the information, and the accumulation rate of the magnetic drug in the affected area. Can be detected. Therefore, the end of the operation of the magnetic induction type drug delivery system 100 is judged by the accumulation rate of the magnetic drug, and the signal for stopping the system after reaching the predetermined accumulation rate is an alarm, a color lamp, and a display screen of the control computer. Can be displayed. This has the effect of being able to inform the driver engineer of the appropriate shutdown information.
  • FIG. 7 is a flowchart for explaining the operation of the drug delivery system. Note that, unless otherwise specified, the control entity in each step is the arithmetic and control unit 70.
  • step S101 blood vessels such as blood vessel images (three-dimensional) up to the affected area of the target patient are Get information.
  • the information on the blood vessel is captured in advance by the MRI apparatus 1 or the XCT apparatus, and stored in the database 300 via the LAN 200 (see FIG. 3).
  • step S102 relative three-dimensional positional information of the plurality of branch parts 5 present in the blood vessel is acquired from the information of the blood vessel acquired in step S101.
  • This position information is coordinate information obtained by using the predetermined position of the patient's body as the base point (for example, with the position of the patient's own body as the origin) calculated by the MRI apparatus 1 or the like.
  • This position information includes the position, shape, angle, blood vessel diameter, etc. of the blood vessel bifurcation.
  • the flow rate at each branch of blood is also determined by the MRI apparatus 1 as other information. These pieces of information are stored, for example, in the database 300.
  • step S103 the shape of the magnet required at each branch and the magnetic field (magnetic field) characteristic of the magnet are acquired.
  • the magnet shape and magnetic field characteristics are linked to the shape of the bifurcation and the depth in the body, but for example, the database 300 seems to be optimum in accordance with the bifurcation shape, the diameter of the blood vessel, and the blood flow velocity.
  • Information on magnet shapes and magnetic field characteristics is stored as past statistical data, and information on magnet shapes and magnetic field characteristics is extracted from this database in response to information such as branch shape.
  • step S104 based on the information acquired in step S103, a plurality of available magnet systems (superconducting magnet container 7) are prepared at present and used at each branch point. Select the magnet system to be In addition, the three-dimensional arrangement position and the angle of arrival from the base point of each branch are set so that the magnet system can be optimally assigned to each branch.
  • the address S may be, for example, a value statistically determined according to the shape and depth of the branch portion as described above, or may be determined according to a predetermined calculation from the shape of the magnet and the magnetic field characteristics. Also good.
  • step S105 whether the target patient has been placed at a predetermined position on the delivery system stage (stage), that is, the system origin (coordinate origin) and the patient origin when imaged by the MRI apparatus. It is judged whether and are matched. The process does not move to the next step until it is placed at the predetermined position.
  • step S106 the magnet system is set to the position and angle obtained in step S104. Furthermore, in step S107, the ultrasound probe 48 is set in the vicinity of each branch portion and in the vicinity of the affected area.
  • the ultrasound probe 48 is set in the vicinity of each branch portion and in the vicinity of the affected area.
  • the branch from the affected area to the most upstream branch is set first, and for the other branches, the three-dimensional coordinates of each branch and the destination angle are temporarily set. It may be stored in the memory, and monitoring of each branch may be performed while sequentially shifting to the downstream branch as soon as monitoring at the upstream branch ends.
  • step S108 it is determined whether the magnet system (superconducting magnet container 7) and the ultrasound probe 48 have been set to appropriate positions. Whether or not the position is correct is determined, for example, based on whether the information acquired in step S1044 matches the set position 'angle. If it is determined in step S108 that the position has been set to the proper position, the process proceeds to step S109, and if it is determined that the position has deviated from the proper position, the magnet system and the ultrasound probe are Reset the position or fine-tune the position and angle.
  • step S109 notification of permitting the injection of the magnetic agent (for example, display on the display unit or notification by voice) is performed, and when it is detected that the magnetic agent is injected by the operator such as a doctor (for example, At the same time as the injection, the operator depresses the operation switch) and the induction operation of the magnetic drug is started.
  • the operator such as a doctor
  • step S110 the amount of retention of the magnetic agent at each of the bifurcated portions / the affected area is monitored by the ultrasonic element 48, and the amount is managed one by one.
  • step S 111 the amount of retention of the magnetic agent at the branching portion after a predetermined time has elapsed is compared with the first threshold to determine whether the amount of retention exceeds the first threshold.
  • This first threshold is determined based on, for example, the amount at which there is a risk of thrombus formation at the bifurcation. Therefore, since the risk of thrombus varies among individuals depending on the physical constitution, age, etc., it is possible to read out the first threshold value also from the database 300 using a statistical method. .
  • step S111 when the amount of stationing does not reach the first threshold value, the process proceeds to step S117, and when it has reached the process, the process proceeds to step S112.
  • the magnet system is controlled to weaken the generated magnetic force.
  • Ru This control is performed, for example, by moving the magnet portion of the magnet system away from the branch or lowering the magnet current value for generating a magnetic field.
  • step S113 the staying amount of the magnetic agent at the branch portion is continuously monitored by the ultrasonic probe 48, and it is determined whether the value becomes equal to or less than a second threshold.
  • This second threshold is an amount that eliminates the risk of thrombus formation, and has individual differences similar to the first threshold. If the retention amount of the magnetic agent is not less than or equal to the second threshold, the process repeats step S112 to continue weakening the magnetic force of the magnet system. On the other hand, when the amount of stationing falls below the 2nd threshold, processing shifts to Step S114.
  • step S114 the magnetic force generated by the magnet system is restored, and induction operation is continued again.
  • step S 115 the amount of retention of the magnetic agent in the affected area after a predetermined time has elapsed is detected, and it is determined whether the amount of retention is greater than or equal to a third threshold.
  • the third threshold indicates an amount sufficient to exert the efficacy of the magnetic agent in the affected area, and varies depending on the type of the magnetic agent. If the amount of retention of the magnetic drug in the affected area has not reached the third threshold or higher, it is highly likely that the magnetism itself has been digested by the liver, so it is necessary to determine whether it is possible to inject the magnetic drug again.
  • the processing shifts to step S117. On the other hand, if the retention amount reaches the third threshold value or more, the process proceeds to step S116.
  • step S116 since the magnetic agent can be properly induced to the affected area, the induction operation of the delivery system 100 ends.
  • step S111 if the staying amount of the branch portion does not reach the first threshold, or if the staying amount at the affected part does not reach the third threshold in step S115, step S117.
  • the number of magnetic drug injections is checked at. If the number of magnetic drug injections exceeds the predetermined number (the number may differ depending on the type of magnetic drug), the burden on the human body (liver) of the target patient will increase, so if the predetermined number is reached, the process will At step S116, the induction operation of the magnetic drug is ended. On the other hand, when the number of injections has not reached the predetermined number, the process proceeds to step S109, and the processes of steps S110 to S117 are repeated thereafter.
  • one or more components of the blood vessel circuit are required. Based on the information on the magnetic susceptibility of the magnetic drug to be added, the volume, etc., the three-dimensional position of the blood vessel at each bifurcation point, the size of the blood vessel, and the blood flow velocity, the position and angle of the magnet that can generate a predetermined magnetic field are calculated. Then, place a magnet at the desired position, generate a predetermined magnetic field at multiple branches 5 and perform induction, while holding the amount of magnetic agent trapped and retained at that site using the ultrasonic probe 48. After the measurement, the magnetic force of the magnet at the bifurcation can be reduced to guide the magnetic drug to a predetermined vascular circuit. Therefore, the induction rate of the magnetic drug to a specific affected area can be increased, and the control of the magnetic force of the magnet can be appropriately performed based on the measurement result of the trapped and fixed amount of the magnetic drug. It can be guided to the affected area.
  • the magnetic drug is induced in a predetermined direction at the branch part of the blood vessel, rather than concentrating the magnetic field directly on the affected part. This can improve the drug magnetic induction rate.
  • a small solenoid coil type magnet it is possible to increase the induction rate of the input amount of the magnetic drug particles to the affected part of a specific cancer cell.
  • the magnetic field that can be generated by a permanent magnet is at most 1 Tesla, and the generated magnetic field does not reach far from the magnet surface. For this reason, when placing a magnet on the surface of the subject's body outside, the magnetic field does not reach deep from the surface outside the body, and when cancer cells are deep from the surface outside the body, the magnetic drug can not be captured. The effect may not work.
  • the magnetic force can not be concentrated, and for example, at the branch point of the blood vessel, the difference in magnetic force is hard to be added in the direction of movement, and the magnetic drug can not be induced. For this reason, it may not be possible to transport the magnetic drug while maintaining a high concentration to the cancer cells in the affected area, and in some cases it may not be possible to expect sufficient medicinal effects.
  • FIG. 8 is a view showing the configuration of a superconducting magnet container 7 according to a second embodiment.
  • FIG. 8 shows a configuration for directly cooling the high temperature superconducting valve body 58 with a small refrigerator using a YBCO high temperature superconducting valve body 58 instead of the solenoid coil 20 in the first embodiment as a magnetic field generating means. There is.
  • the outer periphery of the high temperature superconducting valve body 58 is integrated with a ring 59 made of stainless steel or aluminum dioxide with an adhesive or the like. This is to prevent a crack from being generated by the magnetic force of the high temperature superconducting valve body 58 when it is magnetized.
  • the high temperature superconducting valve body 58 and the ring 59 are thermally integrated with a heat transfer flange 60 made of copper or aluminum with an adhesive or the like.
  • the heat transfer flange 60 and the heat transfer flange 22 are thermally integrated by bolts (not shown) or the like via indice grease (not shown).
  • the method of cooling the high temperature superconducting valve body 58 by the helium refrigerator cold stage 33 is the same as the method of cooling the superconducting magnet 21 described in the first embodiment, and thus the description thereof is omitted.
  • a superconducting magnet for magnetizing which can generate a predetermined magnetic field to be magnetized, for example, a magnetic field of 10 Tesla, or Prepare separately a normal conducting magnet with a small generated magnetic field (both magnets are not shown).
  • the bulk of the magnetic field in the magnetizing magnet which already generates the magnetic field to be magnetized is reduced.
  • the body 58 is inserted, and then the high temperature superconducting valve body 58 is cooled below the superconducting temperature with a helium refrigerator.
  • the direction of the cylindrical axis of the superconducting valve body and the direction of the main magnetic field generated by the magnetizing magnet are made to coincide.
  • the magnetic field of the magnetizing magnet is demagnetized, the magnetic field is trapped in the high temperature superconducting valve body 58 which continues to be cooled, and as long as the cooling is maintained, the superconducting valve magnet becomes equivalent to the magnetizing magnetic field.
  • a high temperature superconductor having captured a magnetic field of, for example, 5 Tesla to 10 Tesla, is used as a magnetic field generating means.
  • the magnetic field distribution of the magnetized superconducting balta magnet is formed by a group of micro magnetic fluxes distributed substantially uniformly. Therefore, for example, when the high-temperature superconducting bulk body 58 is circular, the magnetic field distribution on the surface is substantially conical, and the magnetic field at the central portion is the highest.
  • the upper portion of high temperature superconducting valve body 58 has, for example, a convex shape along the three-dimensional direction of the blood vessel path to be guided of the blood vessel bifurcation.
  • High-temperature superconducting volta bodies 61 and 62 are filled with glass fiber in order to prevent the internal destruction due to the magnetic force which repels each other acting at the time of excitation of the high temperature superconducting valve body. It is supported by a resin material 63, and each is bonded and integrated. Further, the heat transfer flange 60 has fixing bolt holes 64.
  • the high temperature superconducting valve body 5 8 if the magnet central portion is set on the channel axis on the channel side to be guided at the blood vessel bifurcation that guides the magnetic agent, the high temperature superconducting valve body 5 8
  • the magnetic agent that has flowed into the magnetic field formed by the outer periphery of the magnet can naturally induce magnetic force in the direction (see FIG. 9) along the convex tip surfaces of the high temperature superconductors 61 and 62 where the magnetic field and magnetic gradient are large. .
  • more magnetic drug can be precisely induced to the predetermined vascular tract side by induction, and it is possible to further increase the induction rate of the input amount of the magnetic drug particles to the predetermined cancer cell diseased part it can.
  • the superconducting volta body in which the magnetic field and the magnetic gradient increase along the three-dimensional shape of the blood vessel circuit in the induction direction of the blood vessel branch is used as the magnetic field generating means, Furthermore, the magnetic force acting on the magnetic drug in the blood vessel can be increased, and the magnetic drug can be more surely guided to a predetermined site of the affected area, and the ratio of the magnetic drug which can be induced to the affected area is increased.
  • FIG. 12 and FIG. 13 show the configuration of the high-temperature superconducting valve according to the third embodiment.
  • a ring 66 having a groove 65 having a predetermined clearance is provided on the side surface of the section (high temperature superconducting valve body) 61 and 62, and the inside of the clearance is filled with a resin material 63 containing glass fiber. .
  • the metal ring 66 can be installed up to the vicinity of the protrusions (high temperature superconducting volta bodies) 61 and 62, the inner parts acting at the time of excitation of the high temperature superconducting volta bodies repel each other. Internal breakdown can be further prevented by magnetic force, and a larger magnetic field can be magnetized. Therefore, the magnetic force at the blood vessel bifurcation can be increased, and the proportion of the magnetic drug that can be precisely guided to the affected area can be increased.
  • the present invention can also be realized by a program code of software that realizes the functions of the embodiment.
  • a storage medium recording the program code is provided to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus reads the program code stored in the storage medium.
  • the program code itself read out from the storage medium implements the functions of the above-described embodiments, and the program code itself and the storage medium storing the same constitute the present invention.
  • a storage medium for supplying such a program code for example, a floppy (registered trademark) disk, a CD-ROM, a DVD-ROM, a hard disk, an optical disk, an optical magnetic disk, a CD-R, a magnetic tape, a non-volatile memory
  • a floppy (registered trademark) disk for example, a CD-ROM, a DVD-ROM, a hard disk, an optical disk, an optical magnetic disk, a CD-R, a magnetic tape, a non-volatile memory
  • a floppy (registered trademark) disk for example, a floppy (registered trademark) disk, a CD-ROM, a DVD-ROM, a hard disk, an optical disk, an optical magnetic disk, a CD-R, a magnetic tape, a non-volatile memory
  • ROM read-only memory
  • an OS (approval system) or the like running on a computer performs a part or all of the actual processing based on the instructions of the program code, and the functions of the above-described embodiment are performed by the processing. May be realized.
  • the CPU of the computer, etc. executes part or all of the actual processing based on the instructions of the program code. Even if the functions of the above-described embodiment are realized by the processing.
  • the storage means such as a hard disk or a memory of the system or the device or the CD-RW, CD-R, etc.
  • a program stored in a storage medium and stored by the computer (or CPU or MPU) of the system or apparatus in the storage means or the storage medium You can also achieve it by reading and executing the code.

Abstract

 磁性薬を磁気力で体内の細部にまで磁性薬の位置を確認しながら、精密に患部まで誘導できるドラッグデリバリーシステムを提供する。本発明は、生体の一部若しくは全体をステージ上に載置し、生体内に注入された磁性体を有する薬剤を生体の患部まで誘導するドラッグデリバリーシステムに関する。このドラッグデリバリーシステムは、生体における血管分岐部の位置を含む血管情報を取得し、血管情報に基づいて、磁場発生手段を血管分岐部に配置するよう制御する。また、血管分岐部における薬剤の停留量を検知する停留量検知手段を備え、停留量検知手段によって検知された薬剤の停留量に応じて、磁場発生手段の磁気力を調整する。

Description

明 細 書
ドラッグデリバリーシステム、及びそれを制御するためのコンピュータプロ グラム
技術分野
[0001] 本発明は、磁気を利用したドラッグデリバリーシステムに関するものであり、特に、磁 性体薬剤を患部まで効率的に誘導する新しいドラッグデリバリーシステムに関するも のである。
背景技術
[0002] 例えば、癌細胞を有する被検体に、癌細胞を破壊したり、癌細胞の増殖を防止した り、癌細胞の転移を防止する薬を被検体の血管内に注射器等の投薬手段にて投薬 し、この薬を被検体の癌細胞に高密度で投与する方法がある。このような方法として は、投薬手段を細長いカテーテルで構成し、細長いカテーテルをたとえば太股部の 血管から揷入し、 MRI (核磁気共鳴イメージング)等の 2次元もしくは 3次元体内撮像 装置にて血管内部のカテーテル先端の位置を確認しながら血管の分岐部を所定の 方向に、カテーテル先端を被検体外部からの首振り操作で押し進めて行き、血管回 路網の端部に位置する癌細胞近傍にカテーテル先端を誘導し、カテーテル内部を 通じて該薬を被検体の癌細胞に高密度で投与するというものがある。
[0003] また、カテーテルを用いて投与する方法の他に、磁気力を利用して薬を誘導する 方法もある。例えば、特許文献 1には、生体の一部もしくは全体を磁場空間中に固定 するステージと、そのステージの周囲に配置した前記磁場空間を提供する例えばコ ィル式超電導磁石を備え、ステージおよび/または磁石を三次元的に制御すること により、生体内患部に磁場の極大または極小の分布を与え、薬剤の位置空間分布を 制御するシステムが開示されている。このシステムでは、超電導磁石が生成する磁気 勾配の中でカプセルに封入し液膜ゼリー状の非磁性薬剤を磁気力により停留させる ものである。
[0004] また、別の磁気力を利用するドラッグデリバリーシステムとして、特許文献 2に開示さ れているように、例えば薬と磁性粒子を結合させ、磁性薬を被検体の血管内に注射 器等で投薬し、被検体の癌細胞付近に磁石を宛がい、被検体の体内を循環する血 流によって、たまたま磁界内を通過する磁性薬を磁気力で捕捉し、患部付近の前記 磁性薬の残留密度を高める方法がある。
[0005] さらに、体内の血管回路の 3D画像を得て診断に用いる方法も知られている。これ によれば、例えば MRI装置や X線 CT装置で 3次元の画像データを動脈、静脈別に 取得すること力 Sできる。これらの血管画像情報は、主に血液の映像化を行いそれによ つて血管画像として認知できるようにするものである。この血管画像を用いれば、心筋 梗塞や脳梗塞における血管の閉塞状況や、クモ膜下出血における血管からの血液 流出状況を血液の画像から診断することができる。そして、心筋梗塞や脳梗塞にお ける血管の閉塞状況を確認した後に、閉塞部を拡張する治療を行う場合、所定部位 の血管内に細レ、カテーテルを揷入し、 MRI装置や X線 CT装置でカテーテルの先端 位置を確認しながらカテーテルを進めることになる。
[0006] 特許文献 1 :特開 2000— 229844号公報
特許文献 2:特開平 09— 328438号公報
発明の開示
発明が解決しょうとする課題
[0007] し力、しながら、特許文献 1に記載の磁性体薬剤の誘導方法では、超電導磁石のコ ィル径が生体を包含できる程の大口径が必要となるため、磁場の極大または極小の 分布を与える領域が数センチメートルから数十センチメートノレと大きくなり、前記生体 内患部にある数十 mm以下のサイズの癌細胞の部位にのみ磁場の極大または極小 の分布を与えることは困難である。
[0008] また、カテーテルを用いる方法では、血管の中を進むカテーテルの剛性は、通過す る血管のそれに比べてかなり大きいので、カテーテルの進行によってカテーテルの 形状によって変形を受けてしまう。このため、血管分岐点の 3次元の位置は力テーテ ルを入れる状態の前後で異なってしまうので、血管の分岐点でのカテーテル先端の 移動方向を制御するためには、 MRI装置や X線 CT装置で先端位置と血管の分岐 点の位置情報を常に両方検知しなければならない。このような制御は煩雑であり、非 常に効率が悪い。 [0009] また、上述の従来技術にぉレ、て、投薬手段を前記細長レ、カテーテルで行う場合( 特許文献 1)、カテーテルは、その先端の径より小径の血管内は通過できないので、 患部までカテーテルを誘導できない。したがって、投薬された薬が血管分岐部にどの 程度の量が留まっているかを検知することができないし、必要量が患部に停留してい るかどうか判断できないという問題がある。これでは適正な量の薬剤が投与できたか 否か知ることができない。
[0010] さらに、特許文献 2の方法の場合、磁性薬の位置を確認するためには、周りの細胞 と磁性薬の磁化率の差や、 X線の透過率の差を利用して MRIや X線 CTで検知する ことになる。しかし、この場合、誘導用の磁場が磁場外乱としてノイズとなったり、誘導 用磁石が X線透過の邪魔となるため、磁性薬誘導用の磁石を一旦オフにするか、被 検体を誘導用の磁場外に出す必要がある。したがって、すでに誘導された磁性薬が 磁気力が無くなって血流によって磁性薬が移動し、誘導の目的が消失してしまうとい う問題がある。
[0011] また、磁性薬に磁性担架するために添加する磁性微粒子のマグネタイト(四酸三化 鉄)やへマタイト(二酸化鉄)は、磁性薬の検出感度を増すためには量を増やす必要 力 Sある。しかし、癌細胞の近傍の毛細血管に磁気捕捉された後、時間経過とともに消 滅せずに残留する確率が高ぐ血栓を構成する物質になりうる問題がある。したがつ て、この問題に対する対策も必要となってくる。
[0012] 本発明はこのような問題点に鑑みてなされたものであり、磁性薬を磁気力で体内の 細部にまで磁性薬の位置を確認しながら、血管内での血栓の生成を防止するととも に、精密に磁性薬を患部まで誘導できる磁気的投薬誘導システムを提供するもので ある。
課題を解決するための手段
[0013] 本発明は上記課題を解決するために、生体の一部若しくは全体をステージ上に載 置し、生体内に注入された磁性体を有する薬剤を注入して生体の患部まで誘導する ドラッグデリバリーシステムが提供される。このドラッグデリバリーシステムは、生体に おける血管分岐部の位置を含む血管情報を取得する血管情報取得手段と、生体の 血管内における薬剤の移動を磁気力によって誘導するための磁場を発生させる磁場 発生手段と、血管情報に基づいて、磁場発生手段を血管分岐部に配置するよう制御 する制御手段と、血管分岐部における薬剤の停留量を検知する停留量検知手段と、 を備え、制御手段が、停留量検知手段によって検知された薬剤の停留量に応じて、 磁場発生手段の磁気力を調整することを特徴としている。
[0014] また、磁性体の薬剤は、音響インピーダンス差を生じさせる物質を有し、停留量検 知手段は超音波探触子であって、薬剤の音響インピーダンス差を検知することにより 薬剤の停留量を検知するようにしてレ、る。
[0015] さらに、本発明では、薬剤の注入から所定時間経過後に薬剤の停留量が第 1の閾 値以上になった場合には磁場発生手段の磁気力を弱め、その後薬剤の停留量が第 2の閾値以下になった場合に再度磁場発生手段の磁気力を元に戻すようにしている
[0016] つまり、本発明では、磁性薬を患部まで誘導するために、投薬位置から患部までの 血管ルートを決定し、その情報を基に血管分岐部に磁場を供給する磁場発生手段 を配置し、各血管分岐部において超音波探査手段によって磁性薬の存在を検出す るようにしている。
[0017] さらなる本発明の特徴は、以下本発明を実施するための最良の形態および添付図 面によって明らかになるものである。
発明の効果
[0018] 本発明によれば、血管回路の必要な単数もしくは複数の分岐部において、所定の 位置に配置された磁石で所定の磁場を発生し、その部位に捕捉停留した磁性薬量 を超音波探触子を使用して停留量を測定した後、当該分岐部での磁石の磁気力を 低減して磁性薬を所定の血管回路に誘導するようにしているので、所定の患部への 磁性薬の誘導率を高め、磁石の磁気力の制御を磁性薬の捕捉停留量計測結果をも とに適切に実施することができ、磁性薬を磁気力で体内の細部にまで、精密に誘導 できる。
なお、本明細書は、本願の優先権の基礎である日本国特許出願 2006— 124317 号明細書及び/または図面に記載される内容を包含するものである。
図面の簡単な説明 [0019] [図 1]3次元の血管回路を計測するための MRI装置 1の外観を示す図である。
[図 2]MRI装置 1によって計測された患者の頭部の 3次元の血管回路を示す図である
[図 3]MRI装置 1、ドラッグデリバリー装置 100及びデータベース 300がネットワークに 接続された場合の例を示す図である。
[図 4]本発明の実施形態による磁気誘導ドラッグデリバリーシステム 100の構成を示 す図である。
[図 5]第 1の実施形態による超電導磁石容器 7内の構造を説明するための図である。
[図 6]第 1の実施形態における、患者の頭部の血管分岐部の磁性薬の磁気誘導を説 明するための図である。
[図 7]本発明によるドラッグデリバリーシステム 100の動作を説明するためのフローチ ヤートである。
[図 8]本発明の第 2の実施形態における、高温超電導バルタ体を使用した超電導磁 石容器 7内の構造を説明するための図である。
[図 9]本発明の第 2の実施形態における、高温超電導バルタ体の側断面を示す図で ある。
[図 10]本発明の第 2の実施形態における、高温超電導バルタ体の正面を示す図であ る。
[図 11]本発明の第 2の実施形態における、患者の頭部の血管分岐部の磁性薬の磁 気誘導を説明するための図である。
[図 12]本発明の第 3の実施形態における、高温超電導バルタ体の側断面を示す図で ある。
[図 13]本発明の第 3の実施形態における、高温超電導バルタ体の正面を示す図であ る。
符号の説明
[0020] 1 · · ·ΜΙ¾装置
2 · ·,患者
4· · ·血管 5··•血管分岐部
6 · · •磁性薬
7" '超電導磁石容器
8·· •磁石容器位置制御装置
11· ··駆動部収納ボックス
14, 16···アーム
21· ··超電導ソレノイドコィノレ
28· ··ヘリウム冷凍機ヘッド
33· ··冷却ステージ
48· ··超音波探触子
58· ..高温超電導バルタ体
61· ..高温超電導バルタ体
62· • ·咼温超電導バノレク体
70· ··演算制御装置
100 • · ·ドラッグデリバリーシス
200 •••LAN
300 • · 'チ ~~タべ' ~~ス
発明を実施するための最良の形態
[0021] 以下、添付図面を用いて本発明による実施形態について詳細に説明する。
<第 1の実施形態 >
図 1は、例えば超電導磁石や永久磁石を使用した核磁気共鳴イメージング (MRI) 装置 1の外観を示している。この MRI装置 1は、一般的に患者 2の体内の断面を撮像 するために使用される。 MRI装置 1を使用して、患者 2の血管を撮像するためには、 患者 2の血管内に弱磁性微粒子を含む造影剤を注入し、血液内に混合した造影剤 を検知することで血液を撮像し、この情報から血液が流動する血管を細部にわたって 撮像する。
[0022] 図 2は MRI装置 1で撮像した血管像の 1例を示すもので、患者 2の頭部 3に繋がる 血管群 4の 3次元画像の投影 2次元画像である。胴部から頭部に繋がる動脈血管の 分岐部 5では、胴部から流れる血流が 2方向に分かれて頭部の所定の部位に流入す る。特に、このような分岐部に関する情報 (位置、分岐の角度、形状等)を取得するこ とが、本実施形態によるドラッグデリバリーシステムにとって重要である。そして、撮像 された血管情報は処理部 10に送られ、処理部 10が備える図示しなレ、メモリ内に格納 される。
[0023] また、 MRI装置 1は、例えば図 3に示されるように、ローカルエリアネットワーク(LA N) 200を介して本実施形態によるドラッグデリバリーシステム 100及びデータベース 300と接続されるようにしてもよレ、。このような場合、 MRI装置 1で取得された患者の 血管の情報は、 LAN200を介してデータベース 300に送信され、格納される。そして 、ドラッグデリバリーシステム 100を用いて当該患者の患部に磁性体薬剤を誘導する 際に、データベース 300に格納された当該患者の血管情報が取り出されてドラッグデ リバリーシステム 200に送信され、後述のように、薬剤誘導制御に用いられる。なお、 ネットワークは、 LANの他、インターネットや無線ネットワーク等であっても勿論適用 可能である。
[0024] 図 4は、本実施形態によるドラッグデリバリーシステム 100の構成を示す概要図であ る。本ドラッグデリバリーシステム 100は、磁気を用いて磁性薬を患者 2の患部まで誘 導し、超音波を用いて適正に誘導できているかをチェックするものである。
[0025] 本システム 100において、演算制御装置 70は、 MRI装置 1で測定され、データべ ース 300に格納された患者 2の血管ルート情報を取得し、磁性薬投入位置から患部 までを連通する血管ルートを確認する。ここで、患者 2の患部までの血管ルート情報 の取得方法について説明する。まず、患部が特定された後(特定は例えば MRI装置 、 X線 CT装置、 X線撮像装置等で患者を撮像して行われる)、医師は画像診断機器 の操作を行う技師へ、心臓から患部までの領域を 3次元血流イメージングするように 依頼する。即ち、静脈注射された磁性薬剤が静脈→心臓→肺→心臓→動脈→分岐 部→患部という経路を通って流れるので、医師は心臓から患部までの間のどこの位 置に分岐部が位置しているかを患者 2の実空間データとして把握することが求められ る。
[0026] 医師から 3次元血流イメージングの依頼を受けた技師は、患者 2を MRI装置 1の寝 台に乗せ、心臓から患部までの領域を ROI (Region of Interest :関心領域)として撮 像することができるように患者 2を磁場発生装置の計測空間へ位置決めする。そして 、 3次元血流イメージング用パルスシーケンスを選択して、 MR撮像の準備を行う。 3 次元血流イメージング用パルスシーケンスは、心臓から患部までの間の血管の抽出 並びにそれらの間の血管の分岐の描画ができればよいので、撮像に先立ってカドミ ゥムを含む MR造影剤を患者 2に注入しても良いし、注入せずとも良い。
[0027] MRI装置の 1回の撮像における最大 F〇V (Field of View)は磁場発生装置の均一 磁場のサイズによる制限を受けるので、 3次元血流イメージングの R〇Iが MRI装置 1 の最大 F〇Vを超える場合には、撮像を複数回分けて行う必要がある。このような場合 には、マノレチステーション MRA法や MOTSA(Multi-overlapping thin thrab Acquisit ion)法等の撮像テクニックを用いることができる。
[0028] 上記撮像パルスシーケンスの選択の他に、撮像パラメータ(FOV、スラブ厚、画像 マトリクスサイズ、 T1又は T2等)を設定するとともに、患者 2の体の表面へ磁石の位 置制御のための基準位置となるマーカを配置する。このマーカは磁気共鳴現象に好 適に感応する媒体、例えば水を封入した細い管状体とこの管状体へ結合された位置 情報発信装置とからなる。位置情報発信装置は、例えば磁気センサや光学的センサ の磁気発信器や赤外線発信器を用いることができる。
[0029] このマーカのうち、水を封入した管状体は MR撮像の FOV内であって、患者を平面 視したとき (仰臥位で撮像したときと同義)に撮像対象の血管や患部と管状体が重複 しなレ、ような位置へ置かれ、 3次元血流イメージに写しこまれるようにする。
[0030] 患者 2の撮像位置決めを含む撮像準備が完了した後、 3次元血流イメージングのた めの 3次元 NMR信号計測が行われる。そして、 3次元血流計測が完了すると、 NM R信号が 3次元フーリエ変換されることによって画像が再構成され、 3次元血流ィメー ジが得られる。
[0031] この 3次元血流イメージを基に、血管分岐部の抽出が行われる。 MRI装置 1によつ て得られた患者 2の 3次元血流イメージは、 MRI装置 1の操作用コンソールに内蔵さ れた画像解析装置に送られるとともに、ディスプレイ画面に表示される。この画面表 示に際しては、 3次元血流イメージへ磁気誘導ドラッグデリバリーシステムの実空間座 標系と同じく直交する 3次元座標系が付与される。画像解析装置へ 3次元血流ィメー ジが送られると、 3次元血流イメージ上で心臓と患部とに連なる血管系等が特定及び 抽出される。この血管系統の特定及び抽出は、医師がディスプレイに表示された 3次 元血流イメージを目視観察し、表示された 3次元血流イメージ中にマウス等のポイン ティングデバイスを操作することにより 2点を指定し、指定された 2点間の血流領域を 公知の領域抽出法、例えば領域拡張法によって抽出することで実現できる。
[0032] このように心臓と患部とをつなぐ血管(血流)が抽出されると、その抽出された血管 中の分岐部の抽出及び特定が実行される。ここで特定される分岐部は磁石の位置決 めのターゲットとなるものである。
[0033] 血管の分岐の抽出は次のようにして行うことができる。例えば、医師が画像解析装 置のディスプレイに表示された 3次元血流イメージングを観察しながら血管の分岐部 を抽出する方法によるものである。この場合、血管の分岐部の抽出は、医師が 3次元 血流イメージを目視観察し、マウス等によって分岐部へカーソル又は座標点等を入 力することによって行われる。
以上のようにして取得された患者 2の血管ルート情報は、データベース 300に格納 される。
[0034] また、演算制御装置 70は、決定された血管ルートに含まれる血管の複数の各分岐 部箇所における超電導磁石の磁界強度、位置および角度等を決定する。そして、演 算制御装置 70は、それぞれ所定の磁界を発生する超電導磁石を内蔵した超電導磁 石容器 7を、磁石容器位置制御装置 8の先端に保持した状態で、前記決定内容に基 づいてその先端の磁石部を決定された所定の 3次元位置と所定の角度、所定の磁 界強さに励磁電源を調整しながら配置する。
[0035] 磁性薬の投入は、注射器等を用いて所定の部位 (例えば、大腿部)の血管に対し て行われる。
[0036] 磁石容器位置制御装置 8は、演算制御装置 70から例えば無線信号にて制御され る。磁石容器位置制御装置 8は、患者 2を載せるベッド 9近傍の移動定盤 10上を、モ ータ(図示せず)を内蔵した駆動部収納ボックス 11で回転駆動される車 12で所定の 位置まで移動する。そして、磁石容器位置制御装置 8は、支柱 99上部の回転モータ (図示せず)を内蔵した回転駆動部 13と、アーム 14、回転関節部 15、アーム 16、回 転関節部 17、アーム 18および超電導磁石容器ホルダー 19を動作させて、各超伝導 磁石容器 7を所望の 3次元位置と角度にセットする。ここで、後述する図 5に示すヘリ ゥム圧縮機 29、励磁電源(図示せず)は駆動部収納ボックス 11内に配置され、高圧 配管 30、低圧配管 31、励磁電源、パワーリード線 45支柱 99内および上部の回転駆 動部 13を通過した後、束ねて可撓性を有する例えは蛇腹状の高分子材料で製作さ れた保護チューブ 46に収納され、超電導磁石容器 7に連結されている。保護チュー ブ(図示せず)は、アームに設置した支持リング 47内を通過させて保持している。
[0037] 次に、超伝導磁石容器 7について説明する。図 5は、超電導磁石容器 7の構成を示 す図である。図 5において、例えば YBCOを主成分とした高温超電導導体のコィノレ 線を、直径約 25mm程度の銅製のボビン 20の外部にコイル状に多数総卷付けてソ レノイド磁石 21を構成し、それを樹脂含漬でコイルの線間およびボビンに接着剤等 で固定する。ボビン 20は、例えば銅製の伝熱フランジ 22上にインジユーム等の熱伝 導率が大きい柔らかなシートを介して前記伝熱フランジ 22にボルト(図示せず)等を 介して熱的に一体化されている。伝熱フランジ 22は、熱伝導率の小さな例えばステ ンレス鋼製の円筒体 23と真空気密できるように溶接や銀ロウ等で気密接合され、他 端部はフランジ 24に溶接等で気密接合され、フランジ 24は室温フランジ 25と〇リン グ、ボルト(図示せず)で気密固定される。室温フランジ 25には冷凍機固定フランジ 2 6が冶金的に気密一体化され、真空気密性を有するベローズ 27を介して冷凍機固 定フランジ 26と、高圧ガスと低圧ガスのガス流路切り替え機構(図示せず)を内蔵した 例えばギフオード'マクマホン式のヘリウム冷凍機ヘッド 28とは、 Oリング、ボルト(図 示せず)で気密固定される。ヘリウム冷凍機ヘッド 28は、ヘリウムガス圧縮機 29から 高圧ヘリウムガス配管 30、低圧ヘリウムガス配管 31が接続される。ヘリウム冷凍機の ヘッド 28には、ヘリウムガスが断熱圧縮、膨張するシリンダ 32および寒冷発生部のコ 一ルドステージ 33が接続されている。
[0038] ソレノイド磁石 21の外周は、真空断熱のため、真空容器カバー 34を配置し、真空 容器カバー 34はフランジ 35で、フランジ 24、 25に〇リング、ボルト(図示せず)で気 密固定される。 [0039] 温度約摂氏マイナス 230極低温となるボビン 20、ソレノイド磁石 21、伝熱フランジ 2 2、コールドステージ 33の周りには、室温の構成材からの輻射熱の侵入を防止するた めに積層輻射断熱材 36を卷付ける。空間 37、 38は、真空ポンプ 39により、真空配 管 40、弁 41,真空配管 42、弁 43を通じて真空排気され、真空断熱空間を形成する 。冷凍機で極低温に冷却された後は、弁 41、 43を閉じ、超電導磁石容器 7と真空配 管 40, 42を分離することができる。
[0040] また、空間 38が真空排気されることにより、ヘリウム冷凍機は伝熱フランジ 22に大 気圧により押し付けられ、コールドステージ 33と伝熱フランジ 22の間にはインジユー ムシートやグリース等の熱伝導媒体を付けており、前記押し付け力により伝熱フラン ジ 22はコールドステージ 33の寒冷で良好に冷却される。
[0041] 空間 37、 38を真空排気しながらヘリウム冷凍機を運転し、超電導磁石 21が極低温 に冷却され後、励磁電源 44によりパワーリード線 45を介して超電導磁石 21に通電 することにより、超電導磁石 21のソレノイド中心部に例えば 5テスラの磁界を連続的に 発生させることができる。そして、磁界分布は図 6のようになり、超電導磁石容器 7の 患部近くの先端部の外周部付近が最も磁界強さが強くかつ、磁石の軸方向及び半 径方向に対する磁気勾配も外周部付近が大きくなる。したがって、外周部付近がもつ とも磁気力が大きい。
[0042] また、本構造によれば、フランジ 24とフランジ 35をボルト(図示せず)で、フランジ 25 とは独立して一体化し、この両フランジに付随する構成部材を一体として、フランジ 2 5と着脱可能とできるので、直径や磁石軸長、磁界強さ等が異なる超電導磁石 21を 多種類製作し、必要な仕様の超電導磁石 21とヘリウム冷凍機を組み合わせて使用 でき、冷凍機を共用化できるので磁気および超音波誘導型ドラッグデリバリーシステ ム価格を低減できる。
[0043] 以上のような構成を有し、所望の位置にセットされた各超伝導磁石容器 7は、図 6に 示すように、各分岐部 5に配置される。分岐部 5の上流側の所定の部位の血管(図示 せず)から投入された磁性薬粒子 6が体内の循環する血管内の血流(図中の矢印方 向に流動する)にのつて分岐部 5に到達する。このとき、磁場発生手段である超電導 磁石容器 7内の超電導磁石によって発生した磁界 Φは、患者 2の皮膚外部から内部 に浸透し、血管 2の分岐部 5に到達する。磁界 Φの 3次元的磁気勾配が大きくなるよ うに構成すると、血管 2の分岐血管 aと分岐血管 bでは、分岐血管 a側の磁場強さおよ び磁場勾配が大きくなる。そして、矢印で示す血流にのって分岐部 5に流入する磁 性薬粒子 6に作用する磁石設置側の分岐血管 a側の吸引磁気力は、分岐血管 b側よ りも大きく分岐血管 a側に作用し、磁性薬粒子 6の多くは分岐血管 a内に流入するよう に制御される。
[0044] 投薬入り口血管から癌細胞がある患部までに通じる血管の複数の分岐部に同様な 磁気的誘導手段を設置することにより、磁性薬粒子の大半を癌細胞を有する患部領 域に集め、癌細胞への磁性薬の誘導率を高めることができる。
[0045] し力、しながら、分岐部 5に磁界を掛け続けてレ、くと、磁性薬粒子自体が磁石の役割 を持ち、別の磁性薬粒子を捕捉することになる。捕捉される磁性薬粒子の数が増える と分岐部 5付近に血栓を生じさせる原因となる危険性がある。
[0046] そこで、本実施形態では、超音波探触子 48を用いて分岐部 5付近における磁性薬 の停留量をモニターして、そのモニター結果に基づレ、て超伝導磁石の磁界強度を制 ί卸することとしてレ、るのである。
[0047] 図 4において、超音波探触子 48は、演算制御装置 70からの制御により、血管分岐 部群の箇所から上流側の分岐部における磁性薬の停留位置に移動定盤 49上を、モ ータ(図示せず)を内蔵した駆動部収納ボックス 50で回転駆動される車 12で所望の 位置付近 (超音波探触子の先端を分岐部 5に宛がえる位置)まで移動する。また、支 柱 51上部の回転モータ(図示せず)を内蔵した回転駆動部 52と、アーム 53、回転機 能を有した超音波探触子ホルダー 54により、血管分岐部への 3次元位置と角度に自 動的にセットされる。この超音波端子素子 48の配置は、それによる検知画像がクリア に認識できるような位置に設定するのが望ましい。
[0048] 超音波探触子 48は、磁性薬の音響インピーダンスに違いより超音波の反射の大き さで磁性薬量の定量値が計測できるようになつている。超音波探触子 48で計測され た磁性薬の停留量の測量値結果は、信号配線 55で超音波診断装置 56と連結され 、そのデータは演算制御装置 70にケーブル 57で送信される。計測結果をもとに血管 分岐部での磁性薬の捕捉停留が生じた場合、その停留量が所定の量で以上であれ ば、演算制御装置 70からの制御により、磁気誘導用磁石を血管分岐部から遠ざけた り、磁石の励磁電源を OFFにして当該部位の磁気力を低減し、停留した磁性薬を所 定の方向に血流によって誘導する。誘導後は磁気誘導用磁石を基の状態に戻し循 環する磁性薬をさらに誘導する。また、超音波探触子 48はさらに下流側の血管分岐 部に移動させて、磁性薬の捕捉停留量を計測することができる。つまり、磁性体を有 する薬剤には、血液との音響インピーダンス差のある物体が付加もしくは外部刺激に より音響インピーダンス差を発生する物質を発生させる密度差発生体が付加されて いるので、磁場発生手段磁場中にある分岐箇所にある物体が超音波探触子 48で検 知される。
[0049] 例えば、数ミクロンサイズ以下の窒素ガス気泡や、ヘリウムガス等の微小気泡群を 前記磁性薬粒子内に体内投入時もしくは事前に付加させた前記磁性薬粒子もしくは 、前記微小気泡群と前記磁性薬粒子とを含ませた磁性コロイド粒子、また、磁性粒子 と薬剤を含む磁性コロイド粒子を使用することができる。そして、磁性粒子誘導システ ムにより磁性コロイド粒子は癌細胞の患部に通じる分岐部 5に誘導される。
[0050] 仮に、分岐部 5において、磁石の磁場が計算以上に大きかったり、磁石配置位置 が計算以上に分岐点に近かったり、磁性薬粒子の磁性粒子の量が大きく磁性が製 薬時仕様値より強ぐ磁気力が計算値より大き力 た場合には、磁性薬は分岐部の 血管内壁面に捕捉され、その先に磁性薬が誘導されないことが考えられる。しかし、 各分岐点近傍の患者の体表面に超音波発生による超音波探査手段 (超音波探触子 48)を設け、磁場が存在する分岐部 5を磁場の影響を受けない超音波により探査す ることにより、磁性コロイド粒子群が捕捉されているかどうかを検知する。磁性コロイド 粒子群が捕捉されている場合は、磁石を分岐点から遠ざける力 設置角度を変える か、磁石の間に鉄板等の磁性体を揷入したり、磁石の磁場を小さくするかして、分岐 部 5における磁気力を小さくする。これにより、血管内部に捕捉された磁性コロイドを 開放し、血流に乗せて次の分岐部や患部に効率よく誘導する。
[0051] ここで、例えば超音波で気泡等を発生させる薬剤を用いれば、計測前に発泡を誘 発する周波数の超音波を分岐点に照射することにより、磁性コロイド粒子群に音響ィ ンピーダンス差を有した物質を発生させることもできる。なお、薬剤を超音波振動によ り移相させ、気相に変化させる原理について簡単に述べると、超音波振動を粒子に 与えることによる液相粒子を共振させることにより、相変化を起させるものである。その 結果として音響インピーダンスを変化させることができる。
[0052] 一方、図 4において、超音波画像装置は、センサー部 48と画像診断装置 56とで構 成され、パルス送信により音響インピーダンスの差により生じる反射エコーを映像化 する装置である。ここで、超音波振動子に印加する波をバースト波にして与えることで 粒子を液相から気相へと変化させ、微小気泡群を発生させることで映像化させること を可能となる。
[0053] また、微小気泡群として酸素やこの酸素を含む空気の微小気泡群を使用すること により、すなわち磁性を有するガス気泡群を付加することにより、密度差により超音波 探査手段 (超音波探触子 48)によって磁性薬の位置を検知できる。その際、これらの 微小気泡群に対しても磁気誘導用の磁場による磁気力が発生し、磁性体を有する薬 剤と同じ磁気力方向に作用して磁気力が増し、より良い誘導機能を向上するという効 果を期待することができる。
[0054] さらに、本実施形態によれば、磁気誘導運転中において超音波診断装置により、 磁性コロイド粒子が血管分岐点の血管壁に薬剤がどの程度の量捕捉停留している 力を検知確認できる。また、その情報により磁性コロイド粒子の血管壁からの離脱を 図るために所定の磁気発生手段を当該分岐点から遠ざけることによって患部まで適 正に磁性薬を誘導し、そして患部における磁性薬の集積率を検知することができる。 よって、磁気誘導型ドラッグデリバリーシステム 100の運転終了を磁性薬の集積率に より判断して、所定の集積率に達したのちシステムを停止する信号をアラームや色彩 色のランプ、制御コンピュータの表示画面に表示することができる。これにより、運転 技師に的確な運転停止情報を知らせることができるという効果がある。
[0055] 続いて、図 7を用いて本実施形態による磁気誘導型ドラッグデリバリーシステム 100 の動作についてさらに詳細に説明する。図 7は、ドラッグデリバリシステムの動作を説 明するためのフローチャートである。なお、特に断らない限り、各ステップでの制御主 体は、演算制御装置 70である。
[0056] ステップ S101では、対象患者の患部までの血管画像(3次元)を始めとする血管の 情報を取得する。この血管の情報は、予め MRI装置 1や XCT装置等で撮像され、 L AN200を介してデータベース 300に格納されているものである(図 3参照)。
[0057] ステップ S102では、ステップ S101で取得した血管の情報から、血管に存在する複 数の分岐部 5の相対 3次元位置情報を取得する。この位置情報は、 MRI装置 1等に よって算出された、患者の体の所定の位置を基点(例えば、患者のみぞおちの位置 を原点とする)として求められた座標情報である。この位置情報には血管の分岐部の 位置、形状、角度、血管の直径等が含まれる。また、 MRI装置 1によって、その他の 情報として血液の各分岐部での流速(血液のサラサラ度を示す)も求められる。これら の情報は、例えばデータベース 300に格納されている。
[0058] また、ステップ S103では、各分岐部で必要とされる磁石の形状、磁石の磁場 (磁界 )特性を取得する。この磁石形状や磁場特性は、分岐部の形状や体内での深さとリン クするものであるが、例えば、データベース 300に分岐部形状、血管の直径、血液の 流速に対応して最適と思われる磁石形状や磁場特性の情報が過去の統計データと して格納されており、このデータベースから分岐部形状等の情報に対応して磁石形 状や磁場特性の情報が取り出されるようになつている。
[0059] 次に、ステップ S104では、ステップ S103で取得した情報に基づいて、現状用意さ れてレ、る使用可能な複数の磁石システム (超伝導磁石容器 7)群から各分岐部で使 用する磁石システムを選定する。また、その磁石システムを各分岐部に最適に宛がえ るように、各分岐部の基点からの 3次元配置位置及び宛がう角度を設定する。この宛 力 Sう角度は、例えば、前述のように分岐部の形状や深さによって統計的に求められた 値であっても良いし、磁石形状や磁場特性から所定の演算によって求めるようにして も良い。
[0060] ステップ S105では、対象患者がデリバリーシステムの寝台(ステージ)上の所定の 位置に載置されたか、つまり、システムの基点 (座標原点)と MRI装置で撮像した際 の患者の体の基点とが合致しているかが判断される。所定の位置に載置されるまで は次のステップには処理は移行しなレ、ようになってレ、る。
[0061] ステップ S106では、ステップ S104で取得した位置 ·角度に磁石システムを設定す る。 [0062] さらに、ステップ S107では、超音波探触子 48を各分岐部近傍及び患部近傍にセ ットする。なお、超音波探触子 48が複数用意されている場合には、各分岐部近傍及 び患部近傍に同時にセットできる。しかし、 1つ若しくは分岐部の数よりも少ない場合 には、患部から最上流の分岐部にまず設定され、その他の分岐部に関しては、各分 岐部の 3次元座標及び宛がう角度を一時的にメモリに格納しておき、上流の分岐部 でのモニタリングが終了次第順次下流の分岐部に移行しながら各分岐部でのモニタ リングを実行するようにしても良い。
[0063] ステップ S108では、磁石システム (超伝導磁石容器 7)及び超音波探触子 48が適 正な位置にセットされたかが判断される。適正な位置か否かは、例えば、ステップ S1 04で取得した情報と設定位置'角度が合致しているか否かによって判断される。ステ ップ S108において、適正な位置にセットされたと判断されれば、処理はステップ S10 9に移行し、適正な位置からはずれていると判断されれば、再度磁石システム及び超 音波探触子の位置をセットし直すか、位置及び角度の微調整を行う。
[0064] ステップ S109では、磁性薬の注入を許可する通知(例えば、表示部に表示或いは 、音声による通知等)を行い、医者等のオペレータによって磁性薬が注入されたこと を検知すると(例えば、注入と同時に動作スィッチをオペレータが押下)、磁性薬の誘 導運転を開始する。
[0065] 続いて、ステップ S110では、超音波素子 48によって各分岐部 ·患部における磁性 薬の停留量がモニタリングされ、その量が逐一管理される。
[0066] そして、ステップ S111では、所定時間経過後の分岐部での磁性薬の停留量と第 1 の閾値を比較し、停留量がその第 1の閾値を超えているか否かが判断される。この第 1の閾値は、例えば、分岐部において血栓が生成されてしまう危険性がある量に基づ いて決定される。したがって、血栓の危険性は体格や年齢等によって個人差がある ので、第 1の閾値も統計的な手法を用いて予め決定された値をデータベース 300か ら読み出してくるようにしてもよレ、。ステップ S111において、停留量が第 1の閾値に達 しない場合には処理はステップ S117に移行し、達している場合には処理はステップ S112に移行する。
[0067] ステップ S112では、磁石システムは、その発生する磁気力を弱めるように制御され る。この制御は、例えば、磁石システムの磁石部分を分岐部から遠ざけたり、磁場発 生用の磁石電流値を下げたりすることによりなされる。
[0068] そして、ステップ S 113では、分岐部での磁性薬の停留量が引き続き超音波探触子 48によってモニタリングされ、その値が第 2の閾値以下になったかが判断される。この 第 2の閾値は、血栓発生の危険性がなくなった程度の量であり、第 1の閾値同様、個 人差があるものである。磁性薬の停留量が第 2の閾値以下になっていない場合には 、処理はステップ S112を繰り返して引き続き磁石システムの磁気力が弱められる。一 方、停留量が第 2の閾値以下になった場合には、処理はステップ S114に移行する。
[0069] ステップ S 114では、磁石システムの発生する磁気力が元に戻され、再度誘導運転 を継続する。
[0070] ステップ S 115では、所定時間経過後の患部における磁性薬の停留量を検知し、そ の停留量が第 3の閾値以上になっているか否かが判断される。この第 3の閾値は、患 部において磁性薬の効能を発揮するのに充分な量を示すものであり、磁性薬の種類 によって異なってくる。患部における磁性薬の停留量が第 3の閾値以上に達していな ければ、磁性自体が肝臓で消化されてしまった可能性が高いので、再度磁性薬の注 入が可能かを判断すベぐ処理はステップ S117に移行する。一方、停留量が第 3の 閾値以上に達してレ、れば、処理はステップ S 116に移行する。
[0071] ステップ S116では、患部に適正に磁性薬を誘導できたので、デリバリーシステム 1 00の誘導運転を終了する。
[0072] ステップ S111において分岐部の停留量が第 1の閾値に達していない場合、又は、 ステップ S115において患部での停留量が第 3の閾値に達していない場合には、ステ ップ S 117で磁性薬の注入回数がチェックされる。磁性薬の注入回数が所定回数 (磁 性薬の種類によって回数は異なる)以上だと対象患者の人体 (肝臓)への負担が大き くなるため、所定回数に達している場合には、処理はステップ S 116に移行して磁性 薬の誘導運転を終了する。一方、まだ注入回数が所定回数に達していない場合に は、処理はステップ S109に移行し、以後ステップ S110乃至 S117の処理が繰り返さ れる。
[0073] 以上のように、本実施形態においては、血管回路の必要な単数もしくは複数の分 岐部において、投入する磁性薬の磁化率、体積等、各分岐点の血管の 3次元位置、 血管のサイズ、血流速度の情報により、所定の磁場を発生できる磁石の位置、角度 を計算により決定し、所望の位置に磁石を設置し、複数の分岐部 5で所定の磁場を 発生し誘導を行いながら、その部位に捕捉停留した磁性薬量を超音波探触子 48を 使用して停留量を測定した後、分岐部での磁石の磁気力を低減して磁性薬を所定 の血管回路に誘導できる。従って、特定の患部への磁性薬の誘導率を高め、磁石の 磁気力の制御を磁性薬の捕捉停留量計測結果をもとに適切に実施することができ、 所定量の磁性薬を所定の患部へ誘導できる。
[0074] また、本実施形態では、患部に直接磁場を集中提供するのではなぐ血管の分岐 部で所定の方向に磁性薬を誘導する。これにより、薬剤磁気誘導率を向上させること ができる。また、小型のソレノイドコイル式磁石を使用することにより、磁性薬粒子を所 定の癌細胞の患部へ投入量の誘導率を高めることができる。
[0075] <第 2の実施形態 >
永久磁石で発生できる磁界は、せいぜい 1テスラで、かつ発生する磁場が磁石表 面からあまり遠くまで到達しない。このため、被検体の体外表面に磁石を配置する場 合、体外表面から深部に磁場が到達せず、癌細胞が体外表面から深部にある場合 磁性薬を捕捉できず、癌細胞に対し薬の効果が効かない場合がある。
[0076] 一方、コイル方式の常電導電磁石や超電導磁石で磁界を発生させる場合、磁界は 1テスラを超えることは比較的容易である力 磁石のコイル中心軸方向で、コイルから 離れた位置で磁場を高め、磁気力を高めるために必要とされる磁気勾配を大きくす ることは困難である。このため、癌細胞の近傍だけに磁場を集中させて、磁性薬を癌 細胞に高濃度に集めることができず、癌細胞に対し薬の効果が低下する場合がある 。また、同構成によっては同深部方向に直角な 2次元平面内での磁気力の大きな力 勾配を生成できなレ、。これでは、磁気力を集中できず、たとえば血管の分岐点にお いて、移動したい方向に磁気力の差を付けがたくなり、磁性薬の誘導等ができない。 このため、患部の癌細胞にまで磁性薬を高濃度を保ちつつ輸送することができず、 充分な薬効を期待できなレ、場合もある。
[0077] そこで、第 2の実施形態以下では、磁気勾配を大きくするための工夫について説明 する。
[0078] 図 8は、第 2の実施形態に係る超伝導磁石容器 7の構成を示す図である。図 8は、 磁場発生手段として、第 1の実施形態におけるソレノイドコイル 20の代わりに YBCO 系の高温超電導バルタ体 58を使用し、小型冷凍機で直接高温超電導バルタ体 58を 冷却する構成を示している。
[0079] 図 8において、高温超電導バルタ体 58の外周は、ステンレス製やアルミ二ユウム製 のリング 59と接着剤等で一体化されている。これは、高温超電導バルタ体 58を着磁 する際に自身の磁気力で割れが発生することを防止するためである。また、高温超 電導バルタ体 58とリング 59は銅やアルミ二ユウム製の伝熱フランジ 60に接着剤等で 熱的に一体化される。さらに、伝熱フランジ 60と伝熱フランジ 22とは、インジユームシ ートゃグリース(図示せず)を介してボルト(図示せず)等で熱的に一体化されてレ、る。 ヘリウム冷凍機コールドステージ 33による高温超電導バルタ体 58の冷却方法は、第 1の実施形態において説明した前記超電導磁石 21を冷却する方法と同一であるの で、説明を省略する。
[0080] 一般的に実施されているように、高温超電導バルタ体 58へ着磁するためには、着 磁したい所定の磁界、例えば 10テスラの磁界を発生できる着磁用の超電導磁石、も しくは発生磁場が小さな常電導磁石を別途用意する(両磁石は図示せず)。
[0081] そして、高温超電導バルタ体 58を組み込んだ磁石容器 7を高温超電導バルタ体 5 8を冷却する前に、既に着磁したい磁場を発生している着磁用磁石内の磁場中にバ ルク体 58を挿入し、その後、ヘリウム冷凍機で高温超電導バルタ体 58を超電導温度 以下に冷却する。ここで、超電導バルタ体の円筒軸方向と着磁用磁石が発生する主 磁場方向を一致させる。
[0082] その後、着磁用磁石の磁場を消磁すると、冷却し続ける高温超電導バルタ体 58内 に磁場が捕捉され、冷却が維持される限り着磁磁場と同等の超電導バルタ磁石とな る。このようにして、高レ、、例えば 5テスラ〜 10テスラの磁場を捕捉した高温超電導体 を磁場発生手段として使用する。着磁された超電導バルタ磁石の磁界分布は、ほぼ 均一に分布するミクロな磁束の集団で形成される。このため、例えば高温超電導バル ク体 58が円形の場合、その表面の磁界分布はほぼ円錐状となり中央部の磁界が最 も強ぐ外周部でほぼゼロとなる。したがって、高温超電導バルタ体 58の中央から半 径方向に向かって非常に大きな磁気勾配を有する。これにより、磁場発生手段の中 央部の磁界を強くできピンポイントで磁場を掛けることができる。このことは、中央部の 磁界が強くないコイル (第 1の実施形態)と比べて有利な点である。コイルを利用する 場合は、中央部ではなく磁石部の両端の磁場が強くなり、中央部の磁場は強くでき ないのでピンポイントで磁場を掛けるのが困難である。
[0083] さらに、変形例として図 9及び図 10に示されるように、高温超電導バルタ体 58の上 部は例えば血管分岐部の誘導したい血管路の 3次元方向に沿った凸状の形状を持 つ高温超電導バルタ体 61及び 62を有する。また、リング 59と高温超電導バルタ体 6 1及び 62との隙間には、高温超電導バルタ体の励磁時に作用する内部のお互いに 反発する磁気力で内部破壊することを防止するため、グラスファイバー入りの樹脂材 63で坦られてそれぞれが接着一体化されている。さらに、伝熱フランジ 60は、固定 用ボルト穴 64を有している。
[0084] この変形例によれば、図 11に示すように、磁性薬を誘導する血管分岐部において 磁石中央部を誘導したい管路側の管路軸上に設定すれば、高温超電導バルタ体 5 8の外周部が形成する磁界内に流入した磁性薬は自ずと磁界および磁気勾配が大 きい高温超電導バルタ体 61及び 62の凸状先端面に沿った方向(図 9参照)に磁気 誘導すること力できる。このように、血管分岐部において、より多くの磁性薬を誘導で 所定の血管路側に精密に誘導できるので、さらに磁性薬粒子を所定の癌細胞の患 部へ投入量の誘導率を高めることができる。
[0085] したがって、第 2の実施形態によれば、磁場発生手段として血管分岐部の誘導方 向の血管回路の 3次元形状に沿って磁界および磁気勾配が大きくなる超電導バルタ 体を使用するので、さらに血管内の磁性薬剤に作用する磁気力を大きくでき、より確 実に磁性薬剤を患部の所定の部位に誘導し、患部に誘導できる磁性薬剤の割合を 大さくでさる。
[0086] <第 3の実施形態 >
図 12及び図 13は、第 3の実施形態に係る高温超電導バルタ体の構成を示してい る。図 12及び図 13では、図 9及び図 10の場合とは異なり、リング 59の代わりに、突起 部(高温超電導バルタ体) 61及び 62の側面形状に所定のクリアランスを有する溝 65 を有するリング 66を設け、このクリアランス内をグラスファイバー入りの榭脂材 63で埋 めた構成が採られている。
[0087] 本実施形態によれば、突起部(高温超電導バルタ体) 61及び 62の近傍までに金属 製のリング 66を設置できるので、高温超電導バルタ体の励磁時に作用する内部のお 互いに反発する磁気力で内部破壊することをさらに防止でき、より大きな磁界を着磁 できる。したがって、血管分岐部での磁気力を大きくでき、さらに患部に精密に誘導 できる磁性薬剤の割合を大きくできる。
[0088] <その他 >
なお、実施形態の機能を実現するソフトウェアのプログラムコードによっても本発明 は実現できる。この場合、プログラムコードを記録した記憶媒体をシステム或は装置 に提供し、そのシステム或は装置のコンピュータ(又は CPUや MPU)が記憶媒体に 格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプロ グラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコ ード自体、及びそれを記憶した記憶媒体は本発明を構成することになる。このような プログラムコードを供給するための記憶媒体としては、例えば、フロッピィ(登録商標) ディスク、 CD-ROM, DVD-ROM,ハードディスク、光ディスク、光磁気ディスク、 CD— R、磁気テープ、不揮発性のメモリカード、 ROMなどが用いられる。
[0089] また、プログラムコードの指示に基づき、コンピュータ上で稼動している OS (ォペレ 一ティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前 述した実施の形態の機能が実現されるようにしてもよい。さらに、記憶媒体から読み 出されたプログラムコード力 コンピュータ上のメモリに書きこまれた後、そのプロダラ ムコードの指示に基づき、コンピュータの CPUなどが実際の処理の一部又は全部を 行レ、、その処理によって前述した実施の形態の機能が実現されるようにしてもょレ、。
[0090] また、実施の形態の機能を実現するソフトウェアのプログラムコードがネットワークを 介して配信されることにより、システム又は装置のハードディスクやメモリ等の記憶手 段又は CD-RW、 CD-R等の記憶媒体に格納され、そのシステム又は装置のコンビ ユータ (又は CPUや MPU)が当該記憶手段や当該記憶媒体に格納されたプログラム コードを読み出して実行することによつても、達成されるようにしてもよレ、。
なお、本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考と して本明細書に取り入れるものとする。
また、本発明は開示された上述の実施形態によって限定されるものではなぐ請求 の範囲によって規定される範囲を逸脱することのない限度において、再構成、変形、 代用が可能である。

Claims

請求の範囲
[1] 生体の一部若しくは全体をステージ上に載置し、前記生体内に注入された磁性体 を有する薬剤を前記生体の患部まで誘導するドラッグデリバリーシステムであって、 前記生体における血管分岐部の位置を含む血管情報を取得する血管情報取得手 段と、
前記生体の血管内における前記薬剤の移動を磁気力によって誘導するための磁 場を発生させる磁場発生手段と、
前記血管情報に基づいて、前記磁場発生手段を前記血管分岐部に配置するよう 制御する制御手段と、
前記血管分岐部における薬剤の停留量を検知する停留量検知手段と、を備え、 前記制御手段は、前記停留量検知手段によって検知された前記薬剤の停留量に 応じて、前記磁場発生手段の磁気力を調整することを特徴とするドラッグデリバリーシ ステム。
[2] 前記薬剤は、音響インピーダンス差を生じさせる物質を有し、
前記停留量検知手段は、超音波探触子により前記薬剤の音響インピーダンス差を 検知することにより前記薬剤の停留量を検知することを特徴とする請求項 1に記載の ドラッグデリバリーシステム。
[3] 前記制御手段は、前記薬剤の注入から所定時間経過後に前記薬剤の停留量が第
1の閾値以上になった場合に前記磁場発生手段の磁気力を弱め、前記薬剤の停留 量が第 2の閾値以下になった場合に再度前記磁場発生手段の磁気力を元に戻すこ とを特徴とする請求項 1に記載のドラッグデリバリーシステム。
[4] さらに、前記薬剤の注入の許可を通知する通知手段を備え、
前記制御手段は、前記薬剤の注入から所定時間経過後に前記薬剤の停留量が前 記第 1の閾値未満であった場合に前記通知手段を動作させることを特徴とする請求 項 3に記載のドラッグデリバリーシステム。
[5] 前記制御手段は、前記薬剤の注入回数が所定回数に達している場合には、前記 通知手段を動作せずに前記薬剤の誘導運転の終了を促すことを特徴とする請求項
4に記載のドラッグデリバリーシステム。
[6] 前記停留量検知手段は、前記生体の患部における前記薬剤の停留量を検知し、 前記制御手段は、前記薬剤の注入から所定時間経過後の患部における前記薬剤 の停留量が第 3の閾値以上になった場合には、前記薬剤の誘導運転の終了を促す ことを特徴とする請求項 1に記載のドラッグデリバリーシステム。
[7] 前記磁場発生手段は、超伝導コイル磁石を用いて磁場を発生させることを特徴と する請求項 1に記載のドラッグデリバリーシステム。
[8] 前記磁場発生手段は、超伝導バルタ磁石を用いて磁場を発生させることを特徴と する請求項 1に記載のドラッグデリバリーシステム。
[9] 前記超伝導バルタ磁石を構成するバルタ体は、それぞれ形状の異なる第 1及び第
2の磁場発生面を有し、前記第 1の磁場発生面から発する磁気力は前記第 2の磁場 発生面から発する磁気力よりも大きいことを特徴とする請求項 8に記載のドラッグデリ ノ リーシステム。
[10] 生体の一部若しくは全体をステージ上に載置し、前記生体内に注入された磁性体 を有する薬剤を前記生体の患部まで誘導するドラッグデリバリーシステムであって、 前記生体における血管分岐部の位置を含む血管情報を取得する血管情報取得手 段と、
前記生体の血管内における前記薬剤の移動を磁気力によって誘導するための磁 場を発生させる磁場発生手段と、
前記血管情報に基づいて、前記磁場発生手段を前記血管分岐部に配置するよう 制御する制御手段と、
前記生体の患部における薬剤の停留量を検知する停留量検知手段と、を備え、 前記制御手段は、前記停留量検知手段によって検知された前記患部における前 記薬剤の停留量に応じて、前記薬剤の誘導動作を制御することを特徴とするドラッグ デリバリーシステム。
[11] 生体の一部若しくは全体をステージ上に載置し、前記生体内に注入された磁性体 を有する薬剤を前記生体の患部まで誘導するドラッグデリバリーシステムの動作を制 御するためのコンピュータプログラムであって、
前記生体における血管分岐部の位置を含む血管情報を取得する動作を実行する ためのプログラムコードと、
磁場発生手段を動作させ、前記生体の血管内における前記薬剤の移動を磁気力 によって誘導する磁場を発生させるためのプログラムコードと、
前記血管情報に基づいて、前記磁場発生手段を前記血管分岐部に配置するよう に制御するためのプログラムコードと、
停留量検知手段を動作させ、前記血管分岐部における薬剤の停留量を検知する 動作を実行するためのプログラムコードと、
前記停留量検知手段によって検知された前記薬剤の停留量に応じて、前記磁場 発生手段の磁気力を調整する動作を実行させるためのプログラムコードと、 を備えることを特徴とするコンピュータプログラム。
[12] 前記薬剤は、音響インピーダンス差を生じさせる物質を有し、
前記停留量検知手段は、超音波探触子により前記薬剤の音響インピーダンス差を 検知することにより前記薬剤の停留量を検知することを特徴とする請求項 11に記載 のコンピュータプログラム。
[13] 前記磁気力を調整する動作を実行させるためのプログラムコードは、前記薬剤の注 入力 所定時間経過後に前記薬剤の停留量が第 1の閾値以上になった場合に前記 磁場発生手段の磁気力を弱め、前記薬剤の停留量が第 2の閾値以下になった場合 に再度前記磁場発生手段の磁気力を元に戻す動作を実行するためのプログラムコ ードを含むことを特徴とする請求項 11に記載のコンピュータプログラム。
[14] さらに、前記薬剤の注入の許可を通知する通知手段を動作させるためのプログラム コード、と、
前記薬剤の注入から所定時間経過後に前記薬剤の停留量が前記第 1の閾値未満 であった場合に前記通知手段を動作させるためのプログラムコードと、を備えることを 特徴とする請求項 13に記載のコンピュータプログラム。
[15] さらに、前記薬剤の注入回数が所定回数に達している場合には、前記通知手段を 動作せずに前記薬剤の誘導運転の終了を促す動作を実行させるためのプログラムコ ードを備えることを特徴とする請求項 14に記載のコンピュータプログラム。
[16] さらに、前記停留量検知手段に、前記生体の患部における前記薬剤の停留量を検 知させるためのプログラムコードと、
前記薬剤の注入から所定時間経過後の患部における前記薬剤の停留量が第 3の 閾値以上になった場合には、前記薬剤の誘導運転の終了を促す動作を実行させる ためのプログラムコードと、
を備えることを特徴とする請求項 11に記載のコンピュータプログラム。
PCT/JP2007/055808 2006-04-27 2007-03-22 ドラッグデリバリーシステム、及びそれを制御するためのコンピュータプログラム WO2007125699A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006124317A JP5020533B2 (ja) 2006-04-27 2006-04-27 ドラッグデリバリーシステム、及びそれを制御するためのコンピュータプログラム
JP2006-124317 2006-04-27

Publications (1)

Publication Number Publication Date
WO2007125699A1 true WO2007125699A1 (ja) 2007-11-08

Family

ID=38655235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055808 WO2007125699A1 (ja) 2006-04-27 2007-03-22 ドラッグデリバリーシステム、及びそれを制御するためのコンピュータプログラム

Country Status (2)

Country Link
JP (1) JP5020533B2 (ja)
WO (1) WO2007125699A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8332020B2 (en) 2010-02-01 2012-12-11 Proteus Digital Health, Inc. Two-wrist data gathering system
US8419638B2 (en) 2007-11-19 2013-04-16 Proteus Digital Health, Inc. Body-associated fluid transport structure evaluation devices
JP5372178B2 (ja) * 2009-12-25 2013-12-18 株式会社Ihi ドラッグデリバリー制御装置
US9014779B2 (en) 2010-02-01 2015-04-21 Proteus Digital Health, Inc. Data gathering system
US9084566B2 (en) 2006-07-07 2015-07-21 Proteus Digital Health, Inc. Smart parenteral administration system
US9125979B2 (en) 2007-10-25 2015-09-08 Proteus Digital Health, Inc. Fluid transfer port information system
US20180369132A1 (en) * 2017-06-23 2018-12-27 Industry Foundation Of Chonnam National University Therapeutic agent targeting and fixation medical device using magnet array
EP3443916A3 (en) * 2012-05-15 2019-04-24 Pulse Therapeutics, Inc. Magnetic-based systems
US10813997B2 (en) 2009-11-02 2020-10-27 Pulse Therapeutics, Inc. Devices for controlling magnetic nanoparticles to treat fluid obstructions
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000221A1 (de) * 2008-02-01 2009-08-13 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verfahren und Vorrichtung zur Erzeugung eines räumlich frei orientierbaren Magnetfeldes mittels supraleitender Dauermagneten
WO2011049236A1 (ja) * 2009-10-23 2011-04-28 学校法人芝浦工業大学 磁気誘導システムとその動作方法
US9905347B2 (en) * 2012-06-13 2018-02-27 Polyvalor, Limited Partnership Aggregation and control of magneto-responsive entities
WO2014104116A1 (ja) * 2012-12-27 2014-07-03 株式会社Ihi 磁性薬の適正投与形態提供システム
JP6278187B2 (ja) * 2014-03-19 2018-02-14 株式会社Ihi 磁性微粒子制御システム
US20180193101A1 (en) * 2015-06-29 2018-07-12 Kawasaki Jukogyo Kabushiki Kaisha Surgical robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358007A (ja) * 2000-06-13 2001-12-26 Nippon Steel Corp 酸化物超電導バルクマグネット
US20040073117A1 (en) * 2002-02-14 2004-04-15 Schwarz Karl Q. Method and system for delivering contrast agent
WO2006035550A1 (ja) * 2004-09-28 2006-04-06 Osaka University 三次元誘導装置及び方法、並びに薬剤配送システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213622A (ja) * 1994-02-07 1995-08-15 Toshiba Corp 薬剤投与装置
EP1030589A2 (en) * 1997-11-12 2000-08-30 Stereotaxis Inc. Articulated magnetic guidance systems and devices and methods for using same for magnetically-assisted surgery
US6330467B1 (en) * 1999-02-04 2001-12-11 Stereotaxis, Inc. Efficient magnet system for magnetically-assisted surgery
JP2000229844A (ja) * 1999-02-12 2000-08-22 Japan Science & Technology Corp 磁気利用ドラッグデリバリーシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358007A (ja) * 2000-06-13 2001-12-26 Nippon Steel Corp 酸化物超電導バルクマグネット
US20040073117A1 (en) * 2002-02-14 2004-04-15 Schwarz Karl Q. Method and system for delivering contrast agent
WO2006035550A1 (ja) * 2004-09-28 2006-04-06 Osaka University 三次元誘導装置及び方法、並びに薬剤配送システム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084566B2 (en) 2006-07-07 2015-07-21 Proteus Digital Health, Inc. Smart parenteral administration system
US9125979B2 (en) 2007-10-25 2015-09-08 Proteus Digital Health, Inc. Fluid transfer port information system
US8419638B2 (en) 2007-11-19 2013-04-16 Proteus Digital Health, Inc. Body-associated fluid transport structure evaluation devices
US10813997B2 (en) 2009-11-02 2020-10-27 Pulse Therapeutics, Inc. Devices for controlling magnetic nanoparticles to treat fluid obstructions
US11612655B2 (en) 2009-11-02 2023-03-28 Pulse Therapeutics, Inc. Magnetic particle control and visualization
US11000589B2 (en) 2009-11-02 2021-05-11 Pulse Therapeutics, Inc. Magnetic particle control and visualization
JP5372178B2 (ja) * 2009-12-25 2013-12-18 株式会社Ihi ドラッグデリバリー制御装置
US9014779B2 (en) 2010-02-01 2015-04-21 Proteus Digital Health, Inc. Data gathering system
US10376218B2 (en) 2010-02-01 2019-08-13 Proteus Digital Health, Inc. Data gathering system
US8332020B2 (en) 2010-02-01 2012-12-11 Proteus Digital Health, Inc. Two-wrist data gathering system
US9008761B2 (en) 2010-02-01 2015-04-14 Proteus Digital Health, Inc. Two-wrist data gathering system
EP3443916A3 (en) * 2012-05-15 2019-04-24 Pulse Therapeutics, Inc. Magnetic-based systems
EP3643354A4 (en) * 2017-06-23 2020-07-15 Industry Foundation of Chonnam National University MEDICAL DEVICE FOR TARGETING AND FIXING A THERAPEUTIC AGENT USING A MAGNET ARRAY
US20180369132A1 (en) * 2017-06-23 2018-12-27 Industry Foundation Of Chonnam National University Therapeutic agent targeting and fixation medical device using magnet array
US11564881B2 (en) * 2017-06-23 2023-01-31 Industry Foundation Of Chonnam National University Therapeutic agent targeting and fixation medical device using magnet array
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles

Also Published As

Publication number Publication date
JP2007297290A (ja) 2007-11-15
JP5020533B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5020533B2 (ja) ドラッグデリバリーシステム、及びそれを制御するためのコンピュータプログラム
US7505808B2 (en) Catheter tracking with phase information
Hynynen et al. Noninvasive arterial occlusion using MRI-guided focused ultrasound
EP1545365B1 (en) Medical device positioning system
Wildermuth et al. MR-guided percutaneous angioplasty: assessment of tracking safety, catheter handling and functionality
US9057759B2 (en) Method for positioning the focus of a gradient field and treatment facility
US8212554B2 (en) Intraluminal magneto sensor system and method of use
JP5824477B2 (ja) 医療装置
Li et al. Automated in vivo navigation of magnetic-driven microrobots using OCT imaging feedback
Schouten et al. The accuracy and safety aspects of a novel robotic needle guide manipulator to perform transrectal prostate biopsies
Ratnayaka et al. Interventional cardiovascular magnetic resonance: still tantalizing
JP5759462B2 (ja) アクティブ・エージェントを動かし、アクティブ化させる装置および方法
EP2395913A1 (en) Method and system of tracking and mapping in a medical procedure
JP2019080934A (ja) 位置追跡システム
Zamecnik et al. Automated real-time needle-guide tracking for fast 3-T MR-guided transrectal prostate biopsy: a feasibility study
JP2007297290A5 (ja)
JP5062764B2 (ja) 磁気誘導型ドラッグデリバリーシステム
US20100063384A1 (en) Local intra-body delivery system
WO2010076685A1 (en) Susceptibility-based local flow detection to control mr-guided ablation using balloon devices
Martel et al. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots
US10194825B2 (en) Methods and apparatuses for the localization and treatment of disease such as cancer
Krämer et al. Preclinical evaluation of a novel fiber compound MR guidewire in vivo
WO2002069800A1 (fr) Appareil d&#39;imagerie par resonance magnetique
Reichert et al. Passive needle guide tracking with radial acquisition and phase‐only cross‐correlation
JP2002528214A (ja) 対象検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739251

Country of ref document: EP

Kind code of ref document: A1