WO2007124972A1 - Fahrweg und verfahren zur herstellung von betonfertigteilplatten - Google Patents

Fahrweg und verfahren zur herstellung von betonfertigteilplatten Download PDF

Info

Publication number
WO2007124972A1
WO2007124972A1 PCT/EP2007/052226 EP2007052226W WO2007124972A1 WO 2007124972 A1 WO2007124972 A1 WO 2007124972A1 EP 2007052226 W EP2007052226 W EP 2007052226W WO 2007124972 A1 WO2007124972 A1 WO 2007124972A1
Authority
WO
WIPO (PCT)
Prior art keywords
precast concrete
track
switch
rail
slabs
Prior art date
Application number
PCT/EP2007/052226
Other languages
English (en)
French (fr)
Inventor
Stefan BÖGL
Original Assignee
Max Bögl Bauunternehmung GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Bögl Bauunternehmung GmbH & Co. KG filed Critical Max Bögl Bauunternehmung GmbH & Co. KG
Priority to KR1020087028033A priority Critical patent/KR101414408B1/ko
Priority to PL07726748T priority patent/PL2010713T3/pl
Priority to ES07726748T priority patent/ES2419386T3/es
Priority to EP07726748.2A priority patent/EP2010713B1/de
Publication of WO2007124972A1 publication Critical patent/WO2007124972A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/28Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from concrete or from natural or artificial stone
    • E01B3/40Slabs; Blocks; Pot sleepers; Fastening tie-rods to them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0029Moulds or moulding surfaces not covered by B28B7/0058 - B28B7/36 and B28B7/40 - B28B7/465, e.g. moulds assembled from several parts
    • B28B7/0032Moulding tables or similar mainly horizontal moulding surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/02Moulds with adjustable parts specially for modifying at will the dimensions or form of the moulded article
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B7/00Switches; Crossings
    • E01B7/22Special sleepers for switches or crossings; Fastening means therefor

Definitions

  • the present invention relates to a track for rail vehicles, in which individual, a greater longitudinal than transverse extension precast concrete slabs arranged on a support layer, aligned in a predetermined position and encapsulated in this position with a potting compound, and the track a switch with a body and an end part in which a trunk track and at least one branch track runs, and a method for producing such precast concrete slabs, wherein each precast concrete slab is cast in a formwork.
  • a kit for a rail support plate for switches is known.
  • base plates are provided, which have bumps are guided on soft movable rail elements.
  • the base plates are made relatively complicated to meet the requirements for the leadership of the movable rail elements. How the individual components of the base plates look, is not apparent from the disclosure of this document. Also, it is not apparent from how the individual plates are laid on the substructure of the tracks.
  • DE 44 28 163 C1 discloses a method for producing a slab track in the switch area, in which a support layer is continuously passed over the switch area and a stem part of the switch is laid on the support layer. A branch of the turnout is then installed.
  • the main rail part and the branch rail part are components manufactured independently of one another, which are complicated in their shape and difficult to transport as prefabricated concrete parts.
  • Object of the present invention is thus to provide a track with precast concrete panels and a method for the production of precast concrete panels for a track in a switch area in which with only minor modifications precast concrete panels are easy and quick to produce and allow individual points designs.
  • a track for rail vehicles has individual precast concrete slabs which have a greater length than transverse extent.
  • the precast concrete panels are arranged on a support layer and aligned in a predetermined position, usually with spindles. In this aligned position they are shed with the base layer by means of a potting compound.
  • the guideway can be provided for a slab track for high-speed trains, but also for tram rails.
  • a switch in the track has a main part and an end part, in which a trunk track and at least one branch track runs. Depending on the type of turnout it is also possible that there are several branch tracks.
  • the invention is also applicable to a crossing switch, in which mutatis mutandis a track, the main track and the other track form the branch track.
  • the precast concrete panels are designed so that they are laid in the region of the switch both in the longitudinal and in the transverse direction.
  • the longitudinally extending precast concrete slabs are manufactured as required so that when laid in the direction of the track they either have a greater longitudinal extent or a greater transverse extent.
  • precast concrete panels can be used, which are very similar to each other in their construction.
  • a industrial production of precast concrete slabs is thereby very simple and fast to carry out, since the individual precast concrete slabs required for a turnout differ from each other, but in their basic structure to the extent that they can be made in the same or at least very similar manufacturing device.
  • the switch has a relatively small width, which can be bridged well by longitudinal laying of precast concrete slabs.
  • the switch In the end part of the switch, the switch is much wider than in its main part. Therefore, it is advantageous if the precast concrete panels, which are located in the end part of the switch, are laid in the transverse direction. This means that in the direction of the track track, the precast concrete panels have a shorter length than width. This makes it possible until the end of the switch, on which again the normal rail track is done with conventional, mass-produced precast concrete slabs, possible to arrange both tracks, that is the trunk track and the branch track on a plate.
  • the individual plates have dimensions which do not exceed a certain maximum size.
  • the production of these precast concrete slabs is thus industrial, almost possible in mass production.
  • the same manufacturing devices can be used for each of the individual precast concrete slabs needed for a turnout.
  • the base layer consists of an antifreeze layer and a clean layer.
  • the precast concrete slabs are aligned on the cleanliness layer, which consists of an unreinforced concrete layer, and then fixed with the potting compound.
  • the potting compound is an in-situ concrete layer with reinforcement. The reinforcement is laid on the cleanliness layer before the precast concrete slab is put on and aligned. Then, the cavity between the precast concrete slab and the cleanliness layer is laterally shrouded and finally poured with concrete. As a result, the position of the precast concrete panel is fixed.
  • connection reinforcement projects into the in-situ concrete layer and, in a particularly advantageous embodiment, is connected to the reinforcement of the in-situ concrete layer, for example via transverse bars. This creates an intimate and lasting connection.
  • threaded rods may be provided, via which adjacent precast concrete panels are clamped together. This also creates a firm connection and fixing the position of the precast concrete slabs, which form the track, with each other.
  • the connection by means of the threaded rods is only possible where it allows the points structure.
  • a continuous, also made of precast concrete panels produced continuous carriageway.
  • a connection of the individual precast concrete slabs with threaded rods is dispensed with. At least here the connection over the described connection reinforcement is to be preferred.
  • precast slabs are used in the area of the switch, where the threaded slats extend more to the longitudinal extent of the precast concrete slabs.
  • the former is advantageously the case in the main part of the switch, the latter in the end part of the switch, in which the precast concrete slabs are laid in the transverse direction.
  • the outer contour of the precast concrete panels substantially corresponds to the course of the main track and the branch track. This is obtained by a circumferential surface of the precast concrete slab, in which at least one outer side is not perpendicular to the two adjoining outer sides of the precast slab.
  • the rail fasteners in particular screws and dowels or screws and nuts can be fastened there.
  • the holes can be individually placed in the precast concrete slab to meet the desired track layout of both the main track and the branch track justice.
  • they are drilled after the production of precast concrete slab at the required points for the individual points.
  • precast concrete panels have predetermined breaking points, which are arranged transversely to the track, then a durable and low-maintenance Installation and use of precast concrete slabs guaranteed in the infrastructure. There are no uncontrolled cracks in the precast concrete slab, but only in the area of the predetermined breaking points which are provided for this purpose. The carrying capacity of the precast concrete slab is not unduly reduced thereby.
  • each precast concrete part is concreted in a formwork having a formwork floor with a dimension for a certain maximum of precast concrete slabs for producing individual prefabricated concrete slab panels by fastening scarf walls the formwork floor is reduced.
  • formwork forms for support benches extending transversely to the later course of the rail are provided.
  • the formwork forms for the support benches are arranged on the formwork floor in such a way that the support benches are aligned transversely to the later course of the rail.
  • the formwork has a certain maximum, which is reduced for the production of individual precast concrete panels of the switch.
  • the maximum dimensions are offered which largely correspond to the dimensions of the concrete precast slabs used in the normal route.
  • lengths of up to 10 meters and widths of up to 4 meters are common.
  • the precast concrete panels which are used in the switch correspond to such a grid.
  • precast concrete slabs are produced, which either have a length of up to 10 meters and a width of up to 4 meters or have a length of up to 4 meters and a width of up to 10 meters, each viewed in the direction of the track ,
  • an industrial production of precast concrete slabs, which are required in the region of a switch is made possible in an advantageous manner.
  • Threaded steels for the production of longitudinally and transversely placed prefabricated concrete slabs can optionally be laid in the longitudinal or in the transverse direction of the precast concrete slab.
  • threaded rods related shapes such as pockets on the front sides of the precast concrete panels or predetermined breaking points, which are to be arranged transversely to the course of the threaded steel.
  • the production of the individual precast concrete slabs is advantageously carried out by the fact that the formwork has a device for receiving the threaded rods and optionally further connected to the threaded rods forming devices, which can be rotated by 90 ° for the production of longitudinally and transversely placed precast concrete panels.
  • holes for receiving rail fasteners are introduced after concreting the precast slab into the slab.
  • the exact track layout of both the main track and the branch track can thus be determined after concreting. This brings particular advantages when concreting the concrete precast slabs, which thereby significantly simplifies.
  • the attachment of the rails on the precast concrete panel can be done by means of dowels in the holes.
  • anchoring bodies are attached to the underside of the precast concrete slab in the area of the holes before laying the precast concrete slab. Dowels are unnecessary in this case.
  • the anchoring body, such as nuts, are temporarily attached to the precast concrete slab and finally finally fixed in the potting compound.
  • the temporary fastening device can be removed and replaced by the rail fastening.
  • the holes for receiving rail fasteners only after the installation of precast concrete slabs in the plate be introduced.
  • the individual plates are first laid firmly on the support layer and optionally aligned, fixed and connected to one another. Only then are the holes introduced into the panels and the rail fasteners secured with the rails thereon. The exact course of the tracks is thus determined on the exactly laid track.
  • pockets are provided on the front sides of the precast concrete slabs in which the threaded rods end.
  • the threaded rods are connected with each other, for example with clamping nuts and cause a firmly connected concrete surface on which the tracks can be permanently attached.
  • the threaded rods are advantageously covered at their ends, for example, with shrink tubing to avoid connection to the concrete.
  • the threaded rods can be stretched and thus cause a firm juxtaposition of two adjacent precast concrete parts.
  • the method of joining two such adjacent precast concrete elements has already been described in the Applicant's earlier patent applications.
  • the present invention is not limited to these joining methods.
  • the connection via connection reinforcements in the in-situ concrete layer is also very advantageous.
  • FIG. 1 is a schematic plan view of a switch
  • FIG. 2 shows a plan view of a longitudinally installed precast concrete element
  • 3 shows a section through a precast concrete part
  • FIG. 4 shows a plan view of a transversely installed precast concrete part
  • Figure 5 shows a section through another precast concrete part
  • Figure 6 is a plan view of another transversely mounted precast concrete part.
  • FIG. 1 shows a plan view of a schematically illustrated switch 1, which is designed in the form of a simple curved switch.
  • the turnout 1 has a turnout 2 and a turnout end 3. It has a trunk track 4 and a branch track 5 on.
  • the switch 1 consists of a main part 6 and an end part 7, which is also called the heart.
  • the main part 6 is assigned to the turnout 2, while the end part 7 is at the turnout end 3.
  • standard concrete precast panels 8 are arranged, as they are usually used in a simple route.
  • All concrete slabs 11-16 correspond to a predetermined maximum grid in terms of their length and width, for example 10 x 4 m. According to this grid, the precast concrete slabs 11, 12 and 13 are longitudinally installed in the region of the main part 6 of the switch 1, while in the region of the end part 7 of the switch 1, the precast concrete panels 14, 15 and 16 are installed transversely.
  • the precast concrete slabs 8 and 11-16 abut each other and can be connected to each other directly via threaded rods or indirectly via a connection reinforcement and an in-situ layer of concrete arranged thereunder. Through this connection creates a continuous concrete band, on which trunk track 4 and branch track 5 are built together with the switch 1.
  • the individual precast concrete slabs 11-16 are arranged at a distance from each other, in order to allow a free space for the control of the switch 1 and its movable components.
  • the individual precast concrete slabs 11-16 which are not connected to a neighboring precast concrete slab, are arranged particularly firmly on the substrate, the support layer.
  • the trunk track 4 and the branch track 5 are fixed to located on the precast concrete panel 8 bumps 20 in a conventional manner, the tracks in the area of the switch 1 are mounted directly on the precast concrete panels 11-16. This attachment takes place for example in boreholes, which are introduced into the plates 11-16 before or after the laying of the precast concrete panels 11-16.
  • the tracks and the switch parts can be laid exactly by screwing them into the drill holes.
  • FIG 2 is a plan view of the longitudinally laid concrete finished plate 11 is shown.
  • pockets 21 are arranged.
  • the pockets 21 lead threaded 22, which are embedded in the concrete precast slab 11.
  • the precast concrete slab 11 is fixedly connected to its adjacent precast concrete slabs 8 and 12 are screwed in a known manner turnbuckles with the threaded rods 22 of the adjacent precast concrete panels 8 and 12 and the threaded rods 22 are tensioned by rotation of the turnbuckles.
  • the threaded rods 22 are not firmly connected in their end regions with the precast concrete panel 11.
  • the threaded rods 22 are provided with shrink tubes 23 for this purpose, which allow a movement of the threaded rods 22 during clamping with respect to the precast concrete element 11.
  • the shrink tubes 23 end in the range of nominal fractions 24 in order not to bridge them and to impair their effect.
  • the predetermined breaking points 24 concentrate inevitable cracks in the precast concrete panel 11 in the region of the predetermined breaking points 24. This makes it very easy to control the precast concrete slab 11 with respect to its condition.
  • the predetermined breaking points 24 are located in a region 25 which is formed deeper than support benches 26.
  • the area 25 may have a slight slope, whereby a good drainage of the precast concrete panel 11 takes place.
  • the support benches 26 form an area in which the rail fasteners are mounted. They are preferably flat and allow an individual drilling of the holes in which the screws for the rail fasteners are introduced. After drilling the holes 11 nuts 27 are held as an anchoring body provisionally with fasteners 28 on the underside of precast concrete panel. For clarity, only one nut 27 is shown. However, there are on each Auflagerbank 26 more of these anchoring bodies, namely one for each rail. The nuts 27 are finally poured after laying the precast concrete panel 11 in the potting and fixed for final attachment to the rail mounting.
  • FIG. 4 shows a plan view of the precast concrete slab 16.
  • the structure corresponds essentially to the precast concrete panel 11 of Figure 2. However, it is different that the precast concrete panel 16 is installed transversely in the switch 1, since the switch 1 in the region of the end portion 7 is relatively wide.
  • a total of four packages with threaded rods 22 are provided, which each open into the pockets 21.
  • holes not shown are introduced, by means of which the tracks and the components of the switch 1 are mounted on the precast concrete panel 16.
  • the threaded rods 22, which are associated with the branch track 5, run in the precast concrete panels 12-15 gradually and are fixed therein to unfold the clamping effect can.
  • the concrete precast slabs 11-16 of the switch 1 can essentially be laid in the same way as the standard precast concrete slabs 8. This means that in the precast concrete slabs 11-16, for example, spindles are installed in a conventional manner, with which the precast concrete slabs 11-16 are adjusted on the support layer in height. After the adjustment has taken place, the precast concrete panels 11-16 are fixed to the base course and to each other. For this purpose, the precast concrete panels 8 and 11-16 are underfilled with a Untergussmasse to obtain a fixed position of the precast concrete panels 8 and 11-16 with respect to the support layer. They are then clamped together via the threaded rods 22, as far as necessary and with respect to the points installations. Finally, the pockets 21 are filled with concrete to permanently fix the position of the precast concrete panels 11-16 to one another.
  • precast concrete slabs 11-16 With regard to the manufacture of precast concrete slabs 11-16, it is significant that they can be produced with a single basic formwork.
  • This basic formwork which determines the maximum grid in terms of length and width of precast concrete panels 11-16, is separated by intermediate walls, which are adjustable in their angle to the other walls. This makes it possible to concretes smaller than the maximum possible precast concrete panels.
  • At the basic position of the threaded rods 22 and the pockets 21 nothing changes as long as the precast concrete panels are provided for longitudinal installation. However, if the finished precast concrete panels needed for the transverse installation, the threaded rods 22 and the required pockets 21 and formwork forms for the support benches are rotated by 90 ° used in the formwork.
  • precast concrete component 14-16 in which the threaded rods 22 transversely and support benches along the longitudinal extent of the concrete fertigbauteils 14-16 run and the pockets 21 are arranged in the longitudinal side of the precast concrete component 14-16.
  • the threaded rods 22 along the longitudinal extent of the precast concrete panels 11-13 concreted the pockets 21 are located on the shorter end faces of precast concrete panels 11-13 and the Auflagerbänke extend transversely to the longitudinal extent of precast concrete panels 11-13 , If predetermined breaking points 24 are provided in the plates, they are likewise rotated so that they too run transversely to the threaded steels 22 or to the longitudinal extent of the precast concrete slabs 11-13.
  • FIG. 5 illustrates the attachment of a precast concrete slab 11 by means of a connection reinforcement 30.
  • the precast concrete slab 11 is constructed on an antifreeze layer 31.
  • a cleanliness layer 32 is applied, which is usually an unreinforced concrete strip.
  • the precast concrete panel 11 is aligned with spindles, not shown, on this cleanliness layer 32.
  • a reinforcement 33 is designed.
  • the reinforcement 33 reinforces a potting layer 34, which is filled between the precast concrete slab 11 and the cleanliness layer 32 after aligning the precast concrete slab 11.
  • the connection reinforcement 30 is provided in order to fix the precast concrete panel 11 permanently on the potting layer 34.
  • cross bars 35 is a kind of toothing between the connection reinforcement 30 and the reinforcement 33rd
  • FIG. 6 shows a plan view of a precast concrete slab. It can be seen that the support benches 26 are used for the individual arrangement of rail fasteners 36. Depending on requirements, the rail mounting 36 can be arranged on the Auflagerbank 26. An individual attachment of the tracks in the area of the switch is made possible thereby.
  • the present invention makes it possible, on the one hand, to mount the rail fasteners on the simple plates of the switch already in the factory, and thus to be able to arrange them very precisely on the plates.
  • the present invention also enables the center of the switch to be mounted on site.
  • Rail and rail fastening are for this purpose, for example, delivered in one piece to the installation site and used there in the pre-consolidated holes of precast concrete panels.
  • precast concrete slabs 11-16 which are each individual in order to create the switch 1 and yet have a similarity with which they can be concreted in the same production apparatuses.
  • the invention is of course not limited to the illustrated embodiments. So are other than the illustrated installation method possible.
  • the precast concrete components 11-16 may already include shots for the rails, whereby the attachment of holes after laying the precast concrete slabs 11-16 is not required or only to a limited extent.
  • switch shapes can be produced with the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Road Paving Structures (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

Bei einem Fahrweg für schienengebundene Fahrzeuge sind einzelne, eine größere Längs- als Quererstreckung aufweisende Betonfertigteilplatten (8,11-16) auf einer Tragschicht angeordnet, in einer vorbestimmten Lage ausgerichtet und in dieser Lage mit einer Vergussmasse vergossen. Der Fahrweg weist eine Weiche (1) mit einem Hauptteil (6) und einem Endteil (7) auf, in welchen ein Stammgleis (4) und zumindest ein Zweiggleis (5) verläuft. Im Bereich der Weiche (1) sind die Betonfertigteilplatten (11-16) in Längs- und in Querrichtung verlegt. Dementsprechend wird bei einem Verfahren zur Herstellung von Betonfertigteilplatten (11-16) für eine Weiche (1) eines Fahrwegs für schienengebundene Fahrzeuge jede Betonfertigteilplatte (8,11-16) in einer Schalung betoniert. Die Schalung weist einen Schalboden mit einer Abmessung für ein bestimmtes Höchstmass der Betonfertigteilplatten (11-16) auf, welches zur Herstellung individueller Betonfertigteilplatten (11-16) der Weiche (1) durch Befestigung von Schalwänden auf dem Schalboden reduziert wird. An dem Schalboden werden quer zum späteren Schienenverlauf verlaufende Schalformen für Auflagerbänke (26) vorgesehen.

Description

Fahrweg und Verfahren zur Herstellung von Betonfertigteilplatten
Die vorliegende Erfindung betrifft einen Fahrweg für schienengebundene Fahrzeuge, bei dem einzelne, eine größere Längs- als Querstreckung aufweisende Betonfertigteilplatten auf einer Tragschicht angeordnet, in einer vorbestimmten Lage ausgerichtet und in dieser Lage mit einer Vergussmasse vergossen sind, und der Fahrweg eine Weiche mit einem Hauptteil und einem Endteil aufweist, in welchen ein Stammgleis und zumindest ein Zweiggleis verläuft, sowie ein Verfahren zur Herstellung von solchen Betonfertigteilplatten, wobei jede Betonfertigteilplatte in einer Schalung betoniert wird..
Aus der DE 69 45 362 ist ein Bausatz für eine Schienentragplatte für Weichen bekannt. Hierbei sind Grundplatten vorgesehen, welche Höcker aufweisen, auf weichen bewegliche Schienenelemente geführt sind. Die Grundplatten sind relativ kompliziert ausgeführt um die Anforderungen für die Führung der beweglichen Schienenelemente erfüllen zu können. Wie die einzelnen Bauteile der Grundplatten aussehen, geht aus der Offenbarung dieser Druckschrift nicht hervor. Auch ist daraus nicht zu entnehmen, wie die einzelnen Platten auf dem Unterbau der Gleise verlegt sind.
Die DE 44 28 163 C1 offenbart ein Verfahren zur Herstellung einer Festen Fahrbahn im Weichenbereich, bei welcher eine Tragschicht kontinuierlich über den Weichenbereich hinweggeführt wird und ein Stammgleisteil der Weiche auf der Tragschicht verlegt wird. Ein Zweiggleisteil der Weiche wird anschließend eingebaut. Stammgleisteil und Zweiggleisteil sind unabhängig voneinander gefertigte Bauteile, welche kompliziert in ihrer Form und als Betonfertigteile nur schwierig transportierbar sind. Aufgabe der vorliegenden Erfindung ist es somit einen Fahrweg mit Betonfertigteilplatten und ein Verfahren zur Herstellung von Betonfertigteilplatten für einen Fahrweg in einem Weichenbereich zu schaffen, bei welchen mit nur geringfügigen Abwandlungen Betonfertigteilplatten einfach und schnell herstellbar sind und individuelle Weichengestaltungen erlauben.
Die Aufgabe wird gelöst mit einem Fahrweg und einem Verfahren gemäß den unabhängigen Patentansprüchen.
Erfindungsgemäß weist ein Fahrweg für schienengebundene Fahrzeuge einzelne, eine größere Längs- als Quererstreckung aufweisende Betonfertigteilplatten auf. Die Betonfertigteilplatten sind auf einer Tragschicht angeordnet und in einer vorbestimmten Lage, meist mit Spindeln ausgerichtet. In dieser ausgerichteten Lage werden sie mit der Tragschicht mittels einer Vergussmasse vergossen. Der Fahrweg kann für eine Feste Fahrbahn für Hochgeschwindigkeitszüge, aber auch für Straßenbahnschienen vorgesehen sein.
Eine Weiche in dem Fahrweg weist ein Hauptteil und ein Endteil auf, in welchen ein Stammgleis und zumindest ein Zweiggleis verläuft. Je nach Weichentyp ist es auch möglich, dass mehrere Zweiggleise vorhanden sind. Die Erfindung ist auch auf eine Kreuzungsweiche anwendbar, bei welcher sinngemäß ein Gleis das Stammgleis und das andere Gleis das Zweiggleis bilden.
Gemäß der Erfindung sind die Betonfertigteilplatten so ausgebildet, dass sie im Bereich der Weiche sowohl in Längs- als auch in Querrichtung verlegt sind. Das bedeutet, dass die eine Längserstreckung aufweisenden Betonfertigteilplatten je nach Bedarf so gefertigt sind, dass sie, wenn sie verlegt sind in Gleisrichtung gesehen entweder eine größere Längserstreckung oder eine größere Quererstreckung haben. Hierdurch können Betonfertigteilplatten verwendet werden, welche einander in ihrem Aufbau stark ähnlich sind. Eine industrielle Fertigung der Betonfertigteilplatten ist hierdurch sehr einfach und schnell durchführbar, da sich die einzelnen für eine Weiche erforderlichen Betonfertigteilplatten zwar voneinander unterscheiden, in ihrem Grundaufbau aber soweit übereinstimmen, dass sie in derselben oder zumindest sehr ähnlichen Fertigungsvorrichtung hergestellt werden können.
Besonders vorteilhaft ist es, wenn die Betonfertigteilplatten eine Größe aufweisen, mit welcher sie in dem Hauptteil der Weiche in Längsrichtung verlegt sind. Im Hauptteil der Weiche hat die Weiche eine relativ geringe Breite, welche durch eine Längsverlegung der Betonfertigteilplatten gut überbrückt werden kann.
Im Endteil der Weiche ist die Weiche wesentlich breiter als in ihrem Hauptteil. Daher ist es vorteilhaft, wenn die Betonfertigteilplatten, welche sich im Endteil der Weiche befinden, in Querrichtung verlegt sind. Das bedeutet, dass in Richtung des Gleisverlaufes die Betonfertigteilplatten eine geringere Länge als Breite aufweisen. Hierdurch ist es bis zum Ende der Weiche, an welchem wieder der normale Schienenverlauf mit üblichen, seriengefertigten Betonfertigteilplatten erfolgt, möglich, beide Gleise, das heißt das Stammgleis und das Zweiggleis auf einer Platte anzuordnen.
Sowohl im Hauptteil der Weiche als auch in ihrem Endteil weisen die einzelnen Platten Abmessungen auf, welche ein bestimmtes Höchstmaß nicht ü- berschreiten. Die Herstellung dieser Betonfertigteilplatten ist somit industriell, nahezu in Serienfertigung möglich. Es können dieselben Fertigungsvorrichtungen für jede der einzelnen Betonfertigteilplatten, welche für eine Weiche benötigt werden, verwendet werden.
Vorteilhafterweise besteht die Tragschicht aus einer Frostschutzschicht und einer Sauberkeitsschicht. Die Betonfertigteilplatten werden auf der Sauberkeitsschicht, die aus einer unbewehrten Betonschicht besteht, ausgerichtet und anschließend mit der Vergußmasse fixiert. In einer vorteilhaften Ausbildung der Erfindung ist die Vergussmasse eine Ortbetonschicht mit Bewehrung. Die Bewehrung wird auf der Sauberkeitsschicht verlegt, bevor die Betonfertigteilplatte aufgesetzt und ausgerichtet wird. Daraufhin wird der Hohlraum zwischen der Betonfertigteilplatte und der Sauberkeitsschicht seitlich eingeschalt und schließlich mit Beton ausgegossen. Hierdurch wird die Lage der Betonfertigteilplatte fixiert.
Um eine besonders gute Verbindung der Betonfertigteilplatte mit der Ortbetonschicht und damit über die Ortbetonschicht zu den benachbarten Betonfertigteilplatten zu erhalten, sind die Betonfertigteilplatten mit einer Anschlussbewehrung versehen. Die Anschlußbewehrung ragt in die Ortbetonschicht hinein und ist in besonders vorteilhafter Ausbildung mit der Bewehrung der Ortbetonschicht , beispielsweise über Querstäbe verbunden. Hierdurch entsteht eine innige und dauerhafte Verbindung.
Alternativ oder zusätzlich können Gewindestähle vorgesehen sein, über welche benachbarte Betonfertigteilplatten miteinander verspannt werden. Auch hierdurch entsteht eine feste Verbindung und Lagefixierung der Betonfertigplatten, die den Fahrweg bilden, miteinander. Die Verbindung mittels der Gewindestähle ist nur dort möglich, wo es der Weichenaufbau erlaubt. Auf diese Weise wird zumindest teilweise, insbesondere im Hauptteil und im Endteil der Weiche, eine durchgehende, auch aus Betonfertigteilplatten hergestellte zusammenhängende Fahrbahn erhalten. Vor allem in Bereichen, in welchen Weichenstellantriebe erforderlich sind, wird auf eine Verbindung der einzelnen Betonfertigteilplatten mit Gewindestählen verzichtet. Zumindest hier ist die Verbindung über die beschriebene Anschlußbewehrung zu bevorzugen.
Um eine Verbindung der Betonfertigteilplatten mit Gewindestählen einfach durchführen zu können, ist es vorteilhaft, wenn die Gewindestähle im Wesentlichen in Richtung des Gleises angeordnet sind. So sind einerseits Fertigteilplatten im Bereich der Weiche eingesetzt, bei welchen die Gewin- destähle längs der Längserstreckung der Betonfertigteilplatten verlaufen aber andererseits auch andere Betonfertigteilplatten vorgesehen, bei welchen die Gewindestähle eher zur Längserstreckung der Betonfertigteilplatten verlaufen. Ersteres ist in vorteilhafter Weise im Hauptteil der Weiche der Fall, letzteres im Endteil der Weiche, in welchem die Betonfertigteilplatten in Querrichtung verlegt sind.
Um einen kontinuierlichen Verlauf des Fahrweges zu erhalten ist es vorteilhaft, wenn die Außenkontur der Betonfertigteilplatten im Wesentlichen dem Verlauf des Stammgleises und des Zweiggleises entspricht. Dies wird durch eine Umfangsfläche der Betonfertigteilplatte erhalten, bei welcher zumindest eine Außenseite nicht rechtwinklig zu den beiden daran anschließenden Außenseiten der Fertigteilplatte verläuft.
Weist die Betonfertigteilplatte an ihrer Oberseite Bohrungen auf, so können dort die Schienenbefestigungen, insbesondere Schrauben und Dübel oder Schrauben und Muttern befestigt werden. Die Bohrungen können individuell in der Betonfertigteilplatte eingebracht werden um dem gewünschten Schienenverlauf sowohl des Stammgleises als auch des Zweiggleises gerecht zu werden. Vorteilhafterweise werden sie nach dem Herstellen der Betonfertigteilplatte an den für die individuelle Weiche erforderlichen Stellen gebohrt.
Sind auf den Betonfertigteilplatten im wesentlichen quer zu den Schienen verlaufende Auflagerbänke angeordnet, auf denen die Schienenbefestigungen befestigt sind bzw. die Bohrungen für die Schienenbefestigungen eingebracht werden, so sind damit definierte, ebene Bereiche vorhanden, in denen eine sichere Schienenbefestigung ermöglicht ist. Zwischen den Auflagerbänken können Bereiche mit Gefälle zum besseren Ablaufen von Regenwasser und/oder Sollbruchstellen in der Betonfertigteilplatte vorgesehen sein.
Weisen die Betonfertigteilplatten Sollbruchstellen auf, welche quer zum Schienenverlauf angeordnet sind, so ist ein dauerhafter und wartungsarmer Einbau und Gebrauch der Betonfertigteilplatten in dem Fahrweg gewährleistet. Es entstehen in der Betonfertigteilplatte keine unkontrollierten Risse, sondern nur im Bereich der Sollbruchstellen, welche hierfür vorgesehen sind. Die Tragfähigkeit der Betonfertigteilplatte wird hierdurch nicht unzulässig verringert.
Bei einem erfindungsgemäßen Verfahren zur Herstellung von Betonfertigteilplatten für eine Weiche eines Fahrwegs für schienengebundene Fahrzeuge wird jedes Betonfertigteil in einer Schalung betoniert, welche einen Schalboden mit einer Abmessung für ein bestimmtes Höchstmass der Betonfertigteilplatten aufweist, welches zur Herstellung individueller Betonfertigteilplatten der Weiche durch Befestigung von Schalwänden auf dem Schalboden reduziert wird. An dem Schalboden werden quer zum späteren Schienenverlauf verlaufende Schalformen für Auflagerbänke vorgesehen. Die Schalformen für die Auflagerbänke sind so auf dem Schalboden angeordnet, dass die Auflagerbänke quer zu dem späteren Schienenverlauf ausgerichtet sind.
Die Schalung weist ein bestimmtes Höchstmaß auf, welches zur Herstellung individueller Betonfertigteilplatten der Weiche reduziert wird. Als Höchstmaß bieten sich Abmessungen an, welche den Abmessungen der den normalen Streckenverlauf verwendeten Betonfertigteilplatten weitgehend entsprechen. So sind derzeit Längen bis etwa 10 Meter und Breiten bis etwa 4 Meter üblich. Die Betonfertigteilplatten welche in der Weiche eingesetzt werden, entsprechen einem solchen Raster. Es werden damit also Betonfertigteilplatten hergestellt, welche entweder eine Länge von bis zu 10 Meter und eine Breite von bis zu 4 Meter aufweisen oder aber eine Länge von bis zu 4 Meter und eine Breite von bis zu 10 Meter haben, jeweils in Richtung des Gleisverlaufs gesehen. Hierdurch wird in vorteilhafter Weise eine industrielle Fertigung der Betonfertigteilplatten, welche im Bereich einer Weiche benötigt werden, ermöglicht. Die Herstellung einer Vielzahl individueller, nicht miteinander verwandter Bauteile, wie es aus dem Stand der Technik bekannt ist, wird hierdurch vermieden. Gewindestähle zur Herstellung längs- und querverlegter Betonfertigteilplatten können bei Bedarf wahlweise in Längs- oder in Querrichtung der Betonfertigteilplatte eingelegt werden. Gleiches gilt selbstverständlich auch für mit den Gewindestählen in Verbindung stehenden Formgebungen, wie beispielsweise Taschen an den Stirnseiten der Betonfertigteilplatten oder Sollbruchstellen, welche quer zum Verlauf der Gewindestähle anzuordnen sind.
Die Herstellung der individuellen Betonfertigteilplatten erfolgt vorteilhafterweise dadurch, dass die Schalung eine Einrichtung zur Aufnahme der Gewindestähle und gegebenenfalls weitere mit den Gewindestählen verbundener Formgebungseinrichtungen aufweist, welche zur Herstellung längs- und querverlegter Betonfertigteilplatten um 90° gedreht werden können.
Vorteilhafterweise werden Löcher zur Aufnahme von Schienenbefestigungen nach dem Betonieren der Fertigteilplatte in die Platte eingebracht. Der exakte Gleisverlauf sowohl des Stammgleises als auch des Zweiggleises kann hierdurch nach dem Betonieren festgelegt werden. Dies bringt besondere Vorteile beim Betonieren der Betonfertigteilplatten, welches sich hierdurch wesentlich vereinfacht.
Die Befestigung der Schienen auf der Betonfertigteilplatte kann mittels Dübeln in den Bohrungen erfolgen. Alternativ ist es aber auch vorteilhaft, wenn an der Unterseite der Betonfertigteilplatte im Bereich der Löcher vor dem Verlegen der Betonfertigteilplatte Verankerungskörper für Befestigungsschrauben angebracht werden. Dübel erübrigen sich in diesem Falle. Die Verankerungskörper, beispielsweise Muttern, werden an der Betonfertigteilplatte vorläufig befestigt und schließlich in der Vergußmasse endgültig fixiert. Die vorläufige Befestigungseinrichtung kann entnommen werden und durch die Schienenbefestigung ersetzt werden.
Vorteilhaft kann es auch sein, wenn die Löcher zur Aufnahme von Schienenbefestigungen erst nach dem Verlegen der Betonfertigteilplatten in die Platte eingebracht werden. Es werden hierdurch die einzelnen Platten erst fest auf der Tragschicht verlegt und gegebenenfalls ausgerichtet, fixiert und miteinander verbunden. Erst anschließend werden die Löcher in die Platten eingebracht und die Schienenbefestigungen mit den Schienen darauf befestigt. Der genaue Verlauf der Gleise wird somit auf dem exakt verlegten Fahrweg festgelegt.
Um eine Verbindung der einzelnen Betonfertigteilplatten mit Gewindestählen nach dem Ausrichten und Fixieren auf der Tragschicht einfach durchführen zu können, sind an den Stirnseiten der Betonfertigteilplatten Taschen vorgesehen, in welchen die Gewindestähle enden. In diesen Taschen werden die Gewindestähle mit beispielsweise Spannmuttern miteinander verbunden und bewirken eine fest zusammenhängende Betonfläche, auf weicher die Gleise dauerhaft befestigt werden können.
Um die Gewindestähle ausreichend vorspannen zu können, werden sie vorteilhafterweise an ihren Enden beispielsweise mit Schrumpfschläuchen abgedeckt um eine Verbindung zu dem Beton zu vermeiden. Im Bereich dieser Abdeckungen können die Gewindestähle gespannt werden und bewirken somit ein festes Aneinanderpressen zweier benachbarter Betonfertigteile. Das Verfahren der Verbindung zweier solcher benachbarter Betonfertigteile ist in früheren Patentanmeldungen der Anmelderin bereits beschrieben. Die vorliegende Erfindung ist aber natürlich nicht auf diese Verbindungsverfahren beschränkt. Insbesondere die Verbindung über Anschlußbewehrungen in der Ortbetonschicht ist ebenfalls sehr vorteilhaft.
Weitere Vorteile der Erfindung sind in den nachfolgenden Figuren beschrieben. Es zeigt:
Figur 1 eine schematische Draufsicht auf eine Weiche,
Figur 2 eine Draufsicht auf ein längs eingebautes Betonfertigteil, Figur 3 einen Schnitt durch ein Betonfertigteil,
Figur 4 eine Draufsicht auf ein quer eingebautes Betonfertigteil,
Figur 5 einen Schnitt durch ein weiteres Betonfertigteil und
Figur 6 eine Draufsicht auf ein weiteres quer eingebautes Betonfertigteil.
In Figur 1 ist eine Draufsicht auf eine schematisch dargestellte Weiche 1 , welche in Form einer einfachen Bogenweiche ausgebildet ist, dargestellt. Die Weiche 1 hat einen Weichenanfang 2 und ein Weichenende 3. Sie weist ein Stammgleis 4 und ein Zweiggleis 5 auf. Die Weiche 1 besteht aus einem Hauptteil 6 und einem Endteil 7, welches auch Herzstück genannt wird. Das Hauptteil 6 ist dem Weichenanfang 2 zugeordnet, während das Endteil 7 am Weichenende 3 ist. Am Weichenanfang 2 und am Weichenende 3 sowohl des Stammgleises 4 als auch des Zweiggleises 5 sind jeweils Standardbe- tonfertigteilplatten 8 angeordnet, wie sie üblicherweise im einfachen Streckenverlauf verwendet werden.
Im Bereich der Weiche 1 befinden sich individuelle Betonfertigteilplatten 11- 16. Alle Betonfertig platten 11-16 entsprechen einem vorbestimmten Höchstraster hinsichtlich ihrer Länge und Breite, beispielsweise 10 x 4 m. Gemäß diesem Raster sind im Bereich des Hauptteiles 6 der Weiche 1 die Betonfertigteilplatten 11 , 12 und 13 der Länge nach eingebaut, während im Bereich des Endteils 7 der Weiche 1 die Betonfertigteilplatten 14, 15 und 16 quer eingebaut sind. Die Betonfertigteilplatten 8 und 11-16 stoßen alle aneinander an und können hierdurch direkt über Gewindestähle oder indirekt über eine Anschlußbewehrung und eine darunter angeordnete Ortbetonschicht miteinander verbunden werden. Durch diese Verbindung entsteht ein durchgehendes Betonband, auf welches Stammgleis 4 und Zweiggleis 5 mitsamt der Weiche 1 aufgebaut werden. Bei einer anderen, nicht dargestellten Ausfüh- rung kann es aber auch der Fall sein, dass einzelne der Betonfertigteilplatten 11-16 beabstandet aneinander angeordnet werden, um einen Freiraum für die Ansteuerung der Weiche 1 und deren beweglicher Bauteile zu gestatten. In diesem Falle sind die einzelnen Betonfertigplatten 11-16, welche nicht mit einer benachbarten Betonfertigteilplatte verbunden sind, besonders fest auf dem Untergrund, der Tragschicht angeordnet.
Während auf den Standardbetonfertigteilplatten 8 das Stammgleis 4 und das Zweiggleis 5 an auf der Betonfertigteilplatte 8 befindlichen Höckern 20 in herkömmlicher weise befestigt sind, sind die Gleise in Bereich der Weiche 1 direkt auf den Betonfertigteilplatten 11-16 befestigt. Diese Befestigung erfolgt beispielsweise in Bohrlöchern, welche vor oder nach dem Verlegen der Betonfertigteilplatten 11-16 in die Platten 11-16 eingebracht werden. Die Gleise und die Weichenteile können exakt verlegt werden, indem diese in den Bohrlöchern angeschraubt werden.
In Figur 2 ist eine Draufsicht auf die längsverlegte Betonfertig platte 11 dargestellt. An den Stirnseiten der Betonfertigteilplatte 11 sind Taschen 21 angeordnet. In den Taschen 21 münden Gewindestähle 22, welche in der Betonfertigteilplatte 11 einbetoniert sind. An den Enden der Gewindestähle 22 wird die Betonfertigteilplatte 11 mit ihren benachbarten Betonfertigteilplatten 8 bzw. 12 fest verbunden, indem in bekannter Weise Spannschlösser mit den Gewindestählen 22 der benachbarten Betonfertigteilplatten 8 und 12 verschraubt werden und die Gewindestähle 22 durch Drehung der Spannschlösser gespannt werden. Um eine ausreichende Spannung zu erhalten, sind die Gewindestähle 22 in ihren Endbereichen nicht fest mit der Betonfertigteilplatte 11 verbunden.
Wie aus Figur 3 zu entnehmen ist, sind hierfür die Gewindestähle 22 mit Schrumpfschläuchen 23 versehen, welche eine Bewegung der Gewindestähle 22 während des Spannens in Bezug auf das Betonfertigteil 11 erlauben. Vorteilhafterweise enden die Schrumpfschläuche 23 im Bereich von Soll- bruchsteilen 24 um diese nicht zu überbrücken und in ihrer Wirkung zu beeinträchtigen. Die Sollbruchstellen 24 konzentrieren unvermeidliche Risse der Betonfertig platte 11 auf den Bereich der Sollbruchstellen 24. Hierdurch ist eine Kontrolle der Betonfertigteilplatte 11 hinsichtlich ihres Zustandes sehr leicht möglich.
Die Sollbruchstellen 24 liegen in einem Bereich 25, der gegenüber Auflagerbänken 26 tiefer ausgebildet ist. Der Bereich 25 kann ein leichtes Gefälle aufweisen, wodurch eine gute Entwässerung der Betonfertigteilplatte 11 erfolgt. Die Auflagerbänke 26 bilden einen Bereich, in dem die Schienenbefestigungen angebracht werden. Sie sind vorzugsweise eben und erlauben ein individuelles Bohren der Löcher, in denen die Schrauben für die Schienenbefestigungen eingebracht werden. Nach dem Bohren der Löcher werden an der Unterseite der Betonfertigteilplatte 11 Muttern 27 als Verankerungskörper provisorisch mit Befestigungselementen 28 festgehalten. Aus Gründen der Übersichtlichkeit ist nur eine Mutter 27 dargestellt. Es befinden sich jedoch auf jeder Auflagerbank 26 mehrere dieser Verankerungskörper, nämlich einer für jede Schiene. Die Muttern 27 werden schließlich nach dem Verlegen der Betonfertigteilplatte 11 in die Vergussschicht mit eingegossen und für die endgültige Befestigung mit der Schienenbefestigung fixiert.
In Figur 4 ist eine Draufsicht auf die Betonfertigteilplatte 16 dargestellt. Der Aufbau entspricht im Wesentlichen der Betonfertigteilplatte 11 aus Figur 2. Unterschiedlich ist jedoch, dass die Betonfertigteilplatte 16 quer in die Weiche 1 eingebaut wird, da die Weiche 1 im Bereich des Endteils 7 relativ breit ist. Zum Anschluss der Standardbetonfertigteilplatten 8 des Stammgleises 4 und des Zweiggleises 5 sind insgesamt vier Pakete mit Gewindestählen 22 vorgesehen, welche jeweils in den Taschen 21 münden. Auch bei der Betonfertigteilplatte 16 werden nicht dargestellte Bohrlöcher eingebracht, mit Hilfe derer die Gleise und die Bauteile der Weiche 1 auf der Betonfertigteilplatte 16 befestigt werden. Die Gewindestähle 22, welche dem Zweiggleis 5 zugeordnet sind, laufen in den Betonfertigteilplatten 12-15 allmählich aus und sind darin fest fixiert um die Spannwirkung entfalten zu können.
Die Betonfertigteilplatten 11-16 der Weiche 1 können im Wesentlichen ebenso wie die Standardbetonfertigteilplatten 8 verlegt sein. Das bedeutet, dass in den Betonfertigteilplatten 11-16 beispielsweise in herkömmlicher Weise Spindeln eingebaut sind, mit welchen die Betonfertigteilplatten 11-16 auf der Tragschicht in ihrer Höhe justiert werden. Nachdem die Justierung erfolgt ist, werden die Betonfertigteilplatten 11-16 auf der Tragschicht und zueinander fixiert. Hierzu werden die Betonfertigteilplatten 8 und 11-16 mit einer Untergussmasse unterfüllt um eine feste Position der Betonfertigteilplatten 8 und 11-16 bezüglich der Tragschicht zu erhalten. Anschließend werden sie über die Gewindestähle 22, soweit erforderlich und bezüglich der Weicheneinbauten möglich, miteinander verspannt. Schließlich werden die Taschen 21 mit Beton verfüllt um die Lage der Betonfertigteilplatten 11-16 dauerhaft zueinander zu fixieren.
Bezüglich der Herstellung der Betonfertigteilplatten 11-16 ist bedeutsam, dass sie mit einer einzigen Grundschalung hergestellt werden können. Diese Grundschalung, welche das maximale Raster hinsichtlich Länge und Breite der Betonfertigteilplatten 11-16 bestimmt, wird durch Zwischenwände, welche auch in ihrem Winkel zu den übrigen Wänden verstellbar sind, abgetrennt. Hierdurch ist es möglich kleinere als die maximal möglichen Betonfertigbauteilplatten zu betonieren. An der grundsätzlichen Lage der Gewindestähle 22 und der Taschen 21 ändert sich nichts, solange die Betonfertigteilplatten für den Längseinbau vorgesehen sind. Werden die gefertigten Betonfertigteilplatten jedoch für den Quereinbau benötigt, so werden die Gewindestähle 22 und die erforderlichen Taschen 21 sowie Schalformen für die Auflagerbänke um 90° gedreht in der Schalung eingesetzt. Es entsteht beim Betonieren hierdurch ein Betonfertigbauteil 14-16, in welchem die Gewindestähle 22 quer und Auflagerbänke längs zur Längserstreckung des Beton- fertigbauteils 14-16 verlaufen und die Taschen 21 in der Längsseite des Betonfertigbauteils 14-16 angeordnet sind. Im Gegensatz hierzu sind bei längs eingebauten Betonfertigteilplatten 11-13 die Gewindestähle 22 entlang der Längserstreckung der Betonfertigteilplatten 11-13 einbetoniert, die Taschen 21 befinden sich an den kürzeren Stirnseiten der Betonfertigteilplatten 11-13 und die Auflagerbänke verlaufen quer zur Längserstreckung der Betonfertigteilplatten 11-13. Sofern in den Platten Sollbruchstellen 24 vorgesehen sind, werden diese ebenfalls gedreht, so dass auch sie quer zu den Gewindestählen 22 bzw. zur zur Längserstreckung der Betonfertigteilplatten 11-13 verlaufen.
In Figur 5 ist die Befestigung einer Betonfertigteilplatte 11 mittels einer Anschlussbewehrung 30 dargestellt. Die Betonfertigteilplatte 11 ist auf einer Frostschutzschicht 31 aufgebaut. Auf der Frostschutzschicht 31 ist eine Sauberkeitsschicht 32 aufgetragen, welche in der Regel ein unbewehrtes Betonband ist. Die Betonfertigteilplatte 11 ist mit nicht dargestellten Spindeln auf dieser Sauberkeitsschicht 32 ausgerichtet. Zwischen der Sauberkeitsschicht 32 und der Betonfertigteilplatte 11 ist eine Bewehrung 33 ausgelegt. Die Bewehrung 33 verstärkt eine Vergussschicht 34, welche zwischen der Betonfertigteilplatte 11 und der Sauberkeitsschicht 32 nach dem Ausrichten der Betonfertigteilplatte 11 eingefüllt wird. Um die Betonfertigteilplatte 11 dauerhaft auf der Vergussschicht 34 zu fixieren, ist die Anschlussbewehrung 30 vorgesehen. Diese ragt aus der Unterseite der Betonfertigteilplatte 11 in die Vergussschicht 34 hinein. Mittels Querstangen 35 erfolgt eine Art Verzahnung zwischen der Anschlussbewehrung 30 und der Bewehrung 33.
Ebenso wie in Figur 3 ist auch hier die Mutter 27 mit einer Befestigungsvorrichtung 28 auf einer der Auflagerbänke 26 an der benötigten Stelle befestigt. Die Mutter 27 ist in die Vergussschicht 34 eingegossen und hierdurch fixiert. Nach dem Verfestigen der Vergussschicht 34 kann die Befestigungseinrichtung 28 entfernt und die eigentliche Schienenbefestigung angebracht werden. In Figur 6 ist eine Draufsicht auf eine Betonfertigteilplatte dargestellt. Es ist ersichtlich, dass die Auflagerbänke 26 für die individuelle Anordnung von Schienenbefestigungen 36 dient. Je nach Bedarf kann auf der Auflagerbank 26 die Schienenbefestigung 36 angeordnet werden. Eine individuelle Befestigung der Gleise im Bereich der Weiche ist hierdurch ermöglicht.
Die vorliegende Erfindung ermöglicht, dass einerseits die Schienenbefestigungen auf den einfachen Platten der Weiche bereits im Werk montiert werden und somit sehr präzise auf den Platten angeordnet werden können. Im Gegensatz hierzu ermöglicht die vorliegende Erfindung aber auch, dass das Herzstück der Weiche vor Ort montiert wird. Schiene und Schienenbefestigung werden hierzu beispielsweise in einem Stück an den Montageort angeliefert und dort in die vorgefestigten Löcher der Betonfertigteilplatten eingesetzt.
Aufgrund der Erfindung ist es möglich mit standardisierten Methoden und bewährten Verlegeverfahren Betonfertigteilplatten 11-16 zu schaffen, welche jeweils individuell sind um die Weiche 1 zu schaffen und dennoch eine Ähnlichkeit aufweisen, mit welcher sie in denselben Fertigungsvorrichtungen betoniert werden können.
Die Erfindung ist selbstverständlich nicht auf die dargestellten Ausführungsbeispiele beschränkt. So sind andere, als die dargestellten Verlegeverfahren möglich. Außerdem können die Betonfertigbauteile 11-16 auch bereits Aufnahmen für die Schienen beinhalten, wodurch das Anbringen von Bohrungen nach dem Verlegen der Betonfertigteilplatten 11-16 nicht oder nur in beschränktem Maße erforderlich ist. Es sind vielfältige Weichenformen mit der vorliegenden Erfindung herstellbar.

Claims

P a t e n t a n s p r ü c h e
1. Fahrweg für schienengebundene Fahrzeuge, bei dem einzelne, eine größere Längs- als Quererstreckung aufweisende Betonfertigteilplatten (8,11-16) auf einer Tragschicht angeordnet, in einer vorbestimmten Lage ausgerichtet und in dieser Lage mit einer Vergussmasse vergossen sind, und der Fahrweg eine Weiche (1 ) mit einem Hauptteil (6) und einem Endteil (7) aufweist, in welchen ein Stammgleis (4) und zumindest ein Zweiggleis (5) verläuft, dadurch gekennzeichnet, dass im Bereich der Weiche (1 ) die Betonfertigteilplatten (11-16) in Längs- und in Querrichtung verlegt sind.
2. Fahrweg nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Betonfertigteilplatten (11-13) in dem Hauptteil (6) der Weiche (1 ) in Längsrichtung verlegt sind.
3. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Betonfertigteilplatten (14-16) in dem Endteil (7) der Weiche (1 ) in Querrichtung verlegt sind.
4. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Tragschicht eine Frostschutzschicht (31 ) und eine Sauberkeitsschicht (32) ist.
5. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Vergussmasse eine Ortbetonschicht (34) mit Bewehrung (33) bildet.
6. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Betonfertigteilplatten (14-16) über die Ortbeton- Schicht (34) mit einer Anschlussbewehrung (30) oder über Gewindestähle (22) miteinander verbunden sind.
7. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Gewindestähle (22) in den Betonfertigteilplatten (11-16) im wesentlichen in Richtung des Gleises (4,5) angeordnet sind.
8. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Außenkontur der Betonfertigteilplatten (11-16) im wesentlichen dem Verlauf des Stammgleises (4) und des Zweiggleises (5) entspricht.
9. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass auf der Betonfertigteilplatte (11-16) Schienenbefestigungen angeordnet sind.
10. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Betonfertigteilplatte (11-16) insbesondere nach dem Herstellen der Betonfertigteilplatte (11-16) gefertigte Bohrungen aufweist, in welchen die Schienenbefestigungen befestigt sind.
11. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass auf den Betonfertigteilplatten (11-16) im wesentlichen guer zu den Schienen verlaufende Auflagerbänke (26) angeordnet sind, auf denen die Schienenbefestigungen befestigt sind.
12. Fahrweg nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Betonfertigteilplatte (11-16) Sollbruchstellen (24) aufweist, welche guer zum Schienenverlauf angeordnet sind.
13. Verfahren zur Herstellung von Betonfertigteilplatten (11 -16) für eine Weiche (1 ) eines Fahrwegs für schienengebundene Fahrzeuge gemäß einem der vorherigen Ansprüche, wobei jede Betonfertigteilplatte (8,11-16) in einer Schalung betoniert wird, dadurch gekennzeichnet, dass die Schalung einen Schalboden mit einer Abmessung für ein bestimmtes Höchstmass der Betonfertigteilplatten (11-16) aufweist, welches zur Herstellung individueller Betonfertigteilplatten (11-16) der Weiche (1 ) durch Befestigung von Schalwänden auf dem Schalboden reduziert wird, und dass an dem Schalboden quer zum späteren Schienenverlauf verlaufende Schalformen für Auflagerbänke (26) vorgesehen werden.
14. Verfahren nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Schalung eine Einrichtung zur Aufnahme von Gewindestählen (22) aufweist.
15. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Löcher zur Aufnahme von Schienenbefestigungen nach dem Betonieren der Betonfertigteilplatte (11-16) in die Betonfertigteilplatte (11-16) eingebracht werden.
16. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass an den Löchern vor dem Verlegen der Betonfertigteilplatte (11 -16) Verankerungskörper (27) für Befestigungsschrauben angebracht werden.
17. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Löcher zur Aufnahme von Schienenbefestigungen nach dem Verlegen der Fertigteilplatten (11-16) in die Platte (11-16) eingebracht werden.
18. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Gewindestähle (22) in Taschen (21 ) der Betonfertigteilplatte (11-16) enden.
19. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Enden der Gewindestähle (22) vor dem Betonieren abgedeckt werden.
PCT/EP2007/052226 2006-04-27 2007-03-09 Fahrweg und verfahren zur herstellung von betonfertigteilplatten WO2007124972A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020087028033A KR101414408B1 (ko) 2006-04-27 2007-03-09 트랙 그리고 조립식 콘크리트 슬래브의 제조 방법
PL07726748T PL2010713T3 (pl) 2006-04-27 2007-03-09 Torowisko i sposób wytwarzania prefabrykowanych betonowych płyt
ES07726748T ES2419386T3 (es) 2006-04-27 2007-03-09 Camino de rodadura y procedimiento para producir placas prefabricadas de hormigón
EP07726748.2A EP2010713B1 (de) 2006-04-27 2007-03-09 Fahrweg und verfahren zur herstellung von betonfertigteilplatten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006019549.3 2006-04-27
DE102006019549A DE102006019549A1 (de) 2006-04-27 2006-04-27 Fahrweg und Verfahren zur Herstellung von Betonfertigteilplatten

Publications (1)

Publication Number Publication Date
WO2007124972A1 true WO2007124972A1 (de) 2007-11-08

Family

ID=38134222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052226 WO2007124972A1 (de) 2006-04-27 2007-03-09 Fahrweg und verfahren zur herstellung von betonfertigteilplatten

Country Status (8)

Country Link
EP (1) EP2010713B1 (de)
KR (1) KR101414408B1 (de)
CN (1) CN101432485A (de)
DE (1) DE102006019549A1 (de)
ES (1) ES2419386T3 (de)
PL (1) PL2010713T3 (de)
RU (1) RU2431009C2 (de)
WO (1) WO2007124972A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034785A1 (fr) * 2015-04-10 2016-10-14 Antoine Marot Structure elementaire prefabriquee, assemblage d'une pluralite de telles structures, procede de fabrication et d'installation d'une telle structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108239897B (zh) * 2018-01-23 2023-12-12 中国铁建重工集团股份有限公司 一种钢轨伸缩调节器检测工装

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6945362U (de) * 1969-11-22 1970-05-14 Buescher Pebueso Beton Bauesatz fuer eine schienentragplatte fuer weichen o. dgl.
DE2425599B1 (de) * 1974-05-27 1975-08-14 Holzmann Philipp Ag Schotterloser Gleisoberbau
DE2832295A1 (de) * 1978-07-22 1980-01-31 Heinz Dennert Formtisch fuer betonfertigplatten
DE9208016U1 (de) * 1992-06-16 1992-08-27 Wayss & Freytag Ag, 6000 Frankfurt Schalung zur Herstellung von mehreren unterschiedlich langen Typen von Spannbetonschwellen
DE19948003A1 (de) * 1999-10-06 2001-04-12 Boegl Max Bauunternehmung Gmbh Stahlbetonfertigteilplatte
AT412559B (de) * 2002-07-16 2005-04-25 Riessberger Klaus Eisenbahnweichen-unterschwellung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2365505A1 (de) * 1973-11-02 1975-05-28 Strabag Bau Ag Verfahren zum herstellen eines schotterlosen oberbaus eines gleises
DE4428163C1 (de) * 1994-08-10 1996-02-29 Wayss & Freytag Ag Verfahren zur Herstellung einer festen Fahrbahn für schienengebundenen Verkehr im Weichenbereich
TWI260360B (en) 2003-05-06 2006-08-21 Bombardier Transp Gmbh Cross-tie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6945362U (de) * 1969-11-22 1970-05-14 Buescher Pebueso Beton Bauesatz fuer eine schienentragplatte fuer weichen o. dgl.
DE2425599B1 (de) * 1974-05-27 1975-08-14 Holzmann Philipp Ag Schotterloser Gleisoberbau
DE2832295A1 (de) * 1978-07-22 1980-01-31 Heinz Dennert Formtisch fuer betonfertigplatten
DE9208016U1 (de) * 1992-06-16 1992-08-27 Wayss & Freytag Ag, 6000 Frankfurt Schalung zur Herstellung von mehreren unterschiedlich langen Typen von Spannbetonschwellen
DE19948003A1 (de) * 1999-10-06 2001-04-12 Boegl Max Bauunternehmung Gmbh Stahlbetonfertigteilplatte
AT412559B (de) * 2002-07-16 2005-04-25 Riessberger Klaus Eisenbahnweichen-unterschwellung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034785A1 (fr) * 2015-04-10 2016-10-14 Antoine Marot Structure elementaire prefabriquee, assemblage d'une pluralite de telles structures, procede de fabrication et d'installation d'une telle structure

Also Published As

Publication number Publication date
EP2010713B1 (de) 2013-05-15
ES2419386T3 (es) 2013-08-20
EP2010713A1 (de) 2009-01-07
RU2431009C2 (ru) 2011-10-10
RU2008146782A (ru) 2010-06-10
PL2010713T3 (pl) 2013-10-31
DE102006019549A1 (de) 2007-10-31
KR20090016556A (ko) 2009-02-16
CN101432485A (zh) 2009-05-13
KR101414408B1 (ko) 2014-07-01

Similar Documents

Publication Publication Date Title
EP1218596B1 (de) Stahlbetonfertigteilplatte
EP0987370B1 (de) Herstellungsverfahren der lagegenauen Verbindungen von Statoren an einer Magnetschwebebahn und deren Tragkonstruktion
DE10138803A1 (de) Verfahren zum kontinuierlichen Lagern einer Schiene auf einer festen Fahrbahn sowie Justiereinrichtung und feste Fahrbahn
EP0980931B2 (de) Einbauverfahren für eine feste Schienenfahrbahn
EP2088244A1 (de) Stahlbeton oder Verbundbrücke und Verfahren zu ihrer Herstellung
DE19848928C2 (de) Feste Fahrbahn und Verfahren zu ihrer Herstellung
EP1882777B1 (de) Verfahren zum Herstellen einer festen Fahrbahn für Schienenfahrzeuge
DE10004194C2 (de) Verfahren zur Fertigung einer festen Schienenfahrbahn auf einer Brücke
EP2010713B1 (de) Fahrweg und verfahren zur herstellung von betonfertigteilplatten
DE10212090A1 (de) Fahrweg für eine elektromagnetische Schnellbahn
DE10004626C2 (de) Verfahren zur Herstellung einer Entgleisungsschutzanordnung bei einer Schienenfahrbahn, eine Entgleisungsschutzanordnung umfassende Schienenfahrbahn und Entgleisungsschutzanordnung
EP0905319A2 (de) Verfahren zur Herstellung einer Festen Fahrbahn für schienengebundenen Verkehr, sowie eine Feste Fahrbahn zur Durchführung des Verfahrens
WO2008019671A1 (de) Fahrbahn für magnetschwebebahnen
WO2001023669A1 (de) Verfahren zur herstellung eines schallgedämmten gleises
AT510523B1 (de) Fahrbahn mit einer fahrbahnplatte
EP2800833B1 (de) Feste fahrbahn
EP1533420A2 (de) Verfahren zum Herstellen einer festen Fahrbahn für Schienenfahrzeuge
DE102008048358A1 (de) Gleiskörperformteileinheit
DE102009060812B4 (de) System zum Richten eines Gleises einer festen Schienenfahrbahn
AT413551B (de) Verfahren zum herstellen einer festen fahrbahn für schienenfahrzeuge
DE10226802B4 (de) Verfahren zum Herstellen einer lagegenauen Verbindung an einem Fahrweg und Fahrweg für ein spurgebundenes Fahrzeug
EP2940214A1 (de) Segmentfertigteilbrücke und Segment
DE19944783A1 (de) Feste-Fahrbahn-System
DE10328895A1 (de) Verfahren zum Herstellen einer Gleisfahrbahn für Schienenfahrzeuge
DE19920075A1 (de) Lagerung einer Schiene für Schienenfahrzeuge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07726748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007726748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8093/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200780015188.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087028033

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008146782

Country of ref document: RU