WO2007116894A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2007116894A1
WO2007116894A1 PCT/JP2007/057522 JP2007057522W WO2007116894A1 WO 2007116894 A1 WO2007116894 A1 WO 2007116894A1 JP 2007057522 W JP2007057522 W JP 2007057522W WO 2007116894 A1 WO2007116894 A1 WO 2007116894A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
substrate
refrigerant
cooler
disposed
Prior art date
Application number
PCT/JP2007/057522
Other languages
French (fr)
Japanese (ja)
Inventor
Tadafumi Yoshida
Yutaka Yokoi
Hiroshi Osada
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/293,469 priority Critical patent/US20090090490A1/en
Priority to DE112007000829T priority patent/DE112007000829B4/en
Priority to CN2007800123917A priority patent/CN101416307B/en
Publication of WO2007116894A1 publication Critical patent/WO2007116894A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • H01L23/4735Jet impingement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to a cooler. In particular, it relates to a power converter cooler. Background art
  • a hybrid car is a motor powered car in addition to a conventional engine.
  • a hybrid vehicle obtains power by driving an engine, converts DC voltage from a DC power source into AC voltage, and drives motor by the converted AC voltage.
  • An electric vehicle is a vehicle that obtains power by driving a motor with an AC voltage obtained by converting a DC voltage from a DC power source.
  • the power converter includes power semiconductor elements such as an inverter and a converter, for example.
  • the power semiconductor element include power MOS FET (Metal Oxide Semiconductor Field-Effect Transistor), IGBT (insulated gate type bipolar transistor), and the like.
  • 'Power converters installed in automobiles, etc. may require large amounts of power in order to obtain high power performance. Since large-scale power changes generate a large amount of heat, a cooler is installed to cool the power converter.
  • a cooling plate When cooling a heating element such as a high-power power converter, a cooling plate (fin) is joined to a member that is in contact with the power converter, etc., and the heat transfer area is expanded to improve the efficiency. Cooling with a so-called impinging jet that collides cooling water toward the area where the power converter is located is useful. Furthermore, a method of combining these cooling methods is effective.
  • Japanese Laid-Open Patent Publication No. 2-100.30 discloses an integrated circuit cooling structure including a cooling plate having fins. This cooling structure has an integrated circuit in which a plurality of integrated circuit elements are mounted on a substrate, a substrate frame that holds the substrate, and a counterbore on the opposite surface of the substrate that faces the integrated circuit element.
  • a cooling plate having a fan-shaped fin disposed on the bottom surface of the hole and a nozzle for ejecting a refrigerant at the center of the fan-shaped fin are provided. According to the cooling structure of this integrated circuit, it is disclosed that the thermal resistance between the integrated circuit element and the refrigerant can be kept low, the flow rate of the refrigerant can be reduced, and the heat can be efficiently discharged outside the device. .
  • Japanese Patent Laid-Open No. 5-3 2 7 a plurality of semiconductor elements arranged on a substrate, a cooling medium supply header disposed on the opposite side of the substrate across each semiconductor element, and a cooling medium A tube-shaped cooling medium supply member communicating with the supply header; and a cooling medium outlet formed at the front end of the cooling medium supply member for ejecting the cooling medium from the cooling medium supply header toward the respective semiconductor elements.
  • a semiconductor cooling device including a cooling medium return header is disclosed.
  • the substrate is installed in the vertical direction, a cooling medium return pipe communicating with the cooling medium return header is provided, and a partition member for partitioning the semiconductor elements is provided. According to this conductor cooling device, the cooling medium bubbles generated in each element are prevented from flowing into other elements, and each element is cooled independently. Is disclosed.
  • Japanese Patent Application Laid-Open No. 6-1 1 2 3 8 5 discloses a cooling structure for a semiconductor element, which is a combination of a radiator and a nozzle.
  • the heat sink has a bottom heat sink and first and second vertical heat sinks.
  • the bottom heat sink is mounted on a wiring board and has a semiconductor element mounted therein. It is provided on the heat dissipation surface.
  • the first vertical heat sink is composed of a plurality of curved heat sinks. The curved convex surfaces face each other, and a jet flow path is formed between the curved convex surfaces.
  • the second vertical heat radiating plate is provided at the jet outlet of the passage by the first vertical heat radiating plate, and the nozzle collides with the bottom heat radiating plate through the passage by the first vertical heat radiating plate. Is to be ejected.
  • the flow velocity and flow rate can be increased by causing the refrigerant once collided as a jet to collide with the heat sink as a jet again. It is disclosed that the cooling efficiency can be increased.
  • Japanese Laid-Open Patent Publication No. 5-190 016 discloses a semiconductor device in which a large number of integrated circuit packages are mounted on a ceramic multilayer substrate, and a cooling jacket is mounted on each package. Yes. A flexible tube is connected to each cooling jacket. A nozzle is provided inside the flexible channel to allow the cooling fluid to flow into the cooling jacket as a slit-like jet. A space for the return of fins and cooling fluid is provided in the cooling jacket. According to this semiconductor device, water with high cooling capacity can be used as a cooling medium, flat plate type fins that can easily expand the heat transfer area can be used, and a cooling fluid is evenly supplied to each fin by a slit-like jet. Therefore, it is disclosed that a semiconductor device having an excellent cooling structure can be provided.
  • a cooler for cooling the power converter may be mounted, and in particular, cooling of a heating element such as a power converter corresponding to high power is an important issue. Disclosure of the invention
  • An object of this invention is to provide the cooler of the power converter excellent in cooling performance.
  • the cooler based on this invention is equipped with the board
  • a heat dissipating member fixed to the other surface of the substrate is provided.
  • First flow path configuring means for configuring a first flow path formed so that the refrigerant contacts the heat radiating member is provided.
  • Second flow path configuring means is provided that configures a second flow path that is formed so that the refrigerant is jetted toward a region of the other surface where the heating element is disposed. The second flow path is formed separately from the first flow path.
  • the heat dissipation member includes at least one of a plate-like member or a rod-like member.
  • the heat dissipating member is disposed around a region where the heating element is disposed.
  • the second flow path forming means includes a main pipe disposed away from the other surface of the substrate, and protrudes from the main pipe toward the substrate. And an auxiliary tube formed on the surface. The auxiliary tube is disposed so as to face a region of the substrate where the heating element is disposed.
  • the first flow path includes a space sandwiched between the main pipe and the substrate.
  • the auxiliary pipe includes an end face facing the substrate, and the end face is inclined so that a flow path becomes larger along a direction of the refrigerant flowing through the first flow path forming means. ing.
  • the auxiliary pipe is formed in a tapered shape so as to become thinner toward the substrate.
  • a third flow path constituting means for discharging the refrigerant flowing through the second flow path is provided.
  • the third flow path forming means includes a separator arranged between the main pipe and the substrate.
  • the auxiliary pipe is formed so as to penetrate the separator.
  • the said relief tube is being fixed to the said separator plate without gap.
  • the substrate is arranged such that a direction in which the one surface extends is either a lead straight direction or a direction inclined with respect to a vertical direction.
  • the substrate is arranged so that the one surface faces downward in the vertical direction.
  • FIG. 1 is a schematic exploded perspective view of the semiconductor device according to the first embodiment.
  • FIG. 2 is a first schematic cross-sectional view of the semiconductor device according to the first embodiment.
  • FIG. 3 is a second schematic cross-sectional view of the semiconductor device according to the first embodiment.
  • FIG. 4 is a third schematic cross-sectional view of the semiconductor device according to the first embodiment.
  • FIG. 5 is a schematic exploded perspective view of the semiconductor device according to the second embodiment.
  • FIG. 6 is a first schematic cross-sectional view of the semiconductor device according to the second embodiment.
  • FIG. 7 is a second schematic cross-sectional view of the semiconductor device according to the second embodiment.
  • FIG. 8 is a schematic cross-sectional view of the semiconductor device according to the third embodiment.
  • FIG. 9 is a first schematic cross-sectional view of the semiconductor device in the fourth embodiment.
  • FIG. 10 is a second schematic cross-sectional view of the semiconductor device according to the fourth embodiment.
  • the cooler in the present embodiment is a cooler for cooling a power converter as a body to be cooled.
  • the power converter includes devices such as an inverter for converting DC power to AC power and a converter for changing the voltage.
  • power converters include power semiconductor elements such as power MO S F E T or I G B T.
  • FIG. 1 is a schematic exploded perspective view of the semiconductor device according to the present embodiment.
  • the semiconductor device in the present embodiment includes a power converter as an electrical device and a cooler for cooling the power converter.
  • the semiconductor device in the present embodiment includes a semiconductor element 21 as a power converter.
  • the semiconductor element 21 is formed so that the planar shape is rectangular.
  • the semiconductor element 21 is connected to an external electric circuit (not shown).
  • the semiconductor element 21 is a heating element that generates heat when driven.
  • the semiconductor element 21 is the object to be cooled.
  • the cooler in the present embodiment includes a substrate 1 for arranging the semiconductor element 21 on one surface.
  • the substrate 1 is formed in a plate shape.
  • a plurality of semiconductor elements 21 are arranged on the front side surface of the substrate 1.
  • the semiconductor element 21 is arranged such that the main surface is bonded to the substrate 1 as indicated by an arrow 54.
  • Substrate 1 in the present embodiment includes a metal plate and an insulating layer formed on the surface of the metal plate. The semiconductor element 21 is fixed to the surface of the insulating layer.
  • the cooler in the present embodiment includes a heat dissipating member fixed to a surface opposite to the surface of the substrate 1 on which the semiconductor element 21 is disposed.
  • the heat dissipating member in the present embodiment includes a plate-like member 2.
  • the plate-like member 2 is, for example, a straight fin.
  • the plate-like member 2 is disposed in at least one of a region where the semiconductor element 21 is disposed and a region around the region where the semiconductor element 21 is disposed.
  • the plate-like member 2 is disposed on the back surface of the substrate 1.
  • the plate-like member 2 has a main surface substantially perpendicular to the main surface of the substrate 1. It is arranged to be straight.
  • FIG. 2 shows a first schematic cross-sectional view of the semiconductor device according to the present embodiment.
  • FIG. 2 is a schematic sectional view taken along a plane parallel to the main surface of the substrate.
  • the cooler of the semiconductor device includes a plurality of plate-like members 2, and each plate-like member 2 is arranged and arranged.
  • the plate-like members 2 are arranged so that their main surfaces are substantially parallel to each other.
  • the plate-like members 2 are arranged so as to be separated from each other.
  • the plate-like member 2 has a notch 2a formed in a region where a catching tube 12 described later is disposed.
  • FIG. 3 shows a second schematic cross-sectional view of the semiconductor device according to the present embodiment.
  • FIG. 3 shows a second schematic cross-sectional view of the semiconductor device according to the present embodiment.
  • FIG. 4 shows a third schematic cross-sectional view of the semiconductor device according to the present embodiment.
  • 3 is a cross-sectional view taken along the line I I I-I I I in FIG. 2
  • FIG. 4 is a cross-sectional view taken along the line I V—IV in FIG.
  • the planar member 2 in the present embodiment has a rectangular planar shape.
  • the notch 2 a is formed so that a gap is formed between the auxiliary pipe 12 and the end of the plate-like member 2.
  • the direction indicated by arrow 51 is the direction in which the cooling medium flows.
  • the plate-like member 2 is arranged so that the main surface is substantially parallel to the direction in which the refrigerant flows.
  • the plate-like member 2 is formed so as to have substantially the same height as the first flow path described later.
  • the cooler in the present embodiment includes first flow path constituting means formed so that the refrigerant contacts the heat radiating member.
  • the first flow path constituting means is formed to constitute the first flow path of the cooling medium.
  • the first flow path constituting step in the present embodiment includes a substrate 1 and a main pipe 11 disposed on the side of the substrate 1 where the plate-like member 2 is disposed.
  • the first flow path component includes a wall member 5 disposed on the side of the substrate 1 and the main pipe 11. The first flow path is formed by a space surrounded by the substrate 1, the main pipe 11, and the wall member 5.
  • the cooler in the present embodiment is formed such that the first refrigerant flows in the first flow path sandwiched between the substrate 1 and the main pipe 11.
  • a refrigerant supply device for supplying the refrigerant to the first flow path of the cooler is disposed (not shown).
  • the cooler in the present embodiment includes second flow path forming means formed so that the second refrigerant collides toward the region where the power converter is disposed on the back surface of the substrate 1.
  • the second flow path constituting means is formed so as to eject the second refrigerant directly to a portion where the power converter is disposed.
  • the second flow path constituting means in the present embodiment is formed so as to constitute the second flow path of the refrigerant.
  • the second flow path component includes a main pipe 11 disposed away from the back surface of the substrate 1.
  • the main pipe 11 includes a flow path component plate 1 1 a and a flow channel component plate 1 1 b.
  • the flow path component plate 1 1 a and the flow channel component plate 1 1 b are arranged away from each other.
  • the flow path constituting plate 1 1 a and the flow path constituting plate 1 1 b are arranged so that their main surfaces are parallel to each other.
  • Wall members 5 are arranged on the sides of the flow path component plate 1 1 a and the flow channel component plate 1 1 b.
  • a part of the second flow path is formed by the space surrounded by the flow path constituting plates 1 l a and 1 1 b and the wall member 5.
  • the second flow path constituting means in the present embodiment includes an auxiliary pipe 12 formed so as to protrude from the main pipe 11 toward the substrate 1.
  • the auxiliary tube 12 is disposed so as to face the region where the semiconductor element 21 of the substrate 1 is disposed.
  • the net support pipe 12 in the present embodiment is formed in a cylindrical shape.
  • the auxiliary pipe 12 is formed so as to protrude from the flow path component plate 1 1 a.
  • the catcher tube 1 2 is formed so as to communicate with the main tube 1 1.
  • the auxiliary pipe 12 and the main pipe 11 constitute a second flow path.
  • a refrigerant supply device for supplying the second refrigerant to the second flow path is arranged (not shown).
  • water is used for each of the first refrigerant flowing through the first flow path and the second refrigerant flowing through the second flow path. Cooling water is supplied to the first flow path and the second flow path by a common refrigerant supply device.
  • auxiliary pipe 12 in the present embodiment includes an end face 12a.
  • the end face 1 2 a faces the substrate 1.
  • End face 12 a is inclined so that the flow path becomes larger along the direction of the first refrigerant flowing through the first flow path indicated by arrow 51. That is, the end face 12 a is formed so that the distance from the substrate 1 increases along the direction in which the first refrigerant flows.
  • the end surface 12 a is formed so that the inclined surface faces the downstream side of the first refrigerant.
  • the heat generated by semiconductor element 21 is transferred to substrate 1 and plate-like member 2.
  • the first refrigerant supplied by the refrigerant supply device is introduced into the first flow path. Is done.
  • the first refrigerant flows through the space between the substrate 1 and the main pipe 11 as indicated by an arrow 51.
  • the first refrigerant flows between the plate-like members 2 in the first flow path.
  • the first refrigerant flows while contacting the plate-like member 2 and the substrate 1.
  • the plate-like member 2 and the substrate 1 are cooled. After this, the first refrigerant is discharged.
  • the semiconductor element 21 is cooled via the substrate 1.
  • the semiconductor element 21 is cooled through the substrate 1 by cooling the plate-like member 2.
  • the heat of the semiconductor element 21 is transmitted to the substrate 1 and the plate-like member 2 and is released from the substrate 1 and the plate-like member 2 to the first refrigerant.
  • the second refrigerant supplied by the refrigerant supply device is introduced into the second flow path constituted by the second flow path constituting member.
  • the second refrigerant is introduced into the main pipe 11 as indicated by an arrow 52.
  • a part of the second refrigerant flowing in the main pipe 11 flows into the auxiliary pipe 12 as indicated by an arrow 53.
  • the second refrigerant that has flowed into the auxiliary pipe 12 is discharged from the end surface 1 2 a portion of the auxiliary pipe 12 as indicated by an arrow 53.
  • the second refrigerant supplied from the second flow path isolated from the first refrigerant contributes to the cooling of the semiconductor element 21 for the first time when it is ejected from the auxiliary pipe 12.
  • the second refrigerant is not in contact with the plate-like member 2 arranged in the second flow path until it is ejected from the auxiliary pipe 12, so that the cooling capacity is not lowered.
  • the second refrigerant When the second refrigerant is ejected from the auxiliary pipe 12, it collides with a region of the back surface of the substrate 1 where the semiconductor element 21 is disposed. That is, the second refrigerant cools the region of the substrate 1 where the semiconductor element 21 is disposed with a collision jet. When the second refrigerant collides with the substrate 1, the semiconductor element 21 can be effectively cooled.
  • the second refrigerant that has collided with the substrate 1 flows through the first flow path together with the first refrigerant.
  • the second refrigerant advances while cooling the substrate 1 and the plate-like member 2 by contacting the substrate 1 and the plate-like member 2. Thereafter, the second refrigerant is discharged together with the first refrigerant.
  • the first flow path forming means formed so that the refrigerant contacts the heat radiating member, and the collision jet flow to collide with the region where the semiconductor element is disposed.
  • Second flow path constituting means and the first flow path and the second flow path are separated.
  • the first flow path by disposing the heat dissipating member, the heat dissipating area is expanded and heat can be removed efficiently.
  • the second refrigerant is supplied in a state separated from the first refrigerant until it is ejected from the auxiliary pipe.
  • the temperature of the first refrigerant flowing through the first flow path gradually increases toward the downstream side of the first refrigerant, but the temperature of the second refrigerant is substantially the same on the downstream side as well.
  • the second coolant having a low temperature can collide with the semiconductor element 21, and the semiconductor element 21 can be efficiently cooled. Further, it is possible to suppress the cooling capacity from decreasing in the refrigerant flow path toward the downstream side, and the semiconductor element 21 can be cooled almost uniformly.
  • the impinging jet and the cooling by the convection of the heat transfer member can be performed substantially separately, and the object to be cooled can be effectively cooled.
  • the second flow path constituting means includes a main pipe and an auxiliary pipe.
  • the first flow path includes a space sandwiched between the main pipe and the substrate.
  • the plate-like member is arranged around the region where the semiconductor element is arranged.
  • end surface 12 a of auxiliary pipe 12 is inclined so that the flow path becomes larger along the flow direction of the first refrigerant.
  • the cooler in the present embodiment is arranged so that the surface on which the semiconductor element of the substrate is arranged faces the upper side in the vertical direction.
  • the cooler is not limited to this form, and the cooler includes the semiconductor element of the substrate.
  • the cooler is arranged so that the direction in which the surface of the substrate on which the semiconductor element is arranged extends is either the lead straight direction or the direction inclined with respect to the vertical direction. It does not matter.
  • bubbles generated in the first channel or the second channel can be moved upward in the vertical direction. Air bubbles can be prevented from staying on the back side of the substrate. Even when air bubbles are generated in the first flow path or the second flow path, a liquid film can be secured on the back surface of the substrate.
  • the plate-like member as the heat radiating member in the present embodiment is formed so that the height is substantially the same as the height of the first flow path. With this configuration, the plate-like member can be disposed over the entire height direction of the first flow path, and the heat transfer area can be increased. As a result, cooling with the first refrigerant can be performed effectively.
  • a plurality of semiconductor elements are arranged along the direction in which the refrigerant flows, and an auxiliary tube having the same shape is arranged for each semiconductor element.
  • the auxiliary pipe is not limited to this form, and auxiliary pipes of different sizes and different shapes may be arranged.
  • a cylindrical tube is arranged as an auxiliary tube.
  • the present invention is not limited to this configuration, and an arbitrary fl ⁇ shape can be adopted as the auxiliary tube.
  • an auxiliary pipe with a large diameter is arranged for the object to be cooled with a large calorific value
  • an auxiliary pipe with a small diameter is arranged for the object to be cooled with a small calorific value. You may arrange.
  • the cooler in the present embodiment can easily adjust the amount of heat removal in accordance with each object to be cooled.
  • an adjustment valve for adjusting the flow rate of the refrigerant ejected from the specific auxiliary pipe, a shut-off valve for blocking the flow of the specific auxiliary pipe, or the like may be arranged on the capture pipe or the main pipe. Absent. With this configuration, it is possible to adjust the flow rate of the collision jet in accordance with the heat generation amount of the object to be cooled, or to perform intermittent cooling by the collision jet. Furthermore, the heat generation amount of the cooled object may change in time series, but the flow rate of the collision jet can be changed in response to such fluctuations in the heat generation amount, and optimal cooling can be performed. . Further, in the present embodiment, the notch is formed in the plate member as the heat radiating member.
  • the present invention is not limited to this form, and the plate member may not have the notch.
  • the plate-like member may be formed so as to penetrate the auxiliary pipe.
  • the plate-like member is not limited to a planar shape, and may be formed to have a curved surface.
  • the same refrigerant is used for the first refrigerant and the second refrigerant.
  • the present invention is not limited to this form, and different refrigerants may be used.
  • the refrigerant is not limited to liquid but may contain gas.
  • the cooler in the present embodiment is formed so that the direction of the flow of the first refrigerant in the first flow path and the direction of the flow of the second refrigerant in the second flow path are the same,
  • the present invention is not limited to this configuration, and the flow direction of the first refrigerant in the first flow path and the flow direction of the second refrigerant in the second flow path may be different from each other.
  • a refrigerant supply device for supplying the first refrigerant and a refrigerant supply device for supplying the second refrigerant may be arranged.
  • the refrigerant supply device may include a circulation device that circulates while cooling the refrigerant.
  • a description has been given by taking a high-power power converter as an example of a cooled object.
  • the present invention is not limited to this form, and the present invention is applied to a cooler of an arbitrary cooled object. Can do.
  • the present invention can be applied to a power converter with low power and a cooler for other objects to be cooled.
  • the cooler in the present embodiment is a cooler for cooling the power converter.
  • the cooler includes the first flow path forming means and the second flow path forming means as in the first embodiment.
  • the heat radiating member for radiating the heat of the object to be cooled is different from the first embodiment.
  • FIG. 5 is a schematic exploded perspective view of the semiconductor device according to the present embodiment.
  • the heat radiating member in the present embodiment includes a rod-shaped member 3.
  • the rod-shaped member 3 is fixed to the back surface of the substrate 1.
  • the rod-shaped member 3 is disposed so as to protrude from the back surface of the substrate 1.
  • the longitudinal direction is substantially perpendicular to the back surface of the substrate 1
  • FIG. 6 shows a first schematic cross-sectional view of the semiconductor device according to the present embodiment.
  • FIG. 6 is a schematic sectional view taken along a plane parallel to the main surface of the substrate.
  • the rod-shaped member 3 is arranged around the auxiliary pipe 12.
  • the rod-shaped member 3 is disposed around a region where the semiconductor element 21 is disposed.
  • the rod-shaped member 3 is disposed in the vicinity of the region where the semiconductor element 21 is disposed.
  • four rod-like members 3 are arranged for one semiconductor element 21.
  • the first refrigerant flows in the direction indicated by arrow 51.
  • FIG. 7 shows a second schematic cross-sectional view of the semiconductor device according to the present embodiment.
  • FIG. 7 is a cross-sectional view taken along the line V I I—V I I in FIG.
  • the rod-shaped member 3 is formed so as to have substantially the same length as the height of the first flow path sandwiched between the main pipe 11 and the substrate 1.
  • the heat radiating member in the present embodiment includes a rod-shaped member. By changing the position, length, number, etc. of the rod-shaped members, the position where heat is removed by the heat radiating member and the contact area with the cooling medium can be easily changed.
  • the rod-shaped member is disposed so as to surround the region where the body to be cooled is disposed.
  • the present invention is not limited to this configuration, and the rod-shaped member collides with the cooling surface of the substrate. Thereafter, an arbitrary position and an arbitrary number can be arranged so as not to disturb the radial spread as much as possible and not to disturb the flow of the first refrigerant.
  • the rod-like member in the present embodiment has substantially the same height as the first flow path through which the first refrigerant flows. By adopting this configuration, the rod-shaped member can be disposed over substantially the entire height direction of the first flow path, and cooling with the first refrigerant can be performed effectively.
  • the cooler is provided with the first flow path forming means and the second flow path forming means as in the first embodiment.
  • the cooler in the present embodiment includes the shape of the heat radiating member and the second The shape of the auxiliary pipe of the flow path forming means is different from that of the first embodiment.
  • FIG. 8 shows a schematic cross-sectional view of the cooler in the present embodiment.
  • FIG. 8 is a schematic sectional view taken along a plane perpendicular to the main surface of the substrate.
  • the cooler in the present embodiment includes an auxiliary pipe 13 formed so as to protrude from the surface of the main pipe 11.
  • the auxiliary pipe 13 is formed so that the cross-sectional shape is a mountain shape.
  • the catching tube 13 is formed in a tapered shape so that the flow path becomes narrower toward the substrate 1.
  • the end face of the auxiliary tube 13 in the present embodiment is formed so as to be substantially parallel to the substrate 1.
  • the cooler in the present embodiment includes a plate-like member 4.
  • the plate-like member 4 has a notch 4a.
  • the notch 4 a is formed so as to incline along the shape of the auxiliary pipe 13.
  • the notch 4 a is inclined so that the cross-sectional shape becomes narrower toward the substrate 1.
  • the notch 4 a is formed so that the plate-like member 4 is separated from the auxiliary pipe 13.
  • the second refrigerant flowing in as shown by the arrow 52 is discharged from the auxiliary pipe 13 as shown by the arrow 55.
  • the second refrigerant is discharged from the auxiliary pipe 13 as shown by the arrow 55.
  • the collision jet flow by the second refrigerant can be smoothly merged with the first refrigerant.
  • the pressure and flow rate of the impinging jet can be easily adjusted by changing the tapered shape of the auxiliary pipe.
  • the first refrigerant in the first flow path tends to move closer to the substrate 1, and the second refrigerant after colliding with the substrate 1 is removed. You can stop at board 1. For this reason, the cooling effect of the board
  • coolant can be improved. Furthermore, the first refrigerant and the second refrigerant can be flowed in the first flow path, and the pressure loss due to the mixture of both refrigerants can be reduced. Since other configurations, operations, and effects are the same as those in the first embodiment, description thereof will not be repeated here.
  • the cooler in the present embodiment includes third flow path configuring means in addition to the first flow path configuring means and the second flow path configuring means. That is, in this embodiment, The cooler has a third flow path in addition to the first flow path and the second flow path.
  • the third channel is formed so as to communicate with the second channel.
  • FIG. 9 shows a first schematic cross-sectional view of the cooler in the present embodiment.
  • FIG. 9 is a schematic cross-sectional view taken along a plane parallel to the main surface of the substrate.
  • FIG. 10 shows a second schematic cross-sectional view of the cooler in the present embodiment.
  • FIG. 10 is a cross-sectional view taken along the line X—X in FIG.
  • the cooler in the present embodiment includes third flow path configuring means that constitutes a third flow path for discharging the refrigerant flowing in the second flow path.
  • the third flow path forming means includes a separator 6.
  • the separator 6 is disposed between the main pipe 11 and the substrate 1.
  • the separator 6 is formed in a flat plate shape.
  • the separator 6 is arranged so that the main surface is substantially parallel to the back surface of the substrate 1.
  • the separator 6 is arranged so as to divide the first flow path into two flow paths.
  • the second flow path component in the present embodiment includes an auxiliary pipe 14.
  • the auxiliary pipe 14 is disposed so as to penetrate the separator 6.
  • the spout of the auxiliary pipe 14 is disposed in a space sandwiched between the substrate 1 and the separator plate 6.
  • the auxiliary pipe 14 is fixed to the separator 6 without a gap. In other words, ⁇ is formed so that there is no gap between the auxiliary pipe 14 and the separator 6.
  • the cooler in the present embodiment includes a plate-like member 7 as a heat radiating member.
  • the plate-like member 7 is formed so as to penetrate the separator plate 6.
  • the plate-like member 7 has a notch 7a.
  • the notch 7 a is formed so that the planar shape is circular.
  • the notch 7 a is formed along the shape of the auxiliary pipe 14.
  • the first flow path is formed by a space sandwiched between the main pipe 11 and the separator 6.
  • a third flow path is formed by a space sandwiched between the substrate 1 and the separator 6.
  • a second flow path is formed by the main pipe 11 and the auxiliary pipe 14.
  • the refrigerant supply device in the present embodiment is formed so as to supply the refrigerant directly to the first flow path and the second flow path, and is configured not to supply the refrigerant directly to the third flow path. Has been.
  • the first channel and the second channel are isolated.
  • 1st refrigerant Proceeds in the first flow path while cooling the plate-like member 7 as indicated by an arrow 51.
  • the second refrigerant is ejected from the auxiliary pipe 14 as indicated by an arrow 53 in the second flow path.
  • the second refrigerant cools the back surface of the substrate 1 as a collision jet.
  • the second refrigerant flows through the third flow path after colliding with the substrate 1. In the third flow path, it flows toward the discharge port as indicated by an arrow 56. In the third flow path, the second refrigerant proceeds while cooling the substrate 1 and the plate-like member 7. The first route is completely separated from the second and third routes.
  • the path for cooling by the impinging jet is separated from the path for cooling the heat radiating member.
  • the second refrigerant for the impinging jet and the first refrigerant for cooling the heat dissipating member are not mixed.
  • the cooler in the present embodiment can avoid mixing the first refrigerant and the second refrigerant.
  • different refrigerants can be used as the first refrigerant and the second refrigerant, respectively.
  • the refrigerant supply device may be a supply device including a first refrigerant circulation device and a second refrigerant circulation device different from the first refrigerant.
  • the plate-like member has a notch, and the notch is formed along the shape of the auxiliary pipe.
  • the second refrigerant ejected from the auxiliary pipe spreads radially along the shape of the catching pipe, but this configuration can prevent the spread of the second refrigerant from being obstructed by the plate-like member.
  • the cooler of the power converter excellent in cooling performance can be provided.
  • the present invention can be applied to a cooler.
  • it can be advantageously applied to a cooler of a power converter.

Abstract

A cooling device is provided with a substrate (1) for arranging a semiconductor element (21); a board-like member (2) fixed on the rear surface of the substrate (1); a main tube (11); and an auxiliary tube (12). A first flow channel of a cooling medium is configured by a space sandwiched between the substrate (1) and the main tube (11). A second flow channel of the cooling medium is configured by the main tube (11) and the auxiliary tube (12). The auxiliary tube (12) is arranged to jet the cooling medium toward a region where the semiconductor element (21) is arranged. The second flow channel is separately formed from the first flow channel.

Description

明細書 冷却器 技術分野 .  Specification Cooler Technical Field.
本発明は、 冷却器に関する。 特に、 電力変換器の冷却器に関する。 背景技術  The present invention relates to a cooler. In particular, it relates to a power converter cooler. Background art
近年においては、 ハイプリ ッ ド自動車 (Hybrid Vehicle ) 、 電気自動車 (Electric Vehicle) および燃料電池 (Fuel Cell) を搭載した燃料電池車など の電力を動力源とする車が注目されている。 ハイブリッド自動車は、 従来のェン ジンに加え、 モ^タを動力とする自動車である。 ハイブリッド自動車は、 ェンジ ンを駆動することにより動力を得るとともに、 直流電源からの直流電圧を交流電 圧に変換し、 変換された交流電圧によりモータを駆動することによつて動力を得 るものである。 また、 電気自動車は、 直流電源からの直流電圧を変換した交流電 圧によりモータを駆動して動力を得る自動車である。  In recent years, vehicles that use electric power as a power source, such as hybrid vehicles, electric vehicles, and fuel cell vehicles equipped with fuel cells, have attracted attention. A hybrid car is a motor powered car in addition to a conventional engine. A hybrid vehicle obtains power by driving an engine, converts DC voltage from a DC power source into AC voltage, and drives motor by the converted AC voltage. . An electric vehicle is a vehicle that obtains power by driving a motor with an AC voltage obtained by converting a DC voltage from a DC power source.
このような電気を動力源とする自動車においては、 電力変換器が搭載される。 電力変換器には、 たとえば、 インバータゃコンバータなどのパワー半導体素子が 含まれる。 パワー半導体素子には、 たとえば、 パワー M O S F E T (Metal Oxide Semiconductor Field-Effect Transistor) 、 I G B T (絶縁ゲート型ノ イポーラトランジスタ) 等が含まれる。  In such an automobile using electricity as a power source, a power converter is mounted. The power converter includes power semiconductor elements such as an inverter and a converter, for example. Examples of the power semiconductor element include power MOS FET (Metal Oxide Semiconductor Field-Effect Transistor), IGBT (insulated gate type bipolar transistor), and the like.
' 自動車等に搭載される電力変換器においては、 き動車の高い動力性能等を得る ために大電力を必要とする場合がある。 大電力の電力変 等は発熱量が大きい ために、 電力変換器を冷却するための冷却器が搭載される。  'Power converters installed in automobiles, etc. may require large amounts of power in order to obtain high power performance. Since large-scale power changes generate a large amount of heat, a cooler is installed to cool the power converter.
大電力の電力変換器等の発熱体の冷却においては、 電力変換器等に接する部材 に冷却板 (フィン) を接合して、 伝熱面積を拡大することにより効率を向上させ る冷却、 または、 電力変換器が配置されている領域に向かって冷却水を衝突させ る、 いわゆる衝突噴流による冷却が有用である。 さらに、 これらの冷却方法を複 合させる方法が効果的である。 特開平 2— 1 0 0 3 5 0号公報においては、 フィンを有する冷却板を備える集 積回路の冷却構造が開示されている。 この冷却構造は、 複数の集積回路素子を基 板に実装した集積回路と、 基板を保持する基板枠と、 集積回路素子と対向する基 板の反対面にざぐり穴を有し、 かつ、 このざぐり穴の底面に配置された扇状のフ インを有する冷却板と、 この扇状のフィンの中心に冷媒を噴出するノズルとを有 する。 この集積回路の冷却構造によれば、 集積回路素子と冷媒との間の熱抵抗が 低く抑えられ、 冷媒の流量を少なくして、 効率的に熱を機器の外部へ排出できる と開示されている。 When cooling a heating element such as a high-power power converter, a cooling plate (fin) is joined to a member that is in contact with the power converter, etc., and the heat transfer area is expanded to improve the efficiency. Cooling with a so-called impinging jet that collides cooling water toward the area where the power converter is located is useful. Furthermore, a method of combining these cooling methods is effective. Japanese Laid-Open Patent Publication No. 2-100.30 discloses an integrated circuit cooling structure including a cooling plate having fins. This cooling structure has an integrated circuit in which a plurality of integrated circuit elements are mounted on a substrate, a substrate frame that holds the substrate, and a counterbore on the opposite surface of the substrate that faces the integrated circuit element. A cooling plate having a fan-shaped fin disposed on the bottom surface of the hole and a nozzle for ejecting a refrigerant at the center of the fan-shaped fin are provided. According to the cooling structure of this integrated circuit, it is disclosed that the thermal resistance between the integrated circuit element and the refrigerant can be kept low, the flow rate of the refrigerant can be reduced, and the heat can be efficiently discharged outside the device. .
特開平 5— 3 2 7 4号公報においては、 基板上に配列された複数の半導体素子 と、 それぞれの半導体素子を挟んで基板の反対側に配置される冷却媒体供給へッ ダと、 冷却媒体供給ヘッダに連通したチューブ状の冷却媒体供給部材と、 冷却媒 体供給部材の先端に形成され、 冷却媒体供給へッダからの冷却媒体をそれぞれの 半導体素子に向かって噴出する冷却媒体噴出口と、 冷却媒体戻りへッダとを備え た半導体冷却装置が開示されている。 この半導体冷却装置においては、 基板を垂 直方向に設置するとともに、 冷却媒体戻りヘッダに連通した冷却媒体戻り管を設 け、 かつそれぞれの半導体素子の間を仕切る仕切部材を設けている。 この^導体 冷却装置によれば、 各素子で発生した冷却媒体の気泡の他の素子へ流入すること を防止し、 各素子を独立して冷却するため、 各素子間の温度差を小さくすること ができると開示されている。  In Japanese Patent Laid-Open No. 5-3 2 7 4, a plurality of semiconductor elements arranged on a substrate, a cooling medium supply header disposed on the opposite side of the substrate across each semiconductor element, and a cooling medium A tube-shaped cooling medium supply member communicating with the supply header; and a cooling medium outlet formed at the front end of the cooling medium supply member for ejecting the cooling medium from the cooling medium supply header toward the respective semiconductor elements. A semiconductor cooling device including a cooling medium return header is disclosed. In this semiconductor cooling device, the substrate is installed in the vertical direction, a cooling medium return pipe communicating with the cooling medium return header is provided, and a partition member for partitioning the semiconductor elements is provided. According to this conductor cooling device, the cooling medium bubbles generated in each element are prevented from flowing into other elements, and each element is cooled independently. Is disclosed.
特開平 6— 1 1 2 3 8 5号公報においては、 放熱体とノズルとを組合せてなる 半導体素子の冷却構造が開示されている。 この冷却構造においては、 放熱体は、 底部放熱板と第 1および第 2の垂直放熱板とを有しており、 底部放熱板は、 配線 基板上に搭載され内部に半導体素子が実装されたケースの放熱面に設けられてい る。 第 1の垂直放熱板は、 湾曲する複数の放熱板からなる。 その湾曲凸面は向き 合わされ、 湾曲凸面の相互間に噴流の流路が形成されている。 第 2の垂直放熱板 は、 第 1の垂直放熱板による通路の噴流吹出口に設けられたものであり、 ノズル は、 第 1の垂直放熱板による通路を介して底部放熱板に衝突するよう 冷媒を噴 出させるものである。 この半導体素子の冷却構造によれば、 一度噴流として衝突 させた冷媒を再度噴流として放熱板に衝突させることで、 流速や流量を増やすこ となく冷却効率を高めることができると開示されている。 Japanese Patent Application Laid-Open No. 6-1 1 2 3 8 5 discloses a cooling structure for a semiconductor element, which is a combination of a radiator and a nozzle. In this cooling structure, the heat sink has a bottom heat sink and first and second vertical heat sinks. The bottom heat sink is mounted on a wiring board and has a semiconductor element mounted therein. It is provided on the heat dissipation surface. The first vertical heat sink is composed of a plurality of curved heat sinks. The curved convex surfaces face each other, and a jet flow path is formed between the curved convex surfaces. The second vertical heat radiating plate is provided at the jet outlet of the passage by the first vertical heat radiating plate, and the nozzle collides with the bottom heat radiating plate through the passage by the first vertical heat radiating plate. Is to be ejected. According to this semiconductor element cooling structure, the flow velocity and flow rate can be increased by causing the refrigerant once collided as a jet to collide with the heat sink as a jet again. It is disclosed that the cooling efficiency can be increased.
特開平 5— 1 9 0 7 1 6号公報においては、 セラミック多層基板上に集積回路 パッケ一ジが多数搭載されており、 個々のパッケージには冷却ジャケットが装着 されている半導体装置が開示されている。 個々の冷却ジャケットには柔軟性を有 する管が接続されている。 柔軟流路の内部には冷却流体をスリット状の噴流とし て冷却ジャケットに流入させるためのノズルが設けられる。 冷却ジャケット内に はフィンおよび冷却流体の戻りのための空間が設けられている。 この半導体装置 によれば、 冷却能力の高い水を冷却媒体に利用でき、 伝熱面積の拡大が容易な平 板型フィンを使用でき、 スリツト状の噴流により各フィンに均一に冷却流体を供 給できるため、 優れた冷却構造の半導体装置を提供することができると開示され ている。  Japanese Laid-Open Patent Publication No. 5-190 016 discloses a semiconductor device in which a large number of integrated circuit packages are mounted on a ceramic multilayer substrate, and a cooling jacket is mounted on each package. Yes. A flexible tube is connected to each cooling jacket. A nozzle is provided inside the flexible channel to allow the cooling fluid to flow into the cooling jacket as a slit-like jet. A space for the return of fins and cooling fluid is provided in the cooling jacket. According to this semiconductor device, water with high cooling capacity can be used as a cooling medium, flat plate type fins that can easily expand the heat transfer area can be used, and a cooling fluid is evenly supplied to each fin by a slit-like jet. Therefore, it is disclosed that a semiconductor device having an excellent cooling structure can be provided.
電力変換器の温度が上昇すると、 効率の低下や電力変換器に含まれる半導体素 子が破損する場合がある。 このため、 前述のように、 電力変換器を冷却するため の冷却器が搭載される場合があり、 特に大電力に対応した電力変換器等の発熱体 の冷却は重要な課題である。 発明の開示  If the temperature of the power converter rises, the efficiency may decrease and the semiconductor elements included in the power converter may be damaged. For this reason, as described above, a cooler for cooling the power converter may be mounted, and in particular, cooling of a heating element such as a power converter corresponding to high power is an important issue. Disclosure of the invention
本発明は、 冷却性能の優れた電力変換器の冷却器を提供することを目的とする。 本発明に基づく冷却器は、 発熱体を一方の面に配置するための基板を備える。 上記基板の他方の面に固定された放熱部材を備える。 冷媒が上記放熱部材に接触 するように形成された第 1流路を構成する第 1流路構成手段を備える。 上記他方 の面のうち上記発熱体が配置されている領域に向かって冷媒を噴出させるように 形成された第 2流路を構成する第 2流路構成手段を備える。 上記第 2流路は、 上 記第 1流路と分離して形成されている。  An object of this invention is to provide the cooler of the power converter excellent in cooling performance. The cooler based on this invention is equipped with the board | substrate for arrange | positioning a heat generating body to one surface. A heat dissipating member fixed to the other surface of the substrate is provided. First flow path configuring means for configuring a first flow path formed so that the refrigerant contacts the heat radiating member is provided. Second flow path configuring means is provided that configures a second flow path that is formed so that the refrigerant is jetted toward a region of the other surface where the heating element is disposed. The second flow path is formed separately from the first flow path.
上記発明において好ましくは、 上記放熱部材は、 板状部材または棒状部材のう ち少なくとも一方を含む。  Preferably, in the above invention, the heat dissipation member includes at least one of a plate-like member or a rod-like member.
上記発明において好ましくは、 上記放熱部材は、 上記発熱体が配置されている 領域の周りに配置されている。 上記第 2流路構成手段は、 上記基板の上記他方の 面から離れて配置された主管と、 上記主管から上記基板に向かって突出するよう に形成された補助管とを含む。 上記補助管は、 上記基板の上記発熱体が配置され ている領域に対向するように配置されている。 上記第 1流路は、 上記主管と上記 基板とに挟まれる空間を含む。 In the above invention, preferably, the heat dissipating member is disposed around a region where the heating element is disposed. The second flow path forming means includes a main pipe disposed away from the other surface of the substrate, and protrudes from the main pipe toward the substrate. And an auxiliary tube formed on the surface. The auxiliary tube is disposed so as to face a region of the substrate where the heating element is disposed. The first flow path includes a space sandwiched between the main pipe and the substrate.
上記発明において好ましくは、 上記補助管は、 上記基板に対向する端面を含み、 上記端面は、 上記第 1流路構成手段を流れる上記冷媒の向きに沿って流路が大き くなるように傾斜している。  Preferably, in the above invention, the auxiliary pipe includes an end face facing the substrate, and the end face is inclined so that a flow path becomes larger along a direction of the refrigerant flowing through the first flow path forming means. ing.
上記発明において好ましくは、 上記補助管は、 上記基板に向かって細くなるよ うにテーパ状に形成されている。  Preferably, in the above invention, the auxiliary pipe is formed in a tapered shape so as to become thinner toward the substrate.
上記発明において好ましくは、 上記第 2流路を流れる冷媒を排出するための第 3流路構成手段を備える。 上記第 3流路構成手段は、 上記主管と上記基板との間 に配置された隔離板を含む。 上記補助管は、 上記隔離板を貫通するように形成さ れている。 上記ネ慮助管は、 上記隔離板に隙間無く固定されている。  Preferably, in the above invention, a third flow path constituting means for discharging the refrigerant flowing through the second flow path is provided. The third flow path forming means includes a separator arranged between the main pipe and the substrate. The auxiliary pipe is formed so as to penetrate the separator. The said relief tube is being fixed to the said separator plate without gap.
上記発明において好ましくは、 上記基板は、 上記一方の.面の延びる方向が、 鉛 直方向または鉛直方向に対して傾斜する方向のいずれかになるように配置されて いる。  Preferably, in the above invention, the substrate is arranged such that a direction in which the one surface extends is either a lead straight direction or a direction inclined with respect to a vertical direction.
上記発明において好ましくは、 上記基板は、 上記一方の面が鉛直方向の下側を 向くように配置されている。 図面の簡単な説明  Preferably, in the above invention, the substrate is arranged so that the one surface faces downward in the vertical direction. Brief Description of Drawings
図 1は、 実施の形態 1における半導体装置の概略分解斜視図である。 ' 図 2は、 実施の形態 1における半導体装置の第 1の概略断面図である。  FIG. 1 is a schematic exploded perspective view of the semiconductor device according to the first embodiment. FIG. 2 is a first schematic cross-sectional view of the semiconductor device according to the first embodiment.
図 3は、 実施の形態 1における半導体装置の第 2の概略断面図である。  FIG. 3 is a second schematic cross-sectional view of the semiconductor device according to the first embodiment.
図 4は、 実施の形態 1における半導体装置の第 3の概略断面図である。  FIG. 4 is a third schematic cross-sectional view of the semiconductor device according to the first embodiment.
図 5は、 実施の形態 2における半導体装置の概略分解斜視図である。  FIG. 5 is a schematic exploded perspective view of the semiconductor device according to the second embodiment.
図 6は、 実施の形態 2における半導体装置の第 1の概略断面図である。  FIG. 6 is a first schematic cross-sectional view of the semiconductor device according to the second embodiment.
図 7は、 実施の形態 2における半導体装置の第 2の概略断面図である。  FIG. 7 is a second schematic cross-sectional view of the semiconductor device according to the second embodiment.
図 8は、 実施の形態 3における半導体装置の概略断面図である。  FIG. 8 is a schematic cross-sectional view of the semiconductor device according to the third embodiment.
図 9は、 実施の形態 4における半導体装置の第 1の概略断面図である。  FIG. 9 is a first schematic cross-sectional view of the semiconductor device in the fourth embodiment.
図 1 0は、 実施の形態 4における半導体装置の第 2の概略断面図である。 発明を実施するための最良の形態 FIG. 10 is a second schematic cross-sectional view of the semiconductor device according to the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1 )  (Embodiment 1)
図 1から図 4を参照して、 本発明に基づく実施の形態 1における冷却器につい て説明する。 本実施の形態における冷却器は、 被冷却体としての電力変換器を冷 却するための冷却器である。  With reference to FIG. 1 to FIG. 4, a cooler according to the first embodiment of the present invention will be described. The cooler in the present embodiment is a cooler for cooling a power converter as a body to be cooled.
電力変換器には、 直流の電力を交流の電力に変換するためのインパータゃ、 電 圧を変化させるためのコンバータなどの機器が含まれる。 たとえば、 電力変換器 には、 パワー MO S F E Tまたは I G B Tなどのパワー半導体素子が含まれる。 図 1は、 本実施の形態における半導体装置の概略分解斜視図である。 本実施の 形態における半導体装置は、 電気機器としての電力変換器と、 電力変換器を冷却 するための冷却器とを含む。  The power converter includes devices such as an inverter for converting DC power to AC power and a converter for changing the voltage. For example, power converters include power semiconductor elements such as power MO S F E T or I G B T. FIG. 1 is a schematic exploded perspective view of the semiconductor device according to the present embodiment. The semiconductor device in the present embodiment includes a power converter as an electrical device and a cooler for cooling the power converter.
本実施の形態における半導体装置は、 電力変換器としての半導体素子 2 1を含 む。 半導体素子 2 1は、 平面形状が長方形になるように形成されている。 半導体 素子 2 1は、 図示しない外部の電気回路と接続されている。 半導体素子 2 1は、 駆動することにより発熱する発熱体である。 本実施の形態においては、 半導体素 子 2 1が被冷却体になる。  The semiconductor device in the present embodiment includes a semiconductor element 21 as a power converter. The semiconductor element 21 is formed so that the planar shape is rectangular. The semiconductor element 21 is connected to an external electric circuit (not shown). The semiconductor element 21 is a heating element that generates heat when driven. In the present embodiment, the semiconductor element 21 is the object to be cooled.
本実施の形態における冷却器は、 半導体素子 2 1を一方の面に配置するための 基板 1を備える。 基板 1は、 板状に形成されている。 本実施の形態においては、 基板 1の表側の面に複数の半導体素子 2 1が配置されている。 半導体素子 2 1は、 矢印 5 4に示すように、 主表面が基板 1に接合するように配置されている。 本実 施の形態における基板 1は、 金属板と金属板の表面に形成された絶縁層とを含む。 半導体素子 2 1は、 絶縁層の表面に固定されている。  The cooler in the present embodiment includes a substrate 1 for arranging the semiconductor element 21 on one surface. The substrate 1 is formed in a plate shape. In the present embodiment, a plurality of semiconductor elements 21 are arranged on the front side surface of the substrate 1. The semiconductor element 21 is arranged such that the main surface is bonded to the substrate 1 as indicated by an arrow 54. Substrate 1 in the present embodiment includes a metal plate and an insulating layer formed on the surface of the metal plate. The semiconductor element 21 is fixed to the surface of the insulating layer.
本実施の形態における冷却器は、 基板 1の半導体素子 2 1が配置される面と反 対側の面に固定された放熱部材を備える。 本実施の形態における放熱部材は、 板 状部材 2を含む。 板状部材 2は、 たとえばストレートフィンである。 板状部材 2 は、 半導体素子 2 1が配置される領域および半導体素子 2 1が配置される領域の 周りの領域のうち、 少なくとも一方の領域に配置されている。 板状部材 2は、 基 板 1の裏面に配置されている。 板状部材 2は、 主表面が基板 1の主表面とほぼ垂 直になるように配置されている。 The cooler in the present embodiment includes a heat dissipating member fixed to a surface opposite to the surface of the substrate 1 on which the semiconductor element 21 is disposed. The heat dissipating member in the present embodiment includes a plate-like member 2. The plate-like member 2 is, for example, a straight fin. The plate-like member 2 is disposed in at least one of a region where the semiconductor element 21 is disposed and a region around the region where the semiconductor element 21 is disposed. The plate-like member 2 is disposed on the back surface of the substrate 1. The plate-like member 2 has a main surface substantially perpendicular to the main surface of the substrate 1. It is arranged to be straight.
図 2に、 本実施の形態における半導体装置の第 1の概略断面図を示す。 図 2は、 基板の主表面に平行な面で切断したときの概略断面図である。 半導体装置の冷却 器は、 複数の板状部材 2を含み、 それぞれの板状部材 2は、 配列して配置されて いる。 板状部材 2は、 それぞれの主表面が互いにほぼ平行になるように配置され ている。 板状部材 2は、 互いに離れるように配置されている。 板状部材 2は、 後 述する捕助管 1 2が配置されている領域に形成された切欠き部 2 aを有する。 図 3に、 本実施の形態における半導体装置の第 2の概略断面図を示す。 図 4に、 本実施の形態における半導体装置の第 3の概略断面図を示す。 図 3は、 図 2にお ける I I I一 I I I線に関する矢視断面図であり、 図 4は、 図 2における I V— I V線に関する矢視断面図である。  FIG. 2 shows a first schematic cross-sectional view of the semiconductor device according to the present embodiment. FIG. 2 is a schematic sectional view taken along a plane parallel to the main surface of the substrate. The cooler of the semiconductor device includes a plurality of plate-like members 2, and each plate-like member 2 is arranged and arranged. The plate-like members 2 are arranged so that their main surfaces are substantially parallel to each other. The plate-like members 2 are arranged so as to be separated from each other. The plate-like member 2 has a notch 2a formed in a region where a catching tube 12 described later is disposed. FIG. 3 shows a second schematic cross-sectional view of the semiconductor device according to the present embodiment. FIG. 4 shows a third schematic cross-sectional view of the semiconductor device according to the present embodiment. 3 is a cross-sectional view taken along the line I I I-I I I in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line I V—IV in FIG.
本実施の形態における板状部材 2は、 平面形状が長方形に形成されている。 切 欠き部 2 aは、 補助管 1 2と板状部材 2の端部との間に隙間が生じるように形成 されている。 矢印 5 1に示す向きは、 冷却媒体が流れる向きである。 板状部材 2 は、 主表面が、 冷媒が流れる向きとほぼ平行になるように配置されている。 板状 部材 2は、 後述する第 1流路の高さとほぼ同じ高さを有するように形成されてい る。  The planar member 2 in the present embodiment has a rectangular planar shape. The notch 2 a is formed so that a gap is formed between the auxiliary pipe 12 and the end of the plate-like member 2. The direction indicated by arrow 51 is the direction in which the cooling medium flows. The plate-like member 2 is arranged so that the main surface is substantially parallel to the direction in which the refrigerant flows. The plate-like member 2 is formed so as to have substantially the same height as the first flow path described later.
図 1から図 4を参照して、 本実施の形態における冷却器は、 冷媒が放熱部材に 接触するように形成された第 1流路構成手段を備える。 第 1流路構成手段は、 冷 媒の第 1流路を構成するように形成されている。 本実施の形態における第 1流路 構成竽段は、 基板 1と、 基板 1の板状部材 2が配置されている側に配置された主 管 1 1を含む。 第 1流路構成部材は、 基板 1および主管 1 1の側方に配置された 壁部材 5を含む。 第 1流路は、 基板 1と、 主管 1 1と、 壁部材 5とに囲まれる空 間によつて形成されている。  Referring to FIGS. 1 to 4, the cooler in the present embodiment includes first flow path constituting means formed so that the refrigerant contacts the heat radiating member. The first flow path constituting means is formed to constitute the first flow path of the cooling medium. The first flow path constituting step in the present embodiment includes a substrate 1 and a main pipe 11 disposed on the side of the substrate 1 where the plate-like member 2 is disposed. The first flow path component includes a wall member 5 disposed on the side of the substrate 1 and the main pipe 11. The first flow path is formed by a space surrounded by the substrate 1, the main pipe 11, and the wall member 5.
本実施の形態における冷却器は、 基板 1と主管 1 1とに挟まれる第 1流路に第 1冷媒が流れるように形成されている。 本実施の形態においては、 冷却器の第 1 流路に冷媒を供給するための冷媒供給装置が配置されている (図示せず) 。  The cooler in the present embodiment is formed such that the first refrigerant flows in the first flow path sandwiched between the substrate 1 and the main pipe 11. In the present embodiment, a refrigerant supply device for supplying the refrigerant to the first flow path of the cooler is disposed (not shown).
本実施の形態における冷却器は、 基板 1の裏面のうち電力変換器が配置されて レ、る領域に向かって第 2冷媒を衝突させるように形成された第 2流路構成手段を 備える。 第 2流路構成手段は、 電力変換器が配置されている部分に直接的に第 2 冷媒を噴出するように形成されている。 The cooler in the present embodiment includes second flow path forming means formed so that the second refrigerant collides toward the region where the power converter is disposed on the back surface of the substrate 1. Prepare. The second flow path constituting means is formed so as to eject the second refrigerant directly to a portion where the power converter is disposed.
本実施の形態における第 2流路構成手段は、 冷媒の第 2流路を構成するように 形成されている。 第 2流路構成部材は、 基板 1の裏面から離れて配置された主管 1 1を含む。 主管 1 1は、 流路構成板 1 1 aおよび流路構成板 1 1 bを含む。 流 路構成板 1 1 aと流路構成板 1 1 bとは互いに離れて配置されている。 流路構成 板 1 1 aと流路構成板 1 1 bとは主表面同士が互いに平行になるように配置され ている。 流路構成板 1 1 aと流路構成板 1 1 bとの側方には、 壁部材 5が配置さ れている。 流路構成板 1 l a , 1 1 bおよび壁部材 5によって囲まれる空間によ つて第 2流路の一部が形成されている。  The second flow path constituting means in the present embodiment is formed so as to constitute the second flow path of the refrigerant. The second flow path component includes a main pipe 11 disposed away from the back surface of the substrate 1. The main pipe 11 includes a flow path component plate 1 1 a and a flow channel component plate 1 1 b. The flow path component plate 1 1 a and the flow channel component plate 1 1 b are arranged away from each other. The flow path constituting plate 1 1 a and the flow path constituting plate 1 1 b are arranged so that their main surfaces are parallel to each other. Wall members 5 are arranged on the sides of the flow path component plate 1 1 a and the flow channel component plate 1 1 b. A part of the second flow path is formed by the space surrounded by the flow path constituting plates 1 l a and 1 1 b and the wall member 5.
本実施の形態における第 2流路構成手段は、 主管 1 1から基板 1に向かって突 出するように形成された補助管 1 2を含む。 補助管 1 2は、 基板 1の半導体素子 2 1が配置されている領域に対向するように配置されている。 本実施の形態にお けるネ翁助管 1 2は、 円筒状に形成されている。 補助管 1 2は、 流路構成板 1 1 a 力^突出するように形成されている。 捕助管 1 2は、 主管 1 1と連通するように 形成されている。 補助管 1 2と主管 1 1とによって第 2流路が構成されている。 本実施の形態においては、 第 2流路に第 2冷媒を供給するための冷媒供給装置が 配置されている (図示せず) 。  The second flow path constituting means in the present embodiment includes an auxiliary pipe 12 formed so as to protrude from the main pipe 11 toward the substrate 1. The auxiliary tube 12 is disposed so as to face the region where the semiconductor element 21 of the substrate 1 is disposed. The net support pipe 12 in the present embodiment is formed in a cylindrical shape. The auxiliary pipe 12 is formed so as to protrude from the flow path component plate 1 1 a. The catcher tube 1 2 is formed so as to communicate with the main tube 1 1. The auxiliary pipe 12 and the main pipe 11 constitute a second flow path. In the present embodiment, a refrigerant supply device for supplying the second refrigerant to the second flow path is arranged (not shown).
本実施の形態においては、 第 1流路を流れる第 1冷媒およぴ第 2流路を流れる 第 2冷媒として、 それぞれに水が用いられている。 第 1流路および第 2流路には、 共通の冷媒供給装置によって、 冷却水が供給されている。  In the present embodiment, water is used for each of the first refrigerant flowing through the first flow path and the second refrigerant flowing through the second flow path. Cooling water is supplied to the first flow path and the second flow path by a common refrigerant supply device.
図 1およぴ図 3を参照して、 本実施の形態における補助管 1 2は、 端面 1 2 a を含む。 端面 1 2 aは、 基板 1に対向している。 端面 1 2 aは、 矢印 5 1に示す 第 1流路を流れる第 1冷媒の向きに沿って流路が大きくなるように傾斜している。 すなわち、 端面 1 2 aは、 第 1冷媒の流れる向きに沿って、 基板 1との距離が大 きくなるように形成されている。 端面 1 2 aは、 傾斜する面が第 1冷媒の下流側 に向くように形成されている。  Referring to FIGS. 1 and 3, auxiliary pipe 12 in the present embodiment includes an end face 12a. The end face 1 2 a faces the substrate 1. End face 12 a is inclined so that the flow path becomes larger along the direction of the first refrigerant flowing through the first flow path indicated by arrow 51. That is, the end face 12 a is formed so that the distance from the substrate 1 increases along the direction in which the first refrigerant flows. The end surface 12 a is formed so that the inclined surface faces the downstream side of the first refrigerant.
図 2から図 4を参照して、 半導体素子 2 1が発する熱は、 基板 1および板状部 材 2に伝熱する。 冷媒供給装置によって供給される第 1冷媒は、 第 1流路に導入 される。 第 1冷媒は、 矢印 5 1に示すように、 基板 1と主管 1 1との挟まれる空 間を流れる。 第 1冷媒は、 第 1流路のうち、 板状部材 2同士の間を流れる。 第 1 冷媒は、 板状部材 2および基板 1に接触しながら流れる。 第 1冷媒が板状部材 2 および基板 1に接触することにより、 板状部材 2および基板 1が冷却される。 .こ の後に、 第 1冷媒は排出される。 Referring to FIGS. 2 to 4, the heat generated by semiconductor element 21 is transferred to substrate 1 and plate-like member 2. The first refrigerant supplied by the refrigerant supply device is introduced into the first flow path. Is done. The first refrigerant flows through the space between the substrate 1 and the main pipe 11 as indicated by an arrow 51. The first refrigerant flows between the plate-like members 2 in the first flow path. The first refrigerant flows while contacting the plate-like member 2 and the substrate 1. When the first refrigerant contacts the plate-like member 2 and the substrate 1, the plate-like member 2 and the substrate 1 are cooled. After this, the first refrigerant is discharged.
半導体素子 2 1は、 基板 1を介して冷却される。 半導体素子 2 1は、 板状部材 2が冷却されることにより基板 1を通じて冷却される。 半導体素子 2 1の熱は、 基板 1およぴ板状部材 2に伝わって、 基板 1および板状部材 2から第 1冷媒に放 熱される。  The semiconductor element 21 is cooled via the substrate 1. The semiconductor element 21 is cooled through the substrate 1 by cooling the plate-like member 2. The heat of the semiconductor element 21 is transmitted to the substrate 1 and the plate-like member 2 and is released from the substrate 1 and the plate-like member 2 to the first refrigerant.
冷媒供給装置によって供給される第 2冷媒は、 第 2流路構成部材により構成さ れる第 2流路に導入される。 第 2冷媒は、 矢印 5 2に示すように、 主管 1 1の内 部に導入される。 主管 1 1の内部を流れる第 2冷媒のうち一部の第 2冷媒は、 矢 印 5 3に示すように、 補助管 1 2に流入する。  The second refrigerant supplied by the refrigerant supply device is introduced into the second flow path constituted by the second flow path constituting member. The second refrigerant is introduced into the main pipe 11 as indicated by an arrow 52. A part of the second refrigerant flowing in the main pipe 11 flows into the auxiliary pipe 12 as indicated by an arrow 53.
補助管 1 2に流入した第 2冷媒は、 矢印 5 3に示すように、 補助管 1 2の端面 1 2 aの部分から放出される。 本実施の形態において、 第 1冷媒から隔離された 第 2流路から供給される第 2冷媒は、 補助管 1 2から噴出されたときに初めて半 導体素子 2 1の冷却に寄与する。 第 2冷媒は、 補助管 1 2から噴出されるまでは、 第 2流路に配置された板状部材 2に接触していないために冷却能力が低下する.こ とはない。 第 2冷媒は、 補助管 1 2から噴出されることにより、 基板 1の裏面の うち半導体素子 2 1が配置されている領域に衝突する。 すなわち、 第 2冷媒は、 基板 1の半導体素子 2 1が配置されている領域を衝突噴流で冷却する。 第 2冷媒 が基板 1に衝突することにより、 効果的に半導体素子 2 1を冷却することができ る。  The second refrigerant that has flowed into the auxiliary pipe 12 is discharged from the end surface 1 2 a portion of the auxiliary pipe 12 as indicated by an arrow 53. In the present embodiment, the second refrigerant supplied from the second flow path isolated from the first refrigerant contributes to the cooling of the semiconductor element 21 for the first time when it is ejected from the auxiliary pipe 12. The second refrigerant is not in contact with the plate-like member 2 arranged in the second flow path until it is ejected from the auxiliary pipe 12, so that the cooling capacity is not lowered. When the second refrigerant is ejected from the auxiliary pipe 12, it collides with a region of the back surface of the substrate 1 where the semiconductor element 21 is disposed. That is, the second refrigerant cools the region of the substrate 1 where the semiconductor element 21 is disposed with a collision jet. When the second refrigerant collides with the substrate 1, the semiconductor element 21 can be effectively cooled.
基板 1に衝突した第 2冷媒は、 第 1冷媒とともに第 1流路を流れる。 このとき に、 第 2冷媒は、 基板 1および板状部材 2に接触することにより、 基板 1および 板状部材 2を冷却しながら進行する。 この後に、 第 2冷媒は、 第 1冷媒とともに 排出される。  The second refrigerant that has collided with the substrate 1 flows through the first flow path together with the first refrigerant. At this time, the second refrigerant advances while cooling the substrate 1 and the plate-like member 2 by contacting the substrate 1 and the plate-like member 2. Thereafter, the second refrigerant is discharged together with the first refrigerant.
本実施の形態においては、 冷媒が放熱部材に接触するように形成された第 1流 路構成手段と、 半導体素子が配置されている領域に衝突噴流を衝突させるための 第 2流路構成手段とを備え、 第 1流路と第 2流路とが分離されている。 第 1流路 においては、 放熱部材が配置されることにより、 放熱面積が拡大されて効率よく 除熱を行なうことができる。 第 2流路においては、 第 2冷媒は、 補助管から噴出 されるまで第 1冷媒と分離された状態で供給される。 第 1流路を流れる第 1冷媒 は、 第 1冷媒の下流側に向かうにつれて徐々に温度が上昇するが、 第 2冷媒は、 下流側においても上流側の温度とほぼ同じである。 このため、 低い温度の第 2冷 媒を半導体素子 2 1に衝突させることができ、 半導体素子 2 1を効率よく冷却す ることができる。 また、 冷媒の流路において下流側に向かうにつれて冷却能力が 低下することを抑制でき、 半導体素子 2 1をほぼ均一に冷却することができる。 このように、 本実施の形態においては、 衝突噴流と伝熱部材の対流による冷却 とをほぼ分離して行なうことができ、 効果的に被冷却体を冷却することができる。 本実施の形態においては、 第 2流路構成手段が主管と補助管とを含む。 第 1流 路は、 主管と基板とに挟まれる空間を含む。 板状部材は、 半導体素子が配置され ている領域の周りに配置されている。 この構成により、 上記の第 1流路構成手段 および第 2流路構成手段を容易に形成することができる。 また、 冷却器の構成を 簡単にすることができる。 In the present embodiment, the first flow path forming means formed so that the refrigerant contacts the heat radiating member, and the collision jet flow to collide with the region where the semiconductor element is disposed. Second flow path constituting means, and the first flow path and the second flow path are separated. In the first flow path, by disposing the heat dissipating member, the heat dissipating area is expanded and heat can be removed efficiently. In the second flow path, the second refrigerant is supplied in a state separated from the first refrigerant until it is ejected from the auxiliary pipe. The temperature of the first refrigerant flowing through the first flow path gradually increases toward the downstream side of the first refrigerant, but the temperature of the second refrigerant is substantially the same on the downstream side as well. For this reason, the second coolant having a low temperature can collide with the semiconductor element 21, and the semiconductor element 21 can be efficiently cooled. Further, it is possible to suppress the cooling capacity from decreasing in the refrigerant flow path toward the downstream side, and the semiconductor element 21 can be cooled almost uniformly. Thus, in the present embodiment, the impinging jet and the cooling by the convection of the heat transfer member can be performed substantially separately, and the object to be cooled can be effectively cooled. In the present embodiment, the second flow path constituting means includes a main pipe and an auxiliary pipe. The first flow path includes a space sandwiched between the main pipe and the substrate. The plate-like member is arranged around the region where the semiconductor element is arranged. With this configuration, the first flow path forming means and the second flow path forming means can be easily formed. In addition, the configuration of the cooler can be simplified.
図 1および図 3を参照して、 本実施の形態においては、 補助管 1 2の端面 1 2 aは、 第 1冷媒の流れの向きに沿って流路が大きくなるように傾斜している。 こ の構成により、 補助管 1 2により噴出される衝突噴流を第 1冷媒の下流側に導く ことができる。  Referring to FIGS. 1 and 3, in the present embodiment, end surface 12 a of auxiliary pipe 12 is inclined so that the flow path becomes larger along the flow direction of the first refrigerant. With this configuration, the collision jet ejected by the auxiliary pipe 12 can be guided downstream of the first refrigerant.
本実施の形態における冷却器は、 基板の半導体素子が配置されている面が鉛直 方向の上側を向くように配置されているが、 この形態に限られず、 冷却器は、 基 板の半導体素子が配置されている面が鉛直方向の下側を向くように配置されてい ても構わない。 この構成により、 第 1流路または第 2流路に気泡が発生したとき に、 基板が配置されている側と反対側に気泡を導くことができ、 基板の裏面に滞 留することを抑制することができる。 気泡により基板裏面の液膜が除去され、 熱 伝達の効率が低下することを抑制できる。  The cooler in the present embodiment is arranged so that the surface on which the semiconductor element of the substrate is arranged faces the upper side in the vertical direction. However, the cooler is not limited to this form, and the cooler includes the semiconductor element of the substrate. You may arrange | position so that the surface arrange | positioned may face the downward direction of a perpendicular direction. With this configuration, when bubbles are generated in the first flow path or the second flow path, the bubbles can be guided to the side opposite to the side on which the substrate is arranged, and the retention on the back surface of the substrate is suppressed. be able to. It can be suppressed that the liquid film on the back surface of the substrate is removed by the bubbles and the efficiency of heat transfer is reduced.
または、 冷却器は、 基板の半導体素子の配置されている面の延びる方向が、 鉛 直方向または鉛直方向に対して傾斜する方向のうちいずれかになるように配置さ れていても構わない。 この構成により、 第 1の流路または第 2の流路に生じた気 泡を鉛直方向の上側に向かって移動させることができる。 基板の裏面に気泡が滞 留することを抑制できる。 第 1流路または第 2流路に気泡が生じた場合において も基板の裏面に液膜を確保することができる。 Alternatively, the cooler is arranged so that the direction in which the surface of the substrate on which the semiconductor element is arranged extends is either the lead straight direction or the direction inclined with respect to the vertical direction. It does not matter. With this configuration, bubbles generated in the first channel or the second channel can be moved upward in the vertical direction. Air bubbles can be prevented from staying on the back side of the substrate. Even when air bubbles are generated in the first flow path or the second flow path, a liquid film can be secured on the back surface of the substrate.
特に、 冷媒として液体を用いて熱流束が大きな場合には、 冷媒に蒸気が発生す る場合がある。 上記のいずれかの構成を採用することにより、 このような蒸気を、 冷却器の外部に排出したり、 冷却器の周辺部に移動させたりすることができる。 この結果、 気泡の発生による冷却効率の低下を抑制することができる。  In particular, when a liquid is used as the refrigerant and the heat flux is large, vapor may be generated in the refrigerant. By adopting any of the above configurations, such steam can be discharged to the outside of the cooler or moved to the periphery of the cooler. As a result, it is possible to suppress a decrease in cooling efficiency due to the generation of bubbles.
本実施の形態における放熱部材としての板状部材は、 高さが第 1流路の高さと ほぼ同じになるように形成されている。 この構成により、 板状部材を第 1流路の 高さ方向全体に亘って配置することができ、 伝熱面積を大きくすることができる。 この結果、 効果的に第 1冷媒による冷却を行なうことができる。  The plate-like member as the heat radiating member in the present embodiment is formed so that the height is substantially the same as the height of the first flow path. With this configuration, the plate-like member can be disposed over the entire height direction of the first flow path, and the heat transfer area can be increased. As a result, cooling with the first refrigerant can be performed effectively.
本実施の形態においては、 冷媒が流れる方向に沿って複数の半導体素子が配置 され、 それぞれの半導体素子に対して、 同じ形状の捕助管が配置されている。 補 助管としては、 この形態に限られず、 互いに異なる大きさや異なる形状の捕助管 が配置されていても構わない。 また、 本実施の形態においては、 補助管として、 円筒状の管が配置されているが、 この形態に限られず、 補助管は、 任意の fl^状を 採用することができる。  In the present embodiment, a plurality of semiconductor elements are arranged along the direction in which the refrigerant flows, and an auxiliary tube having the same shape is arranged for each semiconductor element. The auxiliary pipe is not limited to this form, and auxiliary pipes of different sizes and different shapes may be arranged. In this embodiment, a cylindrical tube is arranged as an auxiliary tube. However, the present invention is not limited to this configuration, and an arbitrary fl ^ shape can be adopted as the auxiliary tube.
たとえば、 被冷却体の種類が異なる場合には、 発熱量の大きな被冷却体に対し て径の大きな補助管を配置して、 発熱量の小さな被冷却体に対して径の小さな補 助管を配置しても構わない。 このように、 本実施の形態における冷却器は、 それ ぞれの被冷却体に合わせて除熱量を容易に調節することができる。  For example, if the type of object to be cooled is different, an auxiliary pipe with a large diameter is arranged for the object to be cooled with a large calorific value, and an auxiliary pipe with a small diameter is arranged for the object to be cooled with a small calorific value. You may arrange. As described above, the cooler in the present embodiment can easily adjust the amount of heat removal in accordance with each object to be cooled.
さらに、 捕助管または主管に、 特定の補助管から噴出する冷媒の流量を調整す るための調整弁や、 特定の補助管の流れを遮断するための遮断弁などが配置され ていても構わない。 この構成により、 被冷却体の発熱量に対応させて衝突噴流の 流量を調整したり、 衝突噴流による冷却を間欠的に行なったりすることができる。 さらには、 被冷却体の発熱量が時系列で変化する場合があるが、 このような発熱 量の変動に対応して衝突噴流の流量を変更することができ、 最適な冷却を行なう ことができる。 また、 本実施の形態においては、 放熱部材としての板状部材に切欠き部が形成 されているが、 この形態に限られず、 板状部材は、 切欠き部が形成されていなく ても構わない。 たとえば、 板状部材が補助管を貫通するように形成されていても 構わない。 さらに、 板状部材は、 平面状に限られず、 曲面を有するように形成さ れていても構わない。 Furthermore, an adjustment valve for adjusting the flow rate of the refrigerant ejected from the specific auxiliary pipe, a shut-off valve for blocking the flow of the specific auxiliary pipe, or the like may be arranged on the capture pipe or the main pipe. Absent. With this configuration, it is possible to adjust the flow rate of the collision jet in accordance with the heat generation amount of the object to be cooled, or to perform intermittent cooling by the collision jet. Furthermore, the heat generation amount of the cooled object may change in time series, but the flow rate of the collision jet can be changed in response to such fluctuations in the heat generation amount, and optimal cooling can be performed. . Further, in the present embodiment, the notch is formed in the plate member as the heat radiating member. However, the present invention is not limited to this form, and the plate member may not have the notch. . For example, the plate-like member may be formed so as to penetrate the auxiliary pipe. Furthermore, the plate-like member is not limited to a planar shape, and may be formed to have a curved surface.
本実施の形態においては、 第 1冷媒と第 2冷媒とに同じ冷媒が用いられている 力 この形態に限られず、 互いに異なる冷媒が使用されても構わない。 さらに、 冷媒としては、 液体に限られず気体を含んでいて構わない。  In the present embodiment, the same refrigerant is used for the first refrigerant and the second refrigerant. The present invention is not limited to this form, and different refrigerants may be used. Furthermore, the refrigerant is not limited to liquid but may contain gas.
また、 本実施の形態における冷却器は、 第 1流路の第 1冷媒の流れの向きと第 2流路の第 2冷媒の流れの向きとが互いに同じになるように形成されているが、 この形態に限られず、 第 1流路の第 1冷媒の流れの向きと第 2流路の第 2冷媒の 流れの向きとが、 互いに異なるように形成されていても構わない。  Further, the cooler in the present embodiment is formed so that the direction of the flow of the first refrigerant in the first flow path and the direction of the flow of the second refrigerant in the second flow path are the same, The present invention is not limited to this configuration, and the flow direction of the first refrigerant in the first flow path and the flow direction of the second refrigerant in the second flow path may be different from each other.
また、 冷媒供給装置としては、 第 1冷媒を供給するための冷媒供給装置と第 2 冷媒を供給するための冷媒供給装置が配置されていても構わない。 または、 冷媒' 供給装置は、 冷媒を冷却しながら循環させる循環装置を含んでいても構わない。 本実施の形態においては、 被冷却体として、 大電力の電力変換器を例に採り上 げて説明したが、 この形態に限られず、 任意の被冷却体の冷却器に本発明を適用 することができる。 たとえば、 電力の小さな電力変換器やその他の被冷却体の冷 却器にも本発明を適用することができる。  Further, as the refrigerant supply device, a refrigerant supply device for supplying the first refrigerant and a refrigerant supply device for supplying the second refrigerant may be arranged. Alternatively, the refrigerant supply device may include a circulation device that circulates while cooling the refrigerant. In the present embodiment, a description has been given by taking a high-power power converter as an example of a cooled object. However, the present invention is not limited to this form, and the present invention is applied to a cooler of an arbitrary cooled object. Can do. For example, the present invention can be applied to a power converter with low power and a cooler for other objects to be cooled.
(実施の形態 2 )  (Embodiment 2)
図 5力ゝら図 7を参照して、 本発明に基づく実施の形態 2における冷却器につい て説明する。 本実施の形態における冷却器は、 電力変換器を冷却するための冷却 器である。 冷却器が、 第 1の流路構成手段と第 2の流路構成手段とを備えること は、 実施の形態 1と同様である。 本実施の形態においては、 被冷却体の熱を放熱 するための放熱部材が、 実施の形態 1と異なる。  With reference to FIG. 5 and FIG. 7, the cooler according to the second embodiment of the present invention will be described. The cooler in the present embodiment is a cooler for cooling the power converter. The cooler includes the first flow path forming means and the second flow path forming means as in the first embodiment. In the present embodiment, the heat radiating member for radiating the heat of the object to be cooled is different from the first embodiment.
図 5に、 本実施の形態における半導体装置の概略分解斜視図を示す。 本実施の 形態における放熱部材は、 棒状部材 3を含む。 棒状部材 3は、 基板 1の裏面に固 定されている。 棒状部材 3は、 基板 1の裏面から突出するように配置されている。 本実施の形態における棒状部材 3は、 長手方向が基板 1の裏面とほぼ垂直になる ように配置されている。 FIG. 5 is a schematic exploded perspective view of the semiconductor device according to the present embodiment. The heat radiating member in the present embodiment includes a rod-shaped member 3. The rod-shaped member 3 is fixed to the back surface of the substrate 1. The rod-shaped member 3 is disposed so as to protrude from the back surface of the substrate 1. In the rod-like member 3 in the present embodiment, the longitudinal direction is substantially perpendicular to the back surface of the substrate 1 Are arranged as follows.
図 6に、 本実施の形態における半導体装置の第 1の概略断面図を示す。 図 6は、 基板の主表面に平行な面で切断したときの概略断面図である。 棒状部材 3は、 補 助管 1 2の周りに配置されている。 棒状部材 3は、 半導体素子 2 1が配置される 領域の周りに配置されている。 棒状部材 3は、 半導体素子 2 1が配置される領域 の近傍に配置されている。 本実施の形態においては、 1個の半導体素子 2 1に対 して 4個の棒状部材 3が配置されている。 第 1冷媒は、 矢印 5 1に示す向きに流 れる。  FIG. 6 shows a first schematic cross-sectional view of the semiconductor device according to the present embodiment. FIG. 6 is a schematic sectional view taken along a plane parallel to the main surface of the substrate. The rod-shaped member 3 is arranged around the auxiliary pipe 12. The rod-shaped member 3 is disposed around a region where the semiconductor element 21 is disposed. The rod-shaped member 3 is disposed in the vicinity of the region where the semiconductor element 21 is disposed. In the present embodiment, four rod-like members 3 are arranged for one semiconductor element 21. The first refrigerant flows in the direction indicated by arrow 51.
図 7に、 本実施の形態における半導体装置の第 2の概略断面図を示す。 図 7は、 図 6における V I I— V I I線に関する矢視断面図である。 棒状部材 3は、 主管 1 1と基板 1とに挟まれる第 1流路の高さとほぼ同じ長さになるように形成され. ている。  FIG. 7 shows a second schematic cross-sectional view of the semiconductor device according to the present embodiment. FIG. 7 is a cross-sectional view taken along the line V I I—V I I in FIG. The rod-shaped member 3 is formed so as to have substantially the same length as the height of the first flow path sandwiched between the main pipe 11 and the substrate 1.
本実施の形態における放熱部材は、 棒状部材を含む。 棒状部材の位置、 長さお よび本数などを変更することにより、 放熱部材により除熱を行なう位置および冷 媒との接触面積を容易に変更することができる。  The heat radiating member in the present embodiment includes a rod-shaped member. By changing the position, length, number, etc. of the rod-shaped members, the position where heat is removed by the heat radiating member and the contact area with the cooling medium can be easily changed.
本実施の形態においては、 被冷却体が配置されている領域を取囲むように棒状 部材が配置されているが、 この形態に限られず、 棒状部材は、 第 2冷媒が基板の 冷却面に衝突後、 放射状に広がることをできるだけ妨げない様に、 かつ第 1冷媒 の流れを妨げないように、 任意の位置および任意の数を配置することができる。 本実施の形態における棒状部材は、 第 1冷媒が流れる第 1流路の高さとほぼ同 じ高さを有する。 この構成を採用することにより、 第 1流路の高さ方向のほぼ全 体に亘つて棒状部材を配置することができ、 効果的に第 1冷媒による冷却を行な うことができる。  In the present embodiment, the rod-shaped member is disposed so as to surround the region where the body to be cooled is disposed. However, the present invention is not limited to this configuration, and the rod-shaped member collides with the cooling surface of the substrate. Thereafter, an arbitrary position and an arbitrary number can be arranged so as not to disturb the radial spread as much as possible and not to disturb the flow of the first refrigerant. The rod-like member in the present embodiment has substantially the same height as the first flow path through which the first refrigerant flows. By adopting this configuration, the rod-shaped member can be disposed over substantially the entire height direction of the first flow path, and cooling with the first refrigerant can be performed effectively.
その他の構成、 作用および効果的については実施の形態 1と同様であるのでこ こでは説明を繰返さない。  Since other configurations, operations, and effects are the same as those in the first embodiment, description thereof will not be repeated here.
(実施の形態 3 )  (Embodiment 3)
図 8を参照して、 本発明に基づく実施の形態 3における冷却器について説明す る。 冷却器が第 1流路構成手段と第 2流路構成手段とを備えることは、 実施の形 態 1と同様である。 本実施の形態における冷却器は、 放熱部材の形状および第 2 流路構成手段の補助管の形状が実施の形態 1と異なる。 With reference to FIG. 8, a cooler according to Embodiment 3 of the present invention will be described. The cooler is provided with the first flow path forming means and the second flow path forming means as in the first embodiment. The cooler in the present embodiment includes the shape of the heat radiating member and the second The shape of the auxiliary pipe of the flow path forming means is different from that of the first embodiment.
図 8に、 本実施の形態における冷却器の概略断面図を示す。 図 8は、 基板の主 表面に垂直な面で切断したときの概略断面図である。 本実施の形態における冷却 器は、 主管 1 1の表面から突出するように形成された補助管 1 3を備える。 補助 管 1 3は、 断面形状が山形になるように形成されている。 捕助管 1 3は、 基板 1 に向かって流路が細くなるようにテーパ状に形成されている。 本実施の形態にお ける補助管 1 3の端面は、 基板 1とほぼ平行になるように形成されている。 本実施の形態における冷却器は、 板状部材 4を備える。 板状部材 4は、 切欠き 部 4 aを有する。 切欠き部 4 aは、 補助管 1 3の形状に沿って傾斜するように形 成されている。 切欠き部 4 aは、 断面形状が基板 1に向かって細くなるように傾 斜している。 切欠き部 4 aは、 板状部材 4が補助管 1 3から離れるように形成さ れている。  FIG. 8 shows a schematic cross-sectional view of the cooler in the present embodiment. FIG. 8 is a schematic sectional view taken along a plane perpendicular to the main surface of the substrate. The cooler in the present embodiment includes an auxiliary pipe 13 formed so as to protrude from the surface of the main pipe 11. The auxiliary pipe 13 is formed so that the cross-sectional shape is a mountain shape. The catching tube 13 is formed in a tapered shape so that the flow path becomes narrower toward the substrate 1. The end face of the auxiliary tube 13 in the present embodiment is formed so as to be substantially parallel to the substrate 1. The cooler in the present embodiment includes a plate-like member 4. The plate-like member 4 has a notch 4a. The notch 4 a is formed so as to incline along the shape of the auxiliary pipe 13. The notch 4 a is inclined so that the cross-sectional shape becomes narrower toward the substrate 1. The notch 4 a is formed so that the plate-like member 4 is separated from the auxiliary pipe 13.
本実施の形態においては、 矢印 5 2に示すように流入する第 2冷媒が、 矢印 5 5に示すように補助管 1 3から排出される。 第 2冷媒が補助管 1 3から排出され るときには、 矢印 5 1に示す第 1冷媒の流れに沿って排出される。 補助管 1 3が テーパ状に形成されていることにより、 第 2冷媒による衝突噴流を滑らかに第 1 冷媒と合流させることができる。 また、 補助管のテーパ状の形状を変更すること により、 衝突噴流の圧力および流量を容易に調節することができる。  In the present embodiment, the second refrigerant flowing in as shown by the arrow 52 is discharged from the auxiliary pipe 13 as shown by the arrow 55. When the second refrigerant is discharged from the auxiliary pipe 13, it is discharged along the flow of the first refrigerant indicated by the arrow 51. Since the auxiliary pipe 13 is formed in a tapered shape, the collision jet flow by the second refrigerant can be smoothly merged with the first refrigerant. In addition, the pressure and flow rate of the impinging jet can be easily adjusted by changing the tapered shape of the auxiliary pipe.
また、 第 2流路を構成する補助管 1 3の断面形状がテーパ状であるため、 第 1 流路の第 1冷媒が基板 1に寄りやすくなり、 基板 1に衝突した後の第 2冷媒を基 板 1に寄ることができる。 このため、 第 2冷媒による基板 1の冷却効果を向上さ せることができる。 さらに、 第 1流路内において第 1冷媒および第 2冷媒の層別 流れをもたらして、 両冷媒の混合による圧力損失を小さくすることができる。 その他の構成、 作用および効果については実施の形態 1と同様であるのでここ では説明を繰返さない。  In addition, since the cross-sectional shape of the auxiliary pipe 13 constituting the second flow path is tapered, the first refrigerant in the first flow path tends to move closer to the substrate 1, and the second refrigerant after colliding with the substrate 1 is removed. You can stop at board 1. For this reason, the cooling effect of the board | substrate 1 by a 2nd refrigerant | coolant can be improved. Furthermore, the first refrigerant and the second refrigerant can be flowed in the first flow path, and the pressure loss due to the mixture of both refrigerants can be reduced. Since other configurations, operations, and effects are the same as those in the first embodiment, description thereof will not be repeated here.
(実施の形態 4 )  (Embodiment 4)
図 9および図 1 0を参照して、 本発明に基づく実施の形態 4における冷却器に ついて説明する。 本実施の形態における冷却器は、 第 1流路構成手段および第 2 流路構成手段に加えて第 3流路構成手段を備える。 すなわち、 本実施の形態にお ける冷却器は、 第 1流路および第 2流路に加えて、 第 3流路を有する。 第 3流路 は、 第 2流路に連通するように形成されている。 With reference to FIG. 9 and FIG. 10, a cooler according to Embodiment 4 of the present invention will be described. The cooler in the present embodiment includes third flow path configuring means in addition to the first flow path configuring means and the second flow path configuring means. That is, in this embodiment, The cooler has a third flow path in addition to the first flow path and the second flow path. The third channel is formed so as to communicate with the second channel.
図 9に、 本実施の形態における冷却器の第 1の概略断面図を示す。 図 9は、 基 板の主表面に平行な面で切断したときの概略断面図である。 図 1 0に、 本実施の 形態における冷却器の第 2の概略断面図を示す。 図 1 0は、 図 9における X— X 線に関する矢視断面図である。  FIG. 9 shows a first schematic cross-sectional view of the cooler in the present embodiment. FIG. 9 is a schematic cross-sectional view taken along a plane parallel to the main surface of the substrate. FIG. 10 shows a second schematic cross-sectional view of the cooler in the present embodiment. FIG. 10 is a cross-sectional view taken along the line X—X in FIG.
図 9および図 1 0を参照して、 本実施の形態における冷却器は第 2流路に流れ る冷媒を排出するための第 3流路を構成する第 3流路構成手段を備える。 第 3流 路構成手段は、 隔離板 6を含む。 隔離板 6は、 主管 1 1と基板 1との間に配置さ れている。 隔離板 6は、 平板状に形成されている。 隔離板 6は、 主表面が、 基板 1の裏面とほぼ平行になるように配置されている。 隔離板 6は、 第 1流路を 2個 の流路に分割するように配置されている。  Referring to FIG. 9 and FIG. 10, the cooler in the present embodiment includes third flow path configuring means that constitutes a third flow path for discharging the refrigerant flowing in the second flow path. The third flow path forming means includes a separator 6. The separator 6 is disposed between the main pipe 11 and the substrate 1. The separator 6 is formed in a flat plate shape. The separator 6 is arranged so that the main surface is substantially parallel to the back surface of the substrate 1. The separator 6 is arranged so as to divide the first flow path into two flow paths.
本実施の形態における第 2流路構成部材は、 補助管 1 4を備える。 補助管 1 4 は、 隔離板 6を貫通するように配置されている。 補助管 1 4の噴出口は、 基板 1 と隔離板 6とに挟まれる空間に配置されている。 補助管 1 4は、 隔離板 6に隙間 無く固定されている。 すなわち、 ^^助管 1 4と隔離板 6との間に隙間が生じない ように形成されている。  The second flow path component in the present embodiment includes an auxiliary pipe 14. The auxiliary pipe 14 is disposed so as to penetrate the separator 6. The spout of the auxiliary pipe 14 is disposed in a space sandwiched between the substrate 1 and the separator plate 6. The auxiliary pipe 14 is fixed to the separator 6 without a gap. In other words, ^^ is formed so that there is no gap between the auxiliary pipe 14 and the separator 6.
本実施の形態における冷却器は、 放熱部材としての板状部材 7を備える。 板状 部材 7は、 隔離板 6を貫通するように形成されている。 板状部材 7は、 切欠き部 7 aを有する。 切欠き部 7 aは、 平面形状が円形になるように形成されている。 切欠き部 7 aは、 補助管 1 4の形状に沿って形成されている。  The cooler in the present embodiment includes a plate-like member 7 as a heat radiating member. The plate-like member 7 is formed so as to penetrate the separator plate 6. The plate-like member 7 has a notch 7a. The notch 7 a is formed so that the planar shape is circular. The notch 7 a is formed along the shape of the auxiliary pipe 14.
本実施の形態においては、 主管 1 1と隔離板 6とに挟まれる空間によって第 1 流路が形成されている。 また、 基板 1と隔離板 6とに挟まれる空間によって第 3 流路が形成されている。 主管 1 1と補助管 1 4とによって第 2流路が形成されて いる。  In the present embodiment, the first flow path is formed by a space sandwiched between the main pipe 11 and the separator 6. In addition, a third flow path is formed by a space sandwiched between the substrate 1 and the separator 6. A second flow path is formed by the main pipe 11 and the auxiliary pipe 14.
本実施の形態における冷媒供給装置は、 第 1流路および第 2流路に直接的に冷 媒を供給するように形成され、 第 3流路には直接的に冷媒を供給しないように形 成されている。  The refrigerant supply device in the present embodiment is formed so as to supply the refrigerant directly to the first flow path and the second flow path, and is configured not to supply the refrigerant directly to the third flow path. Has been.
本実施の形態においては、 第 1流路と第 2流路とが隔離されている。 第 1冷媒 は、 第 1流路において、 矢印 5 1に示すように板状部材 7を冷却しながら進行す る。 第 2冷媒は、 第 2流路において、 矢印 5 3に示すように補助管 1 4から噴出 される。 第 2冷媒は、 衝突噴流として基板 1の裏面を冷却する。 In the present embodiment, the first channel and the second channel are isolated. 1st refrigerant Proceeds in the first flow path while cooling the plate-like member 7 as indicated by an arrow 51. The second refrigerant is ejected from the auxiliary pipe 14 as indicated by an arrow 53 in the second flow path. The second refrigerant cools the back surface of the substrate 1 as a collision jet.
第 2冷媒は、 基板 1に衝突した後に第 3流路を流れる。 第 3流路においては、 矢印 5 6に示すように、 排出口に向けて流れる。 第 3流路においては、 第 2冷媒 は、 基板 1および板状部材 7を冷却しながら進行する。 第 1経路は、 第 2経路お よび第 3経路と完全に分離されている。  The second refrigerant flows through the third flow path after colliding with the substrate 1. In the third flow path, it flows toward the discharge port as indicated by an arrow 56. In the third flow path, the second refrigerant proceeds while cooling the substrate 1 and the plate-like member 7. The first route is completely separated from the second and third routes.
本実施の形態における冷却器は、 衝突噴流によって冷却を行なう経路が、 放熱 部材を冷却する経路と互いに分離されている。 衝突噴流のための第 2冷媒と放熱 部材を冷却するための第 1冷媒とが混合することがないように形成されている。 このため、 衝突噴流を生じる第 2冷媒に対する放熱部材を冷却する第 1冷媒の干 渉を抑制することができ、 衝突噴流による冷却効果を高めることができる。 または、 本実施の形態における冷却器は、 第 1冷媒と第 2冷媒とが混合してし まうことを避けることができる。 たとえば、 第 1冷媒と第 2冷媒として、 それぞ れ異なる冷媒を用いることができる。 この場合には、 冷媒供給装置は、 第 1冷媒 の循環装置および第 1冷媒とは異なる第 2冷媒の循環装置を含む供給装置を用い ることができる。  In the cooler in the present embodiment, the path for cooling by the impinging jet is separated from the path for cooling the heat radiating member. The second refrigerant for the impinging jet and the first refrigerant for cooling the heat dissipating member are not mixed. For this reason, the interference of the first refrigerant that cools the heat dissipating member with respect to the second refrigerant that generates the collision jet can be suppressed, and the cooling effect by the collision jet can be enhanced. Alternatively, the cooler in the present embodiment can avoid mixing the first refrigerant and the second refrigerant. For example, different refrigerants can be used as the first refrigerant and the second refrigerant, respectively. In this case, the refrigerant supply device may be a supply device including a first refrigerant circulation device and a second refrigerant circulation device different from the first refrigerant.
また、 本実施の形態においては、 板状部材が切欠き部を有し、 切欠き部は補助 管の形状に沿って形成されている。 補助管から噴出される第 2冷媒は捕助管の形 状に沿って放射状に広がるが、 この構成により第 2冷媒の広がりが板状部材によ つて阻害されることを抑制できる。  In the present embodiment, the plate-like member has a notch, and the notch is formed along the shape of the auxiliary pipe. The second refrigerant ejected from the auxiliary pipe spreads radially along the shape of the catching pipe, but this configuration can prevent the spread of the second refrigerant from being obstructed by the plate-like member.
その他の構成、 作用および効果については、 実施の形態 1と同様であるのでこ こでは説明を繰返さない。  Other configurations, operations, and effects are the same as those in the first embodiment, and therefore description thereof will not be repeated here.
本発明によれば、 冷却性能の優れた電力変換器の冷却器を提供することができ る。  ADVANTAGE OF THE INVENTION According to this invention, the cooler of the power converter excellent in cooling performance can be provided.
上述のそれぞれの図において、 同一または相当する部分には、 同一の符号を付 している。  In the respective drawings described above, the same or corresponding parts are denoted by the same reference numerals.
なお、 今回開示した上記実施の形態はすべての点で例示であって制限的なもの ではない。 本発明の範囲は上記した説明ではなくて請求の範囲によって示され、 請求の範囲と均等の意味おょぴ範囲内でのすべての変更を含むものである。 産業上の利用可能性 The above-described embodiment disclosed herein is illustrative in all respects and is not restrictive. The scope of the present invention is shown not by the above description but by the claims, It is intended to include all modifications within the meaning and scope equivalent to the claims. Industrial applicability
本発明は、 冷却器に適用し得る。 特に、 電力変換器の冷却器に有利に適用し得 る。  The present invention can be applied to a cooler. In particular, it can be advantageously applied to a cooler of a power converter.

Claims

請求の範囲 The scope of the claims
1. 発熱体 (2 1) を一方の面に酉己置するための基板 (1) と、 1. a substrate (1) for placing the heating element (2 1) on one side;
前記基板 (1) の他方の面に固定された放熱部材 (2, 3, 4, 7) と 冷媒が前記放熱部材 (2, 3, 4, 7) に接触するように形成された第 1流路 を構成する第 1流路構成部材 (1 , 6, 1 1 a) と、 '  A heat radiating member (2, 3, 4, 7) fixed to the other surface of the substrate (1) and a first flow formed so that the refrigerant contacts the heat radiating member (2, 3, 4, 7). The first flow path component (1, 6, 1 1 a) constituting the path, and '
前記他方の面のうち前記発熱体 (2 1) が配置されている領域に向かって冷媒 を噴出させるように形成された第 2流路を構成する第 2流路構成部材 (1 1, 1 l a, l i b, 1 2〜1 4) と  A second flow path component (11, 1 la constituting a second flow path formed so as to eject the refrigerant toward the region where the heating element (21) is disposed on the other surface. , lib, 1 2 to 1 4) and
を備え、 With
前記第 2流路は、 前記第 1流路と分離して形成されている、 冷却器。  The cooler, wherein the second flow path is formed separately from the first flow path.
2. .前記放熱部材 (2, 3, 4, 7) は、 板状部材 (2, 4, 7) または棒状部 材 (3) のうち少なくとも一方を含む、 請求の範囲第 1項に記載の冷却器。 ' 3. 前記放熱部材 (2,  2. The heat radiation member (2, 3, 4, 7) includes at least one of a plate-like member (2, 4, 7) or a rod-like member (3). Cooler. '3. Heat dissipation member (2,
3, 4, 7) は、 前記発熱体 (2 1) が配置されている 領域の周りに配置され、 ' 前記第 2流路構成部材 (1 1 , l l a, l i , 1 2〜1 4) は、 前記基板 (1) の前記他方の面から離れて酉己置された主管 (1 1, l l a, l i b) と、 前記主管 (1 1, 1 1 a, l i b) から前記基板 (1) に向かって突出するよ うに形成された補助管 ( 1 2〜 1 4 ) と 3, 4, 7) are arranged around the region where the heating element (2 1) is arranged, and 'the second flow path component (1 1, lla, li, 1 2 to 14) is The main pipe (1 1, lla, lib) placed away from the other surface of the substrate (1) and the main pipe (1 1, 1 1 a, lib) toward the substrate (1) Auxiliary pipes (12 to 14) formed to protrude
を含み、 Including
前記補助管 (1 2〜14) は、 前記基板 (1) の前記発熱体 (2 1) が配置さ れている領域に対向するように配置され、  The auxiliary pipe (12-14) is disposed so as to face a region of the substrate (1) where the heating element (21) is disposed,
前記第 1流路は、 前記主管 (1 1 , 1 1 a, l i b) と前記基板 (1) とに挾 まれる空間を含む、 請求の範囲第 1項に記載の冷却器。  The cooler according to claim 1, wherein the first flow path includes a space between the main pipe (1 1, 1 1 a, l i b) and the substrate (1).
4. 前記補助管 (1 2) は、 前記基板 (1) に対向する端面 (1 2 a) を含み、 前記端面 (1 2 a) は、 前記第 1流路構成部材 (1, 1 1, 1 1 a, l i b) を流れる前記冷媒の向きに沿って流路が大きくなるように傾斜している、 請求の 範囲第 3項に記載の冷却器。 4. The auxiliary pipe (1 2) includes an end face (1 2 a) opposed to the substrate (1), and the end face (1 2 a) includes the first flow path component (1, 1 1, The cooler according to claim 3, wherein the flow path is inclined so as to increase along the direction of the refrigerant flowing through 1 1 a, lib).
5. 前記補助管 (1 3) は、 前記基板 (1) に向かって細くなるようにテーパ状 に形成されている、 請求の範囲第 3項に記載の冷却器。 5. The auxiliary pipe (1 3) is tapered so as to become thinner toward the substrate (1). The cooler according to claim 3, wherein the cooler is formed.
6. 前記第 2流路を流れる冷媒を排出するための第 3流路構成部材 (1, 6) を 備え、  6. A third flow path component (1, 6) for discharging the refrigerant flowing through the second flow path is provided,
前記第 3流路構成部材 (1, 6) は、 前記主管 (1 1, 1 1 a, l i b) と前 記基板 (1) との間に配置された隔離板 (6) を含み、  The third flow path component (1, 6) includes a separator (6) disposed between the main pipe (1 1, 1 1 a, l i b) and the substrate (1),
前記補助管 (14) は、 前記隔離板 (6) を貫通するように形成され、 前記補助管 (14) は、 前記隔離板 (6) に隙間無く固定されている、 請求の 範囲第 3項に記載の冷却器。  The auxiliary pipe (14) is formed so as to penetrate the separator (6), and the auxiliary pipe (14) is fixed to the separator (6) without a gap. The cooler described in.
7. 前記基板 (1) は、 前記一方の面の延びる方向が、 鉛直方向または鉛直方向 に対して傾斜する方向のいずれかになるように配置されている、 請求の範囲第 1 項に記載の冷却器。  7. The substrate (1) according to claim 1, wherein the substrate (1) is disposed such that a direction in which the one surface extends is a vertical direction or a direction inclined with respect to the vertical direction. Cooler.
8. 前記基板 (1) は、 前記一方の面が鉛直方向の下側を向くように配置されて いる、 請求の範囲第 1項に記載の冷却器。  8. The cooler according to claim 1, wherein the substrate (1) is arranged so that the one surface faces downward in a vertical direction.
9. 発熱体 (21) を一方の面に配置するための基板 (1) と、  9. a substrate (1) for placing the heating element (21) on one side;
前記基板 (1) の他方の面に固定された放熱部材 (2, 3, 4, 7) と 冷媒が前記放熱部材 (2, 3, 4, 7) に接触するように形成された第 1流路 を構成する第 1流路構成手段 (1, 6, 1 1 a) と、  A heat radiating member (2, 3, 4, 7) fixed to the other surface of the substrate (1) and a first flow formed so that the refrigerant contacts the heat radiating member (2, 3, 4, 7). First flow path constituting means (1, 6, 1 1 a) constituting the path,
前記他方の面のうち前記発熱体 (21) が配置されている領域に向かって冷媒 を噴出させるように形成された第 2流路を構成する第 2流路構成手段 (1 1, 1 l a, l i b, 12〜: 14) と  Second flow path constituting means (11, 1 la, 2) constituting a second flow path formed so as to eject the refrigerant toward the region where the heating element (21) is disposed in the other surface. lib, 12 ~: 14) and
を備え、 With
前記第 2流路は、 前記第 1流路と分離して形成されている、 冷却器。  The cooler, wherein the second flow path is formed separately from the first flow path.
10. 前記放熱部材 (2, 3, 4, 7) は、 板状部材 (2, 4, 7) または棒状 部材 (3) のうち少なくとも一方を含む、 請求の範囲第 9項に記載の冷却器。 1 1. 前記放熱部材 (2, 3, 4, 7) は、 前記発熱体 (21) が配置されてい る領域の周りに配置され、  10. The cooler according to claim 9, wherein the heat radiating member (2, 3, 4, 7) includes at least one of a plate-like member (2, 4, 7) or a rod-like member (3). . 1 1. The heat dissipating member (2, 3, 4, 7) is disposed around a region where the heating element (21) is disposed,
前記第 2流路構成手段 ( 1 1 , l l a, l i b, 1 2〜14) は、 前記基板 (1) の前記他方の面から離れて配置された主管 (1 1, 1 1 a, l i b) と、 前記主管 (1 1, 1 1 a, l i b) から前記基板 (1) に向かって突出するよ うに形成された補助管 (1 ·2〜14) と The second flow path constituting means (1 1, lla, lib, 1 2-14) and a main pipe (1 1, 1 1 a, lib) arranged away from the other surface of the substrate (1) Projecting from the main pipe (1 1, 1 1 a, lib) toward the substrate (1) Auxiliary tube (1 · 2 ~ 14)
を含み、 Including
前記補助管 (1 2〜14) は、 前記基板 (1) の前記発熱体 (2 1) が配置さ れている領域に対向するように配置され、  The auxiliary pipe (12-14) is disposed so as to face a region of the substrate (1) where the heating element (21) is disposed,
前記第 1流路は、 前記主管 (1 1 ,  The first flow path includes the main pipe (1 1,
1 1 a, l i b) と前記基板 (1) とに挟 まれる空間を含む、 請求の範囲第 9項に記載の冷却器。 The cooler according to claim 9, comprising a space sandwiched between 1 1 a, l i b) and the substrate (1).
1 2. 前記補助管 (1 2) は、 前記基板 (1) に対向する端面 (1 2 a) を含み、 前記端面 (1 2 a) は、 前記第 1流路構成手段 ( 1, 1 1, 1 1 a, l i b) を流れる前記冷媒の向きに沿って流路が大きくなるように傾斜している、 請求の 範囲第 1 1項に記載の冷却器。  1 2. The auxiliary pipe (1 2) includes an end face (1 2 a) facing the substrate (1), and the end face (1 2 a) is formed by the first flow path forming means (1, 1 1 , 1 1 a, lib) The cooler according to claim 11, wherein the cooler is inclined so as to increase in size along the direction of the refrigerant flowing through the refrigerant.
1 3. 前記補助管 (1 3) は、 前記基板 (1) に向かって細くなるようにテーパ 状に形成されている、 請求の範囲第 1 1項に記載の冷却器。  1 3. The cooler according to claim 11, wherein the auxiliary pipe (1 3) is formed in a tapered shape so as to become thinner toward the substrate (1).
14. 前記第 2流路を流れる冷媒を排出するための第 3流路構成手段 (1, 6) を備え、 .  14. It comprises third flow path constituting means (1, 6) for discharging the refrigerant flowing through the second flow path.
前記第 3流路構成手段 (1, 6) は、 前記主管 (1 1, 1 1 a, l i b) と前 記基板 (1) との間に配置された隔離板 (6) を含み、  The third flow path constituting means (1, 6) includes a separator (6) disposed between the main pipe (1 1, 1 1 a, l i b) and the substrate (1),
前記補助管 (14) は、 前記隔離板 (6) を貫通するように形成され、 前記補助管 (14) は、 前記隔離板 (6) に隙間無く固定されている、 請求の 範囲第 1 1項に記載の冷却器。  The auxiliary pipe (14) is formed so as to penetrate the separator plate (6), and the auxiliary pipe (14) is fixed to the separator plate (6) without a gap. The cooler according to item.
1 5. 前記基板 (1) は、 前記一方の面の延びる方向が、 鉛直方向または鉛直方 向に対して傾斜する方向のいずれかになるように配置されている、 請求の範囲第 9項に記載の冷却器。 1 5. The substrate (1) is arranged such that a direction in which the one surface extends is either a vertical direction or a direction inclined with respect to the vertical direction. The cooler described.
1 6. 前記基板 (1) は、 前記一方の面が鉛直方向の下側を向くように配置され ている、 請求の範囲第 9項に記載の冷却器。  1 6. The cooler according to claim 9, wherein the substrate (1) is arranged so that the one surface faces downward in the vertical direction.
PCT/JP2007/057522 2006-04-06 2007-03-28 Cooling device WO2007116894A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/293,469 US20090090490A1 (en) 2006-04-06 2007-03-28 Cooler
DE112007000829T DE112007000829B4 (en) 2006-04-06 2007-03-28 Arrangement of inverter and radiator and their use
CN2007800123917A CN101416307B (en) 2006-04-06 2007-03-28 Cooler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-105056 2006-04-06
JP2006105056A JP4649359B2 (en) 2006-04-06 2006-04-06 Cooler

Publications (1)

Publication Number Publication Date
WO2007116894A1 true WO2007116894A1 (en) 2007-10-18

Family

ID=38581184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057522 WO2007116894A1 (en) 2006-04-06 2007-03-28 Cooling device

Country Status (5)

Country Link
US (1) US20090090490A1 (en)
JP (1) JP4649359B2 (en)
CN (1) CN101416307B (en)
DE (1) DE112007000829B4 (en)
WO (1) WO2007116894A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785878B2 (en) 2008-02-06 2011-10-05 本田技研工業株式会社 Cooling device and electric vehicle equipped with the cooling device
JP4586087B2 (en) * 2008-06-30 2010-11-24 株式会社日立製作所 Power semiconductor module
US8248809B2 (en) * 2008-08-26 2012-08-21 GM Global Technology Operations LLC Inverter power module with distributed support for direct substrate cooling
US8169779B2 (en) * 2009-12-15 2012-05-01 GM Global Technology Operations LLC Power electronics substrate for direct substrate cooling
US8305755B2 (en) * 2010-03-04 2012-11-06 Toyota Motor Engineering & Manufacturing North America, Inc. Power modules, cooling devices and methods thereof
US8077460B1 (en) 2010-07-19 2011-12-13 Toyota Motor Engineering & Manufacturing North America, Inc. Heat exchanger fluid distribution manifolds and power electronics modules incorporating the same
US8659896B2 (en) 2010-09-13 2014-02-25 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses and power electronics modules
US8199505B2 (en) 2010-09-13 2012-06-12 Toyota Motor Engineering & Manufacturing Norh America, Inc. Jet impingement heat exchanger apparatuses and power electronics modules
US8427832B2 (en) 2011-01-05 2013-04-23 Toyota Motor Engineering & Manufacturing North America, Inc. Cold plate assemblies and power electronics modules
US8391008B2 (en) 2011-02-17 2013-03-05 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics modules and power electronics module assemblies
US8482919B2 (en) 2011-04-11 2013-07-09 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics card assemblies, power electronics modules, and power electronics devices
JP2013128051A (en) * 2011-12-19 2013-06-27 Mahle Filter Systems Japan Corp Cooling device for inverter circuit
DE102012202708A1 (en) * 2012-02-22 2013-08-22 Siemens Aktiengesellschaft Device for cooling electrical components
JP5938574B2 (en) * 2012-04-09 2016-06-22 パナソニックIpマネジメント株式会社 Cooling device and electric vehicle equipped with the same
KR101540146B1 (en) * 2012-06-22 2015-07-28 삼성전기주식회사 Heat dissipation system for power module
US9353999B2 (en) * 2012-07-30 2016-05-31 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses and electronics modules having branching microchannels
JP6015209B2 (en) * 2012-07-31 2016-10-26 株式会社ソシオネクスト Temperature control device, temperature control method, electronic device manufacturing method, and temperature control program
CN102799244B (en) * 2012-08-27 2016-06-22 无锡市福曼科技有限公司 The multiple flow passages water cooling plant structure of computer CPU
US8643173B1 (en) 2013-01-04 2014-02-04 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses and power electronics modules with single-phase and two-phase surface enhancement features
EP2974576B1 (en) 2013-03-14 2020-08-26 Rochester Institute of Technology Heat transfer system and method incorporating tapered flow field
US9410746B2 (en) 2013-03-20 2016-08-09 Basf Se Temperature-regulating element
JP6157887B2 (en) * 2013-03-21 2017-07-05 株式会社豊田中央研究所 Cooling system
US9131631B2 (en) 2013-08-08 2015-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement cooling apparatuses having enhanced heat transfer assemblies
US9352856B1 (en) * 2013-12-04 2016-05-31 Space Systems/Loral, Llc Axially grooved crossing heat pipes
JP5880531B2 (en) 2013-12-11 2016-03-09 トヨタ自動車株式会社 Cooler
JP6162632B2 (en) * 2014-03-25 2017-07-12 株式会社Soken Cooler
CN107210278B (en) * 2015-01-22 2020-06-26 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips
FR3031969B1 (en) * 2015-01-27 2017-01-27 Airbus Defence & Space Sas ARTIFICIAL SATELLITE AND METHOD FOR FILLING A PROPULSIVE GAS TANK OF SAID ARTIFICIAL SATELLITE
US10118717B2 (en) * 2015-06-02 2018-11-06 Airbus Defence And Space Sas Artificial Satellite
DE102016214959B4 (en) * 2016-08-11 2018-06-28 Siemens Healthcare Gmbh Temperature control unit for an electronic component and method for its production
CA3118544A1 (en) * 2018-11-13 2020-05-22 Magna International Inc. Impinging jet coldplate for power electronics with enhanced heat transfer
US10490482B1 (en) * 2018-12-05 2019-11-26 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling devices including jet cooling with an intermediate mesh and methods for using the same
CN109764706B (en) * 2019-03-12 2024-04-26 山东省科学院能源研究所 Microchannel heat exchanger structure with spray pipe and working method
JP7307010B2 (en) * 2020-02-28 2023-07-11 トヨタ自動車株式会社 Cooler
JP2022059427A (en) * 2020-10-01 2022-04-13 株式会社日立製作所 Semiconductor device and system with built-in wheel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298054A (en) * 1989-05-12 1990-12-10 Fujitsu Ltd Cooling apparatus
JPH1022428A (en) * 1996-06-28 1998-01-23 Hitachi Ltd Semiconductor device
JP2002314280A (en) * 2001-04-10 2002-10-25 Denki Kagaku Kogyo Kk Structure and method for cooling circuit board
JP2004064050A (en) * 2002-06-06 2004-02-26 Denki Kagaku Kogyo Kk Module structure and circuit board suitable for it

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68918156T2 (en) * 1988-05-09 1995-01-12 Nec Corp Flat cooling structure for integrated circuit.
JPH0732222B2 (en) 1988-10-06 1995-04-10 日本電気株式会社 Integrated circuit cooling structure
JP2995590B2 (en) 1991-06-26 1999-12-27 株式会社日立製作所 Semiconductor cooling device
US5177667A (en) * 1991-10-25 1993-01-05 International Business Machines Corporation Thermal conduction module with integral impingement cooling
JPH05190716A (en) 1992-01-08 1993-07-30 Hitachi Ltd Semiconductor device and manufacture thereof
JP2853481B2 (en) 1992-09-30 1999-02-03 日本電気株式会社 Semiconductor element cooling structure
JP3771361B2 (en) * 1997-11-26 2006-04-26 株式会社日立製作所 Fuel injection valve
JP3946018B2 (en) * 2001-09-18 2007-07-18 株式会社日立製作所 Liquid-cooled circuit device
ATE445911T1 (en) * 2002-01-26 2009-10-15 Danfoss Silicon Power Gmbh COOLER
JP4041437B2 (en) * 2003-07-22 2008-01-30 株式会社日本自動車部品総合研究所 Semiconductor device cooling device
JP3908705B2 (en) * 2003-08-29 2007-04-25 株式会社東芝 Liquid cooling device and liquid cooling system
JP2005136278A (en) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp Power semiconductor module and its manufacturing method
CN2696126Y (en) * 2004-04-06 2005-04-27 谢步明 IGBT labyrinth water-cooled heat sink
JP4265500B2 (en) * 2004-07-14 2009-05-20 株式会社デンソー Heating element cooling device
US7184269B2 (en) * 2004-12-09 2007-02-27 International Business Machines Company Cooling apparatus and method for an electronics module employing an integrated heat exchange assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298054A (en) * 1989-05-12 1990-12-10 Fujitsu Ltd Cooling apparatus
JPH1022428A (en) * 1996-06-28 1998-01-23 Hitachi Ltd Semiconductor device
JP2002314280A (en) * 2001-04-10 2002-10-25 Denki Kagaku Kogyo Kk Structure and method for cooling circuit board
JP2004064050A (en) * 2002-06-06 2004-02-26 Denki Kagaku Kogyo Kk Module structure and circuit board suitable for it

Also Published As

Publication number Publication date
JP4649359B2 (en) 2011-03-09
JP2007281163A (en) 2007-10-25
CN101416307A (en) 2009-04-22
DE112007000829B4 (en) 2012-07-19
DE112007000829T5 (en) 2009-02-12
CN101416307B (en) 2010-11-03
US20090090490A1 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP4649359B2 (en) Cooler
US8199505B2 (en) Jet impingement heat exchanger apparatuses and power electronics modules
US9437523B2 (en) Two-sided jet impingement assemblies and power electronics modules comprising the same
JP5600097B2 (en) Cold plate assembly and power electronics module
US10770372B2 (en) Fluid routing devices and methods for cooling integrated circuit packages
US9502329B2 (en) Semiconductor module cooler
WO2015079643A1 (en) Method of manufacturing cooler for semiconductor module, cooler for semiconductor module, semiconductor module, and electrically driven vehicle
US8391008B2 (en) Power electronics modules and power electronics module assemblies
JP4699253B2 (en) Cooler
JP5070014B2 (en) Heat dissipation device
WO2014083976A1 (en) Inverter device
WO2007145352A1 (en) Heat sink and cooler
CN105940491A (en) Semiconductor device
JP2018503057A (en) Modular jet impingement assembly with passive and active flow control for cooling electronics
TWI363408B (en)
JP6482955B2 (en) Liquid cooling system
JP6534873B2 (en) Liquid cooling system
JP4715529B2 (en) Power semiconductor element cooling structure
JP4041437B2 (en) Semiconductor device cooling device
JP2019114682A (en) Liquid-cooled cooler
JP6623120B2 (en) Liquid cooling system
JP2006344636A (en) Parallel loop type heat dispersion plate
CN114828598A (en) Liquid cooling radiator, electric drive controller and car
JP2017195226A (en) Liquid-cooled type cooling device
JP5218306B2 (en) Cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12293469

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780012391.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120070008296

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007000829

Country of ref document: DE

Date of ref document: 20090212

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07740958

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607