WO2007116852A1 - 摺動材料及びその摺動材料を用いた摺動部材 - Google Patents

摺動材料及びその摺動材料を用いた摺動部材 Download PDF

Info

Publication number
WO2007116852A1
WO2007116852A1 PCT/JP2007/057365 JP2007057365W WO2007116852A1 WO 2007116852 A1 WO2007116852 A1 WO 2007116852A1 JP 2007057365 W JP2007057365 W JP 2007057365W WO 2007116852 A1 WO2007116852 A1 WO 2007116852A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
metal
iron
metal substrate
porous
Prior art date
Application number
PCT/JP2007/057365
Other languages
English (en)
French (fr)
Inventor
Motoharu Tanizawa
Kyoichi Kinoshita
Motoji Miyamoto
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006109707A external-priority patent/JP4848821B2/ja
Priority claimed from JP2006109699A external-priority patent/JP4736920B2/ja
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to DE112007000885T priority Critical patent/DE112007000885T5/de
Priority to US12/226,124 priority patent/US8252733B2/en
Publication of WO2007116852A1 publication Critical patent/WO2007116852A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • B24C3/325Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for internal surfaces, e.g. of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • F16C2223/08Mechanical treatment, e.g. finishing shot-peening, blasting

Definitions

  • the present invention relates to a sliding material that can be used for an engine block, a hydraulic pump, a compressor component, a bearing, or the like, in which a part of the surface is a sliding surface, and a sliding member having a predetermined shape using the sliding material.
  • sliding members are indispensable for various machines that reciprocate and rotate.
  • various sliding members are used in engines and compressors.
  • the sliding surface be a mirror surface to reduce the amount of wear due to friction.
  • the sliding surface is mirror-finished, the mirror-finished metal will rub against each other via oil, and the frictional resistance will be kept low. For this reason, sliding surfaces with appropriate surface roughness and surface treatments such as plating that improve the sliding properties of the surface are required for each application.
  • the sliding surface is supplied with an appropriate lubricant to reduce frictional force, wear or other forms of surface damage.
  • the sliding surface In order to ensure a sufficient oil film thickness, the sliding surface must hold an appropriate amount of lubricant.
  • a method has been used for a long time, such as creating a cross-hatch, called a cross hatch, on the sliding surface so that the lubricant is held inside the stripe.
  • the porosity of the surface portion from the surface of the sliding surface made of 5 to 50% by weight of Ti CN and the remainder made of an iron-based alloy to the depth of l mm is 7 to 20% by volume. It describes an iron-based sliding material with a lower internal porosity.
  • the iron-based sliding material described in Patent Document 1 discloses that, when used in a condition where lubricating oil is present, the lubricating oil is impregnated into the pores in the surface portion and frictional wear can be greatly improved.
  • Patent Document 2 discloses that a sintered alloy contains Ca, Sr, and Ba oxides, carbides, sulfides, and at least one dispersed phase of these mutual solid solutions or carbons. 4a, 5a, 6a metal carbides, nitrides of the periodic table, and at least one hard phase of these mutual solid solutions, remaining ferrite, austenite, martensite or Fe It describes an iron-based sintered alloy in which fine particles are formed by removing the dispersed phase from the surface portion of the iron-based sintered alloy composed of a binder phase composed of an alloy contained as a component.
  • the iron-based sintered alloy described in Patent Document 2 discloses that the fine pores formed in the surface portion can be impregnated with a lubricating substance and the coefficient of friction is reduced.
  • shot peening is performed using a shot with a particle size of 0.6 to 1. O mm on the sliding surface of the sliding member (material: carbon steel, chrome steel, chrome molybdenum steel). It is disclosed that the surface form of the sliding surface is changed so that the coefficient of friction at the initial stage of sliding is reduced by applying (so that the tip of the surface shape after the shot becomes a rounded convex shape) . It has been disclosed that by reducing the friction coefficient at the initial stage of sliding, it is possible to suppress frictional heat generation and to suppress deterioration of lubricating grease.
  • Patent Document 4 discloses that shot particles are used as a shot on a polished surface of a machine part in which a large amount of hard particles such as metal carbides are dispersed.
  • a method is disclosed in which the edge caused by burrs or the like on the polished surface is removed (rounding, scraping, or lacking the tip) by performing the spraying process. It is disclosed that the wear of the mating material during sliding can be effectively suppressed by removing the edge.
  • Patent Document 5 discloses a sliding member made of a powder aluminum alloy containing silicon, manganese, and magnesium, in which hard particles having a hardness lower than that of iron-based hard particles and alumina and one or more kinds of ceramic particles are dispersed.
  • a powder aluminum alloy sliding member in which a large number of recesses are formed by shot blasting using fine particles coated with either nickel or tin and a nickel coating or a tin coating is formed on the sliding surface. It is disclosed. Numerous recesses serve as oil reservoirs and can secure the oil retaining function of the sliding surface.
  • the surface of the adhesive aluminum alloy has a nickel or tin coating that makes it difficult to wear. Prevention It has been disclosed that it is possible to improve the stopping property, and that by applying fine particles to the sliding surface, the sliding surface is work-hardened and the wear resistance is improved accordingly.
  • Patent Document 1 Japanese Patent Publication No. 6 3— 1 3 8 3
  • Patent Document 2 Japanese Patent Laid-Open No. 6-2 7 9 9 5 9
  • Patent Document 3 Japanese Patent Laid-Open No. 9 2 6 8 3 1 9
  • Patent Document 4 Japanese Patent Laid-Open No. 11-2 0 7 6 2 2
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2000-103-1 3 1 6 3 Disclosure of Invention
  • Patent Document 1 it is well known that the method of marking the sliding surface gradually wears the scratch during use and reduces the retention of the lubricant.
  • Patent Document 2 it is difficult to control the amount and size of the pores in the press molding or firing process, and the size of the obtained pores has a large variation in porosity. There are also quality control problems.
  • Patent Document 3 an alloy containing the special substance as described above is used.
  • Patent Document 3 described above is a shot beung treatment for suppressing frictional heat generation and suppressing deterioration of lubricating grease, and is not intended for retaining a lubricant.
  • the characteristics required for the sliding surface vary depending on the intended sliding component.
  • the method of modifying the surface by shot blasting has been studied as shown in the above patent document depending on the purpose, but a sliding material that can further modify the sliding characteristics to meet the requirements of sliding parts. Is required. .
  • R z the surface roughness required for a bore in an engine is determined, and it is required to improve the sliding characteristics within the surface roughness.
  • Patent Document 4 The shot injection process in Patent Document 4 is used to remove burrs, and the amount of wear can be reduced by changing the S m value (average peak spacing) without changing the surface roughness (R z) much. It is decreasing.
  • Patent Document 5 the surface roughness is increased by a factor of five by performing a shot plast treatment.
  • the present invention has been made in view of such circumstances, and the surface sliding characteristics can be adjusted according to the requirements of the sliding parts without significantly changing the surface roughness of the sliding material by shot blasting. It is an object to provide a sliding material that can be modified and a sliding member using the sliding material.
  • the present invention provides a sliding member capable of effectively reducing the coefficient of friction on the sliding surface by having fine holes on the sliding surface and forming these oil holes in the fine holes.
  • a sliding member capable of effectively reducing the coefficient of friction on the sliding surface by having fine holes on the sliding surface and forming these oil holes in the fine holes.
  • the present inventors have intensively studied to solve this problem, and as a result of repeated trial and error, shot metal particles softer than the metal substrate and having a smaller friction coefficient on the sliding surface of the metal substrate.
  • shot metal particles softer than the metal substrate and having a smaller friction coefficient on the sliding surface of the metal substrate.
  • the sliding characteristics of the sliding surface can be improved without mechanically increasing the surface roughness by mechanically forming a part of the metal particles on the sliding surface of the metal substrate.
  • the present invention has been completed.
  • the sliding material of the present invention comprises a metal base material, and a metal particle softer than the metal base material and having a small friction coefficient is shot plasted on the sliding surface of the metal base material.
  • An attached metal that is mechanically attached and formed to cover at least 8.% or more of the moving surface.
  • the metal base material includes iron, an iron-based alloy, an iron-based porous material, and an iron-based porous material wrapped with aluminum, an aluminum alloy, magnesium, or a magnesium alloy, and the iron-based porous material on a sliding surface. It is preferable that the metal particles include at least one of zinc, tin, gold, iron, and magnesium.
  • the metal base material wraps the first porous metal base material and the second porous metal base material which is softer than the first porous metal base material, and the first porous metal base material is slid on the sliding surface.
  • the first porous metal substrate is an iron-based porous material
  • the second metal substrate is an aluminum alloy
  • the metal particles are zinc
  • the adhered metal is on the sliding surface. It is preferable that the iron-based porous material is mechanically attached to the surface.
  • the sliding surface of the second metal base material has a concave portion formed by shot blasting the metal particles.
  • the processing conditions for the shot plast are preferably the following conditions.
  • Metal particle size 150 ⁇ m ⁇ or more, 80 0 or less, air pressure: 0.3 IMP a or more, 0.3 MPa or less, spraying distance: 5 O mm or more, 15 O mm or less, projection time: 5 seconds More than 4 Less than 5 seconds.
  • the sliding member of the present invention is characterized by having a predetermined shape using the sliding material.
  • the sliding member is preferably a cylinder bore.
  • the metal base material which is soft and has a small friction coefficient
  • the metal base material mechanical alloy
  • the metal substrate surface is not roughened.
  • the adhered metal covers at least 8% or more of the sliding surface of the substrate, the characteristics of the adhered metal particles appear as surface characteristics, and the sliding property of the sliding surface is improved.
  • the friction coefficient of the sliding surface can be reduced by mechanically adhering metal particles having a smaller friction coefficient than the metal substrate to the sliding surface.
  • the metal substrate is any one of iron, an iron-based alloy, an iron-based porous material, and a composite material in which an iron-based porous material is wrapped with aluminum, an aluminum alloy, magnesium, or a magnesium alloy. Therefore, it is lightweight and has excellent strength.
  • the metal particles contain at least one of zinc, tin, gold, copper and magnesium, so that the sliding characteristics of the sliding surface depend on the characteristics of each metal softer than the base material. Is improved.
  • the metal substrate is formed on the first porous metal substrate with the first porous metal substrate.
  • ' May be a composite material in which a soft second metal substrate is wrapped and the first porous metal substrate is exposed on a sliding surface.
  • the metal particles are softer than the first porous metal base material and harder than the second metal base material, so that when the metal particles are shot blasted, the metal particles are A concave portion can be formed on the sliding surface of the second metal base material, and is mechanically attached to the sliding surface of the first porous metal base material.
  • the amount, hole diameter, and the like of the recess are controlled by controlling shot blasting conditions. Therefore, when the lubricant is used, the recess can become an oil reservoir for the lubricant. By having the recess, the entire sliding surface is not damaged, and an appropriate amount of lubricant, etc. can be held when using the lubricant, and a low coefficient of friction can be obtained.
  • the sliding surface of the metal base material which is a composite material, can be modified with the sliding surfaces of both metal base materials to improve the sliding characteristics.
  • the first porous metal substrate is an iron-based porous material
  • the second metal substrate is an aluminum alloy
  • the metal particles are zinc.
  • a metal substrate in which an aluminum alloy is encased in an iron-based porous material and the first porous metal substrate is exposed on the sliding surface is lighter than an iron-based material and has a higher strength than an aluminum alloy alone. Excellent as a sliding material.
  • the iron-based porous material is porous, it can secure adhesion with the aluminum alloy.
  • the aluminum alloy surface can be recessed by shot blasting of zinc, but the surface of the iron-based porous material will not be scratched and will not slide. Do not increase the surface roughness (R z) of the sliding surface of the moving material.
  • the amount of the recess, the hole diameter, and the like are controlled by controlling the shot blasting conditions. Therefore, when the lubricant is used, the concave portion can become an oil reservoir for the lubricant. Therefore, by having a recess only in the aluminum alloy part of the sliding surface, the entire sliding surface can be kept intact and an appropriate amount of lubricant can be retained during use of the lubricant, thus reducing friction. Can have a coefficient.
  • Zinc which is softer than iron-based porous materials, adheres mechanically to the surface of iron-based porous materials.
  • 'Zinc has a smaller coefficient of friction than iron-based porous materials, so the adhesion of zinc reduces the surface friction coefficient of the iron-based porous material, which in turn can reduce the number of friction on the entire sliding surface.
  • the burn-in time can be reduced. Therefore, the surface characteristics can be adjusted by adjusting the ratio of the iron-based porous material and the aluminum alloy. Further, since the processing conditions for the shot blasting are the above conditions, the metal particles can be appropriately mechanically adhered to the metal substrate.
  • the sliding member of the present invention can have good sliding characteristics by using the above sliding material.
  • the sliding member of the present invention by applying the sliding member of the present invention to a cylinder bore, it is possible to have good sliding characteristics without changing the dimensional accuracy of the sliding surface in a cylinder bore with severe dimensional accuracy.
  • Fig. 1 shows a partial explanatory view (cross-sectional view) of the manufacturing method of the sliding member of the test example.
  • Fig. 2 shows an EP MA matting image of the inner peripheral surface of the sliding member of the test example of the present invention.
  • FIG. 3 shows a graph comparing surface roughness (R z) and seizure time (min).
  • Figure 4 shows a graph comparing the surface roughness (R Z ) with the coefficient of friction before seizure.
  • FIG. 5 shows the SEM observation result of the inner peripheral surface of the sliding member of the test example of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION The sliding material of the present invention has a metal substrate and an attached metal.
  • the adhered metal covers at least 8% or more of the sliding surface of the base material by shot blasting metal particles having a softer coefficient of friction and a smaller coefficient of friction than the metal base material on the sliding surface of the metal base material. It is mechanically attached to the surface.
  • the metal substrate in the present invention is not particularly limited as long as it is a substrate made of a metal used as a sliding material. Examples include iron-based metals, aluminum-based metals, and magnesium-based metals.
  • iron-based metal as the metal substrate are preferred in terms of strength.
  • iron, iron-based alloys, iron-based porous materials, and iron-based porous materials with aluminum, aluminum alloys examples include composites wrapped in gnesium or magnesium alloys.
  • the metal base material is preferably a composite material in which the first porous metal base material is wrapped with a soft second metal base material.
  • the metal base material is a composite material in which an aluminum alloy is wrapped in an iron-based porous material because the base material is lightweight and excellent in strength.
  • the shape of the metal substrate is not particularly limited, and is adapted to the use as a sliding member.
  • the sliding material of the present invention can be used for an engine block, a hydraulic pump, a compressor component, a bearing, etc., part of which is a sliding surface.
  • the metal particles in the present invention are not particularly limited as long as they are softer than the metal substrate used and have a smaller coefficient of friction.
  • metal particles aluminum, zinc, tin, gold, copper, magnesium and nickel may be used as the metal particles.
  • the metal particles may be the same metal for all the particles, or may be the core metal surface coated with another metal.
  • the coated metal should be softer than the metal substrate used, have a low coefficient of friction, and have a low melting point.
  • the metal particles are preferably softer than the first porous metal substrate and harder than the second metal substrate.
  • the metal particles are preferably zinc, copper, tin, or the like.
  • the particle size of the metal particles is preferably from 1500 ⁇ m to 800 ⁇ m. When the particle diameter is within this range, it is likely to be deposited on the sliding surface when shot plasted on the sliding surface.
  • the metal particles are mechanically attached to the sliding surface by shot blasting.
  • the metal particles are mechanically alloyed with the metal substrate and mechanically adhered. Since the metal particles are softer than the metal substrate, the surface of the metal substrate is not roughened, and the surface roughness (R z) of the metal substrate is not so much. Do not enlarge.
  • the metal particles are mechanically attached and formed on the sliding surface of the first porous metal substrate that is harder than itself.
  • the metal particles can be formed with recesses on the sliding surface of the second metal substrate which is softer than itself.
  • the concave portion becomes an oil reservoir on a sliding surface with lubricant or the like, and can further improve the sliding characteristics.
  • the adhered metal covers at least 8% or more of the sliding surface of the substrate. By covering at least 8% of the sliding surface, the characteristics of the adhered metal particles appear as surface characteristics, and the sliding characteristics of the sliding surface are improved.
  • the friction coefficient of the sliding surface can be reduced by mechanically adhering the metal particles having a small friction coefficient to the sliding surface.
  • the metal substrate is a composite material in which an iron-based porous material is wrapped with an aluminum alloy
  • the metal particles are preferably zinc.
  • the shape of the iron-based porous material is not particularly limited.
  • a cylindrical shape, a ring shape, a plate shape, or a disk shape may be used.
  • the porosity of the iron-based porous material is desirably 12% or more and 50% or less.
  • a porous material having a porosity in this range will be a sliding material with good adhesion and strength to the aluminum alloy.
  • the iron-based porous material may be used for the entire sliding member, or may be used for a part of the periphery of the sliding surface.
  • Aluminum alloys can also contain Cu, Si, Mg, Zn, Fe, Mn, Ni, Sn, and Ti.
  • aluminum alloys such as J2S A 2 00 0 series, AD C 1 2, A C 8 A, A C 4 C, A C 2 B and the like can be mentioned.
  • the method for producing a composite material in which an aluminum alloy is wrapped in an iron-based porous material is a normal forging method, and is not particularly limited.
  • a predetermined shape in order to obtain a predetermined shape according to the purpose, it is installed in a mold of a predetermined shape at a position where the iron-based porous material is exposed on the sliding surface, and the aluminum alloy is fabricated at a predetermined pressure and a predetermined temperature Aluminum-based porous material is encased, and the pores of the porous material are covered with aluminum. Wrap the alloy.
  • -Shot grain material Auxiliary, grain size of shot grain 15 500 ⁇ m or more, 800 ⁇ m or less, Air pressure: 0.3 IMP a or more, 0.3 MPa or less, Injection distance: 50 mm or more 1 50 mm or less, Projection time: 5 seconds or more 4 5 seconds or less.
  • the above conditions are conditions under which zinc can be mechanically deposited on the surface of the iron-based porous material without damaging the iron-based porous material.
  • the sliding member has a low coefficient of friction because zinc is mechanically attached to the surface of the iron-based porous material without newly scratching the sliding surface of the iron-based porous material. It can be used and has good sliding characteristics.
  • the above condition is also a condition that a recess can be formed only on the surface of the aluminum alloy without damaging the iron-based porous material.
  • the formed recess has a depth from the surface of 0.1 ⁇ to 5 ⁇ ⁇ , and the diameter of the recess is 5 ⁇ ! ⁇ 1 0 0 ⁇ m.
  • the recess formed in this way can become an oil reservoir for a lubricant or the like when a lubricant or the like is used. For this reason, the sliding member can hold a proper amount of lubricant when using a lubricant, etc., without causing any new scratches on the surface. Can have characteristics. .
  • the shot plast treatment can be partially performed on the required surface, the treatment can be performed easily at a lower cost than the conventional electrolytic corrosion treatment.
  • the sliding member of the present invention uses the above sliding material.
  • the sliding member in the present invention has a predetermined shape.
  • the predetermined shape is not particularly limited, and is adapted to the use as a sliding member.
  • the sliding member of the present invention can be used for an engine block, a hydraulic pump, a compressor part, a bearing, etc., part of which is a sliding surface.
  • FIG. 1 shows a partial explanatory view (cross-sectional view) of the manufacturing method of the sliding member of the test example.
  • the shape of the iron-based porous sintered body 1 was a cylindrical shape having a diameter of 86 mm, a height of 16 O mm, and a cylinder thickness of 5 mm.
  • the iron-based porous sintered body 1 was placed on a cylinder block mold 2 such that the iron-based porous sintered body 1 faced the sliding surface.
  • Mold 2 is a cylinder block mold and has a cylindrical shape as shown in FIG.
  • An aluminum alloy (A DC 12) was poured into the mold 2 from the outer peripheral surface side and the bottom surface of the iron-based porous sintered body 1.
  • the forging conditions at this time were as follows: molten metal temperature of 6800 ° C., mold temperature of 2550 ° C., preheating of iron-based porous sintered body 1 at 800 ° C., and molten metal pressure of 8 3 MPa.
  • the molten aluminum alloy was wrapped from the outer peripheral surface side and the bottom surface of the iron-based porous sintered body 1 to the inside.
  • the sliding inner peripheral surface of the cylinder bore 3 obtained in this way was hounged with a hounging machine.
  • shot blast treatment was performed under various conditions, and the surface was observed. Shot blasting was performed using a shot blasting device 4 on the inner surface of the cylinder, which is the sliding surface of the cylinder bore 3.
  • the shot plast device was manufactured by Shinto Breter.
  • Table 1 shows the shot blasting conditions implemented.
  • Fig. 2 shows an EPMA mapping image (EPMA: electron probe microanalyzer) of the surface of the sliding inner surface of some cylinder bores subjected to shot blasting under the conditions shown in Table 1.
  • EPMA electron probe microanalyzer
  • Fig. 2 shows the EPMA mapping of the surface of zinc particles used as metal particles No. 8 (description No. 2-4) in Table 1.
  • EP'MA was performed using Shimadzu E PMA-1600.
  • the upper left figure in Fig. 1 shows the element distribution image of each composition metal, and the upper right, lower right, and lower left figures show the element distribution images of aluminum, zinc, and iron, respectively.
  • Each of the four figures maps the same location.
  • the upper left figure is a map of each metal composition, with the metal with a heavy specific gravity written in white and the light metal written in black. In this case, aluminum is shown in black, zinc is shown in white, and iron is shown in whitish gray.
  • the upper right figure shows the element distribution image of aluminum
  • the white part in the upper right figure shows aluminum
  • the lower left figure shows the element distribution image of iron
  • the white part shows iron
  • the lower right figure shows the element distribution image of zinc
  • the white part shows zinc. From these four figures, it can be seen that zinc is attached to the iron part, not aluminum.
  • the surface roughness of each sample performed under each shot blasting condition was measured with a contact-type surface roughness meter and listed in the column of R z ( ⁇ ) in Table 1.
  • No. 1 in Table 1 shows that shot particles are alumina abrasive grains # 80 (manufactured by Shinto Brater Co., Ltd., product number AF 80, center particle size of about 190 ⁇ m (particle size range 1 50 to 212 / ⁇ ⁇ )) Shot blasting was performed under the conditions shown in Table 1. See Table 1. As shown, the surface roughness (R z) is as large as 1 6.9 ⁇ m.
  • Table 1 No. 2, 2-1 and .2—2 are shot particles made of steel (manufactured by Shin-Tobrator Co., Ltd., product number SB-3, center particle size of about 300 ⁇ m (particle size range 1 8 0 to 50 Oum))) and shot blasting was performed under the shot conditions shown in Table 1.
  • the surface roughness was as small as less than 5 ⁇ m. Since zinc shot particles are harder than aluminum alloys and softer than iron-based porous sintered materials, they can selectively cut aluminum alloy parts without damaging iron, so the surface roughness (R z) is too large. Probably not.
  • Figure 5 shows the SEM observation results of the sliding inner surface of some cylinder bores that were shot plasted under the conditions shown in Table 1.
  • the numbers listed in Table 1 correspond to the numbers in the SEM photograph in Fig. 5.
  • No. 1 is shot blasting under the conditions shown in Table 1 with shot particles made of alumina (manufactured by Shinto Blator Co., Ltd., product number AF 80 particle diameter of about 200 ⁇ ) Represents a surface SEM photograph of the treated material.
  • Fig. 5 No. 2-4 Description in Fig. 5 No. 2-4 is shot blasting under the shot conditions described in Table 1 in which the shot particles are zinc (manufactured by Shinto Brater Co., Ltd., product number AD-4, particle size of about 400 ⁇ ). Surface SEM photo of what was done.
  • the surface roughness was less than 5 ⁇ m, and it was observed that there were many fine recesses on the surface as seen in No. 2-4 in Fig. 5.
  • Various shapes can be seen in the recess, but if it is approximately circular, the diameter is 2! Recesses of ⁇ 20 Atm were observed.
  • Table 2 shows the coefficient of friction and seizure time before baking for each sample.
  • Fig. 3 shows a graph comparing the surface roughness (Rz) and seizure time (min), and Fig. 4 shows a graph comparing the surface roughness (Rz) and the coefficient of friction before seizure.
  • the sliding test was performed according to the sample description No. 0, 1, 3, 2-3, 2-4.
  • the sample No. 0 which was not shot blasted had a surface roughness (R z) of 0.7 ⁇ , and was baked in in a short time of 0.15 minutes in the sliding test.
  • the coefficient of friction before baking was as high as 0.64.
  • the sample No. 1 that was shot blasted with alumina had a high surface roughness (Rz) of 16.9 ⁇ , and large irregularities were observed in SEM observation. .
  • the sample of description No. 1 had a seizure time of 29 minutes in the sliding test, and the friction coefficient before seizure was 0.3.
  • Samples No. 3, 2-3, and 2-4 which were shot blasted with zinc, had a surface roughness (Rz) of 2 to 5 ⁇ . Is observed.
  • the samples No. 3, 2-3, and 2-4 showed a significantly improved seizure time compared to the other samples despite the low Rz.
  • the coefficient of friction before baking was lower than other samples.
  • the sample using sub-particles as shot particles was able to reduce the friction coefficient because zinc was deposited on the surface of the iron-based sintered body without damaging the surface of the iron-based sintered body and increasing the surface roughness. Conceivable. Furthermore, the presence of a large number of recesses on the surface caused the recesses to become oil reservoirs, which could have retained the lubricating oil. Therefore, in the sliding test, the friction coefficient of the whole sample could be reduced, and it was considered that the seizing time could be extended. In addition, it was effective because the zinc adhesion area calculated from EP MA mapping was 8% or more.
  • the sliding member can adhere to the metal surface having a large friction coefficient on the sliding surface with a low friction coefficient of 8% or more, thereby reducing the surface roughness without increasing the surface roughness.
  • it can be a sliding member that improves sliding characteristics.
  • the sliding member can retain an appropriate amount of lubricant and the like by forming an oil reservoir in the sliding surface, and the surface is low without newly damaging the surface for retaining oil. While having a friction coefficient, it can be a sliding member that can utilize the lubricating effect of oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本発明は、ショットブラスト処理によって摺動材料の表面粗さをあまり変えずに摺動部品の要求に応じて表面の摺動特性を改質できる摺動材料及びその摺動材料を用いた摺動部材を提供する。本発明の摺動材料は、金属基材と、前記金属基材の摺動表面に前記金属基材より軟質で且つ摩擦係数の小さい金属粒子をショットブラストすることにより前記金属基材の摺動表面の少なくとも8%以上を覆うように機械的に付着形成された付着金属と、を有することを特徴とする。

Description

明細書 摺動材料及びその摺動材料を用いた摺動部材 技術分野
本発明は、 一部表面が摺動面となるエンジンプロック、 油圧ポンプ、 コンプレ ッサ一部品、 軸受け等に使用できる摺動材料及びその摺動材料を用いた所定形状 を有する摺動部材に関する。
背景技術
往復、 回転運動 を行う各種機械には、 一般的に摺動部材が不可欠である。 例 えば、 エンジンやコンプレッサー等にも様々な摺動部材が使用されている。
一般的に、 摺動面においては、 擦による摩耗量を減らすには、 摺動面は鏡面 となっているのが望ましい。 しかし摺動面が鏡面となっていると、 鏡面仕上げし た金属同士はオイルを介して擦り合わせられると摩擦抵抗は低く押さえられる力 ある程度の熱が発生するため、 焼き付きのおそれがある。 そのため、 摺動面は適 当な表面粗さを持たせたものや、 摺動面にめっき等の表面処理を施して表面の摺 動特性を改質するものがそれぞれの用途に合わせて要求される。 '·
また一般的に、 摺動面には、 適正な潤滑剤を供給し、 摩擦力や摩耗又は他の形 の表面損傷を軽減させることが行われている。十分な油膜厚さを確保するために、 摺動面は潤滑剤を適正量保持する必要がある。 潤滑剤を適正量保持するために、 例えば摺動面にクロスハッチと呼ばれるバッ状の条痕を付け、 条痕内に潤滑剤が 保持されるようにする手法が古くから行われている。
特許文献 1には、 5〜5 0重量%の T i C Nと、 残りが鉄系合金からなる摺動 面の表面から l mm深さまでの表面部における空孔率を 7〜 2 0体積%とし、 内 部空孔率をこれより減少させた鉄系摺動材料について記載されている。 特許文献 1に記載の鉄系摺動材料は、 潤滑油の存在する条件で用いると表面部の空孔に潤 滑油が含浸されて、 摩擦摩耗が大幅に改善できることが開示されている。
特許文献 2には、 焼結合金中に C a、 S r、 B aの酸化物、 炭化物、 硫化物お よびこれらの相互固溶体またはカーボンの中の少なくとも一種以上の分散相と、 周期律表の 4 a、 5 a , 6 a属金属の炭化物、 窒化物おょぴこれらの相互固溶体 の中の少なくとも 1種の硬質相 、 残りフェライ ト、 オーステナイ ト、 マルテン サイトまたは F eを主成分として含む合金でなる結合相とからなる鉄系焼結合金 の表面部から該分散相が除去されて微細孔が形成された鉄系焼結合金について記 載されている。 特許文献 2に記載の鉄系焼結合金は、 表面部に形成された微細孔 の中に、 潤滑物質を含浸でき、 摩擦係数を低下させることが開示されている。 特許文献 3には、 摺動部材の摺動面 (材質:炭素鋼、 クロム鋼、 クロムモリブ デン鋼) に、 粒径 0 . 6〜1 . O mmのショットを用いてショットピー-ング処 理を施すことによって、 摺動初期の摩擦係数を低減するように (ショット後の表 面形状の尖端が丸くなつた凸形状になるように) 摺動面の表面形態を変化させる ことが開示されている。 摺動初期の摩擦係数を低減させることによって、 摩擦発 熱を抑制し、 潤滑グリスの劣化を抑制出来ることが開示されている。
またショットプラストによって表面を改質する方法は、 摺動材料を摺動部材と して形成した後でも加工できることや、 圧縮による残留応力の付与が出来るため その目的に応じて幾つか検討されている。
例えば摺動の相手材の摩耗を抑えるために特許文献 4には、 金属炭化物等の硬 質粒子を多量に分散させた機械部品の表面研磨処理を行った研磨面に、 ショット 粒を用いてショット噴射処理を施すことによって、 研磨面のバリ等に起因するェ ッジを取り除く (丸め、 削り取り、 或いは先端部を欠かす) 方法が開示されてい る。 エッジを取り除くことによって摺動時の相手材の摩耗を効果的に抑制出来る ことが開示されている。
また特許文献 5には鉄系硬質粒子及びアルミナよりも硬さが低レ、セラミックス 粒子の 1種以上である硬質粒子が分散した、 珪素とマンガンとマグネシウムとを 含む粉末アルミニゥム合金製の摺動部材の摺動面に、 二ッケル及びすずの何れか をコーティングした微粒子を用いたショットブラストによって多数の凹部が形成 されると共にニッケル被膜及びすず被膜の何れかが形成された粉末アルミニウム 合金製摺動部材が開示されている。 多数の凹部は油溜まりの役目を果たし摺動面 の保油機能を確保することが出来ること、 また凝着しゃすいアルミニウム合金の 表面に二ッケル或いはすずの被膜が出来ることによつて摩耗しにくくスカツフ防 止性を向上させることが出来ること、 およぴ摺動面に微粒子を当てることによつ て摺動面が加工硬化してそれだけ耐摩耗性が向上することが開示されている。
特許文献 1 :特公昭 6 3— 1 3 8 3号公報
特許文献 2 :特開平 6— 2 7 9 9 5 9号公報
特許文献 3 :特開平 9一 2 6 8 3 1 9号公報
特許文献 4 :特開平 1 1— 2 0 7 6 2 2号公報
特許文献 5 :特開 2 0 0 3— 1 3 1 6 3号公報 発明の開示
発明が解決しょうとする課題
しかしながら、 上記摺動面に条痕を付ける方法は、 使用時にだんだん条痕が摩 耗し、 潤滑剤の保持力が低下してくることは、 よく知られている。 また上記特許 文献 1の場合は、 プレス成形や焼成工程で空孔の量や大きさを制御するのが困難 であり、 得られる空孔の大きさゃ空孔率のばらつきが大きいという製造管理上及 ぴ品質管理上の問題がある。 また上記特許文献 2の場合は、 上記のような特殊な 物質を含む合金を用いたものである。また上記特許文 3は、摩擦発熱を抑制し、 潤滑グリスの劣化を抑制するためにショットビーユング処理を施した'ものであり、 潤滑剤の保持を目的としたものではない。
また、 摺動表面に要求される特性はその目的とする摺動部品によって様々であ る。 ショットブラストによって表面を改質する方法は、 その目的に応じて上記特 許文献に示すように検討されているが、 摺動部品の要求にあうようにさらに摺動 特性を改質できる摺動材料が求められている。 .
また摺動部品はその摺動時の摩耗量を低減するため、 表面粗さが規定されてい るものが多い。 例えばエンジンにおけるボアに要求される表面粗さ (R z ) は決 まっており、 その表面粗さ内で摺動特性を上げることが要求される。
上記特許文献 4におけるショット噴射処理は、 バリをとるために用いられてお り、 表面粗さ (R z ) をあまり変えずに、 S m値 (平均山間隔) を変えることに よって摩耗量を減らしている。 また特許文献 5では、 ショットプラスト処理を行 うことによって表面粗さを 5倍に増加させている。 ' 本発明は、 このような事情に鑑みて為されたものであり、 ショットブラスト処 理によって摺動材料の表面粗さをあまり変えずに摺動部品の要求に応じて表面の 摺動特性を改質できる摺動材料及びその摺動材料を用いた摺動部材を提供するこ とを目的とする。
さらに本発明は、 摺動面に微細孔を有し、 その微細孔が油溜まりを形成するこ とによって、 摺動面における摩擦係数を効果的に低減させることが出来る摺動部 材を提供することを目的とする。 課題を解決するための手段
そこで、 本発明者等はこの課題を解決すべく鋭意研究し、 試行錯誤を重ねた結 果、 金属基材の搢動表面に前記金属基材より軟質で且つ摩擦係数の小さい金属粒 子をショットブラストすることにより、 金属粒子の一部を金属基材の摺動面に機 械的に付着形成させることによって表面粗さをあまり大きくすることなく、 摺動 表面の摺動特性を改質出来ることを発見し、 本発明を完成するに至った。
すなわち、 本発明の摺動材料は、 金属基材と、 前記金属基材の摺動表面に前記 金属基材より軟質で且つ摩擦係数の小さい金属粒子をショットプラストすること により前記金属基材の摺動表面の少なくとも 8.%以上を覆うように機械的に付着 形成された付着金属と、 を有することを特徴とする。
また前記金属基材は、 鉄、 鉄系合金、 鉄系多孔質材、 及び鉄系多孔質材にアル ミニゥム、 アルミニウム合金、 マグネシウムまたはマグネシウム合金を铸包み、 摺動表面に前記鉄系多孔質材を露出させた複合材のうちのいずれかひとつであり、 前記金属粒子は、 亜鉛、 すず、 金、 錮及びマグネシウムの ちの少なくとも一種 を含むことが好ましい。
また前記金属基材は、 第 1の多孔質金属基材を前記第 1の多孔質金属基材ょり も軟質の第 2の金属基材を铸包み、 摺動表面に前記第 1の多孔質金属基材を露出 させた複合材であり、 前記金属粒子は前記第 1の多孔質金属基材ょりも軟質で且 つ、 前記第 2の金属基材よりも硬質であり、 前記付着金属は、 前記金属粒子をシ ョットプラストすることにより前記第 1の多孔質金属基材の摺動表面に機械的に 付着形成されることが好ましい。 ' 特に前記第 1の多孔質金属基材は鉄系多孔質材であり、 前記第 2の金属基材は アルミニウム合金であり、 前記金属粒子は亜鉛であり、 前記付着金属は前記摺動 表面の前記鉄系多孔質材面に機械的に付着形成されていることが好ましい。
また前記第 2の金属基材の前記摺動表面は前記金属粒子をショットブラストす ることにより凹部を形成されていることが好ましい。
また前記ショットプラストの処理条件は下記条件であるとよい。
金属粒子の粒径: 1 5 0 μ πι以上 8 0 0 以下、 エア圧: 0 . I M P a以上 0 . 3 M P a以下、 噴射距離: 5 O mm以上 1 5 O mm以下、 投射時間: 5秒以 上 4 5秒以下。
また本発明の摺動部材は上記摺動材料を用い所定形状を有することを特徴とす る。
特に前記摺動部材がシリンダーボアであることが好ましい。 発明の効果
金属基材の摺動表面に前記金属基材ょり軟質で且つ摩擦係数の小さい金属粒子 をショットブラストすることにより、 前記金属粒子の一部は前記金属基材と機械 的合金化 (メカニカルァロイニング) して機械的に付着される。 前記金属粒子は 前記金属基材より軟質であるため前記金属基材表面を荒らすことがない。
また前記付着金属は前記基材の摺動表面の少なくとも 8 %以上を覆っているこ とによって付着した金属粒子の特性が表面特性として表れ、 摺動表面の摺動 性 が改質される。 また摺動表面に前記金属基材より摩擦係数の小さい金属粒子が機 械的に付着することにより摺動表面の摩擦係数を低減できる。
また前記金属基材は、 鉄、 鉄系合金、 鉄系多孔質材、 及び鉄系多孔質材にアル ミニゥム、 アルミニウム合金、 マグネシウムまたはマグネシウム合金を錡包んだ 複合材のうちのいずれかひとつであることによって、軽量で優れた強度を有する。 また前記金属粒子は、 亜鉛、 すず、 金、 銅及ぴマグネシウムのうちの少なくと も一種を含むことによって、 基材より軟質なそれぞれの金属が持つ特性によって 摺動表面の摺動特 1·生が改良される。
また前記金属基材は、 第 1の多孔質金属基材に前記第 1の多孔質金属基材ょり 'も軟質の第 2の金属基材を錶包み、 摺動表面に前記第 1の多孔質金属基材を露出 させた複合材であつてもよい。 金属基材を第 1の多孔質金属と第 2の金属との複 合材とすることにより、 両方の金属の利点を持つ摺動部材となる。
また前記金属粒子は前記第 1の多孔質金属基材ょりも軟質で且つ、 前記第 2の 金属基材よりも硬質であることにより、前記金属粒子をショットブラストすると、 前記金属粒子は前記第 2の金属基材の摺動面には凹部を形成することが出来、 且 つ前記第 1の多孔質金属基材の摺動表面に機械的に付着形成される。前記凹部は、 ショットブラスト処理条件を制御することにより、その量、孔径等が制御される。 そのため該凹部は、 潤滑剤等を使用した場合、 潤滑剤等の油溜まりとなることが 出来る。 凹部を有することにより、 摺動面全体としては傷を付けずに、 潤滑剤等 の使用時に潤滑剤等を適正量保持でき、 低い摩擦係数を持つことが出来る。
そのため複合材である前記金属基材の摺動面は両金属基材の摺動面とも改質さ れ摺動特性を向上できる。
特に前記第 1の多孔質金属基材は鉄系多孔質材であり、 前記第 2の金属基材は アルミニウム合金であり、 前記金属粒子は亜鉛であることが好ましい。 鉄系多孔 質材にアルミニウム合金を錶包み、 摺動表面に前記第 1の多孔質金属基材を露出 させた金属基材は、 鉄系材料に比べ軽く、 またアルミニウム合金単体よりも強度 が高く摺動材料として優れている。 また鉄系多孔質材は、 多孔質であるため、 了 ルミ-ゥム合金との密着性を確保できる。
又金属粒子を鉄より軟質でアルミニゥム合金より硬質な亜鉛とすることによつ て、 アルミニウム合金面は亜鉛のショットブラストによって凹部ができるが、 鉄 系多孔質材表面には傷が付かないため摺動材料の摺動面の表面粗さ (R z ) をあ まり大きくさせない。 そして前記凹部は、 ショッ トブラス ト処理条件を制御する ことにより、 その量、 孔径等が制御される。 そのため該凹部は、 潤滑剤等を使用 した場合、 潤滑剤等の油溜まりとなることが出来る。 従って、 摺動面のアルミ二 ゥム合金部分のみに凹部を有することにより、摺動面全体としては傷を付けずに、 潤滑剤等の使用時に潤滑剤等を適正量保持でき、 そのため低い摩擦係数を持つこ とが出来る。
また鉄系多孔質材より軟質な亜鉛は、 鉄系多孔質材表面に機械的に付着する。 '亜鉛は鉄系多孔質材に比べ摩擦係数が小さいため、 亜鉛が付着することにより鉄 系多孔質材の表面の摩擦係数を下げ、 ひいては摺動表面全体の摩擦^^数を下げる ことが出来、 焼き付き時間を低減できる。 従って鉄系多孔質材とアルミニウム合 金の割合を調節することによって、 その表面特性を調節することが出来る。 また前記ショットブラストの処理条件は上記条件であることによって適正に金 属粒子を金属基材に機械的に付着させることが出来る。
また本発明の摺動部材は上記摺動材料を用いることにより良好な摺動特性を持 つことが出来る。 特に本発明の摺動部材をシリンダーボアに適用することによつ て、 寸法精度の厳しいシリンダーボアにおいて、 摺動面の寸法精度を変えること なく、 良好な摺動特性を持つことが出来る。 図面の簡単な説明
図 1は試験例の摺動部材の製造方法の一部説明図 (断面図) を示す。
図 2は本発明の試験例の摺動部材の内周面表面の E P MAマツビング像を表 す。
' 図 3は表面粗さ (R z ) と焼き付き時間 (分) とを比較したグラフを示す。
図 4は表面粗さ( R Z )と焼き付き前の摩擦係数とを比較したグラフを示す。 図 5は本発明の試験例の摺動部材の内周面表面の S E M観察結果を表す。 発明を実施するための最良の形態 . 本発明の摺動材料は、 金属基材と付着金属とを有する。
また前記付着金属は、 前記金属基材の摺動表面に前記金羼基材より軟質で且つ 摩擦係数の小さい金属粒子をショットブラストすることにより前記基材の摺動表 面の少なくとも 8 %以上を覆うように機械的に付着形成される。
本発明における金属基材は、 摺動材料として用いられる金属からなる基材であ れば特に限定はない。 例えば鉄系金属、 アルミニウム系金属、 マグネシウム系金 属が挙げられる。
特に金属基材として鉄系金属を含むものが強度的に好ましい。 例えば鉄、 鉄系 合金、 鉄系多孔質材、 及ぴ鉄系多孔質材にアルミニウム、 アルミニウム合金、 マ グネシゥムまたはマグネシゥム合金を铸包んだ複合材が挙げられる。
また金属基材は、 第 1の多孔質金属基材を前記第 1の多孔質金属基材ょりも軟 質の第 2の金属基材を铸包んだ複合材であると好ましい。 例えば第 1の多孔質金 属基材が鉄系金属、 第 2の金属基材がアルミニウム系金属とする複合材、 第 1の 多孔質金属基材が鉄系金属、 第 2の金属基材がマグネシゥム系金属とする複合材 が挙げられる。
特に金属基材は鉄系多孔質材にアルミニウム合金を铸包んだ複合材であると、 軽量で強度にも優れた基材となり好ましい。
金属基材の形状は、 特に限定はなく、 摺動部材としての用途に合わせたものと なる。 例えば本発明の摺動材料は、 一部表面が摺動面となるエンジンブロック、 油圧ポンプ、 コンプレッサー部品、 軸受け等に使用できる。
本発明における金属粒子は、 用いる金属基材より軟質であり且つ摩擦係数が小 さいものであれば特に限定はない。例えば、金属粒子としてアルミニウム、亜鉛、 すず、 金、 銅、 マグネシウム及ぴニッケルが用いられてもよい。
また金属粒子は、 粒子すべてが同じ金属でも良いし、 芯となる金属の表面に他 の金属をコーティングしたものでもよい。 その場合コーティングされた金属が用 いる金属基材より軟質で、 摩擦係数が小さいもの、 且つ低融点の金属であればよ レ、。
また金属基材が複合材の場合は、 金属粒子は、 前記第 1の多孔質金属基材より も軟質で且つ、 前記第 2の金属基材よりも硬質であることが好ましレ、。 例え 第 1の多孔質金属基材が鉄系金属、 第 2金属基材がアルミニウム系金属の場合、 金 属粒子としては、 亜鉛、 銅、 すず等が好ましい。
また金属粒子の粒径は 1 5 0 μ m以上 8 0 0 μ m以下が望ましい。 この範囲内 の粒径であることによって摺動表面にショットプラストされることによって摺動 表面に付着形成されやすい。
前記金属粒子はショットブラストされることによって摺動表面に機械的に付着 形成される。 前記金属粒子は前記金属基材と機械的合金化 (メカニカルァロイ二 ング) して機械的に付着される。 前記金属粒子は前記金属基材より軟質であるた め前記金属基材表面を荒らすことがなく、 金属基材の表面粗さ (R z ) をあまり 大きくしない。
金属基材が複合材の場合、 前記金属粒子は、 自身よりも硬質である第 1の多孔 質金属基材の摺動表面に機械的に付着形成される。 また前記金属粒子は自身より も軟質である第 2の金属基材の摺動表面には凹部を形成させることが出来る。 凹 部は潤滑油等のある摺動面においては油溜まりとなり、 さらに摺動特性を向上さ せることが出来る。
また前記付着金属は前記基材の摺動表面の少なくとも 8 %以上を覆っている。 摺動表面の少なくとも 8 %以上を覆っていることによって、 付着した金属粒子の 特性が表面特性として表れ、 摺動表面の摺動特性が改質される。
また摺動表面に前記金属基材ょり摩擦係数の小さい金属粒子が機械的に付着す ることにより摺動表面の摩擦係数を低減できる。
特に金属基材が鉄系多孔質材をアルミニウム合金で铸包んだ複合材の場合は、 金属粒子は亜鉛が好ましい。
鉄系多孔質材の形状は、 特に限定されない。 例えば円筒状、 リング状、 板状、 円板状でもよい。
鉄系多孔質材は、 空隙率 1 2 %以上 5 0 %以下が望ましい。 この範囲の空隙率 を持つ多孔質材であれば、 アルミユウム合金との密着性と強度とがともに良好な 摺動材料となる。
また鉄系多孔質材は、 摺動部材の全体に用いられていても良いし、 摺動面周辺 の一部に用いられていても良い。 . またアルミニウム合金は、 Cu、 Si、 Mg、 Zn、 Fe、 Mn、 Ni、 Sn、 Tiを含むことが 出来る。
例えばアルミニウム合金として J I S規格の A 2 0 0 0系及ぴ AD C 1 2、 A C 8 A、 A C 4 C、 A C 2 B等が挙げられる。
鉄系多孔質材にアルミニウム合金を錶包んだ複合材の製造方法は通常の鎵造方 法であり、 特に限定はない。
例えば目的に応じた所定形状になるように、 所定形状の型に、 摺動面に鉄系多 孔質材が露出する位置に設置し、 前記アルミニウム合金を、 所定圧力、 所定温度 で鎳造し、 鉄系多孔質材を錶包み、 なおかつ多孔質材の孔内まで、 アルミニウム 合金を鎵包む。
その後、 所定温度で冷却し、 摺動材料を型から取り出す。
次いで型から取り出した摺動材料の摺動面にホーユング加工を行う。 該ホ一二 ング加工を施すことにより摺動面は、 鉄系多孔質材表面とアルミニウム合金表面 の両方が存在する表面となる。
次にホーユング加工を施された摺動面に下記条件でショットブラスト処理を行 う。 - ショット粒材質:亜口、、 ショット粒の粒径 1 5 0 μ m以上 8 0 0 μ m以下、 エア圧: 0 . I M P a以上 0 . 3 M P a以下、 噴射距離: 5 0 mm以上 1 5 0 m m以下、 投射時間: 5秒以上 4 5秒以下。
上記条件は、 鉄系多孔質材を傷つけずに、 鉄系多孔質材の表面に亜鉛が機械的 に付着形成されることが出来る条件である。
そのため、 該摺動部材は、 鉄'系多孔質材の摺動表面に新たな傷を付けずに、 鉄 系多孔質材表面に亜鉛が機械的に付着されることにより、 低い摩擦係数を持つこ とが出来、 良好な摺動特性を持つことが出来る。
また上記条件は、 鉄系多孔質材を傷つけずに、 アルミニウム合金の表面にのみ 凹部を形成出来る条件でもある。 該形成された凹部は、 表面からの深さが 0 . 1 μ ηι〜5 ^ ιη、 凹部の直径は、 5 μ π!〜 1 0 0 ^ mである。
このように形成された凹部は、 潤滑剤等を使用した場合、 潤滑剤等の油溜まり となることが出来る。 そのため、 該摺動部材は、 表面に新たな傷を付けずに、.潤 滑剤等の使用時に潤滑剤等を適正量保持できるため、 低レ、摩擦係数を持つことが 出来、 良好な摺動特性を持つことが出来る。 .
また必要な面に部分的にショットプラスト処理を行うことが出来るので、 従来 から行われている電解腐食処理に比べ、 低コストで簡便に処理を行うことが出来 る。 '
本発明の摺動部材は、 上記摺動材料を用いたものである。 本発明における摺動 部材は、 所定の形状を有する。 所定形状は、 特に限定はなく、 摺動部材としての 用途に合わせたものとなる。 例えば本発明の摺動部材は、 一部表面が摺動面とな るエンジンブロック、油圧ポンプ、コンプレッサー部品、軸受け等に使用できる。 実施例
以下に、 摺動部材の試験例を説明する。 試験例として金属基材は鉄系の多孔質 材にアルミニウム合金を铸包んだものを用いた。 図 1に試験例の摺動部材の製造 方法の一部説明図 (断面図) を示す。
鉄系の多孔質材である、 空隙率 1 8 %の円筒状の鉄系多孔質焼結体 1を用意し た。 鉄系多孔質焼結体 1の材質は、 純鉄 (K I P 4 4 0 B ) を用いた。 鉄系多孔 質焼結体 1の形状は直径 8 6 mmの円筒形状であり、 高さ 1 6 O mm、 筒の厚み 5 mmのものを用いた。
図 1に示すように、上記鉄系多孔質焼結体 1をシリンダープロックの金型 2に、 摺動面に鉄系多孔質焼結体 1が面するように設置した。 金型 2はシリンダープロ ックの金型であり、 図 1に示すような筒状の形状となっている。
この金型 2にアルミニウム合金 (A D C 1 2 ) を、 鉄系多孔質焼結体 1の外周 面側と底面から注湯した。 このときの錡造条件は、 溶湯温度 6 8 0 °C、 型温 2 5 0 °C、 鉄基多孔質焼結体 1の予熱 8 0 0 °C、 溶湯圧力 8 3 M P aとした。
このようにして、 アルミニウム合金溶湯を、 鉄系多孔質焼結体 1の外周面側と 底面から内部へ铸包んだ。 このようにして得られたシリンダーボア 3の摺動内周 面を、 ホーユングマシンでホーユング加工した。
上記のように製造されたシリンダーボア 3を用いて各種条件でショットブラス ト処理を行いその表面観察を行った。 . ショットブラスト処理は、 前記シリンダーボア 3の摺動面である筒の内面にシ ョットブラスト装置 4を用いて行った。 ショットプラスト装置は、 新東ブレータ 一社製を用いた。
表 1に実施したショットブラスト処理条件を示す。 また図 2に表 1に示した条 件でショットブラスト処理を行った一部のシリンダーボアの摺動内周面表面の E P M Aマツピング像( E P M A:電子線プローブマイクロアナライザ一)を示す。 '〔表 1〕
Figure imgf000014_0001
図 2には表 1の No. 8 (記載 No. 2-4) である金属粒子として亜鉛を用 いたものの表面の E PMAマッピングを記載した。 EP'MAは、 島津製作所製 E PMA- 1600を用いて行った。 図 1の左上図は各組成金属の元素分布像を示 し、右上、右下、左下図はそれぞれアルミニウム、亜鉛、鉄の元素分布像を示す。 各 4図はどれも同一場所をマッピングしたものである。 左上図は、 金属の各組成 をマッピングしたものであり、 比重が重い金属が白く記載され、 軽い金属が黒く 記載される。 この場合黒で表されているのがアルミニウム合金、 白く表されたも のが亜鉛、 白っぽい灰色で記載されたものが鉄を表す。
同様に右上図はアルミニウムの元素分布像を示し、 右上図において'白い部分が アルミニウムを示す。 左下図は鉄の元素分布像を示し、 白く示される部分が鉄を 示す。 また右下図は亜鉛の元素分布像を示し、 白く見える部分が亜鉛を示す。 この 4図から、 亜鉛はアルミニゥムではなく鉄部分に付着していることが分か る。
各ショットブラスト処理条件で行った各試料の表面粗さを接触式表面粗さ計で 測定し表 1の R z (μπι) の欄に記載した。
表 1の No. 1 (記載 No. 0) (以下 No. は記載 No. を用いて説明する) は、 ホーユングマシンでホーユング加工し、 ショットブラスト処理を行わなかつ たものである。
表 1の記載 N o . 1は、 ショット粒子をアルミナ砥粒 # 80 (株式会社新東ブ レーター製、品番 A F 80中心粒径約 190 μ m (粒径範囲 1 50〜212 /^πι) とし表 1に記載の条件でショットブラスト処理を行ったものである。 表 1に見ら れるように表面粗さ (R z ) は 1 6. 9 ^ mと大きなものとなっている。
表 1の記載 N o . 2、 2— 1、. 2— 2はショット粒子をスチール (株式会社新 東ブレーター製、 品番 S B— 3、 中心粒径約 3 0 0 μ m (粒径範囲 1 8 0〜 5 0 O u m) ) とし、 表 1に記載のショット条件でショットブラスト処理を行ったも のである。
スチールのショット粒子を用いているため、 ショットブラスト処理により全体 的にアルミニウム合金も鉄系多孔質焼結材も表面が削られ、 表 1に見られるよう に表面粗さ R z力 S8. 8 /i m以上と大きな値となった。
表 1の記載 N o . 3、 2— 3、 2— 4はショット粒子を亜鉛 (株式会社新東ブ レーター製、 品番 AD— 4、 中心粒径約 4 0 0 i m (粒径範囲 2 9 7〜7 1 0 μ m) ) とし、 表 1に記載のショット条件でショットブラスト処理を行ったもので ある。
表 1に記載のように表面粗ざは 5 μ m未満と小さなものとなつた。 亜鉛のショ ット粒子は、 アルミニウム合金より硬く鉄系多孔質焼結材より軟らかいため、 鉄 を傷つけずアルミニゥム合金部分を選択的に切削することが出来るため表面粗さ (R z) をあまり大きくしなかったと考えられる。
また図 5に表 1に示した条件でショットプラスト処理を行った一部のシリンダ 一ボアの摺動内周面表面の S EM観察結果を示す。 また表 1に記載の記載 No.は図 5の S EM写真の数字に対応する。
表 1、 図 5の N o . 1 (記載 N o . 0) (以下 N o . は記載 N o . を用い 説 明する) は、 ホーエングマシンで鏡面加工し、 ショットプラスト処理を行わなか つたものである。図 5の記載 N o. 0の S EM写真に見られるように試料表面は、 ホーユング加工のクロスハッチ条痕が見られるが S EM写真上で黒く見られるは ずの凹部は観察されなかった。
鏡面加工されたシリンダーボアの摺動内周面を観察すると、 鉄系多孔質焼結体 の空隙部にアルミニゥム合金が入り込んだ表面が観察された。 従って表面には、 鉄系多孔質焼結体表面とアルミニゥム合金表面の両者が存在していた。
図 5の記載 N o . 1は、ショット粒子をアルミナ(株式会社新東ブレーター製、 品番 A F 8 0粒子径約 2 0 0 μ ηι) とし、 表 1に記載の条件でシヨットブラスト 処理を行ったものの表面 S EM写真を表す。
アルミナは鉄及ぴアルミニウム合金よりも固いため図 5の記載 No. 1にみら れるように、 表面はアルミニウム合金も鉄系多孔質焼結材も全体的にアルミナ粒 子によって削られ、 表面は全体的に大きな凹凸ができているのが観察される。 ま た表 1に見られるように表面粗さ (R z) は 16. 9 μιηと大きなものとなって いる。
図 5の記載 No. 2— 2はショット粒子を鉄 (株式会社新東ブレーター製、 品 番 S B— 3、 粒子径約 300 / m) とし、 表 1に記載のショット条件でショット プラスト処理を行ったものの表面 S EM写真を表す。
鉄のショット粒子を用いているため、 ショットブラスト処理により全体的にァ ルミニゥム合金も鉄系多孔質焼結材も表面が削られ、 表 1に見られるように表面 粗さ R zが 8. 8 m以上となった。
表面粗さは大きい値となるが、 図 5の記載 No. 2— 2に見られるように、 表 面に細かい回部は少ない。
図 5の記載 N o. 2— 4はショット粒子を亜鉛 (株式会社新東ブレーター製、 品番 AD— 4、 粒子径約 400 μπι) とし、 表 1に言己載のショット条件でショッ トブラスト処理を行ったものの表面 SEM写真を表す。
表 1に記載のように表面粗さは 5 μ m未満であり、 図 5の記載 N o. 2— 4に 見られるように表面に細かい凹部が多数存在することが観察された。 凹部は様々 な形状が見られるが、 略円形状とすると直径 2 !〜 20 Atm程度の凹部が観察 された。
亜鉛のショット粒子は、 アルミニウム合金より硬く鉄系多孔質焼結材より軟ら かいため、 鉄を傷つけずアルミニウム合金部分を選択的に切削することが出来る ため表面粗さ (R z) をあまり大きくせず、 細かい凹部を多数形成出来たと考え られる。
上記条件で作製した各シリンダーボア試料を用いて摺動実験を行った。
摺動実験は、 摺動させる相手材をピストンリング (窒化 SUS) とし、 往復摺 動試験機を用いて、 ストローク ·速度: 40 mm * 500 c pm、 荷重: 3 k g f 、 面圧最大へルツ応力: 20 k g f /mm2, 試験温度: 70°Cの条件で摺動 試験を行い、 焼付前の摩擦係数と焼き付き時間 (分) を測定した。 潤滑油として
CC級ディーゼル用 Eノ Gオイル、 塗布: 0. 13m g/ cm2を用いた。
表 2に、 各試料の焼付前の摩擦係数と焼き付き時間を表した。 また図 3に表面 粗さ (Rz) と焼き付き時間 (分) とを比較したグラフ、 図 4に表面粗さ (Rz) と焼き付き前の摩擦係数とを比較したグラフを示す。
〔表 2〕
Figure imgf000017_0001
摺動試験は試料の記載 N o . 0、 1、 3、 2— 3、 2— 4で行った。
ショットブラスト処理を行っていない記載 No. 0の試料は、表面粗さ (R z) が 0. 7 μπιであり、 摺動試験において 0. 15分という短時間で焼き付いてし まった。 また焼付前の摩擦係数も 0. 64という高いものであった。
またアルミナを用いてショットブラスト処理を行った記載 No. 1の試料は、 表面粗さ (Rz) が 16. 9 μπιという高いものであり、 SEM観察において大 きな凹凸が見られたものである。 記載 No. 1.の試料は、 摺動試験において焼付 き時間は 29分であり、 焼付前の摩擦係数は 0. 3であった。
それに対し亜鉛を用いてショットブラスト処理を行った記載 No.3、 2— 3、 2— 4の試料は、 表面粗さ (Rz) が 2〜5 μηιであり、 S ΕΜ観察において多 数の凹部が観察されたものである。 記載 No. 3、 2— 3、 2— 4の試料は、 R zが低いにもかかわらず、 焼き付き時間が他の試料に比べ大幅に向上した。 また 焼付前の摩擦係数も他の試料に比べ低くなった。
亜 をショット粒子に用いた試料は、 鉄系焼結体表面を傷つけて表面粗さを大 きくすることなく、 鉄系焼結体表面に亜鉛が付着形成されたことにより摩擦係数 を低減できたと考えられる。 またさらに表面に凹部が多数存在することにより、 凹部が油溜まりとなって、 潤滑油を保持出来たと考えられる。 そのため摺動試験 において試料全体の摩擦係数を小さくでき、 これにより焼き付き時間を長くでき たと考えられる。 また E P MAマツピングから計算された亜鉛の付着面積が 8 %以上であること により効果があった。
このように上記摺動部材は、 摺動面において摩擦係数の大きな金属面に低摩擦 係数の付着金属を 8 %以上付着することが出来たことによって、 表面粗さを大き くすることなく、 低い摩擦係数を持つことによって、 摺動特性を向上させる摺動 部材となることが出来る。
またさらにこのように上記摺動部材は、 摺動面において上記凹部が油溜まりを 形成することによって、 潤滑剤等を適正量保持出来、 表面を新たに油保持用の傷 をつけることなく、 低い摩擦係数を持ちながら、 油の潤滑効果を活用できる摺動 部材となることが出来る。

Claims

請求の範囲
1 . 金属基材と、 前記金属基材の摺動表面に前記金属基材より軟質で且つ摩擦 係数の小さい金属粒子をショットブラス卜することにより前記金属基材の摺動表 面の少なくとも 8 %以上を覆うように機械的に付着形成された付着金属と、 を有 することを特徴とする摺動材料。
2 . 前記金属基材は、 鉄、 鉄系合金、 鉄系多孔質材、 及び鉄系多孔質材にアル ミニゥム、 アルミニウム合金、 マグネシウムまたはマグネシウム合金を铸包み、 摺動表面に前記鉄系多孔質材を露出させた複合材のうちのいずれかひとつであり、 前記金属粒子は、 亜鉛、 すず、 金、 銅及ぴマグネシウムのうちの少なくとも一種 を含む請求項 1に記載の摺動材料。
3 . 前記金属基材は、 第 1の多孔質金属基材に前記第 1の多孔質金属基材より も軟質の第 2の金属基材を铸包み、 摺動表面に前記第 1の多孔質金属基材を露出 させた複合材であり、 前記金属粒子は前記第 1の多孔質金属基材ょりも軟質で且 つ、 前記第 2の金属基材よりも硬質であり、 前記付着金属は、 前記金属粒子をシ ヨットブラストすることにより前記第 1の多孔質金属基材の摺動表面に機械的に 付着形成される請求項 1に記載の摺動材料。 .
4 . 前記第 1の多孔質金属基材は鉄系多孔質材であり、 前記第 2の金属基材は アルミニウム合金であり、 前記金属粒子は亜鉛であり、 前記付着金属は前記摺動 表面の前記鉄系多孔質材面に機械的に付着形成されている請求項 3に記載の撂動 材料。
5 . 前記第 2の金属基材の前記摺動表面は前記金属粒子^ショットブラストす ることにより形成された凹部を有する請求項 3又は 4に記載の摺動材料。
6 . 前記ショットブラストの処理条件は下記条件である請求項 1〜5のいずれ かに記載の摺動材料。
金属粒子の粒径 1 5 0 μ m以上 8 0 0 μ m以下
エア圧: 0 . I M P a以上 0 . 3 M P a以下
噴射距離: 5 0 mm以上 1 5 0 mm以下
投射時間: 5秒以上 4 5秒以下 '
7 . 請求項 1〜6のいずれかに記載の摺動材料を用いた所定形状を有する摺動 部材。
8 . 前記摺動部材がシリンダーポアである請求項 7に記載の摺動部材。
PCT/JP2007/057365 2006-04-12 2007-03-27 摺動材料及びその摺動材料を用いた摺動部材 WO2007116852A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112007000885T DE112007000885T5 (de) 2006-04-12 2007-03-27 Gleitmaterial und Gleitelement, das dieses Gleitmaterial verwendet
US12/226,124 US8252733B2 (en) 2006-04-12 2007-03-27 Sliding material and sliding member using the sliding material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-109699 2006-04-12
JP2006109707A JP4848821B2 (ja) 2006-04-12 2006-04-12 摺動部材
JP2006-109707 2006-04-12
JP2006109699A JP4736920B2 (ja) 2006-04-12 2006-04-12 摺動材料

Publications (1)

Publication Number Publication Date
WO2007116852A1 true WO2007116852A1 (ja) 2007-10-18

Family

ID=38581142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057365 WO2007116852A1 (ja) 2006-04-12 2007-03-27 摺動材料及びその摺動材料を用いた摺動部材

Country Status (3)

Country Link
US (1) US8252733B2 (ja)
DE (1) DE112007000885T5 (ja)
WO (1) WO2007116852A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT509459B1 (de) * 2010-04-15 2011-09-15 Miba Gleitlager Gmbh Antifrettingschicht
DE102011106564A1 (de) * 2011-07-05 2013-01-10 Mahle International Gmbh Verfahren zur Herstellung einer Zylinderlauffläche sowie Zylinderlaufbuchse
CN104169599B (zh) * 2012-03-27 2015-08-26 千住金属工业株式会社 滑动构件
EP2913125B1 (en) 2012-10-25 2018-10-03 Senju Metal Industry Co., Ltd Sliding member and production method for same
WO2014125621A1 (ja) 2013-02-15 2014-08-21 千住金属工業株式会社 摺動部材及び摺動部材の製造方法
JP5713074B2 (ja) 2013-09-27 2015-05-07 千住金属工業株式会社 摺動部材
JP5713073B2 (ja) 2013-09-27 2015-05-07 千住金属工業株式会社 摺動部材及び摺動部材の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150085A (ja) * 1983-02-17 1984-08-28 Mitsubishi Heavy Ind Ltd 亜鉛被覆鋼材の製造方法
JPH08253852A (ja) * 1995-03-16 1996-10-01 Toyota Motor Corp アルミニウム合金基体への耐摩耗性皮膜の形成方法
JP2001158974A (ja) * 1999-12-03 2001-06-12 Fuji Seisakusho:Kk 防食方法
JP2004002912A (ja) * 2002-05-31 2004-01-08 Nippon Piston Ring Co Ltd 鉄系焼結カムロブ材
JP2005163145A (ja) * 2003-12-04 2005-06-23 Toyota Industries Corp 複合化鋳物、鋳包み用鉄基多孔質体およびそれらの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126752A (ja) 1983-01-07 1984-07-21 Taiho Kogyo Co Ltd 鉄系摺動材料およびその製法
JPS631383A (ja) 1986-06-18 1988-01-06 Omron Tateisi Electronics Co 圧電アクチユエ−タ
JPS63279959A (ja) 1987-05-13 1988-11-17 Hitachi Ltd ブレ−キ付きモ−タを備えた搬送システム
JPH06279959A (ja) 1993-03-30 1994-10-04 Toshiba Tungaloy Co Ltd 鉄系焼結合金およびその製造方法
JPH09189359A (ja) 1996-01-09 1997-07-22 Mitsubishi Materials Corp アルミニウム合金製シリンダライナー鋳物
JP3319276B2 (ja) 1996-04-01 2002-08-26 トヨタ自動車株式会社 摺動部材の表面処理方法
JP3357586B2 (ja) 1997-10-31 2002-12-16 株式会社不二機販 摺動部の耐摩耗被膜成形物及び被膜成形方法
JPH11207622A (ja) 1998-01-23 1999-08-03 Daido Steel Co Ltd 摺動部を有する機械部品の製造方法
JP2002283037A (ja) 2001-03-27 2002-10-02 Toyota Industries Corp 鋳ぐるみ部材、シリンダライナ用鋳ぐるみ部材およびそれらの製造方法ならびにシリンダブロック
JP2003013163A (ja) 2001-07-03 2003-01-15 Toyota Motor Corp 粉末アルミニウム合金製摺動部材及びシリンダとピストンリングの組み合わせ
JP2003328056A (ja) 2002-05-13 2003-11-19 Toyota Industries Corp 多孔質鋳込部材、鋳造部材、粉末成形体とその製造方法、および粉末成形用金型
JP2005040893A (ja) 2003-07-22 2005-02-17 Nissan Motor Co Ltd ブラスト加工方法およびブラスト加工装置
FR2863186B1 (fr) * 2003-12-04 2006-12-15 Toyota Jidoshokki Kk Element coule composite, substance poreuse a base de fer pour elements coules composites et carter sous pression procedes de fabrication de ce carter sous pression element constitutif de compresseurs
JP3993204B2 (ja) * 2005-06-07 2007-10-17 株式会社不二機販 摺動部の表面処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150085A (ja) * 1983-02-17 1984-08-28 Mitsubishi Heavy Ind Ltd 亜鉛被覆鋼材の製造方法
JPH08253852A (ja) * 1995-03-16 1996-10-01 Toyota Motor Corp アルミニウム合金基体への耐摩耗性皮膜の形成方法
JP2001158974A (ja) * 1999-12-03 2001-06-12 Fuji Seisakusho:Kk 防食方法
JP2004002912A (ja) * 2002-05-31 2004-01-08 Nippon Piston Ring Co Ltd 鉄系焼結カムロブ材
JP2005163145A (ja) * 2003-12-04 2005-06-23 Toyota Industries Corp 複合化鋳物、鋳包み用鉄基多孔質体およびそれらの製造方法

Also Published As

Publication number Publication date
US8252733B2 (en) 2012-08-28
US20090305917A1 (en) 2009-12-10
DE112007000885T5 (de) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4736920B2 (ja) 摺動材料
JP4503097B2 (ja) Dlc被覆摺動部材及びその製造方法
WO2007116852A1 (ja) 摺動材料及びその摺動材料を用いた摺動部材
JP4293370B2 (ja) バルブリフター
JP5221957B2 (ja) 軸受材料および軸受材料を製造するための方法
JP5903085B2 (ja) シリンダボアとピストンリングの組合せ
KR20140034142A (ko) 고체 윤활제 입자의 분산물을 갖는 용사 코팅
JP2000505178A (ja) ディーゼル型内燃機関内のシリンダライナー、ピストン、ピストンスカート部又はピストンリングのようなシリンダ要素及び該エンジン用のピストンリング
EP3051157B1 (en) Sliding member
Feng Su et al. Friction and counterface wear influenced by surface profiles of plasma electrolytic oxidation coatings on an aluminum A356 alloy
EP2138695A2 (en) Cylinder block, internal combustion engine, transportation apparatus, and method for producing cylinder block
US8813825B2 (en) Permanent mold for continuous casting
JP4848821B2 (ja) 摺動部材
CN111542626B (zh) 滑动轴承元件
KR101862526B1 (ko) 다이캐스트용 피복 금형의 제조 방법
JP2003013163A (ja) 粉末アルミニウム合金製摺動部材及びシリンダとピストンリングの組み合わせ
JP2001280497A (ja) アルミニウム合金製シリンダとピストンリングの組合せ
JP2002147459A (ja) オーバレイ層を改質したすべり軸受
JP2004060619A (ja) 内燃機関用ピストンリングの組合せ
WO2020110366A1 (ja) シリンダライナ及びその製造方法
JP2007002286A (ja) 摺動部材と潤滑油との組合せ及び摺動方法
JP7435803B2 (ja) 溶射被膜及び該溶射被膜の製造方法
JP2826751B2 (ja) 内燃機関用アルミニウム合金複合部材
JP7343843B2 (ja) 摺動機構
WO2021161728A1 (ja) 摺動機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120070008857

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007000885

Country of ref document: DE

Date of ref document: 20090319

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07740801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12226124

Country of ref document: US