WO2007111261A1 - Electron-beam recording device, and beam adjusting method - Google Patents

Electron-beam recording device, and beam adjusting method Download PDF

Info

Publication number
WO2007111261A1
WO2007111261A1 PCT/JP2007/056058 JP2007056058W WO2007111261A1 WO 2007111261 A1 WO2007111261 A1 WO 2007111261A1 JP 2007056058 W JP2007056058 W JP 2007056058W WO 2007111261 A1 WO2007111261 A1 WO 2007111261A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
scale error
scale
speed fluctuation
rotational speed
Prior art date
Application number
PCT/JP2007/056058
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Kitahara
Yasumitsu Wada
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008507470A priority Critical patent/JPWO2007111261A1/en
Publication of WO2007111261A1 publication Critical patent/WO2007111261A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2449Error correction using hard-stored calibration data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Definitions

  • the present invention relates to a beam recording apparatus and a beam adjusting method, and more particularly to an electron beam recording apparatus and an electron beam adjusting method for manufacturing a master disk of a high-speed rotating recording medium such as a magnetic disk using an electron beam.
  • a beam recording apparatus that performs lithography using an exposure beam such as an electron beam or a laser beam is a magnetic recording represented by a digital versatile disc (DVD), an optical disc such as a Blu-ray disc, and a hard disc. It is widely applied to master production equipment for large-capacity discs such as media.
  • DVD digital versatile disc
  • optical disc such as a Blu-ray disc
  • hard disc a hard disc
  • a powerful beam recording apparatus is a disk substrate that serves as a master in manufacturing the above-described disk.
  • a resist layer is formed on the recording surface, and while rotating the substrate, a beam spot is appropriately sent in a radial direction relative to the substrate recording surface, thereby forming a spiral or concentric circle. Control is made so that a latent image is formed on the resist by drawing a track track on the substrate recording surface.
  • the rotation unevenness (rotational speed fluctuation) of the disk substrate (that is, the turntable) used in the optical disk master disk is, as is well known, a synchronous rotational speed fluctuation that is a fluctuation component synchronized with the rotation of the disk substrate, There are irregular asynchronous rotational speed fluctuations that do not depend on the rotation angle of the substrate.
  • Asynchronous rotation unevenness correction technology is a technology that can improve the recording position accuracy relative to adjacent tracks, and is effective, for example, when drawing radially aligned pits.
  • this technology it is not possible to correct the rotation unevenness (synchronous rotational speed fluctuation) synchronized with the rotation of the substrate.
  • Patent Document 1 JP-A-6-76293 (Page 4, Figure 1)
  • Patent Document 2 JP-A-8-212552 (Page 4, Fig. 1)
  • Patent Document 3 JP 2000-20964 (Page 4, Fig. 2)
  • the present invention has been made in view of the above points, and corrects true rotation unevenness including synchronous rotation unevenness (synchronous rotational speed fluctuation) with extremely high accuracy, and has excellent absolute recording position accuracy.
  • One example is to provide a disk master exposure apparatus.
  • An electron beam recording apparatus is an electron beam recording apparatus that irradiates an electron beam toward a substrate while rotating the turntable on which the substrate is placed, and is a scale indicating the rotation angle position of the turntable. And at least three read heads that are arranged at a predetermined relative angle on a circumference centered on the rotation center of the turntable, each reading the scale and generating a read signal, and the read signal.
  • the phase difference detector detects a phase difference between the read signal other than the reference read signal and the reference read signal among the read signals of the at least three read heads, and the phase difference
  • a scale error calculation unit that calculates a scale error that is an angular position error of the scale, and based on the scale error and the read signal.
  • a rotational speed variation calculating unit for calculating a rotational speed variation of Nte one table is characterized by having a beam irradiation position adjuster for adjusting the irradiation position of the rotational speed variation based on Dzu !, electron Te beam.
  • the method according to the present invention is a method for calculating a rotational speed fluctuation of a turntable in an electron beam recording apparatus that irradiates an electron beam toward the substrate while rotating the turntable on which the substrate is placed.
  • the scale is read by at least three reading heads arranged at a predetermined relative angle on the circumference centered on the rotation center of the turntable and the scale on which the scale indicating the rotation angle position of the turntable is formed.
  • a read signal generation step for generating each read signal at the predetermined relative angle; and 1 of the read signal as a reference read signal, and a read signal other than the reference read signal among the at least three read signals at a predetermined relative angle;
  • a phase difference detection step for detecting a phase difference with respect to the reference reading signal; and an error in the angular position of the scale based on the phase difference.
  • scale error calculation step of calculating a Der Ru scale error is characterized by having a rotation speed variation de San step calculates the rotational speed fluctuation of the turntable based on the scaled errors and the upper Symbol read signal.
  • FIG. 1 is a block diagram schematically showing the configuration of an electron beam recording apparatus that is an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a configuration for detecting a synchronous rotational speed variation and adjusting an irradiation position of an electron beam (EB) based on the detection result.
  • EB electron beam
  • FIG. 3 is a top view schematically showing the arrangement of the encoder scale and the read heads (ENC-1 to ENC-4).
  • FIG. 4 is a block diagram showing the configuration of the relative angular position error detection unit and the scale error calculation unit.
  • FIG. 5 is a diagram for explaining the configuration and operation of a rotational speed variation calculator.
  • FIG. 6 is a diagram showing a case where exposure beam irradiation position correction is performed by exposure beam blanking control.
  • FIG. 7 is a block diagram showing a case where exposure beam irradiation position correction is performed while updating scale error data ⁇ ( ⁇ ) in real time during exposure.
  • FIG. 8 shows the relationship between the number of read heads and the undetectable Fourier order.
  • FIG. 9 is a flowchart showing a procedure for obtaining scale error data.
  • FIG. 10 is a flowchart showing a procedure of a method of correcting a rotational speed variation by measuring and storing a scale error in advance.
  • FIG. 11 is a flowchart showing a procedure of a method for correcting a rotational speed variation while calculating a scale error in real time.
  • FIG. 12 is a diagram schematically showing a configuration of a patterned magnetic recording disk.
  • FIG. 13 is a diagram showing a process of manufacturing a pattern recording medium using an imprint mold manufactured by the electron beam recording apparatus according to the present invention.
  • FIG. 1 is a block diagram schematically showing a configuration of an electron beam recording apparatus 10 that is an embodiment of the present invention.
  • the electron beam recording apparatus 10 is a disk mastering apparatus that uses an electron beam to create a master disk for manufacturing a hard disk. [Configuration and operation of electron beam recording apparatus]
  • the electron beam recording apparatus 10 includes a vacuum chamber 11, a driving device that places, rotates, and translates a substrate 15 disposed in the vacuum chamber 11, an electron beam column 20 attached to the vacuum chamber 11, and a substrate Various circuits and control systems for driving control and electron beam control are provided.
  • the substrate 15 for the disk master is coated on the surface with a resist and placed on the turntable 16.
  • the turntable 16 is rotationally driven with respect to the vertical axis of the main surface of the disk substrate by a spindle motor 17 which is a rotational drive device that rotationally drives the substrate 15.
  • the spindle motor 17 is provided on a feed stage (hereinafter also referred to as X stage) 18.
  • the stage 18 is coupled to a feed motor 19 that is a transfer (translation drive) device, and can move the spindle motor 17 and the turntable 16 in a predetermined direction (X direction) in a plane parallel to the main surface of the substrate 15. It ’s like that.
  • the X ⁇ stage is constituted by the X stage 18, the spindle motor 17 and the turntable 16.
  • the X stage 18 is driven by a feed motor 19, and the feed amount of the X stage 18, which is the drive amount, is controlled by a feed control unit 37.
  • the feed control unit 37 operates under the control of the controller 30 that controls the entire electron beam recording apparatus 10.
  • the turntable 16 is made of a dielectric material, for example, a ceramic cage, and has a chucking mechanism such as an electrostatic chucking mechanism (not shown) for holding the substrate 15. By such a chucking mechanism, the substrate 15 placed on the turntable 16 is securely fixed to the turntable 16.
  • a chucking mechanism such as an electrostatic chucking mechanism (not shown) for holding the substrate 15.
  • a reflecting mirror 35A for reflecting the measurement laser light from the laser interferometer 35 is disposed on the X stage 18.
  • the vacuum chamber 11 is installed via a vibration isolator (not shown) such as an air damper, and transmission of vibration from the outside is suppressed.
  • the vacuum chamber 11 is connected to a vacuum pump (not shown), and the interior of the vacuum chamber 11 is set to a vacuum atmosphere at a predetermined pressure by evacuating the chamber. Yes.
  • an electron gun (emitter) 21 for emitting an electron beam a convergence lens 22, blanking electrode 23, aperture 24, beam deflection electrode 25, focus lens 27, and objective lens 28 are arranged in this order.
  • the electron gun 21 is a cathode to which a high voltage supplied from an acceleration high-voltage power supply (not shown) is applied.
  • an electron beam (EB) accelerated to several lOKeV is emitted by (not shown).
  • the converging lens 22 converges the emitted electron beam.
  • the blanking electrode 23 performs on-Z-off switching (ONZO FF) of the electron beam based on the modulation signal from the blanking control unit 31. That is, by applying a voltage between the blanking electrodes 23 to greatly deflect the passing electron beam, the electron beam can be prevented from passing through the aperture 24 and the electron beam can be turned off.
  • the beam deflection electrode 25 can control the deflection of the electron beam at high speed based on the control signal from the beam deflection unit 33. With this deflection control, the position of the electron beam spot relative to the substrate 15 is controlled.
  • the focus lens 28 is driven based on the drive signal from the focus control unit 34, and the focus control of the electron beam is performed.
  • the vacuum chamber 11 is provided with a height detection unit 36 for detecting the height of the surface of the substrate 15.
  • the photodetector 36B includes, for example, a position sensor, a CCD (Charge Coupled Device), etc., and receives the light beam emitted from the light source 36A and reflected by the surface of the substrate 15, and the received light signal has a height. This is supplied to the detector 36.
  • the height detector 36 detects the height of the surface of the substrate 15 based on the received light signal and generates a detection signal.
  • a detection signal indicating the height of the surface of the substrate 15 is supplied to the focus control unit 34, and the focus control unit 34 performs focus control of the electron beam based on the detection signal.
  • the laser interferometer 35 measures the displacement of the X stage 18 using laser light emitted from the light source in the laser interferometer 35, and the measured data, that is, the feed (X direction) position of the tee 18 The data is sent to the stage drive unit 37.
  • the spindle motor 17 is controlled by the rotation control unit 40.
  • the spindle motor 17 is provided with a rotary encoder (R—ENC) 41.
  • R—ENC rotary encoder
  • the rotation signal includes an origin signal indicating the reference rotation position of the substrate 15 and a pulse signal (rotary encoder signal) for each predetermined rotation angle from the reference rotation position.
  • the rotation signal Supplied to the controller 40.
  • the feed control unit 37 generates position data representing the position of the electron beam spot on the substrate based on the feed position data from the stage 18 and supplies the position data to the controller 30.
  • the controller 30 is supplied with track pattern data used for discrete track media, patterned media, etc., and data (record data) RD to be recorded (exposed).
  • the controller 30 includes a blanking control unit 31, a beam deflection unit 33, and a focus control unit.
  • a blanking control signal CB, a deflection control signal CD, and a focus control signal CF are respectively sent to 34, and data recording (exposure or drawing) control is performed based on the recording data RD. That is, the resist on the substrate 15 is irradiated with an electron beam (EB) based on the recording data RD, and a latent image is formed only at a portion exposed by the electron beam irradiation, and recording (exposure) is performed.
  • EB electron beam
  • Such recording control is performed based on the feed position data and the rotation position data described above.
  • FIG. 2 is a diagram schematically showing a configuration for detecting a rotational speed variation and adjusting the irradiation position of the electron beam (EB) based on the detection result.
  • a substrate 15 (not shown) is placed on the main surface (xy plane) of the turntable 16, and as shown in Fig. 2, a spindle motor 17 serves as a central axis (z direction: rotation central axis RA). Rotated around).
  • a disk-shaped scale (hereinafter referred to as an encoder scale) 41S is attached to the rotary shaft 17A of the spindle motor 17 as a reference scale.
  • Encoder scale 41 S rotation axis is spindle motor 17 rotation center axis R Installed to match A.
  • the encoder scale 41S is provided with at least three reading heads. For example, in the case shown in FIG. 2, four read heads 41A, 41B, 41C, and 41D are provided.
  • FIG. 3 is a top view schematically showing the arrangement of the encoder scale 41S and the read head 41A (ENC-1), 41B (ENC-2), 41C (ENC-3), 41D (ENC-4). is there.
  • reading head 41A (ENC-1) is used as a reference (angle position 0 °)
  • reading head 41B (ENC-2) is used as a reference (angle position 0 °)
  • 41 C (ENC-3) and 41D (ENC-4) are 180 ° and 90 °, respectively. It is arranged at the angular positions of ° and 45 °.
  • Equation 1 [0041] can be arranged as follows.
  • the encoder scale 41S is formed with slit-like scale notches (scale marks) 41R in which notches (scales) are formed at predetermined intervals. That is, the scale step 41R is formed with a step (scale) that equally divides the circumference (angle) around the rotation center of the encoder scale 41S.
  • Each of the read heads 41A, 41B, 41C, and 41D detects the step (pattern) of the scale step 41R, and reads the read signals SA, SB, SC, and SD according to the cycle of the formed step. (Hereinafter also referred to as a relative angle position error detection unit.) 4 That is, the encoder scale 41S and the read heads 41A to 41D function as a single encoder (R—ENC) 41.
  • the reading heads 41A to 41D are configured as optical reading heads that optically detect the increments of the scale increment 41R, but are not limited to a powerful detection method.
  • the scale step 41R may be made of a magnetic material, and a magnetization pattern that equally divides the circumference around the rotation center of the encoder scale 41S may be formed.
  • the reading heads 41A to 41D may be configured as magnetic reading heads.
  • the rotation control unit 40 is provided with a relative angular position error detection unit 43, a scale error calculation unit 45A, a rotation speed fluctuation calculation unit 45, and the like.
  • the relative angular position error detection unit 43 uses one of the read signals SA, SB, SC, SD from the read heads 41A to 41D as a reference, and the reference read signal and the other read signals.
  • the phase difference between the signals read from the head is detected, and the detected phase difference (diagonal position error) ⁇ ⁇ , 6 2, S 3 is supplied to the scale error calculation unit 45 ⁇ .
  • the scale error calculation unit 45 ⁇ calculates the scale error ⁇ ( ⁇ ) based on the phase difference ⁇ diagonal position error) ⁇ ⁇ , 62, S3, and stores it in the memory.
  • the rotation speed fluctuation calculator 45 calculates the rotation speed fluctuation data VD ( ⁇ ) based on the stored scale error ⁇ ( ⁇ ) data and the current rotation angle error data PV ( ⁇ ) during rotation (exposure). , Supplied to the controller 30.
  • the rotation of the spindle motor 17 that rotates the turntable 16 is controlled by a motor control circuit 47.
  • the motor control circuit 47 operates based on the reference rotation signal RR from the reference rotation signal generator 46 and the read signal from the rotary encoder 41, for example, one of the read heads 41A to 41D.
  • the reference rotation signal from the reference rotation signal generator 46 is supplied to the rotation speed fluctuation calculator 45.
  • reference rotation signal generator 46 and the motor control circuit 47 may be provided in the rotation control unit 40, for example.
  • FIG. 4 is a block diagram showing the configuration of the relative angular position error detection unit 43 and the scale error calculation unit 45A.
  • the relative angular position error detection unit 43 and the scale error calculation unit 45A as a method for calibrating the scale error of the rotary encoder 41, for example, calculation based on the principle of the multi-playback head method (or multi-head method) is used. ing.
  • the principle of the multi-replay head method is described in, for example, the non-patent document “Development of a precision automatic calibration system for angle detectors” (Masuda, Sugaya, Journal of Precision Engineering (52/10/1986), 1732-1738. Page)).
  • is the angular position (0 to 2 ⁇ )
  • is a positive integer
  • ⁇ and a are the amplitude and phase angle of the n-th order component.
  • the phase difference between the output signals of two heads separated by a relative angle ⁇ that is, the relative angle position error ⁇ ( ⁇ , ⁇ ) has the following relationship.
  • the reproducing head is arranged at a relative angle ⁇ expressed by the following equation (4), and T ( ⁇ k k defined by equation (5) is used.
  • Equation (5) can be expressed as the following equation by substituting Equation (3), and ⁇ is k among the Fourier components of ⁇ .
  • n ⁇ 2m- ⁇ i (k - l)
  • the reading head is arranged at a position corresponding to ⁇ in advance,
  • the method of obtaining the estimated value ⁇ of the above is called the multi-replay head method.
  • FIG. 8 shows the relationship between the number of reading heads and the undetectable Fourier order. As can be seen from this figure, the greater the number of heads, the smaller the number of undetectable Fourier components, and the estimated value of the scale error approaches the true value. However, the minimum head-to-head angle ⁇
  • the number of heads is desirably the maximum number of heads that can be arranged in order to reduce the error.
  • FIG. 9 is a flowchart showing a procedure for obtaining such scale error data.
  • phase difference detectors 43A, 43B, and 43C of the relative angle position error detector (phase difference detector) 43 step S11.
  • SD is supplied (Step k
  • the detected relative angular position error is supplied to the scale error calculator 45A of the rotation speed fluctuation calculator 45, and the scale error ⁇ ( ⁇ ) is calculated based on the above equation (7) (Step S13). ).
  • the calculated scale error ⁇ ( ⁇ ) is stored in a memory (RAM) 51 provided in the rotational speed fluctuation calculator 45 (step S14).
  • FIG. 5 is a diagram for explaining the configuration and operation of the rotational speed variation calculator 45.
  • FIG. 10 is a flowchart showing a procedure of a method for correcting the rotational speed fluctuation by measuring and storing the scale error in advance.
  • the scale error ⁇ ( ⁇ ) with respect to the rotation angle ( ⁇ ) obtained by the scale calibration method is used as scale error data or a scale error waveform.
  • Stored in The stored scale error data (scale error waveform) ⁇ ( ⁇ ) is output based on the reference rotation signal from the reference rotation signal generator 46.
  • the reference rotation signal RR is also supplied to the phase difference detection unit 43.
  • any one of the rotary encoder read heads (ENC-1 to ENC-4) 41A to 41D (ENC-n) output signal (for example, encoder signal SA) ) And the reference rotation signal RR are captured (step S21), and phase comparison is performed to generate (measure) a rotation angle error (current rotation angle error) PV ( ⁇ ) during the current rotation (step S22).
  • the current rotation angle error PV ( ⁇ ) includes a scale error.
  • the current rotation angle error PV ( ⁇ ) is output based on the reference rotation signal, and is supplied to a subtracter 53 provided in the rotation speed fluctuation calculator 45.
  • the rotational speed variation data VD ( ⁇ ) obtained in this way is supplied to the controller 30.
  • the controller 30 controls the beam deflector 33 based on the rotational speed fluctuation data VD (control signal CD) and adjusts (corrects) the irradiation position of the electron beam (EB) in real time (step) S25).
  • the process returns to step S21 and the above procedure is repeated (step S26).
  • the recording position is corrected by displacing the irradiation position of the exposure beam (electron beam) according to the rotation speed fluctuation signal.
  • true rotation unevenness can be corrected with extremely high accuracy and exposure with good absolute recording position accuracy can be performed without being affected by the rotation angle error of the spindle motor 17.
  • the exposure beam irradiation position is adjusted in the tangential direction (ie, actually displaced) and corrected in accordance with the rotational speed fluctuation data.
  • the exposure beam irradiation position may be corrected by another method.
  • the controller 30 controls the blanking control unit 31 based on the rotational speed fluctuation data VD (0), and adjusts the exposure beam blanking (ONZOFF) timing to thereby adjust the exposure beam.
  • the irradiation position may be corrected.
  • the scale error data ⁇ ( ⁇ ) is used to obtain the rotational speed fluctuation data VD to obtain the exposure beam.
  • the case where the irradiation position is adjusted has been described as an example.
  • the scale error ⁇ ( ⁇ ) at the time of recording (exposure) when the substrate is irradiated with an electron beam is calculated, and the rotational speed fluctuation VD ( ⁇ ) is calculated in real time using the scale error ⁇ ( ⁇ ). You can adjust the irradiation position of the electron beam by calculating with!
  • FIG. 11 is a flowchart showing a procedure of a method for correcting the rotational speed fluctuation while calculating the scale error in real time.
  • the encoder signals SA, SB, SC, SD are taken from the rotary encoder read heads (ENC-1 to ENC-4) 41A to 41D (step S31).
  • the reference rotation signal RR is fetched from the reference rotation signal generator 46 (step S32), and the scale error ⁇ ( ⁇ ) is calculated (step S33).
  • the current rotation unevenness VD (0) is calculated by subtracting the scale error ⁇ ( ⁇ ) from the current rotation angle error data PV ( ⁇ ) (step S34). Based on the calculated current rotation unevenness VD ( ⁇ ), beam deflection is performed, and the electron beam irradiation position is corrected in real time (step S35). When continuing the correction control, the process returns to step S31 and the above procedure is repeated (step S36).
  • scale error data ⁇ (0) may be updated while calculating the scale error in real time (real time).
  • the scale error calculation unit 45 ⁇ calculates the scale error data ⁇ ( ⁇ ) in real time during exposure. That is, the scale error calculation unit 45 ⁇ calculates the scale error data ⁇ ( ⁇ ) based on the phase difference (relative angle position error) ⁇ 1 to ⁇ ⁇ from the phase difference detection unit 43 during exposure, and performs an averaging process. Supply to part 54.
  • the averaging processor 54 sequentially updates the scale error data ⁇ ( ⁇ ). For example, the moving average calculation of the scale error data ⁇ ( ⁇ ) for a plurality of rotations is performed, and the scale error data ⁇ ( ⁇ ) stored in the memory (RAM) 51 is appropriately updated with the moving average scale error data. For example, the averaging processing unit 54 performs control so as to update the storage scale error data ⁇ ( ⁇ ) every rotation.
  • the rotational speed fluctuation calculator 45 calculates the rotational speed fluctuation data VD ( ⁇ ) using the updated average scale error data ⁇ ( ⁇ ) in real time during exposure. To the controller 30.
  • the scale error data ⁇ ( ⁇ ) By configuring the scale error data ⁇ ( ⁇ ) to be updated in real time in this way, the measurement radius position changes due to the thermal expansion of the encoder scale, and the measured scale error waveform changes. Since there is no error in the calculation result of rotation unevenness, long exposure can be supported. Note that changes in scale error are usually due to thermal changes.
  • the scale error data need not always be updated every rotation, but may be updated every multiple rotations.
  • the present invention can also be applied to the production of high-density hard disks such as discrete track media and patterned media. Since the rotational speed of a hard disk is higher than that of an optical disk in a hard disk, it is difficult to follow the angular position error of the exposure pattern caused by the uneven rotation of the master disk by PLL control of the recording / playback system. It is thought to be. In such a case, especially in the case of patterned media, the recording / reproducing head cannot record / reproduce at the correct position, which causes a recording / reproducing error. However, if a disk medium with good angular position accuracy manufactured by correcting the rotation unevenness according to the present invention is used, a high-density hard disk drive can be manufactured with a low error rate.
  • a high density magnetic recording medium manufactured by using the beam recording apparatus according to the present invention will be described by taking a disk-shaped patterned medium as an example.
  • a patterned magnetic recording disk 60 called a patterned medium has a servo pattern portion 61 and a patterned data track portion 62.
  • the dot pattern of the data track portion 62 is not drawn on the inner and outer peripheral portions of the magnetic recording disk 60, but is merely schematically shown. It is formed over the entire effective diameter.
  • the servo pattern portion 61 is only partly shown, and may be formed other than shown in the figure!
  • FIG. 12 shows an enlarged part 62 ⁇ of the data track section 62.
  • the data track section 62 is formed with a magnetic dot row in which magnetic dots 63 are arranged concentrically.
  • the servo pattern section 61 includes a rectangular pattern indicating address information and track detection information, and a line pattern extending in a direction crossing the track for extracting clock timing. Are formed.
  • the swing arm head 64 writes and reads data.
  • the servo pattern unit 61 is shown in the same form as the current hard disk medium! /, But the servo pattern unit of a new format optimized for patterned media is used. May be used to have a pattern shape, arrangement, etc. different from those of current hard disk media.
  • a pattern recording medium such as a powerful pattern magnetic recording disk 60 is produced by directly etching a recording material using a resist mask formed by drawing and exposure using the above-described electronic beam recording apparatus. Is also possible. However, since the manufacturing efficiency is not high, it is preferable to use an imprint manufacturing method as a mass production process.
  • a pattern recording medium is manufactured by using a master (also referred to as a master or a mold) manufactured by the above-described electron beam recording apparatus as an imprint transfer mold (hereinafter referred to as an imprint mold) 70.
  • a master also referred to as a master or a mold
  • an imprint transfer mold hereinafter referred to as an imprint mold 70.
  • the powerful imprint mold and pattern recording medium have an effective density of 500 Gbpsi (Gbit / inch 2 ) or more, especially for ultra-fine patterns corresponding to a very high surface recording density of about 1 to 10 Tbpsi. It is. Specifically, by using an imprint mold having a pattern with a pit interval of about 25 nm (nanometer), a high-density pattern recording medium having a recording density of about lTbpsi can be produced from the imprint mold.
  • a recording layer 72, a metal mask layer 73, and a transfer material layer 74 are formed on a recording medium base substrate 71 that also has material strength such as a Si wafer or tempered glass.
  • the recording layer 72 is formed by depositing a magnetic material layer by sputtering or the like.
  • a perpendicular magnetic recording medium it has a laminated structure in which a soft magnetic material layer, an intermediate layer, and a ferromagnetic recording layer are laminated in this order.
  • a metal mask layer 73 such as Ta or Ti is formed on the recording layer (magnetic material layer) 72 by sputtering or the like.
  • a thermoplastic resin resist is formed as the transfer material layer 74 by a spin coating method or the like.
  • Imprint mold 70 is uneven
  • the imprinting device (not shown) is set so that the transfer surface of the substrate faces the transfer material layer 74 (FIG. 13, step 1).
  • the transfer material layer 74 is heated until it has fluidity, and then the imprint mold 70 is pressed onto the transfer material layer 74 (step 2).
  • step 3 by removing the imprint mold 70 from the transfer material layer 74, the uneven pattern of the imprint mold 70 is transferred to the transfer material layer 74 (step 3).
  • Unnecessary transfer material in the recesses of the transfer material layer 74 is removed by ashing or the like, and the metal mask layer 73 is patterned using the remaining transfer material as a mask. Then, the recording layer (magnetic material layer) 72 is patterned by, for example, dry etching using the patterned metal mask layer 73 as a mask (step 4).
  • a non-magnetic material 75 is embedded in a recess (pit) of the recording layer (magnetic material layer) 72 formed by the patterning, and is flattened. As a result, a structure in which the recording material (magnetic material) is separated by the non-recording material is formed (step 5).
  • a pattern recording medium is completed by forming a protective film 76 on the surface.
  • a high-density magnetic recording medium such as a discrete track medium or a patterned medium can be manufactured by creating a master using the electron beam recording apparatus according to the present invention. can do.

Abstract

Provided is an electron-beam recording device comprising a scale having graduations formed to indicate the rotational angular position of a turntable, at least three read heads arranged at predetermined relative angles on a circumference on the center of rotation of the turntable, for individually reading the graduations to generate read signals, a phase difference detector using one of the read signals as a reference read signal, for detecting phase differences between the read signals of the aforementioned at least three read heads other than the reference read signal, and the reference read signal, a scale error computing unit for computing a scale error or an angular position error of the graduations on the basis of that phase difference, a rotational speed fluctuation computing unit for computing the rotational speed fluctuations of the turntable on the basis of the scale error and the read signals, and a beam irradiation position adjustor for adjusting the irradiation position of an electron beam on the basis of the rotational speed fluctuations.

Description

明 細 書  Specification
電子ビーム記録装置及びビーム調整方法  Electron beam recording apparatus and beam adjustment method
技術分野  Technical field
[0001] 本発明は、ビーム記録装置及びビーム調整方法、特に、電子ビームを用いて磁気 ディスク等の高速回転記録媒体の原盤を製造する電子ビーム記録装置及び電子ビ ーム調整方法に関する。  The present invention relates to a beam recording apparatus and a beam adjusting method, and more particularly to an electron beam recording apparatus and an electron beam adjusting method for manufacturing a master disk of a high-speed rotating recording medium such as a magnetic disk using an electron beam.
背景技術  Background art
[0002] 電子ビームやレーザビーム等の露光ビームを用いてリソグラフィを行うビーム記録 装置は、デジタル多用途ディスク(DVD : Digital Versatile Disc)、 Blu- rayディスク等 の光ディスク、ハードディスクに代表される磁気記録媒体などの大容量ディスクの原 盤製造装置に広く適用されている。  [0002] A beam recording apparatus that performs lithography using an exposure beam such as an electron beam or a laser beam is a magnetic recording represented by a digital versatile disc (DVD), an optical disc such as a Blu-ray disc, and a hard disc. It is widely applied to master production equipment for large-capacity discs such as media.
[0003] 力かるビーム記録装置は、上記したディスクを製造する際の原盤となるディスク基板  [0003] A powerful beam recording apparatus is a disk substrate that serves as a master in manufacturing the above-described disk.
(以下、単に基板ともいう。)の記録面にレジスト層を形成し、基板を回転させつつ、基 板記録面に対して相対的にビームスポットを半径方向に適宜送ることにより、螺旋状 又は同心円状のトラック軌跡を基板記録面上に描いてレジストに潜像を形成するよう に制御する。  (Hereinafter also simply referred to as a substrate), a resist layer is formed on the recording surface, and while rotating the substrate, a beam spot is appropriately sent in a radial direction relative to the substrate recording surface, thereby forming a spiral or concentric circle. Control is made so that a latent image is formed on the resist by drawing a track track on the substrate recording surface.
[0004] 光ディスクの原盤露光装置においては、スピンドルモータの回転むら(回転速度の 変動)は露光された光ディスクの再生信号品質を悪化させる原因となるため、回転精 度の良いエアスピンドルモータなどを使用することで露光時の回転むらを抑えている [0004] In an optical disk master exposure device, rotation unevenness of the spindle motor (fluctuation in rotational speed) causes the reproduction signal quality of the exposed optical disk to deteriorate, so an air spindle motor with good rotational accuracy is used. To suppress uneven rotation during exposure
。それでも回転むらは存在し、実際にトラック方向の記録位置精度に影響を与えてい ることが問題となっている。 . Nevertheless, there is a problem of uneven rotation, which actually affects the recording position accuracy in the track direction.
[0005] 光ディスク原盤に用いられるディスク基板 (すなわち、ターンテーブル)の回転むら( 回転速度変動)には、周知のように、ディスク基板の回転に同期した変動成分である 同期回転速度変動と、ディスク基板の回転角に依存せず不規則な非同期回転速度 変動とがある。 As is well known, the rotation unevenness (rotational speed fluctuation) of the disk substrate (that is, the turntable) used in the optical disk master disk is, as is well known, a synchronous rotational speed fluctuation that is a fluctuation component synchronized with the rotation of the disk substrate, There are irregular asynchronous rotational speed fluctuations that do not depend on the rotation angle of the substrate.
[0006] このような光ディスク原盤の露光装置に関しては、回転むらの補正技術が開示され ている(例えば、特許文献 1、特許文献 2参照)。しかし、当該従来技術においては口 一タリエンコーダ信号の位相変動分を補正信号としているため、露光パターンにはェ ンコーダスケール誤差を反映した変動成分が含まれている。 [0006] With respect to such an exposure apparatus for an optical disc master, a technique for correcting rotation unevenness has been disclosed (for example, refer to Patent Document 1 and Patent Document 2). However, in the related art, Since the phase variation of the single encoder signal is used as the correction signal, the exposure pattern includes a variation component that reflects the encoder scale error.
[0007] 一方、このような問題を解決した、より実用的な回転むら補正方法が開示されてい る(例えば、特許文献 3参照)。かかる従来技術においては、各回転角度位置におけ るエンコーダ信号と回転基準信号との位相差を平均化したものを 1回転分メモリに記 憶させ、描画時の実時間位相差データ力 減算することによって非同期回転むらを 算出して補正する方法が開示されている。力かる非同期回転むら補正技術は、隣接 するトラックとの相対的な記録位置精度を改善できる技術で、例えば、半径方向に整 列したピットを描画する場合に有効である。しかし、この技術を使っても基板の回転に 同期した回転むら(同期回転速度変動)を補正することはできない。  [0007] On the other hand, a more practical method for correcting rotation unevenness that solves such a problem has been disclosed (see, for example, Patent Document 3). In such a conventional technique, the average phase difference between the encoder signal and the rotation reference signal at each rotation angle position is stored in the memory for one rotation, and the real-time phase difference data force at the time of drawing is subtracted. Discloses a method for calculating and correcting asynchronous rotation unevenness. Asynchronous rotation unevenness correction technology is a technology that can improve the recording position accuracy relative to adjacent tracks, and is effective, for example, when drawing radially aligned pits. However, even if this technology is used, it is not possible to correct the rotation unevenness (synchronous rotational speed fluctuation) synchronized with the rotation of the substrate.
[0008] 同期回転むら(同期回転速度変動)については、従来、ロータリエンコーダのスケー ル誤差と分離するための技術的課題が高 、反面、光ディスクの原盤露光装置の場 合では、よほどの高いフーリエ次数成分でない限り、再生時の PLL制御によって追 従できるため、あまり重要視されていな力つた。  [0008] With regard to synchronous rotation unevenness (synchronous rotational speed fluctuation), there has been a high technical problem to separate it from the scale error of a rotary encoder. On the other hand, in the case of an optical disc master exposure apparatus, a very high Fourier As long as it is not the order component, it can be followed by PLL control during playback.
[0009] しかし、近年、磁気記録媒体であるハードディスクの高記録密度化のために、デイス クリートトラックメディアやパターンドメディアと呼ばれる磁気ディスク媒体を、電子ビー ム露光装置を使用して作製する要望が高まってきたため、回転同期むら(同期回転 速度変動)も無視することができなくなつてきた。ハードディスクにおいては、光デイス クの場合に比べてディスクの回転速度が高いため、露光時の同期回転むらによって 露光パターンに誤差があると、 PLL制御が破綻することが懸念されて 、る。  However, in recent years, in order to increase the recording density of a hard disk, which is a magnetic recording medium, there is a demand for producing a magnetic disk medium called a disc track medium or a patterned medium using an electronic beam exposure apparatus. Due to the increase, rotation synchronization unevenness (synchronous rotation speed fluctuation) can no longer be ignored. In hard disks, the rotational speed of the disk is higher than in the case of optical disks, so there is a concern that PLL control may fail if there is an error in the exposure pattern due to uneven rotation during exposure.
[0010] 上記したように、高速回転で記録再生がなされる磁気ディスク等の高記録密度化に おいては、非同期回転速度変動のみならず同期回転速度変動をも極めて高精度に 補正する必要がある。  [0010] As described above, in order to increase the recording density of a magnetic disk that performs recording and reproduction at high speed, it is necessary to correct not only asynchronous rotational speed fluctuations but also synchronous rotational speed fluctuations with extremely high accuracy. is there.
特許文献 1 :特開平 6— 76293号公報 (第 4頁、図 1)  Patent Document 1: JP-A-6-76293 (Page 4, Figure 1)
特許文献 2 :特開平 8— 212552号公報 (第 4頁、図 1)  Patent Document 2: JP-A-8-212552 (Page 4, Fig. 1)
特許文献 3 :特開 2000— 20964号公報 (第 4頁、図 2)  Patent Document 3: JP 2000-20964 (Page 4, Fig. 2)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0011] 本発明は上記した点に鑑みてなされたものであって、同期回転むら(同期回転速度 変動)を含んだ真の回転むらを極めて高精度に補正し、絶対記録位置精度の良好な ディスク原盤露光装置を提供することが一例として挙げられる。 Problems to be solved by the invention The present invention has been made in view of the above points, and corrects true rotation unevenness including synchronous rotation unevenness (synchronous rotational speed fluctuation) with extremely high accuracy, and has excellent absolute recording position accuracy. One example is to provide a disk master exposure apparatus.
課題を解決するための手段  Means for solving the problem
[0012] 本発明による電子ビーム記録装置は、基板を載置したターンテーブルを回転させ つつ基板に向けて電子ビームを照射する電子ビーム記録装置であって、上記ターン テーブルの回転角度位置を示す目盛りが形成されたスケールと、ターンテーブルの 回転中心を中心とする円周上に所定相対角度で配され、各々が上記目盛りを読み 取って読取信号を生成する少なくとも 3つの読み取りヘッドと、上記読取信号の 1を基 準読取信号とし、上記少なくとも 3つの読み取りヘッドの読取信号のうち上記基準読 取信号以外の読取信号と上記基準読取信号との位相差を検出する位相差検出器と 、上記位相差に基づいて、上記目盛りの角度位置誤差であるスケール誤差を算出す るスケール誤差算出部と、上記スケール誤差及び上記読取信号に基づいてターンテ 一ブルの回転速度変動を算出する回転速度変動算出部と、上記回転速度変動に基 づ!、て電子ビームの照射位置を調整するビーム照射位置調整器と、を有することを 特徴としている。  [0012] An electron beam recording apparatus according to the present invention is an electron beam recording apparatus that irradiates an electron beam toward a substrate while rotating the turntable on which the substrate is placed, and is a scale indicating the rotation angle position of the turntable. And at least three read heads that are arranged at a predetermined relative angle on a circumference centered on the rotation center of the turntable, each reading the scale and generating a read signal, and the read signal The phase difference detector detects a phase difference between the read signal other than the reference read signal and the reference read signal among the read signals of the at least three read heads, and the phase difference A scale error calculation unit that calculates a scale error that is an angular position error of the scale, and based on the scale error and the read signal. A rotational speed variation calculating unit for calculating a rotational speed variation of Nte one table is characterized by having a beam irradiation position adjuster for adjusting the irradiation position of the rotational speed variation based on Dzu !, electron Te beam.
[0013] また、本発明による方法は、基板を載置したターンテーブルを回転させつつ基板に 向けて電子ビームを照射する電子ビーム記録装置におけるターンテーブルの回転 速度変動を算出する方法であって、ターンテーブルの回転角度位置を示す目盛りが 形成されたスケールと、上記ターンテーブルの回転中心を中心とする円周上に所定 相対角度で配置された少なくとも 3つの読み取りヘッドにより、上記目盛りを読み取つ て上記所定相対角度の各々の読取信号を生成する読取信号生成ステップと、上記 読取信号の 1を基準読取信号とし、上記少なくとも 3つの所定相対角度の読取信号 のうち上記基準読取信号以外の読取信号と上記基準読取信号との位相差を検出す る位相差検出ステップと、上記位相差に基づいて、上記目盛りの角度位置誤差であ るスケール誤差を算出するスケール誤差算出ステップと、上記スケール誤差及び上 記読取信号に基づいてターンテーブルの回転速度変動を算出する回転速度変動算 出ステップと、を有することを特徴としている。 図面の簡単な説明 [0013] The method according to the present invention is a method for calculating a rotational speed fluctuation of a turntable in an electron beam recording apparatus that irradiates an electron beam toward the substrate while rotating the turntable on which the substrate is placed. The scale is read by at least three reading heads arranged at a predetermined relative angle on the circumference centered on the rotation center of the turntable and the scale on which the scale indicating the rotation angle position of the turntable is formed. A read signal generation step for generating each read signal at the predetermined relative angle; and 1 of the read signal as a reference read signal, and a read signal other than the reference read signal among the at least three read signals at a predetermined relative angle; A phase difference detection step for detecting a phase difference with respect to the reference reading signal; and an error in the angular position of the scale based on the phase difference. And scale error calculation step of calculating a Der Ru scale error is characterized by having a rotation speed variation de San step calculates the rotational speed fluctuation of the turntable based on the scaled errors and the upper Symbol read signal. Brief Description of Drawings
[0014] [図 1]図 1は、本発明の実施例である電子ビーム記録装置の構成を模式的に示すブ ロック図である。  FIG. 1 is a block diagram schematically showing the configuration of an electron beam recording apparatus that is an embodiment of the present invention.
[図 2]図 2は、同期回転速度変動を検出し、当該検出結果に基づいて電子ビーム (E B)の照射位置を調整する構成について模式的に示す図である。  FIG. 2 is a diagram schematically showing a configuration for detecting a synchronous rotational speed variation and adjusting an irradiation position of an electron beam (EB) based on the detection result.
[図 3]図 3は、エンコーダスケール及び読み取りヘッド(ENC-1〜ENC- 4)の配置を模 式的に示す上面図である。  FIG. 3 is a top view schematically showing the arrangement of the encoder scale and the read heads (ENC-1 to ENC-4).
圆 4]図 4は、相対角位置誤差検出部及びスケール誤差演算部の構成を示すブロッ ク図である。  [4] FIG. 4 is a block diagram showing the configuration of the relative angular position error detection unit and the scale error calculation unit.
[図 5]図 5は、回転速度変動演算器の構成及び動作を説明するための図である。  FIG. 5 is a diagram for explaining the configuration and operation of a rotational speed variation calculator.
[図 6]図 6は、露光ビームのブランキング制御によって露光ビームの照射位置補正を なす場合を示す図である。  FIG. 6 is a diagram showing a case where exposure beam irradiation position correction is performed by exposure beam blanking control.
[図 7]図 7は、露光時においてリアルタイムでスケール誤差データ ε ( Θ )を更新しつ つ、露光ビームの照射位置補正をなす場合を示すブロック図である。  FIG. 7 is a block diagram showing a case where exposure beam irradiation position correction is performed while updating scale error data ε (Θ) in real time during exposure.
[図 8]図 8は、読み取りヘッド数と検出不能フーリエ次数の関係を示すである。  FIG. 8 shows the relationship between the number of read heads and the undetectable Fourier order.
[図 9]図 9は、スケール誤差データ取得する場合の手順を示すフローチャートである。  FIG. 9 is a flowchart showing a procedure for obtaining scale error data.
[図 10]図 10は、スケール誤差を事前に測定、格納しておき、回転速度変動を補正す る方法の手順を示すフローチャートである。  [FIG. 10] FIG. 10 is a flowchart showing a procedure of a method of correcting a rotational speed variation by measuring and storing a scale error in advance.
[図 11]図 11は、リアルタイムでスケール誤差を算出しつつ、回転速度変動を補正す る方法の手順を示すフローチャートである。  FIG. 11 is a flowchart showing a procedure of a method for correcting a rotational speed variation while calculating a scale error in real time.
[図 12]図 12は、パターン磁気記録ディスクの構成を模式的に示す図である。  FIG. 12 is a diagram schematically showing a configuration of a patterned magnetic recording disk.
[図 13]図 13は、本発明による電子ビーム記録装置により製造したインプリントモール ドを用いてパターン記録媒体を製造する工程を示す図である。  FIG. 13 is a diagram showing a process of manufacturing a pattern recording medium using an imprint mold manufactured by the electron beam recording apparatus according to the present invention.
符号の説明  Explanation of symbols
[0015] 10 ビーム記録装置 [0015] 10 beam recording apparatus
15 基板  15 Board
16 ターンテーブル  16 Turntable
17 スピンドノレモータ 18 送りステージ 17 Spinner motor 18 Feed stage
25 ビーム偏向電極  25 Beam deflection electrode
30 コントローラ  30 controller
31 ブランキング制御部  31 Blanking controller
33 ビーム偏向部  33 Beam deflection unit
37 送り制御部  37 Feed control unit
40 回転制御部  40 Rotation control unit
41 ロータリエンコーダ(R—ENC)  41 Rotary encoder (R—ENC)
41A-41D 読み取りヘッド  41A-41D Read head
41R スケール刻み  41R scale increment
41 S エンコーダスケール  41 S encoder scale
43 位相差湘対角位置誤差)検出部  43 Phase difference (diagonal position error) detector
43A-43C 位相差検出器  43A-43C Phase detector
45 回転速度変動演算器  45 Rotational speed fluctuation calculator
45A スケール誤差演算部  45A scale error calculator
46 基準回転信号発生器  46 Reference rotation signal generator
51 メモリ  51 memory
53 減算器  53 Subtractor
60 パターン磁気記録ディスク  60 pattern magnetic recording disk
62 データ卜ラック咅  62 Data rack
63 磁性体ドット  63 Magnetic dots
70 インプリントモールド  70 Imprint mold
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施例について図面を参照しつつ詳細に説明する。なお、以下に 示す実施例にお 、て、等価な構成要素には同一の参照符を付して 、る。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the same reference numerals are given to equivalent components.
[0017] 図 1は、本発明の実施例である電子ビーム記録装置 10の構成を模式的に示すプロ ック図である。電子ビーム記録装置 10は、電子ビームを用い、ハードディスク製造用 の原盤を作成するディスクマスタリング装置である。 [0018] [電子ビーム記録装置の構成及び動作] FIG. 1 is a block diagram schematically showing a configuration of an electron beam recording apparatus 10 that is an embodiment of the present invention. The electron beam recording apparatus 10 is a disk mastering apparatus that uses an electron beam to create a master disk for manufacturing a hard disk. [Configuration and operation of electron beam recording apparatus]
電子ビーム記録装置 10は、真空チャンバ 11、及び真空チャンバ 11内に配された 基板 15を載置及び回転、並進駆動する駆動装置、及び真空チャンバ 11に取り付け られた電子ビームカラム 20、及び基板の駆動制御及び電子ビーム制御等をなす種 々の回路、制御系が設けられている。  The electron beam recording apparatus 10 includes a vacuum chamber 11, a driving device that places, rotates, and translates a substrate 15 disposed in the vacuum chamber 11, an electron beam column 20 attached to the vacuum chamber 11, and a substrate Various circuits and control systems for driving control and electron beam control are provided.
[0019] より詳細には、ディスク原盤用の基板 15は、その表面にレジストが塗布され、ターン テーブル 16上に載置されている。ターンテーブル 16は、基板 15を回転駆動する回 転駆動装置であるスピンドルモータ 17によってディスク基板主面の垂直軸に関して 回転駆動される。また、スピンドルモータ 17は送りステージ (以下、 Xステージともいう 。) 18上に設けられている。 テージ 18は、移送 (並進駆動)装置である送りモータ 19に結合され、スピンドルモータ 17及びターンテーブル 16を基板 15の主面と平行 な面内の所定方向(X方向)に移動することができるようになつている。従って、 X テ ージ 18、スピンドルモータ 17及びターンテーブル 16によって X Θステージが構成さ れている。  In more detail, the substrate 15 for the disk master is coated on the surface with a resist and placed on the turntable 16. The turntable 16 is rotationally driven with respect to the vertical axis of the main surface of the disk substrate by a spindle motor 17 which is a rotational drive device that rotationally drives the substrate 15. The spindle motor 17 is provided on a feed stage (hereinafter also referred to as X stage) 18. The stage 18 is coupled to a feed motor 19 that is a transfer (translation drive) device, and can move the spindle motor 17 and the turntable 16 in a predetermined direction (X direction) in a plane parallel to the main surface of the substrate 15. It ’s like that. Accordingly, the X Θ stage is constituted by the X stage 18, the spindle motor 17 and the turntable 16.
[0020] Xステージ 18は送りモータ 19によって駆動され、その駆動量である Xステージ 18の 送り量は送り制御部 37によって制御される。なお、送り制御部 37は電子ビーム記録 装置 10全体の制御をなすコントローラ 30の制御の下で動作する。  The X stage 18 is driven by a feed motor 19, and the feed amount of the X stage 18, which is the drive amount, is controlled by a feed control unit 37. The feed control unit 37 operates under the control of the controller 30 that controls the entire electron beam recording apparatus 10.
[0021] ターンテーブル 16は誘電体、例えば、セラミックカゝらなり、基板 15を保持する静電 チヤッキング機構(図示しな 、)などのチヤッキング機構を有して 、る。かかるチヤツキ ング機構によって、ターンテーブル 16上に載置された基板 15はターンテーブル 16 に確実に固定されている。  The turntable 16 is made of a dielectric material, for example, a ceramic cage, and has a chucking mechanism such as an electrostatic chucking mechanism (not shown) for holding the substrate 15. By such a chucking mechanism, the substrate 15 placed on the turntable 16 is securely fixed to the turntable 16.
[0022] X テージ 18上には、レーザ干渉計 35からの測定用レーザ光を反射する反射鏡 3 5Aが配されている。  [0022] On the X stage 18, a reflecting mirror 35A for reflecting the measurement laser light from the laser interferometer 35 is disposed.
[0023] 真空チャンバ 11は、エアーダンバなどの防振台(図示しない)を介して設置され、 外部からの振動の伝達が抑制されている。また、真空チャンバ 11は、真空ポンプ(図 示しない)が接続されており、これによつてチャンバ内を排気することによって真空チ ヤンバ 11の内部が所定圧力の真空雰囲気となるように設定されている。  The vacuum chamber 11 is installed via a vibration isolator (not shown) such as an air damper, and transmission of vibration from the outside is suppressed. In addition, the vacuum chamber 11 is connected to a vacuum pump (not shown), and the interior of the vacuum chamber 11 is set to a vacuum atmosphere at a predetermined pressure by evacuating the chamber. Yes.
[0024] 電子ビームカラム 20内には、電子ビームを射出する電子銃(ェミッタ) 21、収束レン ズ 22、ブランキング電極 23、アパーチャ 24、ビーム偏向電極 25、フォーカスレンズ 2 7、対物レンズ 28がこの順で配置されている。 [0024] Inside the electron beam column 20, an electron gun (emitter) 21 for emitting an electron beam, a convergence lens 22, blanking electrode 23, aperture 24, beam deflection electrode 25, focus lens 27, and objective lens 28 are arranged in this order.
[0025] 電子銃 21は、加速高圧電源(図示しない)から供給される高電圧が印加される陰極  The electron gun 21 is a cathode to which a high voltage supplied from an acceleration high-voltage power supply (not shown) is applied.
(図示しない)により、例えば、数 lOKeVに加速された電子ビーム (EB)を射出する。 収束レンズ 22は、射出された電子ビームを収束する。ブランキング電極 23は、ブラン キング制御部 31からの変調信号に基づいて電子ビームのオン Zオフ切換 (ONZO FF)を行う。すなわち、ブランキング電極 23間に電圧を印加して通過する電子ビーム を大きく偏向させることにより、電子ビームがアパーチャ 24を通過するのを阻止し、電 子ビームをオフ状態とすることができる。  For example, an electron beam (EB) accelerated to several lOKeV is emitted by (not shown). The converging lens 22 converges the emitted electron beam. The blanking electrode 23 performs on-Z-off switching (ONZO FF) of the electron beam based on the modulation signal from the blanking control unit 31. That is, by applying a voltage between the blanking electrodes 23 to greatly deflect the passing electron beam, the electron beam can be prevented from passing through the aperture 24 and the electron beam can be turned off.
[0026] ビーム偏向電極 25は、ビーム偏向部 33からの制御信号に基づいて電子ビームを 高速で偏向制御することができる。かかる偏向制御により、基板 15に対する電子ビー ムスポットの位置制御を行う。フォーカスレンズ 28は、フォーカス制御部 34からの駆 動信号に基づ 、て駆動され、電子ビームのフォーカス制御が行われる。  The beam deflection electrode 25 can control the deflection of the electron beam at high speed based on the control signal from the beam deflection unit 33. With this deflection control, the position of the electron beam spot relative to the substrate 15 is controlled. The focus lens 28 is driven based on the drive signal from the focus control unit 34, and the focus control of the electron beam is performed.
[0027] また、真空チャンバ 11には、基板 15の表面の高さを検出するための高さ検出部 36 が設けられている。光検出器 36Bは、例えば、ポジションセンサや CCD (Charge Cou pled Device)などを含み、光源 36Aから射出され、基板 15の表面で反射された光ビ 一ムを受光し、その受光信号を高さ検出部 36に供給する。高さ検出部 36は、受光信 号に基づいて基板 15の表面の高さを検出し、検出信号を生成する。基板 15の表面 の高さを表す検出信号は、フォーカス制御部 34に供給され、フォーカス制御部 34は 当該検出信号に基づいて電子ビームのフォーカス制御を行う。  The vacuum chamber 11 is provided with a height detection unit 36 for detecting the height of the surface of the substrate 15. The photodetector 36B includes, for example, a position sensor, a CCD (Charge Coupled Device), etc., and receives the light beam emitted from the light source 36A and reflected by the surface of the substrate 15, and the received light signal has a height. This is supplied to the detector 36. The height detector 36 detects the height of the surface of the substrate 15 based on the received light signal and generates a detection signal. A detection signal indicating the height of the surface of the substrate 15 is supplied to the focus control unit 34, and the focus control unit 34 performs focus control of the electron beam based on the detection signal.
[0028] レーザ干渉計 35は、レーザ干渉計 35内の光源から照射されるレーザ光を用いて X ステージ 18の変位を測長し、その測長データ、すなわち テージ 18の送り(X方向 )位置データをステージ駆動部 37に送る。  [0028] The laser interferometer 35 measures the displacement of the X stage 18 using laser light emitted from the light source in the laser interferometer 35, and the measured data, that is, the feed (X direction) position of the tee 18 The data is sent to the stage drive unit 37.
[0029] スピンドルモータ 17は、回転制御部 40によって制御される。スピンドルモータ 17に はロータリエンコーダ (R— ENC) 41が設けられており、スピンドルモータ 17によって ターンテーブル 16 (基板 15)が回転される際に、回転信号を生成する。当該回転信 号は、基板 15の基準回転位置を表す原点信号及び基準回転位置からの所定回転 角ごとのパルス信号 (ロータリエンコーダ信号)を含んでいる。当該回転信号は、回転 制御部 40に供給される。 The spindle motor 17 is controlled by the rotation control unit 40. The spindle motor 17 is provided with a rotary encoder (R—ENC) 41. When the turntable 16 (substrate 15) is rotated by the spindle motor 17, a rotation signal is generated. The rotation signal includes an origin signal indicating the reference rotation position of the substrate 15 and a pulse signal (rotary encoder signal) for each predetermined rotation angle from the reference rotation position. The rotation signal Supplied to the controller 40.
[0030] 送り制御部 37は、 テージ 18からの送り位置データに基づいて、電子ビームスポ ットの基板上の位置を表す位置データを生成し、コントローラ 30に供給する。 The feed control unit 37 generates position data representing the position of the electron beam spot on the substrate based on the feed position data from the stage 18 and supplies the position data to the controller 30.
[0031] コントローラ 30には、ディスクリートトラックメディアやパターンドメディア等の用いら れるトラックパターン 'データや記録 (露光)すべきデータ(記録データ) RDが供給さ れる。 The controller 30 is supplied with track pattern data used for discrete track media, patterned media, etc., and data (record data) RD to be recorded (exposed).
[0032] コントローラ 30は、ブランキング制御部 31、ビーム偏向部 33及びフォーカス制御部  [0032] The controller 30 includes a blanking control unit 31, a beam deflection unit 33, and a focus control unit.
34にそれぞれブランキング制御信号 CB、偏向制御信号 CD及びフォーカス制御信 号 CFを送出し、当該記録データ RDに基づ 、てデータ記録 (露光又は描画)制御を 行う。すなわち、記録データ RDに基づいて基板 15上のレジストに電子ビーム(EB) が照射され、電子ビームの照射によって露光された箇所にのみ潜像が形成されて記 録 (露光)がなされる。  A blanking control signal CB, a deflection control signal CD, and a focus control signal CF are respectively sent to 34, and data recording (exposure or drawing) control is performed based on the recording data RD. That is, the resist on the substrate 15 is irradiated with an electron beam (EB) based on the recording data RD, and a latent image is formed only at a portion exposed by the electron beam irradiation, and recording (exposure) is performed.
[0033] かかる記録制御は、上記した送り位置データ及び回転位置データに基づいて行わ れる。なお、ブランキング制御部 31、ビーム偏向部 33、フォーカス制御部 34、送り制 御部 37に関して主たる信号線について示した力 これら各構成部はコントローラ 30 に双方的に接続され、必要な信号を送受信し得るように構成されて 、る。  Such recording control is performed based on the feed position data and the rotation position data described above. The power shown for the main signal lines for the blanking control unit 31, the beam deflection unit 33, the focus control unit 34, and the feed control unit 37. These components are connected to the controller 30 in both directions to transmit and receive necessary signals. It is configured to be able to.
[0034] [回転速度変動の検出及び補正装置]  [0034] [Rotation speed fluctuation detection and correction device]
次に、かかる電子ビーム記録装置 10において、同期回転むら(同期回転速度変動 )を含む真の回転むら(回転速度変動)を検出し、当該検出された回転速度変動に基 づ 、てビーム照射位置を調整する構成及び動作につ!、て、図面を参照して詳細に 説明する。  Next, in this electron beam recording apparatus 10, true rotational unevenness (rotational speed fluctuation) including synchronous rotational unevenness (synchronous rotational speed fluctuation) is detected, and the beam irradiation position is determined based on the detected rotational speed fluctuation. The configuration and operation for adjusting the above will be described in detail with reference to the drawings.
[0035] 図 2は、回転速度変動を検出し、当該検出結果に基づいて電子ビーム (EB)の照 射位置を調整する構成について模式的に示す図である。  FIG. 2 is a diagram schematically showing a configuration for detecting a rotational speed variation and adjusting the irradiation position of the electron beam (EB) based on the detection result.
[0036] ターンテーブル 16はその主面(xy平面)上に基板 15 (図示しない)を載置し、図 2 に示すように、スピンドルモータ 17によってその中心軸(z方向:回転中心軸 RAとして 示す)のまわりに回転される。スピンドルモータ 17の回転シャフト 17Aには、基準スケ ールとして、ディスク状のスケール(以下、エンコーダスケールという) 41Sが取り付け られて ヽる。ェンコーダスケール 41 Sの回転軸はスピンドルモータ 17の回転中心軸 R Aと一致するように取り付けられて 、る。 [0036] A substrate 15 (not shown) is placed on the main surface (xy plane) of the turntable 16, and as shown in Fig. 2, a spindle motor 17 serves as a central axis (z direction: rotation central axis RA). Rotated around). A disk-shaped scale (hereinafter referred to as an encoder scale) 41S is attached to the rotary shaft 17A of the spindle motor 17 as a reference scale. Encoder scale 41 S rotation axis is spindle motor 17 rotation center axis R Installed to match A.
[0037] エンコーダスケール 41Sには少なくとも 3つの読み取りヘッドが設けられている。例 えば、図 2に示す場合では、 4つの読み取りヘッド 41A, 41B, 41C, 41Dが設けら れている。 [0037] The encoder scale 41S is provided with at least three reading heads. For example, in the case shown in FIG. 2, four read heads 41A, 41B, 41C, and 41D are provided.
[0038] 図 3は、エンコーダスケール 41S及び読み取りヘッド 41A(ENC- 1) , 41B (ENC- 2) , 41C (ENC-3) , 41D (ENC- 4)の配置を模式的に示す上面図である。読み取りへッ ド 41A(ENC- 1)を基準(角度位置 0° )にすると、読み取りヘッド 41B (ENC-2) , 41 C (ENC- 3) , 41D (ENC- 4)はそれぞれ 180° , 90° , 45° の角度位置に配されて いる。  FIG. 3 is a top view schematically showing the arrangement of the encoder scale 41S and the read head 41A (ENC-1), 41B (ENC-2), 41C (ENC-3), 41D (ENC-4). is there. When reading head 41A (ENC-1) is used as a reference (angle position 0 °), reading head 41B (ENC-2), 41 C (ENC-3) and 41D (ENC-4) are 180 ° and 90 °, respectively. It is arranged at the angular positions of ° and 45 °.
[0039] なお、当該少なくとも 3つの読み取りヘッドは、各ヘッドの相対角度が  [0039] Note that the relative angle of each of the at least three reading heads is
[0040] [数 1]
Figure imgf000011_0001
[0041] であるように配置することができる。
[0040] [Equation 1]
Figure imgf000011_0001
[0041] can be arranged as follows.
[0042] エンコーダスケール 41Sには、刻み(目盛り)が所定間隔で形成されたスリット状の スケール刻み(スケール目盛り) 41Rが形成されている。つまり、スケール刻み 41Rに は、エンコーダスケール 41Sの回転中心を中心とする円周(角度)を等分する刻み( 目盛り)が形成されている。読み取りヘッド 41A, 41B, 41C, 41Dの各々は当該スケ ール刻み 41Rの刻み (パターン)を検出し、形成された刻みの周期に応じた読み取り 信号 SA, SB, SC, SDを位相差検出部(以下、相対角位置誤差検出部ともいう。) 4 3に供給する。つまり、エンコーダスケール 41S及び読み取りヘッド 41A〜41Dは口 一タリエンコーダ (R—ENC) 41として機能する。  [0042] The encoder scale 41S is formed with slit-like scale notches (scale marks) 41R in which notches (scales) are formed at predetermined intervals. That is, the scale step 41R is formed with a step (scale) that equally divides the circumference (angle) around the rotation center of the encoder scale 41S. Each of the read heads 41A, 41B, 41C, and 41D detects the step (pattern) of the scale step 41R, and reads the read signals SA, SB, SC, and SD according to the cycle of the formed step. (Hereinafter also referred to as a relative angle position error detection unit.) 4 That is, the encoder scale 41S and the read heads 41A to 41D function as a single encoder (R—ENC) 41.
[0043] なお、読み取りヘッド 41A〜41Dはスケール刻み 41Rの刻みを光学的に検出する 光学的読み取りヘッドとして構成されているが、力かる検出方法に限らない。例えば、 スケール刻み 41Rを磁性体で構成し、ェンコーダスケール 41Sの回転中心を中心と する円周を等分する磁化パターンを形成するようにしてもよい。この場合、読み取りへ ッド 41A〜41Dは磁気読み取りヘッドとして構成すればよい。 [0044] 回転制御部 40には、相対角位置誤差検出部 43、スケール誤差演算部 45A、回転 速度変動演算器 45などが設けられている。後に詳述するように、相対角位置誤差検 出部 43は、読み取りヘッド 41A〜41Dからの読み取り信号 SA, SB, SC, SDのうち の 1つを基準とし、当該基準読み取り信号と他の読み取りヘッドからの読み取り信号 間の位相差を検出し、当該検出された位相差湘対角位置誤差) δ ΐ, 6 2, S 3をス ケール誤差演算部 45Αに供給する。また、スケール誤差演算部 45Αは、当該位相 差湘対角位置誤差) δ ΐ, 6 2, S 3に基づいてスケール誤差 ε ( Θ )を算出し、メモ リに格納する。回転速度変動演算器 45は、格納されたスケール誤差 ε ( Θ )データ及 び回転時 (露光時)における現在回転角度誤差データ PV ( Θ )に基づいて回転速度 変動データ VD ( Θ )を算出し、コントローラ 30に供給する。 [0043] Note that the reading heads 41A to 41D are configured as optical reading heads that optically detect the increments of the scale increment 41R, but are not limited to a powerful detection method. For example, the scale step 41R may be made of a magnetic material, and a magnetization pattern that equally divides the circumference around the rotation center of the encoder scale 41S may be formed. In this case, the reading heads 41A to 41D may be configured as magnetic reading heads. The rotation control unit 40 is provided with a relative angular position error detection unit 43, a scale error calculation unit 45A, a rotation speed fluctuation calculation unit 45, and the like. As will be described in detail later, the relative angular position error detection unit 43 uses one of the read signals SA, SB, SC, SD from the read heads 41A to 41D as a reference, and the reference read signal and the other read signals. The phase difference between the signals read from the head is detected, and the detected phase difference (diagonal position error) δ ΐ, 6 2, S 3 is supplied to the scale error calculation unit 45 Α. Further, the scale error calculation unit 45Α calculates the scale error ε (Θ) based on the phase difference 湘 diagonal position error) δ ΐ, 62, S3, and stores it in the memory. The rotation speed fluctuation calculator 45 calculates the rotation speed fluctuation data VD (Θ) based on the stored scale error ε (Θ) data and the current rotation angle error data PV (Θ) during rotation (exposure). , Supplied to the controller 30.
[0045] なお、ターンテーブル 16を回転させるスピンドルモータ 17は、モータ制御回路 47 によってその回転が制御される。モータ制御回路 47は、基準回転信号発生器 46か らの基準回転信号 RR及びロータリエンコーダ 41からの、例えば読み取りヘッド 41A 〜41Dのうちの 1つからの読み取り信号に基づいて動作する。また、基準回転信号 発生器 46からの基準回転信号は回転速度変動演算器 45に供給される。  Note that the rotation of the spindle motor 17 that rotates the turntable 16 is controlled by a motor control circuit 47. The motor control circuit 47 operates based on the reference rotation signal RR from the reference rotation signal generator 46 and the read signal from the rotary encoder 41, for example, one of the read heads 41A to 41D. The reference rotation signal from the reference rotation signal generator 46 is supplied to the rotation speed fluctuation calculator 45.
[0046] なお、基準回転信号発生器 46、モータ制御回路 47は、例えば回転制御部 40内に 設けられていてもよい。  Note that the reference rotation signal generator 46 and the motor control circuit 47 may be provided in the rotation control unit 40, for example.
[0047] 次に、図面を参照して、相対角位置誤差検出部 43、回転速度変動演算器 45によ るスケール誤差推定値の算出について詳細に説明する。  Next, the calculation of the scale error estimated value by the relative angular position error detection unit 43 and the rotational speed fluctuation calculator 45 will be described in detail with reference to the drawings.
[0048] 図 4は、相対角位置誤差検出部 43及びスケール誤差演算部 45Aの構成を示すブ ロック図である。相対角位置誤差検出部 43及びスケール誤差演算部 45Aにおいて は、ロータリエンコーダ 41のスケール誤差を校正する方法として、例えば、マルチ再 生ヘッド法 (又は、マルチヘッド法)の原理に基づいた演算を用いている。なお、当該 マルチ再生ヘッド法の原理については、例えば、非特許文献「角度検出器の精密自 動校正システムの開発」(益田、梶谷、精密工学会誌 (52/10/1986)、第 1732-1738頁 )などに詳しく述べられている。  FIG. 4 is a block diagram showing the configuration of the relative angular position error detection unit 43 and the scale error calculation unit 45A. In the relative angular position error detection unit 43 and the scale error calculation unit 45A, as a method for calibrating the scale error of the rotary encoder 41, for example, calculation based on the principle of the multi-playback head method (or multi-head method) is used. ing. The principle of the multi-replay head method is described in, for example, the non-patent document “Development of a precision automatic calibration system for angle detectors” (Masuda, Sugaya, Journal of Precision Engineering (52/10/1986), 1732-1738. Page)).
[0049] エンコーダスケール 41 Sの角位置誤差 ε ( Θ )は次式のようなフーリエ級数で表すこ とがでさる。 [0050] [数 2] ε(θ) = 1 Εη 5Ϊη(ηθ + αη) 式(1) [0049] The angular position error ε (Θ) of the encoder scale 41 S can be expressed by a Fourier series as shown in the following equation. [0050] [Equation 2] ε (θ) = 1 Ε η 5Ϊη (ηθ + α η ) Equation (1)
[0051] ここで、 θは角度位置(0〜2 π )、 ηは正の整数、 Εおよび aは n次成分の振幅およ び位相角である。一方、相対角度 φだけ離れた 2つのヘッドの出力信号間の位相差 、すなわち、相対角位置誤差 δ ( θ , φ )には次式の関係がある。 Here, θ is the angular position (0 to 2 π), η is a positive integer, Ε and a are the amplitude and phase angle of the n-th order component. On the other hand, the phase difference between the output signals of two heads separated by a relative angle φ, that is, the relative angle position error δ (θ, φ) has the following relationship.
[0052] [数 3] δ{θ,φ) = ε{θ) - ε{θ + φ) 式(2)  [0052] [Equation 3] δ {θ, φ) = ε {θ)-ε {θ + φ) Equation (2)
[0053] 上式に式 (1)を代入すると次式を得るので、相対角位置誤差 δに含まれるフーリエ 成分は相対角度 φによって変化することが分かる。 [0053] Substituting equation (1) into the above equation yields the following equation, which indicates that the Fourier component included in the relative angular position error δ varies with the relative angle φ.
[0054] 画 δ{θ, φ) = ΐ En sin (- - φ) cos("e + αη +-φ) 式(3) [0054] Drawing δ {θ, φ) = ΐ E n sin (--φ) cos ("e + α η + -φ) Equation (3)
[0055] ここで、再生ヘッドを次式 (4)で示す相対角度 φ に配置し、式 (5)で定義される T ( Θ k k[0055] Here, the reproducing head is arranged at a relative angle φ expressed by the following equation (4), and T (Θ k k defined by equation (5) is used.
)を計算する。 ).
[0056] [数 5] [0056] [Equation 5]
Α (ん = 1,2,3,…, 式 (4)Α (n = 1,2,3, ..., formula (4)
Figure imgf000013_0001
Figure imgf000013_0001
[0057] [数 6] 2(Α - 1) 1 [0057] [Equation 6] 2 (Α-1) 1
= δ{θ + 21φ,,φ,) 式 (5)  = δ {θ + 21φ ,, φ,) Equation (5)
1=0  1 = 0
[0058] 式 (5)は式 (3)を代入すると次式のように表され、 Τは εが有するフーリエ成分のうち k [0058] Equation (5) can be expressed as the following equation by substituting Equation (3), and Τ is k among the Fourier components of ε.
、 n=(2m-l) · 2(k_1)次成分を検出したものであることが分かる。 [0059] [数 7] , N = (2m-l) · 2 (k_1) It is understood that the order component is detected. [0059] [Equation 7]
Tk{9) = Εη ήη{ηθ + αη) = 1,2,...) 式 (6) T k (9) = Ε η ήη {ηθ + α η ) = 1,2, ...) Equation (6)
n={2m-\ i{k-l) n = {2m- \ i (k - l)
[0060] この原理に基づいて、あらかじめに対応する φ の位置に読み取りヘッドを配置し、 [0060] Based on this principle, the reading head is arranged at a position corresponding to φ in advance,
k  k
一度に各 kに対する δを測定して、 Τを求める。そして次式 (7)によってスケール誤差  Measure δ for each k at once to find Τ. And the scale error is
k  k
の推定値 ε を求める方法がマルチ再生ヘッド法と呼ばれている。  The method of obtaining the estimated value ε of the above is called the multi-replay head method.
[0061] [数 8] εε{θ) = ΎΜΘ) 式 (7) [0061] [Equation 8] ε ε (θ) = ΎΜΘ) (7)
[0062] なお、式 (7)で求まるスケール誤差の推定値 ε には、 n'=m'2K次成分は含まれない 。つまり、 K+1個のヘッドを相対角度 φの位置に配置した場合、 m'2K次成分の誤差 [0062] It should be noted that n '= m'2 K -th order component is not included in the estimated value ε of the scale error obtained by Equation (7). In other words, if you place the K + 1 pieces of head position relative angle phi, the error of M'2 K-th component
k  k
は検出できない。  Cannot be detected.
[0063] 読み取りヘッド数と検出不能フーリエ次数の関係を図 8に示す。この図から分力るよ うに、ヘッド数が多いほど検出不能フーリエ成分は少なくなり、スケール誤差の推定 値は真値に近づくことになる。しかし、その分、最小ヘッド間角度 φ  FIG. 8 shows the relationship between the number of reading heads and the undetectable Fourier order. As can be seen from this figure, the greater the number of heads, the smaller the number of undetectable Fourier components, and the estimated value of the scale error approaches the true value. However, the minimum head-to-head angle φ
kは小さくなり、へ ッドの配置は難しくなる。従って、ヘッド数は、誤差を小さくするために、配置可能な 最大のヘッド数にするのが望ましい。  k becomes smaller and it becomes difficult to place the head. Therefore, the number of heads is desirably the maximum number of heads that can be arranged in order to reduce the error.
[0064] 上記の演算処理は、具体的には、図 4に示すような相対角位置誤差検出部 43及び 回転速度変動演算器 45による信号処理によって実現できる。図 9は、かかるスケー ル誤差データ取得する場合の手順を示すフローチャートである。 [0064] Specifically, the above arithmetic processing can be realized by signal processing by a relative angular position error detection unit 43 and a rotational speed fluctuation calculator 45 as shown in FIG. FIG. 9 is a flowchart showing a procedure for obtaining such scale error data.
[0065] まず、読み取りヘッド 41A(ENC-1 :相対角度 φ =0° )からの読み取り信号 (ェン [0065] First, a read signal from the read head 41A (ENC-1: relative angle φ = 0 °)
k  k
コーダ信号) SAが取り込まれ、相対角位置誤差検出部 (位相差検出部) 43の位相差 検出器 43A, 43B, 43Cに共通して供給される (ステップ S 11)。同様に、位相差検 出器 43A, 43B, 43Cにはさらに読み取りヘッド 41B〜41D (ENC- 2〜ENC- 4:相対 角度 φ = 180° , 90° , 45° )力もの読み取り信号 SB, SC, SDが供給される (ステツ k  (Coder signal) SA is captured and supplied in common to the phase difference detectors 43A, 43B, and 43C of the relative angle position error detector (phase difference detector) 43 (step S11). Similarly, the phase difference detectors 43A, 43B, and 43C are further equipped with read heads 41B to 41D (ENC-2 to ENC-4: relative angle φ = 180 °, 90 °, 45 °). , SD is supplied (Step k
プ S11)。読み取りヘッド 41A(ENC- 1 : φ =0° )力 の読み取り信号 SAを基準とし  S11). Read head 41A (ENC-1: φ = 0 °) force read signal SA
k  k
て、それぞ; ί! ^立相差である相対角位置誤差 δ 1 = δ ( 0 , π ), 6 2= δ ( θ , π /2), δ 3 = δ ( θ , π /4)が検出される (ステップ S 12)。当該検出された相対角位置誤差は回 転速度変動演算器 45のスケール誤差演算部 45Aに供給され、上記した式 (7)に基 づいてスケール誤差 ε ( Θ )が算出される (ステップ S 13)。算出されたスケール誤差 ε ( Θ )は回転速度変動演算器 45内に設けられたメモリ (RAM) 51に格納される (ス テツプ S 14)。 Ί! ^ Relative angular position error δ 1 = δ (0, π), 6 2 = δ (θ, π / 2), δ 3 = δ (θ, π / 4) is detected (step S12). The detected relative angular position error is supplied to the scale error calculator 45A of the rotation speed fluctuation calculator 45, and the scale error ε (Θ) is calculated based on the above equation (7) (Step S13). ). The calculated scale error ε (Θ) is stored in a memory (RAM) 51 provided in the rotational speed fluctuation calculator 45 (step S14).
[0066] 次に、上記したスケール校正法により求めたスケール誤差 ε ( Θ )を用い、回転速度 変動を算出して回転速度変動を補正する方法について説明する。  Next, a method of correcting the rotational speed fluctuation by calculating the rotational speed fluctuation using the scale error ε (Θ) obtained by the scale calibration method described above will be described.
[0067] 図 5は回転速度変動演算器 45の構成及び動作を説明するための図である。また、 図 10は、スケール誤差を事前に測定、格納しておき、回転速度変動を補正する方法 の手順を示すフローチャートである。  FIG. 5 is a diagram for explaining the configuration and operation of the rotational speed variation calculator 45. FIG. 10 is a flowchart showing a procedure of a method for correcting the rotational speed fluctuation by measuring and storing the scale error in advance.
[0068] 図 5に示すように、スケール校正法により求めた回転角度( Θ )に対するスケール誤 差 ε ( Θ )は、スケール誤差データ又はスケール誤差波形として、あら力じめメモリ (R AM) 51に格納されて 、る。そして、当該格納されて 、たスケール誤差データ (スケ ール誤差波形) ε ( Θ )は基準回転信号発生器 46からの基準回転信号に基づいて 出力されるように構成されている。また、基準回転信号 RRは位相差検出部 43にも供 給される。  [0068] As shown in FIG. 5, the scale error ε (Θ) with respect to the rotation angle (Θ) obtained by the scale calibration method is used as scale error data or a scale error waveform. Stored in The stored scale error data (scale error waveform) ε (Θ) is output based on the reference rotation signal from the reference rotation signal generator 46. The reference rotation signal RR is also supplied to the phase difference detection unit 43.
[0069] また、位相差検出部 43において、ロータリエンコーダ読み取りヘッド(ENC-1〜ENC -4) 41 A〜41 Dのうち何れ力 1台(ENC- n)の出力信号(例えば、ェンコーダ信号 S A )と基準回転信号 RRとが取り込まれ (ステップ S21)、位相比較がなされて現在回転 時における回転角度誤差 (現在回転角度誤差) PV ( Θ )が生成 (測定)される (ステツ プ S22)。なお、基準回転信号 RRとの位相比較がなされる当該何れか 1の読み取り 信号としては、位相差湘対角位置誤差) δ ΐ, 6 2, δ 3を検出する際に基準とした 読み取りヘッド 41A (ENC-1 : φ =0° )の読み取り信号 SAを用いるの力 現在回転  [0069] In the phase difference detection unit 43, any one of the rotary encoder read heads (ENC-1 to ENC-4) 41A to 41D (ENC-n) output signal (for example, encoder signal SA) ) And the reference rotation signal RR are captured (step S21), and phase comparison is performed to generate (measure) a rotation angle error (current rotation angle error) PV (Θ) during the current rotation (step S22). Note that any one of the read signals that is phase-compared with the reference rotation signal RR includes a phase difference (diagonal position error) δ ΐ, 6 2, δ 3 as a reference read head 41A (ENC-1: φ = 0 °) reading signal SA force
k  k
角度誤差 PV ( Θ )の計算処理の簡便さ及び精度の点で好ましい。  This is preferable in terms of simplicity and accuracy of the calculation process of the angle error PV (Θ).
[0070] ここで、この現在回転角度誤差 PV ( Θ )にはスケール誤差が含まれている。現在回 転角度誤差 PV ( Θ )は基準回転信号に基づいて出力され、回転速度変動演算器 45 内に設けられた減算器 53に供給される。 Here, the current rotation angle error PV (Θ) includes a scale error. The current rotation angle error PV (Θ) is output based on the reference rotation signal, and is supplied to a subtracter 53 provided in the rotation speed fluctuation calculator 45.
[0071] 減算器 53において、メモリ(RAM) 51に格納されていた現在角度のスケール誤差 データ (スケール誤差波形) ε c( θ )が読み出され (ステップ S23)、対応する角度位置 ( Θ )における現在回転角度誤差データ (現在回転角度誤差波形) PV ( Θ )から減算 されて現在回転むら(回転速度変動) VD ( Θ )が求まる (ステップ S 24)。なお、 DSP ( Digital Signal Processor)などの高速処理手段によって上記した減算等の演算が実 行される。これによつてリアルタイムで高速に回転速度変動データ VD ( Θ )を得ること ができる。 [0071] In subtractor 53, the scale error of the current angle stored in memory (RAM) 51 Data (scale error waveform) ε c (θ) is read out (step S23) and subtracted from the current rotation angle error data (current rotation angle error waveform) PV (Θ) at the corresponding angular position (Θ). Unevenness (rotational speed fluctuation) VD (Θ) is obtained (step S24). Note that operations such as subtraction described above are executed by high-speed processing means such as DSP (Digital Signal Processor). This makes it possible to obtain rotational speed fluctuation data VD (Θ) at high speed in real time.
[0072] このように求められた回転速度変動データ VD ( Θ )は、コントローラ 30に供給される 。図 2に示すように、コントローラ 30は回転速度変動データ VDに基づいてビーム偏 向部 33を制御し (制御信号 CD)、電子ビーム (EB)の照射位置をリアルタイムで調整 (補正)する (ステップ S25)。力かる補正制御を続行する場合にはステップ S21に戻り 、上記した手順を繰り返す (ステップ S26)。  The rotational speed variation data VD (Θ) obtained in this way is supplied to the controller 30. As shown in FIG. 2, the controller 30 controls the beam deflector 33 based on the rotational speed fluctuation data VD (control signal CD) and adjusts (corrects) the irradiation position of the electron beam (EB) in real time (step) S25). When continuing the correction control, the process returns to step S21 and the above procedure is repeated (step S26).
[0073] すなわち、露光ビーム (電子ビーム)の照射位置を回転速度変動信号に応じて変位 させることで記録位置補正を行う。これにより、スピンドルモータ 17の回転角度誤差に よる影響を受けず、真の回転むらを極めて高精度に補正し、絶対記録位置精度の良 好な露光を行うことができる。  That is, the recording position is corrected by displacing the irradiation position of the exposure beam (electron beam) according to the rotation speed fluctuation signal. As a result, true rotation unevenness can be corrected with extremely high accuracy and exposure with good absolute recording position accuracy can be performed without being affected by the rotation angle error of the spindle motor 17.
[0074] なお、上記した実施例では、回転速度変動データに応じて、露光ビーム照射位置 を接線方向に調整して (すなわち、実際に変位させて)補正する場合について説明し た。し力しながら、他の方法によって露光ビーム照射位置を補正してもよい。例えば、 図 6に示すように、コントローラ 30が、回転速度変動データ VD ( 0 )に基づいてブラ ンキング制御部 31を制御し、露光ビームのブランキング (ONZOFF)のタイミングを 調整することによって露光ビームの照射位置を補正してもよい。  In the above-described embodiment, the case has been described in which the exposure beam irradiation position is adjusted in the tangential direction (ie, actually displaced) and corrected in accordance with the rotational speed fluctuation data. While applying force, the exposure beam irradiation position may be corrected by another method. For example, as shown in FIG. 6, the controller 30 controls the blanking control unit 31 based on the rotational speed fluctuation data VD (0), and adjusts the exposure beam blanking (ONZOFF) timing to thereby adjust the exposure beam. The irradiation position may be corrected.
[0075] また、上記した実施例では、あら力じめ取得し、メモリ(RAM) 51に格納されて 、た スケール誤差データ ε ( Θ )を用い、回転速度変動データ VDを得て露光ビームの照 射位置を調整する場合を例に説明した。しかしながら、リアルタイム (実時間)でスケ ール誤差を算出し、リアルタイム (実時間)で照射位置を調整してもよい。つまり、基板 へ電子ビームを照射する記録時 (露光時)におけるスケール誤差 ε ( Θ )を算出し、そ のスケール誤差 ε ( Θ )を用いて回転速度変動 VD ( Θ )をリアルタイム (実時間)で算 出して電子ビームの照射位置を調整するようにしてもよ!、。 [0076] 図 11は、リアルタイムでスケール誤差を算出しつつ、回転速度変動を補正する方 法の手順を示すフローチャートである。まず、ロータリエンコーダ読み取りヘッド(ENC - 1〜ENC- 4) 41A〜41Dからエンコーダ信号 SA, SB, SC, SDを取り込む(ステツ プ S31)。また、基準回転信号発生器 46から基準回転信号 RRが取り込まれ (ステツ プ S32)、スケール誤差 ε ( Θ )が算出される (ステップ S33)。 [0075] In the above-described embodiment, it is obtained in advance and stored in the memory (RAM) 51, and the scale error data ε (Θ) is used to obtain the rotational speed fluctuation data VD to obtain the exposure beam. The case where the irradiation position is adjusted has been described as an example. However, it is also possible to calculate the scale error in real time (real time) and adjust the irradiation position in real time (real time). In other words, the scale error ε (Θ) at the time of recording (exposure) when the substrate is irradiated with an electron beam is calculated, and the rotational speed fluctuation VD (Θ) is calculated in real time using the scale error ε (Θ). You can adjust the irradiation position of the electron beam by calculating with! FIG. 11 is a flowchart showing a procedure of a method for correcting the rotational speed fluctuation while calculating the scale error in real time. First, the encoder signals SA, SB, SC, SD are taken from the rotary encoder read heads (ENC-1 to ENC-4) 41A to 41D (step S31). Further, the reference rotation signal RR is fetched from the reference rotation signal generator 46 (step S32), and the scale error ε (Θ) is calculated (step S33).
[0077] 現在回転角度誤差データ PV ( Θ )からスケール誤差 ε ( Θ )が減算されて現在回転 むら VD ( 0 )が算出される(ステップ S34)。算出された現在回転むら VD ( Θ )に基づ いてビーム偏向がなされ、電子ビーム照射位置のリアルタイム補正がなされる (ステツ プ S35)。力かる補正制御を続行する場合にはステップ S31に戻り、上記した手順を 繰り返す (ステップ S36)。  The current rotation unevenness VD (0) is calculated by subtracting the scale error ε (Θ) from the current rotation angle error data PV (Θ) (step S34). Based on the calculated current rotation unevenness VD (Θ), beam deflection is performed, and the electron beam irradiation position is corrected in real time (step S35). When continuing the correction control, the process returns to step S31 and the above procedure is repeated (step S36).
[0078] さらに、リアルタイム(実時間)でスケール誤差を算出しつつ、スケール誤差データ ε ( 0 )を更新するようにしてもよい。  Furthermore, the scale error data ε (0) may be updated while calculating the scale error in real time (real time).
[0079] すなわち、例えば、図 7に示すように、スケール誤差演算部 45Αは、露光時におい てリアルタイムでスケール誤差データ ε ( Θ )を算出する。すなわち、スケール誤差演 算部 45Αは、露光時における位相差検出部 43からの位相差 (相対角位置誤差) δ 1 〜 δ ηに基づいてスケール誤差データ ε ( Θ )を算出し、平均化処理部 54に供給す る。平均化処理部 54は、スケール誤差データ ε ( Θ )を逐次更新する。例えば、複数 回転分のスケール誤差データ ε ( Θ )の移動平均演算を行い、当該移動平均スケー ル誤差データにより、メモリ(RAM) 51に格納されるスケール誤差データ ε ( Θ )適宜 更新する。例えば、平均化処理部 54は、 1回転ごとに格納スケール誤差データ ε ( Θ )を更新するように制御する。  That is, for example, as shown in FIG. 7, the scale error calculation unit 45 算出 calculates the scale error data ε (Θ) in real time during exposure. That is, the scale error calculation unit 45Α calculates the scale error data ε (Θ) based on the phase difference (relative angle position error) δ 1 to δ η from the phase difference detection unit 43 during exposure, and performs an averaging process. Supply to part 54. The averaging processor 54 sequentially updates the scale error data ε (Θ). For example, the moving average calculation of the scale error data ε (Θ) for a plurality of rotations is performed, and the scale error data ε (Θ) stored in the memory (RAM) 51 is appropriately updated with the moving average scale error data. For example, the averaging processing unit 54 performs control so as to update the storage scale error data ε (Θ) every rotation.
[0080] 回転速度変動演算器 45は、図 5に示したように、露光時においてリアルタイムで当 該更新された平均スケール誤差データ ε ( Θ )を用いて回転速度変動データ VD( Θ ) を算出し、コントローラ 30に供給する。  As shown in FIG. 5, the rotational speed fluctuation calculator 45 calculates the rotational speed fluctuation data VD (Θ) using the updated average scale error data ε (Θ) in real time during exposure. To the controller 30.
[0081] このようにリアルタイムでスケール誤差データ ε ( Θ )を更新するように構成すること で、エンコーダスケールの熱膨張などによって測定半径位置が変化し、測定されるス ケール誤差波形が変わっても回転むらの演算結果に誤差を生じないため、長時間の 露光にも対応することができる。なお、スケール誤差の変化は、通常、熱的変化によ るものなどの極めてゆっくりとした変化であるため、スケール誤差データの更新は必 ずしも 1回転ごとに行なう必要はなぐ複数回転ごとの更新でもよい。 [0081] By configuring the scale error data ε (Θ) to be updated in real time in this way, the measurement radius position changes due to the thermal expansion of the encoder scale, and the measured scale error waveform changes. Since there is no error in the calculation result of rotation unevenness, long exposure can be supported. Note that changes in scale error are usually due to thermal changes. The scale error data need not always be updated every rotation, but may be updated every multiple rotations.
[0082] また、上記した実施例にお!、ては、 4台の読み取りヘッドを用いた場合を例に説明 した。図 7においては、(n+ 1)台の読み取りヘッド(ENC- 0, ENC-1〜ENC- n)を用 い、位相差 (相対角位置誤差) δ 1〜 δ ηに基づいてスケール誤差データ ε ( Θ )を算 出する場合を示している。読み取りヘッドの数が多いほど推定値 (スケール誤差) ε は真値に近づくことになる。従って、配置可能な最大のヘッド数にするのが望ましい。 [0082] Also, in the above-described embodiment, a case where four reading heads are used has been described as an example. In FIG. 7, (n + 1) reading heads (ENC-0, ENC-1 to ENC-n) are used, and scale error data ε based on the phase difference (relative angular position error) δ1 to δη. This shows the case where (Θ) is calculated. As the number of read heads increases, the estimated value (scale error) ε approaches the true value. Therefore, it is desirable to set the maximum number of heads that can be arranged.
[0083] また、本発明は、ディスクリートトラックメディアやパターンドメディアのような高密度 ハードディスクを製造する場合にも適用することができる。ハードディスクにおいては 、光ディスクの場合に比べてディスクの回転速度が高いため、原盤露光時の同期回 転むらによって生じた露光パターンの角度位置誤差に,記録再生系の PLL制御で 追従することが困難になると考えられている。このような場合,特にパターンドメディア の場合には,記録再生ヘッドが正しい位置で記録再生できず,記録再生エラーの原 因となる。しかし,本発明により回転むらを補正して製造した角度位置精度の良好な ディスクメディアを用いれば,エラー率を低 、高密度ハードディスク装置の製造が可 能となる。 [0083] The present invention can also be applied to the production of high-density hard disks such as discrete track media and patterned media. Since the rotational speed of a hard disk is higher than that of an optical disk in a hard disk, it is difficult to follow the angular position error of the exposure pattern caused by the uneven rotation of the master disk by PLL control of the recording / playback system. It is thought to be. In such a case, especially in the case of patterned media, the recording / reproducing head cannot record / reproduce at the correct position, which causes a recording / reproducing error. However, if a disk medium with good angular position accuracy manufactured by correcting the rotation unevenness according to the present invention is used, a high-density hard disk drive can be manufactured with a low error rate.
[0084] 以下に、本発明によるビーム記録装置を用いて製造される高密度磁気記録媒体に つ!、て、ディスク形状のパターンドメディアを例に説明する。  Hereinafter, a high density magnetic recording medium manufactured by using the beam recording apparatus according to the present invention will be described by taking a disk-shaped patterned medium as an example.
[0085] 図 12に示すように、パターンドメディアと称されるパターン磁気記録ディスク 60は、 サーボパターン部 61と、パターン化されたデータトラック部 62を有している。なお、図 12においてはデータトラック部 62のドットパターンは磁気記録ディスク 60の内周部及 び外周部にし力描かれていないが、模式的に示してあるに過ぎず、磁気記録ディス ク 60の有効径全体に渡って形成されている。また、サーボパターン部 61もその一部 につ 、て示してあるに過ぎず、図に示された以外に形成されて!、てもよ!/、。  As shown in FIG. 12, a patterned magnetic recording disk 60 called a patterned medium has a servo pattern portion 61 and a patterned data track portion 62. In FIG. 12, the dot pattern of the data track portion 62 is not drawn on the inner and outer peripheral portions of the magnetic recording disk 60, but is merely schematically shown. It is formed over the entire effective diameter. Also, the servo pattern portion 61 is only partly shown, and may be formed other than shown in the figure!
[0086] さらに、図 12にはデータトラック部 62の一部 62Αを拡大して示している。データトラ ック部 62〖こは、同心円状に磁性体ドット 63が並んだ磁性体ドット列が形成されている 。サーボパターン部 61には、アドレス情報やトラック検出情報を示す矩形のパターン や、クロックタイミングを抽出するためのトラックを横切る方向に延びたライン状のパタ ーン、等が形成されている。そして、スイングアームヘッド 64によってデータの書き込 み及び読み出しが行われる。 Further, FIG. 12 shows an enlarged part 62 の of the data track section 62. The data track section 62 is formed with a magnetic dot row in which magnetic dots 63 are arranged concentrically. The servo pattern section 61 includes a rectangular pattern indicating address information and track detection information, and a line pattern extending in a direction crossing the track for extracting clock timing. Are formed. The swing arm head 64 writes and reads data.
[0087] なお、ここでは、サーボパターン部 61は、現行のハードディスク媒体と同様な形態と して示して!/、るが、パターンドメディア用に最適化された新たなフォーマットのサーボ ノ ターン部を採用して、現行のハードディスク媒体とは異なるパターン形状、配置等 の形態を有していてもよい。 [0087] Here, the servo pattern unit 61 is shown in the same form as the current hard disk medium! /, But the servo pattern unit of a new format optimized for patterned media is used. May be used to have a pattern shape, arrangement, etc. different from those of current hard disk media.
[0088] 力かるパターン磁気記録ディスク 60等のパターン記録媒体は、上記した電子ビー ム記録装置を用いた描画、露光により形成されたレジストマスクを用い、直接記録材 料をエッチングして作製することも可能である。し力しながら、製造効率が高くないた め、量産工程としてインプリント方式による製造方法を用いることが好ましい。 [0088] A pattern recording medium such as a powerful pattern magnetic recording disk 60 is produced by directly etching a recording material using a resist mask formed by drawing and exposure using the above-described electronic beam recording apparatus. Is also possible. However, since the manufacturing efficiency is not high, it is preferable to use an imprint manufacturing method as a mass production process.
[0089] 以下に、上記した電子ビーム記録装置により製造した原盤 (マスタ、又はモールドと も称される。)をインプリント転写型(以下、インプリントモールドという。) 70として用い てパターン記録媒体を製造する方法について図 13を参照して説明する。上記した電 子ビーム記録装置により回転むらを補正することにより、パターン形状の角度位置精 度の良好な原盤 (マスタ、又はモールド)を製造することができる。 In the following, a pattern recording medium is manufactured by using a master (also referred to as a master or a mold) manufactured by the above-described electron beam recording apparatus as an imprint transfer mold (hereinafter referred to as an imprint mold) 70. A manufacturing method will be described with reference to FIG. By correcting the rotation unevenness by the electron beam recording apparatus described above, a master (master or mold) having a good pattern position angular position accuracy can be manufactured.
[0090] なお、力かるインプリントモールド及びパターン記録媒体は、密度が 500Gbpsi (Gbi t/inch2)以上、特に、 l〜10Tbpsi程度の非常に高い面記録密度に相当する超微細 パターンにおいて効果的である。具体的には、約 25nm (ナノメートル)のピット間隔 のパターンのインプリントモールドを用いることで、そのインプリントモールドから記録 密度がおよそ lTbpsiの高密度パターン記録媒体を作製することが可能になる。 [0090] It should be noted that the powerful imprint mold and pattern recording medium have an effective density of 500 Gbpsi (Gbit / inch 2 ) or more, especially for ultra-fine patterns corresponding to a very high surface recording density of about 1 to 10 Tbpsi. It is. Specifically, by using an imprint mold having a pattern with a pit interval of about 25 nm (nanometer), a high-density pattern recording medium having a recording density of about lTbpsi can be produced from the imprint mold.
[0091] 図 13に示すように、 Siウェハや強化ガラスなどの材料力もなる記録媒体用ベース 基板 71上に記録層 72、メタルマスク層 73及び転写材料層 74が形成されている。記 録層 72は、スパッタリング等により磁性材料層を堆積して形成される。垂直磁気記録 媒体の場合は、軟磁性材料層、中間層及び強磁性記録層がこの順で積層された積 層構造を有している。 As shown in FIG. 13, a recording layer 72, a metal mask layer 73, and a transfer material layer 74 are formed on a recording medium base substrate 71 that also has material strength such as a Si wafer or tempered glass. The recording layer 72 is formed by depositing a magnetic material layer by sputtering or the like. In the case of a perpendicular magnetic recording medium, it has a laminated structure in which a soft magnetic material layer, an intermediate layer, and a ferromagnetic recording layer are laminated in this order.
[0092] 記録層(磁性材料層) 72上には、スパッタリング等により Ta, Ti等のメタルマスク層 7 3が形成される。メタルマスク層 73上には、例えば、熱可塑性榭脂のレジストが転写 材料層 74として、スピンコート法等により形成される。インプリントモールド 70は、凹凸 の転写面が転写材料層 74に向き合うようにインプリント装置(図示しない)にセットさ れる(図 13、工程 1)。 A metal mask layer 73 such as Ta or Ti is formed on the recording layer (magnetic material layer) 72 by sputtering or the like. On the metal mask layer 73, for example, a thermoplastic resin resist is formed as the transfer material layer 74 by a spin coating method or the like. Imprint mold 70 is uneven The imprinting device (not shown) is set so that the transfer surface of the substrate faces the transfer material layer 74 (FIG. 13, step 1).
[0093] 次に、必要に応じて転写材料層 74が流動性を有するまで加熱した後、インプリント モールド 70を転写材料層 74に押厚する(工程 2)。  Next, if necessary, the transfer material layer 74 is heated until it has fluidity, and then the imprint mold 70 is pressed onto the transfer material layer 74 (step 2).
[0094] 次に、インプリントモールド 70を転写材料層 74から剥がすことで、インプリントモー ルド 70の凹凸パターンが転写材料層 74に転写される(工程 3)。 Next, by removing the imprint mold 70 from the transfer material layer 74, the uneven pattern of the imprint mold 70 is transferred to the transfer material layer 74 (step 3).
[0095] 転写材料層 74の凹部の不要な転写材料をアツシング等で除去し、残った転写材 料をマスクとしてメタルマスク層 73をパターユングする。そして、当該パターユングさ れたメタルマスク層 73をマスクとして記録層(磁性材料層) 72を、例えばドライエッチ ングでパターニングする(工程 4)。 [0095] Unnecessary transfer material in the recesses of the transfer material layer 74 is removed by ashing or the like, and the metal mask layer 73 is patterned using the remaining transfer material as a mask. Then, the recording layer (magnetic material layer) 72 is patterned by, for example, dry etching using the patterned metal mask layer 73 as a mask (step 4).
[0096] 当該パターユングにより形成された記録層(磁性材料層) 72の凹部 (ピット)に非磁 性材料 75を埋め込み、平坦化する。これにより記録材料 (磁性材料)が非記録材料 によって分離された構造が形成される(工程 5)。なお、保護膜 76などを表面に形成 してパターン記録媒体が完成される。 [0096] A non-magnetic material 75 is embedded in a recess (pit) of the recording layer (magnetic material layer) 72 formed by the patterning, and is flattened. As a result, a structure in which the recording material (magnetic material) is separated by the non-recording material is formed (step 5). A pattern recording medium is completed by forming a protective film 76 on the surface.
[0097] 以上、詳細に説明したように、本発明による電子ビーム記録装置を用いて原盤を作 成することにより、高精度なディスクリートトラックメディアやパターンドメディアのような 高密度磁気記録媒体を製造することができる。 [0097] As described above in detail, a high-density magnetic recording medium such as a discrete track medium or a patterned medium can be manufactured by creating a master using the electron beam recording apparatus according to the present invention. can do.
[0098] 上記した実施例は適宜組み合わせて適用することができる。また、上記した実施例 にお 、て示した数値等は例示に過ぎな 、。 [0098] The above-described embodiments can be applied in appropriate combination. In addition, the numerical values shown in the above-described embodiments are merely examples.

Claims

請求の範囲 The scope of the claims
[1] 基板を載置したターンテーブルを回転させつつ基板に向けて電子ビームを照射す る電子ビーム記録装置であって、  [1] An electron beam recording apparatus that emits an electron beam toward a substrate while rotating a turntable on which the substrate is placed,
前記ターンテーブルの回転角度位置を示す目盛りが形成されたスケールと、 前記ターンテーブルの回転中心を中心とする円周上に所定相対角度で配され、各 々が前記目盛りを読み取って読取信号を生成する少なくとも 3つの読み取りヘッドと、 前記読取信号の 1を基準読取信号とし、前記少なくとも 3つの読み取りヘッドの読取 信号のうち前記基準読取信号以外の読取信号と前記基準読取信号との位相差を検 出する位相差検出器と、  A scale on which a scale indicating the rotational angle position of the turntable is formed, and a predetermined relative angle on a circumference around the rotation center of the turntable, each reading the scale and generating a read signal And at least three read heads, and 1 of the read signals is used as a reference read signal, and a phase difference between a read signal other than the reference read signal and the reference read signal among the read signals of the at least three read heads is detected. A phase difference detector to
前記位相差に基づいて、前記目盛りの角度位置誤差であるスケール誤差を算出す るスケール誤差算出部と、  A scale error calculation unit that calculates a scale error that is an angular position error of the scale based on the phase difference;
前記スケール誤差及び前記読取信号に基づいて前記ターンテーブルの回転速度 変動を算出する回転速度変動算出部と、  A rotational speed fluctuation calculating unit for calculating a rotational speed fluctuation of the turntable based on the scale error and the read signal;
前記回転速度変動に基づいて前記電子ビームの照射位置を調整するビーム照射 位置調整器と、を有することを特徴とする電子ビーム記録装置。  An electron beam recording apparatus comprising: a beam irradiation position adjuster that adjusts an irradiation position of the electron beam based on the rotation speed fluctuation.
[2] 前記スケール誤差を格納するメモリを有し、前記回転速度変動算出部は当該格納 されたスケール誤差に基づいて前記回転速度変動を算出することを特徴とする請求 項 1に記載の電子ビーム記録装置。 2. The electron beam according to claim 1, further comprising a memory for storing the scale error, wherein the rotational speed fluctuation calculation unit calculates the rotational speed fluctuation based on the stored scale error. Recording device.
[3] 前記読み取りヘッドの配置及び前記スケール誤差算出部における前記スケール誤 差の算出はマルチ再生ヘッド法に基づいてなされていることを特徴とする請求項 1に 記載の電子ビーム記録装置。 3. The electron beam recording apparatus according to claim 1, wherein the arrangement of the read head and the calculation of the scale error in the scale error calculation unit are made based on a multiple reproduction head method.
[4] 前記回転速度変動算出部は、前記基板への電子ビーム記録に先立って算出され た既算出スケール誤差に基づいて前記回転速度変動を算出することを特徴とする請 求項 1に記載の電子ビーム記録装置。 [4] The rotational speed variation calculation unit according to claim 1, wherein the rotational speed variation calculation unit calculates the rotational speed variation based on an already-calculated scale error calculated prior to electron beam recording on the substrate. Electron beam recording device.
[5] 前記スケール誤差算出部は、前記基板への電子ビーム記録時におけるスケール 誤差を実時間で算出し、前記回転速度変動算出部は当該算出されたスケール誤差 に基づいて回転速度変動を実時間で算出することを特徴とする請求項 1に記載の電 子ビーム記録装置。 [5] The scale error calculation unit calculates a scale error at the time of recording the electron beam on the substrate in real time, and the rotation speed fluctuation calculation unit calculates the rotation speed fluctuation in real time based on the calculated scale error. 2. The electron beam recording apparatus according to claim 1, wherein the electron beam recording device is calculated by:
[6] 前記ターンテーブルを複数回回転させて前記スケール誤差を平均化する平均化 処理部を有し、前記回転速度変動算出部は当該平均化されたスケール誤差に基づ V、て前記回転速度変動を算出することを特徴とする請求項 1な 、し 5の 、ずれか 1に 記載の電子ビーム記録装置。 [6] An average processing unit that averages the scale error by rotating the turntable a plurality of times, and the rotational speed fluctuation calculation unit is configured to determine the rotational speed V based on the averaged scale error. 6. The electron beam recording apparatus according to claim 1, wherein the fluctuation is calculated.
[7] 前記スケール誤差を更新するスケール誤差更新部をさらに有することを特徴とする 請求項 1な!、し 6の 、ずれか 1に記載の電子ビーム記録装置。  7. The electron beam recording apparatus according to claim 1, further comprising a scale error update unit that updates the scale error.
[8] 前記回転速度変動に基づいて前記電子ビームの照射位置を調整するビーム照射 位置調整器は、前記回転速度変動に基づいて前記電子ビームを接線方向に偏向し てビームの照射位置を調整することを特徴とする電子ビーム記録装置。  [8] The beam irradiation position adjuster that adjusts the irradiation position of the electron beam based on the rotation speed fluctuation adjusts the beam irradiation position by deflecting the electron beam in a tangential direction based on the rotation speed fluctuation. An electron beam recording apparatus.
[9] 前記回転速度変動に基づいて前記電子ビームの照射位置を調整するビーム照射 位置調整器は、前記回転速度変動に基づ 、て前記電子ビームのブランキングのタイ ミングを調整することによってビームの照射位置を調整することを特徴とする電子ビー ム記録装置。  [9] The beam irradiation position adjuster that adjusts the irradiation position of the electron beam based on the rotation speed fluctuation adjusts the blanking timing of the electron beam based on the rotation speed fluctuation. An electronic beam recording apparatus characterized by adjusting the irradiation position of the beam.
[10] 基板を載置したターンテーブルを回転させつつ基板に向けて電子ビームを照射す る電子ビーム記録装置における前記ターンテーブルの回転速度変動を算出する方 法であって、  [10] A method for calculating a rotational speed fluctuation of the turntable in an electron beam recording apparatus that irradiates an electron beam toward the substrate while rotating the turntable on which the substrate is placed,
前記ターンテーブルの回転角度位置を示す目盛りが形成されたスケールと、前記 ターンテーブルの回転中心を中心とする円周上に所定相対角度で配置された少なく とも 3つの読取ヘッドにより、前記目盛りを読み取って前記所定相対角度の各々の読 取信号を生成する読取信号生成ステップと、  The scale is read by a scale on which a scale indicating the rotation angle position of the turntable is formed and at least three reading heads arranged at a predetermined relative angle on a circumference centered on the rotation center of the turntable. A read signal generating step for generating a read signal for each of the predetermined relative angles;
前記読取信号の 1を基準読取信号とし、前記少なくとも 3つの所定相対角度の読取 信号のうち前記基準読取信号以外の読取信号と前記基準読取信号との位相差を検 出する位相差検出ステップと、  A phase difference detection step of detecting a phase difference between a reading signal other than the reference reading signal and the reference reading signal among the reading signals of the at least three predetermined relative angles, wherein 1 of the reading signals is a reference reading signal;
前記位相差に基づいて、前記目盛りの角度位置誤差であるスケール誤差を算出す るスケール誤差算出ステップと、  A scale error calculating step for calculating a scale error that is an angular position error of the scale based on the phase difference;
前記スケール誤差及び前記読取信号に基づいて前記ターンテーブルの回転速度 変動を算出する回転速度変動算出ステップと、を有することを特徴とする方法。  And a rotation speed fluctuation calculating step of calculating a rotation speed fluctuation of the turntable based on the scale error and the read signal.
[11] 前記スケール誤差を格納するステップを有し、前記回転速度変動算出ステップは 当該格納されたスケール誤差に基づいて回転速度変動を算出することを特徴とする 請求項 10に記載の電子ビーム記録装置。 [11] The method includes a step of storing the scale error, and the rotation speed variation calculation step includes 11. The electron beam recording apparatus according to claim 10, wherein the rotational speed fluctuation is calculated based on the stored scale error.
[12] 前記少なくとも 3つの所定相対角度及び前記スケール誤差算出ステップにおける 前記スケール誤差の算出はマルチ再生ヘッド法に基づいてなされることを特徴とする 請求項 10に記載の方法。 12. The method according to claim 10, wherein the calculation of the scale error in the at least three predetermined relative angles and the scale error calculation step is performed based on a multiple playback head method.
[13] 前記回転速度変動算出ステップは、前記基板への電子ビーム記録に先立って算 出された既算出スケール誤差に基づいて前記回転速度変動を算出することを特徴と する請求項 10に記載の方法。 13. The rotational speed fluctuation calculating step according to claim 10, wherein the rotational speed fluctuation calculating step calculates the rotational speed fluctuation based on an already calculated scale error calculated prior to recording the electron beam on the substrate. Method.
[14] 前記スケール誤差算出ステップは、前記基板への電子ビーム記録時におけるスケ ール誤差を実時間で算出し、前記回転速度変動算出ステップは、当該算出されたス ケール誤差に基づいて回転速度変動を実時間で算出することを特徴とする請求項 1[14] In the scale error calculation step, a scale error at the time of recording the electron beam on the substrate is calculated in real time, and the rotation speed fluctuation calculation step includes a rotation speed based on the calculated scale error. Claim 1 is calculated in real time.
0に記載の方法。 The method according to 0.
[15] 前記ターンテーブルを複数回回転させて前記スケール誤差を平均化する平均化 処理ステップを有し、前記回転速度変動算出ステップは当該平均化されたスケール 誤差に基づいて前記回転速度変動を算出することを特徴とする請求項 10ないし 14 の!、ずれか 1に記載の方法。  [15] There is an averaging process step of averaging the scale error by rotating the turntable a plurality of times, and the rotation speed fluctuation calculating step calculates the rotation speed fluctuation based on the averaged scale error. 15. The method according to claim 10 or 14, wherein the method is one of claims 10 to 14.
[16] 前記スケール誤差を更新するスケール誤差更新ステップをさらに有することを特徴 とする請求項 10な ヽし 15の ヽずれか 1に記載の方法。  16. The method according to claim 10, further comprising a scale error update step of updating the scale error.
[17] 請求項 10な 、し 16の 、ずれか 1に記載の方法を用いた電子ビームの照射位置調 整方法であって、  [17] A method for adjusting an irradiation position of an electron beam using the method according to any one of claims 10 and 16, wherein:
前記回転速度変動に基づいて前記電子ビームの照射位置を調整する照射位置調 整ステップを有することを特徴とする方法。  An irradiation position adjusting step of adjusting an irradiation position of the electron beam based on the rotation speed fluctuation.
[18] 前記照射位置調整ステップは、前記回転速度変動に基づいて前記電子ビームを 接線方向に偏向してビームの照射位置を調整することを特徴とする請求項 17に記載 の方法。 18. The method according to claim 17, wherein the irradiation position adjusting step adjusts the irradiation position of the beam by deflecting the electron beam in a tangential direction based on the rotation speed fluctuation.
[19] 前記照射位置調整ステップは、前記回転速度変動に基づいて前記電子ビームの ブランキングのタイミングを調整することによってビームの照射位置を調整することを 特徴とする請求項 17に記載の方法。  19. The method according to claim 17, wherein the irradiation position adjusting step adjusts the irradiation position of the beam by adjusting a blanking timing of the electron beam based on the rotation speed variation.
PCT/JP2007/056058 2006-03-27 2007-03-23 Electron-beam recording device, and beam adjusting method WO2007111261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008507470A JPWO2007111261A1 (en) 2006-03-27 2007-03-23 Electron beam recording apparatus and beam adjustment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-085842 2006-03-27
JP2006085842 2006-03-27

Publications (1)

Publication Number Publication Date
WO2007111261A1 true WO2007111261A1 (en) 2007-10-04

Family

ID=38541178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056058 WO2007111261A1 (en) 2006-03-27 2007-03-23 Electron-beam recording device, and beam adjusting method

Country Status (2)

Country Link
JP (1) JPWO2007111261A1 (en)
WO (1) WO2007111261A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218644A (en) * 2009-03-18 2010-09-30 Fujifilm Corp Method and device for electron beam lithography
EP2500695A4 (en) * 2009-11-09 2017-08-09 National Institute of Advanced Industrial Science And Technology Angle detector with combined self calibration function
EP4056313A4 (en) * 2019-11-08 2023-10-11 Sankyo Seisakusho Co. Rotational positioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313719A (en) * 1993-04-19 1994-11-08 Topcon Corp Rotary encoder
JP2001356026A (en) * 2000-06-14 2001-12-26 Asahi Optical Co Ltd Magnetic encoder and surveying instrument with mounted magnetic encoder
JP2002050048A (en) * 2000-08-02 2002-02-15 Fujitsu Ltd Master disk exposure device
JP2003262518A (en) * 2002-03-11 2003-09-19 Tamagawa Seiki Co Ltd Self-calibrating angle detector
JP2005168280A (en) * 2003-11-13 2005-06-23 Asmo Co Ltd Motor, rotation controller, and rotation detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187031A (en) * 1989-12-18 1991-08-15 Kenwood Corp Laser modulating circuit for optical disk recorder
JPH0676293A (en) * 1992-08-27 1994-03-18 Ricoh Co Ltd Device for exposing optical original disk
JP2005246123A (en) * 2004-03-01 2005-09-15 Seiko Epson Corp Method for generating timing of discharge, liquid drop discharging device, method for manufacturing electro-optical apparatus, and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313719A (en) * 1993-04-19 1994-11-08 Topcon Corp Rotary encoder
JP2001356026A (en) * 2000-06-14 2001-12-26 Asahi Optical Co Ltd Magnetic encoder and surveying instrument with mounted magnetic encoder
JP2002050048A (en) * 2000-08-02 2002-02-15 Fujitsu Ltd Master disk exposure device
JP2003262518A (en) * 2002-03-11 2003-09-19 Tamagawa Seiki Co Ltd Self-calibrating angle detector
JP2005168280A (en) * 2003-11-13 2005-06-23 Asmo Co Ltd Motor, rotation controller, and rotation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218644A (en) * 2009-03-18 2010-09-30 Fujifilm Corp Method and device for electron beam lithography
EP2500695A4 (en) * 2009-11-09 2017-08-09 National Institute of Advanced Industrial Science And Technology Angle detector with combined self calibration function
EP4056313A4 (en) * 2019-11-08 2023-10-11 Sankyo Seisakusho Co. Rotational positioning device

Also Published As

Publication number Publication date
JPWO2007111261A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
US7875866B2 (en) Beam recording apparatus and beam adjustment method
WO2006070555A1 (en) Beam recording method and device
JP4200155B2 (en) Rotary recording apparatus with double encoder structure with eccentricity compensation
US20100237262A1 (en) Electron beam writing method and apparatus
US6650611B1 (en) Master disc manufacturing apparatus
WO2007111261A1 (en) Electron-beam recording device, and beam adjusting method
Kitahara et al. Electron beam recorder for patterned media mastering
JP5087679B2 (en) Electron beam equipment
US8355036B2 (en) Recording system, recording apparatus, and record control signal generating apparatus using an exposure beam
JP2010072180A (en) Correction system and electron beam drawing apparatus
US20120181445A1 (en) Electron beam recording apparatus
JP2008140419A (en) Electron beam mastering device and rotational unevenness correction method
JP2012141249A (en) Rotation control device and rotation control method
JPWO2008114422A1 (en) Beam drawing device
US20120075972A1 (en) Electron beam irradiating apparatus and lithography method
JP5232864B2 (en) Control apparatus, control method, and drawing method for electron beam drawing apparatus
JP2010117507A (en) Electron beam recording apparatus
JP2008203555A (en) Exposure beam irradiation device
JP2004047170A (en) Electron beam lithography system
JP2011210312A (en) Master manufacturing method, concave-convex pattern carrier manufacturing method, and magnetic disk medium manufacturing method
JP2010079951A (en) Apparatus and method for electron beam lithography
JP2002163845A (en) Mastering device and manufacturing method of substrate for storage medium
JPWO2008117358A1 (en) Electron beam equipment
JP2010205326A (en) Electron beam drawing device, method for calculating stage position deviation, and pattern drawing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008507470

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739499

Country of ref document: EP

Kind code of ref document: A1