WO2007108332A1 - 流動微小物質用の輻射線線量計、及び輻射線線量の測定方法 - Google Patents

流動微小物質用の輻射線線量計、及び輻射線線量の測定方法 Download PDF

Info

Publication number
WO2007108332A1
WO2007108332A1 PCT/JP2007/054665 JP2007054665W WO2007108332A1 WO 2007108332 A1 WO2007108332 A1 WO 2007108332A1 JP 2007054665 W JP2007054665 W JP 2007054665W WO 2007108332 A1 WO2007108332 A1 WO 2007108332A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
dose
dosimeter
fluid
microcapsule
Prior art date
Application number
PCT/JP2007/054665
Other languages
English (en)
French (fr)
Inventor
Shigemitsu Morita
Original Assignee
School Corporation, Azabu University Medicine Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by School Corporation, Azabu University Medicine Educational Institution filed Critical School Corporation, Azabu University Medicine Educational Institution
Priority to JP2008506234A priority Critical patent/JPWO2007108332A1/ja
Priority to US12/224,994 priority patent/US7956334B2/en
Publication of WO2007108332A1 publication Critical patent/WO2007108332A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/48Photometry, e.g. photographic exposure meter using chemical effects
    • G01J1/50Photometry, e.g. photographic exposure meter using chemical effects using change in colour of an indicator, e.g. actinometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/04Chemical dosimeters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/305Treatment of water, waste water, or sewage by irradiation with electrons
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/307Treatment of water, waste water, or sewage by irradiation with X-rays or gamma radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur

Definitions

  • the present invention occurs in a fluid (liquid or gas) to be handled or present in the water treatment industry such as water and sewage, the food industry, the pharmaceutical industry, etc. It is used in radiation irradiation equipment that irradiates radiation such as ultraviolet rays, X-rays, gamma rays, and electron beams (beta rays) for the purpose of killing and inactivating various flowing fine substances (flowing fine substances).
  • Radiation dose meter for flowing fine substance that can measure the dose distribution and Z or minimum dose of radiation irradiated to or absorbed by flowing fine substance, and this radiation dose It relates to the method of measuring radiation dose using a meter.
  • ultraviolet irradiation is used as a means to inactivate or inactivate pathogenic microorganisms that are generated or mixed in the liquid. Irradiation is also performed in other countries.
  • a radiation irradiation device such as an ultraviolet irradiation device or a radiation irradiation device is used.
  • Japanese Patent Publication No. 9-503,432 discloses an irradiation chamber having a radiation source directed to a fluid to be processed, radiation intensity measuring means for measuring the intensity of radiation, and a processing chamber.
  • the exposure time measuring means for measuring the time during which the fluid to be treated is exposed to radiation, and the radiation exposure rate received by the fluid to be treated are measured from the radiation intensity and the exposure time measured by the measuring means and the exposure time measuring means.
  • a fluid treatment system including a radiation exposure rate measuring means has been proposed.
  • this method by measuring the radiation exposure rate received by the fluid to be treated based on the radiation intensity and the exposure time, it is possible to obtain individual fluid micro-materials such as pathogenic microorganisms that flow along with the movement of the fluid to be treated. On the other hand, it is impossible to measure how much radiation is applied.
  • Japanese Patent Application Laid-Open No. 2004-249,207 discloses a method for inactivating protozoa such as Cryptosporidium existing in water to be treated by irradiating it with ultraviolet rays, and turbidity of the water to be treated.
  • the measured value of turbidity and the required UV irradiation amount set in advance according to the turbidity are compared and calculated, the current value of the required UV irradiation amount with respect to turbidity is calculated, and the current value that flows through the UV lamp
  • a method of irradiating ultraviolet rays in the inactivation treatment of protozoa that controls protozoa has been proposed.
  • Japanese Patent Laid-Open No. 64-25,086 discloses a radiation dosimeter having a support force having a microcapsule layer on the surface, the microcapsule comprising a wall and an internal phase, and the internal phase
  • a radiation dosimeter has been proposed in which a color dye or a density and density is changed by exposure to radiation, and the radiation dosimeter is supplied in the form of a single sheet or roll.
  • it is described that it can be used as a digital irradiation dosimeter in the fields of the food industry and the pharmaceutical industry as an analog irradiation dosimeter.
  • the microcapsules only serve as a shell that holds the solution of the radiation-colored dye on the support surface and supplies the radiation dosimeter in the form of a single sheet or roll. Therefore, it is not possible to measure the dose distribution and the Z or minimum dose of radiation irradiated or absorbed on each flowing minute substance by various flowing minute substances flowing in the fluid as the fluid moves.
  • Patent Document 1 Japanese Patent Publication No. 9-503,432
  • Patent Document 2 JP 2004-249,207 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 64-25,086
  • ultraviolet disinfection using an ultraviolet irradiation device or radiation disinfection using a radiation irradiation device is effective, and it is effective as a complementary technology to chlorine disinfection. It is considered to be.
  • the dose irradiated to pathogenic microorganisms such as cryptosporidium moving with the drinking water is determined by the ultraviolet ray lamp in the ultraviolet treatment chamber. Distribution inevitably occurs from the best case where the force slowly passes through the close path and receives a large amount of UV light to the worst case where the UV lamp force passes through the distant path in a short time and receives very little UV light. .
  • the distribution of UV radiation varies depending on the shape and size of pathogenic microorganisms, including the structure and configuration of UV irradiation equipment, and processing conditions. It depends on the type of microorganism and its infectivity. Therefore, in order to evaluate the disinfection power of the UV irradiation device for pathogenic microorganisms present in or generated in drinking water, etc., know the distribution of the UV dose irradiated to each target pathogenic microorganism, In the worst case, it is essential to know the minimum UV dose that will be irradiated to the target pathogenic microorganism.
  • the dose distribution of ultraviolet rays and Z Alternatively, the minimum dose cannot be measured and the dose distribution and Z or minimum dose of ultraviolet rays irradiated to pathogenic microorganisms cannot be determined unless a hydrodynamic evaluation is performed using a complicated computer simulation.
  • the inventors of the present invention have formed a shell and a photochromic solution containing a photochromic compound enclosed in the shell.
  • the microcapsule force that has a quantitative relationship with the amount of color change is a radiation dosimeter, and shows the peak value in the particle size distribution of the microcapsule.
  • the dose distribution and Z or minimum dose of the radiation irradiated to each flowing micro-material by the radiation irradiation device can be determined easily and reliably. I found out that I could do it and completed the present invention.
  • an object of the present invention is a radiation irradiating apparatus that introduces a fluid into a processing chamber, irradiates the fluid with radiation in the processing chamber, and irradiates the flowing minute substance in the fluid with radiation. It is an object of the present invention to provide a radiation dosimeter for a flowing minute substance that can easily and accurately determine the dose distribution and Z or minimum dose of the radiation irradiated to each flowing minute substance.
  • another object of the present invention is to provide an individual flow micro object in a radiation irradiation apparatus that irradiates a fluid in a processing chamber using such a radiation micrometer for a flow micro substance. It is intended to provide a method for measuring the radiation dose for flowing micromaterials, which can determine the dose distribution and Z or minimum dose of the radiation irradiated or absorbed into the material. Means for solving the problem
  • the present invention is a radiation-transmitting shell and a photochromic solution obtained by dissolving a radiation-chromochromic photochromic compound in a solvent and encapsulated in the shell.
  • Micro-capsule force that changes color reflecting the change in color of the photochromic solution upon receiving a line, and the dose of radiation and the amount of color change of the microcapsule have a quantitative relationship, and the particle size distribution of the microcapsule ⁇
  • the particle size that shows the peak value is set to be substantially the same as the size of the flowing fine substance that is the target of dose measurement.
  • a radiation dosimeter for a flowing fine substance characterized by the following: Preferably, the particle size of the micro cab cell R force 0.5 r ⁇ R with respect to the size r of the flowing fine substance to be measured Radiation dosimeter for flowing micromaterials within the range of ⁇ 1.5r, more preferably radiation for flowing micromaterials whose microcapsule particle size is substantially the same as the size of the flowing micromaterial A radiation dosimeter.
  • the present invention introduces a fluid into a processing chamber provided with radiation irradiation means, and irradiates the fluid in the processing chamber with the radiation irradiation means, and radiates the flowing minute substance in the fluid.
  • This is a method for measuring the radiation exposure dose by measuring the radiation dose applied to the flowable minute substance with a radiation dosimeter in a radiation irradiation device that irradiates the radiation.
  • a photochromic compound obtained by dissolving a chromogenic photochromic compound in a solvent and encapsulated in the shell, reflecting the change in color of the photochromic solution upon receiving radiation
  • the amount of the color change becomes a microcapsule force having a quantitative relationship with the radiation dose.
  • the photochromic solution contained in the microcapsule basically has a radiation dose when radiation such as ultraviolet rays, X-rays, gamma rays, and electron rays (beta rays) acts.
  • the photochromic compound is compatible with radiation coloring to form this photochromic solution that changes color with a predetermined quantitative relationship in accordance with the color and, as a result, manifests as a microcapsule color change amount (color change amount).
  • the solvent thereof can be selected from those exemplified below and used.
  • the quantitative relationship between the radiation dose or absorbed dose and the amount of discoloration of the microcapsules is in a certain relationship, and if the radiation dose or absorbed dose is known, the microphone The amount of discoloration of the mouth capsule (for example, the absorbance) is specified. On the other hand, if the amount of discoloration of the microcapsule is known, it is sufficient that the radiation dose or absorbed dose is specified. This is a relationship that is derived in advance by obtaining a calibration curve. May be.
  • the quantitative relationship between the radiation dose and the amount of discoloration of the microcapsules is as wide as possible with respect to the radiation dose, and is preferably present in the region. It must exist in an area that includes the minimum required dose of radiation required for flowing micromaterials.
  • the flowable micromaterial is a pathogenic microorganism and the radiation dose required for its inactivation is If determined experimentally, the quantitative relationship between the radiation dose and the amount of discoloration of the micro cab cell must exist at least in the area containing the required dose value, preferably Including this required dose value, it should be present in the region of less than 0.5 times, more preferably less than 0.3 times that value.
  • the quantitative relationship between the maximum dose in the radiation irradiation means and the amount of discoloration of the microcapsule needs to exist at least in a region including the value of the maximum dose, and preferably includes the value of the maximum dose. It should be present in the region of 1.5 times or more, more preferably 2 times or more of the value of.
  • the pathogenic microorganism as a fluid micro-material is Cryptosporidium
  • the value of the UV dose required for its 99.9% inactivity is about lOmJ / cm 2
  • maximum UV dose delivered is a 80 mJ / cm 2.
  • the color development characteristics when radiation is applied to a radiation-chromatically compatible photochromic compound differ depending on the combination with the solvent that forms the photochromic solution, but the amount of color change per unit dose of the irradiated radiation is compared. There should be a relatively wide quantitative relationship, preferably a linear quantitative relationship, between the dose of irradiated radiation and the amount of discoloration of the microphone mouth capsule.
  • Diarylmethenes such as 2,3-bis (2,4,5-trimethy ⁇ 3-thienyl) maleimide
  • 4,4'-bipyridyU 1,1, bis (2,4—dinitrophenyl) —4,4, —bipyridinium dichloride, ⁇ , 1-dibenzyl-4,4—bipyridinium dichlonde,
  • Viologens such as 1,1'-diphenyl-4,4'-bipyridinium dichloride
  • the photochromic compound is more preferably an irreversible discolorant that does not discolor by irradiation with visible light and Z or heating from the viewpoint of handling. If the photochromic compound after discoloration is stable to visible light irradiation, Z or heating, etc., the radiation that is measured by the measurement means such as a flow cytometer for measuring the amount of discoloration of this radiation dosimeter Even if it is not near the irradiation device, this measuring means Since the radiation dosimeter can be transported to a certain place and measured, there is no need to provide a measuring means such as a flow cytometer at each place where the radiation irradiation apparatus is installed. Further, the photochromic compound preferably has a viewpoint in the production of microcapsules and is soluble in a water-insoluble solvent.
  • the solvent for forming the photochromic solution is not particularly limited as long as it can dissolve the photochromic compound to form a photochromic solution. As a result, the discoloration of the photochromic solution obtained by combination with the photochromic compound can be obtained. Since the discoloration of the micro force psal changes, it is appropriately selected and used depending on the type of photochromic compound used or the type of radiation.
  • this solvent include, for example, aromatic compounds such as benzene, toluene and xylene, aromatic aralkyl alcohols such as benzyl alcohol, ketones such as 2-butanone and 4-methyl-2-pentanone, Water-insoluble solvents such as acetates such as cetyl acetate and butyl acetate, carboxylic acid esters such as methyl methacrylate, lower aliphatic alcohols such as methanol, ethanol and 2-pronool V, jetyl Lower aliphatic ethers such as ether, lower aliphatic ketones such as acetone, methyl ethyl ketone and methylisobutyl ketone, lower aliphatic-tolyls such as acetonitrile, sulfoxides such as dimethyl sulfoxide, deionized water, etc. And water-soluble solvents. Of these solvents, only one of them can be used alone, or two or more of them can be used in such as
  • the selection of a combination of a photochromic compound and a solvent when producing a photochromic solution involves preparing a photochromic solution by dissolving the photochromic compound in a solvent, and irradiating the resulting photochromic solution with radiation to increase the color intensity. This can be determined experimentally by conducting a color development / decoloration experiment that measures and then evaluates the ability to decolorize by means such as irradiation with visible light or heating.
  • the photochromic solution is preferably an irreversible color-changing material that does not discolor by irradiation with visible light and Z or heating after being discolored by irradiation.
  • BLMB 10_benzoyl-N, N, N ', N, —tetramethy ⁇ 1 OH—phenothiazine—3,7-diamine
  • MEK methyl Ethyl ketone
  • DMSO dimethyl sulfoxide
  • the concentration of the photochromic compound in this photochromic solution is appropriately determined in consideration of the coloring characteristics and decoloring characteristics depending on the measurement target dose range.
  • a capsule shell material forming a microcapsule shell in which the above-mentioned photochromic solution is encapsulated has been known so far! Because it looks at the discoloration of the photochromic solution contained in it through the body due to the radiation, it is at least radiation transmissive and visible so that the discolored photochromic solution can be observed from outside the shell. It should be light transmissive and preferably excellent in transparency.
  • capsule film material examples include gelatin, urea resin, melamine resin, urethane resin, polyurea resin, and the like, and can be appropriately selected in relation to the photochromic solution.
  • urea formaldehyde resin or gelatin is preferable, and urea formaldehyde resin is particularly preferable.
  • the method for producing the microcapsules to be the radiation dosimeter of the present invention using the photochromic solution and the capsule coating material is not particularly limited, and a conventionally known production method such as a coacervation method is not particularly limited. Examples thereof include an interfacial polymerization method and an in-situ method, which can be appropriately selected according to the type of photochromic solution or capsule film material used.
  • the microcapsule used as a radiation dosimeter when the mic capsule is introduced into the fluid, the microcapsule is present in the fluid and the flow behavior of the flowable micromaterial to be measured. Since it is necessary to have substantially the same flow behavior, the particle size showing the peak value in the particle size distribution is substantially the same as the size of the flowable microparticle that is the subject of dose measurement. It is necessary to be set.
  • micro force “The particle size that shows the peak value in the particle size distribution” means the particle size distribution of the particle size (horizontal axis) and the number of particles (vertical axis) of the microcapsule. It means the size of the particle size of the particle that shows the peak value, and “substantially the same size as the size of the flowing fine substance” means within the range of ⁇ 10% of the size of the flowing fine substance. Means the case, and also
  • the size of the flowable fine substance has a width, it means that it falls within that width.
  • the particle size R of the microcapsule is set to the size r of the flowing fine substance to be dose-measured.
  • the particle diameters of the microcapsules are all the same.
  • the resolution as a radiation dosimeter is particularly high because the microcapsule particle size R becomes larger as it gets closer to the size r of the flowable micro-material, and the manufacturing cost increases accordingly. Except where accuracy is required, it should be in the range of 0.5r ⁇ R ⁇ l.5r.
  • the chlorine-resistant microorganism Cryptosporidium (4-7 m) is targeted as a flowable minute substance, it is about 2 ⁇ m to 10 ⁇ m, preferably 3 ⁇ m to 8 ⁇ m.
  • Giardia (8-12 ⁇ m) it is 4 / zm or more and 18 ⁇ m or less, preferably 6 ⁇ m or more and 14 ⁇ m or less.
  • a range including the size of both of them for example, about 2 ⁇ m to 18 ⁇ m, preferably It is good that it is 3 ⁇ m or more and 14 ⁇ m or less, more preferably 4 / zm or more and 12 / zm or less.
  • the size of the microcapsule is set to about 10 to 20 ⁇ m, and Naegleria fowleri (Naegleria fowleri) The size is about 7 to 10 / ⁇ ⁇ , and the size is about 30 to 38 / ⁇ ⁇ for Echinococcus spp. You may adjust to.
  • the range of the particle size R of the microcapsule is preferably the smallest of the flowing fine substance.
  • Particle size force Microcapsules with a range that includes the maximum particle size
  • the radiation dosimeter, which is composed of microcapsules with a particle size R closer to the size r of the flowing micromaterial, is the same as, or near to, the flow behavior of the flowing micromaterial in the fluid. More accurate radiation dose distribution and Z or minimum dose can be measured and determined.
  • a method for obtaining a microcapsule having a size close to that of the flowable minute substance that is the subject of irradiation dose measurement as described above for example, it is manufactured by controlling the stirring conditions using an emulsification stirring method.
  • the microcapsule manufacturing method itself may be devised, for example, by adjusting the particle size of the microcapsule.
  • the size of the particle size R that requires the manufactured microcapsule may be determined.
  • the fractionation method that can be used for the fractionation include known methods such as cell sorting flow cytometry.
  • the radiation irradiation apparatus that irradiates radiation rays such as ultraviolet rays, X-rays, gamma rays, and electron beams (beta rays) using the radiation dosimeter having the microcapsule force obtained as described above
  • radiation dose average dose, dose distribution, minimum dose
  • the following methods can be preferably exemplified as the measuring method. In the following explanation, the distribution of dose and the case of measuring the Z or minimum dose will be explained, but it is needless to say that the average dose can also be measured.
  • a method for measuring the radiation dose is, for example, as shown in FIG. 1, in which a fluid is introduced from an inlet 3 into a processing chamber 2 provided with a radiation irradiating means 1, and a fluid is discharged from an outlet 4.
  • the radiation irradiating means 1 irradiates the fluid in the processing chamber 2 with a radiation toward the fluid
  • the radiation irradiating apparatus irradiates the flowing fine substance in the fluid with the radiation.
  • the color change amount is measured by the color change amount measuring means 6, and It is a method of determining the dose distribution and Z or minimum dose of radiation irradiated to each flow micro-substances by spokes ray irradiation means 1 Te.
  • the processing chamber 2 has an inlet 3 and an outlet 4 for introducing and discharging fluid, and this As long as it has radiation irradiation means 1 such as an ultraviolet lamp, gamma ray source, electron beam accelerator, etc. for irradiating the inside of the treatment chamber 2, this treatment chamber 2 is also a batch type. Any type of distribution type may be used.
  • radiation irradiation means 1 such as an ultraviolet lamp, gamma ray source, electron beam accelerator, etc.
  • the individual color dosimeters collected by the above-mentioned method are not particularly limited, and there are no particular restrictions on the discoloration amount measuring means 6 for measuring the discoloration amount. Irradiate the radiation dosimeter 5 with He-Ne laser light 7 and measure the scattered light 8a, 8b, 8c. Can do.
  • the photochromic solution contained in the microcapsule constituting the radiation dosimeter is irradiated with visible light and Z or heated.
  • the radiation dosimeter 5 collected from the outlet 4 of the processing chamber 2 of the radiation irradiation device is placed at or near the outlet 4 of the processing chamber 2. It is desirable to make it possible to measure immediately.
  • the outlet of treatment chamber 2 of the radiation irradiation device may be transported to another facility having the color change amount measuring means 6 for measurement.
  • the peak value is compared with the particle size distribution of the microcapsules constituting the radiation dosimeter.
  • the radiation irradiation device By doing so, it is possible to determine the distribution and Z or minimum irradiation dose of the radiation dose irradiated to each flowable minute substance by the radiation irradiation device easily and surely. Therefore, for example, UV irradiation equipment used for disinfecting pathogenic microorganisms in waterworks.
  • the microcapsules constituting the radiation dosimeter are adjusted so that the particle diameter of the pathogenic microorganisms targeted for killing or inactivation is almost the same.
  • this radiation dosimeter shows substantially the same flow behavior as the pathogenic microorganisms to be disinfected in the tap water of the treatment room of the radiation irradiation device, the amount of discoloration of individual radiation dosimeters collected at the exit of the treatment room By measuring the above, it is possible to easily and reliably determine the dose distribution and Z or minimum dose of ultraviolet rays irradiated to individual pathogenic microorganisms by this ultraviolet irradiation device.
  • FIG. 1 is an explanatory diagram for explaining a method of measuring a radiation dose using a radiation dosimeter for a flowing fine substance of the present invention.
  • Figure 2 shows the relationship between the ultraviolet irradiation dose (mj / cm 2 ) of the photochromic solution (BLMB-lwt% toluene solution) obtained in Example 1 and the absorbance (OD) at 660 ° C.
  • FIG. 1 shows the relationship between the ultraviolet irradiation dose (mj / cm 2 ) of the photochromic solution (BLMB-lwt% toluene solution) obtained in Example 1 and the absorbance (OD) at 660 ° C.
  • FIG. 3 is a graph showing the relationship between the SS channel of the BLMB ultraviolet dosimeter obtained in Example 1 and the number of particles (count value) in each channel.
  • Fig. 4 shows the gamma-ray absorbed dose (Gy) of the photochromic solution (LCV-1 wt% 2-propanol solution) obtained in Example 3 and the absorbance area (Abs. Area) at 400 to 700 nm.
  • Gy gamma-ray absorbed dose
  • FIG. 5 is a graph showing the relationship between the FS channel of the BLMB ultraviolet dosimeter before fractionation obtained in Example 4 and the number of particles (count value) in each channel.
  • FIG. 6 is a graph showing the relationship between the FS channel of the BLMB ultraviolet dosimeter after fractionation obtained in Example 4 and the number of particles (count value) in each channel.
  • FIG. 7 is a graph showing the relationship between the UV irradiation dose (mj / cm 2 ) of the BLMB ultraviolet dosimeter after fractionation obtained in Example 4 and the median value of the SS channel. It is.
  • Fig. 8 is a graph showing the relationship between the SS channel and the number of events (Events) when the fractionated BLMB ultraviolet dosimeter obtained in Example 4 is irradiated with ultraviolet rays. Yes, (a) shows the result measured in the mixed system, and (b) shows the result measured in the stationary system.
  • Events the fractionated BLMB ultraviolet dosimeter obtained in Example 4 is irradiated with ultraviolet rays.
  • BLMB 10-benzoy ⁇ ⁇ , ⁇ , ⁇ ', ⁇ -tetramethyl
  • BLMBlg was dissolved in toluene lOOg to prepare a photochromic solution (B LMB-lwt% toluene solution).
  • the obtained photochromic solution (BLMB-lwt% toluene solution) was introduced into a batch-type ultraviolet irradiation apparatus, irradiated with ultraviolet rays of 5 120 mJ / cm 2 , and then absorbed with an absorptiometer (Shimadzu Corporation U
  • the absorbance at 660 was measured with V-1700), and the relationship between UV irradiation dose (mj / cm 2 ) and absorbance (OD) was investigated.
  • the prepared BLMB UV dosimeter was introduced into a batch-type UV irradiation device, and (a) Without irradiating with ultraviolet light, or (b) After irradiating with 100mJ / cm 2 ultraviolet light, collect BLMB ultraviolet dosimeter and laterally with flow cytometer (COULTER EPICS ALTRA HyPerSort System Flowcytometer, Beckman Coulter) Scattered light (SSC) was measured, and the discoloration amount of each BLMB ultraviolet dosimeter was obtained from the histogram.
  • COULTER EPICS ALTRA HyPerSort System Flowcytometer, Beckman Coulter Scattered light
  • the SS channel on the horizontal axis is proportional to the color intensity of the BLMB ultraviolet dosimeter, and the vertical axis shows the number of particles (count value) in each channel.
  • the SS channel shown in Fig. 3 As is clear from the relationship between the count value and the count value, the histogram of the count value shows that the SS channel decreases and moves in the direction as the UV irradiation dose increases (see (a) and (b) in Fig. 3). ), A high correlation was observed between the peak channel of the count value and the UV irradiation dose.
  • a BLMB ultraviolet dosimeter was prepared in the same manner as in Example 1 above, in which the photochromic solution was a BLMB-lwt% Ruen solution and the capsule coating material also had a microcapsule force of urea formaldehyde resin.
  • the particle size distribution of the microcapsules produced by this method was 1.0 to 45 / ⁇ ⁇ (90% value).
  • the obtained photochromic solution (LCV-lwt% 2-propanol solution) was introduced into a batch-type gamma-ray irradiation device and irradiated with 1.4 to 8.7 kGy of gamma rays, followed by an absorptiometer (Shimadzu Corporation). Absorbance between 400 and 700 nm was measured with a UV-1700), and the relationship between gamma ray absorbed dose (Gy) and absorbance (Abs. Area) was investigated.
  • the photochromic solution (LCV-lwt% 2-propanol solution) has a linearly higher absorbance as the gamma-ray absorbed dose increases. A high correlation was observed between the linear absorbed dose and the absorbance.
  • the photochromic solution is an LCV-lwt% toluene solution
  • the capsule coating material is urea formaldehyde coagulant in the same manner as in Example 1.
  • An LCV radiation dosimeter consisting of a microcapsule was prepared.
  • the particle size distribution of the microcapsules produced by this method was 1.0 to 35 ⁇ m (90% value).
  • Example 2 In the same manner as in Example 1, a BLMB ultraviolet dosimeter comprising a microcapsule capsule containing a photochromic solution having an average particle diameter of 5 m was prepared.
  • BLMB UV dosimeter of Example 4 Using the obtained BLMB ultraviolet dosimeter, using a flow cytometer's sorting function, fractionation is carried out through a sieve of nylon mesh (NYTAL product name: NY-20HC) with openings of 40 m and 10 m. A later BLMB UV dosimeter (BLMB UV dosimeter of Example 4) was obtained.
  • the particle size distribution of the BLMB ultraviolet dosimeter before fractionation thus obtained is 1.0 to 45 / zm (90% value), and the BLMB ultraviolet dosimeter after fractionation (in Example 4)
  • the particle size distribution of the BLMB UV dosimeter was 1-7 ⁇ m (90% value).
  • the BLMB ultraviolet dosimeter before and after the fractionation obtained above was measured using a flow cytometer V, and a histogram of the forward scattered light of the BLMB ultraviolet dosimeter.
  • Example 4 The BLMB ultraviolet dosimeter of Example 4 obtained in this way (BLMB ultraviolet dosimeter after fractionation) was introduced into a batch-type ultraviolet irradiation apparatus in the same manner as in Example 1, 20 ⁇ : After irradiating LO OmJ / cm 2 of low-pressure ultraviolet light, the side scattered light (SSC) is measured with a flow cytometer, and the relationship between the ultraviolet irradiation dose (mj / cm 2 ) and the side scattered light (SSC) I investigated.
  • SSC side scattered light
  • the results are shown in FIG. [0065]
  • the half-width of the histogram of side scattered light in the BLMB ultraviolet dosimeter of Example 4 (BLMB ultraviolet dosimeter after fractionation) obtained from this Fig. 7 is 10 channels, and at 100 mJ / cm 2 irradiation Since the median of the histogram of side scattered light is increased by 150 channels, the ultraviolet ray dose per side scattered light is 0.67 mJ / cm 2 , and the resolution of the BLM B ultraviolet dosimeter of Example 4 is 7 mJ. Calculated as / cm 2 .
  • the resolution obtained in the same way was calculated as 70 mj / cm 2 .
  • one measurement specimen is a stationary system without stirring
  • the other specimen water is a completely mixed system that is mixed using a magnetic stirrer under the condition of lOOrpm.
  • UV light was irradiated so that the UV irradiation amount on the surface of the water layer was 50 mJ / cm 2.
  • the BLMB UV dosimeter was collected and laterally flowed with a flow cytometer. Scattered light (SSC) was measured, and the amount of color change of each BLMB ultraviolet dosimeter was obtained from the histogram.
  • SSC Scattered light
  • Figure 8 (a) shows the measurement result of the amount of color change due to UV irradiation in the complete mixing system
  • Fig. 8 (b) shows the result of measurement of the color change amount due to UV irradiation in the static system.
  • the distribution of the ultraviolet ray dose irradiated to the ultraviolet dosimeter occurs (calculated value when the ultraviolet ray irradiation dose on the surface of the water layer is 50 mJ / cm 2 : 50-23 mJ / cm 2 ), and the histogram is relatively producible. (See Fig. 8 (b)).
  • the fluid is introduced into the processing chamber, and the fluid is irradiated with the radiation in the processing chamber.
  • the radiation irradiating device that irradiates the flowing fine substance in the fluid with radiation, the distribution and Z or minimum dose of the radiation dose irradiated to each flowing fine substance can be easily and accurately obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Physical Water Treatments (AREA)

Abstract

 処理室内で流体中の流動微小物質に輻射線を照射する輻射線照射装置において、個々の流動微小物質に照射された輻射線の線量分布及び/又は最低線量を容易にかつ正確に求めることができる流動微小物質用の輻射線線量計、及びこれを用いた流動微小物質に対する輻射線線量の測定方法を提供する。  輻射線透過性の殻体とこの殻体内に封じ込められた輻射線発色互変性のフォトクロミック溶液とで形成され、輻射線を受けてフォトクロミック溶液が変色するのを反映して変色するマイクロカプセルからなり、輻射線の線量と上記マイクロカプセルの変色量とが定量的関係を有すると共に、マイクロカプセルの粒径分布においてピーク値を示す粒径が線量測定対象である流動微小物質の大きさ径と実質的に同じ大きさに設定されている流動微小物質用の輻射線線量計であり、また、流動微小物質用の輻射線線量計を用いた流動微小物質に対する輻射線線量の測定方法である。

Description

流動微小物質用の輻射線線量計、及び輻射線線量の測定方法 技術分野
[0001] この発明は、上下水道等の水処理業界、食品業界、医薬業界等の技術分野にお いて、取り扱う流体 (液体又は気体)中に発生し、あるいは、存在してこの流体の移動 と共に流動する種々の微小物質 (流動微小物質)に対する殺滅、不活性化等を目的 に、紫外線、 X線、ガンマ線、電子線 (ベータ線)等の輻射線を照射する輻射線照射 装置において用いられ、流動微小物質へ照射された、あるいは、流動微小物質に吸 収された輻射線の線量分布及び Z又は最低線量を測定することができる流動微小 物質用の輻射線線量計、及びこの輻射線線量計を用いた輻射線線量の測定方法に 関する。
背景技術
[0002] 例えば、水処理業界で対象とする上下水、プールや大型風呂、景観用水等のレク レーシヨン水、船舶のバラスト水等や、食品業界で対象とする飲料水、ジュース等や、 医薬業界で対象とする注射液や液体状又はシロップ状の経口薬等の流動性医薬等 においては、液体中に発生し、あるいは、混入する病原微生物等の殺滅ゃ不活性化 の手段として紫外線照射が行われており、また、諸外国では放射線照射も行われて いる。そして、そのための装置として紫外線照射装置や放射線照射装置等の輻射線 照射装置が用いられている。
[0003] このような輻射線照射装置において、殺滅ゃ不活性ィ匕の対象となる病原微生物に 対して、実際にどの程度の線量の輻射線が照射されたかを知ることは、これら病原微 生物等を任意レベルまで殺滅あるいは不活性ィ匕するためには、照射装置どのような 構造、構成にすればよいか、あるいはどのような条件で輻射線を照射すればよいか について設計する上で極めて重要なことであり、このための幾つかの方法も提案され ている。
[0004] 例えば、特表平 9-503,432号公報には、被処理流体に向けた放射線源を有する照 射チャンバと、放射線の強度を測定する放射線強度測定手段と、処理チャンバ内で 被処理流体が放射線に曝露される時間を測定する曝露時間測定手段と、上記測定 手段と曝露時間測定手段とによって測定された放射線強度と曝露時間とから被処理 流体が受ける放射線照射率を測定する放射線照射率測定手段とを備えた流体処理 システムが提案されている。し力しながら、この方法においては、放射線強度と曝露 時間とから被処理流体が受ける放射線照射率を測定するだけで、被処理流体の移 動と共に流動する病原微生物等の個々の流動微小物質に対してどの程度の放射線 が照射された力までは測定することができな 、。
[0005] また、特開 2004-249,207号公報には、処理対象水に存在するクリプトスポリジゥム 等の原虫類に紫外線を照射して不活性化させる方法において、処理対象水の濁度 状況を測定し、この濁度の測定値と濁度に応じて予め設定した必要紫外線照射量を 比較演算し、濁度に対する必要紫外線照射量の電流値を算出し、紫外線殺滅灯に 流す電流値を制御する原虫類の不活性化処理における紫外線の照射方法が提案さ れている。し力しながら、この方法においても、濁度と濁度に応じて予め設定された必 要紫外線照射量とから紫外線殺滅等に流す電流値を制御して原虫類の不活性化処 理における紫外線の照射線量を制御しょうとするものであって、処理対象水の移動と 共に移動する個々の原虫類に対してどの程度の紫外線が照射された力までは測定 することができない。
[0006] 更【こ、 Sommer et al., 2004 UV drinking water disinfection. -Requirement,
Testing and Surveillance: Exemplified by the Austrian National Standards M5873— 1 and M5873-2. Proc. 2nd Asia Conf. UV Technol. Environ. Appl."には、紫外線処理 室で照射される紫外線線量の評価方法として、 Bacillus subtilisや MS2 coliphage等の 微生物を紫外線処理室に流入する水に添加し、処理室を通過した微生物を回収し てその不活性ィ匕率を算出し、処理室内を通過してきた微生物に照射された平均紫外 線線量を評価する手法が報告されている。し力しながら、この生物線量計を用いる方 法においては、処理室内を通過してきた微生物に照射された平均紫外線線量を求 めることはできるものの、処理室内の紫外線照射線量率の分布と流動特性により生じ る個々の微生物への紫外線曝露時間の分布の両者に起因する紫外線照射線量の 分布までは評価することができず、処理室内での短絡流の発生等のワーストケースを 考慮した最低線量の評価は、複雑なコンピュータシミュレーションの推定値に頼らざ るをえな ヽと 、う問題がある。
[0007] 更にまた、特開昭 64-25,086号公報には、表面上にマイクロカプセル層を有する支 持体力もなる放射線線量計であって、マイクロカプセルが壁と内部相とからなり、内部 相が放射線着色染料の溶液からなり、放射線着色染料は放射線への露出により色 又は濃淡と密度を変える輻射線線量計が提案されており、この輻射線量計を単一の シート又はロールの形態で供給し、食品産業や医薬品産業の分野でデジタル型照 射線量計として、ある 、はアナログ型照射線量計として用いることが記載されて 、る。 しかしながら、この方法において、マイクロカプセルは放射線着色染料の溶液を支持 体表面に保持する殻体としての機能を果たして ヽるだけであり、輻射線線量計を単 一のシート又はロールの形態で供給するので、流体中を流体の移動と共に流動する 種々の流動微小物質にっ 、て、個々の流動微小物質に照射あるいは吸収された輻 射線の線量分布及び Z又は最低線量を測定することはできない。
特許文献 1:特表平 9-503,432号公報
特許文献 2:特開 2004-249,207号公報
特許文献 3:特開昭 64-25,086号公報
特干文献 1 : Sommer et al., 2004 UV drinking water disinfection. -Requirement, Testing and Surveillance: Exemplified by the Austrian National Standards M5873— 1 and M5873-2. Proc. 2nd Asia Conf. UV Technol. Environ. Appl."
発明の開示
発明が解決しょうとする課題
[0008] ところで、上水道の水処理にっ 、て着目した場合、近代水道の普及と消毒技術の 発達により水道水を介した感染症の発生は著しく減少している。しかしながら、衛生 管理が進んで 、る先進国にぉ 、てさえも、塩素に耐性を有する病原微生物による水 系感染が多数発生している。このような病原微生物としては、クリプトスポリジゥム (Cry ptosporidium)ゃジアルジァ(Giardia)等の原虫類、 A型肝炎ウィルスやノロウィルス 等のウィルス類等が挙げられる力、特に原虫類のシストゃォーシストは一般に消毒耐 性が強ぐ中でもクリプトスポリジゥムパルブム(Cryptosporidium parvum)のォーシス トはとりわけ塩素に対して強い耐性を示し、例えば、 1993年のミルウォーキーでは 40 万人を超す感染者が、また、 1996年の埼玉県越生町では 9千人近い感染者が出る 等、いつ集団感染が発生するか分力 ない状況である。
[0009] このクリプトスポリジゥム等の病原微生物に対しては、紫外線照射装置を用いた紫 外線消毒、あるいは放射線照射装置を用いた放射線消毒が有効であり、塩素消毒 の補完技術として効果的であると考えられている。し力るに、例えば紫外線照射装置 により飲料水の消毒を行う場合、この飲料水中^料水と共に移動するクリプトスポリ ジゥム等の病原微生物に照射される線量には、その紫外線処理室内において、紫外 線ランプ力も近い経路をゆっくりと通過して多量の紫外線を受けるベストケースから、 紫外線ランプ力も遠い経路を短時間で通過して極僅かな紫外線を受けるだけのヮー ストケースまで、分布が不可避的に発生する。そして、紫外線線量の分布は、紫外線 照射装置の構造や構成、処理条件を始めとして、病原微生物の形状や大きさ等によ つて異なり、し力も、不活性ィ匕に必要な紫外線照射線量も病原微生物の種類やその 感染力によって異なる。したがって、飲料水等の中に存在、あるいは発生する病原微 生物に対する紫外線照射装置の消毒力を評価するためには、標的とする個々の病 原微生物に照射される紫外線線量の分布を知り、また、ワーストケースにおいて標的 とする病原微生物に照射される最低紫外線線量を知ることが不可欠である。
[0010] し力しながら、これまでこの種の紫外線照射装置の評価に用いられてきた紫外線線 量計、あるいは紫外線線量測定法では、このような病原微生物に照射される紫外線 の線量分布及び Z又は最低線量を測定することはできず、複雑なコンピュータシミュ レーシヨンで流体力学的評価を実施しない限り、病原微生物に照射される紫外線の 線量分布及び Z又は最低線量を求めることができな ヽ。
[0011] 同様に、この種の放射線照射装置の評価に用いられてきた放射線線量計、あるい は放射線線量測定法では、このような病原微生物に照射される放射線線量の分布 及び Z又は最低線量を測定することはできず、複雑なコンピュータシミュレーションで 流体力学的評価を実施しな 、限り、病原微生物に照射される放射線の線量分布及 び Z又は最低線量を求めることができな 、。
[0012] このような背景から、簡便で正確に紫外線や放射線等の線量分布及び Z又は最低 線量を測定することができる紫外線や放射線等の輻射線線量計、及びこれを用いた 線量測定法の開発が求められていた。
[0013] 本発明者らは、力かる観点から鑑みて鋭意検討した結果、殻体とこの殻体内に封じ 込められたフォトクロミック化合物を含むフォトクロミック溶液とで形成され、輻射線の 線量とマイクロカプセルの変色量とが定量的関係を有するマイクロカプセル力 なる 輻射線線量計にぉ 、て、そのマイクロカプセルの粒径分布におけるピーク値を示す 粒径が線量測定対象である流動微小物質の大きさ径と実質的に同じ大きさとなるよう に設定することにより、この輻射線線量計を流体中に導入した際に輻射線線量計が 流体中で流動微小物質と実質的に同じ挙動流動を示し、輻射線線量計の変色量を 測定することにより、容易にし力も確実に輻射線照射装置によって個々の流動微小 物質に照射された輻射線の線量分布及び Z又は最低線量を求めることができること を見い出し、本発明を完成した。
[0014] 従って、本発明の目的は、流体を処理室に導入し、この処理室内で流体に輻射線 を照射し、この流体中の流動微小物質に輻射線を照射する輻射線照射装置におい て、個々の流動微小物質に照射された輻射線の線量分布及び Z又は最低線量を容 易にかつ正確に求めることができる流動微小物質用の輻射線線量計を提供すること にある。
[0015] また、本発明の他の目的は、このような流動微小物質用の輻射線線量計を用いて、 処理室内で流体に輻射線を照射する輻射線照射装置において、個々の流動微小物 質に照射、あるいは吸収された輻射線の線量分布及び Z又は最低線量を求めること ができる、流動微小物質に対する輻射線線量の測定方法を提供することにある。 課題を解決するための手段
[0016] すなわち、本発明は、輻射線透過性の殻体と、輻射線発色互変性のフォトクロミック 化合物を溶剤に溶解して得られ、上記殻体内に封じ込められたフォトクロミック溶液と で形成され、輻射線を受けてフォトクロミック溶液が変色するのを反映して変色するマ イク口カプセル力 なり、輻射線の線量と上記マイクロカプセルの変色量とが定量的 関係を有すると共に、マイクロカプセルの粒径分布にぉ ヽてピーク値を示す粒径が 線量測定対象である流動微小物質の大きさ径と実質的に同じ大きさに設定されてい ることを特徴とする流動微小物質用の輻射線線量計であり、好ましくは、マイクロカブ セルの粒径 R力 線量測定対象である流動微小物質の大きさ径 rに対して 0. 5r≤R ≤1. 5rの範囲内の流動微小物質用の輻射線線量計であり、より好ましくはマイクロ カプセルの粒径が流動微小物質の大きさ径と実質的に同じ大きさの流動微小物質 用の輻射線線量計である。
[0017] また、本発明は、輻射線照射手段を備えた処理室内に流体を導入し、この輻射線 照射手段により処理室内で流体に輻射線を照射し、この流体中の流動微小物質に 輻射線を照射する輻射線照射装置において、流動微小物質に照射された輻射線の 線量を輻射線線量計により測定する輻射線照射線量の測定方法であり、上記輻射 線線量計が、輻射線透過性の殻体と、輻射線発色互変性のフォトクロミック化合物を 溶剤に溶解して得られ、上記殻体内に封じ込められたフォトクロミック溶液とで形成さ れ、輻射線を受けてフォトクロミック溶液が変色するのを反映して変色すると共に、そ の変色量が輻射線の線量と定量的関係を有するマイクロカプセル力 なり、上記輻 射線照射装置の処理室にはその入口から上記輻射線線量計を導入すると共にその 出口から回収される個々の輻射線線量計の変色量を測定し、上記輻射線照射手段 によって個々の流動微小物質に照射された輻射線の線量分布及び Z又は最低線量 を求めることを特徴とする流動微小物質に対する輻射線線量の測定方法である。
[0018] 本発明において、マイクロカプセルに内包するフォトクロミック溶液については、基 本的には紫外線、 X線、ガンマ線,電子線 (ベータ線)等の輻射線が作用した際に当 該輻射線の線量に応じて所定の定量関係を有して変色し、結果としてマイクロカプセ ルの変色量 (色の変化量)として発現すればよぐこのフォトクロミック溶液を形成する ための輻射線発色互換性のフォトクロミック化合物とその溶剤については、例えば、 以下に例示するものから選択して使用することができる。ここで、輻射線の照射線量、 あるいは吸収線量とマイクロカプセルの変色量との定量的関係については、それが 一定の関係の下にあって、輻射線の照射線量、あるいは吸収線量がわかればマイク 口カプセルの変色量 (例えば、吸光度)が特定され、反対に、マイクロカプセルの変色 量がわかれば輻射線の照射線量、あるいは吸収線量が特定される関係にあればよく 、直線的関係であってもなくてもよぐ更に、予め検量線を求めて導かれる関係であ つてもよい。
[0019] また、輻射線の線量とマイクロカプセルの変色量との定量的関係は、輻射線の線量 につ 、て可及的に広 、領域で存在するのが望ま 、が、少なくとも対象とする流動 微小物質に対して求められる必要な輻射線の最低線量を含む領域において存在す る必要があり、例えば、流動微小物質が病原微生物であって、その不活性化に必要 な輻射線の線量が実験的に求められている場合には、輻射線の線量とマイクロカブ セルの変色量との定量関係は、少なくともこの必要とされる線量の値を含む領域で存 在する必要があり、好ましくはこの必要とされる線量の値を含んでその値の 0. 5倍以 下、より好ましくは 0. 3倍以下の領域で存在するのがよい。また,輻射線照射手段に おける最大線量とマイクロカプセルの変色量との定量関係は、少なくともこの最大線 量の値を含む領域で存在する必要があり、好ましくはこの最大線量の値を含んでそ の値の 1. 5倍以上、より好ましくは 2倍以上の領域で存在するのがよい。例えば、流 動微小物質としての病原微生物がクリプトスポリジゥムである場合、その 99. 9%不活 性ィ匕に必要な紫外線線量の値は lOmJ/cm2程度、また、紫外線照射手段により照射 される最大紫外線線量は 80mJ/cm2とされる。しかるに、必要な紫外線線量と紫外線 照射手段により照射される最大線量を包含する、 5mJ/cm2以上 120mJ/cm2以下、好 ましくは 3mJ/cm2以上 160mJ/cm2以下の領域で紫外線線量とマイクロカプセルの変 色量との間に定量関係が存在するのがよい。
[0020] 輻射線発色互換性のフォトクロミック化合物に輻射線を照射したときの発色特性は 、フォトクロミック溶液を形成する溶剤との組み合わせによって異なるが、照射された 輻射線の単位線量当りの変色量が比較的大きぐ照射された輻射線の線量とマイク 口カプセルの変色量との間に比較的広い定量的関係、好ましくは直線的な定量関係 があるのがよぐ例えば、
丄— (2— hydroxyethyl)— 3,3— dimethylindoiino— 6— nitrobenzopyrylospiran、
1 , 3 , trimethylinaolinobenzopyrylospiran、
1 ,3, — trimethylindolino— ο bromobenzopyrylospiran、
1 ,3, — trimethylindolino— 8— methoxybenzopyrylospiran、
1,3,3— trimethylindolino— β— naphthopyrylospiran、 1,3, — trimethylindolinonaphthospirooxazine、
1,3,3— trimethylindolino— 6,— nitrobenzopyrylospiran等のスピロピラン類や、
[0021] cis- 1,2- dicyano- 1,2- bis(2,4,5- trimethy卜 3- thienyl)ethane、
丄, 2— bis[2—methylbenzo[b]thiophen— 3— yl]— «3,3,4,4,5,5— hexafluoro—l—cyclopentene、
2,3— Bis(2,4,5— tnmethyl— 3— thienyl)maleic anhydride ^
2,3- bis(2,4,5- trimethy卜 3- thienyl)maleimide等のジァリールェテン類や、
4,4 ' -bipyridyU 1,1 ,― bis(2,4— dinitrophenyl)— 4,4,— bipyridinium dichloride、 丄, 1 -dibenzyl-4,4— bipyridinium dichlonde、
1,1 ' -di-n-heptyl-4,4' -Dipyridinium dibromideゝ
1,1 ' -dimethyl-4,4' - bipyridinium dichloride、
1,1 ' - di-n-octyl-4,4' -bipyridinium dibromide ^
1,1 ' -diphenyl-4,4' - bipyridinium dichloride等のビォロゲン類や、
[0022] その他の物質として、
10-benzoyl-N,N,N' ,Ν'—tetramethyト 10H—phenothiazine— 3,7— diamine (略称 BLMB)
4,4' ,4' '— tris(dimethylamino)triphenylmethan (略称 LCV)、
2— dibenzylamino— 6— diethylaminofluoran、
2- (2- chloroanilino)- 6- dibutylaminofluoran、
Azobenzene^
2 , 5— Norbornadiene、
Thioindigo等の工業インキを挙げることができる。これらのフォトクロミック化合物につ いては、その 1種のみを単独で用いることができるほか、必要により 2種以上を組み合 わせてもよい。
[0023] このフォトクロミック化合物については、より好ましくは、その取扱い上の観点から可 視光線の照射及び Z又は加熱等によって消色しない不可逆変色性のものであるの がよ 、。変色後のフォトクロミック化合物が可視光線の照射及び Z又は加熱等に対し て安定であれば、この輻射線線量計の変色量を測定するためのフローサイトメーター 等の測定手段が測定対象である輻射線照射装置の近くになくても、この測定手段が ある場所まで輻射線線量計を搬送して測定することができるので、輻射線照射装置 が設置されている場所ごとにフローサイトメーター等の測定手段を備える必要がない 。更に、このフォトクロミック化合物については、好ましくは、マイクロカプセルの製造 上の観点力も非水溶性の溶剤に溶解するものであるのがよい。
[0024] フォトクロミック溶液を形成するための溶剤については、フォトクロミック化合物を溶 解してフォトクロミック溶液を形成できるものであればよぐフォトクロミック化合物との 組み合わせによって得られたフォトクロミック溶液の変色性、結果としてはマイクロ力 プセルの変色性が変化するので、用いるフォトクロミック化合物の種類、あるいは輻射 線の種類に応じて、適宜選択して用いられる。この溶剤の具体例としては、例えば、 ベンゼン、トルエン、キシレン等の芳香族化合物類、ベンジルアルコール等の芳香族 ァラルキルアルコール類、 2-ブタノン、 4-メチル -2-ペンタノン等のケトン類、ェチルァ セテート、ブチルアセテート等のアセテート類、メチルメタタリレート等のカルボン酸ェ ステル類等の非水溶性溶剤や、メタノール、エタノール、 2-プロノ V—ル等の低級脂 肪族アルコール類、ジェチルエーテル等の低級脂肪族エーテル類、アセトン、メチル ェチルケトン、メチルイソプチルケトン等の低級脂肪族ケトン類、ァセトニトリル等の低 級脂肪族-トリル類、ジメチルスルホキシド等のスルホキシド類等や、脱イオン水等の 水溶性溶剤を挙げることができる。これらの溶剤についても、その 1種のみを単独で 用いることができるほか、必要により 2種以上を組み合わせて用いてもょ 、。
[0025] フォトクロミック溶液を製造する際のフォトクロミック化合物と溶剤との組み合わせの 選定は、フォトクロミック化合物を溶剤に溶解してフォトクロミック溶液を調製し、得られ たフォトクロミック溶液に輻射線を照射して発色強度を測定し、その後に可視光線の 照射や加熱等の手段で消色する力否かを評価する発色 ·消色実験を行うことにより、 実験的に調べて決定することができる。
[0026] このフォトクロミック溶液としては、その取扱上の観点から、好ましくは輻射線が照射 されて変色した後には可視光線の照射及び Z又は加熱等によって消色しない不可 逆変色性のものであるのがよぐ特に好ましいものとしては、例えば BLMB (10_benzo yl-N,N,N' ,N,— tetramethy卜 1 OH— phenothiazine— 3,7— diamine)をトノレェン、 2—プロパノ ール、メタノール、メチルェチルケトン(MEK)、ジメチルスルホキシド(DMSO)等の溶 剤〖こ 0. 01〜2重量%の範囲で、好ましくは 0. 1〜1重量%の範囲で溶解して得られた 溶液や、 LCV[4,4' ,4' ' -tris(dimethylamino)triphenylmethan]をトノレェン、 2—プロパノ ール、ベンジルアルコール等の溶剤に 0. 01〜2重量%の範囲で、好ましくは 0. 1〜1 重量 %の範囲で溶解して得られた溶液であり、更にカプセル形成特性の観点から、特 に好ましくは BLMBの 0. 1〜1重量%トルエン溶液や LCVの 0. 1〜1重量%2-プロパ ノール溶液である。このフォトクロミック溶液におけるフォトクロミック化合物の濃度につ いては、測定対象線量域による発色特性及び消色特性を考慮して適宜決定される。
[0027] 更に、上記のフォトクロミック溶液が封じ込められたマイクロカプセルの殻体を形成 するカプセル皮膜材につ 、ては、これまでに知られて!/、る各種の材料を用いることが できる力 殻体を通してその中に封じ込められたフォトクロミック溶液の輻射線による 変色性を見るものであるから、少なくとも輻射線透過性であって、変色したフォトクロミ ック溶液を殻体の外部から観察できるように可視光線透過性であるのがよぐ好ましく は透明性に優れたものがょ 、。
[0028] このカプセル皮膜材としては、例えば、ゼラチン、尿素樹脂、メラミン榭脂、ウレタン 榭脂、ポリウレァ榭脂等を例示することができ、上記フォトクロミック溶液との関係で適 宜選択することができるが、紫外線透過性及び保存安定性等の観点から、好ましくは 尿素ホルムアルデヒド榭脂又はゼラチンがよぐ特に好ましくは尿素ホルムアルデヒド 榭脂である。
[0029] 上記のフォトクロミック溶液とカプセル皮膜材とを用いて本発明の輻射線線量計とな るマイクロカプセルを製造する方法については、特に制限は無ぐ従来公知の製造 方法、例えばコアセルべーシヨン法、界面重合法、 in-situ法等を例示することができ 、使用するフォトクロミック溶液やカプセル皮膜材の種類等に応じて適宜選択すること ができる。
[0030] 本発明において、輻射線線量計として用いるマイクロカプセルについては、このマ イク口カプセルを流体中に導入した際に、マイクロカプセルが流体中に存在する測定 対象の流動微小物質の流動挙動と実質的に同様の流動挙動をとる必要があることか ら、その粒径分布にぉ 、てピーク値を示す粒径が線量測定対象である流動微小物 質の大きさ径と実質的に同じ大きさに設定されている必要がある。ここで、マイクロ力 プセルの「粒径分布にぉ 、てピーク値を示す粒径」とは、当該マイクロカプセルが有 する粒径 (横軸)一粒子個数 (縦軸)の粒径分布にぉ 、て粒子個数のピーク値を示す 粒子の粒径の大きさを意味し、また、「流動微小物質の大きさ径と実質的に同じ大き さ」とは、流動微小物質の大きさ径の ± 10%の範囲内であるような場合を意味し、また
、流動微小物質の大きさ径に幅がある場合にはその幅内に収まるような場合を意味 する。
[0031] そして、本発明のマイクロカプセルについて輻射線線量計としての分解能を高くす るためには、好ましくは、マイクロカプセルの粒径 Rが線量測定対象である流動微小 物質の大きさ径 rに対して 0. 5r≤R≤l. 5rの範囲内であるのがよぐ輻射線線量計 の分解能の観点のみ力もすれば、より好ましくは、マイクロカプセルの粒径が全て同 一であるのがよ!/ヽ。輻射線線量計としての分解能はマイクロカプセルの粒径 Rが流動 微小物質の大きさ径 rに近づけば近づくほど高くなる力 それだけマイクロカプセルの 製造が困難になって製造コストが嵩むので、特別に高精度を要求される場合を除い ては 0. 5r≤R≤l. 5rの範囲内であればよい。
[0032] 例えば、流動微小物質として塩素耐性微生物のクリプトスポリジゥム (4〜7 m)を 対象とした場合には、 2 μ m以上 10 μ m以下程度、好ましくは 3 μ m以上 8 μ m以下で あるのがよぐまた、ジアルジァ(Giardia; 8〜12 μ m)を対象とした場合には、 4 /z m以 上 18 μ m以下程度、好ましくは 6 μ m以上 14 μ m以下であるのがよぐ更に、これらク リブトスポリジゥムとジアルジァの両者を対象とした場合には、これら両者の大きさ径を 包含する範囲、例えば 2 μ m以上 18 μ m以下程度、好ましくは 3 μ m以上 14 μ m以下 、より好ましくは 4 /z m以上 12 /z m以下であるのがよい。同様に、例えば、流動微小物 質として赤痢アメーバ(Entamoeba hystolytica)を対象とした場合には、マイクロカプ セルの大きさを 10〜20 μ m程度に、また、ネグレリアフオレリ(Naegleria fowleri)を対 象とした場合には、その大きさを 7〜10 /ζ πι程度に、更に、ェキノコックス(Echinococc us spp.)を対象とした場合には、その大きさを 30〜38 /ζ πι程度に調整すればよい。
[0033] このように、照射線量測定対象である流動微小物質おいてその大きさ径 rに分布が 存在する場合には、マイクロカプセルの粒径 Rの範囲は、好ましくは流動微小物質の 最小の粒径力 最大の粒径までを含む範囲のものであるのがよぐマイクロカプセル の粒径 Rを流動微小物質の大きさ径 rにより近づけたマイクロカプセルで構成される 輻射線線量計は、流体中で照射線量測定対象の流動微小物質と同じ、あるいは、近 V、流動挙動を示し、より正確な輻射線照射線量の分布及び Z又は最低照射線量を 測定し求めることができる。
[0034] このように照射線量測定対象である流動微小物質の大きさに近!、大きさのマイクロ カプセルを得る方法としては、例えば乳化攪拌法にぉ 、て攪拌条件を制御して製造 されるマイクロカプセルの粒径を調整する等、マイクロカプセルの製造方法それ自体 を工夫してもよいが、簡便な方法としては、製造されたマイクロカプセルを必要とする 粒径 Rの大きさに応じて分画してもよぐこの分画の方法としては、例えばセルソーテ イングフローサイトメトリー等の公知の方法を例示することができる。
[0035] このようにして得られたマイクロカプセル力もなる輻射線線量計を用いて、紫外線、 X線、ガンマ線、電子線 (ベータ線)等の輻射線を照射する輻射線照射装置において 、流動微小物質に照射された輻射線線量 (平均線量,線量分布,最低線量)を測定 する方法については、特に制限はないが、特に流動微小物質に照射された輻射線 線量の分布及び Z又は最低線量を測定する方法としては、好適には以下の方法を 例示することができる。なお、以下の説明では、線量の分布及び Z又は最低線量を 測定する場合について説明するが、平均線量も測定可能であることは勿論である。
[0036] すなわち、輻射線線量の測定方法は、例えば図 1に示すように、輻射線照射手段 1 を備えた処理室 2内にその入口 3から流体を導入し、また、その出口 4から流体を導 出するが、この際に上記輻射線照射手段 1により処理室 2内で流体に向けて輻射線 を照射し、この流体中の流動微小物質に輻射線を照射する輻射線照射装置に用い られ、個々の流動微小物質に実際に照射された輻射線の線量を輻射線線量計 5に より測定する方法であり、上記処理室 2内にはその入口 3よりマイクロカプセル力 な る輻射線線量計 5を導入し、この処理室 2内を通過した輻射線線量計 5をその出口 4 からメンブランフィルター、精密ろ過膜、限外ろ過膜等で回収し、回収した個々の輻 射線線量計 5についてその変色量を変色量測定手段 6により測定し、これによつて輻 射線照射手段 1により個々の流動微小物質に照射された輻射線の線量分布及び Z 又は最低線量を求める方法である。 [0037] ここで、本発明の輻射線線量の測定方法が適用される輻射線照射装置については 、その処理室 2が流体を導入及び排出するための入口 3と出口 4とを有すると共に、こ の処理室 2内に輻射線を照射するための紫外線ランプ、ガンマ線源、電子線加速器 等の輻射線照射手段 1を備えているものであればよぐまた、この処理室 2についても 回分式でも流通式でもどのようなタイプのものであってもよい。
[0038] そして、上記の方法で回収した個々の輻射線線量計につ!、てその変色量を測定 する変色量測定手段 6についても、特に制限はないが、好適には例えば、回収した 個々の輻射線線量計 5に He-Neレーザー光 7を照射しその散乱光 8a,8b,8cを測定し てこの散乱光 8a,8b,8cの強度力も変色量を求めるフローサイトメーター等を挙げること ができる。
[0039] また、このような変色量測定手段 6による輻射線線量計の変色量の測定については 、輻射線線量計を構成するマイクロカプセルに内包されるフォトクロミック溶液が可視 光線の照射及び Z又は加熱等によって消色し易い可逆変色性のものである場合等 には、輻射線照射装置の処理室 2の出口 4から回収した輻射線線量計 5をこの処理 室 2の出口 4、あるいはその近傍で直ちに測定できるようにするのがよいが、このフォ トク口ミック溶液が可視光線の照射及び Z又は加熱等によって消色しない不可逆変 色性の場合には、輻射線照射装置の処理室 2の出口 4から回収した輻射線線量計 5 を変色量測定手段 6を有する別の施設に搬送して測定してもよい。
発明の効果
[0040] 本発明に係る流動微小物質の輻射線線量計及びこれを用いた輻射線線量の測定 方法によれば、輻射線線量計を構成するマイクロカプセルの粒径分布にぉ ヽてピー ク値を示す粒径が線量測定対象である流動微小物質の大きさ径と実質的に同じ大き さに設定されており、この輻射線線量計を流体中に導入した際に輻射線線量計が流 体中で流動微小物質と実質的に同じ流動挙動を示すので、輻射線照射装置の処理 室にその入口力も導入してその出口で回収し、回収した個々の輻射線線量計の変 色量を測定することにより、容易にし力も確実に輻射線照射装置によって個々の流動 微小物質に照射された輻射線照射線量の分布及び Z又は最低照射線量を求めるこ とができる。従って、例えば上水道で病原微生物の消毒に使用される紫外線照射装 置に適用された場合には、輻射線線量計を構成するマイクロカプセルの粒径が殺滅 、あるいは不活性ィ匕の対象とする病原微生物の径と略同一になるよう調整されている ことから、この輻射線線量計は輻射線照射装置の処理室の水道水中で消毒対象の 病原微生物と実質的に同じ流動挙動を示すので、処理室の出口で回収した個々の 輻射線線量計の変色量を測定することにより、この紫外線照射装置によって個々の 病原微生物に照射される紫外線の線量分布及び Z又は最低線量を容易かつ確実 に求めることができる。
図面の簡単な説明
[0041] [図 1]図 1は、本発明の流動微小物質用輻射線線量計を用いた輻射線線量の測定 法を説明するための説明図である。
[0042] [図 2]図 2は、実施例 1で得られたフォトクロミック溶液 (BLMB-lwt%トルエン溶液)の紫 外線照射線量 (mj/cm2)と 660應における吸光度(O.D.)との関係を示すグラフ図で ある。
[0043] [図 3]図 3は、実施例 1で得られた BLMB紫外線線量計の S Sチャンネルと各チャンネ ルにおける粒子数 (計数値)との関係を示すグラフ図である。
[0044] [図 4]図 4は、実施例 3で得られたフォトクロミック溶液(LCV-1 wt% 2-プロパノール溶 液)のガンマ線吸収線量(Gy)と 400〜700nmにおける吸光度エリア(Abs.area)との 関係を示すグラフ図である。
[0045] [図 5]図 5は、実施例 4において得られた分画前の BLMB紫外線線量計の FSチャンネ ルと各チャンネルにおける粒子数 (計数値)との関係を示すグラフ図である。
[0046] [図 6]図 6は、実施例 4において得られた分画後の BLMB紫外線線量計の FSチャンネ ルと各チャンネルにおける粒子数 (計数値)との関係を示すグラフ図である。
[0047] [図 7]図 7は、実施例 4において得られた分画後の BLMB紫外線線量計の紫外線照 射線量 (mj/cm2)と SSチャンネルの中央値との関係を示すグラフ図である。
[0048] [図 8]図 8は、実施例 4において得られた分画後の BLMB紫外線線量計に紫外線を照 射したときの SSチャンネルとイベント数 (Events)との関係を示すグラフ図であり、 (a) が混合系で測定された結果を示し、また、(b)が静止系で測定された結果を示す。 発明を実施するための最良の形態 [0049] 以下、実施例に基づいて、本発明の流動微小物質用の輻射線線量計、及びこれを 用いた輻射線照射線量の測定方法を具体的に説明する。
[0050] [実施例 1]
[BLMBマイクロカプセル(BLMB紫外線線量計)の調製]
フォトクロミック化合物として BLMB(10- benzoy卜 Ν,Ν,Ν' ,Ν - tetramethyl
-10H-pheno-thiazine- 3,7- diamine)を用い、この BLMBlgをトルエン lOOg中に溶解 しフォトクロミック溶液(B LMB- lwt%トルエン溶液)を調製した。
[0051] 得られたフォトクロミック溶液 (BLMB-lwt%トルエン溶液)を回分式の紫外線照射装 置に導入し、 5 120mJ/cm2の紫外線を照射した後に吸光光度計 (島津製作所製 U
V-1700)で 660 の吸光度を測定し、紫外線照射線量 (mj/cm2)と吸光度(O.D.)と の関係を調べた。
結果を図 2に示す。
[0052] この図 2の結果から明らかなように、フォトクロミック溶液(BLMB-lwt%トルエン溶液) は、紫外線照射線量が増加するに従って吸光度が直線的に高くなり、紫外線照射線 量と吸光度との間に高い相関関係が認められた。
[0053] 次に、エチレン 無水マレイン酸共重合体の 5wt%-水溶液 70gに尿素 5gとレゾシノ ール 0. 2gとを添カ卩して溶解し、 15wt%-水酸化ナトリウム溶液で pH3. 2に調整した。 この水溶液 75g中に、ホモジナイザーで攪拌しながら、上記のフォトクロミック溶液 (B LMB- lwt%トルエン溶液) 60gを添加し、フォトクロミック溶液の粒径が 10 μ mとなるよう に乳化分散させた。
[0054] このようにして得られた乳化分散液中に 37wt% -ホルムアルデヒド水溶液 9gと水 8gと を添カ卩し、 55°Cで 2時間加熱攪拌し、その後に 20°Cまで冷却し、更に 5wt%-水酸ィ匕 ナトリウム溶液で PH4. 0に調整し、フォトクロミック溶液が BLMB-lwt%トルエン溶液で あってカプセル皮膜材が尿素ホルムアルデヒド榭脂のマイクロカプセルからなる BLM B紫外線線量計を調製した。この方法で作製されたマイクロカプセルの粒径分布は 1 . 0 30 m (90%値)であった。
[0055] [BLMBマイクロカプセル(BLMB紫外線線量計)の変色量の測定]
次に、調製された BLMB紫外線線量計を回分式の紫外線照射装置に導入し、 (a) 紫外線を照射しないで、又は、(b) 100mJ/cm2の紫外線を照射した後に、 BLMB紫 外線線量計を回収してフローサイトメーター(COULTER EPICS ALTRA HyPerSort S ystem Flowcytometer、ベックマンコールター社)で側方散乱光(SSC)を測定し、その ヒストグラムから個々の BLMB紫外線線量計の変色量を求めた。
結果を図 3に示す。
[0056] 図 3において、横軸の SSチャンネルは BLMB紫外線線量計の発色強度に比例し、 また、縦軸は各チャンネルにおける粒子数 (計数値)を示しており、この図 3に示す SS チャンネルと計数値との関係から明らかなように、計数値のヒストグラムは紫外線照射 線量が増加するに従つて SSチャンネルが低 、方向に移行しており(図 3中の (a)及び( b)参照)、計数値のピークチャンネルと紫外線照射線量との間に高い相関が認められ た。
[0057] [実施例 2]
攪拌速度以外は、上記実施例 1と同様にして、フォトクロミック溶液が BLMB-lwt% ルェン溶液であってカプセル皮膜材が尿素ホルムアルデヒド榭脂のマイクロカプセル 力もなる BLMB紫外線線量計を調製した。この方法で作製されたマイクロカプセルの 粒径分布は 1. 0〜45 /ζ πι (90%値)であった。
[実施例 3]
[0058] [LCVマイクロカプセル (LCV放射線線量計)の調製]
BLMBに代えて 4,4,,4, ' -tris(dimethylamino)triphenylmethan (LCV)をフォトクロミ ック化合物として用い、上記実施例 1と同様にして LCV-lwt%2-プロパノール溶液から なるフォトクロミック溶液を調製した。
[0059] 得られたフォトクロミック溶液(LCV-lwt%2-プロパノール溶液)を回分式のガンマ線 照射装置に導入し、 1. 4〜8. 7kGyのガンマ線を照射した後に吸光光度計(島津製 作所製 UV-1700)で 400〜700nmの吸光度を測定し、ガンマ線吸収線量 (Gy)と吸 光度 (Abs.area)との関係を調べた。
結果を図 4に示す。
[0060] この図 4の結果から明らかなように、フォトクロミック溶液(LCV-lwt%2-プロパノール 溶液)は、ガンマ線吸収線量が増加するに従って吸光度が直線的に高くなり、ガンマ 線吸収線量と吸光度との間に高い相関関係が認められた。
[0061] 更に、上記フォトクロミック溶液(LCV-lwt%トルエン溶液)を用い、上記実施例 1と同 様にしてフォトクロミック溶液が LCV-lwt%トルエン溶液であってカプセル皮膜材が尿 素ホルムアルデヒド榭脂のマイクロカプセルカゝらなる LCV放射線線量計を調製した。 この方法で作製されたマイクロカプセルの粒径分布は 1. 0〜35 μ m (90%値)であつ た。
[0062] [実施例 4]
[BLMBマイクロカプセル(BLMB紫外線線量計)の調製]
実施例 1の場合と同様にして、平均粒径 5 mのフォトクロミック溶液内包のマイクロ カプセルカゝらなる BLMB紫外線線量計を作製した。
得られた BLMB紫外線線量計にっ 、て、フローサイトメーターのソーティング機能を 用い、目開き 40 m及び 10 mのナイロンメッシュ(NYTAL製商品名: NY- 20HC)の 篩にかけて分画し、分画後の BLMB紫外線線量計 (実施例 4の BLMB紫外線線量計) を得た。
このようにして得られた分画前の BLMB紫外線線量計の粒径分布は 1. 0〜45 /z m ( 90%値)であり、また、分画後の BLMB紫外線線量計 (実施例 4の BLMB紫外線線量 計)の粒径分布は 1〜7 μ m (90%値)であった。
[0063] 上で得られた分画前後の BLMB紫外線線量計について、フローサイトメーターを用 V、、 BLMB紫外線線量計の前方散乱光のヒストグラムを測定した。
結果は、分画前の BLMB紫外線線量計の場合が図 5に示す通りであって、分画後 の BLMB紫外線線量計の場合が図 6に示す通りであり、フローサイトメーターのソーテ イング機能を用いた分画操作により、分画前の BLMB紫外線線量計における前方散 乱光ヒストグラムの半値幅を分画後には約 1 Z 10にすることができた。
[0064] このようにして得られた実施例 4の BLMB紫外線線量計 (分画後の BLMB紫外線線 量計)を、実施例 1の場合と同様にして回分式の紫外線照射装置に導入し、 20〜: LO OmJ/cm2の低圧紫外線を照射した後にフローサイトメーターで側方散乱光 (SSC)を 測定し、紫外線照射量 (mj/cm2)と側方散乱光 (SSC)との関係を調べた。
結果を図 7に示す。 [0065] この図 7から求められる実施例 4の BLMB紫外線線量計 (分画後の BLMB紫外線線 量計)における側方散乱光のヒストグラムの半値幅が 10チャンネルであり、 100mJ/c m2照射で側方散乱光のヒストグラムの中央値が 150チャンネル増加することから、側 方散乱光 1チャンネル当りの紫外線線量が 0. 67mJ/cm2となり、この実施例 4の BLM B紫外線線量計の分解能は 7mJ/cm2と計算された。
なお、分画前の BLMB紫外線線量計について、同様にして求められた分解能は 70 mj/cm2と計算された。
[0066] [BLMBマイクロカプセル(BLMB紫外線線量計)の変色量の測定]
次に、調製された実施例 4の BLMB紫外線線量計 105個/ mlを精製水中に添加して 試料水(OD254nm=0.11)を調製し、この試料水を 2本の 36mm φプラスチックビン中 にそれぞれ 30mlづっ入れて 2つの測定検体を調製した。
[0067] これら 2つの測定検体について、一方の測定検体については攪拌することなく静止 系で、また、他方の試料水についてはマグネチックスターラーを用いて lOOrpmの条 件下で混合する完全混合系で、それぞれ回分式の紫外線照射装置により水層の表 面における紫外線照射量が 50mJ/cm2となるように紫外線を照射し、紫外線照射後に 、 BLMB紫外線線量計を回収してフローサイトメーターで側方散乱光 (SSC)を測定し 、そのヒストグラムから個々の BLMB紫外線線量計の変色量を求めた。
完全混合系での紫外線照射による変色量の測定結果を図 8(a)に、また、静止系で の紫外線照射による変色量の測定結果を図 8(b)にそれぞれ示す。
[0068] 図 8(a)(b)に示すヒストグラムから明らかなように、完全混合系で紫外線照射を行った 場合には、個々の BLMB紫外線線量計に照射される紫外線線量が均一になるため、 ヒストグラムがシャープになった (図 8(a)参照)が、静止系で紫外線照射を行った場合 には、紫外線力 Lambert-beer則に従って水層の表面力も底面方向に減衰し、個々 の BLMB紫外線線量計に照射される紫外線線量に分布が生じ (水層表面の紫外線 照射線量を 50mJ/cm2としたときの計算値: 50〜23mJ/cm2)、ヒストグラムは比較的プロ ードになった (図 8(b)参照)。
また、平均紫外線線量をヒストグラムの中央値力も算出したところ、混合系では 35m J/cm2となり、また、静止系では 33mJ/cm2となり、混合系でもまた静止系でも、特に混 合系では、計算値 (35mJ/cm2)とよく一致した。
[0069] この紫外線照射後の変色量の測定結果から、実施例 4の BLMB紫外線線量計によ り紫外線照射線量分布を測定できることが判明した。
産業上の利用可能性
[0070] 本発明の流動微小物質用の輻射線線量計、及びこれを用いた輻射線線量の測定 法によれば、流体を処理室に導入し、この処理室内で流体に輻射線を照射し、この 流体中の流動微小物質に輻射線を照射する輻射線照射装置において、個々の流 動微小物質に照射された輻射線線量の分布及び Z又は最低線量を容易かつ正確 に求めることができるので、上下水道等の水処理業界、食品業界、医薬業界等の技 術分野において、取り扱う流体中に存在し、あるいは発生してこの流体の移動と共に 流動する種々の病原微生物に対する殺滅、不活性化等を目的に、紫外線、 X線、ガ ンマ線、電子線 (ベータ線)等の輻射線を照射する輻射線照射装置において、実際 に個々の流動微小物質 (病原微生物)に照射される輻射線線量の分布及び Z又は 最低線量を容易に、かつ、より正確に推定することができ、輻射線照射装置の構造 や構成の設計、運転条件や管理条件の決定を行ううえで極めて有用である。

Claims

請求の範囲
[1] 輻射線透過性の殻体と、輻射線発色互変性のフォトクロミック化合物を溶剤に溶解 して得られ、上記殻体内に封じ込められたフォトクロミック溶液とで形成され、輻射線 を受けてフォトクロミック溶液が変色するのを反映して変色するマイクロカプセルから なり、輻射線の線量と上記マイクロカプセルの変色量とが定量的関係を有すると共に 、マイクロカプセルの粒径分布にぉ 、てピーク値を示す粒径が線量測定対象である 流動微小物質の大きさ径と実質的に同じ大きさに設定されていることを特徴とする流 動微小物質用の輻射線線量計。
[2] マイクロカプセルの粒径 R力 線量測定対象である流動微小物質の大きさ径 rに対 して、 0. 5r≤R≤l. 5rの範囲内にある請求項 1に記載の流動微小物質用の輻射線 線量計。
[3] 輻射線が紫外線又は放射線である請求項 1又は 2に記載の流動微小物質用の輻 射線線量計。
[4] フォトクロミック溶液は、輻射線が照射されて変色した後には可視光線の照射及び
Z又は加熱により消色しない不可逆変色性を有する請求項 1〜3のいずれかに記載 の流動微小物質用の輻射線線量計。
[5] フォトクロミック溶液が、 BLMB (10- benzoy卜 Ν,Ν,Ν' ,Ν, - tetramethy卜 10H- phenoth iazine- 3,7- diamine)の 0. 01〜2重量%トルエン溶液又は LCV〔4,4,,4,, - tris(dimethy lamino)triphenylmethan]の 0. 01〜2重量%トルエン溶液である請求項 1〜4のいずれ かに記載の流動微小物質用の輻射線線量計。
[6] 輻射線透過性の殻体が、ゼラチン、尿素樹脂、メラミン榭脂、ウレタン榭脂及びポリ ウレァ榭脂から選ばれた ヽずれかのカプセル皮膜材で形成されて ヽる請求項 1〜5 のいずれかに記載の流動微小物質用の輻射線線量計。
[7] カプセル皮膜材カ 尿素ホルムアルデヒド榭脂である請求項 6に記載の流動微小 物質用の輻射線線量計。
[8] 流動微小物質が飲料水中に発生する大きさ径 4〜7 μ mの病原微生物であるクリプ トスポリジゥム(Cryptosporidium)であり、マイクロカプセルの粒径 Rが 3〜8 μ mである 請求項 1〜7のいずれかに記載の流動微小物質用の輻射線線量計。
[9] 流動微小物質が飲料水中に発生する大きさ径 8〜 12 μ mの病原微生物であるジァ ルジァ(Giardia)であり、マイクロカプセルの粒径 Rが 6〜 14 μ mである請求項 1〜7の いずれかに記載の流動微小物質用の輻射線線量計。
[10] 輻射線照射手段を備えた処理室内に流体を導入し、この輻射線照射手段により処 理室内で流体に輻射線を照射し、この流体中の流動微小物質に輻射線を照射する 輻射線照射装置にぉ ヽて、流動微小物質に照射された輻射線の線量を輻射線線量 計により測定する輻射線照射線量の測定方法であり、
上記輻射線線量計が、輻射線透過性の殻体と、輻射線発色互変性のフォトクロミツ ク化合物を溶剤に溶解して得られ、上記殻体内に封じ込められたフォトクロミック溶液 とで形成され、輻射線を受けてフォトクロミック溶液が変色するのを反映して変色する と共に、その変色量が輻射線の線量と定量的関係を有するマイクロカプセル力 なり 上記輻射線照射装置の処理室にはその入口から上記輻射線線量計を導入すると 共にその出口から回収される個々の輻射線線量計の変色量を測定し、上記輻射線 照射手段によって個々の流動微小物質に照射された輻射線の線量分布及び Z又は 最低線量を求めることを特徴とする流動微小物質に対する輻射線線量の測定方法。
[11] 輻射線線量計を構成するマイクロカプセルは、その粒径分布においてピーク値を 示す粒径が線量測定対象である流動微小物質の大きさ径と実質的に同じ大きさに 設定されている請求項 10に記載の流動微小物質に対する輻射線線量の測定方法。
[12] 輻射線線量計を構成するマイクロカプセルは、その粒径尺が、線量測定対象である 流動微小物質の大きさ径 rに対して、 0. 5r≤R≤l. 5rの範囲内にある請求項 11に 記載の流動微小物質に対する輻射線線量の測定方法。
[13] 流体が飲料水又は流動食品であって輻射線が紫外線であり、また、流動微小物質 力 の流動食品中に発生する病原微生物である請求項 10〜 12のいずれかに記載 の流動微小物質に対する輻射線線量の測定方法。
[14] 流体が飲料水であり、流動微小物質力 Sこの飲料水中に発生するクリプトスポリジゥム
(Cryptosporidium)及び Z又はジアルジァ(Giardia)である請求項 10〜 13の!、ずれ かに記載の流動微小物質に対する輻射線線量の測定方法。 [15] 処理室の出口から回収された輻射線線量計の変色量は、フローサイトメーターを用 いて個々の輻射線線量計ごとに測定される請求項 10〜14のいずれかに記載の流 動微小物質に対する輻射線線量の測定方法。
PCT/JP2007/054665 2006-03-13 2007-03-09 流動微小物質用の輻射線線量計、及び輻射線線量の測定方法 WO2007108332A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008506234A JPWO2007108332A1 (ja) 2006-03-13 2007-03-09 流動微小物質用の輻射線線量計、及び輻射線線量の測定方法
US12/224,994 US7956334B2 (en) 2006-03-13 2007-03-09 Radiation dosimeter for fluid very small substances, and method of measuring radiation dose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006067511 2006-03-13
JP2006-067511 2006-03-13

Publications (1)

Publication Number Publication Date
WO2007108332A1 true WO2007108332A1 (ja) 2007-09-27

Family

ID=38522365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054665 WO2007108332A1 (ja) 2006-03-13 2007-03-09 流動微小物質用の輻射線線量計、及び輻射線線量の測定方法

Country Status (3)

Country Link
US (1) US7956334B2 (ja)
JP (1) JPWO2007108332A1 (ja)
WO (1) WO2007108332A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014674A (ja) * 2012-06-29 2014-01-30 Johnson & Johnson Vision Care Inc インジケータを使用するuv消毒線量を定量化する方法
JP2014186031A (ja) * 2013-02-25 2014-10-02 Fujifilm Corp 紫外線感知シート、その製造方法、および紫外線感知方法
JP2017167155A (ja) * 2013-02-25 2017-09-21 富士フイルム株式会社 紫外線感知シート、その製造方法、および紫外線感知方法
CN108585319A (zh) * 2018-05-09 2018-09-28 上海大学 利用电子束辐照降解水中文拉法辛的方法
US10247603B2 (en) 2013-02-25 2019-04-02 Fujifilm Corporation Ultraviolet-sensitive sheet, ultraviolet-sensing kit, and method for sensing ultraviolet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433112B (zh) * 2011-09-09 2013-11-27 四川省农业科学院生物技术核技术研究所 γ射线辐射变色溶液及其制备的辐射剂量计
US9480448B2 (en) 2014-07-23 2016-11-01 General Electric Company System and method for use in mapping a radiation dose applied in an angiography imaging procedure of a patient
USD771089S1 (en) * 2014-07-23 2016-11-08 General Electric Company Display screen or portion thereof with graphical user interface for a radiation dose mapping system
US9649079B1 (en) 2014-10-09 2017-05-16 General Electric Company System and method to illustrate a radiation dose applied to different anatomical stages of an exposed subject
CN106057267B (zh) * 2015-05-28 2018-11-30 官爱平 能量叠加物质改性平台及其改性方法
US10369243B2 (en) * 2015-12-07 2019-08-06 Diversey, Inc. Photochromic indicator and a method of documenting decontamination of an object using a photochromic indicator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425086A (en) * 1987-07-02 1989-01-27 Mead Corp Radiant irradiation dosimeter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918317A (en) * 1987-07-02 1990-04-17 The Mead Corporation Radiation dosimeter
US5400382A (en) * 1992-04-19 1995-03-21 Alpha Omega Technologies, Inc. Automated irradiator for the processing of products and a method of operation
DE69413412T2 (de) 1993-10-06 1999-05-12 Water Recovery Plc Photodetektor einrichtung
GB9821342D0 (en) * 1998-10-02 1998-11-25 Common Services Agency Device for treatment of biological fluids
JP2001242249A (ja) * 2000-03-01 2001-09-07 Japan Atom Power Co Ltd:The 放射線感応組成物含有マイクロカプセル及びその利用方法
WO2002102923A1 (fr) * 2001-06-15 2002-12-27 Mitsubishi Chem Corp Materiau photochrome et chromodosimetre utilisant ledit materiau
JP2004249207A (ja) 2003-02-20 2004-09-09 Ishigaki Co Ltd 原虫類の不活性化処理における紫外線の照射方法
US20050239200A1 (en) * 2004-04-23 2005-10-27 Beckwith Scott W Devices for culturing anaerobic microorganisms and methods of using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425086A (en) * 1987-07-02 1989-01-27 Mead Corp Radiant irradiation dosimeter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MORITA S. ET AL.: "Yuki Hasshokuzai ni yoru Shigaisen Shoshasenryo no Sokutei", DAI 40 KAI JAPAN SOCIETY ON WATER ENVIRONMENT NENKAI KOENSHU, 15 March 2006 (2006-03-15), pages 423, XP003017888 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014674A (ja) * 2012-06-29 2014-01-30 Johnson & Johnson Vision Care Inc インジケータを使用するuv消毒線量を定量化する方法
JP2014186031A (ja) * 2013-02-25 2014-10-02 Fujifilm Corp 紫外線感知シート、その製造方法、および紫外線感知方法
US9689742B2 (en) 2013-02-25 2017-06-27 Fujifilm Corporation Ultraviolet-sensitive sheet, method for manufacturing ultraviolet-sensing sheet, and method for sensing ultraviolet
JP2017167155A (ja) * 2013-02-25 2017-09-21 富士フイルム株式会社 紫外線感知シート、その製造方法、および紫外線感知方法
US10203245B2 (en) 2013-02-25 2019-02-12 Fujifilm Corporation Ultraviolet-sensitive sheet, method for manufacturing ultraviolet-sensing sheet, and method for sensing ultraviolet
US10247603B2 (en) 2013-02-25 2019-04-02 Fujifilm Corporation Ultraviolet-sensitive sheet, ultraviolet-sensing kit, and method for sensing ultraviolet
CN108585319A (zh) * 2018-05-09 2018-09-28 上海大学 利用电子束辐照降解水中文拉法辛的方法

Also Published As

Publication number Publication date
US7956334B2 (en) 2011-06-07
JPWO2007108332A1 (ja) 2009-08-06
US20090045352A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2007108332A1 (ja) 流動微小物質用の輻射線線量計、及び輻射線線量の測定方法
TW512228B (en) Method and apparatus for decontaminating fluids using ultraviolet radiation
TW474828B (en) A method and apparatus for use in the UV-irradiation of a biological fluid
Christensen et al. How particles affect UV light in the UV disinfection of unfiltered drinking water
EP2266630A1 (en) Device for calibration in a method for the validatable inactivation of pathogens in a biological fluid by irradiation
NL8000974A (nl) Werkwijze voor het oxyderen van een systeem met behulp van zichtbaar licht in aanwezigheid van een sensibili- sator, een sensibilisator ten gebruike in deze werkwijze alsmede een inrichting voor het uitvoeren van de werkwijze.
JP3307768B2 (ja) ガンマ放射線検出装置
Blatchley III et al. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres
TW201341002A (zh) 判斷紫外光曝曬量之方法
NL8120415A (ja)
de Oliveira et al. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV 254), UV 254/H 2 O 2, Fenton, and photo-Fenton processes
Sharma et al. Free-radical-induced oxidation and reduction of 1-arylazo-2-naphthol dyes: a radiation chemical study
CN103267973B (zh) 用于个人剂量监测的自显色剂量计的制备方法
Chu et al. Removal of simazine in a UV/TiO2 heterogeneous system
Lambert et al. Intensity‐dependent enzyme photosensitization using 532 nm nanosecond laser pulses
Labas et al. Kinetics of bacteria inactivation employing UV radiation under clear water conditions
Yong et al. Effect of sonication on UV disinfectability of primary effluents
CA2930031C (en) Method and system for determining ultraviolet fluence received by a fluid
Li et al. Design of a UV-C irradiation process for the inactivation of viruses in protein solutions
Endo et al. Development of radiochromic dosimeters based on polymer films with fluoran and divinyl phthalide dyes
Ebraheem et al. A new dyed poly (vinyl alcohol) film for high-dose applications
Hussain et al. Radiolytic reduction of aqueous solutions of a commercial reactive dye in the range 0-100kgy by Co60 gamma radiation source
Seneca A particle-based photochromic actinometer for ultraviolet reactors
Üstündağ et al. Spectroscopic, kinetic and dosimetric features of the radical species produced after radiodegradation of solid triclosan
Mohammed et al. Textile Wastewater Treatment by Application of Advance Oxidation (AOPs) Process and Recycling for Industrial Uses.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008506234

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12224994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738150

Country of ref document: EP

Kind code of ref document: A1