WO2007108162A1 - Composite type display device and television receiver - Google Patents

Composite type display device and television receiver Download PDF

Info

Publication number
WO2007108162A1
WO2007108162A1 PCT/JP2006/322456 JP2006322456W WO2007108162A1 WO 2007108162 A1 WO2007108162 A1 WO 2007108162A1 JP 2006322456 W JP2006322456 W JP 2006322456W WO 2007108162 A1 WO2007108162 A1 WO 2007108162A1
Authority
WO
WIPO (PCT)
Prior art keywords
display element
display device
light
liquid crystal
lens
Prior art date
Application number
PCT/JP2006/322456
Other languages
French (fr)
Japanese (ja)
Inventor
Naoshi Yamada
Makoto Shiomi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007108162A1 publication Critical patent/WO2007108162A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/03Function characteristic scattering

Definitions

  • the present invention relates to a composite display device that displays an image by stacking a plurality of display elements in which a plurality of pixels are arranged, and a television receiver using the composite display device.
  • a general liquid crystal display device displays an image by enclosing a liquid crystal between a pair of sandwiched transparent substrates and electrically changing the optical characteristics of the liquid crystal.
  • FIG. 8 shows a schematic cross-sectional view of a liquid crystal panel (hereinafter referred to as an MVA liquid crystal panel) constituting the MVA liquid crystal display device
  • FIG. 9 shows a schematic perspective view.
  • the MVA liquid crystal panel has a color filter substrate 220 and an active matrix substrate 230 facing each other between a pair of polarizing plates, plastic beads, a color filter substrate 220 and the like.
  • the columnar resin structure provided in is used as a structure that keeps the distance between the substrates constant.
  • Liquid crystal is sealed between a pair of substrates (color filter substrate 220 and active matrix substrate 230), and a vertical alignment film 225 is formed on the surface of each substrate in contact with the liquid crystal.
  • liquid crystal a nematic liquid crystal having negative dielectric anisotropy is used.
  • alignment direction of liquid crystal molecules when a voltage is applied is defined using alignment control protrusions 222 and slits that define the alignment direction of the liquid crystal.
  • MVA features a wide viewing angle by using multiple alignment regions.
  • the color filter substrate 220 is obtained by forming a color filter 221, a black matrix 224, etc. on a transparent substrate 210.
  • the alignment direction of liquid crystal molecules when a voltage is applied is defined using alignment control protrusions 222 and slits that define the alignment direction of the liquid crystal.
  • Patent Document 2 has a configuration in which liquid crystal panels are overlapped. A liquid crystal display device in which a guest-host mode panel containing a dichroic dye in a liquid crystal is laminated is disclosed.
  • Patent Document 3 two liquid crystal panels are overlapped so that each polarizing plate forms a cross nicol with each other, and an image is displayed with the product of the gradations of the two panels.
  • a composite liquid crystal display device that can be improved.
  • Patent Document 1 Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-83523” (Released on March 30, 2001)
  • Patent Document 2 Japanese Patent Publication “Japanese Patent Laid-Open No. 63-25629 (Publication Date: February 3, 1988)”
  • Patent Document 3 Japanese Patent Publication “JP-A-5-88197 (Publication Date: April 9, 1993)”
  • Patent Document 2 and Patent Document 3 when two liquid crystal panels are stacked, the light power S is transmitted through the two liquid crystal panels. This causes a problem that the display quality is deteriorated.
  • Patent Document 3 by laminating panels with pixels with a fine periodic structure, moire due to the periodic structure such as black matrix and metal wiring becomes remarkable, and the display quality is significantly reduced. There was a possibility of making it.
  • the present invention has been made in view of the above-described problems, and its object is to suppress moiré that occurs when two or more display elements are optically superimposed, thereby reducing display quality. Is to provide a composite display device capable of preventing the above and a television receiver using the same
  • the composite display device of the present invention includes a first display element composed of a transmissive liquid crystal display element in which a plurality of pixels are arranged, and a plurality of pixels.
  • a composite display device including at least a second display element comprising a liquid crystal display element or an EL (electro luminescence) display element, and displaying the first display element and the second display element in an optically stacked manner
  • a second display element between the first display element and the second display element.
  • a light scattering lens layer including at least one light scattering lens for scattering light emitted from the display element to the first display element is provided.
  • the second display element force scatters the light emitted to the first display element between the optically stacked first display element and the second display element.
  • the second display element force converts the emitted light into spatially blurred light and converts the light to the first display element. It is possible to irradiate the display element.
  • the light scattering lens may be disposed at a position corresponding to each pixel of the second display element.
  • the light scattering lens can easily adjust the scattering state of the light scattering state) by simply adjusting the material and shape of each lens.
  • each lens is arranged at a position corresponding to each pixel of the second display element, so that the light emitted from each pixel of the second display element is reliably scattered in the first state. Can be emitted to the display element.
  • the light scattering lens has a bottom surface that is a light emission surface having a square shape, and at least one side of the bottom surface is parallel to the polarization direction of the light emitted from the second display element. Preferably there is.
  • the light scattering lens has a bottom surface that is a light emission surface having a square shape, and at least one side of the bottom surface is a polarization direction of light emitted from the second display element.
  • the light emitted from the second display element can be transmitted through the light scattering lens without waste.
  • This improves the light use efficiency in the light scattering lens, so that the light emitted from the second display element can be transmitted to the first display element without waste. As a result, it is possible to prevent a decrease in luminance in the first display element.
  • the light scattering lens is preferably a quadrangular pyramid lens.
  • the light scattering lens is a quadrangular pyramid lens, so that the side of the bottom surface is adjusted in parallel to the polarization direction of the light emitted from the second display element. Is easier. Moreover, in the case of a quadrangular pyramid lens, a lens array can be easily manufactured with a mold pattern using a resin.
  • the light scattering lens is preferably a quadrangular pyramid lens having a flat top.
  • the light scattering lens is a square pyramid lens having a flat top, so that the light from the front emitted from the second display element is incident on the top of the lens. Can be incident. Thereby, the light emitted from the second display element can be efficiently incident on the lens, so that the luminance of the first display element can be improved.
  • the pixel pitch of the second display element may be larger than the pixel pitch of the first display element.
  • the pixel pitch of the second display element is larger than the pixel pitch of the first display element, so that the adjacent display elements have the same period due to the same pixel pitch.
  • the number of structures can be reduced.
  • the light scattering lens may be arranged so that the light emitted from the second display element is incident between the adjacent pixels of the first display element in an overlapping manner. Good.
  • the light scattering lens is disposed so that the light emitted from the second display element is incident between the adjacent pixels of the first display element in an overlapping manner.
  • the light shielding film black matrix, etc.
  • the light diffusing lens may be disposed such that a light emitting surface faces a light shielding film provided between the pixels of the first display element.
  • the light diffusing lens is disposed so that the light emitting surface faces the light shielding film provided between the pixels of the first display element. Since the light emitted from the light diffusion lens is diffused and emitted to the light shielding film provided between the pixels, the moire fringes due to the light shielding film on the display surface side of the first display element. Can be made inconspicuous.
  • the first display element and the second display element may each be configured by a liquid crystal panel sandwiched between polarizing elements arranged in a cross-coll.
  • each of the first display element and the second display element is configured by the liquid crystal panel sandwiched between the polarizing elements arranged in the crossed nicols, and thus in the front direction.
  • the leakage light in the direction of the transmission axis of the polarizing element can be cut off by the polarization axis of the next polarizing element.
  • the coll angle which is the intersection angle of the polarization axes of adjacent polarizing elements, collapses, no increase in the amount of light due to light leakage is observed. In other words, black does not easily float with respect to the spread of the ⁇ col angle at an oblique viewing angle.
  • the television receiver of the present invention is a television receiver including a tuner unit that receives a television broadcast and a display device that displays the television broadcast received by the tuner unit.
  • the apparatus is characterized by using the above-described composite display device. [0037] According to the above configuration, it is possible to display a video with high display quality with little moire.
  • FIG. 1 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
  • FIG. 3 is a plan view of the vicinity of a pixel electrode of the liquid crystal display device shown in FIG.
  • FIG. 4 is a schematic configuration diagram of a drive system that drives the liquid crystal display device shown in FIG.
  • FIG. 5 is a diagram showing a connection relationship between a driver of the liquid crystal display device shown in FIG. 1 and a panel drive circuit.
  • FIG. 6 is a schematic configuration diagram of a backlight included in the liquid crystal display device shown in FIG.
  • FIG. 7 is a block diagram of a display controller that is a drive circuit for driving the liquid crystal display device shown in FIG.
  • FIG. 8 is a schematic cross-sectional view of a liquid crystal display device with one liquid crystal panel.
  • FIG. 9 is a diagram showing an arrangement relationship between a polarizing plate and a panel in the liquid crystal legal apparatus shown in FIG.
  • FIG. 10 is a schematic sectional view of a general EL element.
  • FIG. 11 (a) is a diagram for explaining a conventional active matrix EL display element using a typical TFT.
  • FIG. 11 (b) is a diagram illustrating a conventional active matrix EL display element using a typical TFT.
  • FIG. 11 (c) is a diagram illustrating a conventional active matrix EL display element using a typical TFT.
  • FIG. 11 (d) is a diagram illustrating an active matrix EL display element using a typical conventional TFT.
  • FIG. 12 (a) is a plan view of the light scattering lens layer of Example 1 of the present invention.
  • FIG. 12 (b) is a schematic cross-sectional view of the light scattering lens layer of Example 1 of the present invention.
  • FIG. 13 is a diagram for explaining a modification of the lens constituting the light scattering lens layer of Example 1 of the present invention. It is.
  • FIG. 14 is a diagram illustrating a modification of the lens constituting the light scattering lens layer of Example 1 of the present invention.
  • FIG. 15 is a view for explaining a modification of the lens constituting the light scattering lens layer of Example 1 of the present invention.
  • FIG. 16 is a schematic diagram illustrating light scattering when a convex lens is used.
  • ⁇ 17 (a)] is a plan view of the light scattering lens layer of Example 2 of the present invention.
  • ⁇ 17 (b)] is a schematic sectional view of the light scattering lens layer of Example 2 of the present invention.
  • FIG. 18 (a)] is a diagram for explaining the relationship between polarized light and the quadrangular pyramid lenses that constitute the light scattering lens layer of Example 2 of the present invention.
  • FIG. 18 (b)] is a view for explaining the relationship between the polarized light and the quadrangular pyramid lenses constituting the light scattering lens layer of Example 2 of the present invention.
  • [19 (a)] A diagram showing the relationship between the plane of incidence of general light, s-polarized light, and p-polarized light.
  • FIG. 19 (b) This is a graph showing the energy reflectance 'transmittance curve for s-polarized light and p-polarized light shown in FIG. 19 (a).
  • FIG. 20 is a diagram illustrating a quadrangular pyramid-shaped lens according to Example 3 of the present invention.
  • ⁇ 21 A diagram for explaining a modification of the fourth embodiment of the present invention.
  • FIG. 22 is a diagram for explaining a pixel size according to the fourth embodiment of the present invention.
  • FIG. 22C is a diagram illustrating the pixel size according to the fourth embodiment of the present invention.
  • FIG. 23 is a diagram for explaining a pixel size of a modification of the fifth embodiment of the present invention.
  • FIG. 24 is a schematic cross-sectional view of a composite liquid crystal display device according to Embodiment 6 of the present invention.
  • FIG. 25 is a diagram for explaining an application example when the pixel sizes are the same in the composite liquid crystal display device according to Embodiment 6 of the present invention.
  • FIG. 26 is a diagram for explaining a modification of the sixth embodiment of the present invention.
  • FIG. 27 is a schematic block diagram of a television receiver including the liquid crystal display device of the present invention.
  • FIG. 28 is a block diagram showing a relationship between a tuner unit and a liquid crystal display device in the television receiver shown in FIG.
  • FIG. 29 is an exploded perspective view of the television receiver shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a schematic cross section of a liquid crystal display device 100 according to the present embodiment.
  • the liquid crystal display device 100 includes a first panel 101 as a first display element, a second panel 102 as a second display element, and a polarizing plate (polarizing element) A , B and C are alternately laminated.
  • a light scattering lens layer 1 including at least one light scattering lens for scattering light emitted to the first panel 102 is provided on the second panel 102 side of the polarizing plate B. . Details of the light scattering lens layer 1 will be described later.
  • FIG. 2 is a diagram showing a conceptual arrangement of the polarizing plate and the liquid crystal panel in the liquid crystal display device 100 shown in FIG.
  • polarizing plates A and B and polarizing plates B and C are configured with their polarization axes orthogonal to each other. That is, polarizing plates A and B and polarizing plates B and C are arranged in crossed Nicols.
  • Each of the first panel 101 and the second panel 102 has a liquid crystal sealed between a pair of transparent substrates (the color filter substrate 220 and the active matrix substrate 230) to electrically align the liquid crystal.
  • the light source power is also provided with a means for arbitrarily changing the state where the polarized light incident on the polarizing plate A is rotated about 90 degrees, the state where the polarized light is not rotated, and the intermediate state.
  • Each of the first panel 101 and the second panel 102 includes a color filter, and has a function of displaying an image with a plurality of pixels.
  • Display methods with such functions include TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In PI ain Switching) method, FFS method (Fringe Field Switching) method, or a combination of these methods.
  • the VA method with high contrast is suitable even when the force alone is used.
  • the MVA (Multidomain Vertical Alignment) method is used here for explanation, but the IPS method and the FFS method are also normally black methods, so they are sufficiently effective.
  • the drive system uses active matrix drive by TFT (Thin Film Transistor).
  • the first panel 101 and the second panel 102 in the liquid crystal display device 100 have the same structure.
  • the color filter substrate 220 and the active matrix substrate 230 facing each other are provided. It has a structure in which plastic beads or a columnar resin structure provided on the color filter substrate 220 or the like is used as a spacer (not shown) to keep the substrate interval constant.
  • Liquid crystal is sealed between a pair of substrates (color filter substrate 220 and active matrix substrate 230), and a vertical alignment film 225 is formed on the surface of each substrate in contact with the liquid crystal.
  • a nematic liquid crystal having negative dielectric anisotropy is used as the liquid crystal.
  • the color filter substrate 220 is obtained by forming a color filter 221, a black matrix 224, etc. on a transparent substrate 210.
  • An alignment control protrusion 222 that defines the alignment direction of the liquid crystal is formed.
  • the active matrix substrate 230 includes a TFT element 203, a pixel electrode 208, and the like formed on a transparent substrate 210, and an alignment control protrusion 222 that defines the alignment direction of the liquid crystal. And a slit pattern 211.
  • the alignment matrix protrusions 222 shown in FIG. 3 and the black matrix 224 for blocking unnecessary light that deteriorates the display quality are projections of the pattern formed on the color filter substrate 220 onto the active matrix substrate 230.
  • a voltage equal to or higher than the threshold is applied to the pixel electrode 208, the liquid crystal molecules fall in a direction perpendicular to the protrusions 222 and the slit pattern 211.
  • the protrusion 222 and the slit pattern 211 are formed so that the liquid crystal is aligned in the direction of 45 ° azimuth with respect to the polarization axis of the polarizing plate.
  • the positions of the red (R) green (G) blue (B) pixels of the respective color filters 221 in the first panel and the second panel coincide with each other in the vertical direction. It is configured to Specifically, the R pixel on the first panel is the R pixel on the second panel, the G pixel on the first panel is the G pixel on the second panel, and the B pixel on the first panel is The position viewed from the vertical direction coincides with the B pixel of the second panel.
  • FIG. 4 shows an outline of a drive system of the liquid crystal display device 100 having the above configuration.
  • the drive system includes a display controller necessary for displaying an image on the liquid crystal display device 100.
  • the display controller includes first and second panel drive circuits (1) and (2) for driving the first panel and the second panel with predetermined signals, respectively. Furthermore, the first and second panel drive circuits (1) and (2) have a signal distribution circuit section for distributing video source signals.
  • the input signal represents not only a powerful video signal such as a TV receiver, VTR, or DVD, but also a signal obtained by processing these signals.
  • the display controller sends a signal to each panel so that an appropriate image can be displayed on the liquid crystal display device 100.
  • the display controller is a device for sending an appropriate electrical signal from a given video signal to the panel, and includes a driver, a circuit board, a panel drive circuit, and the like.
  • FIG. 5 shows the connection relationship between the first and second panels and the panel drive circuits.
  • the polarizing plate is omitted.
  • the first panel drive circuit (1) is connected to a terminal (1) provided on the circuit board (1) of the first panel via a driver (TCP) (1).
  • a driver (TCP) (1) is connected to the first panel, connected by the circuit board (1), and connected to the panel drive circuit (1).
  • connection of the second panel drive circuit (2) in the second panel is the same as that in the first panel, the description thereof is omitted.
  • the pixels of the first panel are driven based on the display signal, and the pixels of the second panel corresponding to the positions of the first panel pixels and the positions viewed from the vertical direction of the panel are the following: Driven corresponding to the first panel. If the part composed of Polarizer A, the first panel, and Polarizer B (Component 1) is in the transmissive state, the part composed of Polarizer B, the second panel, and Polarizer C (Component) 2) is also in a transmissive state, and when component 1 is in a non-transmissive state, component 2 is also driven to be in a non-transmissive state.
  • the same image signal may be input to the first and second panels, or different signals associated with each other may be input to the first and second panels.
  • a sputtering signal wiring (gate wiring or gate bus line) 201 and auxiliary capacitance wiring 202 are formed by sputtering to form a ⁇ / ⁇ 1 / Ti laminated layer.
  • a metal such as a film is formed, a resist pattern is formed by a photolithography method, dry etching is performed using an etching gas such as a chlorine-based gas, and the resist is peeled off.
  • the scanning signal wiring 201 and the auxiliary capacitance wiring 202 are simultaneously formed on the transparent substrate 210.
  • a gate insulating film such as silicon nitride (SiNx), an active semiconductor layer made of amorphous silicon, or the like, an amorphous silicon doped with phosphorus or the like, and a low resistance semiconductor layer also made of amorphous silicon or the like are formed by CVD, and thereafter
  • a metal such as AlZTi is formed by sputtering, and a resist pattern is formed by photolithography. Form and dry-etch using an etching gas such as a chlorine-based gas to remove the resist.
  • an etching gas such as a chlorine-based gas
  • the auxiliary capacitance is formed by sandwiching a gate insulating film of about 4000 A between the auxiliary capacitance wiring 202 and the auxiliary capacitance forming electrode 206.
  • the TFT element 203 is formed by dry etching the low resistance semiconductor layer using chlorine gas or the like for source / drain separation.
  • an interlayer insulating film 207 having a force such as an acrylic photosensitive resin is applied by spin coating, and a contact hole (not shown) for electrically contacting the drain lead wiring 205 and the pixel electrode 208 is formed. It is formed by photolithography.
  • the film thickness of the interlayer insulating film 207 is about 3 m.
  • the pixel electrode 208 and a vertical alignment film are formed in this order.
  • this embodiment is an MVA type liquid crystal display device, and a slit pattern 211 is provided in a pixel electrode 208 made of ITO or the like. Specifically, a film is formed by sputtering, a resist pattern is formed by a photolithography method, and ferric chloride is used. Etching is performed with any etching solution to obtain a pixel electrode pattern as shown in FIG.
  • an active matrix substrate 230 is obtained.
  • reference numerals 212a, 212b, 212c, 212d, 212e, and 212f shown in FIG. 3 denote electrical connection portions of slits formed in the pixel electrode 208. At the electrical connection portion in the slit, the orientation is disturbed and an orientation abnormality occurs. However, for the slits 212a to 212d, in addition to the alignment abnormality, the voltage supplied to the gate wiring is normally applied with a positive potential supplied to operate the TFT element 203 in the on state. The time for applying the negative potential supplied to operate the TFT element 203 in the off state is normally on the order of milliseconds, and therefore the time for applying the negative potential is dominant.
  • the slits 212a to 212d are positioned on the gate wiring, impurity ions contained in the liquid crystal gather due to the gate minus DC application component, which may be visually recognized as display unevenness. Therefore, since the slits 212a to 212d need to be provided in a region that does not overlap with the gate wiring in a plan view, it is desirable to hide the slits 212a to 212d with the black matrix 224 as shown in FIG.
  • the color filter substrate 220 is formed on a transparent substrate 210, a color filter layer made of three primary colors (red, green, blue) 221 and a black matrix (BM) 224, a counter electrode 223, and a vertical alignment.
  • a film 225 and an alignment control protrusion 222 are provided.
  • a negative acrylic photosensitive resin solution in which carbon fine particles are dispersed is applied onto the transparent substrate 210 by spin coating, followed by drying to form a black photosensitive resin layer. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form a black matrix (BM) 224. At this time, openings for the first colored layer are respectively formed in regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed.
  • the BM is formed so that an opening for the second colored layer and an opening for the third colored layer (each opening corresponds to each pixel electrode) are formed. More specifically, as shown in FIG.
  • a BM pattern is formed in an island shape to shield the alignment abnormal region generated in the slits 212a to 212d of the electrical connection portions of the slits 212a to 212f formed in the pixel electrode 208.
  • a leak that is optically excited by external light entering the TFT element 203 In order to prevent an increase in current, a light shielding part (BM) is formed on the TFT element 203.
  • the second color layer for example, the green layer
  • the third color layer for example, the blue layer
  • a counter electrode 223 having a transparent electrode force such as ITO is formed by sputtering, and then a positive type phenol novolac photosensitive resin solution is applied by spin coating, followed by drying and a photomask. Then, exposure and development are performed to form a protrusion 222 for controlling vertical alignment. Further, a columnar spacer (not shown) for defining the cell gap of the liquid crystal panel is formed by applying an acrylic photosensitive resin solution, exposing, developing and curing with a photomask.
  • the color filter substrate 220 is formed.
  • a BM made of a force metal as shown in the case of BM made of a resin may be used.
  • the three primary color layers may include cyan, magenta, yellow, and other white layers as well as red, green, and blue, and may include a white layer.
  • a method for manufacturing a liquid crystal panel (first panel, second panel) using the color filter substrate 220 and the active matrix substrate 230 manufactured as described above will be described below.
  • a vertical alignment film 225 is formed on the surface of the color filter substrate 220 and the active matrix substrate 230 that are in contact with the liquid crystal. Specifically, baking is performed as a degassing treatment before the alignment film is applied, and then substrate cleaning and alignment film application are performed. After the alignment film is applied, the alignment film is baked. After the alignment film is applied and washed, further baking is performed as a degassing process.
  • the vertical alignment film 225 defines the alignment direction of the liquid crystal 226.
  • an injection port is provided for injecting a part of the thermosetting seal resin around the substrate for liquid crystal injection, and the injection port is immersed in liquid crystal in a vacuum and opened to the atmosphere. Inject liquid crystal, and then seal the injection port with UV-curing resin, etc. You may carry out by the method.
  • the vertical alignment liquid crystal panel has a drawback that the injection time is much longer than that of the horizontal alignment panel.
  • explanation is given by the liquid crystal drop bonding method.
  • a UV curable sealant is applied around the active matrix substrate side, and liquid crystal is dropped onto the color filter substrate by a dropping method.
  • the optimal amount of liquid crystal is regularly dropped on the inner part of the seal so that the desired cell gap is achieved by liquid crystal by the liquid crystal dropping method.
  • the atmosphere in the bonding apparatus is reduced to lPa, and under this reduced pressure, the substrate After bonding, the seal portion is crushed by setting the atmosphere to atmospheric pressure, and the desired gap of the seal portion is obtained.
  • the structure having a desired cell gap in the seal portion is subjected to UV irradiation with a UV curing device to temporarily cure the seal resin.
  • beta is performed to final cure the seal resin.
  • the liquid crystal spreads inside the seal resin and the liquid crystal is filled in the cell.
  • the liquid crystal panel is completed by dividing the structure into liquid crystal panel units after the beta is completed.
  • the first panel and the second panel are manufactured by the same process.
  • a polarizing plate is attached to each panel. Specifically, as shown in FIG. 4, polarizing plates A and B are attached to the front and back surfaces of the first panel, respectively. Also, attach polarizing plate C to the back of the second panel. Then, the light scattering lens layer 1 is attached to the surface of the second panel. The arrangement of light scattering lens layer 1 and polarizing plate B can be reversed. Here, if necessary, an optical compensation sheet or the like may be laminated on the polarizing plate.
  • a driver (LCD driving LSI) is connected.
  • the driver will be described using a TCP (Tape Carrier Package) connection.
  • the ACF (Anisotropic) is connected to the terminal portion (1) of the first panel.
  • TCP (1) After pre-crimping (Conductive Film), install TCP (1) with a driver on the carrier tape. Punch out, align with the panel terminal electrode, heat, and press-fit. After that, the circuit board (1) for connecting the drivers TCP (l) to each other and the input terminal (1) of TCP (l) are connected by ACF.
  • the two panels are bonded together. Clean the surface of the 2nd panel, peel off the adhesive layer of the polarizing plate B attached to the 1st panel, align it precisely, and paste the 1st panel and the 2nd panel together . At this time, since bubbles may remain between the panel and the adhesive layer, it is desirable to bond them under vacuum.
  • an adhesive that cures at room temperature or below the heat resistance temperature of the panel such as an epoxy adhesive
  • a plastic spacer is sprayed, for example, fluorine. Oil or the like may be enclosed.
  • a liquid that is optically isotropic and has a refractive index comparable to that of a glass substrate to prevent reflection and is as stable as liquid crystal is desirable.
  • this embodiment can also be applied to the case where the terminal surface of the first panel and the terminal surface of the second panel are at the same position as described in FIGS. 4 and 5. . Also, there are no particular restrictions on the direction of terminals and the method of bonding to the panel. For example, a mechanical fixing method may be used regardless of adhesion.
  • the liquid crystal display device 100 is obtained by integrating with a lighting device called a backlight.
  • the liquid crystal display device 100 of the present invention is required to have the ability to provide a larger amount of light than the conventional panel, based on the display principle. However, since the short wavelength absorption becomes more noticeable even in the wavelength region, it is necessary to use a blue light source with a shorter wavelength on the lighting device side. An example of a lighting device that satisfies these conditions is shown in FIG.
  • Hot cathode lamps are cold cathode lamps used in general specifications. It is characterized by being able to output about 6 times the amount of light from the amplifier.
  • a 37-inch diagonal WXGA as an example of a standard liquid crystal display device, 18 lamps with an outer diameter of 15 mm are placed on a housing made of aluminum.
  • this housing is provided with a white reflective sheet using foamed resin.
  • a driving power source for the lamp is disposed on the rear surface of the housing, and the lamp is driven by electric power supplied from a household power source.
  • a milky white resin board is required to extinguish the lamp image in the direct type backlight in which a plurality of lamps are arranged in this nodding.
  • a plate member based on polycarbonate which is 2 mm thick and absorbs warp and heat deformation, is placed in the housing on the lamp, and the optical sheet to obtain the predetermined optical effect on its upper surface, specifically this time
  • a diffusion sheet, a lens sheet, a lens sheet, and a polarized light reflection sheet are arranged.
  • This specification makes it possible to obtain a backlight brightness that is about 10 times that of the general specifications of 18 cold-cathode lamps with a diameter of 4 mm, two diffuser sheets, and a polarizing reflection sheet.
  • a 37-inch liquid crystal display device can obtain a luminance of about 400 cdZm 2 .
  • the mechanism member of the present lighting device serves as the main mechanism member of the entire module, and the liquid crystal display controller including the panel mounted circuit and the signal distributor, wherein the mounted panel is disposed on the backlight.
  • a liquid crystal module is completed by installing a power source for the light source and, in some cases, a general household power source.
  • the mounted panel is disposed in the backlight, and a frame body that holds the panel is installed to provide the liquid crystal display device of the present invention.
  • a direct illumination device using a hot cathode tube is shown.
  • a light source that may be a projection method or an edge light method is a cold cathode tube, an LED, an OEL, An electron fluorescent tube or the like may be used, and it is possible to appropriately select a combination of optical sheets and the like.
  • a method for controlling the alignment direction of vertically aligned liquid crystal molecules of liquid crystal As a method, in the embodiment described above, a slit is provided on the pixel electrode of the active matrix substrate and a protrusion for alignment control is provided on the color filter substrate side. However, these may be reversed. It may be a structure with slits, or an MVA liquid crystal panel in which projections for orientation control are provided on the electrode surfaces of both substrates.
  • a method using vertical alignment films in which pretilt directions (alignment treatment directions) defined by a pair of alignment films other than the MVA type are orthogonal to each other may be used.
  • pretilt directions alignment treatment directions
  • VA mode alignment of the liquid crystal molecules
  • the VATN method is more preferable for the present invention because there is no decrease in contrast due to light leakage at the alignment control protrusion.
  • the pretilt is formed by optical alignment or the like.
  • the input signal (video source) is subjected to drive signal processing such as y conversion and overshoot, and the source driver of the first panel (source drive means) Output 8-bit gradation data.
  • the panel drive circuit (2) performs signal processing such as ⁇ conversion and overshoot, and outputs 8-bit gradation data to the source driver (source drive means) of the second panel.
  • the first panel, the second panel, and the output image output as a result are 8 bits, one-to-one correspondence with the input signal, and an image faithful to the input image.
  • the second panel shown in FIG. 1 is not limited to this.
  • an EL display panel using an EL (electroluminescence) element may be used as the same hold type display panel. Oh ,.
  • FIG. 10 shows a schematic cross-sectional view of the EL element.
  • Transparent electrode such as ITO (positive electrode) formed on a transparent substrate 250 such as glass Pole
  • ITO positive electrode
  • FIG. 10 shows a schematic cross-sectional view of the EL element.
  • Transparent electrode such as ITO (positive electrode) formed on a transparent substrate 250 such as glass Pole
  • sealing layer 257 that protects the device
  • positive and negative carriers are injected from hole injection layer 252 hole transfer layer 253 and electron transfer layer 255 into EL layer 254, and the carrier Emits light when they recombine, and light is emitted from the transparent substrate.
  • the light emission direction and the electrode configuration are reversed from those in FIG.
  • the organic EL display element generally uses a TFT as an active matrix driving element, but it is better to perform current control unlike liquid crystal based on voltage control.
  • the organic EL element using TFT in this case is disclosed in the above-mentioned known document 1 and the like.
  • Fig. 11 shows a schematic diagram of the active matrix 4-terminal TFT-EL device described in Known Document 1. An enlarged view of the dotted line in Fig. 11 (a) is shown in Fig. 11 (b).
  • Figures 11 (c) and 11 (d) are cross-sectional views taken along line A-A B- in Figure 11 (b).
  • Each pixel element includes two TFTs, a storage capacitor CS, and an EL element.
  • the main feature of the 4-terminal system is that the addressing signal is separated from the EL excitation signal.
  • the EL element is selected by applying a voltage to turn on the address TFT1 (T1) from the gate bus line, and the charge supplied to the source bus line is held in the storage capacitor Cs and the TFT2 (T2) is turned on. Even after TFT1 (T1) is turned off, the electric charge held in the storage capacitor Cs controls the current flowing through the power TFT (T2). This circuit enables hold-type display with EL elements.
  • the liquid crystal and the EL are different in the optical medium material and pixel configuration, and the signal input and addressing methods are the active matrix method, just like a general TFT liquid crystal display device. Can think. Further, in the configuration as a composite display device, when an EL display element is used as the second panel as shown in FIG. 2, the light source and the polarizing plate C are not necessary. In the following description, the EL element and the liquid crystal element will be described with no particular distinction between the display elements arranged on the rearmost surface as viewed mainly from the observer side.
  • FIG. 12 (a) is a plan view of the light scattering lens layer 1 according to the present embodiment
  • FIG. 12 (b) is a cross-sectional view of the light scattering lens layer 1 shown in FIG. 12 (a).
  • the light scattering lens layer 1 includes a plurality of light scattering lenses 2 arranged in a plurality of lines on a straight line in the x-axis direction, and on a straight line in the y-axis direction.
  • This is a flat lens array arranged in a plurality of rows.
  • the lens 2 is a concave lens that diffuses light from a light source as shown in FIG. 12 (b).
  • the lens 2 is arranged so that the light incident surface of the lens 2 is on the second panel 102 side, and the light emitting surface of the lens faces the first panel 101 side.
  • the light transmitted through the lens 2 is emitted from the first panel 101 in a scattered state.
  • Fig. 12 (a) shows an example in which the individual lenses 2 are arranged in a plane.
  • the force is not limited to this arrangement, and the individual lenses 2 are arranged in a plane. 2 may not be arranged on a straight line in the X-axis direction and the y-axis direction, but may be arranged randomly in each axis direction.
  • the diameter and average pitch of each lens is preferably larger than the wavelength of light and less than half the pixel pitch.
  • each lens 2 of the light scattering lens layer 1 is scattered so that light from the light source is incident from the lower surface side and emitted to the upper surface side to scatter the emitted light.
  • the arrow in the figure represents the traveling direction of light.
  • a plurality of hemispherical concave portions 10a are formed on a transparent transparent plate 10 serving as a base, and the concave portions 10a serve as the lens 2 described above.
  • the transparent plate 10 can be made of transparent resin.
  • the portion other than the lens 2 is occupied by a gas such as air or a liquid having a refractive index smaller than that of the lens resin.
  • This liquid can also be used as the liquid used when bonding the two panels described above.
  • a resin material having a large refractive index is selected so as to exhibit the effect as a lens.
  • the distance between the lenses is preferably smaller than half the pixel pitch of the display element.
  • a micro lens is generally called a micro lens, but in this case it is simply called a lens.
  • the lens can be formed by an ion exchange method, a heat sink method, or a machining method.
  • a substrate containing ions such as alkali glass is brought into contact with another ion source and another ion source is applied with a voltage, and a lens effect is obtained by utilizing the refractive index distribution generated by the ion exchange.
  • a flat lens is used.
  • a pattern of a desired shape such as a circle is formed on the photosensitive resin by mask exposure, and then heated and melted at a temperature above the melting point of the resin to form a lens-like shape by surface tension.
  • the machining method is formed by scraping the lens substrate. Further, it can be formed by transferring a mold having a lens pattern onto a thermosetting resin and curing.
  • the light scattering lens layer 1 having a function of scattering light from the light source has a configuration as shown in FIG. 13, a configuration as shown in FIG. A configuration as shown in FIG. 15 may be used.
  • FIG. 13 shows a light scattering lens layer 1 in which a plurality of spherical beads 3 are embedded in a resin 4 on the light source side so that a part of the spherical beads 3 is exposed.
  • An example is shown in which it is covered with a greaves layer 6 of fat.
  • resin 4 and spherical beads 3 use materials with a refractive index close to V, and resin 6 has a higher refractive index than resin 4 and beads 3, and uses a high refractive index resin V.
  • the lens function similar to that shown in FIG.
  • Fig. 14 shows a lens array having the same configuration as the lens array shown in Figs. 12 (a) and 12 (b), and shows an example in which the orientation with respect to the light source is opposite to that in Fig. 12 (b). Yes. In this case, the same light scattering function as that shown in FIG.
  • FIG. 15 shows an example of a two-layered resin structure having different resin material forces as the light scattering lens layer 1.
  • the light scattering lens layer 1 shown in FIG. 15 has, from the light source side, a resin layer 5 made of a low refractive index resin having a smaller refractive index than one of the resin layers, and a refractive index higher than that of the resin layer 5.
  • a resin layer 6 made of a high refractive index resin is laminated.
  • the resin layer 6 scatters incident light in the same manner as the light scattering lens layer 1 shown in FIG. 14 by forming a plurality of recesses 6a on the contact surface side with the resin layer 5. It becomes possible to make it.
  • the resin may also serve as an adhesive or pressure-sensitive adhesive for bonding with other optical members.
  • FIG. 16 shows the light diffused by the convex lens 9 between the first panel 101 and the second panel 102.
  • 3 is a schematic cross-sectional view illustrating an optical path when a random lens layer 1 is arranged.
  • Each panel is simply held between a pair of transparent substrates 210, and only pixels separated by a light shielding film 224 are shown, and a polarizing plate is also omitted.
  • the arrow indicates that the light incident on the convex lens 9 from the first panel side is emitted to the second panel side. In the case of a convex lens, there is a focal point where the emitted light is collected.
  • a force-convex lens mainly described with a concave lens can also be used as a light scattering lens.
  • a convex lens can be used for the same reason.
  • the light scattering lens layer 1 of the above example acts as a spatial low-pass filter, so that it is possible to suppress moiré that occurs when two panels are configured. .
  • Example 1 When the light-scattering lens layer 1 as shown in Example 1 is used in the composite display element having the configuration described in FIGS. 1 and 2, moire light that can reduce moire is light. When the light passes through the scattering lens layer 1, the polarized light is partially eliminated, so that the contrast may be lowered. Therefore, in Example 2 below, a light scattering lens layer that can prevent a decrease in contrast by suppressing the depolarization will be described.
  • FIG. 17 (a) is a plan view of the light scattering lens layer 21 according to the present embodiment
  • FIG. 17 (b) is a cross-sectional view of the light scattering lens layer 21 shown in FIG. 17 (a).
  • the light scattering lens layer 21 includes a plurality of light scattering lenses 7 arranged in a plurality of lines on the straight line in the x-axis direction, and on the straight line in the y-axis direction. Is a planar lens array arranged in a plurality of rows.
  • the lens 7 is a quadrangular pyramid-shaped concave lens that diffuses light from a light source.
  • the light scattering lens layer 21 can also be formed in the same manner as various modified examples (for example, modified examples as shown in FIGS. 13, 14, 15, and 16) as in the first embodiment.
  • the bottom of the quadrangular pyramid is preferably square or rectangular. That is, at least one side of the bottom surface of the lens and the polarization direction of the light emitted from the second panel 102 need to be substantially parallel.
  • FIG. 17 (a) shows an example in which the bases of the quadrangular pyramids of the lens 7 are in the x-axis direction and the y-axis direction, respectively.
  • the two polarization directions are also substantially parallel to the X-axis direction and the y-axis direction.
  • the polarization direction is the X-axis direction or a direction perpendicular to the paper surface ( ⁇ with a black dot).
  • FIGS. 18 (a) and 18 (b) are schematic diagrams for explaining the quadrangular pyramid-shaped lens 7, the incident polarized light, and the outgoing polarized light.
  • the drawings are slightly inaccurate due to the perspective views, but the ridge parallel to the bottom of the quadrangular pyramid shows the case where vertical light is incident.
  • FIG. 18 (a) shows that when the light perpendicularly incident on the bottom of the quadrangular pyramid-shaped lens 7 (light parallel to the paper surface) is incident, the polarization direction is not changed.
  • FIG. 18 (b) shows that when the light incident in parallel to the base of the quadrangular pyramid-shaped lens 7 (light perpendicular to the paper surface) is incident, the polarization direction is unchanged.
  • FIG. 19 (a) shows the relationship between the reflected light and the emitted light when the light is incident on the interface between the isotropic medium 1 and the isotropic medium 2.
  • FIG. In the figure, the plane perpendicular to the interface and including the optical path of light is generally called the incident plane. Light parallel to the incident surface is called p-polarized light, and light perpendicular to it is called s-polarized light. Note that the polarized light described in FIGS. 17 and 18 corresponds to p-polarized light or s-polarized light with respect to the side surface of the quadrangular pyramid.
  • Polarized light other than those shown in Figs. 17 and 18 is expressed as a combination of p-polarized light and s-polarized light.
  • FIG. 19 (b) shows an energy reflectivity 'transmittance curve when light is incident on a medium having a refractive index of 1.5 to a medium having a refractive index of 1.5.
  • the transmittance may be read with the vertical axis reversed.
  • the transmitted and reflected light which is a combination of p-polarized light and s-polarized light
  • the plane of polarization is somewhat rotated.
  • the lens as in Example 1 the plane of polarization of the outgoing light changes with respect to the outgoing polarized light, and the amount of light transmitted through the polarizing layer changes compared to the case without the lens.
  • the polarization is eliminated.
  • the second panel is a liquid crystal element
  • the polarization plane is incident parallel or perpendicular to the bottom of the square pyramid lens. Compared with this, the contrast is lowered.
  • the light scattering lens layer 21 of the present embodiment it is possible to provide a composite display device capable of displaying with good display quality and high contrast.
  • the lens is in the form of Example 2 described with reference to FIG. 18, the light that passes through the front is reduced due to the top of the quadrangular pyramid (the part on the light incident surface side), and the front brightness decreases. There is a risk of incurring. Therefore, in this example, as shown in FIG. 20, by using a trapezoidal lens 8 with a quadrangular pyramid apex, the light transmitted in the front direction can be increased compared to Example 2. it can. Since the polarization incident relationship is the same as that of the second embodiment, the description thereof is omitted. Manufacturing methods and modifications can be formed in the same manner as in the second embodiment. Thus, since the light is scattered by leaving the slope, the function as a spatial low-pass filter remains and moire is suppressed.
  • the polarizing plate C and the light source in FIG. 1 are unnecessary, but since the emitted light is usually non-polarized light, the first embodiment described above is used. It is more preferable to arrange the lenses 3 to 3 between the polarizing plate B and the EL element as the second panel because there is no influence of depolarization. However, in this case, 50% of the light is theoretically lost when entering the polarizing plate B. However, the light use efficiency is improved by using a reflective polarizing layer such as a brightness enhancement film DBEF manufactured by 3M. Can be increased.
  • a reflective polarizing layer such as a brightness enhancement film DBEF manufactured by 3M.
  • a reflective polarizing layer If a reflective polarizing layer is used, light perpendicular to the transmission axis of the reflective polarizing layer is reflected and returned to the light source side (in the case of the present invention, the second panel 102 side), and polarized by the influence of scattered reflection on the light source side.
  • the light utilization efficiency can be increased by re-entering the light whose direction has changed into the reflective polarizing layer and reusing it.
  • FIG. 21 shows a configuration in which a liquid crystal element is used for the first panel 101 and an EL element is used for the second panel 102.
  • the transmission axis of the reflective polarizing layer 50 is arranged in parallel with the transmission axis of the polarizing plate B on the emission surface side of the EL element, and the light scattering lens layer 1 is arranged between the polarizing plate B and the reflective polarizing layer 50.
  • the trapezoidal lens 8 of Example 3 (FIG. 20) is used for the light scattering lens layer 1, light can be used efficiently.
  • the quadrangular pyramid-shaped lens 7 of Example 2 (FIG. 18) may be used.
  • the light scattering lens layer 1 By using the light scattering lens layer 1 as in the above configuration, a composite display device capable of displaying with high display quality and high contrast can be provided. Furthermore, by arranging the reflective polarizing layer 50, it is possible to increase the luminance without increasing the power consumption and power consumption.
  • a first display element having pixels corresponding to R (red), G (green), and B (blue) as shown in Fig. 22 (a), 3 as shown in Fig. 22 (b).
  • the second panel performs monochrome display of the RGB maximum gradation or the maximum gradation calculation result of the corresponding video signal. In this case, it can be improved by mainly performing the 1S gradation expression on the first panel, which may reduce the saturation.
  • the gradation luminance characteristic of the first panel is ⁇ 1
  • the gradation luminance characteristic of the second panel is ⁇ 2
  • the gradation luminance characteristic of the composite display element that is the composite image is ⁇ out
  • ⁇ out ⁇ 1 + ⁇ 2.
  • Normally ⁇ out is adjusted to be 1.8 to 2.6.
  • saturation reduction can be suppressed.
  • the first panel and the second panel display black, and the black luminance is very low, so the contrast can be increased.
  • the pixel size of the second panel can be further increased.
  • FIG. 24 is a schematic cross-sectional view showing the relationship between the pixel 109 of the first panel 101, the pixel 110 of the second panel 102, and the lens 111.
  • polarizing plates and other components are not shown.
  • Moire due to pixel interference is largely due to the presence of the black matrix 224 of the light shielding film that separates the pixels.
  • signal wiring and scanning wiring also serve as a light shielding film, it can be replaced with a black matrix.
  • FIG. 24 shows an example in which the black matrix 224 is described in the sense of separating pixels.
  • the lens 111 is formed on the pixel 110 of the second panel to the same size as the pixel size. Unlike the first to third and fifth embodiments, the lens 111 must be aligned with the position of the pixel 110. Therefore, a method of forming a precise pattern by exposure such as a thermal sag method is desirable for forming the lens 111.
  • the part other than the lens functions as a concave lens by filling it with a resin 106 having a higher refractive index than the lens.
  • the high refractive index resin 106 may also serve as an adhesive.
  • the lens 111 can be formed by applying a method described in Japanese Patent Laid-Open No. 3-248125, which may be formed between substrates, that is, in a panel.
  • a lens 111 aligned at the position of the black matrix 224 may be used.
  • the portion other than the lens 111 needs to be filled with a material having a lower refractive index than the material of the air layer or the lens 111.
  • the lens 111 itself is a condensing lens, but if the light power passing through the pixel 109 is also seen, the light diffuses and the black matrix 224 is inconspicuous. Note that the pixel size of each panel may be different.
  • a television receiver to which the liquid crystal display device of the present invention is applied will be described below with reference to FIGS.
  • FIG. 27 shows a circuit block of a liquid crystal display device 601 for a television receiver.
  • the liquid crystal display device 601 includes a Y / C separation circuit 500, a video chroma circuit 501, an A / D converter 502, a liquid crystal controller 503, a liquid crystal node 504, a backlight drive circuit 505, The backlight 506, the microcomputer 507, and the gradation circuit 508 are provided.
  • the liquid crystal panel 504 has a two-panel configuration including a first liquid crystal panel and a second liquid crystal panel, and may have any of the configurations described in the above-described embodiments.
  • an input video signal of a television signal is input to the ⁇ / C separation circuit 500 and separated into a luminance signal and a color signal.
  • the luminance and color signals are converted into R, G, and B, which are the three primary colors of light, by the video chroma circuit 501, and this analog RGB signal is converted into a digital RGB signal by the AZD converter 502, and the liquid crystal Input to the controller 503.
  • the RGB signal from the liquid crystal controller 503 is input at a predetermined timing, and the RGB gradation voltages from the gradation circuit 508 are supplied to display an image.
  • the microcomputer 507 controls the entire system including these processes.
  • video signals various video signals such as video signals based on television broadcasting, video signals captured by a camera, video signals supplied via an Internet line, video signals recorded on a DVD, etc. Can be displayed on the basis of
  • tuner unit 600 shown in FIG. 28 receives a television broadcast and outputs a video signal, and liquid crystal display device 601 displays an image (video) based on the video signal output from tuner unit 600. Do.
  • the liquid crystal display device having the above configuration is a television receiver, for example, as shown in FIG. 29, the liquid crystal display device 601 is wrapped in a first housing 301 and a second housing 306. It is a structure that is held between.
  • the first casing 301 is formed with an opening 301a through which an image displayed on the liquid crystal display device 601 is transmitted.
  • the second casing 306 covers the back side of the liquid crystal display device 601.
  • An operation circuit 305 for operating the liquid crystal display device 601 is provided, and a support member is provided below. 308 is attached!
  • the composite display device of the present invention can be used for home TVs suitable for fields requiring high-quality display with little moire, and for broadcasting stations with little moire and high contrast. It can be applied to display devices for a very wide range of applications.

Abstract

A composite type display device is comprised of a first panel (101) consisting of a transparent type liquid crystal display element on which a plurality of pixels (208) are disposed, a second panel (102) on which a plurality of pixels (208) are disposed, wherein the first and second panels (101, 102) are optically stacked, and an optically scattering lens layer (1) interposed between the first and second panels (101, 102) for light projecting from the second panel (102) to the first panel (101) to scatter. With this, moiré caused by two optically overlapped display elements or more is suppressed, so that deterioration in display dignity can be prevented.

Description

明 細 書  Specification
複合型表示装置およびテレビジョン受信機  Composite display device and television receiver
技術分野  Technical field
[0001] 本発明は、複数の画素が配置された表示素子を複数積層して画像を表示する複 合型表示装置及びそれを用いたテレビジョン受信機に関するものである。  The present invention relates to a composite display device that displays an image by stacking a plurality of display elements in which a plurality of pixels are arranged, and a television receiver using the composite display device.
背景技術  Background art
[0002] 一般的な液晶表示装置は、狭持された 1対の透明基板の間に液晶を封入すし液晶 の光学特性を電気的に変化させることにより、画像を表示する。  A general liquid crystal display device displays an image by enclosing a liquid crystal between a pair of sandwiched transparent substrates and electrically changing the optical characteristics of the liquid crystal.
[0003] 例えば、一般的な液晶表示装置として、特許文献 1等に記載された MVA (Multido main Vertical Alignment)方式の液晶表示装置がある。図 8に MVA方式の液晶表 示装置を構成する液晶パネル (以下、 MVA液晶パネルと称する)の概略断面図、図 9に概略斜視図を記載する。  For example, as a general liquid crystal display device, there is an MVA (Multido main Vertical Alignment) type liquid crystal display device described in Patent Document 1 or the like. FIG. 8 shows a schematic cross-sectional view of a liquid crystal panel (hereinafter referred to as an MVA liquid crystal panel) constituting the MVA liquid crystal display device, and FIG. 9 shows a schematic perspective view.
[0004] 上記 MVA液晶パネルは、図 8に示すように、一対の偏光板間に、対向するカラー フィルタ基板 220とアクティブマトリクス基板 230とを有し、プラスチックビーズや、カラ 一フィルタ基板 220上などに設けた柱状榭脂構造物をスぺーサ(図示せず)として用 V、基板間隔を一定に保持した構造となって 、る。  As shown in FIG. 8, the MVA liquid crystal panel has a color filter substrate 220 and an active matrix substrate 230 facing each other between a pair of polarizing plates, plastic beads, a color filter substrate 220 and the like. As a spacer (not shown), the columnar resin structure provided in is used as a structure that keeps the distance between the substrates constant.
[0005] 1対の基板 (カラーフィルタ基板 220とアクティブマトリクス基板 230)間に液晶を封 入し、各基板の液晶に接する表面には垂直配向膜 225が形成されている。  [0005] Liquid crystal is sealed between a pair of substrates (color filter substrate 220 and active matrix substrate 230), and a vertical alignment film 225 is formed on the surface of each substrate in contact with the liquid crystal.
[0006] 液晶は、負の誘電率異方性を有するネマティック液晶を使用する。また、液晶の配 向方向を規定する配向制御用の突起 222やスリットなどを用いて、電圧を印加したと きの液晶分子の配向方向を規定している。 MVAでは配向領域を複数にすることによ り広視野角を実現することを特徴としている。  As the liquid crystal, a nematic liquid crystal having negative dielectric anisotropy is used. In addition, the alignment direction of liquid crystal molecules when a voltage is applied is defined using alignment control protrusions 222 and slits that define the alignment direction of the liquid crystal. MVA features a wide viewing angle by using multiple alignment regions.
[0007] カラーフィルタ基板 220は、透明基板 210上にカラーフィルタ 221、ブラックマトリク ス 224等が形成されたものである。また、液晶の配向方向を規定する配向制御用の 突起 222やスリットなどを用いて、電圧を印加したときの液晶分子の配向方向を規定 している。電圧を印加しないときは非透過表示、液晶の閾値以上の電圧を印加すると きは透過表示となる。 [0008] これに対し、特許文献 2には液晶パネルを重ね合わせて構成がある。液晶に 2色性 色素含有したゲストホストモードのパネルを 2枚の積層した液晶表示装置が開示され ている。 [0007] The color filter substrate 220 is obtained by forming a color filter 221, a black matrix 224, etc. on a transparent substrate 210. In addition, the alignment direction of liquid crystal molecules when a voltage is applied is defined using alignment control protrusions 222 and slits that define the alignment direction of the liquid crystal. Non-transparent display when no voltage is applied, and transmissive display when a voltage above the liquid crystal threshold is applied. On the other hand, Patent Document 2 has a configuration in which liquid crystal panels are overlapped. A liquid crystal display device in which a guest-host mode panel containing a dichroic dye in a liquid crystal is laminated is disclosed.
[0009] また、特許文献 3には、 2枚の液晶パネルを重ね合わせて、各偏光板が互いにクロ スニコルを形成するようにし、 2枚のパネルの階調の積で画像を表示し、コントラストも 向上する複合ィ匕液晶表示装置が開示されている。  In Patent Document 3, two liquid crystal panels are overlapped so that each polarizing plate forms a cross nicol with each other, and an image is displayed with the product of the gradations of the two panels. There is also disclosed a composite liquid crystal display device that can be improved.
特許文献 1 :日本国公開特許公報「特開 2001— 83523号公報 (公開日: 2001年 3 月 30曰)  Patent Document 1: Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-83523” (Released on March 30, 2001)
特許文献 2 :日本国公開特許公報「特開昭 63— 25629公報 (公開日: 1988年 2月 3 曰)」  Patent Document 2: Japanese Patent Publication “Japanese Patent Laid-Open No. 63-25629 (Publication Date: February 3, 1988)”
特許文献 3 :日本国公開特許公報「特開平 5— 88197号公報 (公開日:1993年 4月 9 曰)」  Patent Document 3: Japanese Patent Publication “JP-A-5-88197 (Publication Date: April 9, 1993)”
発明の開示  Disclosure of the invention
[0010] し力しながら、特許文献 2や特許文献 3のように、液晶パネルを 2枚重ねた場合、光 力 S 2枚の液晶パネルを透過するので、互いのパネルにおける光学的干渉によりモア レが発生し、表示品位を低下させるという問題が生じる。特に、特許文献 3のように、 微細な周期構造をもつ画素が配置されたパネルを積層することによって、ブラックマト リックスやメタル配線等の周期構造によるモアレが顕著になり、表示品位が著しく低 下させる虞があった。  However, as shown in Patent Document 2 and Patent Document 3, when two liquid crystal panels are stacked, the light power S is transmitted through the two liquid crystal panels. This causes a problem that the display quality is deteriorated. In particular, as described in Patent Document 3, by laminating panels with pixels with a fine periodic structure, moire due to the periodic structure such as black matrix and metal wiring becomes remarkable, and the display quality is significantly reduced. There was a possibility of making it.
[0011] 本発明は、上記の問題点に鑑みなされたものであって、その目的は、 2枚以上の表 示素子を光学的に重ね合わせた場合に生じるモアレを抑制し、表示品位の低下を防 止し得る複合型表示装置及びそれを用いたテレビジョン受信機を提供することにある  [0011] The present invention has been made in view of the above-described problems, and its object is to suppress moiré that occurs when two or more display elements are optically superimposed, thereby reducing display quality. Is to provide a composite display device capable of preventing the above and a television receiver using the same
[0012] 本発明の複合型表示装置は、上記の課題を解決するために、複数の画素が配置 された透過型の液晶表示素子からなる第 1の表示素子と、複数の画素が配置された 液晶表示素子または EL(electro luminescence)表示素子からなる第 2の表示素子とを 少なくとも含み、上記第 1の表示素子と第 2の表示素子とを光学的に積層して表示す る複合型表示装置において、上記第 1の表示素子と第 2の表示素子との間に、第 2の 表示素子から第 1の表示素子に出射される光を散乱させる光散乱用のレンズを少な くとも 1つ含む光散乱レンズ層が設けられて 、ることを特徴として 、る。 [0012] In order to solve the above problems, the composite display device of the present invention includes a first display element composed of a transmissive liquid crystal display element in which a plurality of pixels are arranged, and a plurality of pixels. A composite display device including at least a second display element comprising a liquid crystal display element or an EL (electro luminescence) display element, and displaying the first display element and the second display element in an optically stacked manner A second display element between the first display element and the second display element. A light scattering lens layer including at least one light scattering lens for scattering light emitted from the display element to the first display element is provided.
[0013] 上記の構成によれば、光学的に積層された第 1の表示素子と第 2の表示素子との 間に、第 2の表示素子力 第 1の表示素子に出射される光を散乱させる光散乱用の レンズを少なくとも 1つ含む光散乱レンズ層が設けられていることで、第 2の表示素子 力 出射された光を、空間的ににじませた光に変換して第 1の表示素子に照射させ ることがでさる。 [0013] According to the above configuration, the second display element force scatters the light emitted to the first display element between the optically stacked first display element and the second display element. By providing a light scattering lens layer including at least one light scattering lens, the second display element force converts the emitted light into spatially blurred light and converts the light to the first display element. It is possible to irradiate the display element.
[0014] これにより、例えば、隣接する表示素子の同等な周期を持つ微細構造物同士 (バス ライン、ブラックマトリックス、配向制御用の突起など)の非同期干渉の強度を抑制す ることが可能となる。この結果、構造干渉に起因するモアレの発生を抑制できるので、 モアレの発生による表示品位の低下を防止することができる。  Accordingly, for example, it is possible to suppress the strength of asynchronous interference between fine structures (bus lines, black matrix, alignment control protrusions, etc.) having the same period of adjacent display elements. . As a result, it is possible to suppress the occurrence of moire due to structural interference, and thus it is possible to prevent the display quality from being deteriorated due to the occurrence of moire.
[0015] また、上記光散乱用のレンズは、上記第 2の表示素子の各画素に対応する位置に それぞれ配置されて 、てもよ ヽ。  [0015] Further, the light scattering lens may be disposed at a position corresponding to each pixel of the second display element.
[0016] 上記の構成によれば、光散乱用のレンズは、それぞれのレンズの素材や形状を調 節するだけで簡単に光の散乱状態馓乱方向)を調節することが可能となる。しかも、 それぞれのレンズは、第 2の表示素子の各画素に対応する位置に配置されているこ とで、第 2の表示素子の各画素から出射される光を確実に散乱した状態で第 1の表 示素子に出射することができる。 [0016] According to the above configuration, the light scattering lens can easily adjust the scattering state of the light scattering state) by simply adjusting the material and shape of each lens. In addition, each lens is arranged at a position corresponding to each pixel of the second display element, so that the light emitted from each pixel of the second display element is reliably scattered in the first state. Can be emitted to the display element.
[0017] これにより、隣接する表示素子の同等な周期を持つ微細構造物同士 (バスライン、 ブラックマトリックス、配向制御用の突起など)の非同期干渉の強度をより確実に抑制 することが可能となる。 [0017] This makes it possible to more reliably suppress the strength of asynchronous interference between fine structures (bus line, black matrix, alignment control protrusion, etc.) having the same period of adjacent display elements. .
[0018] また、上記光散乱用のレンズは、光の出射面である底面が四角形状であり、該底面 の少なくとも 1辺が上記第 2の表示素子から出射される光の偏光方向に平行であるの が好ましい。  [0018] Further, the light scattering lens has a bottom surface that is a light emission surface having a square shape, and at least one side of the bottom surface is parallel to the polarization direction of the light emitted from the second display element. Preferably there is.
[0019] 上記の構成によれば、光散乱用のレンズは、光の出射面である底面が四角形状で あり、該底面の少なくとも 1辺が第 2の表示素子から出射される光の偏光方向に平行 であることで、第 2の表示素子から出射される光を無駄なく光散乱用のレンズを透過 させることがでさる。 [0020] これにより、光散乱用のレンズ内での光の利用効率が向上するので、第 2の表示素 子から出射される光を第 1の表示素子に無駄なく伝えることができる。この結果、第 1 の表示素子における輝度の低下を防止することが可能となる。 [0019] According to the configuration described above, the light scattering lens has a bottom surface that is a light emission surface having a square shape, and at least one side of the bottom surface is a polarization direction of light emitted from the second display element. By being parallel to the light, the light emitted from the second display element can be transmitted through the light scattering lens without waste. [0020] This improves the light use efficiency in the light scattering lens, so that the light emitted from the second display element can be transmitted to the first display element without waste. As a result, it is possible to prevent a decrease in luminance in the first display element.
[0021] さらに、上記光散乱用のレンズは、四角錐型のレンズであるのが好ましい。  Furthermore, the light scattering lens is preferably a quadrangular pyramid lens.
[0022] 上記の構成によれば、光散乱用のレンズは、四角錐型のレンズであることで、底面 の辺を第 2の表示素子から出射される光の偏光方向に平行に調節するのが容易とな る。しかも、四角錐型のレンズであれば、榭脂により金型パターンで容易にレンズァレ ィを製造することができる。  [0022] According to the configuration described above, the light scattering lens is a quadrangular pyramid lens, so that the side of the bottom surface is adjusted in parallel to the polarization direction of the light emitted from the second display element. Is easier. Moreover, in the case of a quadrangular pyramid lens, a lens array can be easily manufactured with a mold pattern using a resin.
[0023] また、上記光散乱用のレンズは、頂部が平面形状の四角錐型のレンズであるのが 好ましい。  [0023] The light scattering lens is preferably a quadrangular pyramid lens having a flat top.
[0024] 上記の構成によれば、光散乱用のレンズは、頂部が平面形状の四角錐型のレンズ であることで、第 2の表示素子から出射される正面からの光をレンズの頂部に入射さ せることができる。これにより、第 2の表示素子から出射される光を効率よくレンズに入 射させることができるので、第 1の表示素子の輝度向上を図ることができる。  [0024] According to the configuration described above, the light scattering lens is a square pyramid lens having a flat top, so that the light from the front emitted from the second display element is incident on the top of the lens. Can be incident. Thereby, the light emitted from the second display element can be efficiently incident on the lens, so that the luminance of the first display element can be improved.
[0025] 上記第 2の表示素子の画素ピッチが上記第 1の表示素子の画素ピッチより大きくて ちょい。  [0025] The pixel pitch of the second display element may be larger than the pixel pitch of the first display element.
[0026] 上記の構成によれば、第 2の表示素子の画素ピッチが第 1の表示素子の画素ピッ チより大きいことで、隣接する表示素子において、画素ピッチが同じことにより周期が 同じになる構造物 (バスライン、ブラックマトリックス、配向制御用の突起など)を少なく することができる。  [0026] According to the above configuration, the pixel pitch of the second display element is larger than the pixel pitch of the first display element, so that the adjacent display elements have the same period due to the same pixel pitch. The number of structures (bus lines, black matrix, alignment control protrusions, etc.) can be reduced.
[0027] これにより、隣接する表示素子の同等な周期を持つ微細構造物同士 (バスライン、 ブラックマトリックス、配向制御用の突起など)の非同期干渉を低減させることが可能と なるので、構造干渉に起因するモアレの発生をさらに抑制できる。  [0027] As a result, it is possible to reduce asynchronous interference between minute structures (bus lines, black matrix, alignment control protrusions, etc.) having the same period of adjacent display elements, and thus structural interference is prevented. It is possible to further suppress the occurrence of moire due to the above.
[0028] 上記光散乱用のレンズは、上記第 2の表示素子から出射された光を、上記第 1の表 示素子の隣接する画素間にオーバーラップさせて入射させるように配置されていても よい。  [0028] The light scattering lens may be arranged so that the light emitted from the second display element is incident between the adjacent pixels of the first display element in an overlapping manner. Good.
[0029] 上記の構成によれば、光散乱用のレンズは、第 2の表示素子から出射された光を、 第 1の表示素子の隣接する画素間にオーバーラップさせて入射させるように配置され ていることで、画素を区切る遮光膜 (ブラックマトリクスなど)が第 1の表示素子上で認 識されに《なる。 [0029] According to the above configuration, the light scattering lens is disposed so that the light emitted from the second display element is incident between the adjacent pixels of the first display element in an overlapping manner. As a result, the light shielding film (black matrix, etc.) that separates the pixels is recognized on the first display element.
[0030] これにより、第 1の表示素子上で上記遮光膜によるモアレ縞の発生を低減させること ができる。  [0030] Thereby, it is possible to reduce the occurrence of moire fringes due to the light shielding film on the first display element.
[0031] 上記光拡散用のレンズは、上記第 1の表示素子の各画素の間に設けられた遮光膜 に、光を出射する面が対向するように配置されて 、てもよ 、。  [0031] The light diffusing lens may be disposed such that a light emitting surface faces a light shielding film provided between the pixels of the first display element.
[0032] 上記の構成によれば、光拡散用のレンズは、第 1の表示素子の各画素の間に設け られた遮光膜に、光を出射する面が対向するように配置されていることで、該光拡散 用のレンズから出射される光が画素間に設けられた遮光膜に向力つて拡散されて出 射されるので、第 1の表示素子の表示面側において遮光膜によるモアレ縞を目立た なくさせることが可能となる。  [0032] According to the above configuration, the light diffusing lens is disposed so that the light emitting surface faces the light shielding film provided between the pixels of the first display element. Since the light emitted from the light diffusion lens is diffused and emitted to the light shielding film provided between the pixels, the moire fringes due to the light shielding film on the display surface side of the first display element. Can be made inconspicuous.
[0033] 上記第 1の表示素子及び第 2の表示素子は、それぞれクロス-コルに配置された偏 光素子に狭持された液晶パネルにより構成されて 、てもよ 、。  [0033] The first display element and the second display element may each be configured by a liquid crystal panel sandwiched between polarizing elements arranged in a cross-coll.
[0034] 上記の構成によれば、第 1の表示素子及び第 2の表示素子は、それぞれクロスニコ ルに配置された偏光素子に狭持された液晶パネルにより構成されていることで、正面 方向にお 、ては、偏光素子の透過軸方向の漏れ光が次の偏光素子の偏光軸により 漏れ光をカットすることが可能となる。また、斜め方向においては、隣接する偏光素子 の偏光軸の交差角である-コル角が崩れても、光漏れによる光量の増加が見られな い。つまり、斜め視角での-コル角の拡がりに対して黒が浮きにくくなる。  [0034] According to the above configuration, each of the first display element and the second display element is configured by the liquid crystal panel sandwiched between the polarizing elements arranged in the crossed nicols, and thus in the front direction. The leakage light in the direction of the transmission axis of the polarizing element can be cut off by the polarization axis of the next polarizing element. Further, in the oblique direction, even if the coll angle, which is the intersection angle of the polarization axes of adjacent polarizing elements, collapses, no increase in the amount of light due to light leakage is observed. In other words, black does not easily float with respect to the spread of the −col angle at an oblique viewing angle.
[0035] このように、 2枚以上の液晶パネルを重ね合わせ、偏光素子が液晶パネルを挟んで クロス-コルの関係に設けられている場合、少なくとも、偏光素子は 3つ備えているこ とになる。つまり、偏光素子を 3枚構成にし、それぞれをクロス-コルに配置することで 、正面 ·斜め方向ともにシャッター性能の大幅な向上を図ることが可能となる。これに より、コントラストを大幅に向上させることができる。  [0035] As described above, when two or more liquid crystal panels are overlapped and the polarizing element is provided in a cross-col relationship with the liquid crystal panel sandwiched therebetween, at least three polarizing elements are provided. Become. In other words, it is possible to significantly improve the shutter performance in both the front and oblique directions by configuring three polarizing elements and arranging them in a cross-cored manner. As a result, the contrast can be greatly improved.
[0036] 本発明のテレビジョン受信機は、テレビジョン放送を受信するチューナ部と、該チュ ーナ部で受信したテレビジョン放送を表示する表示装置とを備えたテレビジョン受信 機において、上記表示装置に、上述の複合型表示装置を用いたことを特徴としてい る。 [0037] 上記の構成によれば、モアレの少ない表示品位の高い映像を表示することができる 図面の簡単な説明 [0036] The television receiver of the present invention is a television receiver including a tuner unit that receives a television broadcast and a display device that displays the television broadcast received by the tuner unit. The apparatus is characterized by using the above-described composite display device. [0037] According to the above configuration, it is possible to display a video with high display quality with little moire.
[0038] [図 1]本発明の実施形態を示すものであり、液晶表示装置の概略断面図である。  FIG. 1 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
[図 2]図 1に示す液晶表示装置における偏光板とパネルとの配置関係を示す図であ る。  2 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
[図 3]図 1に示す液晶表示装置の画素電極近傍の平面図である。  3 is a plan view of the vicinity of a pixel electrode of the liquid crystal display device shown in FIG.
[図 4]図 1に示す液晶表示装置を駆動する駆動システムの概略構成図である。  4 is a schematic configuration diagram of a drive system that drives the liquid crystal display device shown in FIG.
[図 5]図 1に示す液晶表示装置のドライバとパネル駆動回路との接続関係を示す図で ある。  FIG. 5 is a diagram showing a connection relationship between a driver of the liquid crystal display device shown in FIG. 1 and a panel drive circuit.
[図 6]図 1に示す液晶表示装置が備えているバックライトの概略構成図である。  FIG. 6 is a schematic configuration diagram of a backlight included in the liquid crystal display device shown in FIG.
[図 7]図 1に示す液晶表示装置を駆動する駆動回路である表示コントローラのブロック 図である。  FIG. 7 is a block diagram of a display controller that is a drive circuit for driving the liquid crystal display device shown in FIG.
[図 8]液晶パネル 1枚の液晶表示装置の概略断面図である。  FIG. 8 is a schematic cross-sectional view of a liquid crystal display device with one liquid crystal panel.
[図 9]図 8に示す液晶法事装置における偏光板とパネルとの配置関係を示す図であ る。  FIG. 9 is a diagram showing an arrangement relationship between a polarizing plate and a panel in the liquid crystal legal apparatus shown in FIG.
[図 10]—般的な EL素子の概略断面図である。  FIG. 10 is a schematic sectional view of a general EL element.
[図 11(a)]従来の代表的な TFTを用いたアクティブマトリックス方式の EL表示素子を 説明する図である。  FIG. 11 (a) is a diagram for explaining a conventional active matrix EL display element using a typical TFT.
[図 11(b)]従来の代表的な TFTを用いたアクティブマトリックス方式の EL表示素子を 説明する図である。  FIG. 11 (b) is a diagram illustrating a conventional active matrix EL display element using a typical TFT.
[図 11(c)]従来の代表的な TFTを用いたアクティブマトリックス方式の EL表示素子を 説明する図である。  FIG. 11 (c) is a diagram illustrating a conventional active matrix EL display element using a typical TFT.
[図 11(d)]従来の代表的な TFTを用いたアクティブマトリックス方式の EL表示素子を 説明する図である。  FIG. 11 (d) is a diagram illustrating an active matrix EL display element using a typical conventional TFT.
[図 12(a)]本発明の実施例 1の光散乱レンズ層の平面図である。  FIG. 12 (a) is a plan view of the light scattering lens layer of Example 1 of the present invention.
[図 12(b)]本発明の実施例 1の光散乱レンズ層の概略断面図である。  FIG. 12 (b) is a schematic cross-sectional view of the light scattering lens layer of Example 1 of the present invention.
[図 13]本発明の実施例 1の光散乱レンズ層を構成するレンズの変形例を説明する図 である。 FIG. 13 is a diagram for explaining a modification of the lens constituting the light scattering lens layer of Example 1 of the present invention. It is.
圆 14]本発明の実施例 1の光散乱レンズ層を構成するレンズの変形例を説明する図 である。 FIG. 14 is a diagram illustrating a modification of the lens constituting the light scattering lens layer of Example 1 of the present invention.
圆 15]本発明の実施例 1の光散乱レンズ層を構成するレンズの変形例を説明する図 である。 FIG. 15 is a view for explaining a modification of the lens constituting the light scattering lens layer of Example 1 of the present invention.
圆 16]凸レンズを用いた場合の光の散乱を説明する概略図である。 [16] FIG. 16 is a schematic diagram illustrating light scattering when a convex lens is used.
圆 17(a)]本発明の実施例 2の光散乱レンズ層の平面図である。 圆 17 (a)] is a plan view of the light scattering lens layer of Example 2 of the present invention.
圆 17(b)]本発明の実施例 2の光散乱レンズ層の概略断面図である。 圆 17 (b)] is a schematic sectional view of the light scattering lens layer of Example 2 of the present invention.
圆 18(a)]本発明の実施例 2の光散乱レンズ層を構成する四角錐状のレンズと偏光と の関係を説明する図である。 FIG. 18 (a)] is a diagram for explaining the relationship between polarized light and the quadrangular pyramid lenses that constitute the light scattering lens layer of Example 2 of the present invention.
圆 18(b)]本発明の実施例 2の光散乱レンズ層を構成する四角錐状のレンズと偏光と の関係を説明する図である。 FIG. 18 (b)] is a view for explaining the relationship between the polarized light and the quadrangular pyramid lenses constituting the light scattering lens layer of Example 2 of the present invention.
圆 19(a)]—般的な光の入射面と s偏光、 p偏光との関係を示す図である。 [19 (a)] — A diagram showing the relationship between the plane of incidence of general light, s-polarized light, and p-polarized light.
[図 19(b)]図 19 (a)に示す s偏光、 p偏光におけるエネルギー反射率'透過率曲線を示 すグラフである。  [FIG. 19 (b)] This is a graph showing the energy reflectance 'transmittance curve for s-polarized light and p-polarized light shown in FIG. 19 (a).
圆 20]本発明の実施例 3の四角錐状のレンズを説明する図である。 FIG. 20 is a diagram illustrating a quadrangular pyramid-shaped lens according to Example 3 of the present invention.
圆 21]本発明の実施例 4の変形例を説明する図である。 圆 21] A diagram for explaining a modification of the fourth embodiment of the present invention.
圆 22(a)]本発明の実施例 4の画素サイズを説明する図である。 {Circle around (22)} FIG. 22 is a diagram for explaining a pixel size according to the fourth embodiment of the present invention.
圆 22(b)]本発明の実施例 4の画素サイズを説明する図である。 {Circle around (22)} FIG. 22C is a diagram illustrating the pixel size according to the fourth embodiment of the present invention.
圆 23]本発明の実施例 5の変形例の画素サイズを説明する図である。 FIG. 23 is a diagram for explaining a pixel size of a modification of the fifth embodiment of the present invention.
圆 24]本発明の実施例 6にかかる複合型液晶表示装置の概略断面図である。 FIG. 24 is a schematic cross-sectional view of a composite liquid crystal display device according to Embodiment 6 of the present invention.
圆 25]本発明の実施例 6にかかる複合型液晶表示装置において、画素サイズが同一 の場合の適応例を説明する図である。 25] FIG. 25 is a diagram for explaining an application example when the pixel sizes are the same in the composite liquid crystal display device according to Embodiment 6 of the present invention.
圆 26]本発明の実施例 6の変形例を説明する図である。 [26] FIG. 26 is a diagram for explaining a modification of the sixth embodiment of the present invention.
圆 27]本発明の液晶表示装置を備えたテレビジョン受信機の概略ブロック図である。 圆 28]図 27に示すテレビジョン受信機におけるチューナ部と液晶表示装置との関係 を示すブロック図である。 FIG. 27 is a schematic block diagram of a television receiver including the liquid crystal display device of the present invention. 28] FIG. 28 is a block diagram showing a relationship between a tuner unit and a liquid crystal display device in the television receiver shown in FIG.
圆 29]図 27に示すテレビジョン受信機の分解斜視図である。 発明を実施するための最良の形態 [29] FIG. 29 is an exploded perspective view of the television receiver shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 本発明の実施の形態について説明すれば以下の通りである。なお、本実施の形態 では、本発明の複合型表示装置を液晶表示装置に適用した場合について説明する  [0039] An embodiment of the present invention will be described as follows. In this embodiment, the case where the composite display device of the present invention is applied to a liquid crystal display device will be described.
[0040] 図 1は、本実施の形態に係る液晶表示装置 100の概略断面を示す図である。 FIG. 1 is a diagram showing a schematic cross section of a liquid crystal display device 100 according to the present embodiment.
[0041] 上記液晶表示装置 100は、図 1に示すように、第 1の表示素子である第 1のパネル 101と第 2の表示素子である第 2のパネル 102と偏光板 (偏光素子) A、 B、 Cを交互に 貼り合せて構成されている。上記偏光板 Bの第 2のパネル 102側には、第 1のパネル 102への出射光を散乱させるための光散乱用のレンズを少なくとも 1つ含む光散乱レ ンズ層 1が設けられて 、る。この光散乱レンズ層 1につ 、ての詳細は後述する。 As shown in FIG. 1, the liquid crystal display device 100 includes a first panel 101 as a first display element, a second panel 102 as a second display element, and a polarizing plate (polarizing element) A , B and C are alternately laminated. A light scattering lens layer 1 including at least one light scattering lens for scattering light emitted to the first panel 102 is provided on the second panel 102 side of the polarizing plate B. . Details of the light scattering lens layer 1 will be described later.
[0042] 図 2は、図 1に示す液晶表示装置 100における偏光板と液晶パネルとの概念的な 配置を示した図である。図 2では、偏光板 Aと B、偏光板 Bと Cはそれぞれ偏光軸が直 交して構成される。すなわち、偏光板 Aと B、偏光板 Bと Cは、それぞれクロスニコルに 配置されている。 FIG. 2 is a diagram showing a conceptual arrangement of the polarizing plate and the liquid crystal panel in the liquid crystal display device 100 shown in FIG. In Fig. 2, polarizing plates A and B and polarizing plates B and C are configured with their polarization axes orthogonal to each other. That is, polarizing plates A and B and polarizing plates B and C are arranged in crossed Nicols.
[0043] 第 1のパネル 101および第 2のパネル 102は、それぞれ 1対の透明基板(カラーフィ ルタ基板 220とアクティブマトリクス基板 230)間に液晶を封入してなり、電気的に液 晶の配向を変化させることによって、光源力も偏光板 Aに入射した偏光を約 90度回 転させる状態と、偏光を回転させない状態と、その中間状態とを任意に変化させる手 段を備える。  [0043] Each of the first panel 101 and the second panel 102 has a liquid crystal sealed between a pair of transparent substrates (the color filter substrate 220 and the active matrix substrate 230) to electrically align the liquid crystal. By changing the light source, the light source power is also provided with a means for arbitrarily changing the state where the polarized light incident on the polarizing plate A is rotated about 90 degrees, the state where the polarized light is not rotated, and the intermediate state.
[0044] また、第 1のパネル 101および第 2のパネル 102は、それぞれカラーフィルタを備え 、複数の画素により画像を表示できる機能を有している。このような機能を有する表 示方式は、 TN (Twisted Nematic)方式、 VA (Vertical Alignment)方式、 IPS (In PI ain Switching)方式、 FFS方式(Fringe Field Switching)方式またはそれぞれ の組み合わせによる方法がある力 単独でも高いコントラストを有する VA方式が適し ており、ここでは MVA(Multidomain Vertical Alignment)方式を用いて説明するが 、 IPS方式、 FFS方式もノーマリーブラック方式であるため、十分な効果がある。駆動 方式は TFT(Thin Film Transistor)によるアクティブマトリックス駆動を用いる。 MV Aの製造方法についての詳細は、上記特許文献 1などに開示されている。 [0045] 上記液晶表示装置 100における第 1のパネル 101および第 2のパネル 102は、同 じ構造であり、上述のように、それぞれ互いに対向するカラーフィルタ基板 220とァク ティブマトリクス基板 230とを有し、プラスチックビーズや、カラーフィルタ基板 220上 などに設けた柱状榭脂構造物をスぺーサ(図示せず)として用い基板間隔を一定に 保持した構造となって 、る。 1対の基板 (カラーフィルタ基板 220とアクティブマトリクス 基板 230)間に液晶を封入し、各基板の液晶に接する表面には垂直配向膜 225が 形成されている。液晶は、負の誘電率異方性を有するネマティック液晶を使用する。 [0044] Each of the first panel 101 and the second panel 102 includes a color filter, and has a function of displaying an image with a plurality of pixels. Display methods with such functions include TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In PI ain Switching) method, FFS method (Fringe Field Switching) method, or a combination of these methods. The VA method with high contrast is suitable even when the force alone is used. The MVA (Multidomain Vertical Alignment) method is used here for explanation, but the IPS method and the FFS method are also normally black methods, so they are sufficiently effective. The drive system uses active matrix drive by TFT (Thin Film Transistor). Details of the method for producing MVA are disclosed in Patent Document 1 and the like. [0045] The first panel 101 and the second panel 102 in the liquid crystal display device 100 have the same structure. As described above, the color filter substrate 220 and the active matrix substrate 230 facing each other are provided. It has a structure in which plastic beads or a columnar resin structure provided on the color filter substrate 220 or the like is used as a spacer (not shown) to keep the substrate interval constant. Liquid crystal is sealed between a pair of substrates (color filter substrate 220 and active matrix substrate 230), and a vertical alignment film 225 is formed on the surface of each substrate in contact with the liquid crystal. As the liquid crystal, a nematic liquid crystal having negative dielectric anisotropy is used.
[0046] カラーフィルタ基板 220は、透明基板 210上にカラーフィルタ 221、ブラックマトリク ス 224等が形成されたものである。液晶の配向方向を規定する配向制御用の突起 2 22が形成されている。  The color filter substrate 220 is obtained by forming a color filter 221, a black matrix 224, etc. on a transparent substrate 210. An alignment control protrusion 222 that defines the alignment direction of the liquid crystal is formed.
[0047] アクティブマトリクス基板 230は、図 3に示すように、透明基板 210上に、 TFT素子 2 03、画素電極 208等が形成され、さらに、液晶の配向方向を規定する配向制御用の 突起 222およびスリットパターン 211を有する。図 3に示した配向規制用の突起 222 や表示品位を低下させる不要光を遮光するためのブラックマトリクス 224はカラーフィ ルタ基板 220に形成したパターンをアクティブマトリクス基板 230に投影した図である 。画素電極 208に閾値以上の電圧が印加された場合、液晶分子は突起 222および スリットパターン 211に対して垂直な方向に倒れる。本実施の形態では、偏光板の偏 光軸に対して方位角 45度方向に液晶が配向するように、突起 222およびスリットバタ ーン 211を形成している。  As shown in FIG. 3, the active matrix substrate 230 includes a TFT element 203, a pixel electrode 208, and the like formed on a transparent substrate 210, and an alignment control protrusion 222 that defines the alignment direction of the liquid crystal. And a slit pattern 211. The alignment matrix protrusions 222 shown in FIG. 3 and the black matrix 224 for blocking unnecessary light that deteriorates the display quality are projections of the pattern formed on the color filter substrate 220 onto the active matrix substrate 230. When a voltage equal to or higher than the threshold is applied to the pixel electrode 208, the liquid crystal molecules fall in a direction perpendicular to the protrusions 222 and the slit pattern 211. In the present embodiment, the protrusion 222 and the slit pattern 211 are formed so that the liquid crystal is aligned in the direction of 45 ° azimuth with respect to the polarization axis of the polarizing plate.
[0048] 以上のように、第 1のパネルと第 2のパネルとは、それぞれのカラーフィルタ 221の 赤 (R)緑 (G)青 (B)の画素がそれぞれ鉛直方向から見た位置が一致するように構成 されている。具体的には、第 1のパネルの R画素は、第 2のパネルの R画素に、第 1の ノ《ネルの G画素は第 2のパネルの G画素に、第 1のパネルの B画素は、第 2のパネル の B画素に、それぞれ鉛直方向から見た位置が一致するように構成されている。  [0048] As described above, the positions of the red (R) green (G) blue (B) pixels of the respective color filters 221 in the first panel and the second panel coincide with each other in the vertical direction. It is configured to Specifically, the R pixel on the first panel is the R pixel on the second panel, the G pixel on the first panel is the G pixel on the second panel, and the B pixel on the first panel is The position viewed from the vertical direction coincides with the B pixel of the second panel.
[0049] 上記構成の液晶表示装置 100の駆動システムの概略を、図 4に示す。  FIG. 4 shows an outline of a drive system of the liquid crystal display device 100 having the above configuration.
[0050] 上記駆動システムは、液晶表示装置 100に映像を表示するために必要な表示コン トローラを有している。  [0050] The drive system includes a display controller necessary for displaying an image on the liquid crystal display device 100.
[0051] その結果液晶パネルは入力信号に基づ 、た適切な画像データを出力する。 [0052] 上記表示コントローラは、第 1のパネル、第 2のパネルを所定の信号でそれぞれ駆 動する第 1、第 2のパネル駆動回路(1) (2)を有する。さらに、第 1、第 2のパネル駆動 回路(1) (2)に、映像ソース信号分配する信号分配回路部を有している。 As a result, the liquid crystal panel outputs appropriate image data based on the input signal. [0052] The display controller includes first and second panel drive circuits (1) and (2) for driving the first panel and the second panel with predetermined signals, respectively. Furthermore, the first and second panel drive circuits (1) and (2) have a signal distribution circuit section for distributing video source signals.
[0053] ここで、入力信号とは、 TV受信機、 VTR、 DVDなど力もの映像信号だけではなく、 これらの信号を処理した信号も表して ヽる  [0053] Here, the input signal represents not only a powerful video signal such as a TV receiver, VTR, or DVD, but also a signal obtained by processing these signals.
従って、表示コントローラは、液晶表示装置 100に適切な画像を表示できるよう信 号を各パネルに送るようになって 、る。  Therefore, the display controller sends a signal to each panel so that an appropriate image can be displayed on the liquid crystal display device 100.
[0054] 上記表示コントローラは、与えられた映像信号からパネルに適切な電気信号を送る ための装置であり、ドライバ、回路基板、パネル駆動回路などで構成される。  The display controller is a device for sending an appropriate electrical signal from a given video signal to the panel, and includes a driver, a circuit board, a panel drive circuit, and the like.
[0055] 上記の第 1、第 2のパネルと、それぞれのパネル駆動回路との接続関係を、図 5に 示す。図 5では、偏光板を省略している。  [0055] FIG. 5 shows the connection relationship between the first and second panels and the panel drive circuits. In FIG. 5, the polarizing plate is omitted.
[0056] 上記第 1のパネル駆動回路(1)は、ドライバ (TCP) (1)を介して第 1のパネルの回 路基板(1)に設けられた端子(1)に接続されている。すなわち、第 1のパネルにドライ ノ (TCP) (1)を接続し、回路基板(1)で連結し、パネル駆動回路(1)に接続している  [0056] The first panel drive circuit (1) is connected to a terminal (1) provided on the circuit board (1) of the first panel via a driver (TCP) (1). In other words, a dry (TCP) (1) is connected to the first panel, connected by the circuit board (1), and connected to the panel drive circuit (1).
[0057] なお、第 2のパネルにおける第 2のパネル駆動回路(2)の接続も上記の第 1のパネ ルと同じであるので、その説明を省略する。 Note that since the connection of the second panel drive circuit (2) in the second panel is the same as that in the first panel, the description thereof is omitted.
[0058] 次に、上記構成の液晶表示装置 100の動作について説明する。  Next, an operation of the liquid crystal display device 100 having the above configuration will be described.
[0059] 上記第 1のパネルの画素は、表示信号に基づいて駆動され、該第 1のパネルの画 素とパネルの鉛直方向から見た位置が一致する対応する第 2のパネルの画素は、第 1のパネルに対応して駆動される。偏光板 Aと第 1のパネルと偏光板 Bとで構成される 部分 (構成部 1)が透過状態の場合は、偏光板 Bと第 2のパネルと偏光板 Cにより構成 される部分 (構成部 2)も透過状態となり、構成部 1が非透過状態の時は構成部 2も非 透過状態となるよう駆動される。  [0059] The pixels of the first panel are driven based on the display signal, and the pixels of the second panel corresponding to the positions of the first panel pixels and the positions viewed from the vertical direction of the panel are the following: Driven corresponding to the first panel. If the part composed of Polarizer A, the first panel, and Polarizer B (Component 1) is in the transmissive state, the part composed of Polarizer B, the second panel, and Polarizer C (Component) 2) is also in a transmissive state, and when component 1 is in a non-transmissive state, component 2 is also driven to be in a non-transmissive state.
[0060] 第 1、第 2のパネルには同一の画像信号を入力しても良いし、第 1、第 2のパネルに 互 ヽに連関した別々の信号を入力しても良 、。  [0060] The same image signal may be input to the first and second panels, or different signals associated with each other may be input to the first and second panels.
[0061] ここで、上記アクティブマトリクス基板 230およびカラーフィルタ基板 220の製造方 法について説明する。 [0062] はじめに、アクティブマトリクス基板 230の製造方法にっ 、て説明する。 Here, a method of manufacturing the active matrix substrate 230 and the color filter substrate 220 will be described. First, a method for manufacturing the active matrix substrate 230 will be described.
[0063] まず、透明基板 210上に、図 3に示すように、走査信号用配線 (ゲート配線またはゲ ートバスライン) 201と補助容量配線 202とを形成するためにスパッタリングにより Ή/Α 1/Ti積層膜などの金属を成膜し、フォトリソグラフィ一法によりレジストパターンを形成 、塩素系ガスなどのエッチングガスを用いてドライエッチングし、レジストを剥離する。 これにより、透明基板 210上に、走査信号用配線 201と補助容量配線 202とが同時 に形成される。 [0063] First, as shown in FIG. 3, on the transparent substrate 210, a sputtering signal wiring (gate wiring or gate bus line) 201 and auxiliary capacitance wiring 202 are formed by sputtering to form a Ή / Α 1 / Ti laminated layer. A metal such as a film is formed, a resist pattern is formed by a photolithography method, dry etching is performed using an etching gas such as a chlorine-based gas, and the resist is peeled off. As a result, the scanning signal wiring 201 and the auxiliary capacitance wiring 202 are simultaneously formed on the transparent substrate 210.
[0064] その後、窒化シリコン(SiNx)など力もなるゲート絶縁膜、アモルファスシリコン等か らなる活性半導体層、リンなどをドープしたアモルファスシリコン等力もなる低抵抗半 導体層を CVDにて成膜、その後、データ信号用配線 (ソース配線またはソースノ スラ イン) 204、ドレイン引き出し配線 205、補助容量形成用電極 206を形成するために スパッタリングにより AlZTiなどの金属を成膜し、フォトリソグラフィ一法によりレジスト パターンを形成、塩素系ガスなどのエッチングガスを用いてドライエッチングし、レジ ストを剥離する。これにより、データ信号用配線 204、ドレイン引き出し配線 205、補 助容量形成用電極 206が同時に形成される。  [0064] Thereafter, a gate insulating film such as silicon nitride (SiNx), an active semiconductor layer made of amorphous silicon, or the like, an amorphous silicon doped with phosphorus or the like, and a low resistance semiconductor layer also made of amorphous silicon or the like are formed by CVD, and thereafter In order to form the data signal wiring (source wiring or source line) 204, drain lead wiring 205, and auxiliary capacitance forming electrode 206, a metal such as AlZTi is formed by sputtering, and a resist pattern is formed by photolithography. Form and dry-etch using an etching gas such as a chlorine-based gas to remove the resist. As a result, the data signal wiring 204, the drain lead-out wiring 205, and the auxiliary capacitance forming electrode 206 are simultaneously formed.
[0065] なお、補助容量は補助容量配線 202と補助容量形成用電極 206の間に約 4000 Aのゲート絶縁膜をはさんで形成されて 、る。  The auxiliary capacitance is formed by sandwiching a gate insulating film of about 4000 A between the auxiliary capacitance wiring 202 and the auxiliary capacitance forming electrode 206.
[0066] その後、ソースドレイン分離のために低抵抗半導体層を塩素ガスなどを用いてドラ ィエッチングし TFT素子 203を形成する。  Thereafter, the TFT element 203 is formed by dry etching the low resistance semiconductor layer using chlorine gas or the like for source / drain separation.
[0067] 次に、アクリル系感光性榭脂など力もなる層間絶縁膜 207をスピンコートにより塗布 し、ドレイン引き出し配線 205と画素電極 208を電気的にコンタクトするためのコンタ タトホール(図示せず)をフォトリソグラフィ—法で形成する。層間絶縁膜 207の膜厚 は、約 3 mである。  [0067] Next, an interlayer insulating film 207 having a force such as an acrylic photosensitive resin is applied by spin coating, and a contact hole (not shown) for electrically contacting the drain lead wiring 205 and the pixel electrode 208 is formed. It is formed by photolithography. The film thickness of the interlayer insulating film 207 is about 3 m.
[0068] さらに、画素電極 208、および垂直配向膜(図示せず)をこの順に形成して構成さ れる。  Further, the pixel electrode 208 and a vertical alignment film (not shown) are formed in this order.
[0069] なお、本実施形態は、上述したように、 MVA型液晶表示装置であり、 ITOなどから なる画素電極 208にスリットパターン 211が設けられている。具体的には、スパッタリ ングにより成膜し、フォトリソグラフィ一法によりレジストパターンを形成、塩化第二鉄な どのエッチング液によりエッチングし、図 3に示すような画素電極パターンを得る。 Note that, as described above, this embodiment is an MVA type liquid crystal display device, and a slit pattern 211 is provided in a pixel electrode 208 made of ITO or the like. Specifically, a film is formed by sputtering, a resist pattern is formed by a photolithography method, and ferric chloride is used. Etching is performed with any etching solution to obtain a pixel electrode pattern as shown in FIG.
[0070] 以上により、アクティブマトリクス基板 230を得る。 As described above, an active matrix substrate 230 is obtained.
[0071] なお、図 3に示す符号 212a, 212b, 212c, 212d, 212e, 212fは、画素電極 208 に形成れたスリットの電気的接続部を示す。このスリットにおける電気的接続部分で は配向が乱れ配向異常が発生する。ただし、スリット 212a〜212dについては、配向 異常に加えて、ゲート配線に供給される電圧が、 TFT素子 203をオン状態に動作さ せるために供給されるプラス電位が印加される時間が通常 秒オーダーであり、 TF T素子 203をオフ状態に動作させるために供給されるマイナス電位が印加される時 間が通常 m秒オーダーであるため、マイナス電位が印加される時間が支配的である 。このため、スリット 212a〜212dをゲート配線上に位置させるとゲートマイナス DC印 加成分により液晶中に含まれる不純物イオンが集まるため、表示ムラとして視認され る場合がある。よって、スリット 212a〜212dはゲート配線と平面的に重ならない領域 に設ける必要があるため、図 3に示すように、ブラックマトリクス 224で隠すほうが望ま しい。  Note that reference numerals 212a, 212b, 212c, 212d, 212e, and 212f shown in FIG. 3 denote electrical connection portions of slits formed in the pixel electrode 208. At the electrical connection portion in the slit, the orientation is disturbed and an orientation abnormality occurs. However, for the slits 212a to 212d, in addition to the alignment abnormality, the voltage supplied to the gate wiring is normally applied with a positive potential supplied to operate the TFT element 203 in the on state. The time for applying the negative potential supplied to operate the TFT element 203 in the off state is normally on the order of milliseconds, and therefore the time for applying the negative potential is dominant. For this reason, when the slits 212a to 212d are positioned on the gate wiring, impurity ions contained in the liquid crystal gather due to the gate minus DC application component, which may be visually recognized as display unevenness. Therefore, since the slits 212a to 212d need to be provided in a region that does not overlap with the gate wiring in a plan view, it is desirable to hide the slits 212a to 212d with the black matrix 224 as shown in FIG.
[0072] 続、て、カラーフィルタ基板 220の製造方法にっ 、て説明する。  [0072] Next, a method for manufacturing the color filter substrate 220 will be described.
[0073] 上記カラーフィルタ基板 220は、透明基板 210上に、 3原色 (赤、緑、青)のカラーフ ィルタ 221およびブラックマトリクス(BM) 224などからなるカラーフィルタ層、対向電 極 223、垂直配向膜 225、および配向制御用の突起 222を有する。 [0073] The color filter substrate 220 is formed on a transparent substrate 210, a color filter layer made of three primary colors (red, green, blue) 221 and a black matrix (BM) 224, a counter electrode 223, and a vertical alignment. A film 225 and an alignment control protrusion 222 are provided.
[0074] まず、透明基板 210上に、スピンコートによりカーボンの微粒子を分散したネガ型の アクリル系感光性榭脂液を塗布した後、乾燥を行い、黒色感光性榭脂層を形成する 。続いて、フォトマスクを介して黒色感光性榭脂層を露光した後、現像を行って、ブラ ックマトリクス (BM) 224を形成する。このとき第 1着色層(例えば赤色層)、第 2着色 層(例えば緑色層)、および第 3着色層(例えば青色層)が形成される領域に、それぞ れ第 1着色層用の開口部、第 2着色層用の開口部、第 3着色層用の開口部 (それぞ れの開口部は各画素電極に対応)が形成されるように BMを形成する。より具体的に は、図 3に示すように、画素電極 208に形成されたスリット 212a〜212fにおける電気 的接続部分のスリット 212a〜212dに生じる配向異常領域を遮光する BMパターンを 島状に形成し、また、 TFT素子 203に外光が入射することにより光励起されるリーク 電流の増加を防ぐために TFT素子 203上に遮光部(BM)を形成する。 [0074] First, a negative acrylic photosensitive resin solution in which carbon fine particles are dispersed is applied onto the transparent substrate 210 by spin coating, followed by drying to form a black photosensitive resin layer. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form a black matrix (BM) 224. At this time, openings for the first colored layer are respectively formed in regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed. The BM is formed so that an opening for the second colored layer and an opening for the third colored layer (each opening corresponds to each pixel electrode) are formed. More specifically, as shown in FIG. 3, a BM pattern is formed in an island shape to shield the alignment abnormal region generated in the slits 212a to 212d of the electrical connection portions of the slits 212a to 212f formed in the pixel electrode 208. In addition, a leak that is optically excited by external light entering the TFT element 203 In order to prevent an increase in current, a light shielding part (BM) is formed on the TFT element 203.
[0075] 次に、スピンコートにより顔料を分散したネガ型のアクリル系感光性榭脂液を塗布し た後、乾燥を行い、フォトマスクを用いて露光および現像を行い赤色層を形成する。 Next, after applying a negative acrylic photosensitive resin solution in which a pigment is dispersed by spin coating, drying is performed, and exposure and development are performed using a photomask to form a red layer.
[0076] その後、第 2色層用(例えば緑色層)、および第 3色層用(例えば青色層)について も同様に形成し、カラーフィルタ 221が完成する。 Thereafter, the second color layer (for example, the green layer) and the third color layer (for example, the blue layer) are similarly formed, and the color filter 221 is completed.
[0077] さらに、 ITOなどの透明電極力もなる対向電極 223をスパッタリングにより形成し、そ の後、スピンコートによりポジ型のフエノールノボラック系感光性榭脂液を塗布した後 、乾燥を行い、フォトマスクを用いて露光および現像を行い垂直配向制御用の突起 2 22を形成する。さらに、液晶パネルのセルギャップを規定するための柱状スぺーサ( 図示せず)を、アクリル系感光性榭脂液を塗布しフォトマスクで露光、現像、硬化して 形成する。 [0077] Further, a counter electrode 223 having a transparent electrode force such as ITO is formed by sputtering, and then a positive type phenol novolac photosensitive resin solution is applied by spin coating, followed by drying and a photomask. Then, exposure and development are performed to form a protrusion 222 for controlling vertical alignment. Further, a columnar spacer (not shown) for defining the cell gap of the liquid crystal panel is formed by applying an acrylic photosensitive resin solution, exposing, developing and curing with a photomask.
[0078] 以上により、カラーフィルタ基板 220が形成される。  As described above, the color filter substrate 220 is formed.
[0079] また、本実施形態では榭脂からなる BMの場合を示した力 金属からなる BMでも 構わない。また、 3原色の着色層は、赤、緑、青、に限られることはなぐシアン、マゼ ンタ、イェローなどの着色層があってもよぐまたホワイト層が含まれていても良い。  [0079] Further, in the present embodiment, a BM made of a force metal as shown in the case of BM made of a resin may be used. The three primary color layers may include cyan, magenta, yellow, and other white layers as well as red, green, and blue, and may include a white layer.
[0080] 上述のように製造されたカラーフィルタ基板 220とアクティブマトリクス基板 230とで 液晶パネル (第 1のパネル、第 2のパネル)を製造する方法について以下に説明する  A method for manufacturing a liquid crystal panel (first panel, second panel) using the color filter substrate 220 and the active matrix substrate 230 manufactured as described above will be described below.
[0081] まず、上記カラーフィルタ基板 220およびアクティブマトリクス基板 230の、液晶と接 する面に、垂直配向膜 225を形成する。具体的には、配向膜塗布前に脱ガス処理と して焼成を行いその後、基板洗浄、配向膜塗布行う。配向膜塗布後には配向膜焼成 を行う。配向膜塗布後洗浄を行った後、脱ガス処理としてさらに焼成を行う。垂直配 向膜 225は液晶 226の配向方向を規定する。 First, a vertical alignment film 225 is formed on the surface of the color filter substrate 220 and the active matrix substrate 230 that are in contact with the liquid crystal. Specifically, baking is performed as a degassing treatment before the alignment film is applied, and then substrate cleaning and alignment film application are performed. After the alignment film is applied, the alignment film is baked. After the alignment film is applied and washed, further baking is performed as a degassing process. The vertical alignment film 225 defines the alignment direction of the liquid crystal 226.
[0082] 次に、アクティブマトリクス基板 230とカラーフィルタ基板 220との間に液晶を封入す る方法について説明する。  Next, a method for sealing liquid crystal between the active matrix substrate 230 and the color filter substrate 220 will be described.
[0083] 液晶の封入方法については、たとえば熱硬化型シール榭脂を基板周辺に一部液 晶注入のため注入口を設け、真空で注入口を液晶に浸し、大気開放することによつ て液晶を注入し、その後 UV硬化榭脂などで注入口を封止する、真空注入法などの 方法で行ってもよい。しかしながら、垂直配向の液晶パネルでは、水平配向パネルに 比べ注入時間が非常に長くなる欠点がある。ここでは液晶滴下貼り合せ法による説 明を行う。 [0083] With regard to the liquid crystal sealing method, for example, an injection port is provided for injecting a part of the thermosetting seal resin around the substrate for liquid crystal injection, and the injection port is immersed in liquid crystal in a vacuum and opened to the atmosphere. Inject liquid crystal, and then seal the injection port with UV-curing resin, etc. You may carry out by the method. However, the vertical alignment liquid crystal panel has a drawback that the injection time is much longer than that of the horizontal alignment panel. Here, explanation is given by the liquid crystal drop bonding method.
[0084] アクティブマトリクス基板側の周囲に UV硬化型シール榭脂を塗布し、カラーフィル タ基板に滴下法により液晶の滴下を行う。液晶滴下法により液晶によって所望のセル ギャップとなるよう最適な液晶量をシールの内側部分に規則的に滴下する。  [0084] A UV curable sealant is applied around the active matrix substrate side, and liquid crystal is dropped onto the color filter substrate by a dropping method. The optimal amount of liquid crystal is regularly dropped on the inner part of the seal so that the desired cell gap is achieved by liquid crystal by the liquid crystal dropping method.
[0085] さらに、上記のようにシール描画および液晶滴下を行ったカラーフィルタ基板とァク ティブマトリクス基板を貼合せるため、貼り合わせ装置内の雰囲気を lPaまで減圧を 行い、この減圧下において基板の貼合せを行った後、雰囲気を大気圧にしてシール 部分が押しつぶされ、所望のシール部のギャップが得られる。  [0085] Further, in order to bond the color filter substrate and the active matrix substrate on which the seal drawing and liquid crystal dropping are performed as described above, the atmosphere in the bonding apparatus is reduced to lPa, and under this reduced pressure, the substrate After bonding, the seal portion is crushed by setting the atmosphere to atmospheric pressure, and the desired gap of the seal portion is obtained.
[0086] 次に、シール部分の所望のセルギャップを得た構造体にっ 、て、 UV硬化装置に て UV照射を行いシール榭脂の仮硬化を行う。さらに、シール榭脂の最終硬化を行う 為にベータを行う。この時点でシール榭脂の内側に液晶が行き渡り液晶がセル内に 充填された状態に至る。ベータ完了後に構造体を液晶パネル単位に分断することで 液晶パネルが完成する。  [0086] Next, the structure having a desired cell gap in the seal portion is subjected to UV irradiation with a UV curing device to temporarily cure the seal resin. In addition, beta is performed to final cure the seal resin. At this point, the liquid crystal spreads inside the seal resin and the liquid crystal is filled in the cell. The liquid crystal panel is completed by dividing the structure into liquid crystal panel units after the beta is completed.
[0087] 本実施の形態では、第 1のパネルも第 2のパネルも同一のプロセスで製造される。  In the present embodiment, the first panel and the second panel are manufactured by the same process.
[0088] 続いて、上述の製造方法により製造された第 1のパネルと第 2のパネルとの実装方 法について説明する。  [0088] Next, a mounting method of the first panel and the second panel manufactured by the above-described manufacturing method will be described.
[0089] ここでは、第 1のパネルおよび第 2のパネルを洗浄後、それぞれのパネルに偏光板 を貼り付ける。具体的には、図 4に示すように、第 1のパネルの表面および裏面にそ れぞれ偏光板 Aおよび Bを貼り付ける。また、第 2のパネルの裏面に偏光板 Cを貼り 付ける。そして第 2のパネルの表面に光散乱レンズ層 1を貼り付ける。光散乱レンズ 層 1と偏光板 Bの配置は反対でも力まわない。ここでなお、偏光板には必要に応じて 、光学補償シート等を積層してもよい。  Here, after cleaning the first panel and the second panel, a polarizing plate is attached to each panel. Specifically, as shown in FIG. 4, polarizing plates A and B are attached to the front and back surfaces of the first panel, respectively. Also, attach polarizing plate C to the back of the second panel. Then, the light scattering lens layer 1 is attached to the surface of the second panel. The arrangement of light scattering lens layer 1 and polarizing plate B can be reversed. Here, if necessary, an optical compensation sheet or the like may be laminated on the polarizing plate.
[0090] 次に、ドライバ (液晶駆動用 LSI)を接続する。ここでは、ドライバを TCP (Tape Car eer Package)方式による接続にっ 、て説明する。  Next, a driver (LCD driving LSI) is connected. Here, the driver will be described using a TCP (Tape Carrier Package) connection.
[0091] 例えば、図 5に示すように、第 1のパネルの端子部(1)に ACF (Anisotropic  [0091] For example, as shown in FIG. 5, the ACF (Anisotropic) is connected to the terminal portion (1) of the first panel.
Conductive Film)を仮圧着後、ドライバが乗せられた TCP (1)を、キャリアテープか ら打ち抜き、パネル端子電極に位置合せし、加熱、本圧着する。その後、ドライバ TC P (l)同士を連結するための回路基板(1)と TCP (l)の入力端子(1)を ACFで接続 する。 After pre-crimping (Conductive Film), install TCP (1) with a driver on the carrier tape. Punch out, align with the panel terminal electrode, heat, and press-fit. After that, the circuit board (1) for connecting the drivers TCP (l) to each other and the input terminal (1) of TCP (l) are connected by ACF.
[0092] 次に、 2枚のパネルを貼り合せる。第 2のパネルの表面を洗浄し、第 1のパネルに貼 り付けられた偏光板 Bの粘着層のラミネートをはがし、精密に位置合せし、第 1のパネ ルおよび第 2のパネルを貼り合せる。このとき、パネルと粘着層の間に気泡が残る場 合があるので、真空下で貼り合せることが望ましい。  [0092] Next, the two panels are bonded together. Clean the surface of the 2nd panel, peel off the adhesive layer of the polarizing plate B attached to the 1st panel, align it precisely, and paste the 1st panel and the 2nd panel together . At this time, since bubbles may remain between the panel and the adhesive layer, it is desirable to bond them under vacuum.
[0093] また、別の貼り合せ方法としては、常温またはパネルの耐熱温度以下で硬化する接 着剤たとえばエポキシ接着剤などをパネルの周辺部に塗布し、プラスチックスぺーサ を散布し、たとえばフッ素油などを封入しても良い。光学的に等方性で、反射を防ぐ ためガラス基板と同程度の屈折率を持ち、液晶と同程度の安定性な液体が望ましい 。但し、レンズ面と接触する場合は、レンズの材料と屈折率が異なるような材料を選択 する必要がある。  [0093] As another bonding method, an adhesive that cures at room temperature or below the heat resistance temperature of the panel, such as an epoxy adhesive, is applied to the periphery of the panel, and a plastic spacer is sprayed, for example, fluorine. Oil or the like may be enclosed. A liquid that is optically isotropic and has a refractive index comparable to that of a glass substrate to prevent reflection and is as stable as liquid crystal is desirable. However, when contacting the lens surface, it is necessary to select a material that has a refractive index different from that of the lens material.
[0094] なお、本実施例では、図 4および図 5に記載されているように、第 1のパネルの端子 面と第 2のパネルの端子面が同じ位置にあるような場合にも適用できる。また、パネル に対する端子の方向や貼り合せ方法は特に限定するものではない。たとえば接着に よらず機械的な固定方法でもよい。  [0094] It should be noted that this embodiment can also be applied to the case where the terminal surface of the first panel and the terminal surface of the second panel are at the same position as described in FIGS. 4 and 5. . Also, there are no particular restrictions on the direction of terminals and the method of bonding to the panel. For example, a mechanical fixing method may be used regardless of adhesion.
[0095] 2枚のパネルを貼り合せた後、バックライトと呼ばれる照明装置と一体ィ匕することで、 液晶表示装置 100となる。  [0095] After the two panels are bonded together, the liquid crystal display device 100 is obtained by integrating with a lighting device called a backlight.
[0096] ここで、本願発明に好適な照明装置の具体例にっ 、て、以下に説明する。但し、本 発明は、以下にあげる照明装置の形態に限られるものではなく適宜変更可能である  Here, a specific example of a lighting device suitable for the present invention will be described below. However, this invention is not restricted to the form of the illuminating device given below, It can change suitably.
[0097] 本発明の液晶表示装置 100は表示原理により、従来のパネルより多くの光の量を 提供する能力がノ ックライトには求められる。し力も、波長領域でも短波長の吸収がよ り顕著になるので照明装置側にはより波長の短い青い光源を用いる必要性がある。 これらの条件を満たす照明装置の一例を図 6に示す。 The liquid crystal display device 100 of the present invention is required to have the ability to provide a larger amount of light than the conventional panel, based on the display principle. However, since the short wavelength absorption becomes more noticeable even in the wavelength region, it is necessary to use a blue light source with a shorter wavelength on the lighting device side. An example of a lighting device that satisfies these conditions is shown in FIG.
[0098] 本発明における液晶表示装置 100では、従来と同様の輝度を出すために、今回は 熱陰極ランプを使用する。熱陰極ランプは、一般的仕様で用いられている冷陰極ラ ンプより光の量が 6倍程度出力できることを特徴とする。 In the liquid crystal display device 100 according to the present invention, a hot cathode lamp is used this time in order to obtain the same luminance as the conventional one. Hot cathode lamps are cold cathode lamps used in general specifications. It is characterized by being able to output about 6 times the amount of light from the amplifier.
[0099] 標準的液晶表示装置として対角 37インチ WXGAを例にあげると、外径 φ 15mm のランプを 18本をアルミニウムで出来たハウジングの上に配置する。本ハウジングに はランプ力 背面方向に出射された光を効率よく利用するために、発泡榭脂を用い た白色反射シートを配置する。本ランプの駆動電源は該ハウジングの背面に配置さ れ、家庭用電源から供給される電力でランプの駆動を行う。  [0099] Taking a 37-inch diagonal WXGA as an example of a standard liquid crystal display device, 18 lamps with an outer diameter of 15 mm are placed on a housing made of aluminum. In order to efficiently use the light emitted in the rear direction of the lamp force, this housing is provided with a white reflective sheet using foamed resin. A driving power source for the lamp is disposed on the rear surface of the housing, and the lamp is driven by electric power supplied from a household power source.
[0100] 次に、本ノヽウジングにランプを複数並べる直下型バックライトにおいてランプィメー ジを消すために乳白色の榭脂板が必要になる。今回は 2mm厚の、吸湿反り及び熱 変形に強いポリカーボネイトをベースにした板部材をランプ上のハウジングに配置し 、さらにその上面に所定の光学効果を得るための光学シート類、具体的には今回は 下から拡散シート、レンズシート、レンズシート、偏光反射シートを配置する。本仕様 により一般的な、冷陰極ランプ φ 4mmの 18灯、拡散シート 2枚と偏光反射シートの 仕様に対して 10倍程度のバックライト輝度を得ることが可能になる。それにより、本発 明によれば、 37インチの液晶表示装置は、 400cdZm2程度の輝度を得ることが可 能となる。 [0100] Next, a milky white resin board is required to extinguish the lamp image in the direct type backlight in which a plurality of lamps are arranged in this nodding. This time, a plate member based on polycarbonate, which is 2 mm thick and absorbs warp and heat deformation, is placed in the housing on the lamp, and the optical sheet to obtain the predetermined optical effect on its upper surface, specifically this time In the bottom, a diffusion sheet, a lens sheet, a lens sheet, and a polarized light reflection sheet are arranged. This specification makes it possible to obtain a backlight brightness that is about 10 times that of the general specifications of 18 cold-cathode lamps with a diameter of 4 mm, two diffuser sheets, and a polarizing reflection sheet. As a result, according to the present invention, a 37-inch liquid crystal display device can obtain a luminance of about 400 cdZm 2 .
[0101] ただし、本バックライトの発熱量は従来のものの 5倍にいたるためバックシャーシの 背面には空気への放熱を促すフィンと、空気の流れを強制的に行うファンを設置する  [0101] However, since the amount of heat generated by this backlight is five times that of the conventional one, fins that radiate heat to the air and fans that force the air flow are installed on the back of the back chassis.
[0102] 本照明装置の機構部材は、モジュール全体の主要機構部材をかねて 、て、本バッ クライトに前記実装済みパネルを配置し、パネル駆動回路や信号分配器を備えた液 晶表示用コントローラ、光源用電源、場合によっては家庭用一般電源を取り付け、液 晶モジュールが完成する。本バックライトに前記実装済みパネルを配置し、パネルを 押える枠体を設置することで本発明の液晶表示装置となる。 [0102] The mechanism member of the present lighting device serves as the main mechanism member of the entire module, and the liquid crystal display controller including the panel mounted circuit and the signal distributor, wherein the mounted panel is disposed on the backlight. A liquid crystal module is completed by installing a power source for the light source and, in some cases, a general household power source. The mounted panel is disposed in the backlight, and a frame body that holds the panel is installed to provide the liquid crystal display device of the present invention.
[0103] 本実施の形態では、熱陰極管を用いた直下方式の照明装置を示したが、用途の応 じて、投射方式やエッジライト方式でも良ぐ光源は冷陰極管或いは LED、 OEL、電 子線蛍光管などを用いてもよく、光学シートなどの組み合わせにお 、ても適宜選択 することが可能である。  [0103] In this embodiment mode, a direct illumination device using a hot cathode tube is shown. However, depending on the application, a light source that may be a projection method or an edge light method is a cold cathode tube, an LED, an OEL, An electron fluorescent tube or the like may be used, and it is possible to appropriately select a combination of optical sheets and the like.
[0104] さらに、他の実施形態として、液晶の垂直配向液晶分子の配向方向を制御する方 法として、以上に説明した実施形態ではアクティブマトリクス基板の画素電極にスリツ トを設けカラーフィルタ基板側に配向制御用の突起を設けたが、それらが逆の場合 でもよぐまた、両基板の電極にスリットを持たせた構造や、両基板の電極表面に配 向制御用の突起を設けた MVA型液晶パネルであっても構わない。 Further, as another embodiment, a method for controlling the alignment direction of vertically aligned liquid crystal molecules of liquid crystal As a method, in the embodiment described above, a slit is provided on the pixel electrode of the active matrix substrate and a protrusion for alignment control is provided on the color filter substrate side. However, these may be reversed. It may be a structure with slits, or an MVA liquid crystal panel in which projections for orientation control are provided on the electrode surfaces of both substrates.
[0105] カロえて、上記 MVA型ではなぐ一対の配向膜によって規定されるプレチルト方向( 配向処理方向)が互いに直交する垂直配向膜を用いる方法でも良い。また、液晶分 子がツイスト配向となる VAモードであってもよぐ VATN (Vertical Alignment T wisted Nematic)モードと呼ばれることもある。 VATN方式は、配向制御用突起の 部分での光漏れによるコントラストの低下が無 、ことから、本願発明にお 、てはより好 ましい。プレチルトは、光配向等により形成される。  [0105] In addition, a method using vertical alignment films in which pretilt directions (alignment treatment directions) defined by a pair of alignment films other than the MVA type are orthogonal to each other may be used. Also, it may be called VATN (Vertical Alignment Twisted Nematic) mode, which may be VA mode in which the liquid crystal molecules are twisted. The VATN method is more preferable for the present invention because there is no decrease in contrast due to light leakage at the alignment control protrusion. The pretilt is formed by optical alignment or the like.
[0106] ここで、上記構成の液晶表示装置 100の表示コントローラにおける駆動方法の具体 例について、図 7を参照しなが以下に説明する。ここでは、入力 8bit (256階調)、液 晶ドライバ 8bitの場合にっ 、て説明する。  Here, a specific example of the driving method in the display controller of the liquid crystal display device 100 having the above configuration will be described below with reference to FIG. Here, the case of input 8 bits (256 gradations) and liquid crystal driver 8 bits will be described.
[0107] 表示コントローラ部のパネル駆動回路(1)において、入力信号(映像ソース)に対し 、 y変換、オーバーシュートなどの駆動信号処理を行って第一のパネルのソースドラ ィバ (ソース駆動手段)に対し 8bit階調データを出力する。  [0107] In the panel drive circuit (1) of the display controller unit, the input signal (video source) is subjected to drive signal processing such as y conversion and overshoot, and the source driver of the first panel (source drive means) Output 8-bit gradation data.
[0108] 一方、パネル駆動回路(2)において、 γ変換、オーバーシュートなどの信号処理を 行って第 2のパネルのソースドライバ (ソース駆動手段)に対し 8bit階調データを出力 する。  On the other hand, the panel drive circuit (2) performs signal processing such as γ conversion and overshoot, and outputs 8-bit gradation data to the source driver (source drive means) of the second panel.
[0109] 第 1のパネル、第 2のパネルおよびその結果出力される出力画像は 8bitとなり、入 力信号に対し 1対 1に対応し、入力画像に忠実な画像となる。  [0109] The first panel, the second panel, and the output image output as a result are 8 bits, one-to-one correspondence with the input signal, and an image faithful to the input image.
[0110] 上記の説明では、 2枚の液晶表示パネルを重ね合わせた場合について説明したが[0110] In the above description, the case where two liquid crystal display panels are overlapped has been described.
、これに限定されるものではなぐ図 1に示す第 2のパネルに、液晶表示パネル以外 に、同じホールド型の表示パネルとして、 EL(electro luminescence)素子を用いた EL 表示パネルを使用してもょ 、。 However, the second panel shown in FIG. 1 is not limited to this. In addition to the liquid crystal display panel, an EL display panel using an EL (electroluminescence) element may be used as the same hold type display panel. Oh ,.
[0111] ここで、 ELを用いた場合を説明しておく。有機 EL部材としてはポリビフエ-レンなど が用いられ、正負のキャリアを注入し再結合する際に発光する。図 10に EL素子の概 略断面図を示す。ガラスなどの透明基板 250に形成された ITOなどの透明電極(陽 極) 251と素子を保護する封止層 257で覆われた陰極 256に電圧を印加すると、ホ ール注入層 252ホール移動層 253、電子移動層 255から正負キャリアが EL層 254 注入され、キャリアが再結合する際に発光し、透明基板から光が出射される。また、図 10と光の出射方向と電極構成が逆転させた構造の場合もある。それぞれの層の適 切な材料'製造方法は公知文献 1 (日本国公開特許公報「特開平 8— 234683号公 報(1996年 9月 13日公開)等)に開示されており、現在も長寿命化や発光効率の改 善を目指した材料が発表(「有機 EL材料技術」(監修:佐藤佳晴,シーエムシー出版) などを参照)されている。 Here, the case where EL is used will be described. Polyphenylene is used as the organic EL member, and emits light when positive and negative carriers are injected and recombined. Figure 10 shows a schematic cross-sectional view of the EL element. Transparent electrode such as ITO (positive electrode) formed on a transparent substrate 250 such as glass Pole) When a voltage is applied to 251 and cathode 256 covered with sealing layer 257 that protects the device, positive and negative carriers are injected from hole injection layer 252 hole transfer layer 253 and electron transfer layer 255 into EL layer 254, and the carrier Emits light when they recombine, and light is emitted from the transparent substrate. In some cases, the light emission direction and the electrode configuration are reversed from those in FIG. Appropriate materials for each layer 'manufacturing method are disclosed in known literature 1 (Japanese published patent publication “Publication of Japanese Patent Laid-Open No. 8-234683 (published on September 13, 1996), etc.)” Materials that aim to improve the efficiency and luminous efficiency have been announced (see “Organic EL Material Technology” (supervised by Yoshiharu Sato, CMC Publishing, etc.)).
[0112] 有機 EL表示素子は、アクティブマトリクス駆動素子として TFTを用いることが一般 的であるが、電圧制御でなる液晶と異なり、電流制御を行う方がよい。この場合の TF Tを用いた有機 EL素子は上記公知文献 1等に開示されて 、る。図 11に公知文献 1 に記載されている能動マトリクス 4端子 TFT—ELデバイスの概略図を示す。図 11 (a )の点線部の拡大した図を図 11 (b)に示す。図 11 (c)、 (d)はそれぞれ図 11 (b)の A -A B— の断面図である。各画素の素子は 2つの TFTと蓄積容量 CSと EL素 子とを含む。 4端子方式の主な特徴は EL励起信号からのアドレッシング信号を分離 するところにある。 EL素子はゲートバスラインからアドレス TFT1 (T1)をオンする電 圧を印加することにより選択され、ソースバスラインカ 供給された電荷を記憶コンデ ンサ Csに留めるとともに TFT2 (T2)をオンする。 TFT1 (T1)がオフされた後も、記憶 コンデンサ Csに保持された電荷が電力 TFT(T2)に流れる電流を制御する。この回 路は EL素子によるホールド型の表示を可能とする。  [0112] The organic EL display element generally uses a TFT as an active matrix driving element, but it is better to perform current control unlike liquid crystal based on voltage control. The organic EL element using TFT in this case is disclosed in the above-mentioned known document 1 and the like. Fig. 11 shows a schematic diagram of the active matrix 4-terminal TFT-EL device described in Known Document 1. An enlarged view of the dotted line in Fig. 11 (a) is shown in Fig. 11 (b). Figures 11 (c) and 11 (d) are cross-sectional views taken along line A-A B- in Figure 11 (b). Each pixel element includes two TFTs, a storage capacitor CS, and an EL element. The main feature of the 4-terminal system is that the addressing signal is separated from the EL excitation signal. The EL element is selected by applying a voltage to turn on the address TFT1 (T1) from the gate bus line, and the charge supplied to the source bus line is held in the storage capacitor Cs and the TFT2 (T2) is turned on. Even after TFT1 (T1) is turned off, the electric charge held in the storage capacitor Cs controls the current flowing through the power TFT (T2). This circuit enables hold-type display with EL elements.
[0113] これまでの説明の通り液晶と ELとでは光学媒体材料や画素の構成が異なるだけで 、信号の入力やアドレスの方法はアクティブマトリクス方式であり、一般的な TFT液晶 表示素子と同様に考えることができる。また、複合型表示装置としての構成は、図 2に お!ヽて第 2のパネルとして EL表示素子を用いた場合、光源および偏光板 Cは不要と なる。以下では主に観察者側から見て最背面に配置された表示素子について、 EL 素子と液晶素子を特に区別せず説明することにする。  [0113] As described above, the liquid crystal and the EL are different in the optical medium material and pixel configuration, and the signal input and addressing methods are the active matrix method, just like a general TFT liquid crystal display device. Can think. Further, in the configuration as a composite display device, when an EL display element is used as the second panel as shown in FIG. 2, the light source and the polarizing plate C are not necessary. In the following description, the EL element and the liquid crystal element will be described with no particular distinction between the display elements arranged on the rearmost surface as viewed mainly from the observer side.
[0114] 以下に、上記構成の液晶表示装置に設けられている光散乱レンズ層 1について説 明する。 [0115] (実施例 1) [0114] The light scattering lens layer 1 provided in the liquid crystal display device having the above-described configuration will be described below. [0115] (Example 1)
図 12(a)は、本実施例に係る光散乱レンズ層 1の平面図、図 12(b)は、図 12 (a)に 示す光散乱レンズ層 1の断面図である。  FIG. 12 (a) is a plan view of the light scattering lens layer 1 according to the present embodiment, and FIG. 12 (b) is a cross-sectional view of the light scattering lens layer 1 shown in FIG. 12 (a).
[0116] 上記光散乱レンズ層 1は、図 12 (a)に示すように、複数の光散乱用のレンズ 2が x軸 方向に直線上に複数列配置され、且つ、 y軸方向に直線上に複数列配置された平 面状のレンズアレイである。上記レンズ 2は、図 12 (b)に示すよう〖こ、光源からの光を 拡散させる凹レンズである。この場合、レンズ 2の光入射面が第 2のパネル 102側で あり、該レンズの光出射面が第 1のパネル 101側に対向するように、レンズ 2が配置さ れている。これ〖こより、レンズ 2を透過した光は散乱された状態で第 1のパネル 101〖こ 出射されること〖こなる。  [0116] As shown in FIG. 12 (a), the light scattering lens layer 1 includes a plurality of light scattering lenses 2 arranged in a plurality of lines on a straight line in the x-axis direction, and on a straight line in the y-axis direction. This is a flat lens array arranged in a plurality of rows. The lens 2 is a concave lens that diffuses light from a light source as shown in FIG. 12 (b). In this case, the lens 2 is arranged so that the light incident surface of the lens 2 is on the second panel 102 side, and the light emitting surface of the lens faces the first panel 101 side. Thus, the light transmitted through the lens 2 is emitted from the first panel 101 in a scattered state.
[0117] 図 12(a)では、個々のレンズ 2を平面状に整列して配置した例を示している力 この 配置に限定されるものではなぐ平面状に配置されていれば、個々のレンズ 2を X軸 方向、 y軸方向に直線上に配置しなくて、各軸方向にランダムに配置してもよい。な お、レンズの周期構造と画素が干渉してモアレが発生することあるので、個々のレン ズの直径や平均ピッチは光の波長より大きく画素のピッチの半分以下程度が望まし い。  [0117] Fig. 12 (a) shows an example in which the individual lenses 2 are arranged in a plane. The force is not limited to this arrangement, and the individual lenses 2 are arranged in a plane. 2 may not be arranged on a straight line in the X-axis direction and the y-axis direction, but may be arranged randomly in each axis direction. In addition, since the periodic structure of the lens and pixels interfere with each other, moire may occur, so the diameter and average pitch of each lens is preferably larger than the wavelength of light and less than half the pixel pitch.
[0118] 上記光散乱レンズ層 1の各レンズ 2は、図 12(b)に示すように、光源からの光が下面 側から入射され、上面側へ出射することにより、出射光を散乱させる散乱レンズとして 機能する。図の矢印は光の進行方向を表す。  [0118] As shown in Fig. 12 (b), each lens 2 of the light scattering lens layer 1 is scattered so that light from the light source is incident from the lower surface side and emitted to the upper surface side to scatter the emitted light. Functions as a lens. The arrow in the figure represents the traveling direction of light.
[0119] 上記光散乱レンズ層 1は、ベースとなる透明の透明板 10に半球形の凹部 10aが複 数形成され、この凹部 10aを上述したレンズ 2としている。透明板 10は透明榭脂など を用いることができる。 [0119] In the light scattering lens layer 1, a plurality of hemispherical concave portions 10a are formed on a transparent transparent plate 10 serving as a base, and the concave portions 10a serve as the lens 2 described above. The transparent plate 10 can be made of transparent resin.
[0120] 上記光散乱レンズ層 1では、レンズ 2以外の部分は空気などの気体または屈折率が レンズ榭脂より小さい液体で占めている。この液体は、前述した 2枚のパネルを貼り合 せる際に使用する液体と兼用してかまわな 、。  [0120] In the light scattering lens layer 1, the portion other than the lens 2 is occupied by a gas such as air or a liquid having a refractive index smaller than that of the lens resin. This liquid can also be used as the liquid used when bonding the two panels described above.
[0121] レンズ 2の材料は、レンズとしての効果を示すよう屈折率の大きい榭脂材料を選ぶ。  [0121] As the material of the lens 2, a resin material having a large refractive index is selected so as to exhibit the effect as a lens.
レンズ個々の距離は表示素子の画素ピッチの半分より小さい方が望ましい。このよう な微小なレンズは一般にマイクロレンズと呼ばれているが本件では単にレンズと呼ぶ 。レンズは、イオン交換法、熱だれ法、機械加工法により形成できる。イオン交換法で は、アルカリガラスなどイオンを含む基板を別の基板に別のイオン源と接触させて電 圧を印加し、イオン交換によって生じた屈折率の分布を利用してレンズ効果を持たせ ることができる。イオン交換法の場合は平板レンズとなる。熱ダレ法では光感応性榭 脂にマスク露光により円形など所望の形状のパターンを形成しその後榭脂の融点以 上の温度で加熱溶融し表面張力によりレンズ状の形状を形成する。機械加工法はレ ンズの基材を削ることにより形成される。また、レンズのパターンが形成された金型を 熱硬化性の樹脂に転写し硬化することなどにより形成することができる。 The distance between the lenses is preferably smaller than half the pixel pitch of the display element. Such a micro lens is generally called a micro lens, but in this case it is simply called a lens. . The lens can be formed by an ion exchange method, a heat sink method, or a machining method. In the ion exchange method, a substrate containing ions such as alkali glass is brought into contact with another ion source and another ion source is applied with a voltage, and a lens effect is obtained by utilizing the refractive index distribution generated by the ion exchange. Can. In the case of the ion exchange method, a flat lens is used. In the thermal sag method, a pattern of a desired shape such as a circle is formed on the photosensitive resin by mask exposure, and then heated and melted at a temperature above the melting point of the resin to form a lens-like shape by surface tension. The machining method is formed by scraping the lens substrate. Further, it can be formed by transferring a mold having a lens pattern onto a thermosetting resin and curing.
[0122] また、図 12 (b)に示すように、光源からの光を散乱させる機能を有する光散乱レン ズ層 1としては、図 13に示すような構成、図 14に示すような構成、図 15に示すような 構成であってもよい。  [0122] Also, as shown in FIG. 12 (b), the light scattering lens layer 1 having a function of scattering light from the light source has a configuration as shown in FIG. 13, a configuration as shown in FIG. A configuration as shown in FIG. 15 may be used.
[0123] 図 13は、光散乱レンズ層 1として、光源側の榭脂 4に複数の球状ビーズ 3を該球状 ビーズ 3の一部が露出するように埋め込み、さらに、榭脂 4とは異なる榭脂の榭脂層 6 で覆うように構成した例を示している。この場合、榭脂 4と球状ビーズ 3は屈折率の近 V、材料を用い、榭脂 6は榭脂 4やビーズ 3に比べ屈折率の大き 、高屈折率榭脂を用 V、ることで、図 12(b)と同様のレンズ機能を有するようになる。  FIG. 13 shows a light scattering lens layer 1 in which a plurality of spherical beads 3 are embedded in a resin 4 on the light source side so that a part of the spherical beads 3 is exposed. An example is shown in which it is covered with a greaves layer 6 of fat. In this case, resin 4 and spherical beads 3 use materials with a refractive index close to V, and resin 6 has a higher refractive index than resin 4 and beads 3, and uses a high refractive index resin V. Thus, the lens function similar to that shown in FIG.
[0124] また、図 14は、図 12 (a) (b)で示したレンズアレイと同じ構成のレンズアレイであつ て、光源に対する向きが図 12 (b)の場合と逆の例を示している。この場合にも、図 12 (b)に示す場合と同様の光散乱機能を示す。  [0124] Fig. 14 shows a lens array having the same configuration as the lens array shown in Figs. 12 (a) and 12 (b), and shows an example in which the orientation with respect to the light source is opposite to that in Fig. 12 (b). Yes. In this case, the same light scattering function as that shown in FIG.
[0125] また、図 15は、光散乱レンズ層 1として、異なる榭脂材料力もなる 2層榭脂構造の例 を示している。図 15に示す光散乱レンズ層 1は、光源側から、一方の榭脂層よりも屈 折率の小さい低屈折率榭脂からなる榭脂層 5と、該榭脂層 5よりも屈折率の大きいに 高屈折率榭脂からなる榭脂層 6とを積層した構造である。ここで、榭脂層 6は、榭脂層 5との接触面側に複数の凹部 6aが形成されていることで、図 14に示す光散乱レンズ 層 1と同じように入射された光を散乱させることが可能となる。なお、榭脂が他の光学 部材と接着するための接着剤や粘着剤を兼ねても良 、。  FIG. 15 shows an example of a two-layered resin structure having different resin material forces as the light scattering lens layer 1. The light scattering lens layer 1 shown in FIG. 15 has, from the light source side, a resin layer 5 made of a low refractive index resin having a smaller refractive index than one of the resin layers, and a refractive index higher than that of the resin layer 5. It is a structure in which a resin layer 6 made of a high refractive index resin is laminated. Here, the resin layer 6 scatters incident light in the same manner as the light scattering lens layer 1 shown in FIG. 14 by forming a plurality of recesses 6a on the contact surface side with the resin layer 5. It becomes possible to make it. The resin may also serve as an adhesive or pressure-sensitive adhesive for bonding with other optical members.
[0126] 次に、図 16によって、凸レンズを光散乱レンズ層 1として用いる場合を説明する。図 16は、第 1のパネル 101と第 2のパネル 102の間に凸レンズ 9により構成された光散 乱レンズ層 1を配置した場合の光路を説明する概略断面図である。 Next, the case where a convex lens is used as the light scattering lens layer 1 will be described with reference to FIG. FIG. 16 shows the light diffused by the convex lens 9 between the first panel 101 and the second panel 102. 3 is a schematic cross-sectional view illustrating an optical path when a random lens layer 1 is arranged. FIG.
[0127] 各パネルは、単純にそれぞれ一対の透明基板 210に狭持され、遮光膜 224で区切 られた画素のみ記載し、偏光板も省略している。矢印は凸レンズ 9に第 1のパネル側 力 入射した光が第 2のパネル側に出射する様子を示している。凸レンズの場合出 射した光が集光する焦点が存在する。 [0127] Each panel is simply held between a pair of transparent substrates 210, and only pixels separated by a light shielding film 224 are shown, and a polarizing plate is also omitted. The arrow indicates that the light incident on the convex lens 9 from the first panel side is emitted to the second panel side. In the case of a convex lens, there is a focal point where the emitted light is collected.
[0128] しかしながら、図 16で記載しているように、凸レンズ 9と第 1のパネルの画素 109の 距離に比べ、凸レンズ 9と焦点の距離が十分小さければ、出射光は散乱しているとみ なすことができる。本実施例では、主に凹レンズによって説明している力 凸レンズも 光散乱用のレンズとして用いることが可能である。後述する実施例 2、 3でも同じ理由 により凸レンズも使用することができる。 However, as described in FIG. 16, if the distance between the convex lens 9 and the focal point 9 is sufficiently small compared to the distance between the convex lens 9 and the pixel 109 of the first panel, the emitted light is considered to be scattered. be able to. In this embodiment, a force-convex lens mainly described with a concave lens can also be used as a light scattering lens. In Examples 2 and 3 described later, a convex lens can be used for the same reason.
[0129] 以上のような例の光散乱レンズ層 1をパネル間に配置することによって、空間的ロー パスフィルタとして働くことになるので、パネルを 2枚構成にした際に生じるモアレを抑 制できる。 [0129] By disposing the light scattering lens layer 1 of the above example between the panels, it acts as a spatial low-pass filter, so that it is possible to suppress moiré that occurs when two panels are configured. .
[0130] 図 1、図 2で説明した構成の複合型表示素子に実施例 1で示したような光散乱レン ズ層 1を用いた場合、モアレを低減させることが可能である力 光が光散乱レンズ層 1 を透過する際に、偏光が一部解消されるので、コントラストが低下する虞があった。そ こで、下記の実施例 2においては、偏光が解消されるのを抑制することで、コントラスト の低下を防止し得る光散乱レンズ層につ 、て説明する。  [0130] When the light-scattering lens layer 1 as shown in Example 1 is used in the composite display element having the configuration described in FIGS. 1 and 2, moire light that can reduce moire is light. When the light passes through the scattering lens layer 1, the polarized light is partially eliminated, so that the contrast may be lowered. Therefore, in Example 2 below, a light scattering lens layer that can prevent a decrease in contrast by suppressing the depolarization will be described.
[0131] (実施例 2)  [0131] (Example 2)
図 17 (a)は、本実施例に係る光散乱レンズ層 21の平面図、図 17(b)は、図 17 (a) に示す光散乱レンズ層 21の断面図である。  FIG. 17 (a) is a plan view of the light scattering lens layer 21 according to the present embodiment, and FIG. 17 (b) is a cross-sectional view of the light scattering lens layer 21 shown in FIG. 17 (a).
[0132] 上記光散乱レンズ層 21は、図 17 (a)に示すように、複数の光散乱用のレンズ 7が x 軸方向に直線上に複数列配置され、且つ、 y軸方向に直線上に複数列配置された 平面状のレンズアレイである。上記レンズ 7は、図 17 (b)に示すように、光源からの光 を拡散させる四角錐状の凹レンズである。上記光散乱レンズ層 21においても、前記 実施例 1と同様に、種々の変形例(例えば、図 13、図 14、図 15、図 16に示すような 変形例)と同様に形成できる。なお、四角錐型を容易に作るには金型でパターンをつ くり榭脂にプレスし硬化させる方法が良 、。 [0133] 光の偏光方向は四角錐の底辺に対して、略平行である必要があるので、四角錐の 底面は正方形または長方形が好ましい。つまり、レンズの底面の少なくとも 1辺と、第 2のパネル 102から出射される光の偏光方向とが略平行である必要がある。 As shown in FIG. 17 (a), the light scattering lens layer 21 includes a plurality of light scattering lenses 7 arranged in a plurality of lines on the straight line in the x-axis direction, and on the straight line in the y-axis direction. Is a planar lens array arranged in a plurality of rows. As shown in FIG. 17B, the lens 7 is a quadrangular pyramid-shaped concave lens that diffuses light from a light source. The light scattering lens layer 21 can also be formed in the same manner as various modified examples (for example, modified examples as shown in FIGS. 13, 14, 15, and 16) as in the first embodiment. In order to make a quadrangular pyramid shape easily, a method of making a pattern with a mold, pressing it into a resin, and curing it is good. [0133] Since the polarization direction of light needs to be substantially parallel to the bottom of the quadrangular pyramid, the bottom of the quadrangular pyramid is preferably square or rectangular. That is, at least one side of the bottom surface of the lens and the polarization direction of the light emitted from the second panel 102 need to be substantially parallel.
[0134] 図 17 (a)は、レンズ 7の四角錐の底辺が、それぞれ x軸方向、 y軸方向である場合 の例を示している。そして 2つの偏光方向も、 X軸方向、 y軸方向に略平行である。  FIG. 17 (a) shows an example in which the bases of the quadrangular pyramids of the lens 7 are in the x-axis direction and the y-axis direction, respectively. The two polarization directions are also substantially parallel to the X-axis direction and the y-axis direction.
[0135] また、図 17 (b)では、偏光方向は X軸方向、または紙面に対し鉛直方向(黒点付き の〇)である。  In FIG. 17 (b), the polarization direction is the X-axis direction or a direction perpendicular to the paper surface (◯ with a black dot).
[0136] 図 18 (a) (b)は、四角錐状のレンズ 7と入射偏光、出射偏光を説明する概略図であ る。図 18 (a) (b)では、斜視図にしているため、若干不正確な図面となっているが、四 角錐の底辺に平行ある ヽは垂直な光が入射した場合を示して 、る。  18 (a) and 18 (b) are schematic diagrams for explaining the quadrangular pyramid-shaped lens 7, the incident polarized light, and the outgoing polarized light. In FIGS. 18 (a) and 18 (b), the drawings are slightly inaccurate due to the perspective views, but the ridge parallel to the bottom of the quadrangular pyramid shows the case where vertical light is incident.
[0137] 図 18 (a)は、四角錐状のレンズ 7の底辺に垂直に入射した光 (紙面に平行な光)が 入射したとき、偏光方向は変わらず出射されることを示している。図 18 (b)は、四角錐 状のレンズ 7の底辺に平行に入射した光 (紙面に垂直な光)が入射したとき、偏光方 向は変わらず出射されることを示して 、る。  [0137] Fig. 18 (a) shows that when the light perpendicularly incident on the bottom of the quadrangular pyramid-shaped lens 7 (light parallel to the paper surface) is incident, the polarization direction is not changed. FIG. 18 (b) shows that when the light incident in parallel to the base of the quadrangular pyramid-shaped lens 7 (light perpendicular to the paper surface) is incident, the polarization direction is unchanged.
[0138] ここで、図 19 (a)は、光が等方性の媒質 1と等方性の媒質 2の界面に入射したとき の反射光'出射光の関係を示す。図では界面に対し垂直で光の光路を含む面を一 般に入射面と呼ぶ。入射面に対し、平行な光は p偏光、垂直な光を s偏光と呼ぶ。な お、図 17や図 18で説明した偏光は、四角錐の側面に対し p偏光または、 s偏光にあ たる。  Here, FIG. 19 (a) shows the relationship between the reflected light and the emitted light when the light is incident on the interface between the isotropic medium 1 and the isotropic medium 2. FIG. In the figure, the plane perpendicular to the interface and including the optical path of light is generally called the incident plane. Light parallel to the incident surface is called p-polarized light, and light perpendicular to it is called s-polarized light. Note that the polarized light described in FIGS. 17 and 18 corresponds to p-polarized light or s-polarized light with respect to the side surface of the quadrangular pyramid.
[0139] 図 17、図 18に示した以外の偏光は p偏光と s偏光の合成として表される。  [0139] Polarized light other than those shown in Figs. 17 and 18 is expressed as a combination of p-polarized light and s-polarized light.
[0140] また、一般的に屈折率の異なる媒質に斜めに光が入射したときの p偏光、 s偏光の エネルギー透過率 (Tp、 Ts)および反射率 (Rp、 Rs)は異なる。  [0140] In general, when light is incident obliquely on a medium having a different refractive index, the energy transmittance (Tp, Ts) and reflectance (Rp, Rs) of p-polarized light and s-polarized light are different.
[0141] 図 19 (b)は、屈折率 1の媒体から屈折率 1. 5の媒体に光が入射したときのエネル ギー反射率'透過率曲線を示す。透過率は縦軸を逆にして読めばよい。この p偏光と s偏光の合成である光の透過光および反射光では、偏光面がいくらか回転する。同じ 理由で、実施例 1のようなレンズでは、出射偏光に対し出射光は偏光面が変わってし ま 、、レンズが無 、場合に比べ偏光層を透過する光量が変わることになる。  [0141] FIG. 19 (b) shows an energy reflectivity 'transmittance curve when light is incident on a medium having a refractive index of 1.5 to a medium having a refractive index of 1.5. The transmittance may be read with the vertical axis reversed. In the transmitted and reflected light, which is a combination of p-polarized light and s-polarized light, the plane of polarization is somewhat rotated. For the same reason, in the lens as in Example 1, the plane of polarization of the outgoing light changes with respect to the outgoing polarized light, and the amount of light transmitted through the polarizing layer changes compared to the case without the lens.
[0142] 以下では簡単に偏光が解消すると表現する。特に第 2のパネルが液晶素子である 場合、実施例 1のようなレンズや本実施例のような四角錐レンズでも底辺に対し斜め に偏光が入射した場合では、四角錐レンズの底辺に対し偏光面が平行または垂直 に入射した場合と比べコントラストが低下してしまう。 [0142] In the following, it is simply expressed that the polarization is eliminated. Especially the second panel is a liquid crystal element In the case where the polarized light is incident obliquely with respect to the bottom of the lens as in Example 1 or the quadrangular pyramid lens as in this embodiment, the polarization plane is incident parallel or perpendicular to the bottom of the square pyramid lens. Compared with this, the contrast is lowered.
[0143] 本実施例の光散乱レンズ層 21を用いれば、表示品位が良くコントラストの高い表示 が可能となる複合表示装置を提供することができる。  [0143] By using the light scattering lens layer 21 of the present embodiment, it is possible to provide a composite display device capable of displaying with good display quality and high contrast.
[0144] (実施例 3)  [0144] (Example 3)
レンズを図 18で説明した実施例 2の形態のようにすると、四角錐の頂の部分 (光入 射面側の部分)の影響で、正面へ抜ける光が減少してしまい、正面輝度の低下を招く おそれがある。そこで、本実施例では、図 20に示すように、四角錐の頂の取れた台 形状のレンズ 8とすることにより、正面方向に透過する光を実施例 2に比較して増や すことができる。偏光の入射の関係は実施例 2と同じのため説明を省略する。製造方 法や変形例は実施例 2と同様に形成できる。このように、斜面を残すことにより光は散 乱されるから、空間的ローパスフィルタとしての機能は残り、モアレが抑制される。  If the lens is in the form of Example 2 described with reference to FIG. 18, the light that passes through the front is reduced due to the top of the quadrangular pyramid (the part on the light incident surface side), and the front brightness decreases. There is a risk of incurring. Therefore, in this example, as shown in FIG. 20, by using a trapezoidal lens 8 with a quadrangular pyramid apex, the light transmitted in the front direction can be increased compared to Example 2. it can. Since the polarization incident relationship is the same as that of the second embodiment, the description thereof is omitted. Manufacturing methods and modifications can be formed in the same manner as in the second embodiment. Thus, since the light is scattered by leaving the slope, the function as a spatial low-pass filter remains and moire is suppressed.
[0145] (実施例 4)  [Example 4]
また、第 2のパネル 102として EL素子を用いる場合、自発光素子であるため、図 1 の偏光板 Cと光源は不要となるが、出射光は通常無偏光であるため、前述した実施 形態 1〜3のレンズを偏光板 Bと第 2のパネルである EL素子の間に配置すれば偏光 解消による影響が無いのでより好ましい。し力しながら、この場合、偏光板 Bに入射す る際、理論上 50%の光をロスすることになるが、反射偏光層たとえば 3M社製の輝度 上昇フィルム DBEF等を用い光の利用効率を高めることが出来る。反射偏光層を用 いれば、反射偏光層の透過軸に垂直な光を反射して光源側 (本願の発明の場合、 第 2のパネル 102側)に戻し、光源側の散乱反射の影響で偏光方向の変わった光を 再び反射偏光層に入射して再利用することで光の利用効率を高めることができる。  Further, when an EL element is used as the second panel 102, since it is a self-luminous element, the polarizing plate C and the light source in FIG. 1 are unnecessary, but since the emitted light is usually non-polarized light, the first embodiment described above is used. It is more preferable to arrange the lenses 3 to 3 between the polarizing plate B and the EL element as the second panel because there is no influence of depolarization. However, in this case, 50% of the light is theoretically lost when entering the polarizing plate B. However, the light use efficiency is improved by using a reflective polarizing layer such as a brightness enhancement film DBEF manufactured by 3M. Can be increased. If a reflective polarizing layer is used, light perpendicular to the transmission axis of the reflective polarizing layer is reflected and returned to the light source side (in the case of the present invention, the second panel 102 side), and polarized by the influence of scattered reflection on the light source side. The light utilization efficiency can be increased by re-entering the light whose direction has changed into the reflective polarizing layer and reusing it.
[0146] 図 21に第 1のパネル 101に液晶素子を第 2のパネル 102に EL素子を使用した場 合の構成を示す。 EL素子の出射面側に反射偏光層 50の透過軸を偏光板 Bの透過 軸と平行になるように配置し、偏光板 Bと反射偏光層 50の間に、光散乱レンズ層 1を 配置する。光散乱レンズ層 1に実施例 3の台形状のレンズ 8(図 20)を用いれば効率よ く光を利用できる。なお、実施例 2の四角錐状のレンズ 7 (図 18)を用いても良い。な お、上記構成のように、光散乱レンズ層 1を用いることで、表示品位が良くコントラスト の高い表示が可能な複合表示装置を提供できる。さらに、反射偏光層 50を配置する ことで、光の利用効率を高め、消費電力を上げることなく輝度を上昇することができる FIG. 21 shows a configuration in which a liquid crystal element is used for the first panel 101 and an EL element is used for the second panel 102. The transmission axis of the reflective polarizing layer 50 is arranged in parallel with the transmission axis of the polarizing plate B on the emission surface side of the EL element, and the light scattering lens layer 1 is arranged between the polarizing plate B and the reflective polarizing layer 50. . If the trapezoidal lens 8 of Example 3 (FIG. 20) is used for the light scattering lens layer 1, light can be used efficiently. Note that the quadrangular pyramid-shaped lens 7 of Example 2 (FIG. 18) may be used. Na By using the light scattering lens layer 1 as in the above configuration, a composite display device capable of displaying with high display quality and high contrast can be provided. Furthermore, by arranging the reflective polarizing layer 50, it is possible to increase the luminance without increasing the power consumption and power consumption.
[0147] (実施例 5) [Example 5]
本実施例では、第 2のパネルの画素ピッチが第 1のパネルの画素ピッチより大きい 場合の例について説明する。  In this embodiment, an example in which the pixel pitch of the second panel is larger than the pixel pitch of the first panel will be described.
[0148] たとえば、図 22 (a)のような R (赤) G (緑) B (青)に対応する画素を持つ第 1の表示 素子に対して、図 22 (b)に示すような 3倍の大きさを持つ画素の第 2のパネルを利用 しても良 ヽ。第 2のパネルは対応する映像信号の RGBの最大階調または最大階調 演算した結果のモノクロ表示を行うようにする。この場合、彩度が低下する場合がある 1S 階調表現を第 1のパネルで主に行うことによって改善することができる。すなわち 、第 1のパネルの階調輝度特性を γ 1、第 2のパネルの階調輝度特性を γ 2、その合 成画像である複合型表示素子の階調輝度特性を γ outとした時、おおむね γ out = γ 1 + γ 2の関係がある。通常 γ outは 1. 8〜2. 6になるよう調整される。このとき γ ΐ > y 2になるようにすれば彩度低下を抑制できる。このようにしても黒を表示するとき は、第 1のパネルも第 2のパネルも黒表示となるため黒輝度は非常に小さいため、コ ントラストを高めることができる。さらに、図 23に示すように、第 2のパネルの画素サイ ズをさらに大きくすることができる。  [0148] For example, for a first display element having pixels corresponding to R (red), G (green), and B (blue) as shown in Fig. 22 (a), 3 as shown in Fig. 22 (b). You can also use a second panel of pixels that are twice as large. The second panel performs monochrome display of the RGB maximum gradation or the maximum gradation calculation result of the corresponding video signal. In this case, it can be improved by mainly performing the 1S gradation expression on the first panel, which may reduce the saturation. That is, when the gradation luminance characteristic of the first panel is γ1, the gradation luminance characteristic of the second panel is γ2, and the gradation luminance characteristic of the composite display element that is the composite image is γout, Generally, there is a relationship of γ out = γ 1 + γ 2. Normally γ out is adjusted to be 1.8 to 2.6. At this time, if γΐ> y2 is satisfied, saturation reduction can be suppressed. Even in this case, when displaying black, the first panel and the second panel display black, and the black luminance is very low, so the contrast can be increased. Furthermore, as shown in FIG. 23, the pixel size of the second panel can be further increased.
[0149] ここで、実施例 1〜3のようなレンズを第 1のパネルと第 2のパネルの間に挟むことに よってさらにモアレを抑制することが可能となる。第 2のパネルがモノクロであるため、 色付 、たモアレを防止することができる。  Here, it is possible to further suppress moire by sandwiching the lens as in Examples 1 to 3 between the first panel and the second panel. Since the second panel is monochrome, coloring and moire can be prevented.
[0150] さらに、本実施例によれば、第 2のパネルの構造を簡略ィ匕でき、ドライバ数も少なく することができると!/、う効果を奏する。  Furthermore, according to the present embodiment, it is possible to simplify the structure of the second panel and to reduce the number of drivers.
[0151] 本実施例では、第 1のパネルの画素に比べ第 2のパネルの画素が大きい場合につ いて説明したが、パネルがこの形態の場合の、別のレンズを用いた例について、下 記の実施例 5において説明する。  [0151] In the present embodiment, the case where the pixel of the second panel is larger than the pixel of the first panel has been described. However, an example using another lens when the panel is in this form is described below. This will be described in Example 5.
[0152] (実施例 6) 図 24は、第 1のパネル 101の画素 109と第 2のパネル 102の画素 110とレンズ 111 の関係を示す概略断面図である。この図では、偏光板やその他の構成要素は記載し ていない。画素の干渉によるモアレは、画素を区切る遮光膜のブラックマトリクス 224 が存在することの要因が大きい。信号配線、走査配線が遮光膜を兼ねる場合はブラ ックマトリクスに置き換えて考えればよい。 [0152] (Example 6) FIG. 24 is a schematic cross-sectional view showing the relationship between the pixel 109 of the first panel 101, the pixel 110 of the second panel 102, and the lens 111. In this figure, polarizing plates and other components are not shown. Moire due to pixel interference is largely due to the presence of the black matrix 224 of the light shielding film that separates the pixels. When signal wiring and scanning wiring also serve as a light shielding film, it can be replaced with a black matrix.
[0153] 図 24では、画素を区切るという意味でブラックマトリクス 224を記載している例を示 している。 FIG. 24 shows an example in which the black matrix 224 is described in the sense of separating pixels.
[0154] レンズ 111は第 2のパネルの画素 110の上に画素サイズと同じくら 、の大きさに形 成する。前記の実施例 1〜3、 5と異なり、レンズ 111は画素 110の位置に合うようァラ ィメントしなければいけない。したがって、レンズ 111の形成には熱ダレ法など露光に より精密なパターンを形成する方法が望ましい。レンズ以外の部分はレンズより高屈 折率の榭脂 106で満たすことによって凹レンズとして機能する。高屈折率榭脂 106は 、接着剤を兼ねても良い。  [0154] The lens 111 is formed on the pixel 110 of the second panel to the same size as the pixel size. Unlike the first to third and fifth embodiments, the lens 111 must be aligned with the position of the pixel 110. Therefore, a method of forming a precise pattern by exposure such as a thermal sag method is desirable for forming the lens 111. The part other than the lens functions as a concave lens by filling it with a resin 106 having a higher refractive index than the lens. The high refractive index resin 106 may also serve as an adhesive.
[0155] レンズ 111を透過した光力 第 2のパネル 102の境界の上にある、第 1のパネル 10 1の隣接する画素 109と互いにオーバーラップして光が入射するようなレンズを形成 する。このような配置にすることによって、第 2のパネル 102の境界が認識されに《な り、結果的にモアレ縞を低減できる。レンズ 111は基板の間すなわちパネルの中に形 成してもよぐ特開平 3 - 248125号公報に記載の方法を応用し形成することができ る。  Light Force Transmitted through Lens 111 A lens is formed so that light enters the pixel 109 adjacent to the adjacent pixel 109 of the first panel 101 on the boundary of the second panel 102. With such an arrangement, the boundary of the second panel 102 is not recognized, and as a result, moire fringes can be reduced. The lens 111 can be formed by applying a method described in Japanese Patent Laid-Open No. 3-248125, which may be formed between substrates, that is, in a panel.
[0156] ここでは、画素サイズが異なる場合について記載した力 図 25に示すように、互い のパネルの画素サイズが一緒の場合に適用しても力まわない。  Here, the force described in the case where the pixel sizes are different, as shown in FIG. 25, even if the pixel sizes of the panels are the same, it does not matter.
[0157] また、図 26に示すように、ブラックマトリクス 224の位置にァライメントされたレンズ 11 1を用いてもよい。この場合、レンズ 111以外の部分は空気層やレンズ 111の材料よ り屈折率の小さい材料で満たす必要がある。レンズ 111自体は集光レンズであるが、 画素 109を抜ける光力も見れば光が拡散し、ブラックマトリクス 224を目立たなくする 効果がある。なお、各パネルの画素サイズは異なっていてもよい。  Further, as shown in FIG. 26, a lens 111 aligned at the position of the black matrix 224 may be used. In this case, the portion other than the lens 111 needs to be filled with a material having a lower refractive index than the material of the air layer or the lens 111. The lens 111 itself is a condensing lens, but if the light power passing through the pixel 109 is also seen, the light diffuses and the black matrix 224 is inconspicuous. Note that the pixel size of each panel may be different.
[0158] 本実施例のようなレンズ 111を第 1のパネルと第 2のパネルの間に挟むことによって 、光を有効利用しつつブラックマトリクス 224等の遮光膜に起因するモアレを抑制す ることがでさる。 [0158] By sandwiching the lens 111 as in the present embodiment between the first panel and the second panel, moire caused by the light shielding film such as the black matrix 224 is suppressed while using light effectively. It can be done.
[0159] (実施例 7)  [0159] (Example 7)
本発明の液晶表示装置を適用したテレビジョン受信機について、図 27〜図 29を参 照しながら以下に説明する。  A television receiver to which the liquid crystal display device of the present invention is applied will be described below with reference to FIGS.
[0160] 図 27は、テレビジョン受信機用の液晶表示装置 601の回路ブロックを示す。 FIG. 27 shows a circuit block of a liquid crystal display device 601 for a television receiver.
[0161] 液晶表示装置 601は、図 27に示すように、 Y/C分離回路 500、ビデオクロマ回 路 501、 A/Dコンバータ 502、液晶コントローラ 503、液晶ノ ネル 504、バッ クライト駆動回路 505、バックライト 506、マイコン 507、階調回路 508を備えた構成と なっている。 [0161] As shown in FIG. 27, the liquid crystal display device 601 includes a Y / C separation circuit 500, a video chroma circuit 501, an A / D converter 502, a liquid crystal controller 503, a liquid crystal node 504, a backlight drive circuit 505, The backlight 506, the microcomputer 507, and the gradation circuit 508 are provided.
[0162] 上記液晶パネル 504は、第 1の液晶パネルと第 2の液晶パネルの 2枚構成であり、 上述した各実施の形態で説明した何れの構成であってもよい。  [0162] The liquid crystal panel 504 has a two-panel configuration including a first liquid crystal panel and a second liquid crystal panel, and may have any of the configurations described in the above-described embodiments.
上記構成の液晶表示装置 601において、まず、テレビ信号の入力映像信号は、 Ύ/ C分離回路 500に入力され、輝度信号と色信号に分離される。輝度信号と色信号は ビデオクロマ回路 501にて光の 3原色である、 R、 G、 Bに変換され、さらに、このアナ ログ RGB信号は AZDコンバータ 502により、デジタル RGB信号に変換され、液晶コ ントローラ 503に入力される。  In the liquid crystal display device 601 having the above configuration, first, an input video signal of a television signal is input to the Ύ / C separation circuit 500 and separated into a luminance signal and a color signal. The luminance and color signals are converted into R, G, and B, which are the three primary colors of light, by the video chroma circuit 501, and this analog RGB signal is converted into a digital RGB signal by the AZD converter 502, and the liquid crystal Input to the controller 503.
[0163] 液晶パネル 504では液晶コントローラ 503からの RGB信号が所定のタイミングで入 力されると共に、階調回路 508からの RGBそれぞれの階調電圧が供給され、画像が 表示されることになる。これらの処理を含め、システム全体の制御はマイコン 507が行 うことになる。  In the liquid crystal panel 504, the RGB signal from the liquid crystal controller 503 is input at a predetermined timing, and the RGB gradation voltages from the gradation circuit 508 are supplied to display an image. The microcomputer 507 controls the entire system including these processes.
[0164] なお、映像信号として、テレビジョン放送に基づく映像信号、カメラにより撮像された 映像信号、インターネット回線を介して供給される映像信号、 DVDに記録された映 像信号など、様々な映像信号に基づ 、て表示可能である。  [0164] As video signals, various video signals such as video signals based on television broadcasting, video signals captured by a camera, video signals supplied via an Internet line, video signals recorded on a DVD, etc. Can be displayed on the basis of
[0165] さらに、図 28に示すチューナ部 600ではテレビジョン放送を受信して映像信号を出 力し、液晶表示装置 601ではチューナ部 600から出力された映像信号に基づいて 画像(映像)表示を行う。 Further, tuner unit 600 shown in FIG. 28 receives a television broadcast and outputs a video signal, and liquid crystal display device 601 displays an image (video) based on the video signal output from tuner unit 600. Do.
[0166] また、上記構成の液晶表示装置をテレビジョン受信機とするとき、例えば、図 29に 示すように、液晶表示装置 601を第 1筐体 301と第 2筐体 306とで包み込むようにし て挟持した構成となって 、る。 [0166] When the liquid crystal display device having the above configuration is a television receiver, for example, as shown in FIG. 29, the liquid crystal display device 601 is wrapped in a first housing 301 and a second housing 306. It is a structure that is held between.
[0167] 第 1筐体 301は、液晶表示装置 601で表示される映像を透過させる開口部 301aが 形成されている。  [0167] The first casing 301 is formed with an opening 301a through which an image displayed on the liquid crystal display device 601 is transmitted.
[0168] また、第 2筐体 306は、液晶表示装置 601の背面側を覆うものであり、該液晶表示 装置 601を操作するための操作用回路 305が設けられるとともに、下方に支持用部 材 308が取り付けられて!/、る。  [0168] The second casing 306 covers the back side of the liquid crystal display device 601. An operation circuit 305 for operating the liquid crystal display device 601 is provided, and a support member is provided below. 308 is attached!
[0169] 以上のように、上記構成のテレビジョン受信機や映像モニタにおいて、表示装置に 本願発明の複合型表示装置を用いることで、モアレの少ない高品位の映像を表示す ることが可能となる。 [0169] As described above, in the television receiver and the video monitor having the above-described configuration, it is possible to display a high-quality video with less moire by using the composite display device of the present invention as the display device. Become.
[0170] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性  [0170] The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Such embodiments are also included in the technical scope of the present invention. Industrial applicability
[0171] 本発明の複合型表示装置は、モアレの少ない高品位な表示が必要な分野に適し た家庭用のテレビから、モアレが少なぐ且つ高コントラストが必要な放送局用のモ- タなどの非常に幅広い用途の表示装置に適用できる。 [0171] The composite display device of the present invention can be used for home TVs suitable for fields requiring high-quality display with little moire, and for broadcasting stations with little moire and high contrast. It can be applied to display devices for a very wide range of applications.

Claims

請求の範囲 The scope of the claims
[1] 複数の画素が配置された透過型の液晶表示素子力 なる第 1の表示素子と、複数 の画素が配置された液晶表示素子または EL(electro luminescence)表示素子からな る第 2の表示素子とを少なくとも含み、上記第 1の表示素子と第 2の表示素子とを光 学的に積層して表示する複合型表示装置において、  [1] A transmissive liquid crystal display element in which a plurality of pixels are arranged and a second display comprising a liquid crystal display element or an EL (electroluminescence) display element in which a plurality of pixels are arranged In a composite display device that includes at least an element and optically stacks and displays the first display element and the second display element,
上記第 1の表示素子と第 2の表示素子との間に、第 2の表示素子力 第 1の表示素 子に出射される光を散乱させる光散乱用のレンズを少なくとも 1つ含む光散乱レンズ 層が設けられていることを特徴とする複合型表示装置。  A light scattering lens including at least one light scattering lens for scattering light emitted to the first display element between the first display element and the second display element. A composite display device comprising a layer.
[2] 上記光散乱用のレンズは、上記第 2の表示素子の各画素に対応する位置にそれぞ れ配置されて!ヽることを特徴とする請求項 1に記載の複合型表示装置。 2. The composite display device according to claim 1, wherein the light scattering lens is arranged at a position corresponding to each pixel of the second display element.
[3] 上記光散乱用のレンズは、光の出射面である底面が四角形状であり、該底面の少 なくとも 1辺が上記第 2の表示素子から出射される光の偏光方向に平行であることを 特徴とする請求項 2に記載の複合型表示装置。 [3] In the light scattering lens, the bottom surface, which is the light emission surface, has a rectangular shape, and at least one side of the bottom surface is parallel to the polarization direction of the light emitted from the second display element. The composite display device according to claim 2, wherein the display device is a composite display device.
[4] 上記光散乱用のレンズは、四角錐型のレンズであることを特徴とする請求項 3に記 載の複合型表示装置。 4. The composite display device according to claim 3, wherein the light scattering lens is a quadrangular pyramid lens.
[5] 上記光散乱用のレンズは、頂部が平面形状の四角錐型のレンズであることを特徴と する請求項 4に記載の複合型表示装置。  5. The composite display device according to claim 4, wherein the light scattering lens is a quadrangular pyramid lens having a flat top portion.
[6] 上記第 2の表示素子の画素ピッチが上記第 1の表示素子の画素ピッチより大きいこ とを特徴とする請求項 1に記載の複合型表示装置。 6. The composite display device according to claim 1, wherein a pixel pitch of the second display element is larger than a pixel pitch of the first display element.
[7] 上記光散乱用のレンズは、上記第 2の表示素子から出射された光を、上記第 1の表 示素子の隣接する画素間にオーバーラップさせて入射させるように配置されているこ と特徴とする請求項 2〜6のいずれか 1項に記載の複合型表示装置。 [7] The light scattering lens is disposed so that the light emitted from the second display element is incident between the adjacent pixels of the first display element in an overlapping manner. The composite display device according to claim 2, wherein the display device is a composite type display device.
[8] 上記光散乱用のレンズは、上記第 1の表示素子の各画素の間に設けられた遮光膜 に、光を出射する面が対向するように配置されていることを特徴とする請求項 7に記 載の複合液晶表示装置。 [8] The light scattering lens is arranged such that a light emitting surface faces a light shielding film provided between the pixels of the first display element. Item 7. A liquid crystal display device according to item 7.
[9] 上記第 1の表示素子及び第 2の表示素子は、それぞれクロス-コルに配置された偏 光素子に狭持された液晶パネルにより構成されていることを特徴とする請求項 1〜8 の何れか 1項に記載の複合型表示装置。 テレビジョン放送を受信するチューナ部と、該チューナ部で受信したテレビジョン放 送を表示する表示装置とを備えたテレビジョン受信機において、 9. The first display element and the second display element each include a liquid crystal panel sandwiched between polarizing elements arranged in a cross-coll. The composite display device according to any one of the above. In a television receiver comprising a tuner unit for receiving a television broadcast and a display device for displaying a television broadcast received by the tuner unit,
上記表示装置は、複数の画素が配置された透過型の液晶表示素子からなる第 1の 表示素子と、複数の画素が配置された液晶表示素子または EL(electro luminescence )表示素子からなる第 2の表示素子とを少なくとも含み、上記第 1の表示素子と第 2の 表示素子とを光学的に積層して表示する複合型表示装置であって、上記第 1の表示 素子と第 2の表示素子との間に、第 2の表示素子から第 1の表示素子に出射される光 を散乱させる光散乱用のレンズを少なくとも 1つ含む光散乱レンズ層が設けられてい る複合型表示装置であることを特徴とするテレビジョン受信機。  The display device includes a first display element including a transmissive liquid crystal display element in which a plurality of pixels are disposed, and a second display element including a liquid crystal display element or an EL (electroluminescence) display element in which the plurality of pixels are disposed. A display device including at least a display element, wherein the first display element and the second display element are optically stacked and displayed, wherein the first display element, the second display element, In the meantime, the composite display device is provided with a light scattering lens layer including at least one light scattering lens for scattering light emitted from the second display element to the first display element. A featured television receiver.
PCT/JP2006/322456 2006-03-22 2006-11-10 Composite type display device and television receiver WO2007108162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-079777 2006-03-22
JP2006079777 2006-03-22

Publications (1)

Publication Number Publication Date
WO2007108162A1 true WO2007108162A1 (en) 2007-09-27

Family

ID=38522200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322456 WO2007108162A1 (en) 2006-03-22 2006-11-10 Composite type display device and television receiver

Country Status (1)

Country Link
WO (1) WO2007108162A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063403A (en) * 2016-10-14 2018-04-19 株式会社半導体エネルギー研究所 Display panel, display device, input/output device, and information processing device
JP2018533080A (en) * 2015-10-02 2018-11-08 ピュア・デプス・リミテッド Method and system for performing sub-pixel compression to reduce moire interference in a display system with multiple displays
JP2018537728A (en) * 2015-10-02 2018-12-20 ピュア・デプス・リミテッド Method and system using a refractive beam mapper for reducing moire interference in a display system with multiple displays
JP2019510996A (en) * 2016-01-20 2019-04-18 アプティブ・テクノロジーズ・リミテッド Method and system for using a refractive beam mapper having a rectangular element profile to reduce Moire interference in a display system comprising a plurality of displays
JP2019095775A (en) * 2017-11-21 2019-06-20 パナソニック液晶ディスプレイ株式会社 Liquid crystal display device
CN111183391A (en) * 2017-05-17 2020-05-19 纯深度股份有限公司 Method and system for reducing Fresnel depolarization to improve image contrast in a display system including multiple displays
WO2020116050A1 (en) * 2018-12-05 2020-06-11 株式会社ジャパンディスプレイ Optical device
US10684491B2 (en) 2015-10-02 2020-06-16 Pure Depth Limited Method and system using refractive beam mapper having square element profiles to reduce moire interference in a display system including multiple displays
CN111766737A (en) * 2020-07-30 2020-10-13 京东方科技集团股份有限公司 Display module and display device
WO2021006008A1 (en) * 2019-07-11 2021-01-14 株式会社ジャパンディスプレイ Liquid crystal display device
CN113109962A (en) * 2021-04-19 2021-07-13 业成科技(成都)有限公司 Display module, preparation method thereof and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720429A (en) * 1993-06-30 1995-01-24 Sony Corp Optical device
JP2001067920A (en) * 1999-08-25 2001-03-16 Hitachi Ltd Polarized back light and display device
JP2005500557A (en) * 2001-04-20 2005-01-06 ディープ ヴィデオ イメージング リミテッド Optical retarder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720429A (en) * 1993-06-30 1995-01-24 Sony Corp Optical device
JP2001067920A (en) * 1999-08-25 2001-03-16 Hitachi Ltd Polarized back light and display device
JP2005500557A (en) * 2001-04-20 2005-01-06 ディープ ヴィデオ イメージング リミテッド Optical retarder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533080A (en) * 2015-10-02 2018-11-08 ピュア・デプス・リミテッド Method and system for performing sub-pixel compression to reduce moire interference in a display system with multiple displays
JP2018537728A (en) * 2015-10-02 2018-12-20 ピュア・デプス・リミテッド Method and system using a refractive beam mapper for reducing moire interference in a display system with multiple displays
US10684491B2 (en) 2015-10-02 2020-06-16 Pure Depth Limited Method and system using refractive beam mapper having square element profiles to reduce moire interference in a display system including multiple displays
JP2019510996A (en) * 2016-01-20 2019-04-18 アプティブ・テクノロジーズ・リミテッド Method and system for using a refractive beam mapper having a rectangular element profile to reduce Moire interference in a display system comprising a plurality of displays
JP2018063403A (en) * 2016-10-14 2018-04-19 株式会社半導体エネルギー研究所 Display panel, display device, input/output device, and information processing device
CN111183391A (en) * 2017-05-17 2020-05-19 纯深度股份有限公司 Method and system for reducing Fresnel depolarization to improve image contrast in a display system including multiple displays
JP2019095775A (en) * 2017-11-21 2019-06-20 パナソニック液晶ディスプレイ株式会社 Liquid crystal display device
WO2020116050A1 (en) * 2018-12-05 2020-06-11 株式会社ジャパンディスプレイ Optical device
WO2021006008A1 (en) * 2019-07-11 2021-01-14 株式会社ジャパンディスプレイ Liquid crystal display device
CN111766737A (en) * 2020-07-30 2020-10-13 京东方科技集团股份有限公司 Display module and display device
CN111766737B (en) * 2020-07-30 2023-11-03 京东方科技集团股份有限公司 Display module and display device
CN113109962A (en) * 2021-04-19 2021-07-13 业成科技(成都)有限公司 Display module, preparation method thereof and electronic equipment

Similar Documents

Publication Publication Date Title
WO2007108162A1 (en) Composite type display device and television receiver
JP4772804B2 (en) Liquid crystal display device and television receiver
US8279375B2 (en) Display apparatus, driving apparatus of display apparatus, and electronic device
JP4870151B2 (en) Liquid crystal display device and television receiver
US10401693B2 (en) Liquid crystal module and liquid crystal display device
WO2007039958A1 (en) Liquid crystal display and television receiver
CN210864261U (en) Liquid crystal display panel and display device
TW201917922A (en) Display device
JPWO2007040127A1 (en) Liquid crystal display device and television receiver
JP2010152188A (en) Liquid crystal display
WO2008015830A1 (en) Liquid crystal display device, liquid crystal display method, and tv receiver
KR20120068499A (en) Backlight unit and liquid crystal display device and method having the same
WO2007040158A1 (en) Liquid crystal display device and television receiver
JP2007310161A (en) Liquid crystal display device and television receiver
JP4890485B2 (en) Backlight unit and liquid crystal display device including the same
JP2008122536A (en) Liquid crystal display device, method for driving liquid crystal display device, and television receiver
WO2007086168A1 (en) Liquid crystal display and television receiver
WO2018113061A1 (en) Array substrate, colour film substrate and liquid crystal panel
JP2007333771A (en) Electro-optical device, its manufacturing method, and electronic equipment
JP2008111877A (en) Liquid crystal display apparatus and driving method thereof
KR102132767B1 (en) Liquid crystal display device
JP3826649B2 (en) Electro-optical device and projection display device
KR102102703B1 (en) LED package, method of fabricating the same, and backlight unit and liquid crystal display device including the LED package
JP2008039936A (en) Liquid crystal display, liquid crystal drive device, and television receiver
WO2007069384A1 (en) Liquid crystal display and television receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06823288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP