WO2007105800A1 - Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member - Google Patents

Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member Download PDF

Info

Publication number
WO2007105800A1
WO2007105800A1 PCT/JP2007/055255 JP2007055255W WO2007105800A1 WO 2007105800 A1 WO2007105800 A1 WO 2007105800A1 JP 2007055255 W JP2007055255 W JP 2007055255W WO 2007105800 A1 WO2007105800 A1 WO 2007105800A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
copper material
copper
group
component
Prior art date
Application number
PCT/JP2007/055255
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Miyazaki
Hiroki Hayashi
Kuniyoshi Murakami
Original Assignee
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co., Ltd. filed Critical Nihon Parkerizing Co., Ltd.
Priority to CN2007800091155A priority Critical patent/CN101400826B/en
Priority to JP2008505208A priority patent/JP5111362B2/en
Publication of WO2007105800A1 publication Critical patent/WO2007105800A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/383Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0796Oxidant in aqueous solution, e.g. permanganate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/121Metallo-organic compounds

Definitions

  • the present invention relates to a surface treatment solution for copper material for forming a film on the surface of a copper material, a surface treatment method for a copper material using the same, a copper material with a surface treatment film, and a laminated member
  • Copper materials such as copper and copper alloys are often required to have functionality on the surface, but the dissolution of metals coupled with the reduction reaction of hydrogen ions, such as iron, zinc, and aluminum.
  • the surface treatment methods known at present are mostly coating-type treatments using inhibitors such as silane coupling agents and benzotriazoles. Except for surface roughness due to treatment and etching, there are few useful chemical reactive surface treatments.
  • copper materials have recently been widely applied to electronic and electrical components such as printed wiring boards, lead frames, and LSIs.
  • electronic and electrical components such as printed wiring boards, lead frames, and LSIs.
  • epoxy resins used for their excellent thermal stability, chemical stability, insulation properties, etc.
  • thermosetting resins such as polyimide resins, or high molding temperatures
  • thermoplastic resins When molding these resins on a metal material, it is necessary to expose the entire part to a high temperature of 150 to 300 ° C.
  • a brittle acid film is formed at the interface between the copper material and the resin during heating, causing adhesion degradation due to cohesive failure, and easily diffusing into the polyimide resin and Si single crystal.
  • Patent Documents 1 and 2 describe methods aimed at improving adhesion by subjecting the surface of a metal material to chromate treatment. Yes.
  • Patent Document 3 describes a method of forming a special chromium compound layer having a large number of fine scaly projections on the surface using an electrolytic method.
  • a copper oxide (CuO) treatment called "black dyeing” is known as a chemical conversion surface treatment of a copper material that does not use a hexavalent chromium compound.
  • this copper oxide treatment has good adhesion at the initial stage of adhesion, but it is inferior in durability, so the bonding strength decreases with time, and the initial adhesion can be maintained during heating. There are two problems.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9209167
  • Patent Document 2 JP-A-9-172125
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-183235
  • the present invention is excellent in adhesiveness with a resin, especially at high temperatures, and does not use substances that cause environmental contamination such as hexavalent chromium, and can almost roughen the surface.
  • An object of the present invention is to provide a surface treatment solution for copper material, a surface treatment method using the same, a copper material and a laminated member.
  • the inventors of the present invention include a specific copper oxide etching agent, at least one metal element selected from the group force of Ti, Zr, Hf, and S.
  • a surface treatment solution for copper materials containing a specific proportion of a compound and a fluorine-containing compound as a supply source of HF, excellent adhesion between the copper material and the resin, particularly at high temperatures.
  • the present invention provides the following (1) to (12).
  • Oxyacids selected from the group consisting of, ⁇ ⁇ , ⁇ , HVO, ⁇ WO and ⁇ ⁇ ,
  • organic peroxides selected from the group consisting of salt, ketone peroxide, peroxyketal, hydride peroxide, dialkyl peroxide, disilver oxide, peroxyester, peroxydicarbonate, and At least one copper acid etchant selected for its salt power
  • the total molar concentration A of the metal elements of Ti, Zr, Hf and Si in the compound of component (B) and the total fluorine atoms in the fluorine-containing compound of component (C) are converted to HF.
  • a surface treatment solution for copper materials, characterized in that K AZB, which is the ratio to the molar concentration B at that time, is in the range of 0.03 ⁇ K ⁇ 0.18.
  • the surface treatment liquid for copper material according to (1) comprising a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta, and Zn .
  • An amino group-containing organic compound (E) is bullamine, polybulamine, allylamin, diarylamine, polyallylamine, polyamine polyamide, ammine-modified phenolic resin, amamine-modified polybutanol, ammine-modified urethane resin, benzotriazole,
  • the surface treatment solution for copper material according to (3) which is at least one selected from triazine thiol and a derivative force thereof.
  • a surface treatment method for a copper material wherein the copper material is brought into contact with the surface treatment liquid according to any one of (1) to (4).
  • Group force including Ti, Zr, Hf and Si forces contained in the surface treatment film At least one kind of metal element and Cu selected, and Ag, Al, Fe, Mn, Mg, Ni, Co, Cr Or (6) to (8), wherein at least one selected from the group forces consisting of Ti, Ta and Zn is present in the state of a hydrous oxide, a fluoride, or an intermediate product thereof Copper material with a surface treatment coating.
  • the group force of Ti, Zr, Hf, and S is selected. It has a graded structure in which the content of at least one metal element decreases and the content of Cu increases (7
  • the surface treatment liquid for copper material according to the present invention has excellent adhesion to a resin, particularly at high temperatures, with almost no rough surface, and a substance that causes environmental pollution. Not used.
  • FIG. 1 is an example of a graph of XPS analysis of a surface treatment film having a gradient structure.
  • FIG. 2 is an example of an XPS analysis graph of a surface treatment film having a uniform structure.
  • FIG. 3 is a schematic cross-sectional view showing a laminated member of the present invention.
  • the treatment liquid of the present invention comprises the following component (A), component (B), and component (C);
  • Oxyacids selected from the group consisting of, HO, HMnO, HVO, HWO and HMoO, And organic peroxides selected from the group consisting of salt, ketone peroxide, peroxyketal, hydride peroxide, dialkyl peroxide, disilver oxide, peroxyester, peroxydicarbonate, and At least one copper acid etchant selected for its salt strength, group power,
  • (B) a group force consisting of Ti, Zr, Hf and S, a compound containing at least one metal element selected, and
  • the total molar concentration A of the metal elements of Ti, Zr, Hf and Si in the compound of component (B) and the total fluorine atoms in the fluorine-containing compound of component (C) are converted to HF.
  • the surface treatment liquid of the present invention further comprises component (D):
  • the surface treatment liquid of the present invention further comprises an organic compound containing an amino group (E): (E) berylamine, polyvinylamine, allylamamine, diarylamine, polyallylamine, polyamine polyamide, ammine-modified phenolic resin, ammine-modified Polyburfenol resin, amine-modified urethane resin, benzotriazole, triazine thiol, and their group power that also has a derivative power One of the preferred embodiments containing 10 to 50,000 ppm of a compound containing at least one selected from them One.
  • the object of the surface treatment with the treatment liquid of the present invention is a copper material.
  • the copper material is not particularly limited, and examples thereof include pure copper and copper alloy.
  • An example of pure copper is oxygen-free copper.
  • the copper alloy is preferably one containing 50 mass% or more of copper, for example, brass containing 30 to 40 mass% Zn.
  • alloy components other than copper in the copper alloy include Zn, P, Al, Fe, and Ni.
  • the copper material is not particularly limited in shape, structure and the like. Shape is, for example, plate, foil, rod Is mentioned.
  • the surface treatment liquid for copper and copper alloy material of the present invention contains component (A), component (B), and component (C), more preferably component (D), more preferably component (E).
  • Component (A) consists of HCIO, HCIO, HCIO, HBrO, HBrO, HBrO, HBrO, HNO, HNO
  • Organic peroxides selected from the group consisting of acids and their salts, ketone peroxides, peroxyketals, hydrated peroxides, dialkyl peroxides, disilver oxides, peroxyesters, and nonoxydicarbonates. It is at least one copper acid etchant that is chosen for its porcelain and its salt strength.
  • Ingredient (A) acts as an oxidant that promotes copper acid dissolution, with a rise in pH.
  • the concentration of component (A) in the surface treatment solution is preferably 10 ppm to 100,000 ppm. More preferably 50 ⁇ ! The concentration range is ⁇ 50000ppm. If the concentration is 10 ppm or less, there may be cases where the copper oxide etching force is insufficient and the film formation is not sufficient. Above 50000ppm, the cost is high and may be economically disadvantageous.
  • the component is a compound containing at least one metal element selected from the group force of Ti, Zr, Hf and S.
  • TiCl, TiCl, Ti (SO), Ti (SO), Ti (NO), HTiF, HTiF salts
  • H ZrF salts eg, K ZrF
  • ZrO e.g., ZrF
  • ZrCl e.g., ZrF
  • SO e.g., SO
  • HfF H Hf
  • HfF salt eg, K HfF
  • HfO HfF
  • H SiF H SiF salt
  • Examples include Al 2 O 3 (SiO 2) 2 and SiO 2. Two or more of these may be used in combination.
  • the concentration of component (B) in the surface treatment solution is preferably 5 ppm to 10,000 ppm. More preferably, the concentration range is 5 ppm to 5000 ppm. If the concentration is 5 ppm or less, the content of component (B) in the surface treatment film may be insufficient in terms of performance. Above lOOOOppm, the cost is high and may be economically disadvantageous.
  • Component (C) is a fluorine-containing compound capable of supplying HF.
  • Component (D) is a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta and Zn.
  • Component (D) is a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta and Zn.
  • hydrated oxides, chlorides, fluorides, sulfates, nitrates and carbonates of the above elements can be mentioned.
  • the concentration of component (D) in the surface treatment solution is preferably 5 ppm to 10,000 ppm. More preferably, the concentration range is 5 ppm to 5000 ppm. If the concentration is 5 ppm or less, the effect of adding component (D) cannot be expected. lOOOOppm and higher costs may be disadvantageous economically
  • the corrosion resistance of the obtained surface treatment film becomes more excellent. Specifically, for example, the discoloration resistance when the coated copper material is exposed to high temperatures becomes more excellent.
  • various problems such as formation of brittle copper oxide film under high temperature environment, diffusion to polyimide resin and Si single crystal are less likely to occur. .
  • the surface treatment film to be obtained contains C (carbon) and N (nitrogen). Therefore, it is considered that the film structure becomes denser by incorporating an organic compound containing the amino group of component (E) into the film!
  • Component (E) is composed of buluamine, polyburuamine, arlylamin, diarylamin, polyallylamine, polyamine polyamide, amamine-modified phenolic resin, ammine-modified polybutanol, ammine-modified urethane resin, benzotriazole, triazine thiol and These derivative forces are the group forces that are chosen at least one organic compound.
  • Derivatives here include, for example, buramine, polybulamine, arrylamine, diarylamine, polyallylamine, polyamine polyamide, amamine-modified phenol resin, amine-modified polybutanol, amine-modified urethane resin, benzotriazole, and triazine glycol.
  • the addition amount of the organic compound (E) is preferably 10 to 50,000 ppm from the viewpoint of the obtained film performance.
  • the mechanism for generating the surface treatment film is as follows.
  • the metal element in the compound of component (B) exists as MF 2 "(wherein M represents Ti, Zr, Hf or Si. The same shall apply hereinafter) in an aqueous solution containing a sufficient amount of HF. To do.
  • the equilibrium of the above formula (1) advances to the right, and the fluoride ion coordinated to the metal element M becomes the hydroxide ion. It is replaced in sequence (formula (4)) and finally becomes a hydroxide of metal M. Thereafter, the metal M hydroxide undergoes dehydration condensation and partially becomes an oxide (formula (5)).
  • the metal element M is MF (OH), M (OH), MO, or
  • (6-x) x 4 2 or its hydrate strength is a group force that is deposited on the surface of the copper material in at least one selected state.
  • the treatment liquid of the present invention contains the component (D)
  • the compound of the component (D) forms a complex with free F-, so that the equilibrium of the above formula (1) is more on the right side.
  • the generation of the surface treatment film is promoted and the film is formed in a shorter time.
  • component (D) itself prays together with metal element M, thereby further improving the adhesion to the resin.
  • Component (D) is present in the form of a hydrous oxide, a fluoride, or an intermediate product thereof, like the metal element M.
  • the surface treatment film is formed in one kind of state.
  • the total molar concentration A of the metal elements in the compound of the component (B) and the amount of fluorine atoms in the fluorine-containing compound of the component (C) are HF.
  • the treatment liquid of the present invention has a surface of a copper material by an equilibrium reaction between HMF and HF.
  • a surface treatment film is deposited on the surface.
  • the component concentration of Ti, Zr, Hf, and S is the molar concentration of the compound containing at least one metal element selected (the total molar concentration when two or more compounds are used) )
  • the metal element is preferably 0.05 to LOOmmolZL.
  • the molar concentration of the metal element as the film component is sufficiently large, and a sufficient amount of film can be formed to obtain various performances such as adhesion, and economically. There is no disadvantage.
  • HF supplied by the component (C) plays a role of holding the component of the copper material eluted by the etching reaction as a fluorine complex in the treatment liquid, in addition to the role of forming the above-described surface treatment film. . For this reason, sludge does not occur in the treatment liquid of the present invention.
  • the treatment liquid of the present invention contains a chelating agent capable of chelating an acid other than HF and a metal ion that elutes the copper material force in order to dissolve the components of the eluted copper material.
  • a chelating agent capable of chelating an acid other than HF and a metal ion that elutes the copper material force in order to dissolve the components of the eluted copper material.
  • it is effective when the amount of copper material to be processed is very large relative to the amount of processing liquid.
  • acids other than HF include inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, succinic acid, darconic acid, and phthalic acid.
  • the pH of the treatment liquid of the present invention is not particularly limited, it is preferably pH 2 to 6 in terms of the stability of the treatment liquid and the ease of film formation. Is more preferable.
  • the treatment method of the present invention includes a surface treatment step of bringing a copper material into contact with the above-described treatment liquid of the present invention.
  • a surface treatment film containing the metal element oxide of component (B) and the copper oxide is formed on the surface thereof.
  • the method for bringing the copper material into contact with the treatment liquid of the present invention is not particularly limited, and examples thereof include spray treatment, immersion treatment, and pouring treatment. Two or more of these can be used in combination (for example, combined use of dipping treatment and spray treatment).
  • the use conditions of the treatment liquid of the present invention are not particularly limited.
  • the treatment temperature is preferably 10 to 90 ° C, more preferably 20 to 60 ° C.
  • the processing temperature is 60 ° C or less, use of useless energy can be suppressed, so that economical viewpoint power is also preferable.
  • the processing time can be set as appropriate.
  • the coated copper material of the present invention is a surface-treated film containing at least one metal element selected from the group consisting of Ti, Zr, Hf and Si, copper, oxygen, and fluorine. Is a copper material with a coating.
  • the surface treatment film further contains at least one selected from the group force consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr (lll), Ta and Zn. preferable. As a result, the adhesion to the resin is improved.
  • the group force of Ti, Zr, Hf and S contained in the surface treatment film is selected from at least one metal element and Cu, as well as Ag, Al, Fe, Mn, Mg, Ni, Co, Cr (lll), At least one kind of force selected from the group forces consisting of Ta and Zn Hydrous oxide, fluoride, or U, which preferably exists in the state of intermediate products.
  • the surface treatment film preferably further contains carbon.
  • the coating structure becomes denser and the coating-coated copper material has better discoloration resistance when exposed to high temperatures.
  • Various problems such as the formation of brittle copper oxide film below, diffusion into polyimide resin and Si single crystal are less likely to occur.
  • the surface-treated film comprises the composition of the treatment liquid of the present invention (for example, the type of the metal element of component (B), the copper acid of component (A)).
  • the film structure can be made desired by appropriately selecting the type of etching agent and the concentration of each component.
  • the copper content and the distribution in the depth direction of the surface treatment film can be various.
  • Fig. 1 and Fig. 2 show the depth of at least one metal element (M), copper (Cu), and oxygen (O) selected from the group strength of Ti, Zr, Hf and S in the surface treatment film.
  • Fig. 1 shows an example of a surface treatment film with a tilted structure and Fig. 2 shows a uniform surface structure.
  • “M”, “Cu” and “0” represent the atomic contents of at least one metal element selected from the group consisting of Ti, Zr, Hf and Si, copper and oxygen, respectively. Show.
  • the content of the metal element (M) generally decreases as the force from the film surface to the interface with the copper material decreases, and the copper (Cu) The content of is increasing.
  • the copper content in the region from the surface of the copper material to 5 nm is 0.3 to 60 atm%. If the copper content is too high, as described above, when copper material is used as the wiring material, formation of a brittle copper acid film in a high temperature environment, polyimide resin or Si single crystal Since problems such as diffusion are likely to occur, the adhesiveness to the resin may be poor.
  • One preferred embodiment is that the content of at least one metal element selected from the group force of Ti, Zr, Hf and S is decreased and the content of copper is increased.
  • the surface-treated film having such a structure can prevent problems such as copper diffusion in a high-temperature environment described above while having excellent adhesion with a copper material.
  • the thickness of the surface treatment film is on the order of submicrons, and the copper material with a film of the present invention is compared with the conventional roughening treatment in order to uniformly etch the copper material surface during the surface treatment. A very smooth surface can be obtained.
  • One of the preferred embodiments is that the center line average roughness Ra of the coated copper material surface is 0.50 or less.
  • the coated copper material of the present invention is excellent in adhesiveness between the surface-treated film and the resin, particularly adhesiveness at high temperature, and thus is suitably used for various applications. For example, it is suitably used for a laminated member of the present invention described later.
  • the coated copper material of the present invention is excellent in corrosion resistance, it is suitably used for various applications.
  • the laminated member of the present invention is a laminated member having the above-described coated copper material of the present invention and a resin layer provided on the surface treatment film.
  • FIG. 3 is a schematic cross-sectional view showing the laminated member of the present invention.
  • the laminated material 10 shown in Fig. 3 is made of copper material 2 and at least one metal element whose surface is selected from the group forces of Ti, Zr, H, and Si, copper, oxygen, fluorine, Ag, Al, Coated copper of the present invention having a surface treatment film 4 containing at least one selected from the group force consisting of Fe, Mn, Mg, Ni, Co, Cr (III), Ta and Zn, and further carbon. It has a material 6 and a resin layer 8 provided on the surface treatment film 4.
  • the material of the resin layer is not particularly limited.
  • Thermoplastic resins such as epoxy resin, polypropylene resin, epoxy resin, epoxy resin, polyimide resin, polyimide, polyurethane, bismaleimide 'triazine resin, modified polyphenylene ether, cyanate ester, etc. It is done. These rosins may be modified by functional groups.
  • epoxy resin and polyimide resin are both excellent in heat-resistant adhesion, Useful for electronic components such as printed wiring boards, lead frames, and LSI packages.
  • the resin layer can contain fibers such as glass fibers and aramid fibers. By containing the fiber, the resin layer is reinforced.
  • the laminated member of the present invention can be obtained by bonding a resin layer to the above-described coated copper material of the present invention via the surface treatment film.
  • the bonding method is not particularly limited. Specifically, when the resin layer is an epoxy resin layer, a laminating method in which an epoxy resin film is thermocompression bonded onto the surface treatment film is generally performed.
  • the resin layer is a polyimide resin layer
  • a polyamic acid which is a polyimide precursor is applied to a surface treatment film of a copper material with a film, and then dried and cured.
  • a laminating method in which heat lamination is performed after laminating can be mentioned.
  • the laminated member of the present invention is excellent in adhesiveness between a copper material and a resin, particularly adhesiveness at high temperature, and thus is suitably used for various applications.
  • the materials shown in Table 2 are treated as shown below under the surface treatment conditions of Examples 1 to 10 and Comparative Examples 1 to 3 shown in Table 2.
  • the treatment process was performed to obtain a coated copper material.
  • the pH of the surface treatment liquid was adjusted with ammonia water and nitric acid, and the immersion time of the material to be treated in the surface treatment liquid was uniformly 10 minutes at any level.
  • the center line average roughness Ra of the surface of the obtained coated copper material was 0.50 or less, and a smooth surface was obtained.
  • Copper plate Oxygen-free copper plate (C 1020P, JIS—H—3100) 'Brass plate: Brass plate (C 2600P, JIS-H-3100)
  • Copper foil electrolytic copper foil (purity 99.8% by mass or more), thickness 50 m
  • the amount of at least one metal element (component C) for which the group force consisting of Cr (lll), Ta and Zn was also selected was measured.
  • the amount of carbon in the coating (component D) was measured by total carbon pyrogravimetric analysis.
  • the center line average roughness Ra of the coated copper materials of Examples 1 to 10 is 0.50 or less. It was.
  • thermoplastic polyimide resin sheet with a thickness of about 50 / zm and a glass cloth base epoxy resin sheet are laminated on the film of copper material with film, and a copper foil with a thickness of 35 m is placed on it.
  • the glass cloth-based epoxy resin sheet was press-bonded at a heating temperature of 200 ° C and a heating time of 2 hours to obtain a laminated member of copper material-polyimide and copper material-epoxy resin.
  • Component A Component B Component c Component! Component E Level Chemical Species Concentration (ppm) Chemical Species Concentration (miiiol / L) Chemical Species K Chemical Species Concentration (PPBl) Chemical Species Concentration (ppm) PH
  • Examples 1, 2, and 4 using a surface treatment liquid with a certain composition have good heat-resistant adhesion to polyimide and epoxy resins, and in particular, Example 4 shows the film structure obtained by surface treatment.
  • component (D) a surface containing a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr 3+ , Ta and Zn
  • Examples 3, 5, 6, and 7 using the treatment liquid were further excellent in heat-resistant adhesion.
  • Examples 8 to 10 using the surface treatment liquid containing an organic compound containing component (E) amino group had higher heat-resistant adhesion.
  • Comparative Examples 1 and 2 which used a specific copper acid etchant, and Comparative Example 3 where K was too small did not form a surface-treated film, resulting in improved heat resistance. It was inferior.

Abstract

A surface treatment liquid for copper material; a method of surface treatment therefor; and a surface treatment coating formed on the surface of copper material thereby. There is provided a surface treatment liquid for copper material, characterized by containing a copper oxidation etchant, a compound containing at least one metal element selected from the group consisting of Ti, Zr, Hf and Si and, as an HF supply source, a fluorinated compound. Further, there is provided a method of surface treatment characterized in that a copper or copper alloy material is immersed in the surface treatment liquid. Still further, there is provided a surface treatment coating, disposed on copper or copper alloy by the method, characterized by containing not only at least one metal element selected from the group consisting of Ti, Zr, Hf and Si but also Cu, O and F. Still further, there is provided a laminate member characterized in that the copper material with surface treatment coating and a resin layer are joined together via the surface treatment coating.

Description

明 細 書  Specification
銅材料用表面処理液、銅材料の表面処理方法、表面処理皮膜付き銅材 料、および積層部材  Surface treatment solution for copper material, surface treatment method for copper material, copper material with surface treatment film, and laminated member
技術分野  Technical field
[0001] 本発明は、銅材料の表面に皮膜を形成させるための銅材料用表面処理液、それを 用いた銅材料の表面処理方法、表面処理皮膜付き銅材料および積層部材に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a surface treatment solution for copper material for forming a film on the surface of a copper material, a surface treatment method for a copper material using the same, a copper material with a surface treatment film, and a laminated member
[0002] 工業製品には様々な金属材料が用いられており、耐食性および密着性に加え、耐 熱性、親水性、摺動性等の機能性を付与するための各種の表面処理が施されること が多い。  [0002] Various metal materials are used for industrial products, and various surface treatments are applied to impart functionality such as heat resistance, hydrophilicity, and slidability in addition to corrosion resistance and adhesion. There are many things.
銅、銅合金等の銅材料についても表面に機能性を付与することが求められる場合 が多くあるが、鉄、亜鉛、アルミニウム等のように、水素イオンの還元反応とカップリン グした金属の溶解反応が起こらな 、と 、うこともあり、現時点で知られて 、る表面処理 方法としては、シランカップリング剤、ベンゾトリアゾール等のインヒビターを用いた塗 布型処理がほとんどであり、酸ィ匕処理やエッチングによる表面粗ィ匕を除いては、有用 な化成系の反応型表面処理はあまり存在しな 、。  Copper materials such as copper and copper alloys are often required to have functionality on the surface, but the dissolution of metals coupled with the reduction reaction of hydrogen ions, such as iron, zinc, and aluminum. The surface treatment methods known at present are mostly coating-type treatments using inhibitors such as silane coupling agents and benzotriazoles. Except for surface roughness due to treatment and etching, there are few useful chemical reactive surface treatments.
[0003] 銅材料の 1つの特長として高い電気伝導性、放熱特性を有しており、 1つの例とし て、最近プリント配線板、リードフレーム、 LSIなどの電子電気部品に広く適用されて いる。部材中には銅材料と榭脂との接合部分が多く存在し、これらは熱が力かった状 態での金属ー榭脂間の密着性が求められる。具体的には、その熱安定性、化学的 安定性、絶縁特性等に優れるために用いられるエポキシ榭脂ゃポリイミド榭脂などの 熱硬化性榭脂または成形温度の高!、熱可塑性榭脂では、これらの榭脂を金属素材 上に成形する際に部品全体を 150〜300°Cといった高温にさらす必要がある。さらに 半導体素子などの能動部品、 LCRなどの受動部品を実装する際には、半田付けが 用いられる力 昨今の環境問題力も鉛半田が使用できなくなるため、半田リフロー温 度は益々高温になりつつある。 [0004] このような状況において、銅材料と榭脂との接着性が劣ると、特に高温になったとき に、銅材料の表面に吸着していた水分や製造工程で榭脂の接着界面に吸収された 水分が膨張して、銅材料と榭脂との界面でのはく離を促し、また、銅材料が膨れなど を生じて内部の耐食性を損なったり、場合によっては樹脂が割れたりすることにより配 線パターンが破壊される t ヽぅ結果を引き起こしうる。 [0003] One of the features of copper materials is high electrical conductivity and heat dissipation. As one example, these materials have recently been widely applied to electronic and electrical components such as printed wiring boards, lead frames, and LSIs. There are many joints between the copper material and the resin in the member, and these require the adhesion between the metal and the resin in a state where heat is applied. Specifically, epoxy resins used for their excellent thermal stability, chemical stability, insulation properties, etc., thermosetting resins such as polyimide resins, or high molding temperatures, and thermoplastic resins When molding these resins on a metal material, it is necessary to expose the entire part to a high temperature of 150 to 300 ° C. In addition, when mounting active components such as semiconductor elements and passive components such as LCR, the power used for soldering. Since lead solder can no longer be used in recent environmental issues, the solder reflow temperature is becoming higher and higher. . [0004] In such a situation, if the adhesiveness between the copper material and the resin is inferior, the water adsorbed on the surface of the copper material, especially at a high temperature, and the resin interface in the manufacturing process. The absorbed moisture expands and promotes peeling at the interface between the copper material and the resin. Also, the copper material swells, etc., thereby impairing the internal corrosion resistance and possibly cracking the resin. The wiring pattern can be destroyed, which can cause t ヽ ぅ results.
また、加熱時に銅材料と榭脂との界面に脆弱な酸ィ匕皮膜が生成し、その凝集破壊 により接着劣化を起こしたり、また、ポリイミド榭脂や Si単結晶中に容易に拡散して電 気特性の劣化を招いたりするなど配線材料に銅材料を用いる際はこれらの対策も求 められる。  In addition, a brittle acid film is formed at the interface between the copper material and the resin during heating, causing adhesion degradation due to cohesive failure, and easily diffusing into the polyimide resin and Si single crystal. These measures are also required when copper materials are used for wiring materials, such as deterioration of air characteristics.
[0005] 一般的に、金属材料と榭脂との接着性を向上させるには、ブラスト等により機械的 に金属基材表面を粗面化し、 V、わゆるアンカーを形成させる手法が古くから用いられ ている。  [0005] Generally, in order to improve the adhesion between a metal material and a resin, a method of roughening the surface of a metal base material mechanically by blasting or the like to form a V or a loose anchor has been used for a long time. It has been.
し力しながら、このような機械加工は、概して、生産性が悪く高コストになりがちであ り、また、加工の際に発生する微粒子が電子電気部品の精密性を損なうことが多い。 したがって、最近では、金属材料の表面に、アンカー効果および榭脂との化学的親 和性による密着性の向上を目的として、何らかの化学的表面処理が施されることも多 い。  However, such machining generally tends to be low in productivity and high cost, and the fine particles generated during processing often impair the precision of electronic and electrical components. Therefore, recently, the surface of a metal material is often subjected to some kind of chemical surface treatment for the purpose of improving the adhesion due to the anchor effect and chemical affinity with the resin.
[0006] 例えば、密着性向上のための表面処理として、特許文献 1および 2においては、金 属材料の表面にクロメート処理を施すことにより接着性を向上させることを目的とした 方法が記載されている。  [0006] For example, as surface treatments for improving adhesion, Patent Documents 1 and 2 describe methods aimed at improving adhesion by subjecting the surface of a metal material to chromate treatment. Yes.
また、特許文献 3においては、電解法を用いて、表面に多数の微細な鱗片状突起 を有する特殊なクロム化合物層を形成させる方法が記載されている。  Patent Document 3 describes a method of forming a special chromium compound layer having a large number of fine scaly projections on the surface using an electrolytic method.
[0007] し力しながら、これらの方法は、いずれも表面処理液に有害な 6価のクロム化合物を 用いており、形成された金属基材表面上にも 6価クロムが含有されているものと考えら れ、環境上好ましくない。 [0007] However, all of these methods use a hexavalent chromium compound that is harmful to the surface treatment liquid, and the surface of the formed metal substrate contains hexavalent chromium. This is considered environmentally undesirable.
また、 2000年 10月発効の ELV指令および 2003年 2月発効の RoHS指令に基づ き、電子電気機器、自動車部品等においては、特に仕様が制限される方向にある。 したがって、 6価クロム化合物を用いることなく榭脂との密着性の向上を目的とする 金属材料の表面処理の研究開発が行われており、それは銅材料についても同様で ある。 In addition, based on the ELV Directive that came into effect in October 2000 and the RoHS Directive that came into effect in February 2003, the specifications are particularly restricted for electronic and electrical equipment and automotive parts. Therefore, it aims to improve the adhesion with rosin without using a hexavalent chromium compound. Research and development of surface treatment of metal materials is being conducted, and the same is true for copper materials.
[0008] 6価クロム化合物を用いない銅材料の化成系の表面処理としては、「黒染め」といわ れる酸化銅 (CuO)処理が知られている。しカゝしながら、この酸化銅処理は、接着初期 の接着性は良好であるものの、耐久性に劣るため経時的に接合強度が低下し、また 加熱時にお 、て当初の密着力を維持できな 、と 、つた問題点がある。  [0008] A copper oxide (CuO) treatment called "black dyeing" is known as a chemical conversion surface treatment of a copper material that does not use a hexavalent chromium compound. However, this copper oxide treatment has good adhesion at the initial stage of adhesion, but it is inferior in durability, so the bonding strength decreases with time, and the initial adhesion can be maintained during heating. There are two problems.
また、プリント配線板の配線材料に用いる場合、プリント配線板の高密度化、信号の 高速化が求められており、銅配線の薄型化、狭幅化が進んできている。それに伴い、 これまで絶縁層と銅配線との密着性を付与するために多用されてきた前記の銅粗面 化技術では、表皮効果力 伝送損失が大きくなつてしまう事から、表面を粗化するこ となく化学的親和性のみで絶縁層と接着させることのできる表面処理が求められて ヽ る。  In addition, when used as a wiring material for printed wiring boards, higher density of printed wiring boards and higher speed of signals are required, and copper wiring is becoming thinner and narrower. Along with this, the copper surface roughening technology, which has been widely used to provide adhesion between the insulating layer and the copper wiring, has the effect of increasing the skin effect and transmission loss, thus roughening the surface. There is a need for a surface treatment that can be bonded to the insulating layer with only chemical affinity.
[0009] 特許文献 1 :特開平 9 209167号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 9209167
特許文献 2:特開平 9 - 172125号公報  Patent Document 2: JP-A-9-172125
特許文献 3 :特開 2000— 183235号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-183235
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は、榭脂との接着性、特に高温下での接着性に優れ、かつ 6価クロムなどの 環境汚染の原因となる物質を用いず、表面をほとんど粗ィ匕することのない銅材料用 表面処理液、それを用いた表面処理方法、銅材料および積層部材を提供する事を 目的とする。 [0010] The present invention is excellent in adhesiveness with a resin, especially at high temperatures, and does not use substances that cause environmental contamination such as hexavalent chromium, and can almost roughen the surface. An object of the present invention is to provide a surface treatment solution for copper material, a surface treatment method using the same, a copper material and a laminated member.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者らは、上記目的を達成すべく鋭意検討した結果、特定の銅の酸化エッチ ング剤、 Ti, Zr, Hfおよび S なる群力 選ばれる少なくとも 1種の金属元素を含 む化合物、及び HFの供給源としてのフッ素含有化合物とを特定の割合で含有する 銅材料用表面処理液を用いる事により、銅材料と榭脂との接着性、特に高温下での 接着性を優れたものにすることを見出し、本発明を完成させた。  [0011] As a result of intensive studies to achieve the above object, the inventors of the present invention include a specific copper oxide etching agent, at least one metal element selected from the group force of Ti, Zr, Hf, and S. By using a surface treatment solution for copper materials containing a specific proportion of a compound and a fluorine-containing compound as a supply source of HF, excellent adhesion between the copper material and the resin, particularly at high temperatures The present invention has been completed.
[0012] 即ち本発明は、以下の(1)〜(12)を提供する。 (1)次の成分 (A)、成分 (B)、及び成分 (C): That is, the present invention provides the following (1) to (12). (1) Next component (A), component (B), and component (C):
(A) HCIO , HCIO , HCIO , HBrO , HBrO , HBrO , HBrO, ΗΝΟ , ΗΝΟ , Η S Ο  (A) HCIO, HCIO, HCIO, HBrO, HBrO, HBrO, HBrO, ΗΝΟ, ΗΝΟ, Η S Ο
4 3 2 4 3 2 3 2 2 2 6 4 3 2 4 3 2 3 2 2 2 6
, Η Ο , ΗΜηΟ , HVO , Η WO及び Η ΜοΟからなる群から選ばれる酸素酸、並びOxyacids selected from the group consisting of, Η Ο, ΗΜηΟ, HVO, Η WO and Η ΜοΟ,
2 2 4 3 2 4 2 4 2 2 4 3 2 4 2 4
にその塩、ケトンパーオキサイド、パーォキシケタール、ハイド口パーオキサイド、ジァ ルキルパーオキサイド、ジァシルバーオキサイド、パーォキシエステル、パーォキシジ カーボネートからなる群力 選ばれる有機過酸ィ匕物、並びにその塩力 なる群力 選 ばれる少なくとも 1種の銅の酸ィ匕エッチング剤 And organic peroxides selected from the group consisting of salt, ketone peroxide, peroxyketal, hydride peroxide, dialkyl peroxide, disilver oxide, peroxyester, peroxydicarbonate, and At least one copper acid etchant selected for its salt power
(B) Ti、 Zr、 Hf及び S なる群力 選ばれる少なくとも 1種の金属元素を含む化合 物  (B) Group force consisting of Ti, Zr, Hf and S Compound containing at least one metal element selected
(C) HFの供給源としてのフッ素含有ィ匕合物  (C) Fluorine-containing compound as a source of HF
を含有し、且つ成分 (B)の化合物中の Ti、 Zr、 Hf及び Siの金属元素の合計モル濃 度 Aと成分 (C)のフッ素含有ィ匕合物中の全フッ素原子を HFに換算した時のモル濃 度 Bとの比である K=AZBが 0.03≤K≤0.18の範囲内である組成であることを特徴と する銅材料用表面処理液。 The total molar concentration A of the metal elements of Ti, Zr, Hf and Si in the compound of component (B) and the total fluorine atoms in the fluorine-containing compound of component (C) are converted to HF. A surface treatment solution for copper materials, characterized in that K = AZB, which is the ratio to the molar concentration B at that time, is in the range of 0.03≤K≤0.18.
(2)更に、成分 (D) :  (2) In addition, component (D):
Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta及び Znからなる群から選ばれる元素 の少なくとも 1種を含む化合物を含有する(1)に記載の銅材料用表面処理液。  The surface treatment liquid for copper material according to (1), comprising a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta, and Zn .
(3)さらにアミノ基を含有する有機化合物 (E)を 10〜50000ppm含有する(1)または(2 )に記載の銅材料用表面処理液。  (3) The surface treatment liquid for copper material according to (1) or (2), further containing 10 to 50,000 ppm of an organic compound (E) containing an amino group.
(4)アミノ基を含有する有機化合物 (E)がビュルァミン、ポリビュルァミン、ァリルアミ ン、ジァリルァミン、ポリアリルァミン、ポリアミンポリアミド、ァミン変性フエノール榭脂、 ァミン変性ポリビュルフエノール、ァミン変性ウレタン榭脂、ベンゾトリァゾール、トリア ジンチオールおよびこれらの誘導体力 なる群力 選ばれる少なくとも 1つである(3) に記載の銅材料用表面処理液。  (4) An amino group-containing organic compound (E) is bullamine, polybulamine, allylamin, diarylamine, polyallylamine, polyamine polyamide, ammine-modified phenolic resin, amamine-modified polybutanol, ammine-modified urethane resin, benzotriazole, The surface treatment solution for copper material according to (3), which is at least one selected from triazine thiol and a derivative force thereof.
(5)銅材料を( 1)〜 (4)の ヽずれかに記載の表面処理液と接触させることを特徴とす る銅材料の表面処理方法。  (5) A surface treatment method for a copper material, wherein the copper material is brought into contact with the surface treatment liquid according to any one of (1) to (4).
(6) Ti, Zr, Hf及び Siからなる群力 選ばれる少なくとも一種の金属元素、 Cu、 0、 および Fとを含有する事を特徴とする表面処理皮膜付き銅材料。 (7)更に Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta及び Znからなる群から選ば れる少なくとも 1種を含有する(6)に記載の表面処理皮膜付き銅材料。 (6) Group material consisting of Ti, Zr, Hf and Si A copper material with a surface treatment film characterized by containing at least one metal element selected from the group consisting of Cu, 0 and F. (7) The copper material with a surface treatment film according to (6), further comprising at least one selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta and Zn.
(8)さらに炭素 Cを含有する事を特徴とする(6)または (7)に記載の表面処理皮膜付 き銅材料。  (8) The copper material with a surface treatment film according to (6) or (7), which further contains carbon C.
(9)前記表面処理皮膜中に含有する Ti, Zr, Hf及び Si力もなる群力 選ばれる少なく とも一種の金属元素及び Cu、さらには Ag, Al, Fe, Mn, Mg, Ni, Co, Cr, Ta及び Znか らなる群力も選ばれる少なくとも 1種が、含水酸化物、フッ化物、もしくはその中間生 成物の状態で存在するものである(6)〜(8)の 、ずれかに記載の表面処理皮膜付き 銅材料。  (9) Group force including Ti, Zr, Hf and Si forces contained in the surface treatment film At least one kind of metal element and Cu selected, and Ag, Al, Fe, Mn, Mg, Ni, Co, Cr Or (6) to (8), wherein at least one selected from the group forces consisting of Ti, Ta and Zn is present in the state of a hydrous oxide, a fluoride, or an intermediate product thereof Copper material with a surface treatment coating.
(10)前記銅材料の表面から 5nmまでの深さにおける Cuの含有量力 .3〜60atm%で ある(6)〜(9)の 、ずれかに記載の表面処理皮膜付き銅材料。  (10) The copper material with a surface-treated film according to any one of (6) to (9), wherein the Cu content is 0.3 to 60 atm% at a depth of 5 nm from the surface of the copper material.
(11)皮膜 素材界面側にいくにつれて Ti, Zr, Hf及び S なる群力 選ばれる 少なくとも一種の金属元素の含有率が減少し、 Cuの含有率が増加する傾斜構造を 有するものである(7)〜(10)のいずれかに記載の表面処理皮膜付き銅材料。  (11) Coating As the material goes to the interface side, the group force of Ti, Zr, Hf, and S is selected. It has a graded structure in which the content of at least one metal element decreases and the content of Cu increases (7 The copper material with a surface treatment film according to any one of) to (10).
( 12)請求項 6〜 11のいずれかに記載の表面処理皮膜付き銅材料の上に榭脂層を 有する積層部材。  (12) A laminated member having a resin layer on the copper material with a surface treatment film according to any one of claims 6 to 11.
発明の効果  The invention's effect
[0013] 本発明の銅材料用表面処理液は、表面をほとんど粗ィ匕することなく榭脂との接着 性、特に高温下での接着性に優れ、かつ、環境汚染の原因となる物質を用いていな い。  [0013] The surface treatment liquid for copper material according to the present invention has excellent adhesion to a resin, particularly at high temperatures, with almost no rough surface, and a substance that causes environmental pollution. Not used.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]傾斜構造の表面処理皮膜の XPS分析のグラフの一例である。 FIG. 1 is an example of a graph of XPS analysis of a surface treatment film having a gradient structure.
[図 2]均一構造の表面処理皮膜の XPS分析のグラフの一例である。  FIG. 2 is an example of an XPS analysis graph of a surface treatment film having a uniform structure.
[図 3]本発明の積層部材を示す模式的な断面図である。  FIG. 3 is a schematic cross-sectional view showing a laminated member of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明の処理液は、次の成分 (A)、成分 (B)、及び成分 (C); [0015] The treatment liquid of the present invention comprises the following component (A), component (B), and component (C);
(A) HC10 , HC10 , HC10 , HBrO , HBrO , HBrO , HBrO, HNO , HNO , H S O  (A) HC10, HC10, HC10, HBrO, HBrO, HBrO, HBrO, HNO, HNO, H S O
4 3 2 4 3 2 3 2 2 2 6 4 3 2 4 3 2 3 2 2 2 6
, H O , HMnO , HVO , H WO及び H MoOからなる群から選ばれる酸素酸、並び にその塩、ケトンパーオキサイド、パーォキシケタール、ハイド口パーオキサイド、ジァ ルキルパーオキサイド、ジァシルバーオキサイド、パーォキシエステル、パーォキシジ カーボネートからなる群力 選ばれる有機過酸ィ匕物、並びにその塩力 なる群力 選 ばれる少なくとも 1種の銅の酸ィ匕エッチング剤、 Oxyacids selected from the group consisting of, HO, HMnO, HVO, HWO and HMoO, And organic peroxides selected from the group consisting of salt, ketone peroxide, peroxyketal, hydride peroxide, dialkyl peroxide, disilver oxide, peroxyester, peroxydicarbonate, and At least one copper acid etchant selected for its salt strength, group power,
(B) Ti、 Zr、 Hf及び S なる群力 選ばれる少なくとも 1種の金属元素を含む化合 物、および  (B) a group force consisting of Ti, Zr, Hf and S, a compound containing at least one metal element selected, and
(C) HFの供給源としてのフッ素含有ィ匕合物  (C) Fluorine-containing compound as a source of HF
を含有し、且つ成分 (B)の化合物中の Ti、 Zr、 Hf及び Siの金属元素の合計モル濃 度 Aと成分 (C)のフッ素含有ィ匕合物中の全フッ素原子を HFに換算した時のモル濃 度 Bとの比である K=AZBが 0.03≤K≤0.18の範囲内である組成であることを特徴と する銅材料用表面処理液である。 The total molar concentration A of the metal elements of Ti, Zr, Hf and Si in the compound of component (B) and the total fluorine atoms in the fluorine-containing compound of component (C) are converted to HF. The surface treatment solution for copper material is characterized in that K = AZB, which is the ratio to the molar concentration B at that time, is in the range of 0.03≤K≤0.18.
また、本発明の表面処理液は、さらに、成分 (D): The surface treatment liquid of the present invention further comprises component (D):
(D) Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta及び Znからなる群から選ばれる 元素の少なくとも 1種を含む化合物  (D) a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta and Zn
を含有することが好ましい態様の 1つである。 It is one of the preferable embodiments to contain.
また、本発明の表面処理液は、さらにアミノ基を含有する有機化合物 (E): (E)ビ- ルァミン、ポリビニルァミン、ァリルァミン、ジァリルァミン、ポリアリルァミン、ポリアミン ポリアミド、ァミン変性フエノール榭脂、ァミン変性ポリビュルフエノール榭脂、アミン変 性ウレタン榭脂、ベンゾトリァゾール、トリアジンチオールおよびこれらの誘導体力もな る群力 選ばれる少なくとも 1種を含む化合物を 10〜50000ppmを含有する事が好ま しい態様の 1つである。  The surface treatment liquid of the present invention further comprises an organic compound containing an amino group (E): (E) berylamine, polyvinylamine, allylamamine, diarylamine, polyallylamine, polyamine polyamide, ammine-modified phenolic resin, ammine-modified Polyburfenol resin, amine-modified urethane resin, benzotriazole, triazine thiol, and their group power that also has a derivative power One of the preferred embodiments containing 10 to 50,000 ppm of a compound containing at least one selected from them One.
本発明の処理液による表面処理の対象は、銅材料である。銅材料は、特に限定さ れず、例えば、純銅、銅合金が挙げられる。  The object of the surface treatment with the treatment liquid of the present invention is a copper material. The copper material is not particularly limited, and examples thereof include pure copper and copper alloy.
純銅としては、例えば、無酸素銅が挙げられる。  An example of pure copper is oxygen-free copper.
銅合金は、銅を 50質量%以上含有するものが好ましぐ例えば、 Znを 30〜40質量 %含有する黄銅が挙げられる。銅合金における銅以外の合金成分としては、例えば 、 Zn、 P、 Al、 Fe、 Niが挙げられる。  The copper alloy is preferably one containing 50 mass% or more of copper, for example, brass containing 30 to 40 mass% Zn. Examples of alloy components other than copper in the copper alloy include Zn, P, Al, Fe, and Ni.
銅材料は、形状、構造等を特に限定されない。形状は、例えば、板状、箔状、棒状 が挙げられる。 The copper material is not particularly limited in shape, structure and the like. Shape is, for example, plate, foil, rod Is mentioned.
本発明の銅および銅合金素材用表面処理液は成分 (A)、成分 (B)、および成分( C)より好ましくは成分 (D)、より好ましくは成分 (E)を含有する。  The surface treatment liquid for copper and copper alloy material of the present invention contains component (A), component (B), and component (C), more preferably component (D), more preferably component (E).
成分(A)は、 HCIO , HCIO , HCIO , HBrO , HBrO , HBrO , HBrO, HNO , HNO  Component (A) consists of HCIO, HCIO, HCIO, HBrO, HBrO, HBrO, HBrO, HNO, HNO
4 3 2 4 3 2 3 4 3 2 4 3 2 3
, H S O , H O , HMnO , HVO , H WO及び H MoOからなる群から選ばれる酸素, H S O, H 2 O 3, HMnO 2, HVO 2, H 2 WO and H MoO
2 2 2 6 2 2 4 3 2 4 2 4 2 2 2 6 2 2 4 3 2 4 2 4
酸、並びにその塩、ケトンパーオキサイド、パーォキシケタール、ハイド口パーォキサ イド、ジアルキルパーオキサイド、ジァシルバーオキサイド、パーォキシエステル、ノ ーォキシジカーボネートからなる群力も選ばれる有機過酸ィ匕物、並びにその塩力もな る群力も選ばれる少なくとも 1種の銅の酸ィ匕エッチング剤である。 Organic peroxides selected from the group consisting of acids and their salts, ketone peroxides, peroxyketals, hydrated peroxides, dialkyl peroxides, disilver oxides, peroxyesters, and nonoxydicarbonates. It is at least one copper acid etchant that is chosen for its porcelain and its salt strength.
より具体的には、ジイソプチリルパーオキサイド、タミルペルォキシネオデカノエート More specifically, diisoptylyl peroxide, Tamil peroxyneodecanoate
、ジー n—プロピノレバーオキシジカーボネート、ジイソプロピルパーォキシジカーボネ ート、ジ- sec-ブチルパーォキシジカーボネート、 1, 1, 3, 3-テトラメチルブチルパー ォキシォデカノエート、ジ(4-t-ブチルシクロへキシル)パーォキシジカーボネート、ジ (2-ェチルへキシル)パーォキシジカーボネート、 t-へキシルバーォキシネオデカノエ ート、 t-ブチルパーォキシネオデカノエート、 t-ブチルパーォキシネオヘプタノエート 、 t-へキシルバーォキシビバレート、 t-ブチルパーォキシビバレート、ジ(3, 5, 5-トリメ チルへキサノィル)パーオキサイド、ジラウロイルパーオキサイド、 1, 1, 3, 3-テトラメチ ルブチルパーォキシ -2-ェチルへキサノエート、ジコハク酸パーオキサイド、 2,5-ジメ チル- 2,5-ジ (2-ェチへキサノィルパーォキシ)へキサン、 t-へキシルバーォキシ -2-ェ チルへキサノエート、ジ(4-メチルベンゾィル)パーオキサイド、ジ(3-メチルベンゾィ ル)パーオキサイド、ベンゾィル(3—メチルベンゾィル)パーオキサイド、ジベンゾィル パーオキサイド、 t-ブチルパーォキシ -2-ェチルへキサノエート、 1,1-ジ (t-ブチルバ 一ォキシ)-2-メチルシクロへキサン、 1,1-ジ (t-へキシルバーォキシ)-3, 3, 5-トリメチ ルシクロへキサン、 1, 1-ジ (t-へキシルバーォキシ)シクロへキサン、 1,1-ジ (t-ブチル パーォキシ)シクロへキサン、 2,2-ジ(4, 4-ジ- (t-ブチルパーォキシ)シクロへキシル) プロパン、 t-へキシルパーォキシイソプロピルモノカーボネート、 t-ブチノレーパーォキ シマレイン酸、 -ブチルーパーォキシ -3,5,5-トリメチルへキサノエート、 t-ブチルパー ォキシラウリル酸、 t-ブチルパーォキシイソプロピルモノカーボネート、 t-ブチルパー ォキシ -2-ェチルへキシルモノカーボネート、 t-へキシルバーォキシベンゾエート、 2, 5-ジ-メチル- 2,5-ジ(ベンゾィルパーォキシ)へキサン、 t-ブチルパーォキシァセテ ート、 2,2-ジ _ (t-ブチルパーォキシ)ブタン、 t-ブチルパーォキシベンゾエート、 n-ブ チル 4,4-ジ-(t-ブチルパーォキシ)ヴァルレート、ジ(2- -ブチルパーォキシイソプロ ピル)ベンゼン、ジクミルパーオキサイド、ジ -t-へキシルバーオキサイド、 2,5-ジメチ ル- 2,5-ジ- (t-ブチルパーォキシ)へキシン- 3、ジイソプロピルベンゼンハイド口バーオ キサイド、 1,1, 3,3-テトラメチルブチルハイド口パーオキサイド、クミンハイド口パーォキ サイド、 t-ブチルハイド口パーオキサイド、 2,3-ジメチル -2,3-ジフ ニルブタンが例示 される。 , Di-n-propinoleveroxydicarbonate, diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate, 1,1,3,3-tetramethylbutylperoxydecanoate , Di (4-t-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-hexyloxyneodecanoate, t-butylperoxy Neodecanoate, t-butylperoxyneoheptanoate, t-hexyloxyxivalate, t-butylperoxybivalate, di (3,5,5-trimethylhexanoyl) peroxide , Dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, disuccinic acid peroxide, 2,5-dimethyl-2,5-di (2-ethyl) To (Xanoylperoxy) Xan, t-hexyloxy-2-ethylhexanoate, di (4-methylbenzoyl) peroxide, di (3-methylbenzoyl) peroxide, benzoyl (3-methylbenzoyl) peroxide, dibenzoyl peroxide, t-butyl peroxide- 2-ethylhexanoate, 1,1-di (t-butylcarboxy) -2-methylcyclohexane, 1,1-di (t-hexyloxy) -3,3,5-trimethylcyclohexane, 1, 1-di (t-hexyloxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane , T-Hexylperoxyisopropyl monocarbonate, t-Butinoleoxypersimaleic acid, -Butyl-peroxy-3,5,5-trimethylhexanoate, t-Butylperoxyla Ururic acid, t-butyl peroxyisopropyl monocarbonate, t-butyl per Oxy-2-ethylhexyl monocarbonate, t-hexyloxybenzoate, 2,5-di-methyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate 2,2-di_ (t-butylperoxy) butane, t-butylperoxybenzoate, n-butyl 4,4-di- (t-butylperoxy) vallate, di (2-butylperio Xyisopropyl) benzene, dicumyl peroxide, di-t-hexylsilver oxide, 2,5-dimethyl-2,5-di- (t-butylperoxy) hexyne-3, diisopropylbenzene hydride baroxide, Examples are 1,1,3,3-tetramethylbutylhydride peroxide, cuminhydride peroxide, t-butylhydride peroxide, and 2,3-dimethyl-2,3-diphenylbutane.
成分 (A)は銅の酸ィ匕溶解を促進させる酸化剤として働き、この際、 pH上昇を伴う。 成分 (A)の表面処理液中濃度は、 10ppm〜100000ppmが好ましい。更に好ましく は 50ρρπ!〜 50000ppmの濃度範囲である。濃度が lOppm以下では、銅の酸化エッチ ング力が不十分で皮膜生成量が十分でない場合がある。 50000ppm以上ではコストが 高くなり、経済的に不利となる場合がある。  Ingredient (A) acts as an oxidant that promotes copper acid dissolution, with a rise in pH. The concentration of component (A) in the surface treatment solution is preferably 10 ppm to 100,000 ppm. More preferably 50ρρπ! The concentration range is ~ 50000ppm. If the concentration is 10 ppm or less, there may be cases where the copper oxide etching force is insufficient and the film formation is not sufficient. Above 50000ppm, the cost is high and may be economically disadvantageous.
[0018] 成分 )は、 Ti、 Zr、 Hfおよび S なる群力 選ばれる少なくとも 1種の金属元素 を含む化合物である。 [0018] The component) is a compound containing at least one metal element selected from the group force of Ti, Zr, Hf and S.
例えば、 TiCl、 TiCl、 Ti (SO ) 、 Ti (SO ) 、 Ti(NO ) 、 H TiF、 H TiFの塩(  For example, TiCl, TiCl, Ti (SO), Ti (SO), Ti (NO), HTiF, HTiF salts (
3 4 2 4 3 4 2 3 4 2 6 2 6 例えば、 K TiF )、 TiO、 Ti O、 TiO、 TiF、 ZrCl、 Zr (SO ) 、 Zr (NO ) 、 H ZrF  3 4 2 4 3 4 2 3 4 2 6 2 6 For example, K TiF), TiO, Ti O, TiO, TiF, ZrCl, Zr (SO), Zr (NO), H ZrF
2 6 2 3 2 4 4 4 2 3 4 2 6 2 6 2 3 2 4 4 4 2 3 4 2 6
、 H ZrFの塩(例えば、 K ZrF )、 ZrO、 ZrF、 HfCl、 Hf (SO )、 H HfF、 H Hf, H ZrF salts (eg, K ZrF), ZrO, ZrF, HfCl, Hf (SO), H HfF, H Hf
2 6 2 6 2 4 4 4 2 2 6 22 6 2 6 2 4 4 4 2 2 6 2
Fの塩(例えば、 K HfF )、 HfO、 HfF、 H SiF、 H SiFの塩(例えば、 K SiF )、F salt (eg, K HfF), HfO, HfF, H SiF, H SiF salt (eg, K SiF),
6 2 6 2 4 2 6 2 6 2 66 2 6 2 4 2 6 2 6 2 6
Al O (SiO ) 、 SiOが挙げられる。これらは 2種以上を併用してもよい。 Examples include Al 2 O 3 (SiO 2) 2 and SiO 2. Two or more of these may be used in combination.
2 3 2 3 2  2 3 2 3 2
成分 (B)の表面処理液中濃度は、 5ppm〜10000ppmが好ましい。更に好ましくは 5p pm〜5000ppmの濃度範囲である。濃度が 5ppm以下では、表面処理皮膜中成分 (B) の含有量が性能上不十分となる場合がある。 lOOOOppm以上ではコストが高くなり、経 済的に不利となる場合がある。  The concentration of component (B) in the surface treatment solution is preferably 5 ppm to 10,000 ppm. More preferably, the concentration range is 5 ppm to 5000 ppm. If the concentration is 5 ppm or less, the content of component (B) in the surface treatment film may be insufficient in terms of performance. Above lOOOOppm, the cost is high and may be economically disadvantageous.
[0019] 成分 (C)は、 HFを供給しうるフッ素含有ィ匕合物である。 [0019] Component (C) is a fluorine-containing compound capable of supplying HF.
例えば、 HF、 H TiF、 TiF、 H ZrF、 ZrF、 H HfF、 HfF、 HBF、 NaHF、 K  For example, HF, H TiF, TiF, H ZrF, ZrF, H HfF, HfF, HBF, NaHF, K
2 6 4 2 6 4 2 6 4 4 2 2 6 4 2 6 4 2 6 4 4 2
HF、 NH HF、 NaF、 KF、 NH Fが挙げられる。これらは 2種以上を併用してもよい [0020] 成分(D)は、 Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr , Ta及び Znからなる群から選 ばれる元素の少なくとも 1種を含む化合物である。例えば、上記元素の含水酸化物、 塩化物、フッ化物、硫酸塩、硝酸塩、炭酸塩が挙げられる。 HF, NH HF, NaF, KF, NH F. These may be used in combination of two or more [0020] Component (D) is a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta and Zn. For example, hydrated oxides, chlorides, fluorides, sulfates, nitrates and carbonates of the above elements can be mentioned.
成分 (D)の表面処理液中濃度は、 5ppm〜10000ppmが好ましい。更に好ましくは 5 ppm〜5000ppmの濃度範囲である。濃度が 5ppm以下では、成分 (D)の添加効果が 期待できない。 lOOOOppm以上ではコストが高くなり、経済的に不利となる場合がある  The concentration of component (D) in the surface treatment solution is preferably 5 ppm to 10,000 ppm. More preferably, the concentration range is 5 ppm to 5000 ppm. If the concentration is 5 ppm or less, the effect of adding component (D) cannot be expected. lOOOOppm and higher costs may be disadvantageous economically
[0021] 本発明の処理液が成分 (E)を含有する場合、得られる表面処理皮膜の耐食性がよ り優れたものとなる。具体的には、例えば、皮膜付き銅材料が高温に曝されたときの 耐変色性がより優れたものとなる。また、上述した配線材料に銅材料を用いる際にお ける、高温環境下における脆弱な銅の酸ィ匕皮膜の生成、ポリイミド榭脂や Si単結晶 への拡散等の種々の問題が生じにくくなる。 [0021] When the treatment liquid of the present invention contains the component (E), the corrosion resistance of the obtained surface treatment film becomes more excellent. Specifically, for example, the discoloration resistance when the coated copper material is exposed to high temperatures becomes more excellent. In addition, when copper materials are used for the above-mentioned wiring materials, various problems such as formation of brittle copper oxide film under high temperature environment, diffusion to polyimide resin and Si single crystal are less likely to occur. .
本発明者の検討によれば、本発明の処理液が成分 (E)を含有する場合、得られる 表面処理皮膜が C (炭素)および N (窒素)を含有することが分力つており、このことか ら、皮膜中に成分 (E)のアミノ基を含有する有機化合物が取り込まれることにより皮膜 構造がより緻密になって!/、るものと考えられる。  According to the study of the present inventor, when the treatment liquid of the present invention contains the component (E), the surface treatment film to be obtained contains C (carbon) and N (nitrogen). Therefore, it is considered that the film structure becomes denser by incorporating an organic compound containing the amino group of component (E) into the film!
[0022] 成分(E)は、ビュルァミン、ポリビュルァミン、ァリルァミン、ジァリルァミン、ポリアリル ァミン、ポリアミンポリアミド、ァミン変性フエノール榭脂、ァミン変性ポリビュルフエノー ル、ァミン変性ウレタン榭脂、ベンゾトリァゾ—ル、トリアジンチオールおよびこれらの 誘導体力 なる群力 選ばれる少なくとも 1つの有機化合物である。 [0022] Component (E) is composed of buluamine, polyburuamine, arlylamin, diarylamin, polyallylamine, polyamine polyamide, amamine-modified phenolic resin, ammine-modified polybutanol, ammine-modified urethane resin, benzotriazole, triazine thiol and These derivative forces are the group forces that are chosen at least one organic compound.
ここで誘導体としては、例えば、ビュルァミン、ポリビュルァミン、ァリルァミン、ジァリ ルァミン、ポリアリルァミン、ポリアミンポリアミド、ァミン変性フエノール榭脂、アミン変 性ポリビュルフエノール、ァミン変性ウレタン榭脂、ベンゾトリァゾ—ル、トリアジンチォ 一ルカ なる群力 選ばれる少なくとも 1つを分子内に含む化合物、さらにはこのィ匕 合物から誘導される化合物、さらにはこれらの化合物の塩が挙げられる。  Derivatives here include, for example, buramine, polybulamine, arrylamine, diarylamine, polyallylamine, polyamine polyamide, amamine-modified phenol resin, amine-modified polybutanol, amine-modified urethane resin, benzotriazole, and triazine glycol. Group powers Compounds containing at least one selected from the group, compounds derived from this compound, and salts of these compounds.
有機化合物(E)の添加量につ ヽては得られる皮膜性能の点から 10〜50000ppmが 好適である。 [0023] 表面処理皮膜生成のメカニズムは、以下のとおりである。 The addition amount of the organic compound (E) is preferably 10 to 50,000 ppm from the viewpoint of the obtained film performance. [0023] The mechanism for generating the surface treatment film is as follows.
成分 (B)の化合物中の金属元素は、十分な量の HFを含有する水溶液中では、 M F 2" (式中、 Mは、 Ti、 Zr、 Hfまたは Siを表す。以下同じ。 )として存在する。 The metal element in the compound of component (B) exists as MF 2 "(wherein M represents Ti, Zr, Hf or Si. The same shall apply hereinafter) in an aqueous solution containing a sufficient amount of HF. To do.
6  6
ここで、 MFと F—との間には、下記式(1)で表される化学平衡が成り立つ。  Here, a chemical equilibrium represented by the following formula (1) is established between MF and F-.
6  6
[0024] MF 2" + 20H" MO + 2H++6F— (1) [0024] MF 2 "+ 20H" MO + 2H ++ 6F— (1)
6 2  6 2
[0025] 本発明の処理液に、銅材料を浸せきさせると、成分 (A)の銅の酸化エッチング剤の 還元反応(下記式(2) )とカップリングして、 Cuの溶解反応(下記式(3) )力起こる。  [0025] When a copper material is immersed in the treatment liquid of the present invention, it is coupled with a reduction reaction of the copper oxidation etchant of component (A) (the following formula (2)) to form a Cu dissolution reaction (the following formula (3) Power is generated.
[0026] Ox+ne— → Red+mOH— (2)  [0026] Ox + ne— → Red + mOH— (2)
Cu → Cu2++ 2e" (3) Cu → Cu 2+ + 2e "(3)
[0027] 上記式(2)の還元反応に伴う pH上昇により、上記式(1)の平衡が右に進み、金属 元素 Mに配位して 、るフッ化物イオンが水酸ィ匕物イオンに順次置き換わり(式 (4) )、 最終的に金属 Mの水酸化物となる。その後金属 Mの水酸化物が脱水縮合して一部 酸ィ匕物になる(式(5) )。以上金属元素 Mは、前記 MF (OH)、 M(OH)、 MO、若し  [0027] Due to the increase in pH associated with the reduction reaction of the above formula (2), the equilibrium of the above formula (1) advances to the right, and the fluoride ion coordinated to the metal element M becomes the hydroxide ion. It is replaced in sequence (formula (4)) and finally becomes a hydroxide of metal M. Thereafter, the metal M hydroxide undergoes dehydration condensation and partially becomes an oxide (formula (5)). The metal element M is MF (OH), M (OH), MO, or
(6-x) x 4 2 くはその水和物力 なる群力 選ばれる少なくとも 1種の状態で銅材料表面に析出す ると考免られる。  It is considered that (6-x) x 4 2 or its hydrate strength is a group force that is deposited on the surface of the copper material in at least one selected state.
MF 2— +40H—→MF (OH) +xF— +(4- x)OH—→ M(OH) +6F— (4) MF 2 — + 40H— → MF (OH) + xF— + (4- x) OH— → M (OH) + 6F— (4)
6 (6-x) x 4  6 (6-x) x 4
M(OH) +M(OH) → 2MO +4H O (5)  M (OH) + M (OH) → 2MO + 4H O (5)
4 4 2 2  4 4 2 2
[0028] また、本発明の処理液が成分 (D)を含有する場合は、成分 (D)の化合物が遊離の F—と錯体を形成することから、上記式(1)の平衡がより右側に進み、表面処理皮膜の 生成が促進され、より短時間で皮膜生成することとなる。また、成分 (D)含有のもう 1 つの効果として、成分 (D)自体が、金属元素 Mと共に共祈し、それにより榭脂との接 着性が更に向上する。成分 (D)は前記金属元素 Mと同様に、含水酸化物、フッ化物 、もしくはその中間生成物の状態で存在する。  [0028] Further, when the treatment liquid of the present invention contains the component (D), the compound of the component (D) forms a complex with free F-, so that the equilibrium of the above formula (1) is more on the right side. The generation of the surface treatment film is promoted and the film is formed in a shorter time. In addition, as another effect of containing component (D), component (D) itself prays together with metal element M, thereby further improving the adhesion to the resin. Component (D) is present in the form of a hydrous oxide, a fluoride, or an intermediate product thereof, like the metal element M.
[0029] 上述した MOの析出と同時に、上記式(3)により溶出した銅イオン (Cu2+)は、含水酸 [0029] Simultaneously with the MO precipitation described above, the copper ions (Cu 2+ ) eluted by the above formula (3)
2  2
化物、フッ化物、もしくはその中間生成物の状態で析出し、これらも表面処理皮膜を 構成する。  It precipitates in the state of fluoride, fluoride, or an intermediate product thereof, and these also constitute a surface treatment film.
[0030] 前記のように、本発明により得られる皮膜付き銅材料にお!ヽては、 Ti, Zr, Hf及び Siからなる群力も選ばれる少なくとも一種の金属元素及び Cu、さらには Ag, Al, Fe , Mn, Mg, Ni, Co, Cr (lll) , Ta及び Znからなる群から選ばれる少なくとも 1種が、 それぞれ含水酸化物、フッ化物、もしくはその中間生成物からなる群力 選ばれる少 なくとも 1種の状態で、表面処理皮膜を形成している。 [0030] As described above, in the coated copper material obtained by the present invention, at least one metal element selected from the group force consisting of Ti, Zr, Hf and Si and Cu, and further Ag, Al , Fe , Mn, Mg, Ni, Co, Cr (lll), Ta and Zn, at least one selected from the group consisting of hydrous oxide, fluoride, or its intermediate product is selected at least The surface treatment film is formed in one kind of state.
[0031] 本発明の処理液の、前記成分 (B)の化合物中の前記金属元素の合計モル濃度 A と前記成分 (C)の前記フッ素含有ィ匕合物中のフッ素原子の量を HFに換算したときの モル濃度 Bとの比 K(=A/B)が、 0.03≤ K≤ 0.18を満足する。  [0031] In the treatment liquid of the present invention, the total molar concentration A of the metal elements in the compound of the component (B) and the amount of fluorine atoms in the fluorine-containing compound of the component (C) are HF. When converted, the ratio K (= A / B) to molarity B satisfies 0.03≤K≤0.18.
Κが大きすぎると、密着性を得るために十分な量の皮膜を析出させることができるも のの、処理液の安定性が著しく損なわれるために、連続操業上の支障が生じる。また 、 Κが小さすぎると、上記式(1)の平衡の右への移動が起こりにくくなるため、密着性 を得るのに十分な量の皮膜を短時間で形成させることができない。  If the wrinkles are too large, a sufficient amount of film can be deposited to obtain adhesion, but the stability of the treatment liquid is significantly impaired, resulting in problems in continuous operation. On the other hand, if the wrinkle is too small, it is difficult for the balance of the above formula (1) to move to the right, so that it is not possible to form a sufficient amount of film in a short time to obtain adhesion.
[0032] 本発明の処理液は、上述したとおり、 H MFと HFとの平衡反応により、銅材料の表  [0032] As described above, the treatment liquid of the present invention has a surface of a copper material by an equilibrium reaction between HMF and HF.
2 6  2 6
面に表面処理皮膜を析出させるものである。  A surface treatment film is deposited on the surface.
ここで、成分 )の Ti、 Zr、 Hfおよび S なる群力 選ばれる少なくとも 1種の金 属元素を含む化合物のモル濃度 (ィ匕合物を 2種以上用いた場合には、その合計モル 濃度)が、前記金属元素換算で、 0. 05〜: LOOmmolZLであるのが好ましい。  Here, the component concentration of Ti, Zr, Hf, and S is the molar concentration of the compound containing at least one metal element selected (the total molar concentration when two or more compounds are used) ) In terms of the metal element is preferably 0.05 to LOOmmolZL.
上記範囲であると、皮膜成分である前記金属元素のモル濃度が十分に大きくなり、 密着性等の各種性能を得るために十分な量の皮膜を形成することができ、また、経 済的に不利になることがない。  Within the above range, the molar concentration of the metal element as the film component is sufficiently large, and a sufficient amount of film can be formed to obtain various performances such as adhesion, and economically. There is no disadvantage.
[0033] 成分 (C)により供給される HFは、上述した表面処理皮膜を形成する役割のほかに 、エッチング反応により溶出した銅材料の成分を処理液中にフッ素錯体として保持す る役割を担う。このため、本発明の処理液では、スラッジが発生しない。 [0033] HF supplied by the component (C) plays a role of holding the component of the copper material eluted by the etching reaction as a fluorine complex in the treatment liquid, in addition to the role of forming the above-described surface treatment film. . For this reason, sludge does not occur in the treatment liquid of the present invention.
なお、本発明の処理液は、溶出した銅材料の成分を可溶ィ匕するために、 HF以外 の酸や、銅材料力 溶出する金属イオンをキレートイ匕することが可能なキレート剤を 含有することができる。例えば、処理液の量に対する処理される銅材料の量が極めて 多い場合に有効である。  The treatment liquid of the present invention contains a chelating agent capable of chelating an acid other than HF and a metal ion that elutes the copper material force in order to dissolve the components of the eluted copper material. be able to. For example, it is effective when the amount of copper material to be processed is very large relative to the amount of processing liquid.
HF以外の酸としては、例えば、硫酸、塩酸等の無機酸;酢酸、シユウ酸、酒石酸、 ク工ン酸、コハク酸、ダルコン酸、フタル酸等の有機酸が挙げられる。  Examples of acids other than HF include inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, succinic acid, darconic acid, and phthalic acid.
キレート剤としては、例えば、 EDTA、チォ尿素が挙げられる。 [0034] 本発明の処理液は、 pHを特に限定されな ヽが、処理液の安定性および皮膜生成 のしやすさの点で、 pH2〜6であるのが好ましぐ pH3〜5であるのがより好ましい。 Examples of chelating agents include EDTA and thiourea. [0034] Although the pH of the treatment liquid of the present invention is not particularly limited, it is preferably pH 2 to 6 in terms of the stability of the treatment liquid and the ease of film formation. Is more preferable.
[0035] 本発明の処理方法は、銅材料を、上述した本発明の処理液に接触させる表面処理 工程を具備する。  [0035] The treatment method of the present invention includes a surface treatment step of bringing a copper material into contact with the above-described treatment liquid of the present invention.
銅材料を本発明の処理液に接触させることにより、その表面に成分 (B)の金属元素 の酸化物と銅の酸化物とを含有する表面処理皮膜が形成される。  By bringing the copper material into contact with the treatment liquid of the present invention, a surface treatment film containing the metal element oxide of component (B) and the copper oxide is formed on the surface thereof.
銅材料を本発明の処理液に接触させる方法は、特に限定されず、例えば、スプレ 一処理、浸せき処理、流しかけ処理が挙げられる。これらは、 2種以上を併用すること ができる(例えば、浸せき処理およびスプレー処理の併用)。  The method for bringing the copper material into contact with the treatment liquid of the present invention is not particularly limited, and examples thereof include spray treatment, immersion treatment, and pouring treatment. Two or more of these can be used in combination (for example, combined use of dipping treatment and spray treatment).
また、浸せき処理における処理液槽内の力べはんの有無、スプレー処理におけるス プレー圧、スプレーノズルの種類等は、特に限定されない。  Further, there is no particular limitation on the presence / absence of force balance in the treatment liquid tank in the immersion treatment, the spray pressure in the spray treatment, the type of the spray nozzle, and the like.
また、本発明の処理方法においては、本発明の処理液中で、銅材料を陰極として 電解処理することによつても、表面処理皮膜を形成させることが可能である。  In the treatment method of the present invention, it is also possible to form a surface treatment film by electrolytic treatment using the copper material as a cathode in the treatment liquid of the present invention.
[0036] 本発明の処理方法においては、本発明の処理液の使用条件は、特に限定されな い。 In the treatment method of the present invention, the use conditions of the treatment liquid of the present invention are not particularly limited.
処理温度は、 10〜90°Cであるのが好ましぐ 20〜60°Cであるのがより好ましい。処 理温度が 60°C以下であると、無駄なエネルギーの使用を抑制することができるため、 経済的な観点力も好ましい。  The treatment temperature is preferably 10 to 90 ° C, more preferably 20 to 60 ° C. When the processing temperature is 60 ° C or less, use of useless energy can be suppressed, so that economical viewpoint power is also preferable.
処理時間は、適宜設定することができる。  The processing time can be set as appropriate.
[0037] 本発明の皮膜付き銅材料は、 Ti, Zr, Hf及び Siカゝらなる群カゝら選ばれる少なくとも一 種の金属元素と、銅と、酸素、及びフッ素を含有する表面処理皮膜を表面に有する 皮膜付き銅材料である。 [0037] The coated copper material of the present invention is a surface-treated film containing at least one metal element selected from the group consisting of Ti, Zr, Hf and Si, copper, oxygen, and fluorine. Is a copper material with a coating.
[0038] また、表面処理皮膜は、更に Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr (lll) , Ta及 び Znからなる群力も選ばれる少なくとも 1種を含有するのが好ましい。これにより榭脂 との密着性が向上する。 [0038] Further, the surface treatment film further contains at least one selected from the group force consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr (lll), Ta and Zn. preferable. As a result, the adhesion to the resin is improved.
前記表面処理皮膜中に含有する Ti, Zr, Hf及び S なる群力 選ばれる少なく とも一種の金属元素及び Cu、さらには Ag, Al, Fe, Mn, Mg, Ni, Co, Cr(lll) , Ta 及び Znからなる群力も選ばれる少なくとも 1種力 含水酸化物、フッ化物、もしくはそ の中間生成物の状態で存在することが好ま U、。 The group force of Ti, Zr, Hf and S contained in the surface treatment film is selected from at least one metal element and Cu, as well as Ag, Al, Fe, Mn, Mg, Ni, Co, Cr (lll), At least one kind of force selected from the group forces consisting of Ta and Zn Hydrous oxide, fluoride, or U, which preferably exists in the state of intermediate products.
また、表面処理皮膜は、更に炭素を含有するのが好ましい。これにより、皮膜構造 力 り緻密になり、皮膜付き銅材料が高温に曝されたときの耐変色性がより優れたも のとなり、また、上述した配線材料に銅材料を用いる際における、高温環境下におけ る脆弱な銅の酸ィ匕皮膜の生成、ポリイミド榭脂や Si単結晶への拡散等の種々の問題 が生じにくくなる。  The surface treatment film preferably further contains carbon. As a result, the coating structure becomes denser and the coating-coated copper material has better discoloration resistance when exposed to high temperatures. Various problems such as the formation of brittle copper oxide film below, diffusion into polyimide resin and Si single crystal are less likely to occur.
[0039] 本発明の皮膜付き銅材料にお!ヽては、表面処理皮膜は、本発明の処理液の組成 ( 例えば、成分 (B)の金属元素の種類、成分 (A)の銅の酸ィ匕エッチング剤の種類、各 種成分の濃度)を適宜選択することにより、皮膜構造を所望のものにすることができる 。具体的には、表面処理皮膜の銅の含有量およびその深さ方向の分布を種々のも のとすることができる。  [0039] For the coated copper material of the present invention, the surface-treated film comprises the composition of the treatment liquid of the present invention (for example, the type of the metal element of component (B), the copper acid of component (A)). The film structure can be made desired by appropriately selecting the type of etching agent and the concentration of each component. Specifically, the copper content and the distribution in the depth direction of the surface treatment film can be various.
図 1、図 2は表面処理皮膜中、 Ti,Zr,Hfおよび S なる群力 なる群力 選ばれ る少なくとも 1種の金属元素(M)、銅 (Cu)、酸素 (O)についての、深さ方向 XPS分析 結果であり、図 1は傾斜構造、図 2は均一構造の表面処理皮膜についての 1例である 。図 1および図 2中、「M」、「Cu」および「0」は、それぞれ Ti、 Zr、 Hfおよび Siからな る群から選ばれる少なくとも 1種の金属元素、銅および酸素の原子含有率を示す。 図 1に示される傾斜構造の表面処理皮膜にお!ヽては、皮膜表面から銅材料との界 面に向力つて、概して、金属元素(M)の含有率が減少し、銅 (Cu)の含有率が増加 している。  Fig. 1 and Fig. 2 show the depth of at least one metal element (M), copper (Cu), and oxygen (O) selected from the group strength of Ti, Zr, Hf and S in the surface treatment film. Fig. 1 shows an example of a surface treatment film with a tilted structure and Fig. 2 shows a uniform surface structure. In FIG. 1 and FIG. 2, “M”, “Cu” and “0” represent the atomic contents of at least one metal element selected from the group consisting of Ti, Zr, Hf and Si, copper and oxygen, respectively. Show. In the surface-treated film having the inclined structure shown in FIG. 1, the content of the metal element (M) generally decreases as the force from the film surface to the interface with the copper material decreases, and the copper (Cu) The content of is increasing.
図 2に示される均一構造の表面処理皮膜においては、皮膜表面付近 (Etch Tim e : 0〜約 40秒)では金属元素(M)の含有率が高ぐ銅 (Cu)の含有率が低ぐかつ、 それらは深さ方向にほぼ一定である。  In the surface-treated film with a uniform structure shown in Fig. 2, the content of copper (Cu) with a high metal element (M) content is low near the film surface (Etch Time: 0 to about 40 seconds). And they are almost constant in the depth direction.
[0040] 本発明の皮膜付き銅材料においては、銅材料の表面から 5nmまでの領域におけ る銅の含有率が 0.3〜60atm%であるのが好ましい態様の 1つである。銅の含有率が高 すぎると、上述したように、配線材料に銅材料を用いる際における、高温環境下にお ける脆弱な銅の酸ィヒ皮膜の生成、ポリイミド榭脂や Si単結晶への拡散等の問題が起 こりやすくなるため、榭脂との接着性等に劣ることがある。  [0040] In the coated copper material of the present invention, one preferred embodiment is that the copper content in the region from the surface of the copper material to 5 nm is 0.3 to 60 atm%. If the copper content is too high, as described above, when copper material is used as the wiring material, formation of a brittle copper acid film in a high temperature environment, polyimide resin or Si single crystal Since problems such as diffusion are likely to occur, the adhesiveness to the resin may be poor.
[0041] また、図 1に示されるように、表面処理皮膜の表面から銅材料との界面に向かって、 Ti、 Zr、 Hfおよび S なる群力 選ばれる少なくとも 1種の金属元素の含有率が減 少し、かつ、銅の含有率が増加するのは、好ましい態様の一つである。このような構 造の表面処理皮膜は、銅材料との優れた密着性を有しつつ、上述した高温環境下 における銅の拡散等の問題を防止することができる。また表面処理皮膜の厚さはサ ブミクロンオーダーであり、また、表面処理時に、銅材料表面を均一にエッチングする ために、本発明の皮膜付き銅材料は、従来の粗面化処理に比べて非常に平滑な表 面が得られる。皮膜付き銅材料表面の中心線平均粗さ Raは 0.50以下であることが好 ましい態様の 1つである。 [0041] Further, as shown in FIG. 1, from the surface of the surface treatment film toward the interface with the copper material, One preferred embodiment is that the content of at least one metal element selected from the group force of Ti, Zr, Hf and S is decreased and the content of copper is increased. The surface-treated film having such a structure can prevent problems such as copper diffusion in a high-temperature environment described above while having excellent adhesion with a copper material. Moreover, the thickness of the surface treatment film is on the order of submicrons, and the copper material with a film of the present invention is compared with the conventional roughening treatment in order to uniformly etch the copper material surface during the surface treatment. A very smooth surface can be obtained. One of the preferred embodiments is that the center line average roughness Ra of the coated copper material surface is 0.50 or less.
[0042] 本発明の皮膜付き銅材料は、表面処理皮膜と榭脂との接着性、特に高温下での接 着性に優れるため、種々の用途に好適に用いられる。例えば、後述する本発明の積 層部材に好適に用いられる。 [0042] The coated copper material of the present invention is excellent in adhesiveness between the surface-treated film and the resin, particularly adhesiveness at high temperature, and thus is suitably used for various applications. For example, it is suitably used for a laminated member of the present invention described later.
また、本発明の皮膜付き銅材料は、耐食性にも優れるため、種々の用途に好適に 用いられる。  Moreover, since the coated copper material of the present invention is excellent in corrosion resistance, it is suitably used for various applications.
[0043] 本発明の積層部材は、上述した本発明の皮膜付き銅材料と、前記表面処理皮膜 の上に設けられた榭脂層とを有する、積層部材である。  [0043] The laminated member of the present invention is a laminated member having the above-described coated copper material of the present invention and a resin layer provided on the surface treatment film.
図 3は、本発明の積層部材を示す模式的な断面図である。図 3に示される積層部 材 10は銅材料 2とその表面の Ti,Zr,H よび Si力もなる群力も選ばれる少なくとも 1種 の金属元素と、銅と酸素、フッ素、更には Ag, Al, Fe, Mn, Mg, Ni, Co, Cr(III), Ta及 び Znからなる群力 選ばれる少なくとも 1種、さらには炭素とを含有する表面処理皮 膜 4とを有する本発明の皮膜付き銅材料 6と表面処理皮膜 4の上に設けられた榭脂 層 8とを有する。  FIG. 3 is a schematic cross-sectional view showing the laminated member of the present invention. The laminated material 10 shown in Fig. 3 is made of copper material 2 and at least one metal element whose surface is selected from the group forces of Ti, Zr, H, and Si, copper, oxygen, fluorine, Ag, Al, Coated copper of the present invention having a surface treatment film 4 containing at least one selected from the group force consisting of Fe, Mn, Mg, Ni, Co, Cr (III), Ta and Zn, and further carbon. It has a material 6 and a resin layer 8 provided on the surface treatment film 4.
[0044] 榭脂層の材料は、特に限定されず、例えば、 AS榭脂、 ABS榭脂、フッ素榭脂、ポリ アミド、ポリエチレン、ポリエチレンテレフタレート、ポリ塩ィ匕ビユリデン、ポリカーボネー ト、ポリスチレン、ポリサルホン、ポリプロピレン、液晶ポリマー等の熱可塑性榭脂;ェ ポキシ榭旨、フエノール榭脂、ポリイミド、ポリウレタン、ビスマレイミド 'トリアジン榭脂、 変性ポリフエ-レンエーテル、シァネートエステル等の熱硬化性榭脂が挙げられる。 これらの榭脂は官能基によって変性されて 、てもよ 、。  [0044] The material of the resin layer is not particularly limited. For example, AS resin, ABS resin, fluorine resin, polyamide, polyethylene, polyethylene terephthalate, polysalt vinylidene, polycarbonate, polystyrene, polysulfone. Thermoplastic resins such as epoxy resin, polypropylene resin, epoxy resin, epoxy resin, polyimide resin, polyimide, polyurethane, bismaleimide 'triazine resin, modified polyphenylene ether, cyanate ester, etc. It is done. These rosins may be modified by functional groups.
中でも、エポキシ榭脂およびポリイミド榭脂は、いずれも耐熱接着性に優れるため、 プリント配線板、リードフレーム、 LSIパッケージ等の電子部品の用途に有用である。 また、榭脂層は、ガラス繊維、ァラミド繊維等の繊維を含有することができる。繊維を 含有することにより、榭脂層が強化される。 Among them, epoxy resin and polyimide resin are both excellent in heat-resistant adhesion, Useful for electronic components such as printed wiring boards, lead frames, and LSI packages. Moreover, the resin layer can contain fibers such as glass fibers and aramid fibers. By containing the fiber, the resin layer is reinforced.
[0045] 本発明の積層部材は、上述した本発明の皮膜付き銅材料に、前記表面処理皮膜 を介して榭脂層を接合させることにより得ることができる。 [0045] The laminated member of the present invention can be obtained by bonding a resin layer to the above-described coated copper material of the present invention via the surface treatment film.
接合させる方法は、特に限定されず、具体的には、榭脂層がエポキシ榭脂層の場 合は、エポキシ榭脂フィルムを表面処理皮膜上に加熱圧着するラミネート法が一般 的に行われており、榭脂層がポリイミド榭脂層の場合は、例えば、(1)皮膜付き銅材 料の表面処理皮膜に、ポリイミドの前駆体であるポリアミック酸を塗布した後、乾燥さ せて硬化させることによりポリイミド層を形成させるコーティング法、(2)皮膜付き銅材 料の表面処理皮膜に、熱可塑性ポリイミド層により被覆されたポリイミドフィルムを、表 面処理皮膜と熱可塑性ポリイミド層とが接触するように積層した後、加熱圧着するラミ ネート法が挙げられる。  The bonding method is not particularly limited. Specifically, when the resin layer is an epoxy resin layer, a laminating method in which an epoxy resin film is thermocompression bonded onto the surface treatment film is generally performed. In the case where the resin layer is a polyimide resin layer, for example, (1) a polyamic acid which is a polyimide precursor is applied to a surface treatment film of a copper material with a film, and then dried and cured. (2) A polyimide film coated with a thermoplastic polyimide layer on a surface-treated film of a copper material with a coating so that the surface-treated film and the thermoplastic polyimide layer are in contact with each other. A laminating method in which heat lamination is performed after laminating can be mentioned.
[0046] 本発明の積層部材は、銅材料と榭脂との接着性、特に高温下での接着性に優れる ため、種々の用途に好適に用いられる。  [0046] The laminated member of the present invention is excellent in adhesiveness between a copper material and a resin, particularly adhesiveness at high temperature, and thus is suitably used for various applications.
実施例  Example
[0047] 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限ら れるものではない。  [0047] The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
[0048] 1.皮膜付き銅材料の作製 [0048] 1. Fabrication of coated copper material
第 1表に示される表面処理液を用いて、第 2表に示す被処理材に対し、第 2表に 示す実施例 1〜10、比較例 1〜3の表面処理条件にて、以下に示す処理工程を行つ て皮膜付き銅材料を得た。なお、表面処理液の pHはアンモニア水および硝酸で調 整し、表面処理液への被処理材の浸漬時間は何れの水準にぉ 、ても一律 10分間と した。得られた皮膜付き銅材料表面の中心線平均粗さ Raは 0. 50以下であり、平滑 面が得られた。  Using the surface treatment liquid shown in Table 1, the materials shown in Table 2 are treated as shown below under the surface treatment conditions of Examples 1 to 10 and Comparative Examples 1 to 3 shown in Table 2. The treatment process was performed to obtain a coated copper material. The pH of the surface treatment liquid was adjusted with ammonia water and nitric acid, and the immersion time of the material to be treated in the surface treatment liquid was uniformly 10 minutes at any level. The center line average roughness Ra of the surface of the obtained coated copper material was 0.50 or less, and a smooth surface was obtained.
〔被処理材〕  [Material to be treated]
被処理材の略号と内訳を以下に示す。  The abbreviations and breakdown of the materials to be processed are shown below.
•銅板:無酸素銅板 (C 1020P、JIS— H— 3100) '黄銅板:黄銅板 (C 2600P、JIS - H - 3100) Copper plate: Oxygen-free copper plate (C 1020P, JIS—H—3100) 'Brass plate: Brass plate (C 2600P, JIS-H-3100)
•銅箔:電解銅箔 (純度 99. 8質量%以上)、厚さ 50 m  • Copper foil: electrolytic copper foil (purity 99.8% by mass or more), thickness 50 m
[0049] 〔処理工程〕 [0049] [Processing step]
処理工程としては、以下の工程(1)〜(8)を順に行った。  As processing steps, the following steps (1) to (8) were performed in order.
(1)脱脂(60°C、 10分、浸せき法、日本パーカライジング (株)製のファインクリーナ 一 4360 (登録商標)を用いて調製された 5質量%水溶液を使用)  (1) Degreasing (60 ° C, 10 minutes, immersion method, using a 5% by weight aqueous solution prepared with Fine Cleaner 4360 (registered trademark) manufactured by Nihon Parkerizing Co., Ltd.)
(2)水洗(常温、 30秒、スプレー法)  (2) Washing with water (normal temperature, 30 seconds, spray method)
(3)酸洗 (常温、 30秒、浸せき法、市販の硫酸を用いて調製された 10%水溶液を 使用)  (3) Pickling (use normal temperature, 30 seconds, immersion method, 10% aqueous solution prepared using commercially available sulfuric acid)
(4)水洗(常温、 30秒、スプレー法)  (4) Washing with water (room temperature, 30 seconds, spray method)
(5)表面処理 (後述のとおり)  (5) Surface treatment (as described later)
(6)水洗(常温、 30秒、スプレー法)  (6) Washing with water (normal temperature, 30 seconds, spray method)
(7)純水洗(常温、 30秒、スプレー法)  (7) Pure water washing (normal temperature, 30 seconds, spray method)
(8)加熱乾燥 (80°C、 5分、熱風オーブン)  (8) Heat drying (80 ° C, 5 minutes, hot air oven)
[0050] 上記で得られた皮膜付き銅材料につ!ヽて、以下のように各種の評価を行った。結 果を第 2表に示す。なお表 1, 2中「一」は、測定なしを示す。また、皮膜付着量、成分 Eは、測定された炭素量を示す。  [0050] The film-coated copper material obtained above was subjected to various evaluations as follows. The results are shown in Table 2. In Tables 1 and 2, “1” indicates no measurement. Also, the amount of coating and component E indicate the measured carbon content.
(1)皮膜付着量  (1) Amount of coating
蛍光 X線分析装置を用い、皮膜中の Ti,Zr,Hf及び Siからなる群力 選ばれる少な くとも一種の金属元素(成分 B)ならびに Ag, Al, Fe, Mn, Mg, Ni, Co, Cr(lll) , T a及び Znからなる群力も選ばれる少なくとも 1種の金属元素 (成分 C)の量を測定した 。また、皮膜中の炭素量 (成分 D)を全炭素分熱重量分析により測定した。  Using a fluorescent X-ray analyzer, at least one metal element (component B) selected from the group force consisting of Ti, Zr, Hf and Si in the film, and Ag, Al, Fe, Mn, Mg, Ni, Co, The amount of at least one metal element (component C) for which the group force consisting of Cr (lll), Ta and Zn was also selected was measured. In addition, the amount of carbon in the coating (component D) was measured by total carbon pyrogravimetric analysis.
[0051] (2)皮膜構造分析および皮膜の Cu含有率 [0051] (2) Analysis of film structure and Cu content of film
XPS分析装置を用い、皮膜中の Ti、 Zr、 Hfおよび S なる群力 選ばれる少な くとも 1種の金属元素、 Cuならびに Oの厚さ方向の分布を測定し、皮膜構造が傾斜 構造であるか、均一構造であるかを分析し、また、最表層(表面から 5nmまでの領域 )における Cu含有率を測定した。  Using an XPS analyzer, measure the distribution in the thickness direction of at least one metal element, Cu and O selected from the group forces of Ti, Zr, Hf and S in the film, and the film structure is an inclined structure. The Cu content in the outermost layer (region from the surface to 5 nm) was measured.
なお、実施例 1〜10の皮膜付き銅材料の中心線平均粗さ Raは、 0. 50以下であつ た。 The center line average roughness Ra of the coated copper materials of Examples 1 to 10 is 0.50 or less. It was.
[0052] (3)耐熱接着性  [0052] (3) Heat resistant adhesiveness
皮膜付き銅材料の皮膜上に、厚さ約 50 /z mの熱可塑性ポリイミド榭脂シート、およ びガラス布基材エポキシ榭脂シートを張り合わせ、その上に厚さ 35 mの銅箔を配 置 250°C、ガラス布基材エポキシ榭脂シートは加熱温度 200°Cで、加熱時間 2時間 の条件でプレス接着し、銅材料 -ポリイミドおよび銅材料 -エポキシ榭脂の積層部材 を得た。  A thermoplastic polyimide resin sheet with a thickness of about 50 / zm and a glass cloth base epoxy resin sheet are laminated on the film of copper material with film, and a copper foil with a thickness of 35 m is placed on it. The glass cloth-based epoxy resin sheet was press-bonded at a heating temperature of 200 ° C and a heating time of 2 hours to obtain a laminated member of copper material-polyimide and copper material-epoxy resin.
この積層部材を 50mm角に切断して劣化を促進する為に 85°C、 85%RHの加温 湿潤環境下に 24時間放置した後、 300°Cの溶融半田浴に浮かべた時の、積層部材 の膨れが発生する時間を測定し、以下の評価基準に従い、耐熱接着性を評価した。 ※ 耐熱接着性評価基準  In order to accelerate the deterioration by cutting this laminated member into 50mm squares, the laminate was left for 24 hours in a heated and humid environment at 85 ° C and 85% RH and then floated in a 300 ° C molten solder bath. The time for the swelling of the member was measured, and the heat resistant adhesion was evaluated according to the following evaluation criteria. * Heat-resistant adhesive evaluation criteria
1点→0〜100秒、 2点→100〜300秒、 3点→300〜500秒、 4点→500〜1000秒、 1 point → 0 to 100 seconds, 2 points → 100 to 300 seconds, 3 points → 300 to 500 seconds, 4 points → 500 to 1000 seconds,
5点→1000秒以上 5 points → 1000 seconds or more
[0053] [表 1] [0053] [Table 1]
第 1表 Table 1
表面処理液組成  Surface treatment solution composition
成分 A 成分 B 成分 c 成分!) 成分 E 水準 化学種 濃度(ppm)化学種濃度(miiiol/L)化学種 K 化学種 濃度(PPBl) 化学種 濃度(ppm) PH 懾度 Component A Component B Component c Component!) Component E Level Chemical Species Concentration (ppm) Chemical Species Concentration (miiiol / L) Chemical Species K Chemical Species Concentration (PPBl) Chemical Species Concentration (ppm) PH
A H202 1000 H2TiF6 Ti I HF 0.08 - - - - 3.5 40AH 2 0 2 1000 H 2 TiF 6 Ti I HF 0.08----3.5 40
B H202 1000 H2TiF6 Ti 1 HF 0.08 AI(N03)3 300 - 一 3.5 40BH 2 0 2 1000 H 2 TiF 6 Ti 1 HF 0.08 AI (N0 3 ) 3 300-1 3.5 40
C NaNOz 500 ¾TiF6 Ti 1 HF 0.08 - - - - 3.5 40C NaNO z 500 ¾TiF 6 Ti 1 HF 0.08----3.5 40
D HA 500 H2ZrF6 Zr z HF 0.1 TaCl5 500 - - 4 50 t-フチルハイドロパ一ォキ D HA 500 H 2 ZrF 6 Zr z HF 0.1 TaCl 5 500--4 50 t-Futyl hydroparoxy
E サイド 1000 H Ti : 1 NH4F 0.17 g(N03)2 1000 - - 4 40E side 1000 H Ti: 1 NH4F 0.17 g (N0 3 ) 2 1000--4 40
F ジ- 1-ブチルパーォキサイド 700 H2TiF6 Ti : 4 HF 0.1 ZnO 500 - - 3.5 50F Di-1-butyl peroxide 700 H 2 TiF 6 Ti: 4 HF 0.1 ZnO 500--3.5 50
G NaC103 500 rP6 Zr : 10 NaF 0.15 - - ポリアリルアミン 1000 4.5 40G NaC10 3 500 rP 6 Zr: 10 NaF 0.15--Polyallylamine 1000 4.5 40
H H202 1000 H2TiF6 Ti 5 HF 0.05 Mg(N03)z 500 ベンゾトリアゾ一 JlJ 100 3.5 40HH 2 0 2 1000 H 2 TiF 6 Ti 5 HF 0.05 Mg (N0 3 ) z 500 Benzotriazo JlJ 100 3.5 40
I - - H2TiF6 Ti 1 HF 0.08 - - - - 3.5 40I--H 2 TiF 6 Ti 1 HF 0.08----3.5 40
J Na2S2Os 1000 R2ZrF6 Zr 5 HF 0.08 A1(N03)3 300 - - 3.5 40J Na 2 S 2 O s 1000 R 2 ZrF 6 Zr 5 HF 0.08 A1 (N0 3 ) 3 300--3.5 40
K NaN02 500 H2TiF6 Ti 1 HF 0.01 - - - - 3.5 40 K NaN0 2 500 H 2 TiF 6 Ti 1 HF 0.01----3.5 40
Figure imgf000020_0001
第 2表より成分 (A) Cuの酸ィ匕エッチング剤、成分 (B) Ti Zr Hf及び S もなる群 力 選ばれる少なくとも 1種の金属元素を含む化合物、成分 (C) HFの供給源として のフッ素含有化合物を含有し、且つ成分(B)の化合物中の Ti、 Zr、 Hf及び Siの金 属元素の合計モル濃度 Aと成分 (C)のフッ素含有ィ匕合物中の全フッ素原子を HFに 換算した時のモル濃度 Bとの比である K=AZBが 0.03≤K≤0.18の範囲内である組 成の表面処理液を用いた実施例 1,2,4は、ポリイミド榭脂およびエポキシ榭脂との耐 熱接着性が良好であり、中でも実施例 4は表面処理により得られた皮膜構造が傾斜 構造を有しており、更に耐熱接着性が高いものであった。更に、成分 (D)Ag, Al, C u, Fe, Mn, Mg, Ni, Co, Cr3+, Ta及び Znからなる群から選ばれる元素の少なくと も 1種を含む化合物を含有する表面処理液を用いた実施例 3, 5, 6, 7は更に耐熱 接着性が優れたものであった。更に成分 (E)アミノ基を含有する有機化合物を含有 する表面処理液を用いた実施例 8〜10は更に耐熱接着性が高いものであった。 これに対し、特定の銅の酸ィ匕エッチング剤を用いな力つた比較例 1および 2、およ び Kが小さすぎた比較例 3の場合は表面処理皮膜が形成せず、耐熱接着性に劣つ ていた。
Figure imgf000020_0001
From Table 2, component (A) Cu acid etching agent, component (B) Ti Zr Hf and S group Power Compound containing at least one metal element selected, Component (C) Fluorine-containing compound as a source of HF, and Ti, Zr, Hf and Si metal elements in the compound of Component (B) K = AZB is within the range of 0.03≤K≤0.18, which is the ratio between the total molar concentration of A and the molar concentration B of all fluorine atoms in the fluorine-containing compound of component (C) when converted to HF. Examples 1, 2, and 4 using a surface treatment liquid with a certain composition have good heat-resistant adhesion to polyimide and epoxy resins, and in particular, Example 4 shows the film structure obtained by surface treatment. Had an inclined structure and further had high heat-resistant adhesion. Furthermore, component (D) a surface containing a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr 3+ , Ta and Zn Examples 3, 5, 6, and 7 using the treatment liquid were further excellent in heat-resistant adhesion. Furthermore, Examples 8 to 10 using the surface treatment liquid containing an organic compound containing component (E) amino group had higher heat-resistant adhesion. In contrast, Comparative Examples 1 and 2, which used a specific copper acid etchant, and Comparative Example 3 where K was too small did not form a surface-treated film, resulting in improved heat resistance. It was inferior.

Claims

請求の範囲 The scope of the claims
[1] 次の成分 (A)、成分 (B)、及び成分 (C)  [1] Next component (A), component (B), and component (C)
(A) HC10 , HC10 , HC10 , HBrO , HBrO , HBrO , HBrO, HNO , HNO , H S O  (A) HC10, HC10, HC10, HBrO, HBrO, HBrO, HBrO, HNO, HNO, H S O
4 3 2 4 3 2 3 2 2 2 6 4 3 2 4 3 2 3 2 2 2 6
, H O , HMnO , HVO , H WO及び H MoOからなる群から選ばれる酸素酸、並びOxyacids selected from the group consisting of H, O, HMnO, HVO, HWO and HMoO,
2 2 4 3 2 4 2 4 2 2 4 3 2 4 2 4
にその塩、ケトンパーオキサイド、パーォキシケタール、ハイド口パーオキサイド、ジァ ルキルパーオキサイド、ジァシルバーオキサイド、パーォキシエステル、パーォキシジ カーボネートからなる群力 選ばれる有機過酸ィ匕物、並びにその塩のからなる群から 選ばれる少なくとも 1種の銅の酸ィ匕エッチング剤  And organic peroxides selected from the group consisting of salt, ketone peroxide, peroxyketal, hydride peroxide, dialkyl peroxide, disilver oxide, peroxyester, peroxydicarbonate, and At least one copper acid etchant selected from the group consisting of the salts
(B) Ti、 Zr、 Hf及び Si力 なる群力 選ばれる少なくとも 1種の金属元素を含む化合物 、および  (B) a group force consisting of Ti, Zr, Hf and Si forces, a compound containing at least one selected metal element, and
(C) HFの供給源としてのフッ素含有ィ匕合物;  (C) a fluorine-containing compound as a source of HF;
を含有し、且つ成分 (B)の化合物中の Ti、 Zr、 Hf及び Siの金属元素の合計モル濃度 Aと成分 (C)のフッ素含有ィ匕合物中の全フッ素原子を HFに換算した時のモル濃度 B との比である K=AZBが 0.03≤K≤0.18の範囲内である銅材料用表面処理液。  The total molar concentration A of the metal elements of Ti, Zr, Hf and Si in the compound of component (B) and the total fluorine atoms in the fluorine-containing compound of component (C) were converted to HF Surface treatment solution for copper materials with K = AZB in the range of 0.03≤K≤0.18, which is the ratio to the molar concentration B at the time.
[2] さらに、成分 (D) ; [2] In addition, component (D);
(D) Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta及び Znからなる群から選ばれる 元素の少なくとも 1種を含む化合物を含有する請求項 1に記載の銅材料用表面処理 液。  The copper material according to claim 1, comprising (D) a compound containing at least one element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta, and Zn. Surface treatment liquid.
[3] さらに、アミノ基を含有する有機化合物 (E)を 10〜50000ppm含有する請求項 1また は 2に記載の銅材料用表面処理液。  [3] The surface treatment solution for copper materials according to claim 1 or 2, further comprising 10 to 50,000 ppm of an organic compound (E) containing an amino group.
[4] 前記アミノ基を含有する有機化合物 (E)が、ビュルァミン、ポリビュルァミン、ァリル ァミン、ジァリルァミン、ポリアリルァミン、ポリアミンポリアミド、ァミン変性フエノール榭 脂、ァミン変性ポリビュルフエノール榭脂、ァミン変性ウレタン榭脂、ベンゾトリァゾー ル、トリアジンチオールおよびこれらの誘導体力 なる群力 選ばれる少なくとも 1つ である請求項 3に記載の銅材料用表面処理液。  [4] The amino group-containing organic compound (E) is a bullamine, a polybulamine, a arylamine, a diarylamine, a polyallylamine, a polyamine polyamide, an amine-modified phenol resin, an amine-modified polybutanol resin, an amine-modified urethane resin, 4. The surface treatment solution for a copper material according to claim 3, which is at least one selected from the group force consisting of benzotriazole, triazine thiol and derivatives thereof.
[5] 銅材料を請求項 1〜4の ヽずれかに記載の表面処理液と接触させることを特徴とす る銅材料の表面処理方法。  [5] A surface treatment method for a copper material, comprising contacting the copper material with the surface treatment liquid according to any one of claims 1 to 4.
[6] Ti, Zr, Hfおよび S なる群力 選ばれる少なくとも一種の金属元素、 Cu、 0、 および Fを含有する事を特徴とする表面処理皮膜付き銅材料。 [6] Group force of Ti, Zr, Hf and S, at least one metal element selected, Cu, 0, A copper material with a surface treatment film characterized by containing F and F.
[7] さらに、 Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Taおよび Zn力らなる群力ら選 ばれる少なくとも 1種を含有する請求項 6に記載の表面処理皮膜付き銅材料。 [7] The surface-treated film according to claim 6, further comprising at least one selected from a group force consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Cr, Ta, and Zn force Copper material.
[8] さらに、炭素 Cを含有する請求項 6または 7に記載の表面処理皮膜付き銅材料。 [8] The copper material with a surface treatment film according to [6] or [7], further containing carbon C.
[9] 前記表面処理皮膜中に含有する Ti, Zr, Hf、 Si、 Cu、 Ag, Al, Fe, Mn, Mg, Ni[9] Ti, Zr, Hf, Si, Cu, Ag, Al, Fe, Mn, Mg, Ni contained in the surface treatment film
, Co, Cr, Taおよび Znからなる群力も選ばれる少なくとも 1種の元素力 含水酸ィ匕物At least one elemental force selected from the group forces consisting of Co, Cr, Ta and Zn
、フッ化物、またはその中間生成物の状態で存在する請求項 6〜8のいずれかに記 載の表面処理皮膜付き銅材料。 The copper material with a surface treatment film according to any one of claims 6 to 8, wherein the copper material exists in a state of, fluoride, or an intermediate product thereof.
[10] 前記銅材料の表面から 5nmまでの深さにおける Cuの含有量が 0. 3〜60atm%であ る請求項 6〜9のいずれかに記載の表面処理皮膜付き銅材料。 [10] The copper material with a surface-treated film according to any one of [6] to [9], wherein the Cu content at a depth of 5 nm from the surface of the copper material is 0.3 to 60 atm%.
[11] 前記皮膜 銅材料界面側にいくにつれて Ti, Zr, Hf及び S なる群力 選ばれ る少なくとも一種の金属元素の含有率が減少し、 Cuの含有率が増加する傾斜構造 を有する請求項 7〜10のいずれか〖こ記載の表面処理皮膜付き銅材料。 [11] The inclined film structure according to claim 1, wherein the content of at least one metal element selected from the group force Ti, Zr, Hf and S decreases and the content of Cu increases as it goes to the copper material interface side. The copper material with a surface treatment film according to any one of 7 to 10.
[12] 請求項 6〜11のいずれかに記載の表面処理皮膜付き銅材料の上に榭脂層が設け られたことを特徴とする積層部材。 [12] A laminated member, wherein a resin layer is provided on the copper material with a surface treatment film according to any one of claims 6 to 11.
PCT/JP2007/055255 2006-03-15 2007-03-15 Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member WO2007105800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800091155A CN101400826B (en) 2006-03-15 2007-03-15 Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member
JP2008505208A JP5111362B2 (en) 2006-03-15 2007-03-15 Surface treatment liquid for copper material, surface treatment method for copper material, copper material with surface treatment film, and laminated member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006070460 2006-03-15
JP2006-070460 2006-03-15

Publications (1)

Publication Number Publication Date
WO2007105800A1 true WO2007105800A1 (en) 2007-09-20

Family

ID=38509613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055255 WO2007105800A1 (en) 2006-03-15 2007-03-15 Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member

Country Status (4)

Country Link
JP (1) JP5111362B2 (en)
KR (1) KR101067993B1 (en)
CN (1) CN101400826B (en)
WO (1) WO2007105800A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138256A (en) * 2007-12-03 2009-06-25 Ya Thai Chemical Co Ltd Chrome-free corrosion inhibitor composition, and its application
JP2014504333A (en) * 2010-12-07 2014-02-20 日本パーカライジング株式会社 Metal pretreatment compositions containing zirconium, copper, and metal chelators, and associated coatings on metal substrates
JP2018517056A (en) * 2015-04-15 2018-06-28 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Thin corrosion protective coating using polyamidoamine polymer
US10094026B2 (en) 2010-12-07 2018-10-09 Henkel Ag & Co. Kgaa Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014035690A1 (en) 2012-08-29 2014-03-06 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
HUE039960T2 (en) 2012-08-29 2019-02-28 Ppg Ind Ohio Inc Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
PT2743376T (en) * 2012-12-11 2018-01-24 Thyssenkrupp Steel Europe Ag Aqueous agent and coating method for the corrosion protection treatment of metal substrates
KR101434112B1 (en) 2013-09-09 2014-08-26 박찬동 Multi-purpose water-solube metalworking fluids for metal surface treatment before painting and method thereof
KR20150071648A (en) * 2013-12-18 2015-06-26 니혼 파커라이징 가부시키가이샤 Aqueous metal surface treatment agent, metal surface treatment coating film and metal material having a metal surface treatment coating film
WO2017022539A1 (en) * 2015-07-31 2017-02-09 住友金属鉱山株式会社 Conductive substrate and conductive substrate manufacturing method
WO2017022543A1 (en) * 2015-07-31 2017-02-09 住友金属鉱山株式会社 Conductive substrate and conductive substrate manufacturing method
CN107850966B (en) * 2015-07-31 2021-02-26 住友金属矿山股份有限公司 Conductive substrate
US11518960B2 (en) 2016-08-24 2022-12-06 Ppg Industries Ohio, Inc. Alkaline molybdenum cation and phosphonate-containing cleaning composition
KR102120295B1 (en) 2018-12-26 2020-06-08 태원공업(주) Manufacturing Method of Rectangular Wire Composed of German Silver
KR102120320B1 (en) 2018-12-26 2020-06-08 태원공업(주) Manufacturing Method of Rectangular Wire Composed of Brass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644775A (en) * 1979-09-06 1981-04-24 Richardson Chemical Co Nonnchromium or low chromium metal surface passivation
JPS63230884A (en) * 1987-03-19 1988-09-27 Furukawa Electric Co Ltd:The Surface treatment of precipitation strengthening copper alloy for lead frame
WO2002103080A1 (en) * 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Treating solution for surface treatment of metal and surface treatment method
JP2005146377A (en) * 2003-11-18 2005-06-09 Nippon Steel Corp Chemical conversion-treated metallic sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402991B2 (en) * 2004-03-18 2010-01-20 日本パーカライジング株式会社 Metal surface treatment composition, metal surface treatment liquid, metal surface treatment method and metal material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644775A (en) * 1979-09-06 1981-04-24 Richardson Chemical Co Nonnchromium or low chromium metal surface passivation
JPS63230884A (en) * 1987-03-19 1988-09-27 Furukawa Electric Co Ltd:The Surface treatment of precipitation strengthening copper alloy for lead frame
WO2002103080A1 (en) * 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Treating solution for surface treatment of metal and surface treatment method
JP2005146377A (en) * 2003-11-18 2005-06-09 Nippon Steel Corp Chemical conversion-treated metallic sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138256A (en) * 2007-12-03 2009-06-25 Ya Thai Chemical Co Ltd Chrome-free corrosion inhibitor composition, and its application
JP2014504333A (en) * 2010-12-07 2014-02-20 日本パーカライジング株式会社 Metal pretreatment compositions containing zirconium, copper, and metal chelators, and associated coatings on metal substrates
US10094026B2 (en) 2010-12-07 2018-10-09 Henkel Ag & Co. Kgaa Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates
JP2018517056A (en) * 2015-04-15 2018-06-28 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Thin corrosion protective coating using polyamidoamine polymer
US11104823B2 (en) 2015-04-15 2021-08-31 Henkel Ag & Co. Kgaa Thin corrosion protective coatings incorporating polyamidoamine polymers
JP2022009076A (en) * 2015-04-15 2022-01-14 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Thin corrosion protection coating using polyamide amine polymer
JP7218411B2 (en) 2015-04-15 2023-02-06 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Thin corrosion protection coating with polyamidoamine polymer

Also Published As

Publication number Publication date
KR101067993B1 (en) 2011-09-26
JP5111362B2 (en) 2013-01-09
CN101400826B (en) 2012-06-20
KR20080100821A (en) 2008-11-19
JPWO2007105800A1 (en) 2009-07-30
CN101400826A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP5111362B2 (en) Surface treatment liquid for copper material, surface treatment method for copper material, copper material with surface treatment film, and laminated member
JP5167270B2 (en) Ground treatment agent for metal material and method for ground treatment of metal material
US6299721B1 (en) Coatings for improved resin dust resistance
WO2009110364A1 (en) Copper surface treatment agent and surface treatment method
KR20140035926A (en) Method for producing aluminum-resin complex
KR20140140649A (en) Surface treated copper foil
JP5186814B2 (en) Steel plate for containers and manufacturing method thereof
JP5186817B2 (en) Steel plate for containers
JP2009001853A (en) Steel sheet for vessel, and method for producing the same
KR20150104072A (en) Metal foil for radiating heat, method of preparing the same, and metal-clad laminate for radiating heat and multi-layer printed circuit board
JP4621293B2 (en) Copper surface treatment agent and surface treatment method
JP2010150613A (en) Surface treatment agent and surface treatment method for copper, and film for copper surface
WO2007138795A1 (en) Catalytic agent for electroless plating
TW201016090A (en) Surface treated copper foil
KR101617677B1 (en) Composite steel sheet including metallic thin film and ceramic coated layer having excellent corrosion resistance at high temperature and preparation method thereof
Critchlow General introduction to surface treatments
KR20160046866A (en) Steel sheet for containers
JPS6214040B2 (en)
KR101516379B1 (en) Surface treatment method for magnesium or magnesium alloy
US9689064B2 (en) Treatment of anodized aluminum components
JP6462249B2 (en) Method for producing surface-treated substrate
JP2008266663A (en) Aluminum material for laminate, resin-coated aluminum material, and manufacturing method of the sames
JP5324488B2 (en) Method for producing surface-modified steel sheet with excellent coating film adhesion
WO2008005094A2 (en) Process for increasing the adhesion of a metal surface to a polymer
KR101516381B1 (en) Surface treatment method for magnesium or magnesium alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008505208

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087022105

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780009115.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738705

Country of ref document: EP

Kind code of ref document: A1