WO2007105594A1 - 水素透過分離薄膜 - Google Patents

水素透過分離薄膜 Download PDF

Info

Publication number
WO2007105594A1
WO2007105594A1 PCT/JP2007/054552 JP2007054552W WO2007105594A1 WO 2007105594 A1 WO2007105594 A1 WO 2007105594A1 JP 2007054552 W JP2007054552 W JP 2007054552W WO 2007105594 A1 WO2007105594 A1 WO 2007105594A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
hydrogen
solid solution
intermetallic compound
thin film
Prior art date
Application number
PCT/JP2007/054552
Other languages
English (en)
French (fr)
Inventor
Koichi Kita
Kiyoshi Aoki
Kazuhiro Ishikawa
Original Assignee
Mitsubishi Materials Corporation
National University Corporation Kitami Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006062923A external-priority patent/JP4953279B2/ja
Priority claimed from JP2006062922A external-priority patent/JP4953278B2/ja
Application filed by Mitsubishi Materials Corporation, National University Corporation Kitami Institute Of Technology filed Critical Mitsubishi Materials Corporation
Priority to AU2007225886A priority Critical patent/AU2007225886B2/en
Priority to CN2007800078803A priority patent/CN101394918B/zh
Priority to US12/281,663 priority patent/US8105424B2/en
Priority to EP07738042A priority patent/EP1992401B1/en
Publication of WO2007105594A1 publication Critical patent/WO2007105594A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0069Inorganic membrane manufacture by deposition from the liquid phase, e.g. electrochemical deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0074Inorganic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter

Definitions

  • the present invention is composed of a Ni—Ti—Nb alloy or Nb—Ti—Ni alloy having high mechanical strength, and thus enables a thin film having a thickness of 0.07 mm (70 m) or less.
  • the present invention relates to a hydrogen permeation separation thin film that can significantly improve the hydrogen permeation separation performance of the thin film when used for fruits. Background art
  • high-purity hydrogen gas has attracted attention as a fuel gas for energy systems such as hydrogen fuel cells and hydrogen gas turbines, and this high-purity hydrogen gas is a mixed gas obtained by electrolyzing water. Reinforced from a hydrogen-containing source gas such as a mixed gas obtained by steam reforming liquefied natural gas (LNG) with a frame made of Ni, for example, as shown in the schematic explanatory diagram of Fig. 5.
  • a hydrogen-containing source gas such as a mixed gas obtained by steam reforming liquefied natural gas (LNG) with a frame made of Ni, for example, as shown in the schematic explanatory diagram of Fig. 5.
  • Thickness 0.1 ⁇ 3mm hydrogen permeation separation membrane divided into left and right side chambers, and hydrogen containing raw material gas introduction pipe and exhaust gas extraction pipe in left side chamber
  • a high-purity hydrogen purifier with a high-purity hydrogen gas extraction pipe attached to the right-hand chamber for example, a stainless steel reaction chamber in the center, is used for the reaction chamber. Heated to ° C and hydrogen-containing raw material from the introduction pipe
  • the internal pressure of the right side chamber in which the high purity hydrogen gas separated and purified through the hydrogen permeation separation membrane exists is maintained at 0. IMPa, while the internal pressure of the left side chamber in which the hydrogen-containing source gas exists is 0. It is known that it is produced by separating and refining high-purity hydrogen gas through the hydrogen-permeable separation membrane under the condition of 2 to 0.5 MPa.
  • the hydrogen permeable separation membrane performs hydrogen selective movement through the hydrogen permeable separation membrane, for example, a hydrogenated Z dehydrogenation process such as a hydrocarbon steam reforming process or a benzene cyclohexane reaction. It is also well known that it is widely used in chemical reaction processes such as processes.
  • FIG. 2 and Fig. 4 are micrographs of the scanning electron microscope (magnification: 2500 times (Fig. 2) and As shown by 4000 times (Fig. 4)), the eutectic structure of NbTi phase containing Ni and NiTi phase containing Nb is used as a base, and the primary NbTi phase (white islands in Fig. 4) Alloy structure dispersed and distributed,
  • Ni—Ti—Nb alloy having a component composition of ( ⁇ ) and an alloy structure of ( ⁇ ).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-232491
  • the inventors of the present invention can improve the performance of the various chemical reaction apparatuses described above, and in particular, can make a thin film of a hydrogen permeable separation membrane as a structural member thereof.
  • the hydrogen permeable separation membrane was
  • Nb 10-47 atomic%, 1: 20-52 atomic%, with the remainder being specified as a component composition consisting of Ni and inevitable impurities (however, ⁇ : 20-48 atomic%)
  • Alloy melt The hot water is made into a forged foil material with a thickness of 0.07 mm or less by the roll quenching method, and this forged foil material is used in an inert gas atmosphere or a vacuum atmosphere for the purpose of preventing oxidation.
  • Temperature 300 to 11 When tempering heat treatment was performed at 00 ° C under the condition of heating and holding for a predetermined time, the resulting tempered heat treatment material became Ni- as shown in the structural photograph (magnification: 2500 times) with a scanning electron microscope in Fig. 1.
  • Ni-Ti (Nb) intermetallic compound force (shown in black in Fig. 1) containing a part of Ti in the Ti intermetallic compound in a state where Nb is substituted into the solid solution (shown in black in Fig. 1)
  • Ni and Ni Fine grains of Nb-based solid solution alloy formed by solid solution of Ti (shown in white in Fig. 1) have a distributed distribution of alloy structure.
  • the Ni-Ti-Nb alloy of this alloy structure is Therefore, it has extremely high mechanical strength. Therefore, in practical use as a hydrogen permeable separation membrane, the film thickness should be 0.07 mm or less. As a result, research results have been obtained that hydrogen permeation separation performance will be improved over a long period of time.
  • the alloy melt is made into a forged foil material with a thickness of 0.07 mm or less by the roll quenching method, and the forged foil material is heated in an inert gas atmosphere or in a vacuum atmosphere for the purpose of preventing oxidation.
  • the tempered heat treatment material obtained as a result is as shown in the structural photograph (magnification: 4000 times) by scanning electron microscope in Fig.
  • Nb is part of Ti in the Ni-Ti intermetallic compound on the substrate (shown in white in Fig. 3) that is made of Nb-based solid solution alloy, which is a solid solution of Ni and Ti in Nb.
  • the Ni i-Ti (Nb) intermetallic compound fine particles (shown in black in Fig. 3) contained in a solid solution in the replacement state have a distributed alloy structure.
  • the Nb-Ti-Ni alloy with this alloy structure has excellent hydrogen permeation separation performance due to the Nb-based solid solution alloy of the base, and the Ni-Ti (Nb) intermetallic compound of the fine grain is the base.
  • Ni-Ti-Nb alloy strength Thickness obtained by roll quenching 0.07mm or less, made of tempered heat-treated heat-treated foil material, having the following component composition (a) and alloy structure (b) A hydrogen permeation separation thin film (hereinafter sometimes referred to as “hydrogen permeation separation thin film (I) J”),
  • Nb 10 to 47 atom%
  • Ti 20 to 52 atom%
  • Ni 20 to 48 atom%
  • Ni and Ti are dissolved in Nb in a substrate made of Ni-Ti (Nb) intermetallic compound containing Ni as a solid solution in a state where part of Ti in the Ni-Ti intermetallic compound is substituted by Nb.
  • Nb Ni-Ti
  • the present invention also provides:
  • Nb alloy structure in which fine particles of intermetallic compound are dispersed and distributed
  • the hydrogen permeation separation thin film (I) of the present invention can be thinned to a thickness of 0.07 mm or less by the Ni—Ti (Nb) intermetallic compound of the base material having high mechanical strength. Thin Combined with the improvement of hydrogen permeation separation performance due to crystallization and the fact that the Nb-based solid solution alloy that is uniformly dispersed and distributed as fine particles on the substrate exhibits excellent hydrogen permeation separation performance, this is combined with various chemicals. When used in a reactor, it will exhibit excellent hydrogen permeation separation performance over a long period of time.
  • the hydrogen permeation separation thin film ( ⁇ ) of the present invention has a fine distribution of Ni—Ti (Nb) intermetallic compound dispersed on a substrate having excellent hydrogen permeation separation performance and Nb-based solid solution alloy strength.
  • Nb Ni—Ti
  • the thin film can be thinned to a thickness of 0.07 mm or less. This thinning improves the hydrogen permeation separation performance, and the Nb-based solid solution alloy substrate is tangled. Combined with the hydrogen permeation separation performance, the hydrogen permeation separation performance is further improved over a long period of time.
  • FIG. 1 is a structural photograph (magnification: 2500 times) of a Ni—Ti—Nb alloy constituting the hydrogen permeable thin film (I) -19 of the present invention by a scanning electron microscope.
  • FIG. 2 A structural photograph (magnification: 2500 times) of a Ni-Ti Nb alloy composing the conventional hydrogen permeable membrane (I) 8 by a scanning electron microscope.
  • FIG. 3 is a structural photograph (magnification: 4000 times) of the Nb—Ti Ni alloy constituting the hydrogen permeable thin film ( ⁇ ) -6 of the present invention by a scanning electron microscope.
  • FIG. 4 A structural photograph (magnification: 4000 times) of a Ni-Ti Nb alloy composing the conventional hydrogen permeable membrane (IV) -8 by a scanning electron microscope.
  • FIG. 5 is a schematic explanatory view illustrating a high purity hydrogen purifier.
  • the Nb component contains a part of Ti in the Ni-Ti intermetallic compound as described above to form a Ni-Ti (Nb) intermetallic compound constituting the substrate, and In addition to improving hydrogen permeation separation performance, it forms an Nb-based solid solution alloy containing Ni and Ti as a solid solution, and is dispersed and distributed as fine particles in the substrate, thereby exhibiting excellent hydrogen permeation separation performance.
  • a certain force If the content is less than 10 atomic%, the thickness of the thin film is less than 0.07 mm. However, if the content exceeds 47 atomic%, the above-described alloy structure cannot be stably secured, even if the thickness is reduced to a thin film. The content was determined to be 10 to 47 atomic%.
  • Ni-Ti (Nb) intermetallic compound that forms the substrate is formed in the Ti and Ni components to improve the mechanical strength of the thin film, and thus can be put to practical use with a thickness of 0.07 mm or less.
  • Nb Nb-based solid solution alloy that is dispersed and distributed as fine particles in the substrate, and has the effect of increasing the mechanical strength of this.
  • the Nb component forms a substrate made of an Nb-based solid solution alloy containing Ni and Ti as a solid solution, and has an effect of exhibiting excellent hydrogen permeation separation performance.
  • it contains a part of Ti in the intermetallic compound in a substituted form, it forms fine particles of Ni-Ti (Nb) intermetallic compound and has the effect of improving the hydrogen permeation separation performance of the fine particles.
  • the content is less than 48% atom, it becomes difficult to stably obtain the above alloy structure, and the film characteristics vary.
  • the content exceeds 70 atomic%, the Ni — The distribution ratio of Ti (Nb) intermetallic compound fine particles is drastically reduced. As a result, the mechanical strength of the thin film is lowered, and it can be put to practical use in a state where the film thickness is reduced to 0.07 mm or less. Therefore, the content was determined to be 48 to 70 atomic%.
  • Ni-Ti (Nb) intermetallic compound fine grains dispersed and distributed in the substrate are formed to improve the mechanical strength of the thin film, so that a thin film having a thickness of 0.07 mm or less is realized.
  • Nb-based solid solution alloy that constitutes the substrate.
  • Content force of either Ti or Ni Ti 15 atomic% or less
  • Ni is less than 10% atom
  • the desired mechanical strength cannot be ensured for the thin film.
  • each Sprayed onto the surface of the roll with 0.05MPa spray pressure, each has a planar dimension of length: 20m x width: 20mm, but the thickness is the average thickness shown in Table 1 (average value at 5 arbitrary locations) ) with Ni- Ti-Nb forms a ⁇ foil material alloy, then was charged with this vacuum furnace, following 10 _2 Pa In the air, each 300 ⁇ : L Hold for 5 hours at a specified temperature within the range of 100 ° C. After tempering heat treatment under furnace cooling conditions, width: 20mm x length: 60mm
  • the hydrogen permeation separation thin film of the present invention (hereinafter referred to as the present hydrogen permeation thin film) (I) 1 to (1) 24 was produced by cutting.
  • the resulting hydrogen permeable thin films (I) 1 to (1) 24 of the present invention and the conventional hydrogen permeable membranes (I) -1 to (I) -10 have the composition of the energy dispersive fluorescent X-rays When measured using an analyzer, the analysis values were substantially the same as the composition shown in Tables 1 and 2, and the structure was observed using a scanning electron microscope and an X-ray diffractometer.
  • the hydrogen permeable thin film (I) -1 to (1) -24 of the present invention as shown in FIG. 1 showing the alloy structure of the hydrogen permeable thin film (I) -19 of the present invention, both are Ni-Ti intermetallic compounds.
  • Nb-based solid solution alloy with Ni and Ti dissolved in Nb is dispersed in a Ni-Ti (Nb) intermetallic compound force with solid solution containing Nb as a part of Ti.
  • the conventional hydrogen permeable membranes (1) -1 to (1) -10 show the alloy structure of the conventional hydrogen permeable membrane (I) -8 in FIG. Both the eutectic structure of the NiTi phase solid solution of NbTi phase and Nb solid-solved the Ni and the matrix, the primary crystal NbT Xiang showed alloy structure, dispersed distributed in this matrix.
  • the thickness of each of the hydrogen permeable thin films (I) 1 to (1) 24 of the present invention and the conventional hydrogen permeable membranes (I) — 1 to (1) — 10 is sputtered by sputtering: 0 1 ⁇ m (Pd II is vapor-deposited (in this case, it may be formed by electroplating method), and horizontal outer dimension: 20mm X vertical outer dimension: 60mm X frame width: 5mm X frame thickness: 0.5mm 5 with the same structure as the hydrogen high-purity refiner having the structure shown in FIG.
  • the pressure of the hydrogen permeable membrane (I) 3 to (1) 9 is increased to 0.5 MPa, and that of the conventional hydrogen permeable membrane (I) 1-10 is increased to 0.3 MPa, and maintained for 1 hour under these conditions.
  • Measure the flow rate of the permeated hydrogen gas shown as the initial permeated hydrogen flow rate in Tables 1 and 2) with a gas flow meter.
  • the hydrogen permeable thin films of the present invention (I) 1 to (1) 24 all have high mechanical strength ensured by the base Ni-Ti (Nb) intermetallic compound, 0.07mm or less is possible, so the Nb-based solid solution alloy dispersed and distributed as fine particles in the substrate exhibits excellent hydrogen permeation separation performance.
  • the conventional hydrogen permeable membranes (I) —1 to (1) —10 have the mechanical strength, while the hydrogen permeation separation performance is demonstrated over a long period of time and excellent durability (service life). It is clear that the surface strength of the film cannot be reduced to 0.1 mm or less, which results in low hydrogen permeation separation performance.
  • each has a planar dimension of length: 20m X width: 20mm, but the thicknesses are the average thicknesses shown in Table 3 (average values at 5 arbitrary locations) ) to form a ⁇ foil member of Nb-Ti-Ni alloy having, then it was charged with this vacuum furnace, following 10 _2 Pa Air, respectively 300 to: L within a predetermined range of 100 ° C
  • the hydrogen permeation separation thin film of the present invention (hereinafter referred to as the present invention hydrogen) is obtained by holding the temperature for 5 hours and then subjecting it to a tempering heat treatment under furnace cooling conditions, and then cutting it into a planar dimension of width: 20 mm x length: 60 mm. (Referred to as a transmissive thin film) (II) 1 to (II) 13 were produced.
  • the resulting hydrogen permeable thin films (II) 1 to (II) 13 of the present invention and the conventional hydrogen permeable membranes ( ⁇ ) —1 to ( ⁇ ) —10 are composed of energy dispersive fluorescent X-rays. When measured using an analytical instrument, all showed substantially the same analytical values as the composition shown in Table 3, and the structure was observed using a scanning electron microscope and an X-ray diffractometer. In the hydrogen permeable thin films ( ⁇ ) -1 to ( ⁇ ) -13 of the present invention, as shown in FIG. 3, the alloy structure of the hydrogen permeable thin film (II) -6 of the present invention is shown.
  • the conventional hydrogen permeable membrane ( ⁇ ) — 1 to ( ⁇ ) —10 shows the alloy structure of the conventional hydrogen permeable membrane ( ⁇ ) -8. As shown, both the eutectic structure of the NiTi phase solid solution NbT Xiang and Nb solid-solved the Ni and the matrix, the primary crystal NbTi phase showed alloy structure, dispersed distributed in this matrix.
  • the hydrogen permeable thin films ( ⁇ ) —1 to ( ⁇ ) —13 of the present invention are all Ni—Ti (Nb) intermetallic compounds in which high mechanical strength is dispersed in the substrate.
  • the hydrogen permeation separation performance is further improved and the Nb-based solid solution alloy of the base is excellent.
  • the conventional hydrogen permeation membranes ( ⁇ ) —1 to ( ⁇ ) —10 are all mechanical, while exhibiting excellent hydrogen permeation separation performance over a long period of time. It is clear that the surface strength of the film cannot be less than 0.1 mm, and therefore the hydrogen permeation separation performance is low.
  • the hydrogen permeation separation thin film of the present invention is made of Ni-Ti-Nb alloy or Nb-Ti-Ni alloy having high mechanical strength, and can be thinned to a thickness of 0.07 mm or less. In practical use, it will exhibit excellent hydrogen permeation separation performance over a long period of time. Therefore, it is necessary to improve the performance of various chemical reactors that use hydrogen permeation separation membranes as structural members. It can respond to satisfaction. Therefore, this invention is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 Ni-Ti-Nb合金からなる水素透過分離薄膜であって、上記Ni-Ti-Nb合金が、ロール急冷法により得られる厚さ:0.07mm以下の鋳造箔材の調質熱処理材からなり、(a) Nb:10~47原子%、 Ti:20~52原子%、を含有し、残りがNiと不可避不純物(ただし、Ni:20~48原子%含有)からなる成分組成、および(b)Ni-Ti金属間化合物におけるTiの一部をNbが置換する状態で固溶含有したNi-Ti(Nb)金属間化合物からなる素地に、NbにNiおよびTiが固溶してなるNb基固溶合金の微細粒が分散分布した合金組織を有する水素透過分離薄膜;ならびにNb-Ti-Ni合金からなる水素透過分離薄膜であって、上記Nb-Ti-Ni合金が、ロール急冷法により得られる厚さ:0.07mm以下の鋳造箔材の調質熱処理材からなり、(a’) Ni:10~32原子%、 Ti:15~33原子%、を含有し、残りがNbと不可避不純物(ただし、Nb:48~70原子%含有)からなる成分組成、および(b’)NbにNiおよびTiが固溶してなるNb基固溶合金からなる素地に、Ni-Ti金属間化合物におけるTiの一部をNbが置換する状態で固溶含有したNi-Ti(Nb)金属間化合物の微細粒が分散分布した合金組織を有する水素透過分離薄膜。

Description

水素透過分離薄膜
技術分野
[0001] この発明は、高い機械的強度を有する Ni— Ti— Nb合金または Nb— Ti— Ni合金 で構成され、したがって、厚さ: 0. 07mm (70 m)以下の薄膜ィ匕を可能とし、この結 果実用に際して、薄膜ィ匕による水素透過分離性能の著しい向上を可能とした水素透 過分離薄膜に関するものである。 背景技術
[0002] 近年、例えば水素燃料電池や水素ガスタービンなどのエネルギーシステムの燃料 ガスとして高純度水素ガスが注目されており、この高純度水素ガスが、水を電気分解 して得られた混合ガスや液化天然ガス (LNG)を水蒸気改質して得られた混合ガス などの水素含有原料ガスから、例えば図 5に概略説明図で示される通り、外周部を例 えば Ni製などの枠体で補強され、かつ材質的に水素だけが透過できる機能を有する 厚さ: 0. l〜3mmの水素透過分離膜で左右両側室に仕切られ、左側室には水素含 有原料ガス導入管と排ガス取出管が、右側室には高純度水素ガス取出管が取り付 けられた、例えばステンレス鋼製などの反応室を中央部に設けた構造の水素高純度 精製装置を用い、前記反応室を 200〜300°Cに加熱し、前記導入管より水素含有原 料ガスを導入し、前記水素透過分離膜を通して分離精製された高純度水素ガスが存 在する右側室の内圧を 0. IMPaに保持し、一方前記水素含有原料ガスの存在する 左側室の内圧を 0. 2〜0. 5MPaに保持した条件で前記水素透過分離膜を通して高 純度水素ガスを分離精製することにより生産されることが知られている。
また、上記の水素透過分離膜が、水素の選択的移動を前記水素透過分離膜を通 して行なう、例えば炭化水素の水蒸気改質プロセスや、ベンゼン シクロへキサン反 応などの水添 Z脱水素プロセスなどの化学反応プロセスに広く用いられていることも よく知られるところである。
[0003] さらに、上記の水素透過分離膜が、
( α ) ?^: 25〜45原子%、 1 : 26〜50原子%、 を含有し、残りが Nbと不可避不純物(ただし、 Nb : 11〜48原子%含有)からなる成 分組成、
( )铸造インゴットから放電加工により切り出された厚さ: 0. l〜3mmの铸造薄板材 にして、図 2及び図 4に走査型電子顕微鏡による組織写真 (倍率: 2500倍(図 2)及 び 4000倍(図 4) )で示される通り、 Niを固溶した NbTi相と Nbを固溶した NiTi相との 共晶組織を素地とし、この素地に初晶 NbTi相(図 4では白色島状のもの)が分散分 布した合金組織、
以上( α )の成分組成および( β )の合金組織を有する Ni— Ti— Nb合金で構成され ることち知られている。
特許文献 1:特開 2005 - 232491号公報
発明の開示
発明が解決しょうとする課題
[0004] 一方、上記の水素高純度精製装置を含め各種の化学反応装置の高性能化に対す る要求はきわめて強ぐこれに伴ない、前記装置の構造部材として用いられている水 素透過分離膜にはより一段と高い水素透過分離性能を具備することが求められ、ま た、一般に前記水素透過分離膜の場合、これの膜厚を薄くすればするほど水素透過 分離性能が向上するようになることも知られて ヽることから、前記水素透過分離膜を 構成する Ni— Ti Nb合金の高強度化に関する開発が盛んに行なわれて!/ヽるが、 上記の従来水素透過分離膜においては、これを構成する Ni—Ti— Nb合金の具備 する機械的強度が十分でないために、 0. 1mm以下の厚さに薄膜ィ匕することができず 、このため満足な水素透過分離性能の向上が図れな!/、のが現状である。
課題を解決するための手段
[0005] そこで、本発明者等は、上述のような観点から、上記の各種化学反応装置の高性 能化を図るベぐ特にこれの構造部材である水素透過分離膜の薄膜ィヒを可能ならし める目的で、前記水素透過分離膜の高強度化に着目し、研究を行った結果、前記 水素透過分離膜を、
Nb : 10〜47原子%、 1 : 20〜52原子%、を含有し、残りが Niと不可避不純物( ただし、 ^: 20〜48原子%含有)からなる成分組成に特定した上で、これの合金溶 湯を、ロール急冷法により厚さ:0. 07mm以下の铸造箔材とし、この铸造箔材に、酸 化を防止する目的で不活性ガス雰囲気中、または真空雰囲気中で、温度: 300〜11 00°Cに所定時間加熱保持の条件で調質熱処理を施すと、この結果の調質熱処理材 は、図 1に走査型電子顕微鏡による組織写真 (倍率: 2500倍)で示される通り、 Ni- Ti金属間化合物における Tiの一部を Nbが置換する状態で固溶含有した Ni— Ti (N b)金属間化合物力もなる素地(図 1に黒色で示されている)に、 Nbに Niおよび Tiが 固溶してなる Nb基固溶合金の微細粒(図 1に白色で示されて 、る)が分散分布した 合金組織をもつようになり、この合金組織の Ni— Ti— Nb合金は、きわめて高い機械 的強度を有し、したがって水素透過分離膜としての実用に際しては、膜厚を 0. 07m m以下にすることが可能となり、一段とすぐれた水素透過分離性能を長期に亘つて発 揮するようになる、という研究結果を得たのである。
また、本発明者らは、前記水素透過分離膜を、
Ni: 10〜32原子%、 Ti: 15〜33原子%、を含有し、残りが Nbと不可避不純物( ただし、 Nb :48〜70%原子含有)からなる成分組成に特定した上で、これの合金溶 湯を、ロール急冷法により厚さ:0. 07mm以下の铸造箔材とし、この铸造箔材に、酸 化を防止する目的で不活性ガス雰囲気中、または真空雰囲気中で、温度: 300〜11 00°Cに所定時間加熱保持の条件で調質熱処理を施すと、この結果の調質熱処理材 は、図 3に走査型電子顕微鏡による組織写真 (倍率: 4000倍)で示される通り、 Nbに Niおよび Tiが固溶してなる Nb基固溶合金カゝらなる素地(図 3〖こ白色で示されて ヽる) に、 Ni— Ti金属間化合物における Tiの一部を Nbが置換する状態で固溶含有した N i-Ti (Nb)金属間化合物の微細粒 (図 3に黒色で示されて 、る)が分散分布した合 金組織をもつようになり、この合金組織の Nb—Ti— Ni合金は、前記素地の Nb基固 溶合金によってすぐれた水素透過分離性能が確保され、さらに前記微細粒の Ni— T i (Nb)金属間化合物が素地に分散分布することによってきわめて高い機械的強度を 具備するようになり、したがって水素透過分離膜としての実用に際しては、膜厚を 0. 07mm以下に薄肉化することが可能となり、この水素透過分離膜の薄膜ィ匕による水 素透過分離性能の向上と前記 Nb基固溶合金素地のもつすぐれた水素透過分離性 能と相俟って、一段とすぐれた水素透過分離性能を長期に亘つて発揮するようになる 、という研究結果を得たのである。
[0007] この発明は、上記の研究結果に基づいてなされたものであって、
Ni— Ti— Nb合金カゝらなる水素透過分離薄膜であって、
上記 Ni—Ti—Nb合金力 ロール急冷法により得られる厚さ: 0. 07mm以下の铸 造箔材の調質熱処理材からなり、下記 (a)の成分組成および (b)の合金組織を有す ることを特徴とする水素透過分離薄膜 (以下、「水素透過分離薄膜 (I) Jと称する場合 がある)、
(a) Nb : 10〜47原子%、 Ti: 20〜52原子%、を含有し、残りが Ni: 20〜48原子 %と不可避不純物力 なる成分組成、及び
(b) Ni— Ti金属間化合物における Tiの一部を Nbが置換する状態で固溶含有した N i— Ti (Nb)金属間化合物からなる素地に、 Nbに Niおよび Tiが固溶してなる Nb基固 溶合金の微細粒が分散分布した合金組織、
に特徴を有するものである。
[0008] また、この発明は、
Nb— Ti— Ni合金カゝらなる水素透過分離薄膜であって、
上記 Nb— Ti Ni合金力 ロール急冷法により得られる厚さ: 0. 07mm以下の铸 造箔材の調質熱処理材からなり、下記 (a' )の成分組成および (b ' )の合金組織を有 することを特徴とする水素透過分離薄膜 (以下、「水素透過分離薄膜 (II)」と称する 場合がある)、
(a' ) Ni: 10〜32原子%、 Ti: 15〜33原子%、を含有し、残りが Nb :48〜70原 子%と不可避不純物からなる成分組成、及び
(b' ) Nbに Niおよび Tiが固溶してなる Nb基固溶合金からなる素地に、 Ni— Ti金属 間化合物における Tiの一部を Nbが置換する状態で固溶含有した Ni— Ti (Nb)金属 間化合物の微細粒が分散分布した合金組織、
にも特徴を有するものである。
発明の効果
[0009] この発明の水素透過分離薄膜 (I)は、高い機械的強度を有する素地の Ni— Ti(Nb )金属間化合物によって、 0. 07mm以下の厚さへの薄肉化が可能となり、この薄肉 化による水素透過分離性能の向上と、前記素地に微細粒として均一に分散分布する Nb基固溶合金が、すぐれた水素透過分離性能を発揮することと相俟って、これを各 種の化学反応装置に用いた場合、すぐれた水素透過分離性能を長期に亘つて発揮 するようになるのである。
また、この発明の水素透過分離薄膜 (Π)は、すぐれた水素透過分離性能を有する Nb基固溶合金力もなる素地に、 Ni— Ti (Nb)金属間化合物の微細粒が分散分布す るこによって高い機械的強度が確保され、この結果薄膜の 0. 07mm以下の厚さへの 薄肉化が可能となり、この薄肉化による水素透過分離性能の向上と、前記 Nb基固溶 合金素地のもつすぐれた水素透過分離性能と相俟って、一段とすぐれた水素透過分 離性能を長期に亘つて発揮するものである。
図面の簡単な説明
[0010] [図 1]本発明水素透過薄膜 (I)— 19を構成する Ni— Ti— Nb合金の走査型電子顕微 鏡による組織写真 (倍率: 2500倍)である。
[図 2]従来水素透過膜 (I) 8を構成する Ni— Ti Nb合金の走査型電子顕微鏡に よる組織写真 (倍率: 2500倍)である。
[図 3]本発明水素透過薄膜 (Π)— 6を構成する Nb— Ti Ni合金の走査型電子顕微 鏡による組織写真 (倍率: 4000倍)である。
[図 4]従来水素透過膜 (Π)— 8を構成する Ni— Ti Nb合金の走査型電子顕微鏡に よる組織写真 (倍率: 4000倍)である。
[図 5]水素高純度精製装置を例示する概略説明図である。
[0011] つぎに、この発明の水素透過分離薄膜 (I)において、これを構成する Ni—Ti—Nb 合金の組成を上記の通りに限定した理由を説明する。
(l) Nb
Nb成分には、上記の通り Ni—Ti金属間化合物における Tiの一部を置換した形で 含有して、素地を構成する Ni— Ti (Nb)金属間化合物を形成し、もって、前記素地の 水素透過分離性能を向上させるほか、 Niおよび Tiを固溶含有した Nb基固溶合金を 形成して、前記素地中に微細粒として分散分布し、すぐれた水素透過分離性能を発 揮する作用がある力 その含有量が 10原子%未満では薄膜の厚さを 0. 07mm以下 に薄肉化しても所望のすぐれた水素透過分離性能を発揮させることができず、一方 その含有量が 47原子%を越えると、前記の合金組織を安定して確保することができ なくなることから、その含有量を 10〜47原子%と定めた。
[0012] (2)Tiおよび Ni
Tiおよび Ni成分には、素地を構成する Ni— Ti(Nb)金属間化合物を形成して、薄 膜の機械的強度を向上させ、もって、 0. 07mm以下の厚さでの実用化を可能とする ほか、前記素地に微細粒として分散分布する Nb基固溶合金に固溶して、これの機 械的強度を高める作用がある力 Tiおよび Niのいずれかの含有量力 Ti: 20原子% 未満、 Ni: 20原子%未満になると、薄膜に所望の機械的強度を確保することができ ず、この 0. 07mm以下の厚さでの実用化が困難となり、一方 Tiおよび Niのいずれか の含有量でも、 Ti: 52原子%、 Ni:48原子%を越えると、水素透過分離性能の低下 が避けられなくなることから、その含有量を、それぞれ Ti: 20〜52原子%、 Ni: 20〜 48原子%と定めた。
[0013] つぎに、この発明の水素透過分離薄膜 (Π)において、これを構成する Nb— Ti— Ni 合金の組成を上記の通りに限定した理由を説明する。
(l ' ) Nb
Nb成分には、上記の通り、 Niおよび Tiを固溶含有した Nb基固溶合金カゝらなる素 地を形成して、すぐれた水素透過分離性能を発揮する作用を有するほか、 Ni— Ti金 属間化合物における Tiの一部を置換した形で含有して、 Ni— Ti (Nb)金属間化合 物の微細粒を形成し、前記微細粒の水素透過分離性能を向上させる作用があるが、 その含有量が 48%原子未満になると、上記の合金組織を安定して得ることが難しく なり、膜特性にバラツキが生じるようになり、一方その含有量が 70原子%を越えると、 前記 Ni— Ti(Nb)金属間化合物微細粒の分布割合が急激に低下し、この結果薄膜 の機械的強度が低下して、膜厚を 0. 07mm以下に薄肉化した状態で実用に供する ことができなくなることから、その含有量を 48〜70原子%と定めた。
[0014] (2' )1ぉょび?^
Tiおよび Ni成分には、素地に分散分布する Ni-Ti(Nb)金属間化合物微細粒を 形成して、薄膜の機械的強度を向上させ、もって、厚さが 0. 07mm以下の薄膜の実 用化を可能とするほか、前記素地を構成する Nb基固溶合金に固溶して、これの機械 的強度を高める作用がある力 Tiおよび Niのいずれかの含有量力 Ti: 15原子%未 満、 Ni: 10%原子未満になると、薄膜に所望の機械的強度を確保することができず、 この結果 0. 07mm以下の厚さでの実用化困難になり、一方 Tiおよび Niのいずれか の含有量でも、 Ti: 33原子%、 Ni: 32原子%を越えると、水素透過分離性能の低下 が避けられなくなることから、その含有量を、それぞれ Ti: 15〜33原子0 /0、 Ni: 10〜 32原子%と定めた。
発明を実施するための最良の形態
[0015] つぎに、この発明の水素透過分離薄膜 (I)及び (Π)を実施例により具体的に説明 する。
実施例
[0016] <水素透過分離薄膜 (I) >
原料として、純度: 99. 9%の高純度 Nbショット材、同 99. 9%の高純度 Niショット 材、および同 99. 5%の高純度 Ti^ポンジ材を用い、これら原料をそれぞれ表 1に示 される割合に配合し、高純度 Ar雰囲気中でアーク溶解して、铸塊とし、この铸塊を 2 Omm角に切断した状態で、底部に長さ: 20mm X幅: 0. 3mmの寸法をもったスリツ トが形成された黒鉛ルツボに装入し、 0. 06MPaの減圧アルゴン雰囲気中で高周波 誘導加熱炉で再溶解し、この溶湯を前記スリットから 20mZsecのロール速度で回転 する水冷銅ロールの表面に 0. 05MPaの噴射圧で吹き付けて、いずれも長さ: 20m X幅: 20mmの平面寸法を有するが、厚さはそれぞれ表 1に示される平均厚さ (任意 5ケ所の平均値)をもった Ni— Ti—Nb合金の铸造箔材を形成し、つぎに、これを真 空炉に装入し、 10_2Pa以下の真空中、それぞれ 300〜: L 100°Cの範囲内の所定の 温度に 5時間保持後炉冷の条件で調質熱処理を施し、調質熱処理後、幅 : 20mm X 長さ:60mmの平面寸法に切り出すことにより本発明水素透過分離薄膜 (以下、本発 明水素透過薄膜という)(I) 1〜(1) 24をそれぞれ製造した。
[0017] また、比較の目的で、同じく原料として、純度: 99. 9%の高純度 Nbショット材、同 9 9. 9%の高純度 Niショット材、および同 99. 5%の高純度 Tiスポンジ材を用い、これ ら原料をそれぞれ表 2に示される割合に配合し、高純度 Ar雰囲気中でアーク溶解し 、铸造して、直径: 80mmX厚さ: 10mmの寸法をもった Ni— Ti— Nb合金铸塊とし、 この铸塊から、放電カ卩ェにて、いずれも幅: 20mm X長さ: 60mmの平面寸法を有す るが、厚さをそれぞれ表 2に示される平均厚さ (任意 5ケ所の平均値)とした薄板材に 切出すことにより、铸物切出し薄板材からなる従来水素透過分離膜 (以下、従来水素 透過膜という)(I)— 1〜(1)— 10をそれぞれ製造した。
[0018] この結果得られた本発明水素透過薄膜 (I) 1〜(1) 24および従来水素透過膜 ( I) - 1〜 (I) - 10について、その成分組成をエネルギー分散型蛍光 X線分析装置を 用いて測定したところ、いずれも表 1, 2に示される配合組成と実質的に同じ分析値を 示し、また、その組織を走査型電子顕微鏡および X線回折装置を用いて観察したとこ ろ、前記本発明水素透過薄膜 (I)— 1〜(1)—24では、図 1に本発明水素透過薄膜( I)—19の合金組織を示す通り、いずれも Ni— Ti金属間化合物における Tiの一部を Nbが置換する状態で固溶含有した Ni— Ti(Nb)金属間化合物力もなる素地に、 Nb に Niおよび Tiが固溶してなる Nb基固溶合金の微細粒が分散分布した合金組織を 示し、一方、上記従来水素透過膜(1)ー1〜(1)ー10では、図 2に従来水素透過膜 (I )—8の合金組織を示す通り、いずれも Niを固溶した NbTi相と Nbを固溶した NiTi相 との共晶組織を素地とし、この素地に初晶 NbT湘が分散分布した合金組織、を示し た。
[0019] ついで、上記の本発明水素透過薄膜 (I) 1〜(1) 24および従来水素透過膜 (I) — 1〜(1)— 10のそれぞれの両面に、スパッタリング法により厚さ: 0. 1 μ m( Pd II を蒸着形成し (この場合電気メツキ法により形成しても良い)、かつそれぞれ横外寸: 20mm X縦外寸: 60mm X枠幅: 5mm X枠厚: 0. 5mmの寸法をもった 2枚の銅製 補強枠体で両側から挟み、前記各種の透過膜を前記補強枠体に固定した状態で、 図 5に示される構造の水素高純度精製装置と同じ構造の水素透過評価装置の反応 室内に設置し、前記反応室内を 300°Cに加熱し、反応室の左側室に、水素ガスを導 入して、まず、反応室の左側室および右側室の内圧を 0. IMPaとし、ついで、前記 右側室の内圧を 0. IMPaに保持しながら、前記左側室の内圧を 0. IMPa当たり 5 分の速度で、本発明水素透過薄膜 (I) 1〜(1) 7および従来水素透過膜 (I) 1, (I) 2については 0. 7MPaまで、本発明水素透過薄膜 (I) 8〜(1) 24および従 来水素透過膜 (I) 3〜(1) 9については 0. 5MPaまで、そして従来水素透過膜 (I )一 10については 0. 3MPaまで、それぞれ昇圧し、この条件で 1時間保持した時点 で、透過した水素ガスの流量 (表 1, 2に初期透過水素流量で示す)をガスフローメー ターで測定し、さらにこの条件、すなわち、右側室の内圧を 0. lMPa、左側室の内圧 をそれぞれ 0. 7MPa、 0. 5MPa、および 0. 3MPa〖こ昇圧し、この条件で 1時間保持 した時点から、同条件で 20時間続行した時点で、同じく透過した水素ガスの流量 (表 1, 2に後期透過水素流量で示す)を測定し、これらの測定結果を表 1, 2に示した。
[表 1]
Figure imgf000011_0001
[表 2] 鯽) I 錶物切出 透過水素流量
来素従水; 配合組成(原子%)
し ¾板材 (ml/分)
種 别
の平均厚
Nb Ti Ni さ( m) 初期 後期
1 1 50 残 (39) 1 18 8 8
α>-2 16 42 残 (42) 120 19 18
22 39 残 (39) 120 14 13
α>-4 2β 40 残 (32) 125 14 13
29 31 残 (40) 1 17 15 14
α>-6 33 39 残 (23) 122 14 13
(I ? 36 30 残 (34) 1 15 15 14
(Jh8 40 31 残 (29) 123 16 14
α>-9 43 31 残 (26) 125 1 1 9
(1ト10 48 26 残 (26) 1 15 13 1 1
[0022] 表 1, 2に示される通り、本発明水素透過薄膜 (I) 1〜(1) 24は、いずれも高い 機械的強度が素地の Ni-Ti(Nb)金属間化合物によって確保され、 0. 07mm以下 の厚さへの薄肉化が可能となるので、前記素地に微細粒として分散分布する Nb基 固溶合金が、すぐれた水素透過分離性能を発揮することと相俟って、すぐれた水素 透過分離性能を長期に亘つて発揮し、すぐれた耐久性 (使用寿命)を示すのに対し て、従来水素透過膜 (I)— 1〜(1)— 10は、いずれも機械的強度の面力も膜厚を 0. 1 mm以下にすることができず、このため水素透過分離性能の低いものとなることが明 らかである。
[0023] <水素透過分離薄膜 (Π) >
原料として、純度: 99. 9%の高純度 Nbショット材、同 99. 9%の高純度 Niショット 材、および同 99. 5%の高純度 Ti^ポンジ材を用い、これら原料をそれぞれ表 3に示 される割合に配合し、高純度 Ar雰囲気中でアーク溶解して、铸塊とし、この铸塊を 2 Omm角に切断した状態で、底部に長さ: 20mm X幅: 0. 3mmの寸法をもったスリツ トが形成された黒鉛ルツボに装入し、 0. 06MPaの減圧アルゴン雰囲気中で高周波 誘導加熱炉で再溶解し、この溶湯を前記スリットから 20mZsecのロール速度で回転 する水冷銅ロールの表面に 0. 05MPaの噴射圧で吹き付けて、いずれも長さ: 20m X幅: 20mmの平面寸法を有するが、厚さはそれぞれ表 3に示される平均厚さ (任意 5ケ所の平均値)をもった Nb—Ti—Ni合金の铸造箔材を形成し、つぎに、これを真 空炉に装入し、 10_2Pa以下の真空中、それぞれ 300〜: L 100°Cの範囲内の所定の 温度に 5時間保持後炉冷の条件で調質熱処理を施し、調質熱処理後、幅 : 20mm X 長さ:60mmの平面寸法に切り出すことにより本発明水素透過分離薄膜 (以下、本発 明水素透過薄膜という)(II) 1〜 (II) 13をそれぞれ製造した。
[0024] また、比較の目的で、同じく原料として、純度: 99. 9%の高純度 Nbショット材、同 9 9. 9%の高純度 Niショット材、および同 99. 5%の高純度 Tiスポンジ材を用い、これ ら原料をそれぞれ表 3に示される割合に配合し、高純度 Ar雰囲気中でアーク溶解し 、铸造して、直径: 80mmX厚さ: 10mmの寸法をもった Nb—Ti—Ni合金铸塊とし、 この铸塊から、放電カ卩ェにて、いずれも幅: 20mm X長さ: 60mmの平面寸法を有す るが、厚さをそれぞれ表 3に示される平均厚さ (任意 5ケ所の平均値)とした薄板材に 切出すことにより、铸物切出し薄板材からなる従来水素透過分離膜 (以下、従来水素 透過膜と 、う) (II) - 1〜 (II) - 10をそれぞれ製造した。
[0025] この結果得られた本発明水素透過薄膜 (II) 1〜 (II) 13および従来水素透過 膜 (Π)— 1〜(Π)— 10について、その成分組成をエネルギー分散型蛍光 X線分析 装置を用いて測定したところ、いずれも表 3に示される配合組成と実質的に同じ分析 値を示し、また、その組織を走査型電子顕微鏡および X線回折装置を用いて観察し たところ、前記本発明水素透過薄膜 (Π)—1〜(Π)—13では、図 3に本発明水素透 過薄膜 (II)—6の合金組織を示す通り、いずれも Nbに Niおよび Tiが固溶してなる Ν b基固溶合金力もなる素地に、 Ni— Ti金属間化合物における Tiの一部を Nbが置換 する状態で固溶含有した Ni— Ti(Nb)金属間化合物の微細粒が分散分布した合金 組織を示し、一方、上記従来水素透過膜 (Π)— 1〜(Π)— 10では、図 4に従来水素 透過膜 (Π)—8の合金組織を示す通り、いずれも Niを固溶した NbT湘と Nbを固溶 した NiTi相との共晶組織を素地とし、この素地に初晶 NbTi相が分散分布した合金 組織、を示した。
[0026] ついで、上記の本発明水素透過薄膜 (Π)— 1〜(Π)— 13および従来水素透過膜(
11)ー1〜(11)ー10のそれぞれの両面に、スパッタリング法により厚さ: 0. 1 μ m( Pd 薄膜を蒸着形成し (この場合電気メツキ法により形成しても良い)、かつそれぞれ横外 寸: 20mm X縦外寸: 60mm X枠幅: 5mm X枠厚: 0. 5mmの寸法をもった 2枚の銅 製補強枠体で両側から挟み、前記各種の透過膜を前記補強枠体に固定した状態で 、図 5に示される構造の水素高純度精製装置と同じ構造の水素透過評価装置の反 応室内に設置し、前記反応室内を 300°Cに加熱し、反応室の左側室に、水素ガスを 導入して、まず、反応室の左側室および右側室の内圧を 0. IMPaとし、ついで、前 記右側室の内圧を 0. IMPa保持しながら、前記左側室の内圧を 0. IMPa当たり 5 分の速度で、本発明水素透過薄膜 (Π)— 1〜(Π)— 13については、いずれも 0. 3Μ Paまで、一方従来水素透過膜 (Π)— 1, (II) 2については 0. 7MPaまで、従来水 素透過膜 (Π)—3〜(Π) 9については 0. 5MPaまで、そして従来水素透過膜 (Π) 10については 0. 3MPaまで、それぞれ昇圧し、この条件で 1時間保持した時点で 、透過した水素ガスの流量 (表 3に初期透過水素流量で示す)をガスフローメーター で測定し、さらにこの条件で 20時間続行した時点で、同じく透過した水素ガスの流量 (表 3に後期透過水素流量で示す)を測定し、これらの測定結果を表 3に示した。
[表 3]
Figure imgf000014_0001
(表中、※印は「*|物切出し薄板材 Jを示す) [0028] 表 3に示される通り、本発明水素透過薄膜 (Π)— 1〜(Π)— 13は、いずれも高い機 械的強度が素地に分散分布する Ni— Ti (Nb)金属間化合物の微細粒によって確保 され、 0. 07mm以下の厚さへの薄肉化が可能となるので、水素透過分離性能の一 段の向上力もたらされ、かつ前記素地の Nb基固溶合金のもつすぐれた水素透過分 離性能と相俟って、すぐれた水素透過分離性能を長期に亘つて発揮するのに対して 、従来水素透過膜 (Π)— 1〜(Π)— 10は、いずれも機械的強度の面力も膜厚を 0. 1 mm以下にすることができず、このため水素透過分離性能の低いものとなることが明 らかである。
産業上の利用可能性
[0029] この発明の水素透過分離薄膜は、高い機械的強度を有する Ni—Ti—Nb合金また は Nb—Ti—Ni合金で構成され、厚さ: 0. 07mm以下への薄膜ィ匕を可能とするもの であり、実用に際して、すぐれた水素透過分離性能を長期に亘つて発揮するもので あるから、水素透過分離膜が構造部材として用いられている各種の化学反応装置の 高性能化の要求に満足に対応できるものである。従って、この発明は産業上非常に 有用である。

Claims

請求の範囲
[1] Ni— Ti— Nb合金力もなる水素透過分離薄膜であって、
該 Ni— Ti Nb合金力 ロール急冷法により得られる厚さ: 0. 07mm以下の铸造 箔材の調質熱処理材からなり、下記 (a)の成分組成および (b)の合金組織を有する ことを特徴とする水素透過分離薄膜。
(a) Nb : 10〜47原子%、 Ti: 20〜52原子%、を含有し、残りが Ni: 20〜48原子 %と不可避不純物力 なる成分組成、及び
(b) Ni— Ti金属間化合物における Tiの一部を Nbが置換する状態で固溶含有した N i— Ti (Nb)金属間化合物からなる素地に、 Nbに Niおよび Tiが固溶してなる Nb基固 溶合金の微細粒が分散分布した合金組織。
[2] Nb— Ti— Ni合金力 なる水素透過分離薄膜であって、
該 Nb— Ti Ni合金力 ロール急冷法により得られる厚さ: 0. 07mm以下の铸造 箔材の調質熱処理材からなり、下記 (a' )の成分組成および (b ' )の合金組織を有す ることを特徴とする水素透過分離薄膜。
(a' ) Ni: 10〜32原子%、 Ti: 15〜33原子%、を含有し、残りが Nb :48〜70原 子%と不可避不純物からなる成分組成、及び
(b' ) Nbに Niおよび Tiが固溶してなる Nb基固溶合金からなる素地に、 Ni— Ti金属 間化合物における Tiの一部を Nbが置換する状態で固溶含有した Ni— Ti (Nb)金属 間化合物の微細粒が分散分布した合金組織。
PCT/JP2007/054552 2006-03-08 2007-03-08 水素透過分離薄膜 WO2007105594A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2007225886A AU2007225886B2 (en) 2006-03-08 2007-03-08 Hydrogen-permeable separation thin membranes
CN2007800078803A CN101394918B (zh) 2006-03-08 2007-03-08 氢透过分离薄膜
US12/281,663 US8105424B2 (en) 2006-03-08 2007-03-08 Hydrogen permeation/separation thin membrane
EP07738042A EP1992401B1 (en) 2006-03-08 2007-03-08 Hydrogen-permeable separation thin membranes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-062922 2006-03-08
JP2006-062923 2006-03-08
JP2006062923A JP4953279B2 (ja) 2006-03-08 2006-03-08 すぐれた水素透過分離性能を発揮する水素透過分離薄膜
JP2006062922A JP4953278B2 (ja) 2006-03-08 2006-03-08 すぐれた水素透過分離性能を発揮する水素透過分離薄膜

Publications (1)

Publication Number Publication Date
WO2007105594A1 true WO2007105594A1 (ja) 2007-09-20

Family

ID=38509420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054552 WO2007105594A1 (ja) 2006-03-08 2007-03-08 水素透過分離薄膜

Country Status (4)

Country Link
US (1) US8105424B2 (ja)
EP (1) EP1992401B1 (ja)
AU (1) AU2007225886B2 (ja)
WO (1) WO2007105594A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101543717A (zh) * 2008-03-24 2009-09-30 株式会社日本制钢所 氢可渗透模块及其使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391500B1 (ko) * 2010-05-31 2014-05-07 히타치 긴조쿠 가부시키가이샤 수소 분리 합금 및 그 제조 방법
US9073007B2 (en) 2012-02-15 2015-07-07 Samsung Electronics Co., Ltd. Separation membrane, hydrogen separation membrane including the separation membrane, and hydrogen purifier including the hydrogen separation membrane
US8900345B2 (en) 2012-03-19 2014-12-02 Samsung Electronics Co., Ltd. Separation membrane, hydrogen separation membrane including the separation membrane, and device including the hydrogen separation membrane
CN109876667A (zh) * 2019-04-04 2019-06-14 江苏海发新材料科技有限公司 一种多孔不锈钢膜的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232491A (ja) 2004-02-17 2005-09-02 Ulvac Japan Ltd 水素分離・精製用複相合金及びその作製方法、並びに水素分離・精製用金属膜及びその作製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130801A (en) * 1979-02-15 1980-10-11 Hill Eugene Farrell Separation of hydrogen which use coating titaniummzirconium alloy
AU2003289507A1 (en) * 2003-02-24 2004-09-09 Fukuda Metal Foil And Powder Co., Ltd. Hydrogen separation membrane and process for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232491A (ja) 2004-02-17 2005-09-02 Ulvac Japan Ltd 水素分離・精製用複相合金及びその作製方法、並びに水素分離・精製用金属膜及びその作製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HASHI K. ET AL.: "Ni-Ti-Nb Gokin no Suiso Toka Tokusei", THE JAPAN INSTITUTE OF METALS KOEN GAIYO, vol. 132, 2003, pages 345, XP003017818 *
See also references of EP1992401A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101543717A (zh) * 2008-03-24 2009-09-30 株式会社日本制钢所 氢可渗透模块及其使用方法
EP2106838A1 (en) * 2008-03-24 2009-10-07 The Japan Steel Works, Ltd. Hydrogen permeable module and usage thereof
US8075670B2 (en) 2008-03-24 2011-12-13 The Japan Steel Works, Ltd. Hydrogen permeable module and usage thereof
CN101543717B (zh) * 2008-03-24 2013-10-23 株式会社日本制钢所 氢可渗透模块及其使用方法

Also Published As

Publication number Publication date
US20090056549A1 (en) 2009-03-05
US8105424B2 (en) 2012-01-31
EP1992401A4 (en) 2009-06-24
AU2007225886B2 (en) 2010-04-22
AU2007225886A1 (en) 2007-09-20
EP1992401A1 (en) 2008-11-19
EP1992401B1 (en) 2012-05-02

Similar Documents

Publication Publication Date Title
KR20130142467A (ko) 티타늄계 벌크 비정질 매트릭스 복합체 및 그 제조 방법
US9266071B2 (en) Hydrogen separation alloy and method for producing same
WO2007105594A1 (ja) 水素透過分離薄膜
JP2015034337A (ja) 高純度銅スパッタリングターゲット用銅素材及び高純度銅スパッタリングターゲット
JP4953278B2 (ja) すぐれた水素透過分離性能を発揮する水素透過分離薄膜
JP2006118035A (ja) 結晶質複相水素透過合金および結晶質複相水素透過合金膜
US7708809B2 (en) Hydrogen permeable membrane
CN114959394A (zh) 一种bcc结构固溶体合金的设计方法及其应用
JP5199760B2 (ja) すぐれた水素透過分離性能を発揮する水素透過分離薄膜
JP4953279B2 (ja) すぐれた水素透過分離性能を発揮する水素透過分離薄膜
JP5463557B2 (ja) 複相型水素透過合金およびその製造方法
JP7359381B2 (ja) 水素分離合金
JP4250684B2 (ja) すぐれた水素分離透過機能および高温非晶質安定性を有する水素分離透過膜
JP2009072685A (ja) すぐれた機械的性質と水素透過分離性能を有する水素透過分離薄膜
JP2010053379A (ja) すぐれた機械的性質と水素透過分離性能を有する水素透過分離薄膜
JPH0819500B2 (ja) 水素吸蔵合金薄膜体およびその製造方法
JP5549205B2 (ja) 水素分離合金、水素分離合金圧延形成用素材、水素分離合金の製造方法、および水素分離装置
CN115652160A (zh) 一种用于氨分解氢气分离纯化的钒合金膜材料及其制备方法
JP4608657B2 (ja) 水素高純度精製装置の高圧操業ですぐれた水素分離透過機能を長期に亘って発揮する水素分離透過膜
JP4250680B2 (ja) すぐれた高温非晶質安定性を有する水素分離透過膜
JPS61231145A (ja) 低密度高力アルミニウム合金の製造法
CN111644600A (zh) 一种具有连续渗氢相的Nb-Zr-Co氢分离材料及其制备方法和应用
JP4250681B2 (ja) すぐれた水素分離透過機能を発揮する水素分離透過膜
CN117626051A (zh) 一种铜镍合金及其制备方法
JP2020142197A (ja) 水素透過装置及び水素透過装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12281663

Country of ref document: US

Ref document number: 200780007880.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007225886

Country of ref document: AU

Ref document number: 2007738042

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007225886

Country of ref document: AU

Date of ref document: 20070308

Kind code of ref document: A