WO2007105429A1 - Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts - Google Patents

Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts Download PDF

Info

Publication number
WO2007105429A1
WO2007105429A1 PCT/JP2007/053125 JP2007053125W WO2007105429A1 WO 2007105429 A1 WO2007105429 A1 WO 2007105429A1 JP 2007053125 W JP2007053125 W JP 2007053125W WO 2007105429 A1 WO2007105429 A1 WO 2007105429A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
iron
mass
mixed powder
sintered
Prior art date
Application number
PCT/JP2007/053125
Other languages
French (fr)
Japanese (ja)
Inventor
Yukiko Ozaki
Tomoshige Ono
Shigeru Unami
Masashi Fujinaga
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to KR1020087020086A priority Critical patent/KR101101734B1/en
Priority to CA2642254A priority patent/CA2642254C/en
Priority to EP07714625.6A priority patent/EP1985393B1/en
Priority to US12/279,471 priority patent/US20090041608A1/en
Priority to CN2007800057277A priority patent/CN101384387B/en
Publication of WO2007105429A1 publication Critical patent/WO2007105429A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to an iron-based powder in which an iron-based powder is mixed with a lubricant and, if necessary, an alloying powder.
  • Iron-based powder mixture Iron-based mixed powder of the present invention
  • the powder is also suitable for powder metallurgy, especially mixed powder suitable for compaction in the temperature range from room temperature to less than 100 ° C.
  • the present invention further relates to a powder mixture for powder metallurgy suitable for the production of high strength sintered parts for automobiles.
  • the present invention provides a method for producing an iron-based powder molded body (compacted body) using the iron-based mixed powder as a raw material, and an iron-based powder sintered body (sintered powder) using the iron-based powder molded body as a raw material. body).
  • Iron-based mixed powders for powder metallurgy are mixed with iron-based powders by adding lubricants, composite powders, and, if necessary, powders of free cutting addi- tives. It is common to manufacture.
  • the iron-based powder is the main component of the mixed powder, and mainly used is iron powder (including pure iron powder) and alloy steel powder (alloyed steel powder). It is done.
  • Alloy steel powder is a steel powder containing alloy components, and powders that do not contain C are also used as alloy steel powder, but here we collectively refer to alloy steel powder containing C and alloy iron powder not containing C. This is referred to as alloy steel powder.
  • alloy steel powder was bound to the pure iron powder by portions diffuse the alloying elements, partially diffused alloyed steel powder (partly diffused al loyed steel powder) mosquitoes s also use ⁇ , I or also ferroalloys herein One kind of powder.
  • the lubricant is an additive for facilitating removal from the mold after pressure molding or molding.
  • Various materials can be used as lubricants, but iron-based powders It is selected in consideration of the mixability with the powder and the dissipative property during sintering.
  • examples of lubricants include zinc stearate, aluminum stearate, and lead stearate. Further, various lubricants are exemplified in, for example, US Pat. No. 5,256,185.
  • Alloy powders are added mainly for the purpose of adjusting the composition and structure of iron-based powder compacts and iron-based powder sintered bodies.
  • Graphite powder, copper powder, iron phosphide powder, molybdenum powder, nickel Examples include powder.
  • the machinability improving powder (free cutting ingredients) is added to improve the machinability of the sintered body, and includes S and Mn S.
  • S and Mn S are added to improve the machinability of the sintered body.
  • a warm forming technology has been developed that enables high density and high strength of molded products by forming iron-based mixed powder while heating. This technology makes it possible to improve the density of compacts at lower loads by taking advantage of the fact that iron-based powders are reduced in plastic deformation resistance by heating.
  • iron-based mixed powders are also desired to solve the problem of machinability.
  • powder and metallurgical mixed powder is filled into a mold, compacted and then sintered.
  • the parts of the various machines thus obtained (hereinafter referred to as sintered parts) usually have a density of 5.0 to 7.2 g / cm 3 .
  • sintered parts have good dimensional accuracy and can be manufactured in complex shapes.
  • Sintered parts are used as parts for a variety of equipment, but parts for automobiles (eg gears) are required to have high strength and fatigue characteristics. Therefore, in order to produce sintered parts with high strength and high fatigue properties, various techniques for using mixed powders for powder metallurgy with alloy components added have been studied. For example, in Japanese Patent Publication No. 45-9649, Ni, Cu, Mo and other powders are diffused and adhered to pure Fe powder, which is suitable for the manufacture of sintered parts with high strength and high fatigue characteristics and excellent compressibility. Also, mixed powders for powder metallurgy are disclosed. In addition, as a mixed powder for powder metallurgy suitable for the production of high-strength sintered parts, Japanese Patent Application Laid-Open No.
  • 61-163239 discloses a low alloy steel containing C and Mo but practically free of Mn and Cr. powdered, was added Cu powder and / or N i powder, further mixed powder for powder metallurgy was added graphite powder, also in JP-a-6 3-114903, containing Mo, Mn, and C A mixed powder for powder metallurgy in which Cu powder is fused to alloy steel powder is disclosed.
  • powder metallurgy technology when manufacturing sintered parts that require extremely strict dimensional accuracy, it is necessary to perform machining (for example, cutting and drilling) after sintering.
  • machining for example, cutting and drilling
  • the free-cutting component has the effect of easily breaking chips or forming a thin component edge on the surface of the cutting tool to increase the lubricity of the cutting tool (especially the rake face).
  • the free-cutting component containing S as a main component contaminates the firing furnace like MoS 2 described above.
  • the techniques disclosed in Japanese Patent Publication No. 45-9649, Japanese Patent Publication No. 61-163239, Japanese Patent Publication No. 63-114903, etc. have a very high hardness of the sintered parts obtained, so free cutting Even if the ingredients are added to the powder mixture for powder metallurgy, no significant improvement in machinability is expected.
  • Mg0 / Si0 2 is 0.5 or more and less than 1.0 in molar ratio.
  • Mg0-S i0 2 complex oxides for example, anhydrous talc
  • Japanese Patent Laid-Open No. 64-79302 discloses MgO-Si0 2 complex oxides.
  • the present invention advantageously solves the above-mentioned problems, and does not adversely affect the in-furnace environment of the sintering-forming furnace when the molded body is sintered, and has a high density in a low temperature range of less than 100 ° C.
  • the purpose is to propose an iron-based mixed powder for powder metallurgy that can be molded and has excellent formability.
  • Another object of the present invention is to provide a suitable iron-based mixed powder for powder metallurgy.
  • the present invention also proposes a method for producing an iron-based powder spherical body using the iron-based mixed powder as a raw material, and a method for producing an iron-based powder sintered body using the iron-based powder compact as a raw material. With the goal.
  • the inventors do not adversely affect the in-furnace environment when forming the iron-based mixed powder, and lower the heating temperature of the iron-based mixed powder, preferably Even when it was molded without heating, we intensively studied lubricants that enable the production of high-density molded products.
  • the present invention is based on the above findings. That is, the gist configuration of the present invention is as follows. (1) An iron-based mixed powder characterized by containing an iron-based powder and, as an additive, at least one selected from talc opi steaite and a fatty acid amide.
  • Mo 0.3 to 0.5 mass 0/0
  • Mn 0.1 to 0.25 contains mass%
  • water Atomaizu alloy steel powder consisting of unavoidable impurities balance and Contact Fe
  • Cu powder 1 3 wt. /
  • graphite powder 0.5: and L 0 mass 0/0
  • An iron-based mixed powder characterized by
  • An iron-based powder compact characterized by filling the mold with the iron-based mixed powder according to any one of (1) to '(6) above and molding at a temperature of less than 100 ° C. Manufacturing method.
  • the iron-based mixed powder according to any one of the above (1) to (6) is filled in a mold and molded at a temperature of less than 100 ° C.
  • a method for producing an iron-based powder sintered body characterized by sintering Note that the content of alloys (Mo, Mn, etc.) in the iron-based powder, and the amount of alloy powder (Cu powder, graphite powder, etc.) to be added, talc, and steaite are both iron-based mixed. It refers to the ratio of the powder to the mass.
  • the present invention will be specifically described.
  • the raw material for the iron-based mixed powder of the present invention will be described.
  • the content of the alloy component in the iron-based powder and the blending amount of each raw material occupy the mass (100% by mass) of the iron-based mixed powder obtained by mixing them. It shall be indicated by the weight ratio of the number.
  • the alloy content (including the amount of partially diffused alloy) in the iron-based powder is expressed as a weight ratio to the iron-based powder.
  • examples of the iron-based powder include pure iron powder such as atomized iron powder and reduced iron powder, or alloy steel powder.
  • alloy steel powder partially diffused alloyed steel powder and fully alloyed steel powder (alloy components are included from the time of melting), and further alloy components are partially diffused in fully alloyed steel powder. Examples include hybrid steel powder.
  • the total amount of impurities in the iron-based powder may be about 3 mass% or less.
  • Typical impurity content is C: 0.05 mass% or less, Si: 0.10 mass 0 /.
  • Cr, Mn, Ni, Mo, V, Ti, Cu, Nb, etc. can be alloyed as alloy steel powder, and especially Ti, Ni, Mo, Cu, etc. can be added by diffusion bonding.
  • the content of other alloy elements is not limited.
  • the average particle diameter of the iron-based powder is preferably in a normal range used for powder metallurgy, that is, about 70 to 100 ⁇ m.
  • the particle size of the powder is a value measured by a sieving method in accordance with JIS standard Z 2510 unless otherwise specified.
  • JIS standard Z 2510 JIS standard Z 2510
  • Mo 0. 3 to 0 5 weight 0/0
  • Mn 0.. 0. 1 ⁇ 0 25 mass 0/0
  • the balance Fe Contact Fully alloyed steel powder which is an inevitable impurity, is preferred. From the viewpoint of productivity, it is preferable to use a water alloyed alloy steel powder produced by water atomizing a steel having the above composition.
  • Mo is an element that enhances the strength of sintered parts by strengthening the solid solution of alloy steel powder and improving hardenability. If the Mo content is less than 0.3% by mass, the effect of increasing the strength of the sintered part by Mo cannot be obtained. On the other hand, if it exceeds 0.5% by mass, the effect of improving the strength of the sintered part is saturated, and the machinability is unnecessarily lowered. Therefore, Mo is preferably in the range of 0.3 to 0.5% by mass.
  • Mn is an element that enhances the strength of sintered parts by strengthening the solid solution of hydrogenated alloy steel powder and improving hardenability. If the Mn content is less than 0.1% by mass, the effect of increasing the strength of the sintered part by Mn cannot be obtained. On the other hand, if it exceeds 0.25 mass%, the oxidation of Mn tends to proceed, and the strength and compressibility of the alloy steel powder decrease. Thus, Mn is preferably in a range of 0.1 to 0.25 mass 0/0.
  • the balance other than the above components is preferably Fe and inevitable impurities. Inevitable impurities are inevitably mixed at the stage of melting molten steel, which is the raw material of hydrogenated alloy steel powder, and at the stage of producing water atomized alloy steel powder from molten steel. ⁇
  • the suitable manufacturing method of the water atomized alloy steel powder which can be used suitably by said invention is demonstrated.
  • Molten steel containing the prescribed components ie, the above
  • the obtained powder is subjected to finish reduction and pulverization to obtain permanent atomized alloy steel powder.
  • An apparatus for obtaining powder from molten steel by the water atomization method is not limited to a specific type, and a conventionally known apparatus may be used.
  • alloy powders include graphite powder, metal powders such as Cu, Mo and Ni, pollon powder and cuprous oxide powder. These alloy powders are made of iron-based powder. By mixing at the end, the strength of the sintered body can be increased.
  • the amount of alloying powder is preferably a child and about the iron-based mixed powder 0. l ⁇ 10 mas s%. This is because, by adding 0.1 lmass% or more of the alloy powder, the strength of the obtained sintered body is advantageously improved, whereas when it exceeds 10 mas S %, the dimensional accuracy of the sintered body decreases. It is.
  • iron-based powder example 1 especially Cu powder: 1 to 3 mass. / 0 and black bell flour: It is preferable to add 0.5 to 1.0% by mass.
  • the main component of graphite powder is an element that increases the strength of sintered parts by strengthening the solid solution of water atomized alloy steel powder and improving hardenability. If the amount of graphite powder added is less than 0.5% by mass, the desired degree of effect cannot be obtained in iron-based powder example 1. On the other hand, if it exceeds 1.0 mass%, the strength of the sintered part will increase more than necessary, and the machinability will unnecessarily decrease. Therefore, the graphite powder is in the range of 0.5 to 1.0 mass%.
  • Cu is an element that increases the strength of sintered parts by strengthening the solid solution of alloy steel powder and improving hardenability. Also, Cu powder melts into a liquid phase during sintering, and the particles of alloy steel powder adhere to each other. If the amount of Cu powder added is less than 1% by mass, the desired effect in the iron-based powder example 1 cannot be obtained. On the other hand, if it exceeds 3% by mass, the effect of improving the strength of the sintered parts will be saturated, and the machinability will be unnecessarily reduced. Therefore, Cu powder should be in the range of 1 to 3% by mass.
  • the addition method can be performed by adding Cu powder to the alloy steel powder and simply mixing it.
  • a method of attaching Cu powder to the surface via a binder may be used.
  • alloy steel powder and Cu powder are mixed and heat-treated to cause Cu powder to diffuse and adhere to the surface of the alloy steel powder, resulting in partially diffused alloyed steel powder (or hybrid alloy). (Chemical steel powder).
  • talc Mg O-4 Si 0 2
  • steatite is also called baked talc
  • the main component is enstatite (Mg O ⁇ Si 0 2 ) It is.
  • talc steaite When added together with fatty acid amide, talc steaite exhibits a remarkable effect as a lubricant. Further, talc Ya Suteatai bets is a kind of Mg O-Si_ ⁇ 2 based composite oxide is known as a free-cutting component, by further added additive with the metal ore ⁇ , exert remarkable effect as free-cutting component To do.
  • talc Ya Suteatai bets is a kind of Mg O-Si_ ⁇ 2 based composite oxide is known as a free-cutting component, by further added additive with the metal ore ⁇ , exert remarkable effect as free-cutting component To do.
  • the reason why the above-mentioned talc steaite is blended as a lubricant improves the compressibility of the molded body and at the same time reduces the punching force during molding and greatly improves the moldability. it is conceivable that.
  • talc, steatite, and boron nitride are easily cleaved along the crystal plane when the material is subjected to shear stress between iron-based powder particles during molding. It is considered that the density of the compact is improved as a result of the reduction in frictional resistance and the ease of movement between particles. This effect is effective in the region where the compression pressure is relatively low. On the other hand, in the high pressure region, the fatty acid amide penetrates thinly between the particles and exhibits the effect of reducing the frictional resistance. In this way, the frictional resistance is reduced over the entire compression range, so it seems to have a synergistic effect in improving the density of the compact.
  • talc steaite is present between the molded body and the mold, it will be cleaved due to the shear stress from the mold surface when the molded body is pulled out, making it easier for the molded body to slide on the mold surface. This is thought to improve and reduce the output.
  • the heating temperature of the iron-based powder can be set as appropriate according to the required density of the compact, but the heating temperature is sufficient to be less than 100 ° C. More preferably, it is 80 ° C or lower.
  • a sintered part manufactured using the mixed powder for powder metallurgy according to the present invention has a high strength equivalent to that of a conventional high strength sintered part and can also have extremely excellent machinability.
  • the blending amount exceeds 0.5% by mass, the compressibility of the mixed powder is lowered, and there is a concern that the mechanical strength and the like of the sintered material obtained by sintering the compact are reduced.
  • a more preferable upper limit is 0.3% by mass, and in order to substantially eliminate the influence on the mechanical properties of the sintered body, the upper limit is preferably 0.2% by mass or less. It is preferable that talc has a monoclinic or triclinic crystal structure, steatite has a monoclinic crystal structure, and boron nitride has a hexagonal crystal structure.
  • the size of talc steaite is preferably about 1 to 10 / X m in particle size.
  • At least one fatty acid amide is blended as a lubricant.
  • the fatty acid amide is preferably at least one selected from fatty acid monoamides (such as stearic acid monoamide) and fatty acid bisamides (such as ethylene bis-stear mouth amide and methylene bis-stear mouth amide).
  • the iron-based mixed powder can effectively be used for praying and dust generation.
  • the fluidity and moldability can be further improved.
  • fatty acid amide may be mixed with fatty acid, but this is not particularly prohibited.
  • the amount of the fatty acid amide described above is preferably about 0.01 to 0.5% by mass in the iron-based mixed powder. This is because if the blending amount is less than 0.01% by mass, the effect of the addition is poor, while if it exceeds 0.5% by mass, the strength of the green compact decreases.
  • the lower limit is more preferably when 0.0 3% by weight of the iron-based powder is pure iron powder, a case 0.05% by weight of the alloy steel powder, a more preferred upper limit is 0.4 wt%, iron-based powder GaJun In the case of iron powder, a more preferred upper limit is 0.3% by mass.
  • a metal sarcophagus can be further blended.
  • metal sarcophagus is removed here as a lubricant.
  • metal sarcophagus examples include zinc stearate, lithium stearate, and calcium stearate. Of these, zinc stearate and lithium stearate are particularly preferred.
  • the blending amount of the metal stalagmite is preferably about 0.01 to 0.5% by mass in the iron-based mixed powder. This is because if the combined amount is less than 0.01% by mass, the effect of addition is poor, while 0.5% by mass. This is because the strength of the green compact decreases when the ratio exceeds / 0 .
  • a more preferable lower limit is 0.05% by mass or more, and a more preferable upper limit is 0.3% by mass. /. It is.
  • the total addition amount of the fatty acid amide and the metal sarcophagus is preferably 0.1% by mass or more and 1.0% by mass. A more preferred lower limit is 0.2% by mass. A more preferred upper limit is 0.6 mass. / 0 .
  • the total amount of talc * steatite, fatty acid amide and metal stalagmite is preferably about 0.01 to 2.0% by mass in the iron-based mixed powder.
  • a more preferred lower limit is 0.15% by mass, and a more preferred upper limit is 0.8% by mass.
  • the iron-based mixed powder of the present invention does not require any other additive, but it is free to add a known additive such as a surface modifier (such as siloxane) to about 0.5% by mass or less. is there.
  • a known additive such as a surface modifier (such as siloxane) to about 0.5% by mass or less. is there.
  • a force similar to that of the first method may be such that only a part of the raw materials described above is added to the iron-based powder and subjected to primary mixing, and then the remainder is added to perform secondary mixing.
  • the secondary mixed raw material exists in the mixed powder in a free state.
  • a particularly preferred example is that at least one part of the metal sarcophagus is subjected to secondary mixing, the remaining raw material is subjected to primary mixing, and a fatty acid amide or a co-melt of this and the metal sarcophagus as the binder.
  • This is a method using. In this method, the amount of each raw material added to the iron-based powder can be minimized.
  • the means for mixing the iron-based powder and each raw material is not particularly limited, and any conventionally known mixer can be used. Among them, a high-speed bottom-stirring mixer (high-speed mixer), which is easy to heat, and a rotating blade.
  • the counter current mixer, the rotary share mixer and the coni cal mixer are particularly advantageous. ' 2007/053125
  • the iron-based mixed powder of the present invention can be formed into a molded body by a normal molding method. Specifically, iron-based mixed powder is filled into a mold and further compacted. As a generally suitable condition for compacting, it is preferable that the applied pressure is 400 to 1000 MPa.
  • the mold may be heated to 50 to 70 ° C. Alternatively, the mixed powder for powder metallurgy and the mold may be heated to 80 to 130 ° C.
  • the iron-based mixed powder of the present invention can be molded at a sufficiently high density even at room temperature, and room temperature molding is preferred from the viewpoint of productivity. Nonetheless, it is advantageous to heat the iron-based mixed powder or mold or apply a lubricant to the mold.
  • the temperature of the iron-based mixed powder and the mold is preferably less than 100 ° C. This is because the iron-based mixed powder according to the present invention has excellent compressibility and exhibits excellent formability even at temperatures below 100 ° C, and there is a concern of deterioration due to oxidation at temperatures above 100 ° C. . More preferably, it is 80 ° C. or lower.
  • the high-density iron-based powder molded body obtained as described above is taken out from the mold and subjected to a sintering treatment to obtain a high-density sintered body.
  • the sintering treatment is not particularly limited, and any conventionally known sintering treatment method can be suitably used. Sintering is preferably performed at a heating temperature of 1100 to 1600 ° C and a heating time of 10 to 60 minutes.
  • Table 1 shows the types of various iron powders for powder metallurgy used in Examples 1 to 4 as iron-based powders (both have an average particle size of about 80 m).
  • alloy steel powder it is a fully alloyed steel powder, a partially alloyed steel powder, or even a high-prid steel powder in which the alloy components are partially diffused in the fully alloyed steel powder. A distinction is shown.
  • Various lubricant powders were added to various iron-based powders and natural graphite powders (average particle size: and / or copper powder (average particle size: 25 ⁇ )) shown in Table 2. after heating to 140 ° C while mixing at high speed bottom stirring type mixer, cooled below 60 ° C, further adding various lubricant powder (secondary additives), 1 minute at 500 r P m ⁇ After that, the mixed powder was discharged from the mixer
  • the types and blending amounts of the primary and secondary additives are listed in Table 2.
  • the amount of lubricant added (parts by mass) is the same as the iron-based powder and natural graphite powder.
  • the ratio of the total mass with copper powder to 100% is shown as an external number. It is almost the same as the numerical value.
  • the average particle size of talc powder and steatite powder was 6 ⁇ m, respectively.
  • each obtained iron-based mixed powder was filled into a cemented carbide tablet mold having an inner diameter of 11 mm at room temperature and pressure-molded at 490 MPa and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
  • the obtained iron-based mixed powder was separately compacted with a test piece for cutting test (outer diameter 60 mm, inner diameter 20 mm, length 30 mm).
  • the pressing force for compacting was 59 OMPa.
  • Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C, and the heating time was 20 minutes.
  • a cermet cutting tool was used to perform a cutting test at a cutting speed of 200 mZ, feed 0. lnnii / turn, cutting depth 0.3 mm, cutting distance 1000 m, and the flank of the cutting tool.
  • the wear width was measured. The smaller the wear width of the flank of the cutting tool, the better the machinability of the sintered body. The results obtained are shown in Table 4.
  • EBS Ethylene bissuaramide
  • STZN Suarin 3 ⁇ 4Ash &
  • STAM Suarin monoamide
  • STLI Suarin lithium Table 3
  • each iron-based mixed powder at room temperature was obtained, and heated as previously Kiyabiti wall temperature is 80 ° C inside diameter: 11 was filled in a cemented carbide Taburetsu preparative the negation, pressurized with 49 0 MPa and 686MPa Press molded. At that time, the extraction force when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
  • the mold was heated to 130 ° C and filled into a carbide tablet mold with an inner diameter of 11mm, and 490MPa and 686MPa. Was pressure molded. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
  • Example 2 a test specimen for a cutting test was compacted to adjust the machinability.
  • flank wear width of each invention example decreased to about 20 to 40% of the comparative example of the same system (number), and a remarkable improvement was also seen in the machinability.
  • the mixed powder mixed with the mold container rotary mixer was produced.
  • each iron-based mixed powder obtained was heated to 60 ° C, and then heated beforehand so that the cavity wall surface temperature was 80 ° C, and further, lithium stearate powder was applied to the wall surface. Filled into a cemented carbide tablet mold and pressure molded at 490 and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured. ⁇
  • the comparative material was heated to general warm forming conditions, that is, to 120 ° C, and then the mold was heated to 130 ° C and filled into a carbide tablet mold with an inner diameter of 11 mm. 490 and 686 MPa was pressure molded. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
  • Example 2 a test specimen for cutting test was compacted and the machinability was investigated.
  • flank wear width (mm) of each invention example was reduced to about 25 to 35% of the comparative example of the same system (number), and a marked improvement was also seen in machinability.
  • each obtained iron-based mixed powder was filled into a cemented carbide tablet mold having an inner diameter of 11 mm at room temperature, and pressure-molded at 490 MPa and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
  • the obtained iron-based mixed powder is separately prepared for tensile test pieces and cutting test pieces (outer diameter 60 mni, inner diameter 20 mni, length in accordance with JPMA M04-1S92). 30 mm) was compacted. Pressure of compacting was 5 9 0 MPa. Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C, and the heating time was 20 minutes.
  • the machinability evaluation method is the same as in Example 1.
  • Water atomized alloy steel powder having the components shown in Table 11 was produced by the water atomizing method. The balance other than Mn and Mo is Fe and inevitable impurities. Its water atomized alloy Cu powder, graphite powder, talc, and stearite were added to the steel powder in the proportions shown in Table 11. Incidentally, Mo content of ice atomized steel powder in, Mn content (mass ./.) And Mizua Tomaizu steel powder Cu powder to be added, graphite powder, talc, amount of Suteatai bets (mass 0/0) Indicates the ratio in the mass of the mixed powder for powder metallurgy. Further, a lubricant was added at a ratio shown in Table 11.
  • the amount of lubricant added indicates the ratio to the mass (100 parts by mass) of the mixed powder for powder metallurgy obtained by mixing water-hamized alloy steel powder and additive in an external number. It is almost the same as the numerical value).
  • the mixture was mixed in a V-type blender, and the resulting mixed powder for powder metallurgy was filled into a mold, and a tensile test piece and a test piece for cutting test in accordance with JPMA M04-1992 (outer diameter 60 mm , The inner diameter was 20 ⁇ and the length was 30mm).
  • the pressing force for compacting was 590 MPa.
  • Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C, and the heating time was 20 minutes.
  • Table 11 shows the tensile strength obtained by the tensile test.
  • the invention example is an example using a mixed powder for powder metallurgy that satisfies the scope of the present invention
  • the comparative example is an example using a mixed powder for powder metallurgy that falls outside the scope of the present invention.
  • the conventional example of No. 22 is a conventional lubricant for mixed powder for powder metallurgy using Fe-4Ni-l.5Cu-0.5Mo-based water atomized alloy steel powder, which has been put to practical use. Is an example of blending.
  • the numerical value attached to the alloy element of No. 22 represents mass%. Sintering cutting
  • EBS Ethylene bissuaramito "
  • STZN Suarin ffifiS
  • STAM Monoaluminum sulphate
  • STLI Lithium sulphate * 3 Ratio to 100 parts by mass of powder mixture for powder metallurgy (external number)
  • the water Atomaizu alloy steel powder is Mo: 0. 3 ⁇ 0. 5 mass 0/0 and Mn:. Containing 0.1 to 0 25 wt%, and, Cu powder: 1 3% by weight and graphite powder When containing 0.5 to 0.5% by mass, a sintered body having a tensile strength of 500 MPa or more and excellent in machinability can be obtained.
  • an iron-based mixed powder having a high molding density and a small punching power even if it is molded at a temperature as low as room temperature. Further, according to the present invention, a mixed powder for powder metallurgy suitable for manufacturing a sintered part having excellent machinability, particularly a high strength sintered part can be obtained.
  • an iron-based powder molded body having a high forming density, an iron base having a high sintered density, or a further excellent machinability by using the iron-based mixed powder as a raw material, an iron-based powder molded body having a high forming density, an iron base having a high sintered density, or a further excellent machinability.
  • a powder sintered body can be obtained.

Abstract

An iron-base mixed powder for powder metallurgy which comprises an iron-base powder and at least one member selected from between talc and steatite and preferably further contains a metal soap. This mixed powder does not produce adverse effect on furnace atmosphere in sintering a compact of the powder and exhibits excellent compactibility even in a low-temperature region of below 100°C and the sintered compact made from the powder is favorably excellent in machinability.

Description

T JP2007/053125  T JP2007 / 053125
'鉄基混合粉末ならびに鉄基粉末成形体および鉄基粉末焼結体の製造方法 技術分野 'Iron-base mixed powder, iron-base powder compact and method for producing iron-base powder sintered body
本発明は、 鉄基粉末 (iron- based powder) に、 潤滑剤 (lubri cant) , お よび必要に応じ合金用粉末 (al loying powder) を混合した鉄基混合粉末 明  The present invention relates to an iron-based powder in which an iron-based powder is mixed with a lubricant and, if necessary, an alloying powder.
( iron-based powder mixture) に関するものである。 本発明の鉄基混合粉 田  (iron-based powder mixture) Iron-based mixed powder of the present invention
末は、 粉末冶金 (powder metal lurgy) に適し、 とくに常温から 100°C未満の 温度域での加圧成形 (compaction) に適した混合粉末でもある。 The powder is also suitable for powder metallurgy, especially mixed powder suitable for compaction in the temperature range from room temperature to less than 100 ° C.
本発明はさらに.、 自動車用高強度焼結部品 (sintered parts) の製造に好 適な粉末冶金用混合粉末に関するものである。  The present invention further relates to a powder mixture for powder metallurgy suitable for the production of high strength sintered parts for automobiles.
また、 本発明は、 上記の鉄基混合粉末を原料とする鉄基粉末成形体 ( compacted body) の製造方法およぴ該鉄基粉末成形体を素材とする鉄基粉 末焼結体 (sintered body) の製造方法に関するものである。 背景技術  In addition, the present invention provides a method for producing an iron-based powder molded body (compacted body) using the iron-based mixed powder as a raw material, and an iron-based powder sintered body (sintered powder) using the iron-based powder molded body as a raw material. body). Background art
粉末冶金用の鉄基混合粉末は、 鉄基粉末に、 潤滑剤、 合.金用粉末、 さらに 必要に応じて切削性改善用粉末 (powder of free cutt ing addi t ives) を添 加し、 混合して製造するのが一般的である。  Iron-based mixed powders for powder metallurgy are mixed with iron-based powders by adding lubricants, composite powders, and, if necessary, powders of free cutting addi- tives. It is common to manufacture.
ここで、 鉄基粉末は混合粉末の主成分となるもので、 主に鉄粉 (iron powder) (純鉄粉 (pure iron powder) を含む) や合金鋼粉 ( al loyed steel powder) などが用いられる。 合金鋼粉は、 合金成分を含有する鋼粉であり、 合金鋼粉として Cを含有しない粉末も使用されるが、ここでは Cを含有する 合金鋼粉と Cを含有しない合金鉄粉を総称して合金鋼粉と記す。 なお、上記 他に、合金元素を部分拡散により純鉄粉等に結合させた、部分拡散合金化 鋼粉 (partly diffused al loyed steel powder) も用 ヽられるカ s、 本願で ίま これも合金鉄粉の 1種とする。 Here, the iron-based powder is the main component of the mixed powder, and mainly used is iron powder (including pure iron powder) and alloy steel powder (alloyed steel powder). It is done. Alloy steel powder is a steel powder containing alloy components, and powders that do not contain C are also used as alloy steel powder, but here we collectively refer to alloy steel powder containing C and alloy iron powder not containing C. This is referred to as alloy steel powder. Note that the other was bound to the pure iron powder by portions diffuse the alloying elements, partially diffused alloyed steel powder (partly diffused al loyed steel powder) mosquitoes s also useヽ, I or also ferroalloys herein One kind of powder.
潤滑剤はとくに加圧成形や成形後の金型からの取り出しを容易とするた めの添加物である。潤滑剤としては種々の物質が適用可能であるが、鉄基粉 末との混合性や焼結時の散逸性などを考慮して選択される。潤滑剤の例とし ては、 ステアリン酸亜鉛ゃステアリン酸アルミ二ゥム、 ステアリン酸鉛など が拳げられる。 また例えば米国特許第 5, 256, 185号公報などに、 種々の潤滑 剤が例示されている。 The lubricant is an additive for facilitating removal from the mold after pressure molding or molding. Various materials can be used as lubricants, but iron-based powders It is selected in consideration of the mixability with the powder and the dissipative property during sintering. Examples of lubricants include zinc stearate, aluminum stearate, and lead stearate. Further, various lubricants are exemplified in, for example, US Pat. No. 5,256,185.
合金用粉末は、主に鉄基粉末成形体や鉄基粉末焼結体の組成や構造を調整 する目的で添加されるもので、 黒鉛粉、 銅粉、 燐化鉄粉、 モリブデン粉、 二 ッケル粉などが挙げられる。  Alloy powders are added mainly for the purpose of adjusting the composition and structure of iron-based powder compacts and iron-based powder sintered bodies. Graphite powder, copper powder, iron phosphide powder, molybdenum powder, nickel Examples include powder.
切削性改善用粉末 (快削成分 (free cutt ing addi t ives ) ) は、 とくに焼 結体の切削性を改善するために添加されるもので、 S , Mn Sなどが挙げられ る。 さて、 近年、 焼結部材に対する高強度化の要求の高まり と共に、 特開平 2 一 156002号公報、 特公平 7—103404号公報おょぴ米国特許第 5, 368, 630号公 報に開示されたように、鉄基混合粉末を加熱しつつ成形することにより、成 形体の高密度化および高強度化を可能にする温間成形技術が開発された。こ の技術により、鉄基粉末が加熱により塑性変形抵抗が低下することを利用し て、 より低い荷重での成形体密度の向上が可能となった。  The machinability improving powder (free cutting ingredients) is added to improve the machinability of the sintered body, and includes S and Mn S. In recent years, along with the increasing demand for higher strength of sintered members, it has been disclosed in Japanese Patent Application Laid-Open No. HEI 156002 and Japanese Patent Publication No. 7-103404 and US Patent No. 5,368,630. In this way, a warm forming technology has been developed that enables high density and high strength of molded products by forming iron-based mixed powder while heating. This technology makes it possible to improve the density of compacts at lower loads by taking advantage of the fact that iron-based powders are reduced in plastic deformation resistance by heating.
しかしながら、 このような鉄基混合粉末は、 以下に述べるような諸問題を 有する。 すなわち、 温間成形は、 金型および粉末を高温に予め加熱した後、 鉄基混合粉末を加圧成形する技術である。 加熱温度としては、 特開平 2— 156002号公報には 70〜120°Cという範囲が言及されているものの、 実質的に は、 特公平 7— 103404号公報および米国特許第 5, 368, 630号明細書で述べら れているように、 lOO^C以上で行なうことが好適である。 ところが、 熱伝導 性が悪い鉄基混合粉末を安定して 100°C以上に加熱 ·保温することは極めて 難しいため、 焼結部品の生産性の低下を招く傾向にあった。 また、 鉄基混合 粉末を長時間加熱することによって、鉄基混合粉末の酸化による変質という 問題も生じていた。 また、 特開平 9一 104901号公報ゃ特開平 10— 317001号公報には、 MoS2ゃフ ッ化炭素、黒鉛などの層状結晶を有する無機化合物を潤滑剤として用いる技 術が開示されている。 しかしながら、 MoS2を用いた場合は、 焼結時に分解し て有害な Sが発生し、 焼成炉が汚染される危険性がある。 また、 フッ化炭素 を用い、 水素雰囲気中で焼結した場合は、 フッ化水素の発生が懸念される。 したがって、温間圧延を施さなくても、 これと同等の高圧縮性を有する鉄 基混合粉末の開発が望まれている。 他方、 鉄基混合粉末は、 切削性の問題についても解決が望まれている。 自動車等の各種機械の部品を粉末冶金技術で製造する際には、粉末.冶金用 混合粉末を金型に充填して圧粉成形し、 さらに焼結を行なう。 こ う して得ら れた各種機械の部品 (以下、 焼結部品という) は、 通常、 5. 0〜7. 2 g / cm3 の密度を有する。 また、 焼結部品は寸法精度が良く、 複雑な形状のものを製 造できる。 However, such iron-based mixed powders have the following problems. That is, warm forming is a technique in which a mold and powder are preheated to a high temperature and then iron-based mixed powder is pressure-formed. As for the heating temperature, Japanese Patent Application Laid-Open No. 2-156002 mentions the range of 70 to 120 ° C., but in reality, Japanese Patent Publication No. 7-103404 and US Pat. No. 5,368,630. As stated in the specification, it is preferable to perform at lOO ^ C or higher. However, since it is extremely difficult to stably heat and keep the iron-based mixed powder having poor thermal conductivity at 100 ° C or higher, there was a tendency to reduce the productivity of sintered parts. In addition, heating the iron-based mixed powder for a long time has caused a problem of alteration due to oxidation of the iron-based mixed powder. Further, in Japanese Laid-9 one 104 901 JP Ya Hei 10 31 7 001 No., techniques used MoS 2 Ya full Tsu carbon, an inorganic compound having a layered crystal such as graphite as a lubricant The technique is disclosed. However, when MoS 2 is used, it decomposes during sintering and generates harmful S, which may contaminate the firing furnace. In addition, when fluorocarbon is used and sintered in a hydrogen atmosphere, the generation of hydrogen fluoride is a concern. Therefore, it is desired to develop an iron-based mixed powder having a high compressibility equivalent to that without performing warm rolling. On the other hand, iron-based mixed powders are also desired to solve the problem of machinability. When manufacturing parts of various machines such as automobiles by powder metallurgy technology, powder and metallurgical mixed powder is filled into a mold, compacted and then sintered. The parts of the various machines thus obtained (hereinafter referred to as sintered parts) usually have a density of 5.0 to 7.2 g / cm 3 . In addition, sintered parts have good dimensional accuracy and can be manufactured in complex shapes.
焼結部^は様々な機器の部品として採用されているが、と りわけ自動車用 の部品 (たとえばギヤ等) は高強度, 髙疲労特性が要求される。 そこで高強 度, 高疲労特性を有する焼結部品を製造するために、合金成分を添加した粉 末冶金用混合粉末を使用する技術が種々検討されている。 例えば特公昭 45 - 9649号公報には、 Ni, Cu, Mo等の粉末を純 Fe粉に拡散付着させた、 高強 度 ·高疲労特性を有する焼結部品の製造に好適でかつ圧縮性に優れた、粉末 冶金用混'合粉末が開示されている。また高強度の焼結部品の製造に好適な粉 末冶金用混合粉末として、 特開昭 61- 163239号公報には、 Cと Moを含有し、 Mnと Crを実施的に含有しない低合金鋼粉に、 Cu粉および/または N i粉を添加 し、 さらに黒鉛粉を添加した粉末冶金用混合粉末が、また、特開昭 63-114903 号公報には、 Mo, Mn, Cを含有する合金鋼粉に Cu粉が融着した粉末冶金用混 合粉末が開示されている。 しかし、粉末冶金技術を用いても、極めて厳しい寸法精度が要求される焼 結部品を製造する場合は、 焼結した後で機械加工 (たとえば切削加工, ドリ ル加工等) を施す必要がある。 ところが、 焼結部品は切削性が劣るので、 機 械加工で使用する切削工具が著しく損耗する。 その結果、機械加工費が増大 し、焼結部品の製造コストの上昇を招く。 このような焼結部品の切削性の劣 化は、内部に存在する気孔によって被削材内部に断続的に固体表面が出現し て、切削中の工具に対して断続的に衝撃を与える上、焼結部品の熱伝導率が 低下し、 切削中に焼結部品の温度が上昇するために生じる。 なお、 切削性は 焼結体が高強度となるほど顕著に劣化する。 Sintered parts are used as parts for a variety of equipment, but parts for automobiles (eg gears) are required to have high strength and fatigue characteristics. Therefore, in order to produce sintered parts with high strength and high fatigue properties, various techniques for using mixed powders for powder metallurgy with alloy components added have been studied. For example, in Japanese Patent Publication No. 45-9649, Ni, Cu, Mo and other powders are diffused and adhered to pure Fe powder, which is suitable for the manufacture of sintered parts with high strength and high fatigue characteristics and excellent compressibility. Also, mixed powders for powder metallurgy are disclosed. In addition, as a mixed powder for powder metallurgy suitable for the production of high-strength sintered parts, Japanese Patent Application Laid-Open No. 61-163239 discloses a low alloy steel containing C and Mo but practically free of Mn and Cr. powdered, was added Cu powder and / or N i powder, further mixed powder for powder metallurgy was added graphite powder, also in JP-a-6 3-114903, containing Mo, Mn, and C A mixed powder for powder metallurgy in which Cu powder is fused to alloy steel powder is disclosed. However, even if powder metallurgy technology is used, when manufacturing sintered parts that require extremely strict dimensional accuracy, it is necessary to perform machining (for example, cutting and drilling) after sintering. However, sintered parts are inferior in machinability, so the cutting tools used in machining are significantly worn out. As a result, machining costs increase and the manufacturing cost of sintered parts increases. Inferior machinability of such sintered parts As a result, the solid surface appears intermittently inside the work material due to the pores present in the interior, intermittently impacts the tool being cut, and the thermal conductivity of the sintered part decreases, This occurs because the temperature of the sintered part rises during cutting. Note that the machinability deteriorates significantly as the sintered body becomes stronger.
前述のように、 粉末冶金用混合粉末に快削成分を添加することによって、 焼結部品の切削性が改善されることは従来から知られている。 快削成分は、 切り屑を容易に破断させる効果、あるいは切削工具表面に薄い構成刃先を形 成して切削工具 (特にすくい面) め潤滑性を高める効果を有している。  As described above, it has been known that the machinability of sintered parts is improved by adding a free-cutting component to the powder mixture for powder metallurgy. The free-cutting component has the effect of easily breaking chips or forming a thin component edge on the surface of the cutting tool to increase the lubricity of the cutting tool (especially the rake face).
しかし、 Sを主成分として含有する快削成分は前述の MoS2と同様に焼成炉 を汚染する。 また特公昭 45-9649号公報、 特開昭 61- 163239号公報、 特開昭 63 - 114903号公報などに開示された技術では、 得られた焼結部品の硬度がと くに高いので、快削成分を粉末冶金用混合粉末に添加しても切削性の大幅な 改善は期待できない。 However, the free-cutting component containing S as a main component contaminates the firing furnace like MoS 2 described above. Also, the techniques disclosed in Japanese Patent Publication No. 45-9649, Japanese Patent Publication No. 61-163239, Japanese Patent Publication No. 63-114903, etc. have a very high hardness of the sintered parts obtained, so free cutting Even if the ingredients are added to the powder mixture for powder metallurgy, no significant improvement in machinability is expected.
焼成炉への悪影響を排して焼結部品の切削性を改善する技術としては、 As a technology to improve the machinability of sintered parts by eliminating the negative effects on the firing furnace,
MgO - Si02系複合酸化物を利用する技術が提案されている。 例えば、 特開平MgO - Si0 techniques utilizing 2-based composite oxide has been proposed. For example,
1-255604号公報には、 焼結体の機械的翁性 (例えば強度) を損なうことなし に切削性を改善する手段として、モル比で Mg0/Si02が 0. 5以上 1. 0未満で結晶 水を持たない Mg0-S i02系複合酸化物 (例えば無水タルク) を鉄系原料粉末に 配合する技術が、 また、 特開昭 64- 79302号公報には MgO- Si02系複合酸化物おIn the publication 1-255604, as a means of improving the machinability without impairing the mechanical strength (for example, strength) of the sintered body, Mg0 / Si0 2 is 0.5 or more and less than 1.0 in molar ratio. There is a technology for compounding Mg0-S i0 2 complex oxides (for example, anhydrous talc) that do not have water of crystallization into iron-based raw material powder, and Japanese Patent Laid-Open No. 64-79302 discloses MgO-Si0 2 complex oxides. Oh
. ί . ί
よび/またはガラス粉よりなる快削成分を還元鉄粉の粒内に存在する形態 で (すなわち還元前の鉄粉原料に添加して) 含有させる技術が、 それぞれ開 示されている。 And / or technologies for containing free-cutting components made of glass powder in the form existing in the grains of the reduced iron powder (that is, added to the raw iron powder material before reduction) have been disclosed.
いずれの公報においても前記複合酸化物を 0. 1〜1· 5wt %添加するのが良 好であるとしているが、 潤滑剤 (ステアリン酸亜鉛 1 %) 等を含有する鉄 基粉末における調査の結果によれば、同複合酸化物の添加量が多いほど切削 性改善効果が高く、 とくに 0. 5〜1. 0wt %以上で効果が大きいの対し、機械的 特性は添加量が多いほど低下している (特開平 1-255604号公報:表 3、 特開 昭 64-79302号公報: 図 6および図 8 )。 すなわち、 焼結体の品質の観点から は、 かならずしも有利な技術ではない。 発明の開示 In any of the publications, it is preferable to add 0.1 to 1.5 wt% of the composite oxide. However, as a result of investigation on iron-based powder containing a lubricant (zinc stearate 1%) and the like. According to the results, the greater the amount of the composite oxide added, the higher the machinability improving effect.In particular, the effect is greater at 0.5 to 1.0 wt% or more, while the mechanical properties decrease as the added amount increases. (Japanese Patent Laid-Open No. 1-255604: Table 3, Japanese Patent Laid-Open No. 64-79302: FIGS. 6 and 8). In other words, it is not always an advantageous technique from the viewpoint of the quality of the sintered body. Disclosure of the invention
〔発明が解決しようとする課題〕  [Problems to be Solved by the Invention]
本発明は、 上記の問題を有利に解決するもので、 成形体の焼結に際し、 焼 - 成炉の炉内環境に悪影響を及ぼすことなく、 また 100°C未満という低温度域 で高密度の成形が可能な優れた成形性が得られる粉末冶金用の鉄基混合粉 末を提案することを目的とする。  The present invention advantageously solves the above-mentioned problems, and does not adversely affect the in-furnace environment of the sintering-forming furnace when the molded body is sintered, and has a high density in a low temperature range of less than 100 ° C. The purpose is to propose an iron-based mixed powder for powder metallurgy that can be molded and has excellent formability.
また、製造コス トを削減するために焼結部品の切削性改善への要求が高ま つていることに鑑み、優れた切削性を有する焼結部品、好ましくはとくに高 強度焼結部品の製造に、好適な粉末冶金用鉄基混合粉末を提供するこどを本 発明の他. p目的とする。  In view of the growing demand for improved machinability of sintered parts in order to reduce manufacturing costs, it is necessary to manufacture sintered parts with excellent machinability, preferably high-strength sintered parts. Another object of the present invention is to provide a suitable iron-based mixed powder for powder metallurgy.
また、本発明は、上記の鉄基混合粉末を原料とする鉄基粉末球形体の製造 方法、さらには該鉄基粉末成形体を素材とする鉄基粉末焼結体の製造方法を 提案することを目的とする。  The present invention also proposes a method for producing an iron-based powder spherical body using the iron-based mixed powder as a raw material, and a method for producing an iron-based powder sintered body using the iron-based powder compact as a raw material. With the goal.
〔課題を解決するための手段〕 [Means for solving the problems]
さて、 発明者らは、 上記の問題を解決する方策として、 鉄基混合粉末の成 形に際し、 炉内環境に悪影響を及ぼすことなく、 また鉄基混合粉末の加熱温 度をより低く、好ましくは加熱なしに成形した場合であっても、 高密度の成 形体の製造を可能とする潤滑剤について、 鋭意検討を重ねた。  Now, as a measure to solve the above-mentioned problems, the inventors do not adversely affect the in-furnace environment when forming the iron-based mixed powder, and lower the heating temperature of the iron-based mixed powder, preferably Even when it was molded without heating, we intensively studied lubricants that enable the production of high-density molded products.
その結果、 潤滑剤として、 タルクゃステアタイ トを用い、 さらには脂肪酸 アミ ドを用いだ場合に、加圧成形時に鉄基粉末粒子の再配列が促進され、室 温程度の低い成形温度であっても、成形密度の高い鉄基粉末成形体が得られ ることの知見を得た。  As a result, when talc steaite is used as a lubricant, and when fatty acid amide is used, the rearrangement of iron-based powder particles is promoted during pressure molding, and the molding temperature is as low as room temperature. In addition, it was found that an iron-based powder compact with a high compaction density can be obtained.
また、 さらに金属石鹺を添加すると、 従来知られているより低い、 機械的 特性への悪影響のない添加量のタルクゃステアタイ トにより、格段に良好な 切削性改善効果が得られることが見出された。  In addition, it was found that when metal stalagmite is added, a much better machinability improvement effect can be obtained by adding a lower amount of talc stearate that does not adversely affect mechanical properties, which is conventionally known. It was done.
本発明は上記の知見に立脚するものである。 すなわち、 本発明の要旨構成は次のとおりである。 ( 1 ) 鉄基粉末と、 添加剤として、 タルクおょぴステアタイ トのうちから 選んだ少なく とも 1種、 および、脂肪酸ァミ ドとを含有することを特徴とす る鉄基混合粉末。 The present invention is based on the above findings. That is, the gist configuration of the present invention is as follows. (1) An iron-based mixed powder characterized by containing an iron-based powder and, as an additive, at least one selected from talc opi steaite and a fatty acid amide.
( 2 ) 前記添加剤がさらに金属石鹼を含有することを特徴とする、 上記 ( 1 ) に記載の鉄基混合粉末。  (2) The iron-based mixed powder according to (1), wherein the additive further contains a metal sarcophagus.
( 3 )さらに合金用粉末を配合したことを特徴とする上記( 1 )または( 2) に記載の鉄基混合粉末。  (3) The iron-based mixed powder according to (1) or (2) above, further comprising a powder for an alloy.
(4) 前記鉄基粉末が、 Mo: 0.3〜0.5質量0 /0、 Mn: 0.1〜0.25質量%を含 有し、残部が Feおよび不可避的不純物からなる水ァトマイズ合金鋼粉であり、 前記合金用粉末が、 Cu粉: 1〜 3質量%ぉょび黒鉛粉: 0.5〜1.0質量%でぁ ることを特徴とする上記 (3 ) に記載の鉄基混合粉末。 (4) The iron-based powder, Mo: 0.3 to 0.5 mass 0/0, Mn: the has free 0.1 to 0.25 wt%, a water Atomaizu alloy steel powder and the balance being Fe and incidental impurities, the alloy The iron-based mixed powder according to (3) above, wherein the powder is Cu powder: 1 to 3% by mass and graphite powder: 0.5 to 1.0% by mass.
( 5 ) Mo: 0.3〜0.5質量0 /0、 Mn: 0.1〜0.25質量%を含有し、 残部が Feお よび不可避的不純物からなる水ァトマイズ合金鋼粉と、 Cu粉: 1〜 3質量。 /0 と、 黒鉛粉: 0.5〜: L 0質量0 /0と、 タルクおょぴステアタイ トのうちから選ん だ少なく とも 1種を合計0.05〜0.5質量%と、 脂肪酸アミ ドとを混合してな ることを特徴とする鉄基混合粉末。 (5) Mo: 0.3 to 0.5 mass 0/0, Mn: 0.1 to 0.25 contains mass%, and water Atomaizu alloy steel powder consisting of unavoidable impurities balance and Contact Fe, Cu powder: 1 3 wt. / 0, graphite powder: 0.5: and L 0 mass 0/0, the total 0.05 to 0.5 wt% of one or at least selected from among talc Contact Yopi Suteatai DOO, a mixture of a fatty acid amine de An iron-based mixed powder characterized by
(6 ) さらに金属石鹼を含有する、 上記 ( 5 ) 'に記載の鉄基混合粉末。 (6) The iron-based mixed powder according to (5) 'above, further containing a metal sarcophagus.
( 7 ) 上記 ( 1 ) 〜 '(6 ) のいずれかに記載の鉄基混合粉末を、 金型に充 填し、 100°C未満の温度で成形することを特徴とする鉄基粉末成形体の製造 方法。 (7) An iron-based powder compact characterized by filling the mold with the iron-based mixed powder according to any one of (1) to '(6) above and molding at a temperature of less than 100 ° C. Manufacturing method.
(8) 上記 ( 1 ) ~ ( 6 ) のいずれかに記載の鉄基混合粉末を、 金型に充 填し、 100°C未満の温度で成形したのち、 得られた鉄基粉末成形体を焼結す ることを特徴とする鉄基粉末焼結体の製造方法。 なお、 鉄基粉末中の合金 (Mo、 Mnなど) 含有量、 および添加する合金用粉 末 (Cu粉, 黒鉛粉など) およびタルク, ステアタイ トなどの添加量は、 いず れも鉄基混合粉末の質量に占める比率を指す。 発明を実施するための最良の形態  (8) The iron-based mixed powder according to any one of the above (1) to (6) is filled in a mold and molded at a temperature of less than 100 ° C. A method for producing an iron-based powder sintered body characterized by sintering. Note that the content of alloys (Mo, Mn, etc.) in the iron-based powder, and the amount of alloy powder (Cu powder, graphite powder, etc.) to be added, talc, and steaite are both iron-based mixed. It refers to the ratio of the powder to the mass. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を具体的に説明する。 ' まず、 本発明の鉄基混合粉末の原料 ついて説明する。 なお、 鉄基粉末中 の合金成分の含有量および各原料(合金化用粉末'潤滑剤など)の配合量は、 これらを混合して得られる鉄基混合粉末の質量 (100質量%) に占める、 内 数の重量比率で示すものとする。 ただし、 鉄基粉末中の合金含有量 (部分拡 散合金量も含む) 等を鉄基粉末に対する重量比率で表した場合と、数値上は 大きな差は無い。 Hereinafter, the present invention will be specifically described. ' First, the raw material for the iron-based mixed powder of the present invention will be described. In addition, the content of the alloy component in the iron-based powder and the blending amount of each raw material (alloying powder 'lubricant, etc.) occupy the mass (100% by mass) of the iron-based mixed powder obtained by mixing them. It shall be indicated by the weight ratio of the number. However, there is no significant difference in numerical values from the case where the alloy content (including the amount of partially diffused alloy) in the iron-based powder is expressed as a weight ratio to the iron-based powder.
<鉄基粉末 > <Iron-based powder>
本発明において、 鉄基粉末としては、 ア トマイズ鉄粉 (atomi zed iron powder) や還元鉄粉 (reduced iron powder) などの純鉄粉、 または合金鋼 粉などが例示される。 なお、 合金鋼粉としては、 部分拡散合金化鋼粉および 完全合金化鋼粉 (合金成分が溶製時より含まれているもの)、 さらには完全 合金化鋼粉に合金成分を部分拡散させたハイプリ ッ ド鋼粉などが例示され る。  In the present invention, examples of the iron-based powder include pure iron powder such as atomized iron powder and reduced iron powder, or alloy steel powder. In addition, as alloy steel powder, partially diffused alloyed steel powder and fully alloyed steel powder (alloy components are included from the time of melting), and further alloy components are partially diffused in fully alloyed steel powder. Examples include hybrid steel powder.
なお鉄基粉末中の不純物は合計 3 mass %程度以下であればよい。代表的な 不純物の含有量は、 C : 0. 05 mass%以下、 Si : 0. 10 mass 0/。以下、 Mn (合金 元素として添加しない場合) : 0. 50 mass %以下、 P : 0. 03 mass °/0以下、 S : 0. 03 mass%以下、 O : 0. 30 mass%以下、 N : 0. 1 mass %以下である。 また合金鋼粉としては Cr, Mn, Ni , Mo, V, Ti, Cu, Nb等を合金化でき、 とくに Ti, Ni, Mo, Cu等については拡散接合によっても添加できる。 鉄基粉 末である前提(Feが 50mass %以上) さえ満たせば他の合金元素の含有量にと くに限定はない。 The total amount of impurities in the iron-based powder may be about 3 mass% or less. Typical impurity content is C: 0.05 mass% or less, Si: 0.10 mass 0 /. Mn (when not added as an alloying element): 0.50 mass% or less, P: 0.03 mass ° / 0 or less, S: 0.03 mass% or less, O: 0.30 mass% or less, N: Less than 0.1 mass%. In addition, Cr, Mn, Ni, Mo, V, Ti, Cu, Nb, etc. can be alloyed as alloy steel powder, and especially Ti, Ni, Mo, Cu, etc. can be added by diffusion bonding. As long as the premise of being an iron-based powder (Fe is 50 mass% or more) is satisfied, the content of other alloy elements is not limited.
鉄基粉末の平均粒径は、粉末冶金に用いられる通常の範囲、すなわち 7 0 〜 1 0 0 μ m程度とすることが好ましい。 なお、粉末の粒径はとくにことわ らない限り、 JIS規格 Z 2510準拠の篩い分け法による測定値でである。 以下に、髙強度の焼結体の原料としてとくに好適な合金鋼粉の具体的な組 成を例示する。  The average particle diameter of the iron-based powder is preferably in a normal range used for powder metallurgy, that is, about 70 to 100 μm. The particle size of the powder is a value measured by a sieving method in accordance with JIS standard Z 2510 unless otherwise specified. In the following, a specific composition of alloy steel powder that is particularly suitable as a raw material for high strength sintered bodies will be exemplified.
(鉄基粉末例 1 )  (Iron-based powder example 1)
第 1の例として、 Mo: 0. 3〜0. 5質量0 /0、 Mn: 0. 1〜0. 25質量0 /0、 残部 Feお ょぴ不可避的不純物である完全合金化鋼粉が好ましい。なお上記組成の鋼を 水ァトマイズして製造した、水ァトマイズ合金鋼粉であることが、生産性の 観点から好適である。 As a first example, Mo: 0. 3 to 0 5 weight 0/0, Mn:.. 0. 1~0 25 mass 0/0, the balance Fe Contact Fully alloyed steel powder, which is an inevitable impurity, is preferred. From the viewpoint of productivity, it is preferable to use a water alloyed alloy steel powder produced by water atomizing a steel having the above composition.
各組成の好適範囲の理由は下記の通りである。  The reason for the preferred range of each composition is as follows.
• Mo: 0. 3〜0. 5質量0 /0 • Mo:. 0. 3~0 5 mass 0/0
Moは、合金鋼粉の固溶強化, 焼入れ性向上によって焼結部品の強度を高め る元素である。 Mo含有量が 0. 3質量%未満では、 Moにより焼結部品の強度を 高める効果が得られない。 一方、 0. 5質量%を超えると、 焼結部品の強度向 上の効果が飽和するので不必要に切削性が低下する。 したがって、 Moは 0. 3 〜0. 5質量%の範囲内とすることが好ましい。  Mo is an element that enhances the strength of sintered parts by strengthening the solid solution of alloy steel powder and improving hardenability. If the Mo content is less than 0.3% by mass, the effect of increasing the strength of the sintered part by Mo cannot be obtained. On the other hand, if it exceeds 0.5% by mass, the effect of improving the strength of the sintered part is saturated, and the machinability is unnecessarily lowered. Therefore, Mo is preferably in the range of 0.3 to 0.5% by mass.
• Mn: 0. 1〜0, 25質量%  • Mn: 0.1 to 0, 25% by mass
Mnは、水ァトマイズ合金鋼粉の固溶強化, 焼入れ性向上によって焼結部品 の強度を高める元素である。 Mn含有量が 0. 1質量%未満では、 Mnにより焼結 部品の強度を高める効果が得られない。 一方、 0. 25質量%を超えると、 Mn の酸化が進行し易くなり、合金鋼粉の強度と圧縮性が低下する。したがって、 Mnは 0. 1〜0. 25質量0 /0の範囲内とすることが好ましい。 Mn is an element that enhances the strength of sintered parts by strengthening the solid solution of hydrogenated alloy steel powder and improving hardenability. If the Mn content is less than 0.1% by mass, the effect of increasing the strength of the sintered part by Mn cannot be obtained. On the other hand, if it exceeds 0.25 mass%, the oxidation of Mn tends to proceed, and the strength and compressibility of the alloy steel powder decrease. Thus, Mn is preferably in a range of 0.1 to 0.25 mass 0/0.
上記した成分以外の残部は、 Feおよび不可避的不純物であることが好まし い。不可避的不純物は、 水ァトマイズ合金鋼粉の素材となる溶鋼を溶製する 段階や溶鋼から水ァ トマイズ合金鋼粉を製造する段階で不可避的に混入す る。 ·  The balance other than the above components is preferably Fe and inevitable impurities. Inevitable impurities are inevitably mixed at the stage of melting molten steel, which is the raw material of hydrogenated alloy steel powder, and at the stage of producing water atomized alloy steel powder from molten steel. ·
なお、上記の本発明で好適に使用できる水ァトマイズ合金鋼粉の好適な製 造方法について説明する。 所定の (すなわち上記の) 成分を含有する溶鋼を 溶製し、 その溶鋼を水アトマイズ法で粉末とする。 さらに、 得られた粉末に 仕上げ還元と粉砕を施して、 永ァトマイズ合金鋼粉とする。 なお、 水ァトマ ィズ法によって溶鋼から粉末を得る装置は、特定の型式に限定せず、従来か ら知られているものを使用すればよい。  In addition, the suitable manufacturing method of the water atomized alloy steel powder which can be used suitably by said invention is demonstrated. Molten steel containing the prescribed components (ie, the above) is melted and powdered by the water atomization method. Further, the obtained powder is subjected to finish reduction and pulverization to obtain permanent atomized alloy steel powder. An apparatus for obtaining powder from molten steel by the water atomization method is not limited to a specific type, and a conventionally known apparatus may be used.
<合金用粉末 > <Alloy powder>
また、 合金用粉末としては、 黒鉛粉末、 Cu, Mo, Niなどの金属粉末、 ポロ ン粉末おょぴ亜酸化銅粉末などが例示される。これらの合金用粉末を鉄基粉 末に混合させることにより焼結体の強度を上昇させることができる。 Examples of alloy powders include graphite powder, metal powders such as Cu, Mo and Ni, pollon powder and cuprous oxide powder. These alloy powders are made of iron-based powder. By mixing at the end, the strength of the sintered body can be increased.
この合金用粉末の配合量は、 鉄基混合粉末中 0. l〜10mas s %程度とするこ とが好ましい。 というのは、 合金用粉末を 0. lmass %以上配合することによ り、得られる焼結体の強度が有利に向上し、一方 10masS %を超えると焼結体 の寸法精度が低下するからである。 なお、鉄基粉末例 1の場合、 とくに Cu粉: 1〜 3質量。 /0およぴ黒鈴粉: 0. 5 〜1. 0質量%を添加することが好ましい。 The amount of alloying powder is preferably a child and about the iron-based mixed powder 0. l~10 mas s%. This is because, by adding 0.1 lmass% or more of the alloy powder, the strength of the obtained sintered body is advantageously improved, whereas when it exceeds 10 mas S %, the dimensional accuracy of the sintered body decreases. It is. In the case of iron-based powder example 1, especially Cu powder: 1 to 3 mass. / 0 and black bell flour: It is preferable to add 0.5 to 1.0% by mass.
黒鉛粉の主成分である Cは、水アトマイズ合金鋼粉の固溶強化, 焼入れ性 向上によって焼結部品の強度を髙める元素である。 黒鉛粉の添加量が 0. 5質 量%未満では、鉄基粉末例 1において望まれる程度の効果が得られない。一 方、 1. 0質量%を超えると、 焼結部品の強度が必要以上に上昇して、 不必要 に切削性が低下する。したがって、黒鉛粉は 0. 5〜1. 0質量%の範囲内とする。  C, the main component of graphite powder, is an element that increases the strength of sintered parts by strengthening the solid solution of water atomized alloy steel powder and improving hardenability. If the amount of graphite powder added is less than 0.5% by mass, the desired degree of effect cannot be obtained in iron-based powder example 1. On the other hand, if it exceeds 1.0 mass%, the strength of the sintered part will increase more than necessary, and the machinability will unnecessarily decrease. Therefore, the graphite powder is in the range of 0.5 to 1.0 mass%.
Cuは、合金鋼粉の固溶強化, 焼入れ性向上によって焼結部品の強度を高め る元素である。 また Cu粉は、 焼結の際に溶融して液相となり、 合金鋼粉の粒 子を互いに固着させる。 Cu粉の添加量が 1質量%未満では、 鉄基粉末例 1に おいて望まれる程度の効果が得られない。 一方、 3質量%を超えると、 焼結 部品の強度向上の効果が飽和するので不必要に切削性が低下する。したがつ て、 Cu粉は 1〜3質量%の範囲内とする。  Cu is an element that increases the strength of sintered parts by strengthening the solid solution of alloy steel powder and improving hardenability. Also, Cu powder melts into a liquid phase during sintering, and the particles of alloy steel powder adhere to each other. If the amount of Cu powder added is less than 1% by mass, the desired effect in the iron-based powder example 1 cannot be obtained. On the other hand, if it exceeds 3% by mass, the effect of improving the strength of the sintered parts will be saturated, and the machinability will be unnecessarily reduced. Therefore, Cu powder should be in the range of 1 to 3% by mass.
なお Cu粉を添加するにあたって、添加量が上記の範囲内であれば、添加方 法は、合金鋼粉に Cu粉を添加して単に混合する方法であっても、水ァトマイ ズ合金鋼粉の表面にバインダーを介して Cu粉を付着させる方法であっても よい。 なお、 合金鋼粉に混合する方法に代えて、 合金鋼粉と Cu粉を混合しさ らに熱処理して合金鋼粉の表面に Cu粉を拡散付着させ、部分拡散合金化鋼粉 (あるいはハイプリッド合金化鋼粉) としてもよい。  In addition, when adding Cu powder, if the addition amount is within the above range, the addition method can be performed by adding Cu powder to the alloy steel powder and simply mixing it. A method of attaching Cu powder to the surface via a binder may be used. Instead of mixing with alloy steel powder, alloy steel powder and Cu powder are mixed and heat-treated to cause Cu powder to diffuse and adhere to the surface of the alloy steel powder, resulting in partially diffused alloyed steel powder (or hybrid alloy). (Chemical steel powder).
<タルク · ステアタイ ト > <Talc Stair Tight>
さて、 本発明では、 タルク (3 Mg O - 4 Si 0 2) およびステアタイ トのう ちから選んだ少なく とも 1種を配合させることが重要である。 なお、 ステア タイ トは焼きタルクとも呼ばれ、 主成分がエンスタタイ ト (Mg O · Si 0 2) である。 In the present invention, it is important to add at least one selected from talc (3 Mg O-4 Si 0 2 ) and steatite. Steaite is also called baked talc, and the main component is enstatite (Mg O · Si 0 2 ) It is.
タルクゃステアタイ トは脂肪酸アミ ドと共に添加することで、潤滑剤とし て格段の効果を発揮する。 また、 タルクゃステアタイ トは快削成分として知 られる Mg O— Si〇2系複合酸化物の一種であるが、 さらに金属石鹼と共に添 加することで、 快削成分としても格段の効果を発揮する。 潤滑剤として、 上記したタルクゃステアタイ トを配合させることにより、 成形体の圧縮性が向上すると同時に、成形時の抜出力が低減し、成形性が大 幅に改善される理由は、 次のとおり と考えられる。 When added together with fatty acid amide, talc steaite exhibits a remarkable effect as a lubricant. Further, talc Ya Suteatai bets is a kind of Mg O-Si_〇 2 based composite oxide is known as a free-cutting component, by further added additive with the metal ore鹼, exert remarkable effect as free-cutting component To do. The reason why the above-mentioned talc steaite is blended as a lubricant improves the compressibility of the molded body and at the same time reduces the punching force during molding and greatly improves the moldability. it is conceivable that.
すなわち、 タルク、 ステアタイ トおよぴ窒化硼素は、 成形時に鉄基粉末粒 子間で剪断応力を受けた際、上記物質が結晶面に沿ってへき開し易く、 その ため成形体内部の粒子間の摩擦抵抗が低減し、粒子間相互で動き易くなる結 果、成形体の密度が向上するものと考えられる。 この効果は比較的圧縮圧力 の低い領域で有効である。 他方、 高圧の領域では、 脂肪酸アミ ドが粒子間に 薄く入り込んで摩擦抵抗を低減する効果を発揮する。 このように、圧縮の全 領域に渡り摩擦抵抗が低減されるため、成形体密度の向上に相乗的な効果を 発揮するものと思われる。  That is, talc, steatite, and boron nitride are easily cleaved along the crystal plane when the material is subjected to shear stress between iron-based powder particles during molding. It is considered that the density of the compact is improved as a result of the reduction in frictional resistance and the ease of movement between particles. This effect is effective in the region where the compression pressure is relatively low. On the other hand, in the high pressure region, the fatty acid amide penetrates thinly between the particles and exhibits the effect of reducing the frictional resistance. In this way, the frictional resistance is reduced over the entire compression range, so it seems to have a synergistic effect in improving the density of the compact.
また、成形体と金型間にタルクゃステアタイ トが存在すると、成形体抜出 時に金型表面からの剪断応力を受けてへき開するため、金型表面での成形体 のすベり易さが向上し、 抜出力が低減するものと考えられる。  In addition, if talc steaite is present between the molded body and the mold, it will be cleaved due to the shear stress from the mold surface when the molded body is pulled out, making it easier for the molded body to slide on the mold surface. This is thought to improve and reduce the output.
これらの効果は、鉄基混合粉末の温度によらず発現するため、鉄基混合粉 末を加熱する必要は必ずしもなく、常温での成形における鉄基粉末成形体の 密度向上に有効に寄与する。 また、 鉄基粉末を加熱した場合は、 加圧成形時 に鉄基粉末の塑性変形抵抗が低下するため、より高い成形体密度が得られる ことが可能となる。 従って、 必要とする成形体密度に応じて、 鉄基粉末の加 熱温度を適宜設定することができるが、 この加熱温度は 100°C未満で十分で ある。 より好ましくは 8 0 °C以下である。 また、切削性が顕著に改善される理由は解明されていないが、焼結に際し て金属石鹼中の金属成分がタルク ·ステアタイ トと反応し、捕助的な快削成 分として機能している可能性が考えられる。本発明の粉末冶金用混合粉末を 用いて製造した焼結部品は、従来の髙強度焼結部品と同等の高い強度を有し、 かつ極めて優れた切削性も有することが可能である。 これらタルクゃステアタイ トの配合量は、 合計で鉄基混合粉末中 0. 01〜 0. 5質量0 /0程度とすることが好ましい。 というのは、 これらの潤滑剤を 0. 01 質量%以上配合することにより、加圧成形時における成形体密度を十分に向 上させ、かつ成形体抜出時における抜出力を十分に低減させることができる からである。 また、 切削性改善効果を得る場合も、 0. 01質量%以上の添加が 好ましい。 なお、 高強度焼結体用の合金鋼粉 (例えば鉄基粉末例 1 ) を用い る場合、 より強力な切削性改善効果を確保するために、 タルクおよび Zまた はステアタィ トの添加量を合計で 0. 05質量%以上とすることが好ましい。 一方、 配合量が 0. 5質量%を超えると、 混合粉末の圧縮性が低下し、 成形 体を焼結して得た焼結材の機械的強度などを低下させることが懸念される。 なお、 より好ましい上限は 0. 3質量%であり、 焼結体の機械的特性への影響 をほぼ無くすためには 0. 2質量%以下とすることが好ましい。 なお、 タルクは単斜晶系または三斜晶系の結晶構造、 ステアタイ トは単斜 晶系の結晶構造、窒化硼素は六方晶系の結晶構造をそれぞれ有することが好 ましい。 Since these effects are manifested regardless of the temperature of the iron-based mixed powder, it is not always necessary to heat the iron-based mixed powder, and it contributes effectively to improving the density of the iron-based powder molded body in molding at room temperature. In addition, when the iron-based powder is heated, the plastic deformation resistance of the iron-based powder is reduced at the time of pressure molding, so that a higher molded body density can be obtained. Therefore, the heating temperature of the iron-based powder can be set as appropriate according to the required density of the compact, but the heating temperature is sufficient to be less than 100 ° C. More preferably, it is 80 ° C or lower. The reason why the machinability is remarkably improved has not been elucidated, but the metal component in the metal sarcophagus reacts with talc and steatite during sintering, so that the free cutting is easy. It may be functioning as a minute. A sintered part manufactured using the mixed powder for powder metallurgy according to the present invention has a high strength equivalent to that of a conventional high strength sintered part and can also have extremely excellent machinability. The amount of the talc Ya Suteatai DOO, it is preferable that the iron-based mixed powder from 0.01 to 0.5 mass 0/0 approximately in total. This is because, by adding 0.01% by mass or more of these lubricants, the density of the molded body at the time of pressure molding is sufficiently improved, and the output at the time of extracting the molded body is sufficiently reduced. Because it is possible. Further, when obtaining an effect of improving the machinability, addition of 0.01% by mass or more is preferable. When alloy steel powder for high-strength sintered bodies (for example, iron-based powder example 1) is used, the total amount of talc and Z or steatite added is added to ensure a stronger cutting effect. It is preferable that the content be 0.05% by mass or more. On the other hand, when the blending amount exceeds 0.5% by mass, the compressibility of the mixed powder is lowered, and there is a concern that the mechanical strength and the like of the sintered material obtained by sintering the compact are reduced. A more preferable upper limit is 0.3% by mass, and in order to substantially eliminate the influence on the mechanical properties of the sintered body, the upper limit is preferably 0.2% by mass or less. It is preferable that talc has a monoclinic or triclinic crystal structure, steatite has a monoclinic crystal structure, and boron nitride has a hexagonal crystal structure.
また、 タルクゃステアタイ トのサイズは、 粒径: 1〜 1 0 /X m程度が好ま しい。  The size of talc steaite is preferably about 1 to 10 / X m in particle size.
<脂肪酸ァミ ド > <Fatty acid amide>
本発明では、 潤滑剤として、 脂肪酸ァミ ドを少なく とも 1種配合する。 こ こに、脂肪酸ァミ ドとしては脂肪酸モノアミ ド (ステアリン酸モノアミ ドな ど) および脂肪酸ビスアミ ド (エチレンビスステア口アミ ド、 メチレンビス ステア口アミ ドなど) から選ばれる 1種以上が好ましい。  In the present invention, at least one fatty acid amide is blended as a lubricant. The fatty acid amide is preferably at least one selected from fatty acid monoamides (such as stearic acid monoamide) and fatty acid bisamides (such as ethylene bis-stear mouth amide and methylene bis-stear mouth amide).
これらは、'潤滑剤としてたけではなく、結合剤としても機能するものであ り、 これらを用いることにより、 当該鉄基混合粉末の偏祈、 発塵が効果的に 防止ざれ、 かつ流動性、 成形性をさらに向上させることができる。 なお、 脂 肪酸アミ ド中に脂肪酸が混在することがあるが、これはとくに禁じるもので はない。 上記した脂肪酸アミ ドの配合量は、 鉄基混合粉末中 0. 01〜0. 5質量%程度 とすることが好ましい。 というのは、配合量が 0. 01質量%に満たないとその 添加効果に乏しく、 一方 0. 5質量%を超えると圧粉体の強度が低下するため である。 より好ましい下限は鉄基粉末が純鉄粉の場合 0. 03質量%、合金鋼粉 の場合 0. 05質量%であり、 より好ましい上限は 0. 4質量%であり、 鉄基粉末 が純鉄粉の場合さらに好ましい上限は 0. 3質量%である。 ぐ金属石鹼> These function not only as a lubricant but also as a binder, and by using these, the iron-based mixed powder can effectively be used for praying and dust generation. In addition, the fluidity and moldability can be further improved. In addition, fatty acid amide may be mixed with fatty acid, but this is not particularly prohibited. The amount of the fatty acid amide described above is preferably about 0.01 to 0.5% by mass in the iron-based mixed powder. This is because if the blending amount is less than 0.01% by mass, the effect of the addition is poor, while if it exceeds 0.5% by mass, the strength of the green compact decreases. The lower limit is more preferably when 0.0 3% by weight of the iron-based powder is pure iron powder, a case 0.05% by weight of the alloy steel powder, a more preferred upper limit is 0.4 wt%, iron-based powder GaJun In the case of iron powder, a more preferred upper limit is 0.3% by mass. Metal sarcophagus>
本発明ではさらに、 金属石賒を配合させることもできる。 なお、 従来の通 念に合わせ、 ここでは金属石鹺も潤滑剤として抜う。  In the present invention, a metal sarcophagus can be further blended. In addition, in accordance with conventional wisdom, metal sarcophagus is removed here as a lubricant.
金属石鹼としてはステアリン酸亜鉛、 ステアリン酸リチウム、 ステアリン 酸カルシウムなどが挙げられる。これらの中では、とくにステアリン酸亜鉛、 ステアリン酸リチウムなどが好ましい。  Examples of metal sarcophagus include zinc stearate, lithium stearate, and calcium stearate. Of these, zinc stearate and lithium stearate are particularly preferred.
金属石鹼の配合量は、 鉄基混合粉末中0. 01〜0. 5質量%程度とすることが. 好ましい。 というのは、配,合量が 0. 01質量%に満たないとその添加効果に乏 しく、 一方 0. 5質量。 /0を超えると圧粉体の強度が低下するためである。 より 好ましい下限量は 0. 05質量%以上で.あり、 より好ましい上限量は 0. 3質量。 /。 である。 なお、脂肪酸ァミ ドと金属石鹼の合計添加量は、 0. 1質量%以上、 1. 0質量% とすることが好ましい。 より好ましい下限は 0. 2質量%であり。 より好まし い上限は 0. 6質量。 /0である。 The blending amount of the metal stalagmite is preferably about 0.01 to 0.5% by mass in the iron-based mixed powder. This is because if the combined amount is less than 0.01% by mass, the effect of addition is poor, while 0.5% by mass. This is because the strength of the green compact decreases when the ratio exceeds / 0 . A more preferable lower limit is 0.05% by mass or more, and a more preferable upper limit is 0.3% by mass. /. It is. The total addition amount of the fatty acid amide and the metal sarcophagus is preferably 0.1% by mass or more and 1.0% by mass. A more preferred lower limit is 0.2% by mass. A more preferred upper limit is 0.6 mass. / 0 .
さらに、 タルク *ステアタイ ト、 脂肪酸ァミ ドおよび金属石鹼の合計配合 量は鉄基混合粉末中0. 01〜2. 0質量%程度とするのが好適でぁる。 より好ま しい下限は 0. 15質量%であり、 より好ましい上限は 0. 8質量%である。 <その他の原料〉 Furthermore, the total amount of talc * steatite, fatty acid amide and metal stalagmite is preferably about 0.01 to 2.0% by mass in the iron-based mixed powder. A more preferred lower limit is 0.15% by mass, and a more preferred upper limit is 0.8% by mass. <Other ingredients>
本発明の鉄基混合粉末には、 とくに他の添加物は必要ないが、表面改質剤 (シロキサン類など) など、 公知の添加剤を 0 . 5質量%以下程度、 さらに 加えることは自由である。  The iron-based mixed powder of the present invention does not require any other additive, but it is free to add a known additive such as a surface modifier (such as siloxane) to about 0.5% by mass or less. is there.
<混合粉末の製造方法 > <Method for producing mixed powder>
次に、 本発明の鉄基混合粉末の製造方法について説明する。  Next, the manufacturing method of the iron-based mixed powder of the present invention will be described.
(第 1の方法)  (First method)
鉄基粉末に、 上記の各原料 (タルク、 ステアタイ ト、 脂肪酸アミ ド、 金属 石鹼、 合金用粉末など) を加えて、 1次混合する。 ついで、 1次混合後の混 合物を、脂肪酸ァミ ド、金属石験のうち少なく とも 1種の融点以上に加熱し つつ撹拌し、 混合しながら徐々に冷却する。 その結果、 前記の溶融した原料 によって、 鉄基粉末の表面に合金用粉末やその他の原料粉末が固着される。 すなわち、溶融して固着に用いられた原料は、結合剤としても機能してい る。 ·  Add each of the above raw materials (talc, steatite, fatty acid amide, metal sarcophagus, alloy powder, etc.) to the iron-based powder and mix it first. Next, the mixture after the primary mixing is stirred while being heated to at least one melting point of the fatty acid amide and metal stone, and gradually cooled while mixing. As a result, alloy powder and other raw material powders are fixed to the surface of the iron-based powder by the molten raw material. That is, the raw material melted and used for fixing also functions as a binder. ·
(第 2の方法)  (Second method)
第 1の方法と類似する力 、上記した原料の一部のみを鉄基粉末に添加して 1次混合を行ったのち、残部を添加して 2次混合することもできる。 2次混 合された原料は、遊離状態で混合粉末中に存在する。とくに好ましい一例は、 金属石鹼の少なく とも 1部を 2次混合し、残りの原料は 1次混合に供し、 か つ前記結合剤として脂肪酸ァミ ド、あるいはこれと金属石鹼 の共溶融物を 用いる方法である。 この方法では、鉄基粉末に配合する各原料の添加量を最 小とする'ことができる。 なお、鉄基粉末と各原料の混合手段としては、特に制限はなく従来から公 知の混合機がいずれもが使用できる。 中でも、 加熱が容易な、 高速底部撹拌 式混合機 ( hi gh-speed mixer)、回転ノヽ。ン型混合機 ( counter current mixer)、 回転鋤型混合機 (p lough share mixer) および円錐遊星スクリュー形混合機 ( coni cal mixer) などは特に有利に適合する。 ' 2007/053125 A force similar to that of the first method may be such that only a part of the raw materials described above is added to the iron-based powder and subjected to primary mixing, and then the remainder is added to perform secondary mixing. The secondary mixed raw material exists in the mixed powder in a free state. A particularly preferred example is that at least one part of the metal sarcophagus is subjected to secondary mixing, the remaining raw material is subjected to primary mixing, and a fatty acid amide or a co-melt of this and the metal sarcophagus as the binder. This is a method using. In this method, the amount of each raw material added to the iron-based powder can be minimized. The means for mixing the iron-based powder and each raw material is not particularly limited, and any conventionally known mixer can be used. Among them, a high-speed bottom-stirring mixer (high-speed mixer), which is easy to heat, and a rotating blade. The counter current mixer, the rotary share mixer and the coni cal mixer are particularly advantageous. ' 2007/053125
14 14
く成形体およぴ焼結体の製造方法 > Manufacturing method of compact and sintered body>
次に、本発明の鉄基混合粉末を用いた鉄基粉末成形体の製造方法および鉄 ¾粉末焼結体 (焼結部品) の製造方法について説明する。 本発明の鉄基混合粉末は、 通常の成形方法で成形体とすることができる。 具体的には、 鉄基混合粉末を金型に充填し、 さらに圧粉成形を行なう。 圧粉 成形の一般的に好適な条件としては、加圧力を 400〜1000MPaとすることが好 ましい。 また、 金型を 50〜70°Cに加熱しても良い。 あるいは、 粉末冶金用混 合粉末と金型を 80〜130°Cに加熱しても良い。  Next, a method for producing an iron-based powder compact using the iron-based mixed powder of the present invention and a method for producing an iron-based powder sintered body (sintered part) will be described. The iron-based mixed powder of the present invention can be formed into a molded body by a normal molding method. Specifically, iron-based mixed powder is filled into a mold and further compacted. As a generally suitable condition for compacting, it is preferable that the applied pressure is 400 to 1000 MPa. The mold may be heated to 50 to 70 ° C. Alternatively, the mixed powder for powder metallurgy and the mold may be heated to 80 to 130 ° C.
なお、本発明の鉄基混合粉末は、常温でも充分高密度に成形することがで き、 生産性の観点からは常温成形が好ましい。 とはいえ、 鉄基混合粉末や金 型を加熱したり、 金型に潤滑剤を塗布することは有利である。  The iron-based mixed powder of the present invention can be molded at a sufficiently high density even at room temperature, and room temperature molding is preferred from the viewpoint of productivity. Nonetheless, it is advantageous to heat the iron-based mixed powder or mold or apply a lubricant to the mold.
加熱雰囲気で成形を行う場合、 鉄基混合粉末や金型の温度は 100°C未満と することが好ましい。 というのは、本発明に従う鉄基混合粉末は圧縮性に富 むので 100 °C未満の温度でも優れた成形性を示し、また 100 °C以上になると酸 化による劣化が懸念されるからである。より好ましくは、 8 0 °C以下である。 ついで上記のようにして得られた高密度鉄基粉末成形体を金型から取り 出し、 焼結処理を施して、 高密度の焼結体とする。 焼結処理については、 特 に限定されることはなく、従来公知の焼結処理方法いずれもが好適に使用で きる。 焼結は、 加熱温度を 1100〜1600°Cとし、 加熱時間を 10〜60分とするこ とが好ましい。  When molding in a heated atmosphere, the temperature of the iron-based mixed powder and the mold is preferably less than 100 ° C. This is because the iron-based mixed powder according to the present invention has excellent compressibility and exhibits excellent formability even at temperatures below 100 ° C, and there is a concern of deterioration due to oxidation at temperatures above 100 ° C. . More preferably, it is 80 ° C. or lower. Next, the high-density iron-based powder molded body obtained as described above is taken out from the mold and subjected to a sintering treatment to obtain a high-density sintered body. The sintering treatment is not particularly limited, and any conventionally known sintering treatment method can be suitably used. Sintering is preferably performed at a heating temperature of 1100 to 1600 ° C and a heating time of 10 to 60 minutes.
. このように焼結を行なうことによって、優れた強度と切削性を有する焼結 部品 (合金鋼粉を用いた場合はとくに高強度焼結部品) を得る。 焼結を行なった後で、 必要に応じて浸炭焼入れ (ガス浸炭熱処理), 光輝 焼入れ, 高周波焼入れ, 浸炭窒化熱処理等などの熱処理を施して、 (高強度) 焼結部品の強度を一層高めることができる。 さらに、焼戻し処理を施しても 良い。 〔実施例〕 By sintering in this way, a sintered part with excellent strength and machinability (particularly when using alloy steel powder, a high-strength sintered part) is obtained. After sintering, if necessary, heat treatment such as carburizing and quenching (gas carburizing heat treatment), bright quenching, induction hardening, carbonitriding heat treatment, etc. (high strength) to further increase the strength of sintered parts Can do. Further, tempering treatment may be performed. 〔Example〕
以下、 実施例に基づき本発明を具体的に説明する。  Hereinafter, the present invention will be specifically described based on examples.
表 1に、実施例 1〜 4で鉄基粉末として用いた各種粉末冶金用鉄粉(いず れも平均粒径:約 80 m) の種類を示す。 特に合金鋼粉の場合には、 完全合 金化鋼粉であるのか、 部分合金化鋼粉であるのか、 さらには完全合金化鋼粉 に合金成分を部分拡散させたハイ 'プリ ッ ド鋼粉であるのかの区別を示す。 Table 1 shows the types of various iron powders for powder metallurgy used in Examples 1 to 4 as iron-based powders (both have an average particle size of about 80 m). In particular, in the case of alloy steel powder, it is a fully alloyed steel powder, a partially alloyed steel powder, or even a high-prid steel powder in which the alloy components are partially diffused in the fully alloyed steel powder. A distinction is shown.
Figure imgf000016_0001
Figure imgf000016_0001
* ( )内:完全合金化鋼粉組成  * (): Fully alloyed steel powder composition
t ]内:上記完全合金化鋼粉に拡散接合された組成  t]: Composition diffusion-bonded to the above fully alloyed steel powder
(実施例 1 ) (Example 1)
表 2に示す各種の鉄基粉末、 天然黒鉛粉 (平均粒径: および/ま たは銅粉 (平均粒径: 2 5 μ πι ) に、 各種潤滑剤粉末 ( 1次添加剤) を添加 し、 高速底部撹拌式混合機で混合しながら 140°Cに加熱した後、 60°C以下に 冷却し、 さらに各種潤滑剤粉末 (2次添加剤) を添加し、 500rPmで 1分間撹 拌後、混合機から混合粉末を排出した。 1次および 2次添加剤の種類と配合 量を、 表 2に併記する。 潤滑材の添加量 (質量部) は、 鉄基粉末と天然黒鉛 粉と銅粉との合計質量 100 %に対する比率を外数で示したものであるが、 内 数で表した数値とほぼ同じである。 なお、 タルク粉末、 ステアタイ ト粉末の 平均粒径はそれぞれ 6 μ m、 であった。 Various lubricant powders (primary additives) were added to various iron-based powders and natural graphite powders (average particle size: and / or copper powder (average particle size: 25 μπιι)) shown in Table 2. after heating to 140 ° C while mixing at high speed bottom stirring type mixer, cooled below 60 ° C, further adding various lubricant powder (secondary additives), 1 minute at 500 r P m撹拌After that, the mixed powder was discharged from the mixer The types and blending amounts of the primary and secondary additives are listed in Table 2. The amount of lubricant added (parts by mass) is the same as the iron-based powder and natural graphite powder. The ratio of the total mass with copper powder to 100% is shown as an external number. It is almost the same as the numerical value. The average particle size of talc powder and steatite powder was 6 μm, respectively.
また、 比較のために、 上記と同じ鉄基粉末、 天然黒鉛粉および/または銅 粉の組成の粉末に、 ステアリン酸亜鉛を 0. 8maS S %添加し、 V型容器回転式 混合機で混合した混合粉末を用意した (表 3参照)。 この比較材は、 常温成 形で通常用いられる組成である。 In addition, for comparison, 0.8 ma SS % of zinc stearate was added to the same iron-based powder, natural graphite powder, and / or copper powder composition as above, and mixed in a V-type container rotary mixer. Mixed powder was prepared (see Table 3). This comparative material has a composition usually used in normal temperature forming.
次に、 得られた各鉄基混合粉末を、 室温下で、 内径: l lmmの超硬製タブレ ッ ト型に充填し、 490MPaおよび 686MPaで加圧成形した。 その際、 成形体を金 型から抜出す時の抜出力、 および得られた成形体の圧粉密度を測定した。  Next, each obtained iron-based mixed powder was filled into a cemented carbide tablet mold having an inner diameter of 11 mm at room temperature and pressure-molded at 490 MPa and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
さらに、得られた鉄基混合粉末に対し別途、切削試験用の試験片(外径 60mm, 内径 20mm, 長さ 30mm) の圧粉成形を行なった。 圧粉成形の加圧力は59 OMPa とした。 焼結は R Xガス雰囲気中で行ない、 加熱温度を 1130°Cとし、 加熱時 間を 20分とした。切削性を評価するにあたって、 サーメッ トの切削工具を用 いて切削速度 200m Z分, 送り 0. lnnii/回, 切込み深さ 0. 3mm, 切削距離 1000 mの切削試験を行ない、切削工具の逃げ面の摩耗幅を測定した。切削工具の 逃げ面の摩耗幅が小さいほど、 焼結体の切削性が優れていることを示す。 得られた結果を表 4に示す。 Further, the obtained iron-based mixed powder was separately compacted with a test piece for cutting test (outer diameter 60 mm, inner diameter 20 mm, length 30 mm). The pressing force for compacting was 59 OMPa. Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C, and the heating time was 20 minutes. When evaluating the cutting performance, a cermet cutting tool was used to perform a cutting test at a cutting speed of 200 mZ, feed 0. lnnii / turn, cutting depth 0.3 mm, cutting distance 1000 m, and the flank of the cutting tool. The wear width was measured. The smaller the wear width of the flank of the cutting tool, the better the machinability of the sintered body. The results obtained are shown in Table 4.
表 2 Table 2
Figure imgf000018_0001
Figure imgf000018_0001
* EBS:エチレンビスス亍ァロアミド, STZN:ス亍アリン ¾亜食 &, STAM:ス亍アリン モノアミド, STLI:ス亍アリン リチウム 表 3 * EBS: Ethylene bissuaramide, STZN: Suarin ¾Ash &, STAM: Suarin monoamide, STLI: Suarin lithium Table 3
Figure imgf000019_0001
Figure imgf000019_0001
* STZN :ステアリン  * STZN: Stearin
表 4 Table 4
Figure imgf000019_0002
Figure imgf000019_0002
表 2〜表 4に示した発明例 1〜 9 と比較例 1〜 9 とを比較すれば明らか なように、潤滑剤と して本発明に従う潤滑剤を用いることにより、 室温成形 であっても、抜出力をあまり増加させることなく高密度の圧粉体を得ること ができ、 さらに切削性も顕著に改善される。 As is apparent from a comparison of Invention Examples 1 to 9 and Comparative Examples 1 to 9 shown in Table 2 to Table 4, by using the lubricant according to the present invention as a lubricant, room temperature molding is performed. Even so, it is possible to obtain a high-density green compact without significantly increasing the extraction force, and the machinability is significantly improved.
(実施例 2 ) (Example 2)
表 5に示す各種の鉄基粉末、天然黒鉛粉および/または銅粉に、各種潤滑 剤 (1次添加剤) を添加し、 高速底部撹拌式混合機で混合しながら 140°Cで 加熱した後、 60°C以下に冷却し、さらに各種潤滑剤(2次添加剤)を添加し、 500rPmで 1分間撹拌後、混合機から混合粉末を排出した。 1次および 2次添 加剤の種類と配合量を、表 5に併記する。使用した原料は、実施例 1 と同様、 表 1に記載されたものである。 After adding various lubricants (primary additives) to various iron-based powders, natural graphite powders and / or copper powders shown in Table 5 and heating at 140 ° C while mixing with a high-speed bottom-stirring mixer , cooled to below 60 ° C, further added various lubricant (secondary additives), after stirring for 1 minute at 500 r P m, was discharged mixed powder from the mixer. Table 5 also shows the types and amounts of primary and secondary additives. The raw materials used are those listed in Table 1 as in Example 1.
また、 比較のために、 上記と同じ鉄基粉未、 天然黒鉛粉および/または鋼 粉の組成の粉末に、 エチレンビスステアロアミ ドを 0· 6mas S %添加し、 V型 容器回転式混合機で混合した混合粉末を用意した (比較材)。 For comparison, add 0 · 6 m as S % of ethylene bisstearamide to the same iron-based powder, natural graphite powder and / or steel powder composition as above, and rotate the V-shaped container. A mixed powder mixed with a type mixer was prepared (comparative material).
次に、得られた室温の各鉄基混合粉末を、予めキヤビティ壁面温度が 80°C になるように加熱した内径: 11匪の超硬製タブレツ ト型に充填し、 490MPa および 686MPaで加圧成形した。 その際、成形体を金型から抜出す時の抜出力 および得られた成形体の圧粉密度を測定した-。 Then, each iron-based mixed powder at room temperature was obtained, and heated as previously Kiyabiti wall temperature is 80 ° C inside diameter: 11 was filled in a cemented carbide Taburetsu preparative the negation, pressurized with 49 0 MPa and 686MPa Press molded. At that time, the extraction force when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
また、 比較材を一般的な温間成形の成形条件、 すなわち 120°Cに加熱した のち、 金型を 130°Cに加熱した内径: 11mmの超硬製タブレッ ト型に充填し、 490MPaおよび 686MPaで加圧成形した。 その際、成形体を金型から抜出す時の 抜出力および得られた成形体の圧粉密度を測定した。  In addition, after heating the comparative material to the general warm forming conditions, that is, 120 ° C, the mold was heated to 130 ° C and filled into a carbide tablet mold with an inner diameter of 11mm, and 490MPa and 686MPa. Was pressure molded. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
また、実施例 1 と同様に切削試験用の試験片を圧粉成形し、切削性を調查 した。  Further, in the same manner as in Example 1, a test specimen for a cutting test was compacted to adjust the machinability.
得られた結果を表 6に示す。 表 5 The results obtained are shown in Table 6. Table 5
Figure imgf000021_0001
Figure imgf000021_0001
* EBS:エチレンビスス亍ァ口アミに STZN:ステアリン酸亜鉛, STAM:ス亍アリン酸モノアミに STLI:ス亍アリン酸リチウム 表 6 * EBS: STBN: Zinc stearate, STAM: Monolithium, STLI: Lithium sulfate Table 6
Figure imgf000022_0001
Figure imgf000022_0001
表 5〜表 6に示した発明例 10〜15と比較例 10〜15との比較で明らかなよ うに、 潤滑剤として本発明の 1次および 2次添加剤を添加することにより、 金型を 100°C未満の比較的低い温度に加熱するだけで、 混合粉末を加熱せず とも抜出力が増加することなく一般的な温間成形材と同等の高密度の圧粉 体を得ることができた。 As is apparent from the comparison between Invention Examples 10 to 15 and Comparative Examples 10 to 15 shown in Tables 5 to 6, the molds were formed by adding the primary and secondary additives of the present invention as a lubricant. By simply heating to a relatively low temperature of less than 100 ° C, it is possible to obtain a compact with the same high density as a general warm molding material without increasing the extraction force without heating the mixed powder. It was.
なお、 各発明例の逃げ面磨耗幅 は、 は同じ系統 (番号) の比較例の約 20〜40%に低下しており、 切削性についても顕著な改善が見られた。  In addition, the flank wear width of each invention example decreased to about 20 to 40% of the comparative example of the same system (number), and a remarkable improvement was also seen in the machinability.
(実施例 3 ) (Example 3)
表 7に示す各種の鉄基粉末、天然黒鉛および Zまたは銅粉に、各種潤滑剤 ( 1次添加剤) を添加し、 高速底部撹拌式混合機で混合しながら 140°Cで加 熱した後、 60で以下に冷却し、 さらに各種潤滑剤 (2次添加剤) を添加し、 500rpmで 1分間撹拌後、混合機から混合粉末を排出した。 1次おょぴ 2次添 加剤の種類と配合量を、 表 7に併記する。 使用した原料は、 実施例 1 と同じ ものである。.  After adding various lubricants (primary additives) to various iron-based powders, natural graphite and Z or copper powders shown in Table 7, heating them at 140 ° C while mixing with a high-speed bottom-stirring mixer , 60, and various lubricants (secondary additives) were added. After stirring for 1 minute at 500 rpm, the mixed powder was discharged from the mixer. Table 7 shows the types and amounts of primary additives and secondary additives. The raw materials used are the same as in Example 1. .
また、 比較のために、 各重量のエチレンビスステア口アミ ドを添加し、 V P T/JP2007/053125 For comparison, add each weight of ethylene bis-stear amide and add V PT / JP2007 / 053125
22  twenty two
型容器回転式混合機で混合した混合粉末を作製した。 The mixed powder mixed with the mold container rotary mixer was produced.
次に、得られた各鉄基混合粉末を 60°Cに加熱したのち、予めキヤビティ壁 面温度が 80°Cになるように加熱し、さらにステアリン酸リチウム粉末を壁面 に塗布した内径: 11mmの超硬製タブレツ ト型に充填し、 490および 686MPaで 加圧成形した。 その際、成形体を金型から抜出す時の抜出力とおよび得られ た成形体の圧粉密度を測定した。 ·  Next, each iron-based mixed powder obtained was heated to 60 ° C, and then heated beforehand so that the cavity wall surface temperature was 80 ° C, and further, lithium stearate powder was applied to the wall surface. Filled into a cemented carbide tablet mold and pressure molded at 490 and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured. ·
また、 比較材を一般的な温間成形の成形条件、 すなわち 120°Cに加熱した 後、 金型を 130°Cに加熱した内径: 11mmの超硬製タブレッ ト型に充填し、 490 および 686MPaで加圧成形した。 その際、成形体を金型から抜出す時の抜出力 および得られた成形体の圧粉密度を測定した。  In addition, the comparative material was heated to general warm forming conditions, that is, to 120 ° C, and then the mold was heated to 130 ° C and filled into a carbide tablet mold with an inner diameter of 11 mm. 490 and 686 MPa Was pressure molded. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
また、実施例 1 と同様に切削試験用の試験片を圧粉成形し、切削性を調査 した。  Further, in the same manner as in Example 1, a test specimen for cutting test was compacted and the machinability was investigated.
得られた結果を表 8に示す。  The results obtained are shown in Table 8.
表 7 Table 7
Figure imgf000023_0001
Figure imgf000023_0001
* EBS : 1チレンビスス亍ァロアミト', STZN :ス亍アリン酸亜鉛, STAM :ステアリン酸モノアミに STLI:ス亍アリン酸リチウム 表 8 * EBS: 1 Tylenebissuaramito ', STZN: Zinc sulphate, STAM: Mono stearate, STLI: Lithium sulphate Table 8
Figure imgf000024_0001
Figure imgf000024_0001
表 7〜表 8に示した発明例 16と比較例 16および発明例 17と比較例 17との 比較で明らかなように、潤滑剤として本発明の 1次おょぴ 2次添加剤を添加 することにより、 金型および粉末を 100°C未満の比較的低い温度に加熱する だけで、一般的な温間成形材と同等の高密度の成形体を極めて低い抜出力で 成形することができた。 As is apparent from the comparison between Invention Example 16 and Comparative Example 16 and Invention Example 17 and Comparative Example 17 shown in Table 7 to Table 8, the primary additive and secondary additive of the present invention are added as a lubricant. As a result, by simply heating the mold and powder to a relatively low temperature of less than 100 ° C, it was possible to form a high-density molded body equivalent to a general warm molding material with extremely low output power. .
また、 各発明例の逃げ面磨耗幅(mm)は、 は同じ系統 (番号) の比較例の約 25~ 35 %に低下しており、 切削性についても顕著な改善が見られた。  In addition, the flank wear width (mm) of each invention example was reduced to about 25 to 35% of the comparative example of the same system (number), and a marked improvement was also seen in machinability.
(実施例 4 ) (Example 4)
表 9に示す各種の鉄基粉末、天然黒鉛粉および Zまたは銅粉に、各種潤滑 剤 (1次添加剤) を添加し、 高速底部撹拌式混合機で混合しながら 140°Cで 加熱した後、 60°C以下に冷却し、さらに各種潤滑剤(2次添加剤)を添加し、 500rpmで 1分間撹拌後、混合機から混合粉末を排出した。 1次および 2次添 加剤の種類と配合量を、 表 9に併記する。 使用した原料は、 実施例 1 と同じ ものである。 なお、 比較例 20は 1次 · 2次添加に代えて、 ステアタイ ト粉末 を添加し高速底部撹拌式混合機により同条件で混合する処理を行った。 次に、 得られた各鉄基混合粉末を、 室温下で、 内径: 11mmの超硬製タブレ ッ ト型に充填し、 490MPaおよび 686MPaで加圧成形した。 その際、 成形体を金 型から抜出す時の抜出力、 および得られた成形体の圧粉密度を測定した。 After adding various lubricants (primary additives) to various iron-based powders, natural graphite powders and Z or copper powders shown in Table 9, heating at 140 ° C while mixing with a high-speed bottom-stirring mixer , cooled to below 60 ° C, further added various lubricant (secondary additives), after stirring for 1 minute at 500Rp m, was discharged mixed powder from the mixer. Table 9 also shows the types and amounts of primary and secondary additives. The raw materials used are the same as in Example 1. In Comparative Example 20, instead of the primary and secondary additions, a steatite powder was added and mixed under the same conditions using a high-speed bottom stirring mixer. Next, each obtained iron-based mixed powder was filled into a cemented carbide tablet mold having an inner diameter of 11 mm at room temperature, and pressure-molded at 490 MPa and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
さらに、得られた鉄基混合粉末に対し別途、粉末冶金工業会 JPMA M04 - 1S92 に準拠した引張試験片と切削試験用の試験片 (外径 60mni, 内径 20mni, 長さ 30mm) の圧粉成形を行なった。 圧粉成形の加圧力は 590MPaと した。 焼結は R Xガス雰囲気中で行ない、 加熱温度を 1130°Cと し、 加熱時間を 20分と した。 切削性の評価法は.実施例 1 と同様である。 In addition, the obtained iron-based mixed powder is separately prepared for tensile test pieces and cutting test pieces (outer diameter 60 mni, inner diameter 20 mni, length in accordance with JPMA M04-1S92). 30 mm) was compacted. Pressure of compacting was 5 9 0 MPa. Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C, and the heating time was 20 minutes. The machinability evaluation method is the same as in Example 1.
得られた結果を表 1 0に示す。 表 9  The results obtained are shown in Table 10. Table 9
Figure imgf000025_0001
Figure imgf000025_0001
* EBS :エチレンビスス亍ァ口アミ , STZN :ステアリン STAM :ステアリン モノアミに, STし I · 'ステアリン ¾リチウム 表 1 0 * EBS: Ethylene bismuth, STZN: Stearin STAM: Stearin mono, ST Table 1 0
Figure imgf000026_0001
Figure imgf000026_0001
表 9〜表 1 0に示した発明例 18〜21と比較例 18、 19との比較から明らかな ように、 ステアタイ ト等を本発明の範囲内で添加した鉄基混合粉末は、抜出 力を増加させることなく高密度の圧粉体を得ることができる。 また、 ステア タイ ト等が 0. 5質量%を超 て添加された比較例 19は機械的特性の低下が大 きい。 さらに、機械的特性の観点からは発明例 18〜21より ステアタイ ト等の 添加量が 0. 2質量%以下であることがより好ましいことが分かる。 As is clear from comparison between Invention Examples 18 to 21 and Comparative Examples 18 and 19 shown in Table 9 to Table 10, iron-based mixed powders to which stearite and the like are added within the scope of the present invention are extracted. A high-density green compact can be obtained without increasing. Further, in Comparative Example 19 in which stearite or the like was added in an amount exceeding 0.5% by mass, the mechanical characteristics were greatly deteriorated. Furthermore, from the viewpoint of mechanical properties, it can be seen that the amount of addition of stearite etc. is more preferably 0.2% by mass or less from Invention Examples 18-21.
また、 発明例 22、 23と比較例 20、 21との比較から明らかなように、 脂肪酸 アミ ド等をステアタイ ト等と共に添加すること力 S、抜出力を増加させること がなぐ高密度の圧粉体を得るために必要である。 また、 さらに金属石鹼を添 加することにより、焼結体の切削性を顕著に改善することができることがわ かる。  Further, as is clear from the comparison between Invention Examples 22 and 23 and Comparative Examples 20 and 21, the addition of fatty acid amide together with steatite etc. It is necessary to get the body. It can also be seen that the machinability of the sintered body can be remarkably improved by adding a metal sarcophagus.
(実施例 5 ) (Example 5)
表 1 1に示す成分の水ァトマイズ合金鋼粉を、水ァトマイズ法で製造した。 Mn, Mo以外の残部は Feおよび不可避的不純物である。 その水ァトマイズ合金 鋼粉に、 Cu粉, 黒鉛粉, タルク, ステアタイ トを表 1 1に示す割合で添加し た。 なお、 氷アトマイズ鋼粉中の Mo含有量, Mn含有量 (質量。/。) および水ァ トマイズ鋼粉に添加する Cu粉, 黒鉛粉, タルク, ステアタイ トの添加量 (質 量0 /0 ) は、 いずれも粉末冶金用混合粉末の質量に占める比率を内数で示す。 さらに、潤滑材を表 1 1に示す割合で添加した。潤滑材の添加量(質量部) は、水ァトマイズ合金鋼粉と添加材とを混合して得られる粉末冶金用混合粉 末の質量 (100質量部) に対する比率を外数で示す (ただし内'数で表した数 値とほぼ同じである)。 Water atomized alloy steel powder having the components shown in Table 11 was produced by the water atomizing method. The balance other than Mn and Mo is Fe and inevitable impurities. Its water atomized alloy Cu powder, graphite powder, talc, and stearite were added to the steel powder in the proportions shown in Table 11. Incidentally, Mo content of ice atomized steel powder in, Mn content (mass ./.) And Mizua Tomaizu steel powder Cu powder to be added, graphite powder, talc, amount of Suteatai bets (mass 0/0) Indicates the ratio in the mass of the mixed powder for powder metallurgy. Further, a lubricant was added at a ratio shown in Table 11. The amount of lubricant added (parts by mass) indicates the ratio to the mass (100 parts by mass) of the mixed powder for powder metallurgy obtained by mixing water-hamized alloy steel powder and additive in an external number. It is almost the same as the numerical value).
次いで V型プレンダ一で混合し、得られた粉末冶金用混合粉末を金型に充 填し、 粉末冶金工業会 JPMA M04- 1992に準拠した引張試験片と切削試験用の 試験片 (外径 60mm, 内径 20ηπη, 長さ 30mm) の圧粉成形を行なった。 圧粉成形 の加圧力は 590MPaとした。 焼結は R Xガス雰囲気中で行ない、 加熱温度を 1130°Cとし、 加熱時間を 20分とした。  Next, the mixture was mixed in a V-type blender, and the resulting mixed powder for powder metallurgy was filled into a mold, and a tensile test piece and a test piece for cutting test in accordance with JPMA M04-1992 (outer diameter 60 mm , The inner diameter was 20ηπη and the length was 30mm). The pressing force for compacting was 590 MPa. Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C, and the heating time was 20 minutes.
引張試験によって得られた引張強度は表 1 1に示す通りである。  Table 11 shows the tensile strength obtained by the tensile test.
切削性を評価するにあたって、 サーメ ッ トの切削工具を用いて切削速度 200 m Z分, 送り 0. 1mm/回, 切込み深さ 0. 3mm, 切削距離 1000mの切削試験 を行ない、切削工具の逃げ面の摩耗幅を測定した。 その結果は表 1 1に示す 通りである。 切削工具の逃げ面の摩耗幅が小さいほど、焼結体の切削性が優 れていることを示す。  When evaluating the machinability, a cutting test was performed using a cermet cutting tool at a cutting speed of 200 mZ, feed 0.1 mm / turn, depth of cut 0.3 mm, and cutting distance 1000 m. The wear width of the surface was measured. The results are shown in Table 11. The smaller the wear width of the flank of the cutting tool, the better the machinability of the sintered body.
表 1 1中で発明例は本発明の範囲を満足する粉末冶金用混合粉末を使用 した例であり、比較例は本発明の範囲を外'れる粉末冶金用混合粉末を使用し た例で あ る 。 No. 22の従来例 は、 従来か ら 実用化 さ れて い る Fe-4Ni-l . 5Cu-0. 5Mo系の水ァトマイズ合金鋼粉を用いた粉末冶金用混合粉 末に従来の潤滑剤を配合した例である。 No. 22の合金元素に付記された数値 は質量%を示す。 焼結 切削 In Table 11, the invention example is an example using a mixed powder for powder metallurgy that satisfies the scope of the present invention, and the comparative example is an example using a mixed powder for powder metallurgy that falls outside the scope of the present invention. The The conventional example of No. 22 is a conventional lubricant for mixed powder for powder metallurgy using Fe-4Ni-l.5Cu-0.5Mo-based water atomized alloy steel powder, which has been put to practical use. Is an example of blending. The numerical value attached to the alloy element of No. 22 represents mass%. Sintering cutting
粉末冶金用混合粉末 (質量 潤滑材 1 潤滑材 2  Mixed powder for powder metallurgy (mass lubricant 1 lubricant 2
体 工具  Body tool
No 水アトマイス' 添加量 添加量 引張 逃げ面 備考  No Water atomise 'Amount added Amount added Tension Flank Remarks
Cu 黒鉛 ス亍ァ 種類 種類  Cu Graphite square Type Type
合金鋼粉 タルク (質量 (質量 強度 磨耗  Alloy steel powder Talc (mass (mass strength wear
粉 粉 タ仆 *2 Flour powder * 2
o Mn 部) *3 部) *3 ( Pa) (mm) o Mn part) * 3 part) * 3 (Pa) (mm)
1 0.45 0.21 0.0 0.8 0.1 ― EBS 0.4 ― ― 380 0.04 発明例 1 0.45 0.21 0.0 0.8 0.1 ― EBS 0.4 ― ― 380 0.04 Invention example
2 0.45 0.21 1.5 0.8 0.1 ― EBS 0.4 ― ― 520 0.08 発明例2 0.45 0.21 1.5 0.8 0.1 ― EBS 0.4 ― ― 520 0.08 Invention example
3 0.45 0.21 2.0 0.8 0.1 ― EBS 0.4 ― ― 630 0.08 発明例3 0.45 0.21 2.0 0.8 0.1 ― EBS 0.4 ― ― 630 0.08 Invention example
4 0.45 0.21 3.0 0.8 0.1 ― EBS 0.4 ― ― 650 0.15 発明例4 0.45 0.21 3.0 0.8 0.1 ― EBS 0.4 ― ― 650 0.15 Invention example
6 0.45 0.05 2.0 0.8 ― 0.1 STAM 0.2 STZN 0.2 480 0.02 比較例6 0.45 0.05 2.0 0.8 ― 0.1 STAM 0.2 STZN 0.2 480 0.02 Comparative example
7 0.45 0.12 2.0 0.8 ― 0.1 STA 0.2 STZN 0.2 550 0.02 発明例7 0.45 0.12 2.0 0.8 ― 0.1 STA 0.2 STZN 0.2 550 0.02 Invention example
8 0.45 0.19 2.0 0.8 ― 0.1 STAM 0.2 STZN 0.2 640 0.04 発明例8 0.45 0.19 2.0 0.8 ― 0.1 STAM 0.2 STZN 0.2 640 0.04 Invention example
10 0.2 0.20 2.0 0.8 0.1 0.1 STAM 0.4 ― ― 430 0.07 発明例10 0.2 0.20 2.0 0.8 0.1 0.1 STAM 0.4 ― ― 430 0.07 Invention example
1 1 0.3 0.20 2.0 0.8 0.1 0.1 STAM 0.4 ― 一 540 0.07 発明例1 1 0.3 0.20 2.0 0.8 0.1 0.1 STAM 0.4 ― I 540 0.07 Invention example
12 0.5 0.20 2.0 0.8 0.1 0.1 STAM 0.4 ― ― 630 0.07 発明例12 0.5 0.20 2.0 0.8 0.1 0.1 STAM 0.4 ― ― 630 0.07 Invention example
14 0.45 0.21 2.0 0.4 0.1 ― EBS 0.5 ― ― 410 0.05 発明例14 0.45 0.21 2.0 0.4 0.1 ― EBS 0.5 ― ― 410 0.05 Invention example
1 5 0.45 0.21 2.0 0.6 0.1 ― EBS 0.5 ― ― 530 0.05 発明例1 5 0.45 0.21 2.0 0.6 0.1 ― EBS 0.5 ― ― 530 0.05 Invention example
16 0.45 0.21 2.0 0.9 0.1 ― EBS 0.5 ― ― 620 0.10 発明例16 0.45 0.21 2.0 0.9 0.1 ― EBS 0.5 ― ― 620 0.10 Invention example
18 0.45 0.21 2.0 0.8 ― ― EBS 0.3 STLI 0.15 650 0.30 比較例18 0.45 0.21 2.0 0.8 ― ― EBS 0.3 STLI 0.15 650 0.30 Comparative example
19 0.45 0.21 2.0 0.8 ― 0.3 EBS 0.3 STLI 0.15 640 0.02 発明例19 0.45 0.21 2.0 0.8 ― 0.3 EBS 0.3 STLI 0.15 640 0.02 Invention example
20 0.45 0.21 2.0 0.8 ― 0.5 EBS 0.3 STLI 0.15 600 0.02 発明例20 0.45 0.21 2.0 0.8 ― 0.5 EBS 0.3 STLI 0.15 600 0.02 Invention example
21 0.45 0.21 2.0 0.8 一 0.7 EBS 0.3 STLI 0.15 460 0.01 比較例21 0.45 0.21 2.0 0.8 1 0.7 EBS 0.3 STLI 0.15 460 0.01 Comparative example
Fe-4Ni-1.5Cu Fe-4Ni-1.5Cu
22 0.6 ― ― EBS 0.5 EBS 0.5 590 0.48 従来例 -0.5Mo  22 0.6 ― ― EBS 0.5 EBS 0.5 590 0.48 Conventional example -0.5Mo
*1 粉末治金用混合粉末の質量に占める比率 (内数)  * 1 Ratio to the mass of powder mixture for powder metallurgy (number)
*2 EBS :エチレンビスス亍ァロアミト", STZN :ス亍アリン ffifiS, STAM :ス亍アリン酸モノアミ , STLI :ス亍アリン酸リチウム *3 粉末冶金用混合粉末 100質量部に対する比率 (外数)  * 2 EBS: Ethylene bissuaramito ", STZN: Suarin ffifiS, STAM: Monoaluminum sulphate, STLI: Lithium sulphate * 3 Ratio to 100 parts by mass of powder mixture for powder metallurgy (external number)
表 1 1から明らかなように、とくに発明例の粉末冶金用混合粉末から得た 焼結体は、 いずれも機械的特性および切削性に優れている。 特に従来例は、 焼結体の切削性が著しく悪い。 As is clear from Table 11, all the sintered bodies obtained from the mixed powders for powder metallurgy of the inventive examples are excellent in mechanical properties and machinability. In particular, in the conventional example, the machinability of the sintered body is extremely poor.
なお、 水ァトマイズ合金鋼粉が Mo : 0. 3 ~ 0. 5質量0 /0および Mn: 0. 1〜0. 25 質量%を含有し、 かつ、 Cu粉: 1〜 3質量%および黒鉛粉: 0. 5〜: L . 0質量% を含有する場合、 引張強度が 500MPa以上であり、 しかも切削性に優れた焼結 体を得ることができる。 07 053125 Incidentally, the water Atomaizu alloy steel powder is Mo: 0. 3 ~ 0. 5 mass 0/0 and Mn:. Containing 0.1 to 0 25 wt%, and, Cu powder: 1 3% by weight and graphite powder When containing 0.5 to 0.5% by mass, a sintered body having a tensile strength of 500 MPa or more and excellent in machinability can be obtained. 07 053125
28 28
産業上の利用の可能性 Industrial applicability
本発明によれば、室温程度の低い温度で成形したとしても、成形密度が高 くかつ抜出力が小さい鉄基混合粉末を得ることができる。 また、好適な本発 明によれば、優れた切削性を有する焼結部品、 とくに髙強度焼結部品の製造 に好適な粉末冶金用混合粉末を得ることができる。  According to the present invention, it is possible to obtain an iron-based mixed powder having a high molding density and a small punching power even if it is molded at a temperature as low as room temperature. Further, according to the present invention, a mixed powder for powder metallurgy suitable for manufacturing a sintered part having excellent machinability, particularly a high strength sintered part can be obtained.
また、 本発明によれば、 上記の鉄基混合粉末を原料とすることにより、 成 形密度が高い鉄基粉末成形体、 さらには焼結密度が高い、 あるいはさらに切 削性に優れた鉄基粉末焼結体を得ることができる。  In addition, according to the present invention, by using the iron-based mixed powder as a raw material, an iron-based powder molded body having a high forming density, an iron base having a high sintered density, or a further excellent machinability. A powder sintered body can be obtained.

Claims

29 . 請求の範囲 29. Claim
1 . 鉄基粉末と、 1. Iron-based powder,
添加材として、  As an additive,
タルクおょぴステアタイ トのうちから選んだ少なく とも 1種、 および、 脂肪酸ァミ ド  At least one selected from talc opi steatite and fatty acid amide
とを含有する、 鉄基混合粉末。 Containing iron-based mixed powder.
2 . 前記添加材がさらに金属石鑛を含有する、請求項 1に記載の鉄基混合 粉末。 2. The iron-based mixed powder according to claim 1, wherein the additive further contains a metal sarcophagus.
3 . さらに合金用粉末を配合してなる請求項 1に記載の鉄基混合粉末。 3. The iron-based mixed powder according to claim 1, further comprising an alloy powder.
4 . さらに合金用粉末を配合してなる請求項 2に記載の鉄基混合粉末。 4. The iron-based mixed powder according to claim 2, further comprising an alloy powder.
5 . 前記鉄基粉末が、 Mo: 0. 3〜0. 5質量%、 Mn: 0. 1〜0. 25質量%を含有 し、 残部が Feおよび不可避的不純物からなる水ァトマイズ合金鋼粉であり、 前記合金用粉末が、 Cu粉: 1〜 3質量%および黒鉛粉: 0. 5〜1. 0質量%で ある、 請求項 3または 4に記載の鉄基混合粉末。 5. The iron-based powder is a hydrated steel powder containing Mo: 0.3 to 0.5% by mass, Mn: 0.1 to 0.25% by mass, the balance being Fe and inevitable impurities. The iron-based mixed powder according to claim 3 or 4, wherein the alloy powder is Cu powder: 1 to 3 mass% and graphite powder: 0.5 to 1.0 mass%.
6 . Mo: 0. 3〜0. 5質量0 /0、 Mn: 0. 1〜0. 25質量%を含有し、 残部が Feおよ ぴ不可避的不純物からなる水ァトマイズ合金鋼粉と、 . 6 Mo: 0. 3~0 5 mass 0/0, Mn:. And 0.1 to 0 containing 25 mass%, the balance being Fe Oyo Pi unavoidable impurities water Atomaizu alloy steel powder.
Cu粉: 1〜 3質量%と、  Cu powder: 1-3% by mass,
黒鉛粉: 0. 5〜: 1. 0質量%と、  Graphite powder: 0.5 to: 1.0% by mass,
タルクおょぴステアタイ トのうちから選んだ少なく とも 1種を合計 0. 05 〜0. 5質量。 /0と、 A total of at least one selected from talc opi steatite from 0.05 to 0.5 mass. / 0 and
脂肪酸アミ ドと .  With fatty acid amides.
を混合してなる鉄基混合粉末。 An iron-based mixed powder obtained by mixing.
7 . さらに金属石験を含有する、 請求項 6に記載の鉄基混合粉末。 7. The iron-based mixed powder according to claim 6, further comprising a metal stone test.
8 . 請求項 1 ~ 4のいずれかに記載の鉄基混合粉末を、 金型に充填し、 100^未満の温度で成形する、 鉄基粉末成形体の製造方法。 8. A method for producing an iron-based powder molded body, wherein the iron-based mixed powder according to any one of claims 1 to 4 is filled in a mold and molded at a temperature of less than 100 ^.
9 . 請求項 1〜 4のいずれかに記載の鉄基混合粉末を、 金型に充填し、 100°C未満の温度で成形したのち、 得られた鉄基粉末成形体を焼結する、 鉄 基粉末焼結体の製造方法。 9. The iron-based mixed powder according to any one of claims 1 to 4 is filled in a mold and molded at a temperature of less than 100 ° C, and then the obtained iron-based powder molded body is sintered. Manufacturing method of base powder sintered body.
PCT/JP2007/053125 2006-02-15 2007-02-14 Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts WO2007105429A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020087020086A KR101101734B1 (en) 2006-02-15 2007-02-14 Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
CA2642254A CA2642254C (en) 2006-02-15 2007-02-14 Iron-based powder mixture, and method of manufacturing iron-based compacted body and iron-based sintered body
EP07714625.6A EP1985393B1 (en) 2006-02-15 2007-02-14 Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
US12/279,471 US20090041608A1 (en) 2006-02-15 2007-02-14 Iron-based powder mixture, and method of manufacturing iron-based compacted body and iron-based sintered body
CN2007800057277A CN101384387B (en) 2006-02-15 2007-02-14 Iron-based powder mixture, and method of manufacturing iron-based compacted body and iron-based sintered body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-037916 2006-02-15
JP2006037916 2006-02-15
JP2006-337876 2006-12-15
JP2006337876 2006-12-15

Publications (1)

Publication Number Publication Date
WO2007105429A1 true WO2007105429A1 (en) 2007-09-20

Family

ID=38509266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053125 WO2007105429A1 (en) 2006-02-15 2007-02-14 Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts

Country Status (8)

Country Link
US (1) US20090041608A1 (en)
EP (1) EP1985393B1 (en)
JP (2) JP4737107B2 (en)
KR (2) KR20110114679A (en)
CN (1) CN101384387B (en)
CA (1) CA2642254C (en)
TW (2) TWI412416B (en)
WO (1) WO2007105429A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221576A (en) * 2008-03-18 2009-10-01 Jfe Steel Corp Iron-based powdery mixture
JP2009242887A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Iron-based powdery mixture
CN102069187A (en) * 2011-03-01 2011-05-25 杭州寰宇粉体科技有限公司 Mixing method of iron-based powder metallurgy bonding powder
CN102325614A (en) * 2008-12-22 2012-01-18 霍加纳斯股份有限公司 Machinability improving composition
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
JP2012527535A (en) * 2009-05-22 2012-11-08 ホガナス アクチボラグ (パブル) High strength low alloy sintered steel
JP2014005543A (en) * 2013-08-20 2014-01-16 Jfe Steel Corp Iron-based powder mixture
CN114700496A (en) * 2022-03-18 2022-07-05 广东潮艺金属实业有限公司 Preparation method of high-strength stainless steel powder

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200768B2 (en) * 2008-08-27 2013-06-05 Jfeスチール株式会社 Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same
CN102356249B (en) * 2009-03-19 2014-07-16 Ntn株式会社 Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
JP5318619B2 (en) * 2009-03-19 2013-10-16 Ntn株式会社 Sintered metal bearing
JP5558041B2 (en) * 2009-08-04 2014-07-23 Ntn株式会社 Fe-based sintered metal bearing and manufacturing method thereof
CA2755568C (en) * 2009-03-20 2019-11-26 Hoeganaes Aktiebolag (Publ) Iron vanadium powder alloy
JP2010285633A (en) * 2009-06-09 2010-12-24 Kobe Steel Ltd Method of producing powder mixture for powder metallurgy, and method of producing sintered body
JP5617529B2 (en) * 2010-10-28 2014-11-05 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
JP5552031B2 (en) * 2010-11-09 2014-07-16 株式会社神戸製鋼所 Mixed powder for powder metallurgy
RU2450069C1 (en) * 2011-01-19 2012-05-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Sintered antifriction iron-based material
US20150017043A1 (en) * 2012-02-15 2015-01-15 Gkn Sinter Metals, Llc Powder metal with solid lubricant and powder metal scroll compressor made therefrom
CN102672164A (en) * 2012-06-07 2012-09-19 太仓市锦立得粉末冶金有限公司 Powder metallurgy
CN103071799A (en) * 2013-01-22 2013-05-01 山东信义粉末冶金有限公司 Method for producing surface-densified powder metallurgic gear
JP6309215B2 (en) * 2013-07-02 2018-04-11 Ntn株式会社 Sintered machine part manufacturing method and mixed powder used therefor
SE540222C2 (en) * 2013-07-18 2018-05-02 Jfe Steel Corp Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sinteredbody
JP6391954B2 (en) * 2014-01-22 2018-09-19 Ntn株式会社 Sintered machine parts and manufacturing method thereof
US20160327144A1 (en) * 2014-01-22 2016-11-10 Ntn Corporation Sintered machine part and manufacturing method thereof
WO2015151486A1 (en) * 2014-04-02 2015-10-08 Jfeスチール株式会社 Iron powder for dust core, and sorting method for iron powder for dust core
JP6262078B2 (en) * 2014-05-29 2018-01-17 株式会社神戸製鋼所 Mixed powder for powder metallurgy
JP2016056445A (en) * 2014-09-04 2016-04-21 Ntn株式会社 Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy
CN104328366B (en) * 2014-10-22 2016-06-08 新昌县康泓机械科技有限公司 Iron base composite material and preparation method thereof
CN104357739A (en) * 2014-12-08 2015-02-18 湖北工业大学 Method for preparing compact ferroaluminium by using spark plasma sintering method
JP6395217B2 (en) * 2014-12-12 2018-09-26 住友電工焼結合金株式会社 Method for manufacturing sintered parts
JP6445858B2 (en) * 2014-12-12 2018-12-26 住友電工焼結合金株式会社 Sintered part manufacturing method and drill
KR101655184B1 (en) * 2015-01-14 2016-09-07 현대자동차 주식회사 Crank position sensor wheel and method for manufacturing the same
KR102543070B1 (en) 2015-02-03 2023-06-12 회가내스 아베 (피유비엘) Powdered metal compositions for easy machining
WO2017043094A1 (en) * 2015-09-11 2017-03-16 Jfeスチール株式会社 Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact
CA2992092C (en) 2015-09-18 2020-04-07 Jfe Steel Corporation Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body
JP6112281B1 (en) * 2015-09-30 2017-04-12 Jfeスチール株式会社 Method for producing alloy steel powder for powder metallurgy
WO2017056511A1 (en) * 2015-09-30 2017-04-06 Jfeスチール株式会社 Production method for alloy steel powder for powder metallurgy
CN105483573A (en) * 2015-12-03 2016-04-13 无锡拓能自动化科技有限公司 Stainless steel material for dust-free chamber workbench and manufacturing method of stainless steel material
US10632532B2 (en) * 2016-01-15 2020-04-28 Jfe Steel Corporation Mixed powder for powder metallurgy
CN105886929A (en) * 2016-06-14 2016-08-24 芜湖三刀材料科技有限公司 Iron-based insert material and preparation method
CN106270527A (en) * 2016-08-05 2017-01-04 海安县鹰球粉末冶金有限公司 Nickel alloy starting motor of automobile planetary gear and manufacture method thereof
JP6561962B2 (en) * 2016-10-24 2019-08-21 Jfeスチール株式会社 Method for producing mixed powder for powder metallurgy and production equipment for mixed powder for powder metallurgy
JP6634365B2 (en) * 2016-12-02 2020-01-22 株式会社神戸製鋼所 Method for producing mixed powder for iron-based powder metallurgy and sintered body
CN107297495A (en) * 2017-06-20 2017-10-27 江苏军威电子科技有限公司 A kind of electric tool mixed powder and preparation method thereof
RU2692002C1 (en) * 2018-12-19 2019-06-19 Публичное акционерное общество "Северсталь" Method of producing complex-alloyed powder mixture, ready for molding
KR20210029582A (en) * 2019-09-06 2021-03-16 현대자동차주식회사 Iron-based prealloy powder, iron-based diffusion-bonded powder, and iron-based alloy powder for powder metallurgy using the same
EP4035798A4 (en) * 2019-09-27 2022-12-07 JFE Steel Corporation Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body
CN111687411A (en) * 2020-06-10 2020-09-22 王公明 Net pendant and manufacturing method thereof
FR3138817A1 (en) * 2022-08-09 2024-02-16 Aubert & Duval Alloy with low coefficient of thermal expansion and high mechanical resistance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015866A (en) * 2003-06-27 2005-01-20 Mitsubishi Materials Corp Iron based sintered alloy having high surface denseness and surface hardness and its production method
JP2005264201A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Ferrous group powder mixture for powder metallurgy, and its production method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256185A (en) * 1992-07-17 1993-10-26 Hoeganaes Corporation Method for preparing binder-treated metallurgical powders containing an organic lubricant
US5279640A (en) * 1992-09-22 1994-01-18 Kawasaki Steel Corporation Method of making iron-based powder mixture
JPH06145701A (en) * 1992-11-04 1994-05-27 Kawasaki Steel Corp Iron base powder mixture for powder metallurgy
US5368630A (en) * 1993-04-13 1994-11-29 Hoeganaes Corporation Metal powder compositions containing binding agents for elevated temperature compaction
SE9702466D0 (en) * 1997-06-26 1997-06-26 Hoeganaes Ab Metal powder composition and a method for making sintered products
US6599345B2 (en) * 2001-10-02 2003-07-29 Eaton Corporation Powder metal valve guide
JP4368245B2 (en) * 2004-05-17 2009-11-18 株式会社リケン Hard particle dispersion type iron-based sintered alloy
US7653995B2 (en) * 2006-08-01 2010-02-02 Siemens Energy, Inc. Weld repair of superalloy materials
CN102974917B (en) * 2012-11-09 2015-03-18 哈尔滨汽轮机厂有限责任公司 Stellite alloy bead weld method of gas turbine combustion chamber
US9528175B2 (en) * 2013-02-22 2016-12-27 Siemens Aktiengesellschaft Pre-weld heat treatment for a nickel based superalloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015866A (en) * 2003-06-27 2005-01-20 Mitsubishi Materials Corp Iron based sintered alloy having high surface denseness and surface hardness and its production method
JP2005264201A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Ferrous group powder mixture for powder metallurgy, and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1985393A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221576A (en) * 2008-03-18 2009-10-01 Jfe Steel Corp Iron-based powdery mixture
JP2009242887A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Iron-based powdery mixture
CN102325614A (en) * 2008-12-22 2012-01-18 霍加纳斯股份有限公司 Machinability improving composition
CN106735165A (en) * 2008-12-22 2017-05-31 霍加纳斯股份有限公司 Improve the composition of machinability
CN106735165B (en) * 2008-12-22 2019-09-27 霍加纳斯股份有限公司 Improve the composition of machinability
JP2012527535A (en) * 2009-05-22 2012-11-08 ホガナス アクチボラグ (パブル) High strength low alloy sintered steel
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
CN102069187A (en) * 2011-03-01 2011-05-25 杭州寰宇粉体科技有限公司 Mixing method of iron-based powder metallurgy bonding powder
CN102069187B (en) * 2011-03-01 2012-09-19 杭州寰宇粉体科技有限公司 Mixing method of iron-based powder metallurgy bonding powder
JP2014005543A (en) * 2013-08-20 2014-01-16 Jfe Steel Corp Iron-based powder mixture
CN114700496A (en) * 2022-03-18 2022-07-05 广东潮艺金属实业有限公司 Preparation method of high-strength stainless steel powder
CN114700496B (en) * 2022-03-18 2023-09-12 广东潮艺金属实业有限公司 Preparation method of high-strength stainless steel powder

Also Published As

Publication number Publication date
EP1985393B1 (en) 2016-12-21
JP4844693B2 (en) 2011-12-28
KR20110114679A (en) 2011-10-19
CA2642254A1 (en) 2007-09-20
CN101384387A (en) 2009-03-11
KR20080085920A (en) 2008-09-24
CN101384387B (en) 2011-12-21
EP1985393A4 (en) 2015-06-10
EP1985393A1 (en) 2008-10-29
TWI368544B (en) 2012-07-21
JP2008169460A (en) 2008-07-24
TWI412416B (en) 2013-10-21
TW200735985A (en) 2007-10-01
KR101101734B1 (en) 2012-01-05
CA2642254C (en) 2013-07-23
TW201244852A (en) 2012-11-16
US20090041608A1 (en) 2009-02-12
JP2011084816A (en) 2011-04-28
JP4737107B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
WO2007105429A1 (en) Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
KR101776670B1 (en) Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JP4412133B2 (en) Iron-based mixed powder for powder metallurgy
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5741649B2 (en) Iron-based powder mixture
JP5200768B2 (en) Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same
JP2009242887A (en) Iron-based powdery mixture
US11643710B2 (en) Mixed powder for powder metallurgy
JP2014025109A (en) Mixed powder for powder metallurgy
WO2000039353A1 (en) Iron-based powder blend for use in powder metallurgy
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JPH1180803A (en) Ferrous mixed powder for powder metallurgy
JP4935731B2 (en) Iron-based powder mixture
RU2327547C1 (en) Method of producing iron base powder (variants)
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
JP6877375B2 (en) Mixed powder for powder metallurgy
JP2006348335A (en) Iron-based mixed powder for powder metallurgy
JP2023121011A (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2642254

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2007714625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007714625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12279471

Country of ref document: US

Ref document number: 1020087020086

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780005727.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020117019641

Country of ref document: KR