JP2010285633A - Method of producing powder mixture for powder metallurgy, and method of producing sintered body - Google Patents

Method of producing powder mixture for powder metallurgy, and method of producing sintered body Download PDF

Info

Publication number
JP2010285633A
JP2010285633A JP2009138263A JP2009138263A JP2010285633A JP 2010285633 A JP2010285633 A JP 2010285633A JP 2009138263 A JP2009138263 A JP 2009138263A JP 2009138263 A JP2009138263 A JP 2009138263A JP 2010285633 A JP2010285633 A JP 2010285633A
Authority
JP
Japan
Prior art keywords
powder
amide
lubricant
iron
mechanical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009138263A
Other languages
Japanese (ja)
Inventor
Takayasu Fujiura
貴保 藤浦
Yoshihiro Ito
義浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009138263A priority Critical patent/JP2010285633A/en
Priority to CN201010180677XA priority patent/CN101920335A/en
Priority to US12/801,122 priority patent/US20100310406A1/en
Priority to KR1020100053700A priority patent/KR20100132455A/en
Publication of JP2010285633A publication Critical patent/JP2010285633A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder mixture for powder metallurgy for producing a green compact having both high density and high lubricity (low demolding force). <P>SOLUTION: A method of producing the powder mixture for powder metallurgy, being a method of producing the powder mixture for powder metallurgy containing iron base powder, mechanical property improving powder, and a lubricant, includes steps that: the iron base powder and/or the mechanical property improving powder, and an amide-based lubricant solution are mixed; then, a solvent in the solution is removed; and a surface of the iron base powder and/or the mechanical property improving powder is coated with the amide-based lubricant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、粉末冶金用混合粉末の製造方法、および、この製造方法で得られた粉末冶金用混合粉末を用いた焼結体の製造方法に関する。   The present invention relates to a method for producing a powder mixture for powder metallurgy and a method for producing a sintered body using the powder mixture for powder metallurgy obtained by this production method.

粉末冶金用混合粉末は、主原料としての、純鉄粉や鉄基合金粉末等の鉄基粉末と、最終的に得られる焼結体の機械的特性(例えば、強度特性や加工特性等)を改善するための成分としての、合金用粉末や黒鉛粉末等の機械的特性改善粉末と、さらに粉末状の潤滑剤と、を混合して製造するのが一般的である(例えば、特許文献1)。   The mixed powder for powder metallurgy has the main raw materials, iron-base powders such as pure iron powder and iron-base alloy powder, and the mechanical properties (for example, strength characteristics and processing characteristics) of the sintered body finally obtained. In general, it is produced by mixing mechanical property-improving powder such as alloy powder or graphite powder as a component for improvement, and further powdered lubricant (for example, Patent Document 1). .

ここで、潤滑剤は、粉末冶金用混合粉末を金型に充填し、圧縮成形して圧粉体を形成する際に、圧粉体と金型壁面との摩擦抵抗を低減させて、低い型抜き力で圧粉体を金型から抜き出すことを可能にするために添加されるものである。また、圧縮成形に伴う鉄基粉末や機械的特性改善粉末の再配列、及び高密度化の際の、粉末粒子間の潤滑性にも一定の作用を及ぼしているものと考えられている。   Here, the lubricant is a low mold that reduces the frictional resistance between the green compact and the mold wall surface when the powder compact is filled with powder metallurgy mixed powder and compression molded to form the green compact. It is added in order to enable the green compact to be extracted from the mold with a drawing force. In addition, it is considered that a certain effect is also exerted on the lubricity between the powder particles during rearrangement and densification of the iron-based powder and the mechanical property-improving powder accompanying compression molding.

ところで、上記粉末冶金用混合粉末を圧縮成形した圧粉体を焼結して得られる焼結体には、一般に、強度をはじめとする機械的特性が高いレベルで要求されることが多い。焼結体の機械的特性は、主成分である鉄基粉末や機械的特性改善粉末の組成によっても左右されるが、焼結前の圧粉体の密度(圧密度合)に大きく影響されると考えられている。すなわち、圧縮成形時に、鉄基粉末や機械的特性改善粉末が再配列し、さらに塑性変形して、圧粉体が高密度化するほど、また圧粉体内の空隙が十分に少なくなるほど、この圧粉体を用いて得られる焼結体の強度も向上するものと考えられている。   By the way, in general, a sintered body obtained by sintering a green compact obtained by compression-molding the mixed powder for powder metallurgy is generally required to have a high level of mechanical properties including strength. The mechanical properties of the sintered body depend on the composition of the main component, iron-based powder and mechanical property-improving powder, but are greatly affected by the density (compression density) of the green compact before sintering. It is considered. In other words, during compression molding, the iron-based powder and mechanical property improving powder are rearranged and further plastically deformed, and the higher the density of the green compact and the sufficiently small voids in the green compact, It is considered that the strength of the sintered body obtained using the powder is also improved.

そこで、圧粉体の密度を向上させるために、鉄基粉末の形状、粒子径、粒度分布を最適化(緻密化)する方法があるが、このような鉄基粉末を工業的に安価に製造することは難しい。また、圧縮成形時の成形圧を上げることにより圧粉体の高密度化を図る方法もあるが、成形設備の能力や圧粉体の生産性という点で限界がある。   Therefore, in order to improve the density of the green compact, there is a method to optimize (densify) the shape, particle diameter, and particle size distribution of the iron-based powder. Difficult to do. There is also a method of increasing the density of the green compact by increasing the molding pressure during compression molding, but there are limitations in terms of the capacity of the molding equipment and the productivity of the green compact.

さらに、これらの方法によらず、より簡便に圧粉体の密度を向上させるために、潤滑剤の添加量を下げる方法もある。というのも、粉末冶金の分野で使用される粉末状の潤滑剤は、一般に有機化合物であり、添加された潤滑剤は最終的には焼結前の脱ロウ工程における加熱分解によって圧粉体から除去されるが、圧縮成形した段階では、潤滑剤の殆どが圧粉体中で鉄基粉末や機械的特性改善粉末の粒子間に残留している。このため、潤滑剤が圧粉体中で一定の体積を占めることとなり、圧粉体の高密度化を妨げる要因となっているからである。   Furthermore, in order to improve the density of the green compact more easily, there is a method of lowering the amount of lubricant added, regardless of these methods. This is because the powdered lubricant used in the field of powder metallurgy is generally an organic compound, and the added lubricant is finally removed from the green compact by thermal decomposition in the dewaxing step before sintering. Although it is removed, at the stage of compression molding, most of the lubricant remains between the particles of the iron-based powder and the mechanical property improving powder in the green compact. For this reason, the lubricant occupies a certain volume in the green compact, which is a factor that hinders the density of the green compact.

しかしながら、潤滑剤の添加量を下げると、圧粉体と金型壁面との摩擦抵抗が増加して、圧粉体を金型から抜き出す際の型抜き力が上昇し、型かじり等の金型損傷の問題が生じる。また、圧縮成形に伴う鉄基粉末等の再配列の際の、粉末粒子間の潤滑性も低下することとなり、圧粉体の密度向上に限界が生じるという問題もある。   However, if the amount of lubricant added is reduced, the frictional resistance between the green compact and the mold wall surface increases, and the die removal force increases when the green compact is extracted from the mold. Damage issues arise. Further, the lubricity between the powder particles at the time of rearrangement of the iron-based powder or the like accompanying compression molding is also lowered, and there is a problem that the density improvement of the green compact is limited.

このように、圧粉体の潤滑性(低型抜き力)と高密度化を両立させることは困難であった。   Thus, it has been difficult to achieve both the lubricity (low mold release force) of the green compact and the high density.

さらに、粉末状の潤滑剤を含有する粉末冶金用混合粉末では、良好な外観および特性を有する焼結体を得られ難いという問題もある。これは以下の理由による。すなわち、粉末状の潤滑剤は、粉末冶金用混合粉末の製造時には混合粉末中に分散された状態で存在するが、圧縮成形操作に至るまでの取り扱い中に、潤滑剤同士が接近ないしは接触し、分子間力あるいはその他の作用によって凝集して、初期に添加した潤滑剤の粒子径より大きな粒子径となる場合がある。そして、これらの凝集した潤滑剤が、圧粉体の表面に表出した場合には、焼結体の表面汚れとなって現れ、また、圧粉体内に残留した場合には、焼結体の表面荒れや内部欠陥となって現れるからである。   Furthermore, the mixed powder for powder metallurgy containing a powdery lubricant has a problem that it is difficult to obtain a sintered body having good appearance and characteristics. This is due to the following reason. That is, the powdered lubricant is present in a state of being dispersed in the mixed powder during the production of the powder mixture for powder metallurgy, but during the handling up to the compression molding operation, the lubricants approach or contact each other, In some cases, the particles aggregate due to intermolecular force or other action, resulting in a particle size larger than the particle size of the lubricant added initially. When these agglomerated lubricants appear on the surface of the green compact, they appear as surface contamination of the sintered body, and when they remain in the green compact, This is because it appears as surface roughness or internal defects.

またさらに、粉末冶金用混合粉末には、合金用粉末や黒鉛粉末等の機械的特性改善粉末が偏析を生じるという問題もある。   Furthermore, the mixed powder for powder metallurgy also has a problem that mechanical property improving powders such as alloy powders and graphite powders cause segregation.

特開2006−124777号公報JP 2006-124777 A

本発明は上記の様な状況の下でなされたものであり、粉末冶金用混合粉末中での粉末粒子に高い潤滑性を付与しつつ、機械的特性改善粉末の偏析も抑制でき、また、高密度でありながら高い潤滑性(金型からの低い型抜き力)をも併せ持つ圧粉体の製造を可能にし、さらに、表面汚れや、表面荒れ及び内部欠陥の少ない焼結体の製造をも可能にする、粉末冶金用混合粉末の製造方法を提供することを課題として掲げた。   The present invention has been made under the circumstances as described above, and while imparting high lubricity to the powder particles in the powder mixture for powder metallurgy, segregation of the mechanical property-improving powder can be suppressed. Enables the production of green compacts that have both high density and high lubricity (low mold release force from the mold), and can also produce sintered bodies with less surface contamination, surface roughness and internal defects. An object of the present invention is to provide a method for producing a mixed powder for powder metallurgy.

上記課題を解決することのできた本発明の粉末冶金用混合粉末の製造方法は、鉄基粉末と機械的特性改善粉末と潤滑剤とを含む粉末冶金用混合粉末の製造方法であって、前記鉄基粉末及び/又は前記機械的特性改善粉末と、アミド系潤滑剤溶液とを混合し、次いで前記溶液中の溶媒を除去して、前記鉄基粉末及び/又は前記機械的特性改善粉末の表面を、アミド系潤滑剤で被覆する工程を含むことを特徴とする。   A method for producing a mixed powder for powder metallurgy according to the present invention that has solved the above-mentioned problems is a method for producing a mixed powder for powder metallurgy comprising an iron-based powder, a mechanical property improving powder, and a lubricant. The base powder and / or the mechanical property improving powder and the amide-based lubricant solution are mixed, and then the solvent in the solution is removed, so that the surface of the iron base powder and / or the mechanical property improving powder is removed. And a step of coating with an amide-based lubricant.

上記構成によれば、潤滑剤は、鉄基粉末や機械的特性改善粉末に、溶液の状態で添加されることとなるため、潤滑剤が、これら粉末の表面全体に行き渡り易い。   According to the above configuration, since the lubricant is added to the iron-based powder and the mechanical property improving powder in a solution state, the lubricant easily spreads over the entire surface of these powders.

なお、本明細書において、「粉末表面をアミド系潤滑剤で被覆する」とは、粉末の表面全体をアミド系潤滑剤で被覆する態様の他、粉末の表面の一部をアミド系潤滑剤で被覆する態様も含む。   In this specification, “the powder surface is coated with an amide-based lubricant” means that the entire surface of the powder is coated with an amide-based lubricant, and a part of the powder surface is coated with an amide-based lubricant. An aspect of covering is also included.

本発明の粉末冶金用混合粉末の製造方法では、前記アミド系潤滑剤を、前記鉄基粉末と前記機械的特性改善粉末の合計量100質量部に対して、0.01質量部〜2.0質量部添加することが好ましい実施態様である。   In the method for producing a mixed powder for powder metallurgy according to the present invention, the amide-based lubricant is added in an amount of 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the total amount of the iron-based powder and the mechanical property improving powder. The addition of parts by mass is a preferred embodiment.

また、前記アミド系潤滑剤が、脂肪族アミド及び/又は脂肪族ビスアミドであることが好ましい実施態様であり、具体的には、前記脂肪族アミドがN−オレイルパルミチン酸アミドであり、前記脂肪族ビスアミドがエチレンビスオレイン酸アミドであることが好ましい。   In addition, it is a preferred embodiment that the amide-based lubricant is an aliphatic amide and / or an aliphatic bisamide, specifically, the aliphatic amide is N-oleyl palmitate amide, and the aliphatic It is preferred that the bisamide is ethylene bisoleic acid amide.

また、前記機械的特性改善粉末が、銅、ニッケル、クロム、モリブデン、黒鉛、および硫化マンガンよりなる群から選ばれる少なくとも1種であることが好ましい実施態様である。   In a preferred embodiment, the mechanical property improving powder is at least one selected from the group consisting of copper, nickel, chromium, molybdenum, graphite, and manganese sulfide.

本発明には、上記の製造方法により得られた粉末冶金用混合粉末を、圧縮成形し、次いで焼結する工程を含むことを特徴とする焼結体の製造方法が包含される。この際、常温で圧縮成形することが好ましい実施態様である。   The present invention includes a method for producing a sintered body comprising the steps of compression-molding and then sintering the powder mixture for powder metallurgy obtained by the above production method. At this time, compression molding at normal temperature is a preferred embodiment.

本発明によれば、密度が高く、また、金型からの型抜き力の低い圧粉体を製造することを可能にする粉末冶金用混合粉末を得ることができた。   According to the present invention, it was possible to obtain a powder mixture for powder metallurgy that enables the production of a green compact having a high density and a low mold-release force from a mold.

本発明の粉末冶金用混合粉末の製造方法は、鉄基粉末と機械的特性改善粉末と潤滑剤とを含む粉末冶金用混合粉末の製造方法であって、前記鉄基粉末及び/又は前記機械的特性改善粉末と、アミド系潤滑剤溶液とを混合し、次いで前記溶液中の溶媒を除去して、前記鉄基粉末及び/又は前記機械的特性改善粉末の表面を、アミド系潤滑剤で被覆する工程を含むことを特徴とする。   The method for producing a mixed powder for powder metallurgy according to the present invention is a method for producing a mixed powder for powder metallurgy comprising an iron-based powder, a mechanical property improving powder, and a lubricant, wherein the iron-based powder and / or the mechanical powder is produced. The property improving powder and the amide lubricant solution are mixed, and then the solvent in the solution is removed, and the surface of the iron-based powder and / or the mechanical property improving powder is coated with the amide lubricant. Including a process.

本発明の粉末冶金用混合粉末の製造方法では、潤滑剤が溶解した溶液を用いて、粉末表面に潤滑剤を配するようにしたため、潤滑剤が粉末表面全体に行き渡り易くなっている。このため、粉末表面を潤滑剤で被覆することを容易に行うことができ、かつ、均一な被覆状態が得られ易い。また、粉末表面全体に均一に潤滑剤を配するにあたり、潤滑剤の添加量を調整し易い。このため、本発明には、以下の利点がある。   In the method for producing a mixed powder for powder metallurgy according to the present invention, since the lubricant is arranged on the powder surface using a solution in which the lubricant is dissolved, the lubricant is easily spread over the entire powder surface. For this reason, it is possible to easily coat the powder surface with a lubricant and to easily obtain a uniform coating state. In addition, it is easy to adjust the addition amount of the lubricant when the lubricant is uniformly distributed over the entire powder surface. For this reason, the present invention has the following advantages.

(高密度化圧粉体の製造、機械的特性改善粉末の偏析抑制)
すなわち、上記製造方法で得られた粉末冶金用混合粉末は、鉄基粉末や機械的特性改善粉末の表面が潤滑剤によって被覆されていることから、粉末粒子間の潤滑性が向上することとなる。このため、圧縮成形時に、鉄基粉末や機械的特性改善粉末が再配列し易い。
(Manufacture of high-density green compacts, suppression of segregation of powders with improved mechanical properties)
That is, the mixed powder for powder metallurgy obtained by the above manufacturing method is improved in lubricity between powder particles because the surface of the iron-based powder or the mechanical property improving powder is coated with the lubricant. . For this reason, the iron-based powder and the mechanical property improving powder are easily rearranged during compression molding.

また、例えば、機械的特性改善粉末が鉄基粉末よりも比重が小さく、混合粉末中で遊離、偏析し易い場合でも、粉末表面に存在する潤滑剤がバインダとなって、鉄基粉末表面に機械的特性改善粉末が付着することにより、機械的特性改善粉末が混合粉末中で偏析することを抑制できると推測される。   In addition, for example, even when the mechanical property-improving powder has a specific gravity smaller than that of the iron-based powder and is easily separated and segregated in the mixed powder, the lubricant present on the powder surface serves as a binder, so that It is presumed that the mechanical property improving powder can be prevented from segregating in the mixed powder by the adhesion of the mechanical property improving powder.

さらに、粉末冶金用混合粉末中で潤滑剤が粉体として存在せず、鉄基粉末や機械的特性改善粉末の間に皮膜状に潤滑剤が存在しているため、圧粉体の高密度化を妨げることがない。むしろ、圧縮成形の際の応力で潤滑剤被膜が変形・移動し易く、粉末粒子間から押し出されるため、圧粉体が高密度化する。   In addition, there is no lubricant as a powder in the powder mixture for powder metallurgy, and there is a lubricant in the form of a film between the iron-based powder and the mechanical property improving powder. Will not be disturbed. Rather, the lubricant film is easily deformed and moved by the stress at the time of compression molding and is pushed out from between the powder particles, so that the density of the green compact is increased.

以上の通り、本発明の製造方法で得られる粉末冶金用混合粉末は、圧縮成形の際に鉄基粉末や機械的特性改善粉末が再配列化し易く、また、圧粉体中の潤滑剤の残存量も低く抑えることができることから、高密度の圧粉体の製造を可能にする。また、機械的特性改善粉末の偏析防止が期待できる。   As described above, the mixed powder for powder metallurgy obtained by the production method of the present invention is easy to rearrange the iron-based powder and the mechanical property improving powder during compression molding, and the residual lubricant in the green compact Since the amount can be kept low, it is possible to produce a high-density green compact. Further, segregation prevention of the mechanical property improving powder can be expected.

(潤滑性に優れた圧粉体の製造)
本発明の製造方法によれば、鉄基粉末や機械的特性改善粉末の表面に潤滑剤が付着していることから、得られる圧粉体の表面(金型との界面)にも潤滑剤が存在することになり、金型との摩擦抵抗が低減されることとなる。
(Manufacture of compacts with excellent lubricity)
According to the production method of the present invention, since the lubricant adheres to the surface of the iron-based powder or the mechanical property improving powder, the lubricant is also present on the surface of the obtained green compact (interface with the mold). Therefore, the frictional resistance with the mold is reduced.

さらに、圧縮成形の際の応力で粉末粒子間から押し出された潤滑剤が圧粉体表面ににじみ出て、その表面を薄く覆うようになるため、金型との摩擦抵抗がより一層低減されることとなる。   In addition, the lubricant extruded from between the powder particles due to the stress during compression molding oozes out and covers the surface of the green compact, further reducing the frictional resistance with the mold. It becomes.

以上のことから、本発明の製造方法で得られた粉末冶金用混合粉末は、金型からの型抜き力が低い、潤滑性に優れた圧粉体の製造を可能にする。   From the above, the mixed powder for powder metallurgy obtained by the production method of the present invention enables the production of a green compact having a low die-cutting force from the mold and excellent in lubricity.

(外観に優れた焼結体の製造)
本発明の製造方法によれば、潤滑剤が鉄基粉末や機械的特性改善粉末の表面に付着した状態で存在しており、圧縮成形までの取り扱い中に潤滑剤が凝集体を形成して、圧粉体の表面に表出したり圧粉体内に残留することを抑制している。
(Production of sintered body with excellent appearance)
According to the production method of the present invention, the lubricant is present in a state of adhering to the surface of the iron-based powder or the mechanical property improving powder, and the lubricant forms an aggregate during handling until compression molding, It is suppressed from appearing on the surface of the green compact and remaining in the green compact.

このため、本発明の製造方法で得られる粉末冶金用混合粉末は、表面汚れや、表面荒れ及び内部欠陥の少ない焼結体を製造することを可能にする。   For this reason, the mixed powder for powder metallurgy obtained by the production method of the present invention makes it possible to produce a sintered body with less surface contamination, surface roughness, and internal defects.

以下、本発明の粉末冶金用混合粉末の製造方法について詳述する。   Hereafter, the manufacturing method of the mixed powder for powder metallurgy of this invention is explained in full detail.

[粉末冶金用混合粉末の製造方法]
(鉄基粉末)
本発明で用いる鉄基粉末としては、純鉄粉、及び鉄基合金粉末等が挙げられる。
[Method of manufacturing mixed powder for powder metallurgy]
(Iron-based powder)
Examples of the iron-based powder used in the present invention include pure iron powder and iron-based alloy powder.

純鉄粉には、鉄粉を97質量%以上含み、残部が不可避不純物(例えば、酸素、ケイ素、炭素、マンガンなど)からなる、実質的に純鉄成分とみなせる鉄粉も含まれる。   The pure iron powder includes iron powder that can be regarded as a substantially pure iron component, containing 97% by mass or more of iron powder, and the balance being inevitable impurities (for example, oxygen, silicon, carbon, manganese, etc.).

また、鉄基合金粉末とは、焼結体の特性改善のため、鉄以外の成分として銅、ニッケル、クロム、モリブデン、硫黄、マンガンなどの合金成分を含むものである。鉄基合金粉末は、拡散型鉄粉(基鉄粉に合金元素を拡散接合して製造したもの、partially alloyed powder)およびプレアロイ型鉄粉(溶解工程で合金元素を添加して製造したもの、prealloyed powder)に大別される。   Further, the iron-based alloy powder includes alloy components such as copper, nickel, chromium, molybdenum, sulfur, and manganese as components other than iron for improving the characteristics of the sintered body. Iron-based alloy powders include diffusion-type iron powders (produced by diffusion-bonding alloy elements to base-iron powder, partially alloyed powders) and pre-alloy-type iron powders (produced by adding alloy elements in the melting process, prealloyed powder).

本発明では、これらの鉄基粉末を単独で、または2種以上を組合わせて用いてもよい。   In the present invention, these iron-based powders may be used alone or in combination of two or more.

鉄基粉末は、例えば、アトマイズ法によって溶融鉄(または溶融鉄合金)を微粒子とした後に還元し、次いで粉砕する等によって製造できる。このような製法では、ふるい分け法で評価される粒度分布で累積粒度分布が50%になる粒径(メジアン径)が20〜250μm程度の鉄基粉末が得られるが、本発明では、粒径(メジアン径)が50〜150μm程度(マイクロトラック法)の鉄基粉末を用いるのが好ましい。   The iron-based powder can be produced, for example, by reducing molten iron (or molten iron alloy) into fine particles by an atomizing method, reducing the powder, and then pulverizing the powder. In such a production method, an iron-based powder having a particle size (median diameter) of about 20 to 250 μm with a cumulative particle size distribution of 50% in the particle size distribution evaluated by the sieving method can be obtained. It is preferable to use an iron-based powder having a median diameter of about 50 to 150 μm (microtrack method).

(機械的特性改善粉末)
本発明で用いる機械的特性改善粉末は、後に行う焼結の際に鉄基粉末に拡散して、焼結体の硬さや靭性等の機械的特性を向上させたり、あるいは被削性を高めることができれば、その種類は限定されず、例えば、金属粉末、無機粉末等が挙げられる。
(Mechanical property improving powder)
The mechanical property-improving powder used in the present invention diffuses into the iron-based powder during subsequent sintering to improve mechanical properties such as hardness and toughness of the sintered body, or to improve machinability. If possible, the kind is not limited, For example, metal powder, inorganic powder, etc. are mentioned.

金属粉末としては、例えば、銅、ニッケル、クロム、モリブデン、スズ、バナジウム、マンガン、フェロリンなどが挙げられる。特に、鉄基粉末として純鉄粉を用いる場合、これらの金属粉末を添加することが好ましい。これらの金属粉末は、鉄と合金となったフェロアロイ、または鉄以外の2種類以上からなる合金粉末であってもよい。   Examples of the metal powder include copper, nickel, chromium, molybdenum, tin, vanadium, manganese, and ferroline. In particular, when pure iron powder is used as the iron-based powder, it is preferable to add these metal powders. These metal powders may be ferroalloys alloyed with iron or alloy powders composed of two or more types other than iron.

無機粉末としては、例えば、硫化マンガン、二硫化マンガンなどの硫化物;窒化ホウ素などの窒化物;ホウ酸、酸化マグネシウム、酸化カリウム、酸化ケイ素などの酸化物;天然黒鉛や人造黒鉛等のグラファイト;リン、硫黄などが挙げられる。   Examples of the inorganic powder include sulfides such as manganese sulfide and manganese disulfide; nitrides such as boron nitride; oxides such as boric acid, magnesium oxide, potassium oxide, and silicon oxide; graphite such as natural graphite and artificial graphite; Examples include phosphorus and sulfur.

これらの機械的特性改善粉末は、単独で用いても、2種以上を組み合わせて用いてもよい。   These mechanical property improving powders may be used alone or in combination of two or more.

本発明では、粒径(メジアン径)が2〜150μm程度(マイクロトラック法)の機械的特性改善粉末を用いるのが好ましい。   In the present invention, it is preferable to use a mechanical property-improving powder having a particle diameter (median diameter) of about 2 to 150 μm (microtrack method).

上記の機械的特性改善粉末の混合量は、特に限定されず、最終製品(焼結体)に求められる諸特性に応じて任意に定めることができるが、鉄基粉末100質量部に対して、合計で0.1質量部以上10質量部以下とすることが好ましい。上記範囲内であれば、機械的特性改善成分が鉄基粉末に十分に拡散するので、機械的特性の改善効果が現れる。また、圧縮性が低下することを防いで、十分な密度を有する圧粉体を得ることができる。特に黒鉛等の無機粉末の混合量は、鉄基粉末100質量部に対して0.1質量部以上10質量部以下とすることが好ましい。上記範囲内であれば、添加効果が十分で、また、焼結体の機械的特性が無機粉末の混合でかえって低下することも防ぐことができる。   The mixing amount of the above-mentioned mechanical property improving powder is not particularly limited, and can be arbitrarily determined according to various properties required for the final product (sintered body). The total amount is preferably 0.1 parts by mass or more and 10 parts by mass or less. Within the above range, the mechanical property improving component is sufficiently diffused in the iron-based powder, so that an effect of improving the mechanical property appears. Further, it is possible to obtain a green compact having a sufficient density while preventing the compressibility from being lowered. In particular, the mixing amount of the inorganic powder such as graphite is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the iron-based powder. If it is in the said range, the addition effect is sufficient and it can also prevent that the mechanical characteristic of a sintered compact falls rather by mixing of inorganic powder.

例えば、鉄基粉末として純鉄粉を用いた場合、各機械的特性改善粉末の好ましい混合量は、純鉄粉100質量部に対して銅:0.1〜5質量部、ニッケル:0.1〜10質量部、クロム:0.1〜8質量部、モリブデン:0.1〜5質量部、黒鉛:0.1〜2質量部、硫化マンガン:0.1〜5質量部である。   For example, when pure iron powder is used as the iron-based powder, the preferred mixing amount of each mechanical property improving powder is copper: 0.1-5 parts by mass, nickel: 0.1 with respect to 100 parts by mass of pure iron powder. 10 parts by mass, chromium: 0.1-8 parts by mass, molybdenum: 0.1-5 parts by mass, graphite: 0.1-2 parts by mass, manganese sulfide: 0.1-5 parts by mass.

(潤滑剤)
本発明では、潤滑剤としてアミド系潤滑剤を用いて粉末冶金用混合粉末を調製することにより、高密度で、かつ優れた潤滑性を有する圧粉体や、外観に優れた焼結体を得ることができる。
(lubricant)
In the present invention, by preparing a mixed powder for powder metallurgy using an amide-based lubricant as a lubricant, a green compact having a high density and excellent lubricity and a sintered body having an excellent appearance are obtained. be able to.

本発明で用いるアミド系潤滑剤としては、脂肪族アミドや脂肪族ビスアミドが挙げられる。   Examples of the amide-based lubricant used in the present invention include aliphatic amides and aliphatic bisamides.

脂肪族アミドとしては、ラウリン酸アミド、パルチミン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N−ラウリルラウリン酸アミド、N−パルミチルパルミチン酸アミド、N−ステアリルステアリン酸アミド、N−オレイルオレイン酸アミド、N−ステアリルオレイン酸アミド、N−オレイルステアリン酸アミド、N−ステアリルエルカ酸アミド、N−オレイルパルミチン酸アミド、N−ステアリル−ヒドロキシステアリン酸アミド、N−オレイル−ヒドロキシステアリン酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等が挙げられる。   Aliphatic amides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide, oleic acid amide, erucic acid amide, ricinoleic acid amide, N-lauryl lauric acid amide, N-palmityl Palmitic acid amide, N-stearyl stearic acid amide, N-oleyl oleic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, N-oleyl palmitic acid amide, N-stearyl- Examples include hydroxystearic acid amide, N-oleyl-hydroxystearic acid amide, methylol stearic acid amide, and methylol behenic acid amide.

また、脂肪族ビスアミドとしては、メチレンビスステアリン酸アミド、メチレンビスラウリン酸アミド、メチレンビスヒドロキシステアリン酸アミド、エチレンビスカプリル酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスイソステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンビスヒドロキシステアリン酸アミド、ブチレンビスヒドロキシステアリン酸アミド、N,N’−ジステアリルアジピン酸アミド、N,N’−ジステアリルセバシン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’−ジオレイルアジピン酸アミド、N,N’−ジオレイルセバシン酸アミド、m−キシリレンステアリン酸アミド、N,N’−ジステアリルイソフタル酸アミド等が挙げられる。   Aliphatic bisamides include methylene bis stearic acid amide, methylene bis lauric acid amide, methylene bis hydroxy stearic acid amide, ethylene biscaprylic acid amide, ethylene biscapric acid amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide. , Ethylene bisisostearic amide, ethylene bishydroxystearic amide, ethylene bisbehenic amide, hexamethylene bisbehenic amide, hexamethylene bisbehenic amide, hexamethylene bishydroxystearic amide, butylene bishydroxystearic amide, N , N′-distearyl adipic acid amide, N, N′-distearyl sebacic acid amide, methylene bisoleic acid amide, ethylene bisoleic acid amide, Tylene biserucic acid amide, hexamethylene bis oleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide, m-xylylene stearic acid amide, N, N′-distearyl isophthalic acid Examples include amides.

これらのアミド系潤滑剤は、単独で用いても、2種以上を組み合わせて用いてもよい。特に、脂肪族アミドとして、N−オレイルパルミチン酸アミド(融点約62℃)を用いるのが好ましく、また、脂肪族ビスアミドとして、エチレンビスオレイン酸アミド(融点約120℃)を用いるのが好ましい。なお、本発明では、アミド系潤滑剤は溶液の状態で鉄基粉末等に添加されるものであり、溶融状態で添加するものではないため、高融点のアミド系潤滑剤を用いることができる。   These amide type lubricants may be used alone or in combination of two or more. In particular, N-oleyl palmitic acid amide (melting point: about 62 ° C.) is preferably used as the aliphatic amide, and ethylene bisoleic acid amide (melting point: about 120 ° C.) is preferably used as the aliphatic bisamide. In the present invention, the amide-based lubricant is added to the iron-based powder or the like in the form of a solution and is not added in the molten state. Therefore, an amide-based lubricant having a high melting point can be used.

アミド系潤滑剤は、鉄基粉末と機械的特性改善粉末の合計量100質量部に対し、0.01〜2.0質量部の範囲内で粉末冶金用混合粉末中に含まれることが好ましい。アミド系潤滑剤の含有量が上記範囲内にあることによって、潤滑剤の添加による作用(粉末粒子への潤滑性の付与、圧粉体の高密度化)が充分発揮される。また、潤滑剤の添加によってかえって圧粉体の高密度化を妨げる虞がない。アミド系潤滑剤のより好ましい含有量は、0.05〜1.2質量部であり、さらに好ましい含有量は、0.1〜1.0質量部である。   The amide-based lubricant is preferably contained in the powder mixture for powder metallurgy within a range of 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the total amount of the iron-based powder and the mechanical property improving powder. When the content of the amide-based lubricant is within the above range, the effects of adding the lubricant (providing lubricity to the powder particles, increasing the density of the green compact) are sufficiently exhibited. Moreover, there is no possibility that the density of the green compact is hindered by the addition of the lubricant. A more preferable content of the amide-based lubricant is 0.05 to 1.2 parts by mass, and a more preferable content is 0.1 to 1.0 part by mass.

(潤滑剤溶液)
本発明は、上記アミド系潤滑剤が溶解した溶液を用いて、鉄基粉末や機械的特性改善粉末の表面を潤滑剤で被覆することを特徴とする。
(Lubricant solution)
The present invention is characterized in that the surface of the iron-based powder or the mechanical property improving powder is coated with a lubricant using a solution in which the amide-based lubricant is dissolved.

本発明において、アミド系潤滑剤溶液を調製するために用いることのできる溶剤としては、アミド系潤滑剤が可溶で、かつ鉄基粉末等との混合の後、加熱や減圧などにより容易に除去できる溶剤であれば特に限定されるものではなく、例えば、ベンゼンやトルエン等の芳香族炭化水素類や、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、t−ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール等のアルコール類が挙げられる。これらの溶剤は単独で用いても、2種以上を組み合わせて用いてもよい。   In the present invention, as a solvent that can be used to prepare an amide-based lubricant solution, the amide-based lubricant is soluble and is easily removed by heating or decompression after mixing with an iron-based powder. It is not particularly limited as long as it is a solvent that can be used. For example, aromatic hydrocarbons such as benzene and toluene, methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, and pentanol. , Alcohols such as ethylene glycol, propylene glycol, and 1,4-butanediol. These solvents may be used alone or in combination of two or more.

アミド系潤滑剤溶液の調製方法は、従来公知の方法を用いることができ、例えば、アミド系潤滑剤に溶剤を添加し、次いで撹拌することによって調製すればよい。なお、アミド系潤滑剤が溶剤に溶解し難い場合には、溶剤を適宜加熱して調製してもよい。例えば、溶剤としてトルエンを用いる場合には、60℃前後に加熱すればよい。   As a method for preparing the amide-based lubricant solution, a conventionally known method can be used. For example, the solvent may be prepared by adding a solvent to the amide-based lubricant and then stirring. If the amide-based lubricant is difficult to dissolve in the solvent, the solvent may be prepared by heating appropriately. For example, when toluene is used as the solvent, it may be heated to around 60 ° C.

溶剤に対するアミド系潤滑剤の添加量は、特に限定されるものではないが、粉末冶金用混合粉末中におけるアミド系潤滑剤の含有量が上記範囲内となり、鉄基粉末や機械的特性改善粉末の表面全体に均一にアミド系潤滑剤溶液を行き渡らせることができ、かつ、その後迅速に溶剤を除去できるようにすることが好ましい。例えば、溶剤100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、好ましくは40質量部以下、より好ましくは25質量部以下である。   The amount of the amide-based lubricant added to the solvent is not particularly limited, but the content of the amide-based lubricant in the powder mixture for powder metallurgy is within the above range, and the iron-based powder and mechanical property improving powder It is preferable that the amide-based lubricant solution can be uniformly distributed over the entire surface and the solvent can be quickly removed thereafter. For example, the amount is preferably 1 part by mass or more, more preferably 2 parts by mass or more, preferably 40 parts by mass or less, more preferably 25 parts by mass or less with respect to 100 parts by mass of the solvent.

(アミド系潤滑剤による被覆)
アミド系潤滑剤溶液を用いて、鉄基粉末や機械的特性改善粉末の表面をアミド系潤滑剤で被覆する方法は、従来公知の方法を用いて行えばよい。
(Coating with amide lubricant)
The method of coating the surface of the iron-based powder or the mechanical property improving powder with the amide-based lubricant using the amide-based lubricant solution may be performed using a conventionally known method.

例えば、アミド系潤滑剤溶液と鉄基粉末とを混合した後、溶剤を(加熱あるいは減圧によって)除去し、次いで機械的特性改善粉末を添加し、混合する方法や、アミド系潤滑剤溶液と機械的特性改善粉末とを混合した後、溶剤を除去し、次いで鉄基粉末を添加し、混合する方法が挙げられる。これにより、鉄基粉末、あるいは機械的特性改善粉末の一方のみをアミド系潤滑剤で被覆することができる。   For example, after mixing the amide-based lubricant solution and the iron-based powder, the solvent is removed (by heating or reduced pressure), and then the mechanical property improving powder is added and mixed, or the amide-based lubricant solution and the machine There is a method in which, after mixing with the characteristic property improving powder, the solvent is removed, and then the iron-based powder is added and mixed. As a result, only one of the iron-based powder and the mechanical property improving powder can be coated with the amide-based lubricant.

また、鉄基粉末とアミド系潤滑剤溶液とを混合した後、さらに機械的特性改善粉末を添加し、混合するか、あるいは、鉄基粉末と機械的特性改善粉末との混合物にアミド系潤滑剤溶液を混合した後、溶剤を除去する方法を用いて行ってもよい。これにより、鉄基粉末、及び機械的特性改善粉末の両方をアミド系潤滑剤で被覆することができる。   Further, after mixing the iron-based powder and the amide-based lubricant solution, the mechanical property improving powder is further added and mixed, or the mixture of the iron-based powder and the mechanical property-improving powder is added to the amide-based lubricant. You may carry out using the method of removing a solvent, after mixing a solution. As a result, both the iron-based powder and the mechanical property improving powder can be coated with the amide-based lubricant.

本発明においては、粉末粒子間の潤滑性を向上させ、圧縮成形時における粉末粒子の再配列化を促進することが好ましいことから、鉄基粉末、及び機械的特性改善粉末の両方をアミド系潤滑剤で被覆する方法を採用することが好ましい。   In the present invention, it is preferable to improve the lubricity between the powder particles and promote the rearrangement of the powder particles during the compression molding, so that both the iron-based powder and the mechanical property improving powder are amide-based lubricated. It is preferable to employ a method of coating with an agent.

鉄基粉末や機械的特性改善粉末に対するアミド系潤滑剤溶液の添加量は、当該溶液のアミド系潤滑剤濃度によっても左右されるが、鉄基粉末や機械的特性改善粉末100質量部に対して、好ましくは1質量部以上が好ましく、5質量部以上がより好ましく、20質量部以下が好ましく、10質量部以下がより好ましい。これにより、粉末冶金用混合粉末中におけるアミド系潤滑剤の含有量を上記範囲内としつつ、鉄基粉末や機械的特性改善粉末の表面全体にアミド系潤滑剤溶液を行き渡らすことができ、かつ、その後迅速に溶剤を除去することができる。   The amount of the amide-based lubricant solution added to the iron-based powder and mechanical property improving powder depends on the concentration of the amide-based lubricant in the solution, but relative to 100 parts by mass of the iron-based powder and mechanical property improving powder. 1 part by mass or more is preferable, 5 parts by mass or more is more preferable, 20 parts by mass or less is preferable, and 10 parts by mass or less is more preferable. Thereby, the amide-based lubricant solution can be spread over the entire surface of the iron-based powder and the mechanical property improving powder while keeping the content of the amide-based lubricant in the powder mixture for powder metallurgy within the above range, and Then, the solvent can be removed quickly.

鉄基粉末や機械的特性改善粉末と、アミド系潤滑剤溶液との混合は、羽根付き混合機、V形混合機、二重円錐形混合機(Wコーン)等、通常使用されている混合機を用いて行うことができる。回転羽根により内容物を混合撹拌し、さらに加熱や減圧が可能なタイプの高速ミキサを用いて行うことが好ましい。   Mixing of iron-based powders and mechanical property improving powders with amide-based lubricant solutions is commonly used in mixers such as bladed mixers, V-shaped mixers, and double cone mixers (W cones). Can be used. It is preferable to use a high-speed mixer of a type in which the contents are mixed and stirred by a rotary blade and further heated and decompressed.

[焼結体の製造方法]
本発明には、上記製造方法によって得られた粉末冶金用混合粉末を圧縮成形し、次いで焼結して、焼結体を製造する方法も包含される。
[Method for producing sintered body]
The present invention also includes a method for producing a sintered body by compressing and then sintering the mixed powder for powder metallurgy obtained by the above production method.

(圧縮成形)
本発明では、粉末冶金用混合粉末の圧縮成形法については特に限定されず、従来公知の方法が採用可能である。成形温度や成形圧力等の具体的な成形条件は、混合粉末を構成する成分の種類や添加量、圧粉体の形状などによっても相違する。本発明の製造方法で得られた粉末冶金用混合粉末を用いて圧縮成形することにより、密度が約6.85g/cm3以上圧粉体を製造することができる。なお、本発明における圧縮成形の際の成形温度は、室温であることが好ましい。
(Compression molding)
In this invention, it does not specifically limit about the compression molding method of the mixed powder for powder metallurgy, A conventionally well-known method is employable. Specific molding conditions such as molding temperature and molding pressure also differ depending on the type and amount of components constituting the mixed powder, the shape of the green compact, and the like. A green compact having a density of about 6.85 g / cm 3 or more can be produced by compression molding using the mixed powder for powder metallurgy obtained by the production method of the present invention. In addition, it is preferable that the molding temperature in the case of the compression molding in this invention is room temperature.

また、本発明では、上記製造方法によって得られた粉末冶金用混合粉末を用いて圧縮成形を行うことにより、金型からの圧粉体の型抜き圧を低くすることができる。具体的には、成形圧力490.3MPa(5t/cm2)で圧縮した際には、型抜き圧を10.0MPa以下、より好ましくは9.5MPa以下、さらに好ましくは9.0MPa以下にすることができる。また、成形圧力686.5MPa(7t/cm2)で圧縮した際には、型抜き圧を15.0MPa以下、より好ましくは14.0MPa以下にすることができる。 Moreover, in this invention, the die-cutting pressure of the green compact from a metal mold | die can be made low by performing compression molding using the mixed powder for powder metallurgy obtained by the said manufacturing method. Specifically, when compressed at a molding pressure of 490.3 MPa (5 t / cm 2 ), the die cutting pressure is 10.0 MPa or less, more preferably 9.5 MPa or less, and even more preferably 9.0 MPa or less. Can do. Moreover, when it compresses with the shaping | molding pressure 686.5MPa (7t / cm < 2 >), die cutting pressure can be 15.0MPa or less, More preferably, it is 14.0MPa or less.

(脱ロウ)
本発明では、圧縮成形して得られた圧粉体を焼結する前に、圧粉体中に残留するアミド系潤滑剤を除去する脱ロウ工程を含むことが好ましい。かかる脱ロウ工程は、例えば、圧粉体を加熱して、圧粉体中のアミド系潤滑剤を加熱分解することによって行うことができる。脱ロウ工程の際の加熱条件は、用いたアミド系潤滑剤の種類によって適宜調整すればよく、一般的には,150〜200℃程度で10〜30分(より好適には15〜20分)という簡便なものでよい。
(Dewaxing)
In the present invention, it is preferable to include a dewaxing step of removing the amide-based lubricant remaining in the green compact before sintering the green compact obtained by compression molding. Such a dewaxing step can be performed, for example, by heating the green compact and thermally decomposing the amide-based lubricant in the green compact. The heating conditions in the dewaxing process may be adjusted as appropriate depending on the type of amide-based lubricant used, and generally it is about 150 to 200 ° C. for 10 to 30 minutes (more preferably 15 to 20 minutes). It can be as simple as this.

(焼結)
上記の圧粉体を用いて焼結体を得る方法は特に限定されず、通常の焼結方法を採用することができる。具体的な焼結条件は、圧粉体を構成する成分の種類や添加量、最終製品の種類などによっても相違するが、例えば、N2、N2−H2、炭化水素などの雰囲気下、1000〜1300℃の温度で5〜60分間焼結を行うことが好ましい。
(Sintering)
A method for obtaining a sintered body using the green compact is not particularly limited, and a normal sintering method can be employed. Specific sintering conditions vary depending on the type and amount of components constituting the green compact, the type of the final product, and the like. For example, in an atmosphere of N 2 , N 2 -H 2 , hydrocarbon, etc. Sintering is preferably performed at a temperature of 1000 to 1300 ° C. for 5 to 60 minutes.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の技術的範囲に包含される。なお、特に断らない限り、「部」は「質量部」を、「%」は「質量%」をそれぞれ意味する。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. Unless otherwise specified, “part” means “part by mass” and “%” means “% by mass”.

先ず、実験例で用いた評価方法について、以下説明する。   First, the evaluation method used in the experimental example will be described below.

(圧粉体密度)
粉末冶金用混合粉末の質量を測定し、圧縮成形後、マイクロメーターで圧粉体(円柱)の直径と長さを測定し体積を求め、質量/体積から算出した。
(Green compact density)
The mass of the powder mixture for powder metallurgy was measured, and after compression molding, the diameter and length of the green compact (cylinder) were measured with a micrometer to determine the volume, and the mass / volume was calculated.

(型抜き圧)
インストロン試験機を用いて、成形後に圧粉体を金型から抜き出す際の抜き圧を測定して求めた。
(Die cutting pressure)
Using an Instron testing machine, the pressure at which the green compact was extracted from the mold after molding was measured and determined.

(実験例1)
<アミド系潤滑剤溶液の調製>
溶剤としてトルエン20部に、アミド系潤滑剤としてN−オレイルパルミチン酸アミド(日本精化株式会社製)4部を添加し、60℃程度に加温しながら混合して、アミド系潤滑剤溶液を調製した。
(Experimental example 1)
<Preparation of amide-based lubricant solution>
Add 20 parts of toluene as a solvent and 4 parts of N-oleyl palmitate amide (manufactured by Nippon Seika Co., Ltd.) as an amide lubricant and mix while heating to about 60 ° C. to obtain an amide lubricant solution. Prepared.

<粉末冶金用混合粉末の調製>
得られたアミド系潤滑剤溶液を、鉄基粉末として純鉄粉(株式会社神戸製鋼所製、300M、粒径50〜150μm)100部に添加して混合した後、さらに機械的特性改善粉末として銅粉(MAKIN METAL POWDERS、AHF−100、粒径30〜50μm)2.0部、及び黒鉛粉(日本黒鉛工業株式会社、JCPBK、粒径3〜5μm)0.8部をそれぞれ添加して混合し、ついでトルエンを減圧留去して、粉末冶金用混合粉末を得た(鉄基粉末と機械的特性改善粉末との合計量100部に対するアミド系潤滑剤の添加量;0.3部)。
<Preparation of mixed powder for powder metallurgy>
The resulting amide-based lubricant solution was added to and mixed with 100 parts of pure iron powder (manufactured by Kobe Steel Co., Ltd., 300M, particle size 50 to 150 μm) as an iron-based powder, and then further as a mechanical property improving powder. Add and mix 2.0 parts of copper powder (MAKIN METAL POWDERS, AHF-100, particle size 30-50 μm) and 0.8 part of graphite powder (Japan Graphite Industries Co., Ltd., JCPBK, particle size 3-5 μm). Then, toluene was distilled off under reduced pressure to obtain a mixed powder for powder metallurgy (addition amount of amide-based lubricant with respect to 100 parts of the total amount of iron-based powder and mechanical property improving powder; 0.3 part).

<圧縮成形>
続いて、金型(円柱成形金型、11.28φ)に粉末冶金用混合粉末7.0gを入れ、面圧490.3MPa(5t/cm2)、あるいは686.5MPa(7t/cm2)で、室温(25℃)での圧縮成形をそれぞれ行い、圧粉体1−1及び圧粉体1−2をそれぞれ得た。
<Compression molding>
Subsequently, 7.0 g of powder metallurgy mixed powder was put into a mold (cylindrical mold, 11.28φ), and the contact pressure was 490.3 MPa (5 t / cm 2 ) or 686.5 MPa (7 t / cm 2 ). Then, compression molding was performed at room temperature (25 ° C.) to obtain green compact 1-1 and green compact 1-2, respectively.

<圧粉体特性>
得られ圧粉体1−1、及び1−2の密度、及び金型から抜き出す際の型抜き圧をそれぞれ測定した。その結果を表1に示した。
<Green compact properties>
The density of the obtained green compacts 1-1 and 1-2, and the mold release pressure when extracting from the mold were measured. The results are shown in Table 1.

(実験例2、3)
<アミド系潤滑剤溶液の調製、粉末冶金用混合粉末の調製、圧縮成形>
鉄基粉末と機械的特性改善粉末との合計量100部に対するアミド系潤滑剤の添加量が0.4部(実験例2)あるいは0.5部(実験例3)になるように、アミド系潤滑剤溶液を添加した以外は実験例1と同様にして、圧粉体2−1、2−2(以上、実験例2)、及び圧粉体3−1、3−2(以上、実験例3)を得た。
(Experimental Examples 2 and 3)
<Preparation of amide-based lubricant solution, preparation of mixed powder for powder metallurgy, compression molding>
Amide-based lubricant is added so that the amount of amide-based lubricant added is 0.4 parts (Experimental Example 2) or 0.5 part (Experimental Example 3) with respect to 100 parts of the total amount of the iron-based powder and the mechanical property improving powder. The green compacts 2-1 and 2-2 (above, experimental example 2) and the green compacts 3-1, 3-2 (above, experimental example) were performed in the same manner as in experimental example 1 except that the lubricant solution was added. 3) was obtained.

<圧粉体特性>
得られ圧粉体2−1、2−2、及び、圧粉体3−1、3−2の密度、及び金型から抜き出す際の型抜き圧をそれぞれ測定した。その結果を表1に示した。
<Green compact properties>
The density of the obtained green compacts 2-1 and 2-2 and the green compacts 3-1 and 3-2, and the punching pressure at the time of extracting from the mold were measured. The results are shown in Table 1.

(実験例4)
<アミド系潤滑剤溶液の調製、粉末冶金用混合粉末の調製、圧縮成形>
アミド系潤滑剤として、実験例1で用いたN−オレイルパルミチン酸アミドに換えて、エチレンビスオレイン酸アミド(大日本化学工業株式会社製)を用いた以外は実験例1と同様にして、圧粉体4−1、及び4−2を得た。
(Experimental example 4)
<Preparation of amide-based lubricant solution, preparation of mixed powder for powder metallurgy, compression molding>
In the same manner as in Experimental Example 1, except that ethylene bisoleic acid amide (manufactured by Dainippon Kagaku Kogyo Co., Ltd.) was used in place of the N-oleyl palmitic acid amide used in Experimental Example 1 as the amide-based lubricant, Powders 4-1 and 4-2 were obtained.

<圧粉体特性>
得られ圧粉体4−1、及び4−2の密度、及び金型から抜き出す際の型抜き圧をそれぞれ測定した。その結果を表1に示した。
<Green compact properties>
The density of the obtained green compacts 4-1 and 4-2, and the punching pressure at the time of pulling out from the mold were measured. The results are shown in Table 1.

(実験例5、6)
<アミド系潤滑剤溶液の調製、粉末冶金用混合粉末の調製、圧縮成形>
鉄基粉末と機械的特性改善粉末との合計量100部に対するアミド系潤滑剤の添加量が0.4部(実験例5)あるいは0.5部(実験例6)になるように、アミド系潤滑剤溶液を添加した以外は実験例4と同様にして、圧粉体5−1、5−2(以上、実験例5)、及び圧粉体6−1、6−2(以上、実験例6)を得た。
(Experimental Examples 5 and 6)
<Preparation of amide-based lubricant solution, preparation of mixed powder for powder metallurgy, compression molding>
The amide-based lubricant is added so that the added amount of the amide-based lubricant is 0.4 parts (Experimental Example 5) or 0.5 part (Experimental Example 6) with respect to 100 parts of the total amount of the iron-based powder and the mechanical property improving powder. The green compacts 5-1, 5-2 (above, experimental example 5) and the green compacts 6-1, 6-2 (above, experimental example) were performed in the same manner as in experimental example 4 except that the lubricant solution was added. 6) was obtained.

<圧粉体特性>
得られ圧粉体5−1、5−2、及び圧粉体6−1、6−2の密度、及び金型から抜き出す際の型抜き圧をそれぞれ測定した。その結果を表1に示した。
<Green compact properties>
The density of the obtained green compacts 5-1, 5-2 and green compacts 6-1, 6-2, and the die-cutting pressure when extracting from the mold were measured. The results are shown in Table 1.

(実験例7)
<粉末冶金用混合粉末の調製>
アミド系潤滑剤として、N−オレイルパルミチン酸アミドの粉体を、鉄基粉末として純鉄粉100部に添加して混合した後、さらに機械的特性改善粉末として銅粉2.0部、及び黒鉛粉0.8部をそれぞれ添加して混合し、粉末冶金用混合粉末を得た(鉄基粉末と機械的特性改善粉末との合計量100部に対するアミド系潤滑剤の添加量;0.3部)。
すなわち、実験例1のアミド系潤滑剤溶液に換えて、アミド系潤滑剤粉体(N−オレイルパルミチン酸アミドの粉体)を用いた以外は実験例1と同様にして、粉末冶金用混合粉末を得た。
(Experimental example 7)
<Preparation of mixed powder for powder metallurgy>
As an amide-based lubricant, N-oleyl palmitic acid amide powder was added to and mixed with 100 parts of pure iron powder as an iron-based powder, and further, 2.0 parts of copper powder as a mechanical property improving powder, and graphite. 0.8 parts of powder was added and mixed to obtain a mixed powder for powder metallurgy (addition amount of amide-based lubricant with respect to 100 parts of the total amount of iron-based powder and mechanical property improving powder; 0.3 part ).
That is, a mixed powder for powder metallurgy was used in the same manner as in Experimental Example 1 except that an amide-based lubricant powder (N-oleyl palmitate amide powder) was used instead of the amide-based lubricant solution in Experimental Example 1. Got.

<圧粉成形>
続いて、得られた粉末冶金用混合粉末を用いて、実験例1と同様に圧縮成形して、圧粉体7−1、及び7−2を得た。
<Green compaction>
Subsequently, the obtained powder mixture for powder metallurgy was compression molded in the same manner as in Experimental Example 1 to obtain green compacts 7-1 and 7-2.

<圧粉体特性>
得られ圧粉体7−1、及び7−2の密度、及び金型から抜き出す際の型抜き圧をそれぞれ測定した。その結果を表2に示した。
<Green compact properties>
The density of the obtained green compacts 7-1 and 7-2 and the mold release pressure when extracted from the mold were measured. The results are shown in Table 2.

(実験例8、9)
<粉末冶金用混合粉末の調製、圧粉成形>
鉄基粉末と機械的特性改善粉末との合計量100部に対するアミド系潤滑剤の添加量が0.4部(実験例8)あるいは0.5部(実験例9)になるように、アミド系潤滑剤粉体を添加した以外は実験例7と同様にして、圧粉体8−1、8−2(以上、実験例8)、及び圧粉体9−1、9−2(以上、実験例9)を得た。
(Experimental examples 8 and 9)
<Preparation of powder mixture for powder metallurgy, compaction>
The amide-based lubricant is added so that the added amount of the amide-based lubricant is 0.4 parts (Experimental Example 8) or 0.5 part (Experimental Example 9) with respect to 100 parts of the total amount of the iron-based powder and the mechanical property improving powder. The green compacts 8-1 and 8-2 (above, experimental example 8) and the green compacts 9-1 and 9-2 (above, experiment) were performed in the same manner as in the experimental example 7 except that the lubricant powder was added. Example 9) was obtained.

<圧粉体特性>
得られ圧粉体8−1、8−2、及び、圧粉体9−1、9−2の密度、及び金型から抜き出す際の型抜き圧をそれぞれ測定した。その結果を表2に示した。
<Green compact properties>
The density of the obtained green compacts 8-1, 8-2 and green compacts 9-1, 9-2, and the mold release pressure at the time of extracting from the mold were measured. The results are shown in Table 2.

(実験例10)
<粉末冶金用混合粉末の調製、圧粉成形>
アミド系潤滑剤として、実験例7で用いたN−オレイルパルミチン酸アミドの粉体に換えて、エチレンビスオレイン酸アミドの粉体を用いた以外は実施例7と同様にして、圧粉体10−1、10−2(以上、実験例10)を得た。
(Experimental example 10)
<Preparation of powder mixture for powder metallurgy, compaction>
A green compact 10 was prepared in the same manner as in Example 7, except that an ethylene bisoleic acid amide powder was used instead of the N-oleyl palmitic acid amide powder used in Experimental Example 7 as the amide-based lubricant. -1, 10-2 (Experimental Example 10) were obtained.

すなわち、実験例4のアミド系潤滑剤溶液に換えて、アミド系潤滑剤粉体(エチレンビスオレイン酸アミドの粉体)を用いた以外は実験例4と同様にして、圧粉体を得た。   That is, a green compact was obtained in the same manner as in Experimental Example 4 except that an amide-based lubricant powder (ethylene bisoleic acid amide powder) was used instead of the amide-based lubricant solution in Experimental Example 4. .

<圧粉体特性>
得られ圧粉体10−1、10−2の密度、及び金型から抜き出す際の型抜き圧をそれぞれ測定した。その結果を表2に示した。
<Green compact properties>
The density of the obtained green compacts 10-1 and 10-2 and the mold release pressure at the time of extraction from the mold were measured. The results are shown in Table 2.

(実験例11、12)
<粉末冶金用混合粉末の調製、圧粉成形>
鉄基粉末と機械的特性改善粉末との合計量100部に対するアミド系潤滑剤の添加量が0.4部(実験例11)あるいは0.5部(実験例12)になるように、アミド系潤滑剤溶液を添加した以外は実験例10と同様にして、圧粉体11−1、11−2(以上、実験例11)、及び圧粉体12−1、12−2(以上、実験例12)を得た。
(Experimental Examples 11 and 12)
<Preparation of powder mixture for powder metallurgy, compaction>
The amide-based lubricant is added so that the added amount of the amide-based lubricant is 0.4 parts (Experimental Example 11) or 0.5 part (Experimental Example 12) with respect to 100 parts of the total amount of the iron-based powder and the mechanical property improving powder. Except for the addition of the lubricant solution, in the same manner as in Experimental Example 10, the green compacts 11-1, 11-2 (above, experimental example 11) and the green compacts 12-1, 12-2 (above, experimental example). 12) was obtained.

<圧粉体特性>
得られた圧粉体11−1、11−2、及び圧粉体12−1、12−2の密度、及び金型から抜き出す際の型抜き圧をそれぞれ測定した。その結果を表2に示した。
<Green compact properties>
The density of the obtained green compacts 11-1 and 11-2 and the green compacts 12-1 and 12-2 and the punching pressure at the time of drawing out from the mold were measured. The results are shown in Table 2.

Figure 2010285633
Figure 2010285633

Figure 2010285633
Figure 2010285633

実験例1〜6と、実験例7〜12との比較から、アミド系潤滑剤の溶液を用いて粉末冶金用混合粉末を調製することにより、アミド潤滑剤の粉体を用いた場合に比して、圧粉体密度(強度)が高くなり、また、型抜き圧は低くなることが分かった。また、実験例1〜6から、アミド系潤滑剤の添加量が多いほど、型抜き圧は低くなることが分かった。   From comparison between Experimental Examples 1 to 6 and Experimental Examples 7 to 12, by preparing a mixed powder for powder metallurgy using an amide-based lubricant solution, compared with the case of using an amide lubricant powder. As a result, it was found that the green compact density (strength) was high and the punching pressure was low. In addition, from Experimental Examples 1 to 6, it was found that as the amount of the amide-based lubricant added was increased, the die cutting pressure was lowered.

本発明は、高強度で、外観が良好な焼結体の製造に有用である。   The present invention is useful for producing a sintered body having high strength and good appearance.

Claims (8)

鉄基粉末と機械的特性改善粉末と潤滑剤とを含む粉末冶金用混合粉末の製造方法であって、
前記鉄基粉末及び/又は前記機械的特性改善粉末と、アミド系潤滑剤溶液とを混合し、次いで前記溶液中の溶媒を除去して、前記鉄基粉末及び/又は前記機械的特性改善粉末の表面を、アミド系潤滑剤で被覆する工程を含むことを特徴とする、粉末冶金用混合粉末の製造方法。
A method for producing a powder mixture for powder metallurgy comprising an iron-based powder, a mechanical property improving powder and a lubricant,
The iron-based powder and / or the mechanical property-improving powder and the amide-based lubricant solution are mixed, and then the solvent in the solution is removed to obtain the iron-based powder and / or the mechanical property-improving powder. A method for producing a mixed powder for powder metallurgy, comprising a step of coating a surface with an amide-based lubricant.
前記アミド系潤滑剤を、前記鉄基粉末と前記機械的特性改善粉末の合計量100質量部に対して0.01質量部〜2.0質量部添加する請求項1に記載の粉末冶金用混合粉末の製造方法。   The mixing for powder metallurgy according to claim 1, wherein the amide-based lubricant is added in an amount of 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the total amount of the iron-based powder and the mechanical property improving powder. Powder manufacturing method. 前記アミド系潤滑剤が、脂肪族アミド及び/又は脂肪族ビスアミドである請求項1または2に記載の粉末冶金用混合粉末の製造方法。   The method for producing a powder mixture for powder metallurgy according to claim 1 or 2, wherein the amide-based lubricant is an aliphatic amide and / or an aliphatic bisamide. 前記脂肪族アミドが、N−オレイルパルミチン酸アミドである請求項3に記載の粉末冶金用混合粉末の製造方法。   The method for producing a powder mixture for powder metallurgy according to claim 3, wherein the aliphatic amide is N-oleyl palmitate amide. 前記脂肪族ビスアミドが、エチレンビスオレイン酸アミドである請求項3に記載の粉末冶金用混合粉末の製造方法。   The method for producing a mixed powder for powder metallurgy according to claim 3, wherein the aliphatic bisamide is ethylene bisoleic acid amide. 前記機械的特性改善粉末が、銅、ニッケル、クロム、モリブデン、黒鉛、および硫化マンガンよりなる群から選ばれる少なくとも1種である請求項1から5のいずれか一項に記載の粉末冶金用混合粉末の製造方法。   The mixed powder for powder metallurgy according to any one of claims 1 to 5, wherein the mechanical property improving powder is at least one selected from the group consisting of copper, nickel, chromium, molybdenum, graphite, and manganese sulfide. Manufacturing method. 請求項1から6のいずれか一項に記載の製造方法によって得られた粉末冶金用混合粉末を、圧縮成形し、次いで焼結する工程を含むことを特徴とする焼結体の製造方法。   A method for producing a sintered body comprising a step of compression-molding and then sintering a powder mixture for powder metallurgy obtained by the production method according to any one of claims 1 to 6. 常温で圧縮成形する請求項7に記載の焼結体の製造方法。   The method for producing a sintered body according to claim 7, wherein the compression molding is performed at room temperature.
JP2009138263A 2009-06-09 2009-06-09 Method of producing powder mixture for powder metallurgy, and method of producing sintered body Pending JP2010285633A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009138263A JP2010285633A (en) 2009-06-09 2009-06-09 Method of producing powder mixture for powder metallurgy, and method of producing sintered body
CN201010180677XA CN101920335A (en) 2009-06-09 2010-05-14 The manufacture method of mixed powder for powder metallurgy and the manufacture method of sintered body
US12/801,122 US20100310406A1 (en) 2009-06-09 2010-05-24 Method for producing powder mixture for powder metallurgy, and method for producing sintered body
KR1020100053700A KR20100132455A (en) 2009-06-09 2010-06-08 Method for producing powder mixture for powder metallurgy, and method for producing sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138263A JP2010285633A (en) 2009-06-09 2009-06-09 Method of producing powder mixture for powder metallurgy, and method of producing sintered body

Publications (1)

Publication Number Publication Date
JP2010285633A true JP2010285633A (en) 2010-12-24

Family

ID=43300879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138263A Pending JP2010285633A (en) 2009-06-09 2009-06-09 Method of producing powder mixture for powder metallurgy, and method of producing sintered body

Country Status (4)

Country Link
US (1) US20100310406A1 (en)
JP (1) JP2010285633A (en)
KR (1) KR20100132455A (en)
CN (1) CN101920335A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125230A (en) * 2016-01-13 2017-07-20 株式会社神戸製鋼所 Mixed powder for powder metallurgy
KR20190062842A (en) * 2017-11-29 2019-06-07 현대자동차주식회사 High density forming method mixed powder
KR20190124547A (en) * 2018-04-26 2019-11-05 (주)지케이에스 Iron based powders for powder metallurgy and its manufacturing method
CN111032315A (en) * 2017-07-19 2020-04-17 惠普发展公司,有限责任合伙企业 Three-dimensional (3D) printing
WO2020196401A1 (en) * 2019-03-27 2020-10-01 日立化成株式会社 Lubricant, powdered mixture, and method for producing sintered body

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667914B (en) * 2012-09-06 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 The making method of mmaterial, cross slip-ring and this cross slip-ring
CN103056373B (en) * 2013-01-24 2015-11-25 重庆聚能粉末冶金有限公司 A kind of manufacture method of motorcycle starting ratchet
CN103447521B (en) * 2013-07-26 2016-02-03 安庆市德奥特汽车零部件制造有限公司 A kind of high airtight P/M piston rings material and preparation method thereof
CN104070157B (en) * 2014-05-19 2016-08-24 厦门典时贸易有限公司 A kind of magnetic conduction counterweight ring, magnetic control wheel and preparation method thereof
KR101664603B1 (en) * 2014-11-27 2016-10-11 현대자동차주식회사 Powder metallurgical method
JP6480265B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, sintered body and method for producing the same
CN106086666B (en) * 2016-06-20 2018-03-06 广东东睦新材料有限公司 A kind of composite powder metallurgy material of high abrasion
CA3090455C (en) 2018-02-21 2022-06-28 Jfe Steel Corporation Mixed powder for powder metallurgy
WO2020066927A1 (en) * 2018-09-26 2020-04-02 Jfeスチール株式会社 Mixed powder for powder metallurgy and lubricant for powder metallurgy
CN112719261B (en) * 2019-10-28 2022-11-04 上海川禾实业发展有限公司 Iron-based powder metallurgy lubricant and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456702A (en) * 1990-06-26 1992-02-24 Toshiba Corp Raw material powder for powder metallurgy and manufacture thereof
JP2002506486A (en) * 1997-06-26 2002-02-26 ホガナス アクチボラゲット Method for producing sintered product and metal powder composition for sintered product
JP2003342744A (en) * 2002-03-19 2003-12-03 Jfe Steel Kk Method for coating powder
JP2004190051A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Iron based powdery mixture for power metallurgy, and production method therefor
JP2005307348A (en) * 2004-03-22 2005-11-04 Jfe Steel Kk Iron-based powder mixture for powder metallurgy
JP2007031757A (en) * 2005-07-25 2007-02-08 Jfe Steel Kk Alloy steel powder for powder metallurgy
JP2008513602A (en) * 2004-09-17 2008-05-01 ホガナス アクチボラゲット Powder metal composition comprising secondary amide as lubricant and / or binder

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509540B2 (en) * 1997-03-19 2004-03-22 Jfeスチール株式会社 Iron-based powder mixture for powder metallurgy excellent in fluidity and moldability, method for producing the same, and method for producing a compact
US6235076B1 (en) * 1997-03-19 2001-05-22 Kawasaki Steel Corporation Iron base powder mixture for powder metallurgy excellent in fluidity and moldability, method of production thereof, and method of production of molded article by using the iron base powder mixture
ES2356885T3 (en) * 1997-10-21 2011-04-14 Hoeganaes Corporation IMPROVED METALLURGICAL COMPOSITIONS THAT CONTAIN BINDING / LUBRICANT AGENT AND PROCEDURES TO PREPARE THEM.
AU7945098A (en) * 1998-05-15 1999-12-06 Hoganas A.B. Iron-based metallurgical compositions containing flow agents and methods for using same
SE9903231D0 (en) * 1999-09-09 1999-09-09 Hoeganaes Ab Powder composition
CA2322308C (en) * 1999-10-20 2005-07-12 National Research Council Of Canada Modified lubricated ferrous powder compositions for cold and warm pressing applications
WO2001032337A1 (en) * 1999-10-29 2001-05-10 Kawasaki Steel Corporation Lubricating agent for mold at elevated temperature, iron-based powder composition for elevated temperature compaction with lubricated mold and high density formed product from iron-based powder composition, and method for producing high density iron-based sintered compact
SE0101343D0 (en) * 2001-04-17 2001-04-17 Hoeganaes Ab Icon powder composition
SE523775C2 (en) * 2002-03-19 2004-05-18 Kawasaki Steel Co Process for coating powder in a fluidized bed
US20030219617A1 (en) * 2002-05-21 2003-11-27 Jfe Steel Corporation, A Corporation Of Japan Powder additive for powder metallurgy, iron-based powder mixture for powder metallurgy, and method for manufacturing the same
JP2006124777A (en) * 2004-10-28 2006-05-18 Kobe Steel Ltd Powder mixture for powder metallurgy and green compact molding
US7993429B2 (en) * 2005-12-30 2011-08-09 Höganäs Ab (Publ) Lubricant for powder metallurgical compositions
BRPI0620868B1 (en) * 2005-12-30 2013-12-24 Hoeganaes Ab METALLURGY POWDER COMPOSITION AND METHOD FOR THE PRODUCTION OF METALLURGY POWDER COMPOSITION
EP1985393B1 (en) * 2006-02-15 2016-12-21 JFE Steel Corporation Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
EP2586547A1 (en) * 2006-03-14 2013-05-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Mixed powder for powder metallurgy, green compact thereof, and sintered body
JP5280661B2 (en) * 2007-09-27 2013-09-04 Dowaエレクトロニクス株式会社 Method for producing metal magnetic powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456702A (en) * 1990-06-26 1992-02-24 Toshiba Corp Raw material powder for powder metallurgy and manufacture thereof
JP2002506486A (en) * 1997-06-26 2002-02-26 ホガナス アクチボラゲット Method for producing sintered product and metal powder composition for sintered product
JP2003342744A (en) * 2002-03-19 2003-12-03 Jfe Steel Kk Method for coating powder
JP2004190051A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Iron based powdery mixture for power metallurgy, and production method therefor
JP2005307348A (en) * 2004-03-22 2005-11-04 Jfe Steel Kk Iron-based powder mixture for powder metallurgy
JP2008513602A (en) * 2004-09-17 2008-05-01 ホガナス アクチボラゲット Powder metal composition comprising secondary amide as lubricant and / or binder
JP2007031757A (en) * 2005-07-25 2007-02-08 Jfe Steel Kk Alloy steel powder for powder metallurgy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125230A (en) * 2016-01-13 2017-07-20 株式会社神戸製鋼所 Mixed powder for powder metallurgy
CN111032315A (en) * 2017-07-19 2020-04-17 惠普发展公司,有限责任合伙企业 Three-dimensional (3D) printing
CN111032315B (en) * 2017-07-19 2021-10-29 惠普发展公司,有限责任合伙企业 Three-dimensional (3D) printing
US11318532B2 (en) 2017-07-19 2022-05-03 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
KR20190062842A (en) * 2017-11-29 2019-06-07 현대자동차주식회사 High density forming method mixed powder
KR102398886B1 (en) * 2017-11-29 2022-05-18 현대자동차주식회사 High density forming method mixed powder
KR20190124547A (en) * 2018-04-26 2019-11-05 (주)지케이에스 Iron based powders for powder metallurgy and its manufacturing method
KR102073269B1 (en) 2018-04-26 2020-02-05 (주)지케이에스 Iron based powders for powder metallurgy and its manufacturing method
WO2020196401A1 (en) * 2019-03-27 2020-10-01 日立化成株式会社 Lubricant, powdered mixture, and method for producing sintered body

Also Published As

Publication number Publication date
KR20100132455A (en) 2010-12-17
US20100310406A1 (en) 2010-12-09
CN101920335A (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP2010285633A (en) Method of producing powder mixture for powder metallurgy, and method of producing sintered body
TW442347B (en) Improved metal-based powder compositions containing silicon carbide as an alloying powder
US7871453B2 (en) Coarse iron or iron-based powder composition containing specific lubricant
JP2010189769A (en) Method of preparing iron-based component by compaction with elevated pressure
AU2005257719B2 (en) Lubricants for insulated soft magnetic iron-based powder compositions
WO2007024487A2 (en) Powder metal composition containing micronized deformable solids and methods of making and using the same
JP4668620B2 (en) Powder composition and method for producing high-density green compact
JP5841089B2 (en) Molding powder, lubricant concentrated powder, and method for producing metal member
JP2004190051A (en) Iron based powdery mixture for power metallurgy, and production method therefor
JP2008214664A (en) Method for manufacturing sintered body, and sintered body
KR20050105243A (en) Cobalt-based metal powder and method for producing components thereof
CA2248447C (en) Boric acid-containing lubricants for powdered metals, and powdered metal compositions containing said lubricants
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JP5245728B2 (en) Iron-based mixed powder for powder metallurgy
JP2004292861A (en) Iron-based powdery mixture for powder metallurgy, and its production method
US20230128986A1 (en) Iron-Based Mixed Powder and Method for Manufacturing the Same
JP3873547B2 (en) Iron-based mixed powder for powder metallurgy
JP5223547B2 (en) Iron-based mixed powder for powder metallurgy
JP2010007175A (en) Iron-based powdery mixture for powder metallurgy
JP2010007176A (en) Iron-based powdery mixture for powder metallurgy
JP2009280906A (en) Iron powder mixture for powder metallurgy
US20090028742A1 (en) Dry powder metal compositions and methods of making and using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813