WO2007105261A1 - Method of dry etching of interlayer insulation film - Google Patents

Method of dry etching of interlayer insulation film Download PDF

Info

Publication number
WO2007105261A1
WO2007105261A1 PCT/JP2006/304625 JP2006304625W WO2007105261A1 WO 2007105261 A1 WO2007105261 A1 WO 2007105261A1 JP 2006304625 W JP2006304625 W JP 2006304625W WO 2007105261 A1 WO2007105261 A1 WO 2007105261A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
etching
insulating film
interlayer insulating
dry etching
Prior art date
Application number
PCT/JP2006/304625
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Hayashi
Original Assignee
Philtech Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philtech Inc. filed Critical Philtech Inc.
Priority to PCT/JP2006/304625 priority Critical patent/WO2007105261A1/en
Publication of WO2007105261A1 publication Critical patent/WO2007105261A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Definitions

  • the present invention relates to a method for dry etching an interlayer insulating film, and in particular, finely processes holes and trenches by dry etching an interlayer insulating film covered with a resist mask formed using an ArF photolithographic method.
  • Background art on dry etching method of interlayer insulating film is referred to a method for dry etching an interlayer insulating film, and in particular, finely processes holes and trenches by dry etching an interlayer insulating film covered with a resist mask formed using an ArF photolithographic method.
  • Non-Patent Document 1 a resist material that does not have a benzene ring and has a compound in order to provide sensitivity in the vacuum ultraviolet region.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-31678 (for example, refer to the description of claims)
  • Patent Document 2 Japanese Patent Application No. 2004-56962 (for example, refer to the description of claims)
  • Non-Patent Document l Koji Nozaki and Ei Yano, FUJITSU Sei.Tech.J., 38,1 P3- 12 (June 200
  • an object of the present invention is to provide a dry etching method for an interlayer insulating film that can suppress the occurrence of striation and obtain high etching processing accuracy.
  • the interlayer insulating film dry etching method of the present invention introduces a predetermined etching gas into the interlayer insulating film covered with a resist mask formed by using ArF photolithography.
  • the etching gas is a halogen-based gas (norogens are F, I, Br), At least one of I and Br is characterized by using a fluorocarbon compound gas in which the atomic composition ratio is 26% or less of the total amount of halogen and the remainder is F.
  • etching gas a fluorocarbon compound gas containing at least one of I and Br that forms a stable compound and has a function as an etchant for Si itself is used.
  • the density of F atoms in the plasma atmosphere damage to the resist mask can be reduced, and the occurrence of striation can be suppressed.
  • at least one of I and Br is contained in an atomic composition ratio exceeding 26% of the total amount of halogen, there are problems such as a decrease in etching speed and inability to perform etching in a desired shape. .
  • the fluorocarbon compound gas is preferably one of an iodinated fluorocarbon compound gas and a brominated fluorinated carbon compound gas, or a mixed gas thereof.
  • the iodinated fluorocarbon compound gas is CF I
  • the brominated fluorocarbon compound gas is CF Br Br r r
  • the etching gas may be a mixed gas of CF and CFI or CFFr.
  • the etching gas may be a mixed gas of at least one of HI and HBr and a fluorocarbon compound.
  • the etching gas may be a mixed gas of CF I and a fluorocarbon compound.
  • the etching gas may be a mixed gas of CFBr and a fluorocarbon compound.
  • the etching gas is used with respect to the total flow rate of the etching gas.
  • Oxygen should be added in the range of 3 to 15%. In this case, if it is less than 3%, the above effect cannot be achieved, and the amount of deposition cannot be adjusted. On the other hand, if it exceeds 15%, the ArF resist will be damaged and etched. The invention's effect
  • the dry etching method for an interlayer insulating film according to the present invention has the effect of suppressing the generation of striation and obtaining high etching processing accuracy.
  • FIG. 1, 1 shows that the interlayer insulating film of the present invention is dry-etched and arranged.
  • This is an etching apparatus for finely processing line holes, trenches, and the like.
  • the etching apparatus 1 uses discharge plasma (NLD plasma) generated in an area including zero magnetic field, and has a chamber 11 provided with a vacuum exhaust means 12 such as a dry pump, a rotary pump, or a turbo molecular pump.
  • NLD plasma discharge plasma
  • the chamber 11 includes an upper plasma generation chamber 11a formed by a cylindrical side wall 13 made of a dielectric material such as quartz, and a lower substrate processing chamber ib.
  • Three magnetic field coils 14, 15, 16 are provided outside the cylindrical side wall 13 at predetermined intervals to constitute a magnetic field generating means.
  • the three magnetic field coils 14, 15 and 16 are attached to a yoke member 17 made of a high magnetic permeability material so as to surround the outside from above and below.
  • a current in the same direction is supplied to the upper and lower magnetic field coils 14 and 16, and a reverse current is supplied to the intermediate coil 15.
  • a continuous magnetic field zero position is formed inside the cylindrical side wall 13 near the level of the intermediate coil 15, and an annular magnetic neutral line is formed.
  • the size of the annular magnetic neutral wire can be set as appropriate by changing the ratio of the current passed through the upper and lower coils 14, 16 and the current passed through the intermediate coil 15.
  • the vertical position can be appropriately set according to the ratio of the currents flowing through the upper and lower magnetic field coils 14 and 16. Further, as the current flowing through the intermediate coil 15 is increased, the diameter of the annular magnetic neutral wire decreases, and at the same time, the gradient of the magnetic field at the zero magnetic field position becomes gentler.
  • An antenna 18 for generating a high-frequency electric field is provided between the intermediate coil 15 and the cylindrical side wall 13 and connected to a high-frequency power source 19 to constitute a magnetic field generating means. Then, NLD plasma is generated along the annular magnetic neutral line formed by the three magnetic field coils 14, 15 and 16
  • a substrate electrode 20 having a circular cross section which is a substrate mounting portion on which the processing substrate S is mounted, is interposed via an insulator 20a.
  • the substrate electrode 20 is connected to the second high-frequency power source 22 via the capacitor 21 and becomes a floating electrode in terms of potential and has a negative noise potential.
  • the top plate 23 that partitions the plasma generation chamber 11a is hermetically fixed to the upper part of the cylindrical side wall, and is in a floating state in potential to form a counter electrode.
  • a gas introducing means 24 for introducing an etching gas into the chamber 11 is provided on the inner surface of the top plate. It is connected to a gas source through a gas flow rate control means (not shown).
  • an oxide film such as SiO, or spin coating such as HSQ or MSQ is used as an interlayer insulating film in which holes and trenches for wiring are finely processed using the etching apparatus 1.
  • the formed SiOCH-based material, or SiOC-based material formed by CVD is a low-k material having a relative dielectric constant of 1.5 to 3.0, and includes a porous material.
  • SiOCH-based material examples include, for example, trade name NCSZ catalyst manufactured by Kosei Kogyo Co., Ltd., trade name LKD 5109r5ZjSR, trade name HSG-7000 / Hitachi Chemical Co., Ltd., trade name HOSP / Honeywell Electric Materials Sento Trade name: Nanoglassz Honeywell Electric Materials, trade name: OCD T—12Z, manufactured by Tokyo Ohkasha, trade name: OCD T—32Z, manufactured by Tokyo Ohkasha, trade name: IPS2. 4Z Catalyst Chemical Industries, trade name: IPS2. 2Z catalyst There are products made by Kasei Kogyo Co., Ltd., trade name ALC AP—S5100Z Asahi Kasei Co., Ltd.
  • SiOC-based material examples include, for example, trade name Aurola 2. 7 / manufactured by ASM Japan, trade name Aurol a2. 4Z manufactured by ASM Japan, trade name Orion 2. 7ZTRIKON, trade name CoralZNovellf, trade name Black There are DiamondZAMAT products. Also, organic products such as trade name SiLKZDow Chemical, trade name Porous-SiLKZDow Chemical, trade name FLAREZHoneywell Electric Materials, trade name Porous FLAREZHoneywell Electric Materials, trade name GX-3PZHoneywell Electric Materials, etc. It may be a low dielectric constant interlayer insulating film.
  • a resist mask is formed with a predetermined pattern using a photolithography method in order to finely process wiring holes and trenches in the interlayer insulating film.
  • the photolithography method the ArF photolithography method should be used to cope with the miniaturization and multi-layering of semiconductor elements due to higher integration and higher speed of LSI.
  • As a resist material for ArF photolithography for example, there is UV-6ZShipley Co., Ltd. for vacuum ultraviolet light.
  • the resist material used in the ArF photolithography method may be composed of a compound that does not have a benzene ring in order to provide sensitivity in the vacuum ultraviolet region.
  • This type of resist material when fine patterning is performed using a laser with a short wavelength, causes the resist mask to become brittle and is used in other photolithography methods. Plasma resistance is low compared to those.
  • a conventional dry etching method for an interlayer insulating film that is, an inductively coupled (ICP plasma) etching apparatus (not shown), for example, and fluorocarbon gas under an operating pressure of 1 to 3 Pa.
  • ICP plasma inductively coupled
  • etching is carried out by introducing an etching gas containing (CxFy) in a plasma atmosphere (in this case, the Ar plasma density is ⁇ IX lOUcnT 3 ), it is exposed to plasma as shown in FIG.
  • edge roughness 33 occurs at the edge 32 of the patterned region of the resist mask 31 (the shape of the resist mask 31 changes).
  • the output of the high-frequency power source 19 connected to the antenna 18 is usually 1 to 1.5 KW under an operating pressure of 0.3 to 0.7 Pa.
  • the output (bias power) of the second high-frequency power source 22 is set to 0.2 to 0.6 KW, and the Ar plasma density at this time is ⁇ 1 X ⁇ ⁇ ⁇ 3 .
  • the working pressure is set lower than that of the conventional method, the plasma density is reduced.
  • the etching apparatus 1 since an efficient annular magnetic neutral discharge plasma is obtained, the amount of decrease in the plasma density is small.
  • the ion current density in the etching apparatus 1 is almost the same as that of the ICP plasma etching apparatus that cannot suppress the generation of streaking, and the output of the second high-frequency power source 22 is 0.3 KW.
  • the ion energy when set to ⁇ is LKeV, and high-energy ion collisions with the resist mask 31 are occurring. Therefore, when the NLD plasma etching apparatus 1 is used to etch the interlayer insulating film, it is considered that streaking occurs.
  • the decomposition species generated by decomposing CxFy gas include F, CF, CF, CF, etc.
  • molecular radicals are mainly used as polymerization precursors.
  • CFI is used as an etching gas.
  • the resist mask etching rate decreases and the resist selectivity increases.
  • the F radical which is an etchant of the resist mask, reacts with I in the gas phase to form IF, IF, IF, etc.
  • a halogen-based gas (a nitrogen is F is used as an etching gas). , I, Br), and at least one of I and Br.
  • Fluorocarbon compound gas particularly Iodinated fluorinated carbon compound, in which the atomic yarn and the composition ratio are 26% or less of the total amount of halogen, and the remainder is F.
  • gas and brominated fluorocarbon compound gas, or a mixed gas of these was used.
  • the iodinated fluorocarbon compound gas and the brominated fluorocarbon compound gas are C (Hal) n 2n + 2
  • At least one selected from Br, C F I and C F Br, or their fluorocarbons are selected from Br, C F I and C F Br, or their fluorocarbons
  • a mixed gas containing two or more selected from a compound gas and HI or Br is preferable. If the number of n exceeds 3, problems such as contamination of the chamber 11 occur during etching, which is not practical.
  • brominated fluids such as iodinated fluorocarbon compound gas such as C FI and C F Br.
  • Carbon compound gas can also be used.
  • CF gas or the like is added so that the atomic composition ratio is 26% or less of the total amount of halogen.
  • a small amount of oxygen is added to the fluorocarbon compound gas in order to prevent etching holes and trenches from being filled by adjusting the amount of reaction product deposited by etching. It is preferable.
  • the amount of oxygen added is set in a range of 3 to 15%, preferably 3 to 10%, more preferably 4 to 7% of the total flow rate of the gas introduced into the chamber 11. The If it is less than 3%, the above effect cannot be achieved, and the amount of deposition cannot be adjusted. other On the other hand, if it exceeds 15%, the ArF resist will be damaged and etched.
  • Example 1
  • Example 1 SiO is used as an interlayer insulating film, and a processing substrate is used by using a spin coater.
  • a resist material was applied onto the interlayer insulating film by a spin coater, and a predetermined pattern was formed by an ArF photolithographic method to form a resist mask.
  • the resist material was UV-6 for vacuum ultraviolet light, and the thickness was 500 nm.
  • the interlayer insulating film was etched to form holes.
  • the flow rate of Ar was set to 230 sccm
  • the flow rate of CFI was set to 50 sccm
  • the flow rate of oxygen was set to 20 sccm. Also plasma generation
  • the output of the high-frequency power source 19 connected to the high-frequency antenna coil 18 was set to 1 KW
  • the output of the high-frequency power source 22 connected to the substrate electrode 21 was set to 0.3 KW
  • the substrate set temperature was 10 ° C.
  • an interlayer insulating film and a resist mask are formed under the same conditions as in the above-described example 1, and an interlayer is formed under the same conditions as in the above-described example 1 using the NLD etching apparatus 1 shown in FIG.
  • the insulating film was etched.
  • C F instead of C F I is used as the etching gas.
  • FIG. 3 and 4 are SEM photographs when the interlayer insulating film is etched under the conditions of Example 1 and Comparative Example 1.
  • FIG. 4 it was confirmed that, in Comparative Example 1, edge roughness was generated at the edge portion of the patterned area of the resist mask by etching, and streaks were generated in the holes (FIG. 4 ( In contrast, in Example 1, it can be seen that edge roughness at the edge is suppressed, and the occurrence of streaking is suppressed (Figs. 3 (b) and (c)). See).
  • the interlayer insulating film and the resist mask were formed under the same conditions as in the first embodiment, and the interlayer insulating film was etched under the same conditions as in the first embodiment using the etching apparatus 1 shown in FIG.
  • the pressure in the chamber 11 was set to 0.67 Pa. In this case, the etching rate was slightly increased, and the generation of streaking could be suppressed.
  • instead of I use Br But the same result was obtained.
  • FIG. 1 is a view schematically showing an etching apparatus for carrying out an interlayer insulating film etching method of the present invention.
  • FIG. 2 is a diagram schematically illustrating the occurrence of striations.
  • FIG. 3 (a) to (c) are SEM photographs when the interlayer insulating film is etched according to Example 1.
  • FIG. 4 (a) to (c) are SEM photographs when the interlayer insulating film is etched according to Comparative Example 1. Explanation of symbols

Abstract

In the microfabrication of hole and trench through dry etching, in a plasma atmosphere, of an interlayer insulation film covered with a resist mask formed by ArF photolithography, as the etching gas, use is made of a halogen (F, I, Br) base gas consisting of a gas of fluorinated carbon compound wherein at least one of I and Br is contained in an amount, in terms of atomic composition ratio, of 26% or less based on the total amount of halogens and the rest consists of F. As a result, the occurrence of striation is suppressed and high etching processing accuracy can be attained.

Description

明 細 書  Specification
層間絶縁膜のドライエッチング方法  Interlayer dielectric film dry etching method
技術分野  Technical field
[0001] 本発明は、層間絶縁膜をドライエッチングする方法に関し、特に、 ArFフォトリソダラ フィ法を用いて形成したレジストマスクによって覆われた層間絶縁膜をドライエツチン グしてホール、トレンチを微細加工する層間絶縁膜のドライエッチング方法に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a method for dry etching an interlayer insulating film, and in particular, finely processes holes and trenches by dry etching an interlayer insulating film covered with a resist mask formed using an ArF photolithographic method. Background art on dry etching method of interlayer insulating film
[0002] 近年、 LSIの高集積ィ匕及び高速ィ匕に伴って、半導体素子の微細化と多層化とが進 んでいる。この場合のフォトリソグラフィ法としては、 ArFフォトリソグラフィ法に代表さ れるように、波長の短いレーザ (例えば、エキシマレーザー)を用いたものが利用され 、微細なパター-ングでもってレジストマスクが形成される。このようなレジストマスクで 覆われた層間絶縁膜をドライエッチングして、配線用のホール、トレンチなどを微細 加工する場合には、深さ方向に均一なエッチング形状を得るという高い加工精度が 要求されている。この場合、異方性を高めるために、所定のエッチングガスをプラズマ 雰囲気中で導入してエッチングを行うことが知られている(特許文献 1)。  In recent years, with the high integration and high speed of LSI, semiconductor elements have been miniaturized and multilayered. As a photolithography method in this case, as represented by ArF photolithography method, a method using a laser having a short wavelength (for example, excimer laser) is used, and a resist mask is formed with a fine pattern. The When an interlayer insulating film covered with such a resist mask is dry etched to finely process wiring holes, trenches, etc., high processing accuracy is required to obtain a uniform etching shape in the depth direction. ing. In this case, in order to increase anisotropy, it is known to perform etching by introducing a predetermined etching gas in a plasma atmosphere (Patent Document 1).
[0003] ところで、 ArFフォトリソグラフィ法で用いられるレジスト材として、真空紫外光領域に ぉ 、て感度をもたせるために、ベンゼン環を有さな 、ィ匕合物で構成したものを用いる ことが提案されている(非特許文献 1)。この種のレジスト材の場合、波長の短いレー ザを用いて微細なパターユングを行うと、それに伴ってレジストマスクが脆弱化すると 共に、他のフォトリソグラフィ法で用いられるものと比較してプラズマ耐性が低い。  [0003] By the way, as a resist material used in the ArF photolithography method, it is proposed to use a resist material that does not have a benzene ring and has a compound in order to provide sensitivity in the vacuum ultraviolet region. (Non-Patent Document 1). In the case of this type of resist material, if fine patterning is performed using a laser with a short wavelength, the resist mask becomes weaker along with this, and the plasma resistance is lower than that used in other photolithography methods. Is low.
[0004] このため、プラズマ雰囲気中でエッチングを行うと、プラズマに曝されることでダメー ジを受けて、レジストマスクのうちパターユングされた領域のエッジ部にエッジ荒れが 生じる(レジストマスクの形状が変形する)。このような状態でエッチングを継続すると、 その形状が層間絶縁膜に形成しょうとするホール、トレンチに転写されてストリエーシ ヨン (Striation)が発生するという問題があった。この場合、高いエッチングカ卩ェ精度の 要求を満たすことができな 、。 [0005] このような問題を解決するために、フロロカーボンガスを含有する混合ガスを用い、 この混合ガスを、低圧のプラズマ雰囲気中で導入して、 ArFフォトリソグラフィ法を用 V、て形成したレジストマスクによって覆われた層間絶縁膜をドライエッチングすること が提案されて ヽる (特許文献 2)。 [0004] For this reason, when etching is performed in a plasma atmosphere, damage is caused by exposure to plasma, and edge roughness occurs in the edge portion of the patterned area of the resist mask (the shape of the resist mask). Is deformed). If etching is continued in such a state, the shape is transferred to holes and trenches that are to be formed in the interlayer insulating film, and there is a problem that streaking occurs. In this case, it is not possible to meet the requirements for high etching accuracy. In order to solve such problems, a resist formed by using a mixed gas containing a fluorocarbon gas, introducing the mixed gas in a low-pressure plasma atmosphere, and using an ArF photolithography method V. It has been proposed to dry-etch an interlayer insulating film covered with a mask (Patent Document 2).
特許文献 1:特開平 11— 31678号公報 (例えば、特許請求の範囲の記載参照) 特許文献 2:特願 2004— 56962号 (例えば、特許請求の範囲の記載参照) 非特許文献 l : Koji Nozaki and Ei Yano, FUJITSU Sei.Tech. J., 38,1 P3- 12(June 200 Patent Document 1: Japanese Patent Application Laid-Open No. 11-31678 (for example, refer to the description of claims) Patent Document 2: Japanese Patent Application No. 2004-56962 (for example, refer to the description of claims) Non-Patent Document l: Koji Nozaki and Ei Yano, FUJITSU Sei.Tech.J., 38,1 P3- 12 (June 200
2) 2)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しカゝしながら、低圧で所定の混合ガスを導入してドライエッチングすればストリエ一 シヨンの発生が抑制できて高いエッチングカ卩ェ精度が得られるものの、所定圧力(例 えば 0. 133Pa)より低い圧力下で安定放電を得ることができるエッチング装置が限 定され、汎用性に乏しい。 [0006] However, if dry etching is performed by introducing a predetermined mixed gas at a low pressure, generation of striation can be suppressed and high etching cache accuracy can be obtained, but a predetermined pressure (for example, 0. The etching equipment that can obtain a stable discharge under a pressure lower than 133 Pa) is limited, and the versatility is poor.
[0007] そこで、本発明の課題は、上記点に鑑み、ストリエーシヨンの発生を抑制して高いェ ツチング加工精度が得られる層間絶縁膜のドライエッチング方法を提供することにあ る。 [0007] In view of the above, an object of the present invention is to provide a dry etching method for an interlayer insulating film that can suppress the occurrence of striation and obtain high etching processing accuracy.
課題を解決するための手段  Means for solving the problem
[0008] 上記課題を解決するために、本発明の層間絶縁膜のドライエッチング方法は、 ArF フォトリソグラフィ法を用いて形成したレジストマスクによって覆われた層間絶縁膜を、 所定のエッチングガスを導入しつつ、プラズマ雰囲気中でドライエッチングしてホー ル、トレンチを微細加工する層間絶縁膜のドライエッチング方法において、前記エツ チングガスとして、ハロゲン系ガス(ノヽロゲンは、 F、 I、 Br)であって、 I及び Brの少なく とも一方が、原子組成比でハロゲンの総量の 26%以下で、残りが Fであるフッ化炭素 化合物ガスを用いることを特徴とする。  [0008] In order to solve the above-mentioned problem, the interlayer insulating film dry etching method of the present invention introduces a predetermined etching gas into the interlayer insulating film covered with a resist mask formed by using ArF photolithography. On the other hand, in the dry etching method of the interlayer insulating film in which holes and trenches are finely processed by dry etching in a plasma atmosphere, the etching gas is a halogen-based gas (norogens are F, I, Br), At least one of I and Br is characterized by using a fluorocarbon compound gas in which the atomic composition ratio is 26% or less of the total amount of halogen and the remainder is F.
[0009] 本発明によれば、エッチングガスとして、安定な化合物を形成すると共にそれ自体 Siに対するエツチャントとしての機能を有する I及び Brの少なくとも一方を含有するフ ッ化炭素化合物ガスを用いることで、エッチング時の作動圧力に依存することなぐプ ラズマ雰囲気中の F原子数密度を減少させて、レジストマスクにダメージを与えること を軽減して、ストリエーシヨンの発生を抑制できる。この場合、 I及び Brの少なくとも一 方を、原子組成比でハロゲンの総量の 26%を超えて含有していると、エッチング速 度の低下や所望の形状でのエッチングができない等の不具合がある。 [0009] According to the present invention, as the etching gas, a fluorocarbon compound gas containing at least one of I and Br that forms a stable compound and has a function as an etchant for Si itself is used. Depends on the operating pressure during etching By reducing the density of F atoms in the plasma atmosphere, damage to the resist mask can be reduced, and the occurrence of striation can be suppressed. In this case, if at least one of I and Br is contained in an atomic composition ratio exceeding 26% of the total amount of halogen, there are problems such as a decrease in etching speed and inability to perform etching in a desired shape. .
[0010] 前記フッ化炭素化合物ガスは、ヨウ素化フッ化炭素化合物ガス及び臭素化フツイ匕 炭素化合物ガスの 、ずれか一方、またはこれらの混合ガスであることが好ま 、。  [0010] The fluorocarbon compound gas is preferably one of an iodinated fluorocarbon compound gas and a brominated fluorinated carbon compound gas, or a mixed gas thereof.
[0011] この場合、前記ヨウ素化フッ化炭素化合物ガスは、 CF I  In this case, the iodinated fluorocarbon compound gas is CF I
3、 C F I  3, C F I
2 5、 C F I  2 5, C F I
3 7、 C F Iの 3 6 2 中から選択された少なくとも一種、または前記ヨウ素化フッ化炭素化合物ガスと HI若 しくは HBrとから選択された二種以上を含有する混合ガスとすればょ 、。  37, or a mixed gas containing at least one selected from CFI 3 62, or two or more selected from the above-mentioned iodinated fluorocarbon compound gas and HI or HBr.
[0012] また、前記臭素化フッ化炭素化合物ガスは、 CF Br Br r r [0012] The brominated fluorocarbon compound gas is CF Br Br r r
3 、 C F  3, C F
2 5 、 C F B  2 5, C F B
3 7 、 C F B  3 7, C F B
3 6 2 の中から選択された少なくとも一種、または前記臭素化フッ化炭素化合物ガスと HI若 しくは HBrとから選択された二種以上を含有する混合ガスとすればょ 、。  And at least one selected from 3 6 2 or a mixed gas containing two or more selected from the brominated fluorocarbon compound gas and HI or HBr.
[0013] 尚、前記エッチングガスは、 CFと C F Iまたは C F Brとの混合ガスとしてもよい。 [0013] The etching gas may be a mixed gas of CF and CFI or CFFr.
4 2 4 2 2 4 2  4 2 4 2 2 4 2
[0014] 前記エッチングガスは、 HI及び HBrの少なくとも一方と過フッ化炭素化合物との混 合ガスとしてもよい。  [0014] The etching gas may be a mixed gas of at least one of HI and HBr and a fluorocarbon compound.
[0015] 前記エッチングガスは、 CF Iと過フッ化炭素化合物との混合ガスとしてもよい。  [0015] The etching gas may be a mixed gas of CF I and a fluorocarbon compound.
3  Three
[0016] 前記エッチングガスは、 CF Brと過フッ化炭素化合物との混合ガスとしてもよい。  [0016] The etching gas may be a mixed gas of CFBr and a fluorocarbon compound.
3  Three
[0017] ここで、エッチングによる反応生成物のデポジションの量を調節してエッチングした ホール、トレンチが埋まってしまうのを防止するために、前記エッチングガスに、この エッチングガスの総流量に対して 3〜15%の範囲で酸素を添カ卩しておけばよい。こ の場合、 3%未満では、上記効果を達成することができず、また、デポジションの量を 調節することができなくなる。他方で、 15%を超えると、 ArFレジストがダメージを受け てエッチングされてしまう。 発明の効果  Here, in order to prevent the etched holes and trenches from being filled by adjusting the deposition amount of the reaction product by etching, the etching gas is used with respect to the total flow rate of the etching gas. Oxygen should be added in the range of 3 to 15%. In this case, if it is less than 3%, the above effect cannot be achieved, and the amount of deposition cannot be adjusted. On the other hand, if it exceeds 15%, the ArF resist will be damaged and etched. The invention's effect
[0018] 以上に説明したように、本発明の層間絶縁膜のドライエッチング方法は、ストリエ一 シヨンの発生を抑制して高 、エッチング加工精度が得られると!、う効果を奏する。 発明を実施するための最良の形態  [0018] As described above, the dry etching method for an interlayer insulating film according to the present invention has the effect of suppressing the generation of striation and obtaining high etching processing accuracy. BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 図 1を参照して説明すれば、 1は、本発明の層間絶縁膜をドライエッチングして、配 線用のホール、トレンチなどを微細加工するエッチング装置である。エッチング装置 1 は、磁場ゼロを含む領域に発生させた放電プラズマ (NLDプラズマ)を用いるもので あり、ドライポンプまたはロータリーポンプやターボ分子ポンプなどの真空排気手段 1 2を設けたチャンバ 11を有する。 [0019] Referring to FIG. 1, 1 shows that the interlayer insulating film of the present invention is dry-etched and arranged. This is an etching apparatus for finely processing line holes, trenches, and the like. The etching apparatus 1 uses discharge plasma (NLD plasma) generated in an area including zero magnetic field, and has a chamber 11 provided with a vacuum exhaust means 12 such as a dry pump, a rotary pump, or a turbo molecular pump.
[0020] チャンバ 11は、石英のような誘電体製の円筒状側壁 13により形成されたその上部 のプラズマ発生室 11aと下部の基板処理室 l ibから構成されている。円筒状側壁 13 の外側には、三つの磁場コイル 14、 15、 16が所定の間隔を置いて設けられ、磁場 発生手段を構成する。三つの磁場コイル 14、 15、 16は、その外側を上下から囲むよ うに高透磁率材料製のヨーク部材 17に取付けられている。この場合、上側及び下側 の各磁場コイル 14、 16には、同方向の電流を流し、中間のコイル 15には逆向きの電 流を流すようにしている。これにより、中間のコイル 15のレベル付近に円筒状側壁 13 の内側に連続した磁場ゼロの位置ができ、環状磁気中性線が形成される。  [0020] The chamber 11 includes an upper plasma generation chamber 11a formed by a cylindrical side wall 13 made of a dielectric material such as quartz, and a lower substrate processing chamber ib. Three magnetic field coils 14, 15, 16 are provided outside the cylindrical side wall 13 at predetermined intervals to constitute a magnetic field generating means. The three magnetic field coils 14, 15 and 16 are attached to a yoke member 17 made of a high magnetic permeability material so as to surround the outside from above and below. In this case, a current in the same direction is supplied to the upper and lower magnetic field coils 14 and 16, and a reverse current is supplied to the intermediate coil 15. As a result, a continuous magnetic field zero position is formed inside the cylindrical side wall 13 near the level of the intermediate coil 15, and an annular magnetic neutral line is formed.
[0021] 環状磁気中性線の大きさは、上側及び下側の各コイル 14、 16に流す電流と中間 のコイル 15に流す電流との比を変えることで適宜設定でき、環状磁気中性線の上下 方向の位置は、上側及び下側の各磁場コイル 14、 16に流す電流の比によって適宜 設定できる。また、中間のコイル 15に流す電流を増していくと、環状磁気中性線の径 は小さくなり、同時に磁場ゼロの位置での磁場の勾配も緩やかになってゆく。中間の コイル 15と円筒状側壁 13との間には、高周波電場発生用のアンテナ 18が設けられ 、高周波電源 19に接続され、磁場発生手段を構成する。そして、三つの磁場コイル 1 4、 15、 16によって形成された環状磁気中性線に沿って NLDプラズマを発生させる  [0021] The size of the annular magnetic neutral wire can be set as appropriate by changing the ratio of the current passed through the upper and lower coils 14, 16 and the current passed through the intermediate coil 15. The vertical position can be appropriately set according to the ratio of the currents flowing through the upper and lower magnetic field coils 14 and 16. Further, as the current flowing through the intermediate coil 15 is increased, the diameter of the annular magnetic neutral wire decreases, and at the same time, the gradient of the magnetic field at the zero magnetic field position becomes gentler. An antenna 18 for generating a high-frequency electric field is provided between the intermediate coil 15 and the cylindrical side wall 13 and connected to a high-frequency power source 19 to constitute a magnetic field generating means. Then, NLD plasma is generated along the annular magnetic neutral line formed by the three magnetic field coils 14, 15 and 16
[0022] 環状磁気中性線の作る面と対向させて基板処理室 l ib内には、処理基板 Sが載置 される基板載置部である断面円形の基板電極 20が絶縁体 20aを介して設けられて いる。この基板電極 20は、コンデンサー 21を介して第 2高周波電源 22に接続され、 電位的に浮遊電極となって負のノィァス電位となる。 [0022] In the substrate processing chamber l ib facing the surface formed by the annular magnetic neutral line, a substrate electrode 20 having a circular cross section, which is a substrate mounting portion on which the processing substrate S is mounted, is interposed via an insulator 20a. Provided. The substrate electrode 20 is connected to the second high-frequency power source 22 via the capacitor 21 and becomes a floating electrode in terms of potential and has a negative noise potential.
[0023] また、プラズマ発生室 11aを区画する天板 23は、円筒状側壁の上部に密封固着さ れ、電位的に浮遊状態とし対向電極を形成する。この天板の内面には、チャンバ 11 内にエッチングガスを導入するガス導入手段 24が設けられ、このガス導入手段 24が 、ガス流量制御手段(図示せず)を介してガス源に接続されて ヽる。 [0023] The top plate 23 that partitions the plasma generation chamber 11a is hermetically fixed to the upper part of the cylindrical side wall, and is in a floating state in potential to form a counter electrode. A gas introducing means 24 for introducing an etching gas into the chamber 11 is provided on the inner surface of the top plate. It is connected to a gas source through a gas flow rate control means (not shown).
[0024] 上記エッチング装置 1を用いて、配線用のホール、トレンチが微細加工される層間 絶縁膜としては、 SiOなどの酸ィ匕物膜、 HSQや MSQのようにスピンコートによって  [0024] As an interlayer insulating film in which holes and trenches for wiring are finely processed using the etching apparatus 1, an oxide film such as SiO, or spin coating such as HSQ or MSQ is used.
2  2
形成された SiOCH系材料、或!、は CVDによって形成される SiOC系材料で比誘電 率 1. 5〜3. 0の Low— k材料であり、多孔質材料を含む。  The formed SiOCH-based material, or SiOC-based material formed by CVD, is a low-k material having a relative dielectric constant of 1.5 to 3.0, and includes a porous material.
[0025] SiOCH系材料としては、例えば、商品名 NCSZ触媒ィ匕成工業社製、商品名 LKD 5109r5ZjSR社製、商品名 HSG— 7000/日立化成社製、商品名 HOSP/Honeyw ell Electric Materials千土 商 f口名 Nanoglassz Honeywell Electric Materials社製、 商品名 OCD T—12Z東京応化社製、商品名 OCD T—32Z東京応化社製、商品 名 IPS2. 4Z触媒化成工業社製、商品名 IPS2. 2Z触媒化成工業社製、商品名 ALC AP— S5100Z旭化成社製、商品名 ISMZULVAC社製等がある。  [0025] Examples of the SiOCH-based material include, for example, trade name NCSZ catalyst manufactured by Kosei Kogyo Co., Ltd., trade name LKD 5109r5ZjSR, trade name HSG-7000 / Hitachi Chemical Co., Ltd., trade name HOSP / Honeywell Electric Materials Sento Trade name: Nanoglassz Honeywell Electric Materials, trade name: OCD T—12Z, manufactured by Tokyo Ohkasha, trade name: OCD T—32Z, manufactured by Tokyo Ohkasha, trade name: IPS2. 4Z Catalyst Chemical Industries, trade name: IPS2. 2Z catalyst There are products made by Kasei Kogyo Co., Ltd., trade name ALC AP—S5100Z Asahi Kasei Co., Ltd.
[0026] SiOC系材料としては、例えば、商品名 Aurola2. 7/日本 ASM社製、商品名 Aurol a2. 4Z日本 ASM社製、商品名 Orion2. 7ZTRIKON社製、商品名 CoralZNovellf 社製、商品名 Black DiamondZAMAT社製等がある。また、商品名 SiLKZDow Chem ical社製、商品名 Porous- SiLKZDow Chemical社製、商品名 FLAREZHoneywell Ele ctric Materials社製、商品名 Porous FLAREZHoneywell Electric Materials社製、商 品名 GX-3PZHoneywell Electric Materials社製等などの有機系の低誘電率層間絶 縁膜であってもよい。  [0026] Examples of the SiOC-based material include, for example, trade name Aurola 2. 7 / manufactured by ASM Japan, trade name Aurol a2. 4Z manufactured by ASM Japan, trade name Orion 2. 7ZTRIKON, trade name CoralZNovellf, trade name Black There are DiamondZAMAT products. Also, organic products such as trade name SiLKZDow Chemical, trade name Porous-SiLKZDow Chemical, trade name FLAREZHoneywell Electric Materials, trade name Porous FLAREZHoneywell Electric Materials, trade name GX-3PZHoneywell Electric Materials, etc. It may be a low dielectric constant interlayer insulating film.
[0027] 層間絶縁膜上には、この層間絶縁膜に配線用のホール、トレンチを微細加工する ために、フォトリソグラフィ法を用いて、所定のパターユングでもってレジストマスクが 形成される。フォトリソグラフィ法としては、 LSIの高集積化及び高速化に伴う半導体 素子の微細化と多層化とに対応すベぐ ArFフォトリソグラフィ法が用いられる。 ArF フォトリソグラフィ法用のレジスト材としては、例えば、真空紫外光用 UV— 6ZShiple y社製がある。  On the interlayer insulating film, a resist mask is formed with a predetermined pattern using a photolithography method in order to finely process wiring holes and trenches in the interlayer insulating film. As the photolithography method, the ArF photolithography method should be used to cope with the miniaturization and multi-layering of semiconductor elements due to higher integration and higher speed of LSI. As a resist material for ArF photolithography, for example, there is UV-6ZShipley Co., Ltd. for vacuum ultraviolet light.
[0028] ところで、 ArFフォトリソグラフィ法で用いられるレジスト材としては、真空紫外光領域 にお 、て感度をもたせるために、ベンゼン環を有さな 、化合物で構成する場合があ る。この種のレジスト材は、波長の短いレーザを用いて微細なパターユングを行うと、 それに伴ってレジストマスクが脆弱化すると共に、他のフォトリソグラフィ法で用いられ るものと比較してプラズマ耐性が低 、。 Incidentally, the resist material used in the ArF photolithography method may be composed of a compound that does not have a benzene ring in order to provide sensitivity in the vacuum ultraviolet region. This type of resist material, when fine patterning is performed using a laser with a short wavelength, causes the resist mask to become brittle and is used in other photolithography methods. Plasma resistance is low compared to those.
[0029] ここで、従来の層間絶縁膜のドライエッチング方法、即ち、例えば誘導結合方式 (I CPプラズマ)のエッチング装置(図示せず)を用い、 l〜3Paの作動圧力下で、フロロ カーボンガス (CxFy)を含有するエッチングガスをプラズマ雰囲気中で導入してエツ チングを行うと(この場合の Arプラズマ密度は〜 I X lOUcnT3である。)、図 2に示す ように、プラズマに曝されることでダメージを受けて、レジストマスク 31のうちパター- ングされた領域のエッジ部 32にエッジ荒れ 33が生じる(レジストマスク 31の形状が変 形する)。このような状態でエッチングを «続すると、その形状が層間絶縁膜 34に形 成しようとするホール、トレンチ 35に転写されてストリエーシヨン 36が発生し、高いエツ チンダカ卩ェ精度の要求を満たすことができな!/、。 [0029] Here, a conventional dry etching method for an interlayer insulating film, that is, an inductively coupled (ICP plasma) etching apparatus (not shown), for example, and fluorocarbon gas under an operating pressure of 1 to 3 Pa. When etching is carried out by introducing an etching gas containing (CxFy) in a plasma atmosphere (in this case, the Ar plasma density is ~ IX lOUcnT 3 ), it is exposed to plasma as shown in FIG. As a result of the damage, edge roughness 33 occurs at the edge 32 of the patterned region of the resist mask 31 (the shape of the resist mask 31 changes). If etching is continued in such a state, the shape is transferred to the holes and trenches 35 to be formed in the interlayer insulating film 34, and the streaking 36 is generated, which satisfies the requirement for high etching accuracy. I can't!
[0030] 上述したストリエーシヨン 36の発生は、一般に、プラズマ雰囲気中でのエッチング時 のイオンによるダメージであると認識されていた。このような認識に基づくと、低圧高 密度プラズマである上記 NLDプラズマのエッチング装置 1で層間絶縁膜のエツチン グを行った場合にも、以下の理由からストリエーシヨンが発生すると考えられる。  [0030] The generation of the above-described streaking 36 was generally recognized as damage caused by ions during etching in a plasma atmosphere. Based on this recognition, even when the interlayer insulating film is etched by the NLD plasma etching apparatus 1 which is a low-pressure high-density plasma, it is considered that streaking occurs for the following reasons.
[0031] 即ち、 NLDプラズマのエッチング装置 1では、通常、エッチング条件が 0. 3〜0. 7 Paの作動圧力下で、アンテナ 18に接続された高周波電源 19の出力が 1〜1. 5KW 、第 2高周波電源 22の出力(バイアスパワー)が 0. 2〜0. 6KWに設定され、このとき の Arプラズマ密度が〜 1 X ΙΟ^π 3である。この場合、作動圧力を従来法より低く 設定しているため、プラズマ密度は低下する力 エッチング装置 1では、効率の良い 環状磁気中性線放電プラズマになるため、プラズマ密度の低下量は少な 、。 That is, in the NLD plasma etching apparatus 1, the output of the high-frequency power source 19 connected to the antenna 18 is usually 1 to 1.5 KW under an operating pressure of 0.3 to 0.7 Pa. The output (bias power) of the second high-frequency power source 22 is set to 0.2 to 0.6 KW, and the Ar plasma density at this time is ~ 1 X ΙΟ ^ π 3 . In this case, since the working pressure is set lower than that of the conventional method, the plasma density is reduced. In the etching apparatus 1, since an efficient annular magnetic neutral discharge plasma is obtained, the amount of decrease in the plasma density is small.
[0032] このため、エッチング装置 1におけるイオン電流密度は、ストリエーシヨンの発生を抑 制できない ICPプラズマのエッチング装置のものと殆ど同一であり、また、第 2高周波 電源 22の出力を 0. 3KWに設定した場合のイオンエネルギーは、〜: LKeVになって おり、レジストマスク 31への高エネルギーイオンの衝突は起こっている。従って、 NL Dプラズマのエッチング装置 1で層間絶縁膜のエッチングを行った場合、ストリエーシ ヨンが発生すると考えられる。  [0032] For this reason, the ion current density in the etching apparatus 1 is almost the same as that of the ICP plasma etching apparatus that cannot suppress the generation of streaking, and the output of the second high-frequency power source 22 is 0.3 KW. The ion energy when set to ˜ is LKeV, and high-energy ion collisions with the resist mask 31 are occurring. Therefore, when the NLD plasma etching apparatus 1 is used to etch the interlayer insulating film, it is considered that streaking occurs.
[0033] ところで、 ICPプラズマのエッチング装置を用いる場合であっても、作動圧力を所定 値まで低く設定することで、ストリエーシヨンの発生が抑制できる現象が見出されてい る。これは、作動圧力を低く設定することで、中性分解種 (原子、分子、ラジカル)の 物理量が減少したことに起因する。この場合、 CxFyガスを分解して発生する分解種 には F、 CF、 CF、 CF等があるが、この中で分子ラジカルは主に重合前駆体として [0033] By the way, even when using an ICP plasma etching apparatus, a phenomenon has been found in which the occurrence of striations can be suppressed by setting the operating pressure to a predetermined value. The This is because the physical quantity of neutral decomposition species (atoms, molecules, radicals) decreased by setting the operating pressure low. In this case, the decomposition species generated by decomposing CxFy gas include F, CF, CF, CF, etc. Among them, molecular radicals are mainly used as polymerization precursors.
2 3  twenty three
の働きはあるものの、レジストマスク 31に対するエッチング物質としての働きは低い。 このことから、有機物質との反応性が高い F原子がレジストマスク 31の C = 0基や他 の官能基と反応し、レジストマスク 31をより脆弱化させる。従って、ラジカル反応によ つて起こるレジストマスク 31の脆弱化が起こる。  However, its function as an etching substance for the resist mask 31 is low. For this reason, F atoms having high reactivity with organic substances react with the C = 0 group and other functional groups of the resist mask 31 to make the resist mask 31 more brittle. Therefore, the resist mask 31 is weakened due to radical reaction.
[0034] 他方、多孔質 Low— k膜のドライエッチングにおいて、エッチングガスとして C F Iを [0034] On the other hand, in dry etching of a porous low-k film, CFI is used as an etching gas.
3 7 用い、低圧かつ高密度プラズマのエッチング条件の下では、レジストマスクのエッチ ング速度が低下して対レジスト選択比が向上する現象が見出されている。レジストマ スクのエッチング速度が減少するのは、レジストマスクのエツチャントである Fラジカル が気相中において Iと反応し、 IF、 IF、 IF等を形成するためである。  However, under the low-pressure and high-density plasma etching conditions, it has been found that the resist mask etching rate decreases and the resist selectivity increases. The reason why the resist mask etching rate is reduced is that the F radical, which is an etchant of the resist mask, reacts with I in the gas phase to form IF, IF, IF, etc.
3 5 7  3 5 7
[0035] 以上に説明したことを考慮すると、 ICPプラズマのエッチング装置を用い、作動圧力 を低く設定することでレジストマスクのストリエーシヨンの発生が抑制できるのは、ラジ カル種の中でもレジストのエツチャントである F原子密度の減少のためである。そして 、ヨウ素原子を含むガスを用いると、 F原子のスキヤべンジが起こってレジストのエッチ ング速度が低下する。これらのことから、ストリエーシヨンの発生を抑制するには、 F原 子数密度を Iやその他の方法によって捕捉し安定な化合物にして減少させることが重 要である。  [0035] Considering what has been described above, it is possible to suppress the occurrence of resist mask striation by using an ICP plasma etching apparatus and setting the operating pressure to be low. This is because the F atom density is reduced. If a gas containing iodine atoms is used, F atom scavenging occurs and the etching rate of the resist decreases. For these reasons, in order to suppress the generation of striations, it is important to reduce the F atom number density by capturing it with I or other methods to make it a stable compound.
[0036] 上記点に鑑み、 F原子との反応により安定して化合物を形成し、かつ、エッチング機 構そのものに大きな影響を与えない化合物として、 H、 Br、 I、 Xeを含有するものをェ ツチングガスとして利用すればよい。ここで、 Hは、 Fと高速反応し HFを形成すると共 に、有機化合物とも反応することから制御が困難である。また、 Xeは、 Fとェキサイテ ッドタイマーを形成し、その結合力が弱ぐまた、高価であるため実用性に乏しい。そ れに対して、 Brや Iは、 IF、 IF、 IF B、 BrF、 BrF等の安定な化合物を形成する上  In view of the above points, compounds containing H, Br, I, and Xe as compounds that stably form compounds by reaction with F atoms and do not significantly affect the etching mechanism itself are used. What is necessary is just to utilize as a tapping gas. Here, H is difficult to control because it reacts fast with F to form HF and also reacts with organic compounds. In addition, Xe forms an excitable timer with F, and its binding power is weak. Also, it is expensive and is not practical. In contrast, Br and I form stable compounds such as IF, IF, IF B, BrF, and BrF.
3 5 7 3 5  3 5 7 3 5
に、それ自体 Siに対するエツチャントとしての機能を有し、エッチング反応をそのもの を阻害する働きもない。  In addition, it itself functions as an etchant for Si and does not hinder the etching reaction itself.
[0037] そこで、本実施の形態では、エッチングガスとして、ハロゲン系ガス(ノヽロゲンは、 F 、 I、 Br)であって、 I及び Brの少なくとも一方力 原子糸且成比でハロゲンの総量の 26 %以下で、残りが Fであるフッ化炭素化合物ガス、特に、ヨウ素化フッ化炭素化合物 ガス及び臭素化フッ化炭素化合物ガスの ヽずれか一方、またはこれらの混合ガスを 用いることとした。 [0037] Therefore, in the present embodiment, a halogen-based gas (a nitrogen is F is used as an etching gas). , I, Br), and at least one of I and Br. Fluorocarbon compound gas, particularly Iodinated fluorinated carbon compound, in which the atomic yarn and the composition ratio are 26% or less of the total amount of halogen, and the remainder is F. One of gas and brominated fluorocarbon compound gas, or a mixed gas of these was used.
[0038] ヨウ素化フッ化炭素化合物ガス及び臭素化フッ化炭素化合物ガスは、 C (Hal) n 2n+2 [0038] The iodinated fluorocarbon compound gas and the brominated fluorocarbon compound gas are C (Hal) n 2n + 2
(式中、 n= l〜3)のガス、好ましくは、 CF I、 CF Brゝ C F I、 C F Brゝ C F I、 C F (Where n = l-3), preferably CF I, CF Br CF C FI, C F Br ゝ C F I, C F
3 3 2 5 2 5 3 7 3 7 3 3 2 5 2 5 3 7 3 7
Br、 C F I 、 C F Brの中力 選択された少なくとも 1種、またはこれらのフッ化炭素At least one selected from Br, C F I and C F Br, or their fluorocarbons
3 6 2 3 6 2 3 6 2 3 6 2
化合物ガスと HI若しくは Brとから選択された二種以上を含有する混合ガスであること が好ましい。尚、 nの数が 3を超えると、エッチングの際にチャンバ一 11が汚染される 等の不具合が生じ、実用的でない。  A mixed gas containing two or more selected from a compound gas and HI or Br is preferable. If the number of n exceeds 3, problems such as contamination of the chamber 11 occur during etching, which is not practical.
[0039] また、 C F Iなどのヨウ素化フッ化炭素化合物ガスや C F Brなどの臭素化フツイ匕 [0039] Also, brominated fluids such as iodinated fluorocarbon compound gas such as C FI and C F Br.
2 4 2 2 4 2  2 4 2 2 4 2
炭素化合物ガスも用いることができ、この場合、原子組成比でハロゲンの総量の 26 %以下になるように、 CFガスなどを添加して利用される。  Carbon compound gas can also be used. In this case, CF gas or the like is added so that the atomic composition ratio is 26% or less of the total amount of halogen.
4  Four
[0040] また、エッチングガスは、 HI及び HBrの少なくとも一方と、テトラフルォロエチレンの ような過フッ化炭素化合物(C (Hal) (式中、 n= l〜3) )ガスとの混合ガスであって n 2n  [0040] The etching gas is a mixture of at least one of HI and HBr and a perfluorocarbon compound (C (Hal) (where n = 1 to 3)) gas such as tetrafluoroethylene. Gas n 2n
もよぐエッチングガスとして、 CF Iと過フッ化炭素化合物との混合ガス、 CF Brと過  As a moist etching gas, mixed gas of CF I and fluorocarbon compound, CF Br and excess
3 3 フッ化炭素化合物との混合ガスを用いてもょ 、。  3 3 Use a mixed gas with a fluorocarbon compound.
[0041] これにより、チャンバ 11のエッチング時の圧力に依存することなぐプラズマ雰囲気 中の F原子数密度を減少させて、レジストマスクにダメージを与えることを軽減して、ス トリエーシヨンの発生が抑制できる。この場合、 I及び Brの少なくとも一方を、原子組成 比でハロゲンの総量の 26%を超えて含有していると、エッチング速度の低下や所望 の形状でのエッチングができない等の不具合がある。  [0041] This reduces the number of F atoms in the plasma atmosphere that does not depend on the pressure during etching of the chamber 11, reduces damage to the resist mask, and suppresses the occurrence of streaking. . In this case, if at least one of I and Br is contained in an atomic composition ratio exceeding 26% of the total amount of halogen, there are problems such as a decrease in etching rate and inability to perform etching in a desired shape.
[0042] また、上記フッ化炭素化合物ガスには、エッチングによる反応生成物のデポジショ ンの量を調節してエッチングしたホール、トレンチが埋まってしまうのを防止するため に、少量の酸素を添加することが好ましい。  [0042] Further, a small amount of oxygen is added to the fluorocarbon compound gas in order to prevent etching holes and trenches from being filled by adjusting the amount of reaction product deposited by etching. It is preferable.
[0043] この場合、酸素の添カ卩量は、チャンバ 11に導入するガスの総流量の 3〜15%、好 ましくは 3〜10%、より好ましくは 4〜7%の範囲に設定される。 3%未満では、上記効 果を達成することができず、また、デポジションの量を調節することができなくなる。他 方で、 15%を超えると、 ArFレジストがダメージを受けてエッチングされてしまう。 実施例 1 [0043] In this case, the amount of oxygen added is set in a range of 3 to 15%, preferably 3 to 10%, more preferably 4 to 7% of the total flow rate of the gas introduced into the chamber 11. The If it is less than 3%, the above effect cannot be achieved, and the amount of deposition cannot be adjusted. other On the other hand, if it exceeds 15%, the ArF resist will be damaged and etched. Example 1
[0044] 本実施例 1では、層間絶縁膜として SiOを用い、スピンコータを使用して処理基板  In Example 1, SiO is used as an interlayer insulating film, and a processing substrate is used by using a spin coater.
2  2
上に、 lOOOnmの膜厚で形成した。そして、この層間絶縁膜上に、スピンコータにより レジスト材を塗布し、 ArFフォトリソグラフ法で所定のパターンユングを行ってレジスト マスクを形成した。この場合、レジスト材としては、真空紫外光用 UV— 6を用い、厚さ を 500nmとした。  On top, it was formed with a film thickness of lOOOnm. Then, a resist material was applied onto the interlayer insulating film by a spin coater, and a predetermined pattern was formed by an ArF photolithographic method to form a resist mask. In this case, the resist material was UV-6 for vacuum ultraviolet light, and the thickness was 500 nm.
[0045] 次に、図 1に示す NLDプラズマのエッチング装置 1を用いて、 Arと、エッチングガス である C F Iを用い、これを 2. 67Paの作動圧力下で真空チャンバ 11内に導入して Next, using the NLD plasma etching apparatus 1 shown in FIG. 1, Ar and etching gas CFI are introduced into the vacuum chamber 11 under an operating pressure of 2.67 Pa.
3 7 3 7
上記層間絶縁膜をエッチングしてホールを形成した。この場合、 Arの流量を 230scc m、 C F Iの流量を 50sccm、酸素の流量を 20sccmに設定した。また、プラズマ発生 The interlayer insulating film was etched to form holes. In this case, the flow rate of Ar was set to 230 sccm, the flow rate of CFI was set to 50 sccm, and the flow rate of oxygen was set to 20 sccm. Also plasma generation
3 7 3 7
用高周波アンテナコイル 18に接続した高周波電源 19の出力を 1KW、基板電極 21 に接続した高周波電源 22の出力を 0. 3KW、基板設定温度 10°Cに設定した。 (比較例 1)  The output of the high-frequency power source 19 connected to the high-frequency antenna coil 18 was set to 1 KW, the output of the high-frequency power source 22 connected to the substrate electrode 21 was set to 0.3 KW, and the substrate set temperature was 10 ° C. (Comparative Example 1)
[0046] 本比較例 1では、上記実施例 1と同じ条件で層間絶縁膜およびレジストマスクを形 成すると共に、図 1に示す NLDエッチング装置 1を用いて、上記実施例 1と同じ条件 で層間絶縁膜をエッチングした。この場合、エッチングガスとして、 C F I代えて C F  In this comparative example 1, an interlayer insulating film and a resist mask are formed under the same conditions as in the above-described example 1, and an interlayer is formed under the same conditions as in the above-described example 1 using the NLD etching apparatus 1 shown in FIG. The insulating film was etched. In this case, C F instead of C F I is used as the etching gas.
3 7 3 8 を用いた。  3 7 3 8 was used.
[0047] 図 3及び図 4は、実施例 1及び比較例 1の条件で層間絶縁膜をエッチングしたとき の SEM写真である。これによれば、比較例 1のものでは、エッチングによってレジスト マスクのうちパターユングされた領域のエッジ部にエッジ荒れが生じ、ホールにストリ エーシヨンが発生していることが確認された(図 4 (b)及び (c)。それに対して、実施例 1では、エッジ部でのエッジ荒れが抑制され、ストリエーシヨンの発生が抑制されてい ることが判る((図 3 (b)及び (c)参照)。  3 and 4 are SEM photographs when the interlayer insulating film is etched under the conditions of Example 1 and Comparative Example 1. FIG. According to this, it was confirmed that, in Comparative Example 1, edge roughness was generated at the edge portion of the patterned area of the resist mask by etching, and streaks were generated in the holes (FIG. 4 ( In contrast, in Example 1, it can be seen that edge roughness at the edge is suppressed, and the occurrence of streaking is suppressed (Figs. 3 (b) and (c)). See).
[0048] 尚、上記実施例 1と同じ条件で層間絶縁膜及びレジストマスクを形成すると共に、 図 1に示すエッチング装置 1を用いて、上記実施例 1と同じ条件で層間絶縁膜をエツ チングしたが、チャンバ 11の圧力は 0. 67Paに設定した。この場合、エッチング速度 が若干速くなり、ストリエーシヨンの発生が抑制できた。また、 Iの代わりに、 Brを用い ても同じ結果が得られた。 It should be noted that the interlayer insulating film and the resist mask were formed under the same conditions as in the first embodiment, and the interlayer insulating film was etched under the same conditions as in the first embodiment using the etching apparatus 1 shown in FIG. However, the pressure in the chamber 11 was set to 0.67 Pa. In this case, the etching rate was slightly increased, and the generation of streaking could be suppressed. Also, instead of I, use Br But the same result was obtained.
[0049] ところで、 NLDエッチング装置では、弱 、磁場が印加でき、 lPa以下で効率の良 ヽ NLDプラズマを形成することができるものの、 lPa以上では電子の平均自由工程が 短くなり、 NLDプラズマにはならず、 ICPプラズマが形成されるようになる。従って、上 記実施例 1は、 NLDエッチング装置 1を用いたものである力 lPa以上なので磁場の 効果が無くなって磁場ゼロと同じプラズマが形成される。このため、 ICPプラズマを形 成したものと同じになり、本発明の効果はエッチング装置構造に依存するものではな ぐプラズマ密度とガス組成に依存する。その結果、プラズマ密度として 101G〜: LO^c m_3のプラズマが形成され、 ArFレジストマスクにより覆われた層間絶縁膜であれば、 同様な効果が得られることは原理的に明らかである。 [0049] By the way, in an NLD etching apparatus, a weak magnetic field can be applied, and an efficient NLD plasma can be formed at 1 Pa or less. Instead, ICP plasma is formed. Therefore, in Example 1 described above, since the force lPa or more, which is obtained by using the NLD etching apparatus 1, is used, the effect of the magnetic field is lost and the same plasma as the magnetic field zero is formed. For this reason, it becomes the same as that formed ICP plasma, and the effect of the present invention depends not on the structure of the etching apparatus but on the plasma density and gas composition. As a result, 10 1G ~ as plasma density: LO ^ plasma c m_ 3 is formed, if the interlayer insulating film covered by ArF resist mask, the same effect can be obtained is principally apparent.
図面の簡単な説明  Brief Description of Drawings
[0050] [図 1]本発明の層間絶縁膜のエッチング方法を実施するエッチング装置を概略的に 示す図。  [0050] FIG. 1 is a view schematically showing an etching apparatus for carrying out an interlayer insulating film etching method of the present invention.
[図 2]ストリエーシヨンの発生を概略的に説明する図。  FIG. 2 is a diagram schematically illustrating the occurrence of striations.
[図 3] (a)乃至 (c)は、実施例 1により層間絶縁膜をエッチングしたときの SEM写真。  FIG. 3 (a) to (c) are SEM photographs when the interlayer insulating film is etched according to Example 1.
[図 4] (a)乃至 (c)は、比較例 1により層間絶縁膜をエッチングしたときの SEM写真。 符号の説明  FIG. 4 (a) to (c) are SEM photographs when the interlayer insulating film is etched according to Comparative Example 1. Explanation of symbols
[0051] 1 エッチング装置 [0051] 1 Etching device
11 チャンバ  11 chambers
11a プラズマ発生室  11a Plasma generation chamber
l ib 基板電極室  l ib substrate electrode chamber
31 レジス卜マスク  31 Regis Mask
32 エッジ部  32 Edge
33 エッジ荒れ  33 Rough edges
34 層間絶縁膜  34 Interlayer insulation film
35 ホーノレ、トレンチ  35 Honore, trench
36 ストリエーシヨン  36 Striation
S 処理基板  S treated substrate

Claims

請求の範囲 The scope of the claims
[1] ArFフォトリソグラフィ法を用いて形成したレジストマスクによって覆われた層間絶縁 膜を、所定のエッチングガスを導入しつつ、プラズマ雰囲気中でドライエッチングして ホール、トレンチを微細加工する層間絶縁膜のドライエッチング方法において、前記 エッチングガスとして、ハロゲン系ガス(ノヽロゲンは、 F、 I、 Br)であって、 I及び Brの少 なくとも一方力 原子組成比でハロゲンの総量の 26%以下で、残りが Fであるフツイ匕 炭素化合物ガスを用いることを特徴とする層間絶縁膜のドライエッチング方法。  [1] An interlayer insulating film covered with a resist mask formed using ArF photolithography and dry-etched in a plasma atmosphere while introducing a predetermined etching gas to finely process holes and trenches In this dry etching method, the etching gas is a halogen-based gas (norogens are F, I, Br), and at least one of I and Br has an atomic composition ratio of 26% or less of the total amount of halogen. A dry etching method for an interlayer insulating film, characterized by using a carbon dioxide compound gas with the remainder being F.
[2] 前記フッ化炭素化合物ガスは、ヨウ素化フッ化炭素化合物ガス及び臭素化フッ化炭 素化合物ガスの 、ずれか一方、またはこれらの混合ガスであることを請求項 1記載の 層間絶縁膜のドライエッチング方法。  [2] The interlayer insulating film according to [1], wherein the fluorocarbon compound gas is one of iodinated fluorocarbon compound gas and brominated fluorocarbon compound gas, or a mixed gas thereof. Dry etching method.
[3] 前記ヨウ素化フッ化炭素化合物ガスは、 CF I、 C F I、 C F I、 C F Iの中から選択  [3] The iodinated fluorocarbon compound gas is selected from CF I, C F I, C F I, and C F I
3 2 5 3 7 3 6 2  3 2 5 3 7 3 6 2
された少なくとも一種、または前記ヨウ素化フッ化炭素化合物ガスと HI若しくは HBrと 力も選択された二種以上を含有する混合ガスである請求項 2記載の層間絶縁膜のド ライエッチング方法。  3. The dry etching method for an interlayer insulating film according to claim 2, wherein the dry etching method is a mixed gas containing at least one selected from the above, or the mixed gas containing the iodinated fluorocarbon compound gas and HI or HBr and two or more selected in force.
[4] 前記臭素化フッ化炭素化合物ガスは、 CF Br、 C F Br、 C F Br、 C F Brの中から  [4] The brominated fluorocarbon compound gas is selected from CF Br, C F Br, C F Br, and C F Br.
3 2 5 3 7 3 6 2 選択された少なくとも一種、または前記臭素化フッ化炭素化合物ガスと HI若しくは H Brとから選択された二種以上を含有する混合ガスであることを特徴とする請求項 2記 載の層間絶縁膜のドライエッチング方法。  3 2 5 3 7 3 6 2 It is a mixed gas containing at least one selected, or two or more selected from the brominated fluorocarbon compound gas and HI or HBr. 2. The dry etching method for the interlayer insulating film described in 2.
[5] 前記エッチングガスは、 CFと C F Iまたは C F Brとの混合ガスであることを特徴と [5] The etching gas is a mixed gas of CF and C FI or C F Br.
4 2 4 2 2 4 2  4 2 4 2 2 4 2
する請求項 1または請求項 2記載の層間絶縁膜のドライエッチング方法。  The method of dry etching an interlayer insulating film according to claim 1 or 2.
[6] 前記エッチングガスは、 HI及び HBrの少なくとも一方と過フッ化炭素化合物との混合 ガスであることを特徴とする請求項 1乃至請求項 4のいずれかに記載の層間絶縁膜 のドライエッチング方法。 6. The dry etching of an interlayer insulating film according to any one of claims 1 to 4, wherein the etching gas is a mixed gas of at least one of HI and HBr and a fluorocarbon compound. Method.
[7] 前記エッチングガスは、 CF Iと過フッ化炭素化合物との混合ガスであることを特徴と  [7] The etching gas is a mixed gas of CF I and a fluorocarbon compound.
3  Three
する請求項 1乃至請求項 4のいずれかに記載の層間絶縁膜のドライエッチング方法  The method for dry etching an interlayer insulating film according to any one of claims 1 to 4
[8] 前記エッチングガスは、 CF Brと過フッ化炭素化合物との混合ガスであることを特徴 [8] The etching gas is a mixed gas of CF Br and a fluorocarbon compound.
3  Three
とする請求項 1乃至請求項 4のいずれかに記載の層間絶縁膜のドライエッチング方 法。 The method of dry etching an interlayer insulating film according to any one of claims 1 to 4 Law.
[9] 前記エッチングガスに、このエッチングガスの総流量に対して 3〜15%の範囲で酸素 を添加したことを特徴とする請求項 1乃至請求項 8のいずれかに記載の層間絶縁膜 のドライエッチング方法。  [9] The interlayer insulating film according to any one of [1] to [8], wherein oxygen is added to the etching gas in a range of 3 to 15% with respect to a total flow rate of the etching gas. Dry etching method.
PCT/JP2006/304625 2006-03-09 2006-03-09 Method of dry etching of interlayer insulation film WO2007105261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304625 WO2007105261A1 (en) 2006-03-09 2006-03-09 Method of dry etching of interlayer insulation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304625 WO2007105261A1 (en) 2006-03-09 2006-03-09 Method of dry etching of interlayer insulation film

Publications (1)

Publication Number Publication Date
WO2007105261A1 true WO2007105261A1 (en) 2007-09-20

Family

ID=38509111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304625 WO2007105261A1 (en) 2006-03-09 2006-03-09 Method of dry etching of interlayer insulation film

Country Status (1)

Country Link
WO (1) WO2007105261A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088660A1 (en) * 2008-01-04 2009-07-16 Micron Tecnology, Inc. Method of etching a high aspect ratio contact
CN101692423B (en) * 2008-02-12 2011-08-31 东京毅力科创株式会社 Plasma etching method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123142A (en) * 1984-11-20 1986-06-11 Matsushita Electric Ind Co Ltd Dry etching method
JPH11340211A (en) * 1998-03-27 1999-12-10 Nec Corp Treatment method and apparatus for substrate
JP2003051495A (en) * 2001-06-28 2003-02-21 Hynix Semiconductor Inc Forming method for contact hole of semiconductor element
JP2006032721A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Fabrication process of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123142A (en) * 1984-11-20 1986-06-11 Matsushita Electric Ind Co Ltd Dry etching method
JPH11340211A (en) * 1998-03-27 1999-12-10 Nec Corp Treatment method and apparatus for substrate
JP2003051495A (en) * 2001-06-28 2003-02-21 Hynix Semiconductor Inc Forming method for contact hole of semiconductor element
JP2006032721A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Fabrication process of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088660A1 (en) * 2008-01-04 2009-07-16 Micron Tecnology, Inc. Method of etching a high aspect ratio contact
GB2468458A (en) * 2008-01-04 2010-09-08 Micron Technologies Inc Method of etching a high aspect ratio contact
GB2468458B (en) * 2008-01-04 2013-02-20 Micron Technologies Inc Method of etching a high aspect ratio contact
US8614151B2 (en) 2008-01-04 2013-12-24 Micron Technology, Inc. Method of etching a high aspect ratio contact
US20140077126A1 (en) * 2008-01-04 2014-03-20 Micron Technology, Inc. Method of etching a high aspect ratio contact
CN101692423B (en) * 2008-02-12 2011-08-31 东京毅力科创株式会社 Plasma etching method
CN102254813A (en) * 2008-02-12 2011-11-23 东京毅力科创株式会社 Plasma etching method

Similar Documents

Publication Publication Date Title
US6919274B2 (en) LSI device etching method and apparatus thereof
US6869542B2 (en) Hard mask integrated etch process for patterning of silicon oxide and other dielectric materials
KR20200064145A (en) Hydrogen fluoride containing -NH2 functional group for 3D NAND and DRAM applications
US20070224829A1 (en) Use Of Hypofluorites, Fluoroperoxides, And/Or Fluorotrioxides As Oxidizing Agent In Fluorocarbon Etch Plasmas
WO2005076337A1 (en) Techniques for the use of amorphous carbon (apf) for various etch and litho integration scheme
WO2008020267A2 (en) Etch method in the manufacture of an integrated circuit
KR20020027323A (en) Method for etching silicon oxynitride and dielectric antireflection coatings
WO2016068004A1 (en) Plasma etching method
KR20030051786A (en) Dry etching gas and method for dry etching
US20090191715A1 (en) Method for etching interlayer dielectric film
JP2002313777A (en) Method for manufacturing integrated circuit structure
JP4761502B2 (en) Interlayer dielectric film dry etching method
JP2004505464A (en) Method for removing organic residues from semiconductor structures
WO2020195559A1 (en) Dry etching method and method for producing semiconductor device
WO2007105261A1 (en) Method of dry etching of interlayer insulation film
JP2006517743A (en) Method for reducing photoresist distortion while etching in a plasma processing system
JP4982443B2 (en) Interlayer dielectric film dry etching method
JP4681217B2 (en) Interlayer dielectric film dry etching method
TWI343601B (en)
JP4643916B2 (en) Method and apparatus for dry etching of interlayer insulating film
KR100859308B1 (en) Plasma etch process for dielectrics
JP4889199B2 (en) Dry etching method for low dielectric constant interlayer insulating film
JP4144795B2 (en) Dry etching method for low dielectric constant interlayer insulating film
JP2005251901A (en) Dry etching method of interlayer insulation film
JP4071064B2 (en) Etching method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020067023957

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06728842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11663985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06728842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP