WO2007102342A1 - 液体定量排出装置及び液体定量排出方法 - Google Patents

液体定量排出装置及び液体定量排出方法 Download PDF

Info

Publication number
WO2007102342A1
WO2007102342A1 PCT/JP2007/053652 JP2007053652W WO2007102342A1 WO 2007102342 A1 WO2007102342 A1 WO 2007102342A1 JP 2007053652 W JP2007053652 W JP 2007053652W WO 2007102342 A1 WO2007102342 A1 WO 2007102342A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
container
gas
reaction
water
Prior art date
Application number
PCT/JP2007/053652
Other languages
English (en)
French (fr)
Inventor
Masakazu Sugimoto
Masaya Yano
Taiichi Sugita
Original Assignee
Aquafairy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006113398A external-priority patent/JP2007265950A/ja
Priority claimed from JP2006113416A external-priority patent/JP2007283210A/ja
Application filed by Aquafairy Corporation filed Critical Aquafairy Corporation
Priority to US12/280,703 priority Critical patent/US20090004512A1/en
Priority to EP07714995A priority patent/EP2006018A4/en
Priority to CN2007800073852A priority patent/CN101394920B/zh
Publication of WO2007102342A1 publication Critical patent/WO2007102342A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a fuel cell is an energy source that has attracted attention because it does not generate substances that pollute the atmosphere, which has higher power generation efficiency than other power generation systems.
  • air oxygen
  • hydrogen is supplied to the power sword and hydrogen is supplied to the anode in order to generate power.
  • Hydrogen is converted into hydrogen ions and electrons by the catalytic reaction at the anode, and hydrogen ions move in the electrolyte and react with oxygen by the catalytic reaction of force sword to become water.
  • the electron travels through the external circuit and moves to the power sword. This electron movement generates electrical energy.
  • a hydrogen gas generation unit disclosed in Japanese Patent Application Laid-Open No. 2004-149394 is a metal that generates hydrogen by a chemical reaction between a tank for storing water (corresponding to a reaction solution) and water.
  • a reaction vessel containing a reaction vessel (corresponding to a hydrogen generating agent), a heating means arranged close to the reaction vessel, an introduction pipe for introducing water contained in the tank into the reaction vessel, and the reaction vessel It has a return pipe for introducing hydrogen and unreacted water into the tank, and a discharge pipe for discharging hydrogen and water in the tank.
  • a pump is used to introduce the tank water into the reaction vessel, thereby controlling the amount of water supplied to the reaction vessel.
  • the reaction vessel is accommodated in the apparatus main body and is held in close contact with the heating means. As a result, the water introduced into the reaction vessel is heated to become water vapor, and the hydrogen gas in the reaction vessel The reaction for generating can be promoted.
  • the hydrogen generator in the hydrogen generator as described above, it may be desirable to control the amount of water fed into the reaction vessel to be constant. For example, when a large amount of water is fed, there is a problem that more hydrogen gas than necessary is generated. It is preferable to use a pump to control (limit) the amount of water to be fed. However, a space for housing the pump and a driving mechanism are required, which increases the cost and increases the size of the device. In particular, when a hydrogen generator is incorporated in a portable device such as a notebook personal computer, PDA, or mobile phone, a configuration that can achieve the smallest possible size is required. That is, a hydrogen generator equipped with a small liquid supply device that can supply water without using a pump is desired.
  • the amount of water that is fed into the reaction vessel is very small (for example, 2 to 3 cc per hour), so that a small amount of powerful water can be sent in a fixed amount. Is required.
  • the present invention has been made in view of the above circumstances, and the problem is that when a liquid such as water is sent out from the liquid storage container, even if the amount is small, it can be sent out in a fixed amount.
  • a liquid fixed amount discharge device and a liquid fixed amount discharge method To provide a liquid fixed amount discharge device and a liquid fixed amount discharge method.
  • Another problem of the present invention is that when a liquid such as water is sent out from the liquid container, even if the amount is small, it can be sent out in a fixed amount without further affecting the posture. It is to provide a liquid fixed amount discharge device and a liquid fixed amount discharge method capable of delivering a liquid.
  • a liquid metering apparatus includes:
  • a liquid storage container in which a liquid is stored
  • a gas supply path for supplying the compressed gas in the gas storage container into the liquid storage container It is characterized in that the metered liquid can be discharged from the liquid discharge passage by applying a compressed gas to the liquid in the liquid container.
  • a movable partition wall is provided so as to partition the inside of the liquid storage container, the liquid is stored on one side partitioned by the movable partition wall, and the compressed gas is introduced on the other side.
  • the gas supply path according to the present invention is provided with a control mechanism for controlling the gas supply amount.
  • the gas supply amount can be controlled by providing a powerful control mechanism, the pressure value applied to the liquid can also be changed. Thereby, the amount of liquid to be sent out from the liquid discharge path can be adjusted.
  • the liquid is a reaction liquid that reacts with the hydrogen generating agent to generate hydrogen gas, and the reaction liquid discharged from the liquid discharge path is transferred to the reaction vessel in which the hydrogen generating agent is accommodated. It is preferred to be configured to be supplied.
  • the water in the liquid storage container can be quantitatively supplied to the reaction container.
  • a liquid quantitative discharge method includes:
  • the pressure can be applied uniformly to the liquid surface in the liquid storage container.
  • the liquid can be discharged quantitatively.
  • the discharge amount can be adjusted by the pressure value by compressed gas.
  • the liquid is a reaction liquid that reacts with a hydrogen generator to generate hydrogen gas.
  • the method includes a step in which the reaction liquid discharged from the liquid storage container is supplied to the reaction container in which the hydrogen generating agent is stored.
  • a liquid constant-volume discharge device includes:
  • a liquid storage container in which a liquid is stored
  • This device has liquid A liquid storage container to be stored and a gas storage container to store compressed gas are provided, which are connected by a gas supply path.
  • the liquid in the liquid container is discharged (sent out) from the liquid discharge path, and in order to perform the discharge action, compressed gas is applied to the liquid.
  • a bag member is attached to an end portion of the gas supply path on the liquid container side, and the compressed gas is gradually fed into the bag member.
  • the bag member is inflatable and gradually expands when compressed gas is fed. When the bag member expands in the liquid container, the liquid corresponding to the expanded volume is discharged.
  • the gas supply path is preferably provided with a control mechanism for controlling the gas supply amount.
  • the liquid is a reaction liquid that reacts with the hydrogen generating agent to generate hydrogen gas, and the reaction liquid discharged from the liquid discharge path is transferred to the reaction vessel containing the hydrogen generating agent. It is preferred to be configured to be supplied.
  • the water in the liquid container can be quantitatively supplied to the reaction container.
  • the amount of hydrogen gas generated in the reaction vessel can be controlled to be appropriate. Therefore, it can be suitably used particularly in a fuel cell system used for a portable device.
  • a liquid constant-volume discharge method includes:
  • Compressed gas is produced through the gas supply path for the liquid stored in the liquid container. Step to be used,
  • a step of discharging the liquid discharge path force provided in the liquid container by the action of the compressed gas is a step of discharging the liquid discharge path force provided in the liquid container by the action of the compressed gas
  • the bag member is expanded in the liquid container by supplying the compressed gas into the inflatable bag member attached to the liquid container side end of the gas supply path.
  • the bag member is configured to discharge the volume of the expanded volume of liquid from the liquid discharge path.
  • the liquid is a reaction liquid that reacts with the hydrogen generator to generate hydrogen gas, and the reaction liquid discharged from the liquid storage container is supplied to the reaction container in which the hydrogen generator is stored.
  • FIG. 1 is a conceptual diagram showing the configuration of a liquid dispensing apparatus according to a first embodiment.
  • FIG. 2 is a conceptual diagram showing the configuration of a liquid dispensing apparatus according to a second embodiment
  • FIG. 5 is a conceptual diagram showing the configuration of a liquid dispensing apparatus according to a third embodiment.
  • FIG. 7 is a conceptual diagram showing the configuration of a liquid dispensing apparatus according to a fourth embodiment
  • FIG. 8 is a conceptual diagram showing a modified example of the liquid dispensing apparatus according to the fourth embodiment.
  • FIG. 10 is a conceptual diagram showing the configuration of a liquid dispensing apparatus according to a fifth embodiment.
  • FIG. 11 is a diagram for explaining the action of the bag member
  • FIG. 1 is a conceptual diagram showing the configuration of the liquid fixed amount discharge apparatus according to the first embodiment.
  • the liquid fixed amount discharging apparatus includes a gas storage container 1 and a liquid storage container 2.
  • the gas storage container 1 stores compressed air. Other gases such as nitrogen may be used instead of air.
  • An introduction pipe 4 and a check valve 5 are provided on the upper wall surface of the gas storage container 1, and air is introduced into the gas storage container 1 through the introduction pipe 4.
  • the amount of air introduced is, for example, about 3 cc and is stored in a compressed state of about 3 atmospheres. Any type of check valve 5 can be used.
  • the primary side is the secondary side.
  • a check valve provided with a beak-shaped elastic member that opens when the pressure is larger than the pressure on the side and closes when the pressure is smaller is preferable.
  • This check valve 5 is called, for example, a duck bill, and various types are commercially available. The same applies to check valves used in other locations.
  • water as a reaction liquid is stored. This water functions as a reaction liquid that reacts with the hydrogen generating agent to generate hydrogen gas.
  • an acid or alkaline solution may be used.
  • the amount of water stored in the liquid storage container 2 is also about 3 cc.
  • An introduction pipe 8 and a check valve 9 are provided on the container wall surface, and water can be introduced into the liquid storage container 2 through the introduction pipe 8.
  • the gas storage container 1 and the liquid storage container 2 are connected by a communication pipe 6 that is a gas supply path, and a valve 7 is provided in the middle of the communication pipe 6.
  • the valve 7 functions as a control mechanism that controls the amount of compressed air that passes through the communication pipe 6.
  • a hydrogen generating agent 10 is accommodated.
  • the hydrogen generating agent 10 include particles of a metal that generates hydrogen gas by reacting with a reaction liquid such as water, for example, one or more metal particles selected from Fe, Al, Mg, Zn, Si, and the like. Oxidized metal particles are generated.
  • the hydrogen generator 10 may contain a catalyst component, an alkaline earth metal oxide, carbon black, or the like. The hydrogen generating agent 10 may be powdered, granulated, or tableted.
  • the reaction vessel 3 and the liquid storage vessel 2 are connected by a water outlet pipe 11 and a check valve 12.
  • the water pressed by the compressed air is sent into the reaction vessel 3 through the water outlet pipe 11.
  • the introduced water does not flow back, and the hydrogen gas generated in the reaction vessel 3 does not enter the liquid container 2 side.
  • the hydrogen gas generated in the reaction vessel 3 is discharged from the gas supply pipe 13 and supplied to a fuel cell (not shown).
  • the gas container 1 the liquid container 2, and the reaction container 3, the strength, corrosion resistance, etc. are considered. In consideration, it can be formed of an appropriate metal material, a resin material, glass or the like. In addition, it is optional whether each container is composed of one part or multiple parts. The shape and size of each container can be determined as appropriate based on the purpose of use and specifications. Furthermore, regarding the arrangement of each container, a rational arrangement configuration can be adopted as appropriate in consideration of the overall size of the apparatus and the like. In addition, each tube through which liquid or gas passes can be formed of an appropriate metal material or a resin material, and a flexible material may be selected as necessary.
  • FIG. 3 A panel type configuration diagram is as shown in FIG. 3, in which a coil spring 20 acts on the movable partition wall 14. The valve was set so that 0.04 ml of water was discharged per minute.
  • Figure 4 shows the experimental results.
  • the configuration of the liquid dispensing apparatus according to the third embodiment will be described with reference to FIGS. The description will focus on the differences from the first and second embodiments.
  • the configuration of the injection valve B for injecting compressed air into the gas container 1 will be described.
  • the liquid metering device needs to be miniaturized, and the injection valve B itself is preferably miniaturized as much as possible.
  • the compressed air injected is 2 to 3 cc, and the pressure is about 0.3 to 0.5 MPa.
  • Fig. 6 As the injection valve B, one having the same structure as the valve used to inject gas into the gas lighter can be used. The configuration is shown in Fig. 6, where Fig. 6 (a) shows the valve closed, and Fig. 6 (b) shows the valve open for air injection.
  • a movable valve body 21 that is movable along the central axis of the valve support 26 is provided, and is urged by a spring 22 in the closing direction.
  • An air passage 21 a is formed in the movable valve body 21.
  • a groove 21b is formed in the central portion of the movable valve body 21 in the axial direction, and a seal member 23 is fitted therein.
  • An air injection part 21 c is provided at the end of the movable valve body 21.
  • the movable valve body 21 is supported inside the valve support body 26 by a valve lid 24.
  • the check valve 30 disposed in the liquid container 2 and the partition wall 2a of the reaction container 3 will be described.
  • the check valve 30 is a rubber product in which the engaging portion 31 and the umbrella portion 32 are integrally molded, and can be deformed by pressure.
  • the engaging portion 31 engages with the engaging hole 2c formed in the partition wall 2a.
  • a communication hole 2b is provided adjacent to the engagement hole 2c, and water is supplied to the reaction vessel 3 through the communication hole 2b. That is, when the water surface W is pressed by the pressure of the compressed air, the umbrella portion 32 is deformed through the communication hole 2b, and water is quantitatively supplied to the reaction vessel 3.
  • a pressure relief passage 2d is formed inside the partition wall 2a, one end 2e of the passage 2d is connected to the inside of the reaction vessel 3, and the other end 2f is connected to the outside air.
  • a safety valve 33 is press-fitted into the other end 2f. This is to ensure the safety of the apparatus by releasing the pressure when hydrogen is excessively supplied into the reaction vessel 3 and a large amount of hydrogen is generated.
  • the size of the passage 2d is set to about ⁇ 2.5 mm, for example, and the safety valve 33 can be made of silicon rubber formed into a truncated cone shape.
  • the safety valve 33 can be attached by press-fitting into the other end 2f of the passage 2d, and the pressure value is preferably set to about 0.5 to 2N.
  • a cooling chamber 40 is provided in the lower part of the reaction vessel 3, and contains cotton 41 (absorbent cotton or the like) infiltrated with water.
  • a communication hole 3b is provided in the partition wall 3a of the reaction vessel 3 and the cooling chamber 40, and the hydrogen gas generated in the reaction vessel 3 is supplied to the cooling chamber 40 through the communication hole 3b and is cooled in the gas state. It is discharged from the supply pipe 13.
  • a non-woven fabric 42 is provided so as to force the communication hole 3b, thereby preventing the hydrogen generating agent from falling into the cooling chamber 40.
  • the safety valve 33 when the pressure in the reaction vessel 3 becomes high, the safety valve 33 can drop from the other end 2f of the passage 2d, and the internal pressure can be released. This makes hydrogen more than necessary To ensure safety in the event of an accident.
  • a configuration of the safety valve 33 a simple configuration in which rubber is press-fitted is adopted in the present embodiment, but a safety valve having another configuration may be adopted.
  • a lid member that closes the passage 2d and a spring that biases the passage in the direction of sealing the passage by the lid member are provided, and the lid member is opened against the biasing force of the spring when the pressure increases.
  • the pressure may be released.
  • a passage may be formed on the side wall surface 3c of the force reaction vessel 3 in which the passage 2d for releasing the pressure is provided in the partition wall 2a.
  • a slit 33a is formed in the safety valve 33, and when the internal pressure rises, the slit 33a can be opened to release the pressure.
  • a pinhole 33b is formed in FIG. 8 (b).
  • the pinhole 33b can be formed, for example, by piercing and removing a needle. The structure shown in Fig. 8 (b) should be replaced with a new one once it has been activated.
  • water is stored in the cooling chamber 40 by infiltrating the cotton 41, but water may be directly stored without using the strong cotton 41. . In this case, it is preferable to provide a check valve as appropriate so that the water does not move to other areas.
  • FIG. 9 (b) is a configuration example in which a thin portion 3 d is partially formed on the side wall surface 3 c of the reaction vessel 3. According to this configuration, when the pressure in the reaction vessel 3 is increased, the thin portion 3d is destroyed, so that the internal pressure can be released.
  • a cooling chamber 40 is provided in the lower part of the reaction vessel 3, and contains cotton 41 (absorbent cotton or the like) impregnated with water.
  • a communication hole 3b is provided in the partition wall 3a of the reaction vessel 3 and the cooling chamber 40, and the hydrogen gas generated in the reaction vessel 3 is supplied to the cooling chamber 40 through the communication hole 3b and is cooled in the gas state. It is discharged from the supply pipe 13.
  • a non-woven fabric 42 is provided so as to force the communication hole 3b, thereby preventing the hydrogen generating agent from falling into the cooling chamber 40.
  • the hydrogen gas generated in the reaction vessel 3 is discharged from the gas supply pipe 13 and supplied to a fuel battery cell (not shown).
  • the fuel cell is used as an application of the liquid quantitative discharge device (method).
  • the present invention is not limited to this and can be used for other applications.
  • water may be stored in the cooling chamber 4 by penetrating the cotton 41, and water may be directly stored without using the strong cotton 41.
  • the fuel cell is used as an application of the liquid quantitative discharge device (method).
  • the present invention is not limited to this and can be used for other applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

 水等の液体を液体収容容器から送り出す場合に、その量が少量であったとしても定量で送り出すことが可能な液体定量排出装置を提供する。水が収容される液体収容容器2と、液体収容容器2から水を排出する水導出管11と、圧縮空気を収容する気体収容容器1と、気体収容容器1内の圧縮気体を液体収容容器2内へ供給する導入管6とを備え、液体収容容器2内の液体に圧縮空気を作用させることで、水導出管11から定量の水を排出可能に構成した。  

Description

明 細 書
液体定量排出装置及び液体定量排出方法
技術分野
[0001] 本発明は、少量の液体を定量供給できる液体定量排出装置及び液体定量排出方 法に関するものである。
背景技術
[0002] 燃料電池は、他の発電システムに比べると発電効率が高ぐ大気を汚染する物質を 生成しな ヽと ヽぅ点で注目されて ヽるエネルギー源である。水素供給型の燃料電池 では、発電を行わせるために、力ソードへ空気 (酸素)を供給し、アノードへ水素を供 給する。水素はアノードでの触媒反応によって水素イオン及び電子となり、水素ィォ ンは電解質内を移動し、力ソードの触媒反応により酸素と反応して水となる。一方、電 子は外部回路を伝わって力ソードに移動する。この電子の移動により電気工ネルギ 一が発生することになる。
[0003] 以上のように、燃料電池には水素等の燃料を供給する必要がある。そこで水素を発 生するための装置が種々知られており、例えば、特開 2004— 63127号公報ゃ特開 2004— 59340号公報に開示されて 、る。これらは 、ずれも炭化水素を分解すること で水素を発生させるものである。これら先行技術における水素発生装置は、円筒形 の熱供給器と同じく円筒形の反応器により構成されている。
[0004] また、特開 2004— 149394号公報に開示されている水素ガス発生ユニットは、水( 反応液に相当)を収容するためのタンクと、水との化学反応により水素を生成する金 属 (水素発生剤に相当)を収容する反応容器と、この反応容器に近接配置される加 熱手段と、タンクに収容された水を反応容器に導入するための導入管と、反応容器 で生成した水素及び未反応の水をタンク内に導入する戻り管と、タンク内の水素及び 水を排出する排出管とを備えている。そしてタンクの水を反応容器に導入するために ポンプを使用しており、これにより、水を反応容器に供給する量を制御している。反応 容器は、装置本体内に収容され、加熱手段により密着保持される。これにより、反応 容器内に導入された水が加熱されて水蒸気になるとともに、反応容器内の水素ガス を発生させるための反応を促進させることができる。
発明の開示
発明が解決しょうとする課題
[0005] 上記のような水素発生装置において、水を反応容器内に送り込む量を一定に制御 するのが望ましい場合がある。例えば、多量の水を送り込むと必要以上の水素ガスが 発生してしまうという問題がある。水の送り量を制御(制限)するには、ポンプを用いる ことが好ましいが、ポンプを収容するスペースや駆動する機構が必要となり、コストア ップゃ装置の大型化の原因となる。特に、水素発生装置をノートパソコン、 PDA,携 帯電話などの携帯機器に組み込む場合等は、できるだけ小型化を実現できる構成 が要求される。すなわち、ポンプを用いなくても水を供給できるような小型の液体供給 装置を備えた水素発生装置が望まれている。また、携帯機器用の水素発生装置の 場合は、水を反応容器内に送り込む量もごく少量 (例えば、 1時間当たり 2〜3cc)で あり、力かる少量の水を定量で送り込めるような構成が要求される。
[0006] さらに、水を収容部に収容する場合に、例えば、収容部の天地が逆の状態になつ たとしても、その姿勢に関係なく水を定量で送り込めるような構成も要求される。
[0007] 本発明は上記実情に鑑みてなされたものであり、その課題は、水等の液体を液体 収容容器から送り出す場合に、その量が少量であったとしても定量で送り出すことが 可能な液体定量排出装置及び液体定量排出方法を提供することである。
[0008] 本発明のもう 1つの課題は、水等の液体を液体収容容器から送り出す場合に、その 量が少量であったとしても定量で送り出すことが可能であり、更に姿勢に影響すること なく液体を送り出すことが可能な液体定量排出装置及び液体定量排出方法を提供 することである。
課題を解決するための手段
[0009] 上記課題を解決するため本発明に係る液体定量排出装置は、
液体が収容される液体収容容器と、
液体収容容器から液体を排出する液体排出路と、
圧縮気体を収容する気体収容容器と、
気体収容容器内の圧縮気体を液体収容容器内へ供給する気体供給路とを備え、 液体収容容器内の液体に圧縮気体を作用させることで、液体排出路から定量液体 を排出可能に構成したことを特徴とするものである。
[0010] 力かる構成による液体定量排出装置の作用 ·効果を説明する。この装置は液体が 収容される液体収容容器と、圧縮気体が収容される気体収容容器を備えており、こ れらは気体供給路により連結されている。液体収容容器内の液体は、液体排出路か ら排出(送り出し)されるが、その排出作用を行わせるために、圧縮気体を液体に対し て作用させる。圧縮気体を作用させることで、液体収容容器内の液面に均一に圧力 を作用させるようにでき、少量であっても液体排出路カも液体を定量排出させること ができる。排出量は、圧縮気体による圧力値などにより調整することができる。その結 果、水等の液体を液体収容容器から送り出す場合に、その量が少量であったとして も定量で送り出すことが可能な液体定量排出装置を提供することができる。
[0011] 本発明において、液体収容容器内を仕切るように配設される可動隔壁部を備え、こ の可動隔壁部により仕切られた一方側に液体を収容し、他方側に圧縮気体を導入 するように構成したことが好ま 、。
[0012] この構成〖こよると、圧縮気体を作用させる場合、液面に直接作用させるのではなぐ 可動隔壁部を介して作用させる。これにより、液面全体をより均一に押圧することがで き、少量の液体を定量排出することができる。
[0013] 本発明に係る、気体供給路には、気体供給量を制御する制御機構が設けられるこ とが好ましい。
[0014] 力かる制御機構を設けることで、気体供給量を制御することができるため、液体に 対して作用させる圧力値も変えることができる。これにより、液体排出路から送り出す べき液体の量を調整することができる。
[0015] 本発明にお 、て、液体は水素発生剤と反応して水素ガスを発生する反応液であり 、液体排出路から排出される反応液は、水素発生剤が収容された反応容器へ供給さ れるように構成されて 、ることが好まし 、。
[0016] これにより、液体収容容器内の水を反応容器に対して定量供給することができる。
また、ごく少量の水であっても一定量を供給し続けることができるため、反応容器にお いて発生する水素ガスの量も適切となるように制御することができる。従って、特に携 帯機器用に用いられる燃料電池システムにおいて好適に用いることができる。
[0017] 上記課題を解決するため本発明に係る液体定量排出方法は、
液体収容容器に収容されている液体に対して圧縮気体を作用させるステップと、 この圧縮気体の作用により液体を液体収容容器から定量排出するステップと、を有 することを特徴とするものである。
[0018] この構成によると、既に述べたように、圧縮気体を作用させることで、液体収容容器 内の液面に均一に圧力を作用させるようにでき、少量であっても液体排出路カも液 体を定量排出させることができる。排出量は、圧縮気体による圧力値などにより調整 することができる。その結果、水等の液体を液体収容容器から送り出す場合に、その 量が少量であったとしても定量で送り出すことが可能な液体定量排出方法を提供す ることがでさる。
[0019] 本発明にお 、て、液体は水素発生剤と反応して水素ガスを発生する反応液であり
、液体収容容器から排出される反応液が水素発生剤が収容された反応容器へ供給 されるステップを有することが好ま 、。
[0020] この構成によると、ごく少量の水であっても一定量を供給し続けることができるため、 反応容器にぉ 、て発生する水素ガスの量も適切となるように制御することができる。
[0021] 本発明に係る前記もう 1つの課題を解決するため本発明に係る液体定量排出装置 は、
液体が収容される液体収容容器と、
液体収容容器から液体を排出する液体排出路と、
圧縮気体を収容する気体収容容器と、
気体収容容器内の圧縮気体を液体収容容器内へ供給する気体供給路と、 気体供給路の液体収容容器側端部に取り付けられた膨張性を有する袋部材とを 備え、
この袋部材内に圧縮気体を供給していくことにより液体収容容器内で袋部材を膨 張させ、袋部材が膨張した体積分の液体を液体排出路から排出するように構成した ことを特徴とするものである。
[0022] 力かる構成による液体定量排出装置の作用 ·効果を説明する。この装置は液体が 収容される液体収容容器と、圧縮気体が収容される気体収容容器を備えており、こ れらは気体供給路により連結されている。液体収容容器内の液体は、液体排出路か ら排出(送り出し)されるが、その排出作用を行わせるために、圧縮気体を液体に対し て作用させる。ここで、気体供給路の液体収容容器側端部に袋部材が取り付けられ ており、圧縮気体は、この袋部材内に徐々に送り込まれていく。袋部材は膨張性を有 しており、圧縮気体が送り込まれることで徐々に膨張していく。液体収容容器内で袋 部材が膨張することで、その膨張した体積分の液体が液体排出路力 排出される。こ のように、袋部材を介して圧縮気体を作用させることで、液体収容容器内の液体に均 一に圧力を作用させるようにでき、少量であっても液体排出路力 液体を定量排出さ せることができる。また、袋部材により液体に圧力を作用させるため、液体定量排出 装置の姿勢に関係なぐ液体に対して同じ圧力を作用させることができる。その結果 、水等の液体を液体収容容器から送り出す場合に、その量が少量であったとしても 定量で送り出すことが可能であり、更に姿勢に影響することなく液体を送り出すことが 可能な液体定量排出装置を提供することができる。
[0023] 本発明にお 、て、気体供給路には、気体供給量を制御する制御機構が設けられる ことが好ましい。
[0024] 力かる制御機構を設けることで、気体供給量を制御することができるため、液体に 対して作用させる圧力値も変えることができる。これにより、液体排出路から送り出す べき液体の量を調整することができる。
[0025] 本発明にお 、て、液体は水素発生剤と反応して水素ガスを発生する反応液であり 、液体排出路から排出される反応液は、水素発生剤が収容された反応容器へ供給さ れるように構成されて 、ることが好まし 、。
[0026] これにより、液体収容容器内の水を反応容器に対して定量供給することができる。
また、ごく少量の水であっても一定量を供給し続けることができるため、反応容器にお いて発生する水素ガスの量も適切となるように制御することができる。従って、特に携 帯機器用に用いられる燃料電池システムにおいて好適に用いることができる。
[0027] 上記課題を解決するため本発明に係る液体定量排出方法は、
液体収容容器に収容されている液体に対して気体供給路を介して圧縮気体を作 用させるステップと、
この圧縮気体の作用により液体を液体収容容器に設けられた液体排出路力 排出 するステップとを有し、
圧縮気体を作用させるステップにおいて、気体供給路の液体収容容器側端部に取 り付けられた膨張性を有する袋部材内に圧縮気体を供給していくことにより液体収容 容器内で袋部材を膨張させ、この袋部材が膨張した体積分の液体を液体排出路か ら排出するように構成したことを特徴とするものである。
[0028] この構成によると、既に述べたように、袋部材を介して圧縮気体を作用させることで 、液体収容容器内の液体に均一に圧力を作用させるようにでき、少量であっても液 体排出路力 液体を定量排出させることができる。また、袋部材により液体に圧力を 作用させるため、液体定量排出装置の姿勢に関係なぐ液体に対して同じ圧力を作 用させることができる。
[0029] 本発明にお 、て、液体は水素発生剤と反応して水素ガスを発生する反応液であり 、液体収容容器から排出される反応液が水素発生剤が収容された反応容器へ供給 されるステップを有することが好ま 、。
[0030] この構成によると、ごく少量の水であっても一定量を供給し続けることができるため、 反応容器にぉ 、て発生する水素ガスの量も適切となるように制御することができる。 図面の簡単な説明
[0031] [図 1]第 1実施形態に係る液体定量排出装置の構成を示す概念図
[図 2]第 2実施形態に係る液体定量排出装置の構成を示す概念図
[図 3]パネ式の構成 (比較例)を示す図
[図 4]実験結果を示すグラフ
[図 5]第 3実施形態に係る液体定量排出装置の構成を示す概念図
[図 6]空気注入部の構成を示す図
[図 7]第 4実施形態に係る液体定量排出装置の構成を示す概念図
[図 8]第 4実施形態に係る液体定量排出装置の変形例を示す概念図
[図 9]安全弁の別実施形態を示す図
[図 10]第 5実施形態に係る液体定量排出装置の構成を示す概念図 [図 11]袋部材の作用を説明する図
[図 12]液体定量排出装置をひっくり返した状態を示す図
符号の説明
[0032] 1 気体収容容器
2 液体収容容器
3 反 J心容器
6 導入管
7 バルブ
10 水素発生剤
11 水導出管
12 逆止弁
14 可動隔壁部
30 逆止弁
33 安全弁
40 冷却室
B 注入バルブ
W 水面
発明を実施するための最良の形態
[0033] 本発明に係る液体定量排出装置及び液体定量排出方法の好適な実施形態を図 面を用いて説明する。
[0034] <第 1実施形態 >
図 1は、第 1実施形態に係る液体定量排出装置の構成を示す概念図である。この 液体定量排出装置は、気体収容容器 1と液体収容容器 2を備えている。気体収容容 器 1には、圧縮空気が収容される。なお、空気に代えて窒素等の他の気体を使用し てもよい。気体収容容器 1の上壁面に導入管 4と逆止弁 5が設けられており、この導 入管 4を介して気体収容容器 1内に空気が導入される。導入される空気の量は例え ば 3cc程度であり、 3気圧程度に圧縮された状態で収容される。逆止弁 5としては、任 意のタイプのものを使用することができ、装置全体の小型化を図る上で、 1次側が 2次 側の圧力より大のときに開口し、小のときには閉口するくちばし状の弾性部材を備え る逆止弁が好ましい。この逆止弁 5は、例えば、ダックビルと呼ばれており、各種のも のが市販されている。他の場所に使用される逆止弁についても同様とすることができ る。
[0035] 液体収容容器 2内には反応液としての水が収容される。この水は、水素発生剤と反 応して水素ガスを発生させる反応液として機能するものであり、水以外に酸やアル力 リの溶液を使用してもょ ヽ。液体収容容器 2内に収容される水の量も 3cc程度である 。容器壁面には、導入管 8と逆止弁 9が設けられ、この導入管 8を介して液体収容容 器 2内に水を導入することができる。
[0036] 気体収容容器 1と液体収容容器 2とは、気体供給路である連通管 6により連結され ており、この連通管 6の途中にはバルブ 7が設けられている。バルブ 7は、この連通管 6を通過する圧縮空気の量を制御する制御機構として機能するものであり、気体収容 容器 1内に空気を導入する際には、このノ レブ 7は閉じた状態とする。バルブ 7を開く ことで、気体収容容器 1内の空気が液体収容容器 2内に導入され、水面 Wを押圧作 用する。
[0037] 反応容器 3内には水素発生剤 10が収容されている。水素発生剤 10としては、水等 の反応液と反応して水素ガスを発生する金属、例えば、 Fe, Al, Mg, Zn, Siなどか ら選ばれる一種以上の金属の粒子や、これらが部分的に酸化された金属の粒子があ げられる。また、水素発生剤 10は、触媒成分やアルカリ土類金属酸化物、カーボン ブラック等を含むものであってもよい。水素発生剤 10は、粉末状であってもよぐ造粒 、又はタブレット化したものであってもよい。
[0038] 反応容器 3と液体収容容器 2とは、水導出管 11と逆止弁 12により連結されている。
従って、圧縮空気による押圧される水は、この水導出管 11を介して反応容器 3内に 送り込まれる。逆止弁 12を設けることで、導入された水が逆流したり、反応容器 3で発 生した水素ガスが液体収容容器 2側に侵入しないように構成している。ガス供給管 1 3からは、反応容器 3内で発生した水素ガスが排出され、不図示の燃料電池セルに 供給されること〖こなる。
[0039] 気体収容容器 1、液体収容容器 2、反応容器 3については、強度や耐食性などを考 慮して、適宜の金属材料、榭脂材料、ガラス等により形成することができる。また、各 容器を 1部品で構成する力、複数部品で構成するかについても任意である。また、各 容器の形状 '大きさについては、使用目的 ·仕様等に基づいて、適宜定めることがで きる。さらに、各容器の配置についても、装置全体の大きさ'デザイン等を考慮して適 宜合理的な配置構成を採用することができる。また、液体や気体を通過させる各管に ついても、適宜の金属材料ゃ榭脂材料で形成することができ、必要に応じて柔軟性 を有する材料を選択してもよ ヽ。
[0040] 本発明に係る液体定量排出装置によれば、バルブ 7を閉じた状態で気体収容容器 1内に圧縮空気を収容させ、その後、バルブ 7を所定量開くことで、液体収容容器 2 内に圧縮空気を送り込むことができる。これにより、液体収容容器 2内の水の水面 W が圧縮空気により押圧され、この押圧作用により、水導出管 11から水が反応容器 3 内へ排出される。圧縮空気により水面 Wを押圧しているので、水面全体にわたって均 一で安定した圧力を付与することができるため、常時一定量の水を水導出管 11から 送り出すことができる。また、圧縮空気による押圧力を作用させることで、 1時間当たり 2〜3ccの少量であったとしても、定量を安定して送り出すことができる。水が徐々に 排出されていくに従い、水面 Wも低下し、その分、気体収容容器 1側から圧縮空気が 液体収容容器 2内に送り込まれることになる。
[0041] <第 2実施形態 >
次に、第 2実施形態に係る液体定量排出装置の構成を図 2により説明する。図 1と 異なる点を中心に説明する。図 2において、液体収容容器 2の内部には、液体収容 容器 2内を仕切るように配置される可動隔壁部 14が設けられて 、る。図示するように 、可動隔壁部 14は水面 Wの上に配置され、可動隔壁部 14の水面 Wとは反対側の面 が圧縮空気により押圧される構成となっている。力かる可動隔壁部 14を設けることで 、より均一に水面 Wを押圧することができ、更に安定した状態で水を定量排出できる ようになる。
[0042] 可動隔壁部 14はプレート状の部材であり、適宜の材料により形成することができ、 例えばすベり性のよいガラス等を用いることができる。また、可動隔壁部 14を設けるこ とで、液体収容容器 2の姿勢が天地逆になつたとしても、可動隔壁部 14の全面を圧 縮空気により押圧して 、るため、水がひっくり返ることがな!、。
[0043] <実験結果 >
本発明による構成の効果を確認するために実験を行った。本発明に対する比較例 として、パネで押圧する方式により実験を行った。パネ式の構成図は図 3に示す通り であり、可動隔壁部 14にコイルスプリング 20が作用する構成である。液体収容容器 力もは 1分間当たり 0. 04mlの水が排出するようにバルブを設定した。実験結果を図 4に示す。
[0044] 図 4に示すように、パネ式の場合は、水の排出量が安定しておらず、時間が経つに つれて排出量が減少する傾向がある。これに対して、本発明の場合は、時間の経過 にかかわらず、ほぼ安定した状態で水を排出できていることがわかる。従って、少量 の水を定量で送り出すことが可能であることが確認できた。
[0045] <第 3実施形態 >
次に、第 3実施形態に係る液体定量排出装置の構成を図 5, 6により説明する。第 1 実施形態、第 2実施形態と異なる点を中心に説明する。圧縮空気を気体収容容器 1 に注入するための注入バルブ Bの構成を説明する。携帯機器に使用する燃料電池 用に液体定量排出装置を用いる場合、液体定量排出装置には小型化が要求され、 注入バルブ B自体もできるだけ小型化することが好ま 、。ちなみに上記用途の場合 、注入される圧縮空気は 2〜3cc、圧力は 0. 3〜0. 5MPa程度である。
[0046] 注入バルブ Bとしては、ガスライターにガスを注入するのに用いられているバルブと 同じ構造のものを使用することができる。その構成を図 6に示し、図 6 (a)はバルブが 閉じた状態を示し、 (b)は空気注入のためにバルブが開いた状態を示す。
[0047] 図 6に示すように、弁支持体 26の中心軸に沿って移動可能な可動弁体 21が設けら れており、スプリング 22により閉じる方向に付勢されている。可動弁体 21の内部には 空気通路 21aが形成されている。可動弁体 21の軸方向中央部には溝 21bが形成さ れ、シール部材 23が嵌め込まれている。可動弁体 21の端部には空気注入部 21cが 設けられる。可動弁体 21は弁蓋 24により、弁支持体 26の内部に支持される。
[0048] 気体収容容器 1内に圧縮空気を注入するときは、図 6 (b)に示すように空気ボンべ 2 5により可動弁体 21が押圧される状態となる。これにより、可動弁体 21内の空気通路 21aが気体収容容器 1内部と連通する状態となり、空気を注入することができる。
[0049] 次に、液体収容容器 2と反応容器 3の隔壁 2aに配置される逆止弁 30について説明 する。この逆止弁 30として、アンブレラと呼ばれるものを使用する。逆止弁 30は、係 合部 31と傘部 32とが一体成型されたゴム製品であり、圧力により変形可能である。 係合部 31により、隔壁 2aに形成された係合穴 2cに係合される。また、係合穴 2cに隣 接して連通孔 2bが設けられており、この連通孔 2bを介して水が反応容器 3へ供給さ れる。すなわち、圧縮空気の圧力により水面 Wが押圧されると、連通孔 2bを介して傘 部 32を変形させ、水が反応容器 3へと定量供給される。
[0050] <第 4実施形態 >
次に、第 4実施形態に係る液体定量排出装置の構成を図 7により説明する。第 3実 施形態と類似する構造であり、第 3実施形態と異なる点を中心に説明する。この実施 形態では、隔壁 2aの内部に圧力逃がし通路 2dが形成されており、この通路 2dの一 端部 2eは反応容器 3の内部につながり、他端部 2fは外気につながつている。そして 、この他端部 2fには、安全弁 33が圧入されている。これは、水が反応容器 3内に過 剰に供給されて水素が多量に発生した場合に、圧力を逃がすことで装置の安全性を 確保するものである。
[0051] 通路 2dの大きさとしては、例えば φ 2. 5mm程度に設定し、安全弁 33としては、円 錐台形に成形されたシリコンゴムで製作することができる。安全弁 33は、通路 2dの他 端部 2fに圧入することで取り付けることができ、圧力値の大きさとしては 0. 5〜2N程 度に設定することが好まし 、。
[0052] 反応容器 3の下部には冷却室 40が設けられており、水が浸透させられた綿 41 (脱 脂綿等)が収容されている。反応容器 3と冷却室 40の隔壁 3aに連通孔 3bが設けられ ており、反応容器 3において発生した水素ガスは、この連通孔 3bを介して冷却室 40 に供給され、冷却された状態でガス供給管 13から排出される。また、連通孔 3bを力 バーするように不織布 42が設けられており、水素発生剤が冷却室 40内へ落ち込む ことを防止する。
[0053] 以上の構成によれば、反応容器 3内の圧力が高くなると、安全弁 33が通路 2dの他 端部 2fから脱落し、内部の圧力を逃がすことができる。これにより、水素が必要以上 に発生した場合の安全性を確保する。安全弁 33の構成としては、本実施形態ではゴ ムを圧入するという簡易な構成を採用しているが、他の構成による安全弁を採用して もよい。例えば、通路 2dを閉鎖する蓋部材と、この蓋部材により通路を封鎖する方向 に付勢するスプリングを設けておき、圧力が高くなつたときにこのスプリングの付勢力 に抗して蓋部材を開くことで、圧力を逃がすようにしてもよい。また、本実施形態では 圧力を逃がすための通路 2dを隔壁 2aに設けている力 反応容器 3の側壁面 3cに通 路を形成してもよい。
[0054] 次に、図 8により、ゴム製の安全弁 33の別実施形態を説明する。図 8 (a)では、安全 弁 33にスリット 33aが形成されており、内部の圧力が上昇した場合、スリット 33aが開 き圧力を逃がすことができる。図 8 (b)はピンホール 33bが形成されており、同様に内 部の圧力が上昇した場合、スリット 33aが開き圧力を逃がすことができる。ピンホール 33bは、例えば、ニードルを刺して抜くことで形成することができる。図 8 (b)の構造は 、一度動作した場合は新し 、ものに取り替えることが好ま 、。
[0055] 本実施形態では、冷却室 40内への水の収容を綿 41に浸透させることで行なって いるが、力かる綿 41を使用せずに、水を直接収容するようにしてもよい。この場合、水 が他の領域に移動しな 、ように適宜、逆止弁を設けることが好ま 、。
[0056] 次に、第 4実施形態の変形例について、図 9により説明する。図 9 (a)は、圧力逃が し通路 2dの一端部を水を供給するための連通孔 2bに設けている。この構成によると 、反応容器 3内の圧力が高まった場合は、液体収容容器 2から供給される水を通路 2 dを介して逃がすようにすることができる。図 9 (a)では、 1つの連通孔 2bについての み、通路 2dを設けている力 他の連通孔 2bについても同様に通路 2dを設けてもよい
[0057] 図 9 (b)は、反応容器 3の側壁面 3cに部分的に薄肉部 3dを形成した構成例である 。この構成によると、反応容器 3内の圧力が高くなると、この薄肉部 3dが破壊すること で、内部の圧力を逃がすことができる。
[0058] <第 5実施形態 >
図 10は、第 5実施形態に係る液体定量排出装置の構成を示す概念図である。第 4 実施形態と類似する構造であり、第 4実施形態と異なる点を中心に説明する。この液 体定量排出装置は、気体収容容器 1と液体収容容器 2と反応容器 3と冷却室 40を備 えている。気体収容容器 1には、圧縮空気が収容される。なお、空気に代えて窒素等 の他の気体を使用してもよい。気体収容容器 1の上壁面に注入バルブ Bが設けられ ており、この注入バルブ Bを介して気体収容容器 1内に空気が導入される。導入され る空気の量は例えば 2〜3cc程度であり、空気圧力は 0. 3〜0. 5MPa程度に圧縮さ れた状態で収容される。注入バルブ Bとしては、ガスライターにガスを注入するのに 用いられて 、るバルブと同じ構造のものを使用することができる。
[0059] 逆止弁 9としては、任意のタイプのものを使用することができ、装置全体の小型化を 図る上で、 1次側が 2次側の圧力より大のときに開口し、小のときには閉口するくちば し状の弾性部材を備える逆止弁が好ましい。この逆止弁 9は、例えば、ダックビルと呼 ばれており、各種のものが市販されている。他の場所に使用される逆止弁についても 同様とすることができる。
[0060] 連通管 6の端部 6aは、液体収容容器 2内に挿入されており、さらにこの端部 6aには 袋部材 15が強固に取り付けられている。従って、連通管 6を介して送り込まれる圧縮 空気は、この袋部材 15の内部に送り込まれ、袋部材 15を徐々に膨張させていく。従 つて、袋部材 15は、膨張性を有する材料により製作される。袋部材 15としては、例え ば、ウレタン榭脂等の熱可塑性榭脂、シリコーンゴム等の熱硬化性榭脂、天然ゴム等 を用いて製作することができる。また、袋部材 15は膨張性を有していればよいので、 非弾性体であってもよい。バルブ 7を開くことで、気体収容容器 1内の空気が液体収 容容器 2内に導入され、袋部材 15が膨張することで、液体収容容器 2内の水に対し て圧力を作用する。
[0061] 次に、液体収容容器 2と反応容器 3の隔壁 2aに配置される逆止弁 30について説明 する。この逆止弁 30として、アンブレラと呼ばれるものを使用する。逆止弁 30は、係 合部 31と傘部 32とが一体成型されたゴム製品であり、圧力により変形可能である。 係合部 31により、隔壁 2aに形成された係合穴 2cに係合される。また、係合穴 2cに隣 接して連通孔 2b (液体排出路に相当)が設けられており、この連通孔 2bを介して水 が反応容器 3へ供給される。すなわち、圧縮空気の圧力により水に圧力が作用すると 、連通孔 2bを介して傘部 32を変形させ、水が反応容器 3へと定量供給される。 [0062] 反応容器 3の下部には冷却室 40が設けられており、水が浸透させられた綿 41 (脱 脂綿等)が収容されている。反応容器 3と冷却室 40の隔壁 3aに連通孔 3bが設けられ ており、反応容器 3において発生した水素ガスは、この連通孔 3bを介して冷却室 40 に供給され、冷却された状態でガス供給管 13から排出される。また、連通孔 3bを力 バーするように不織布 42が設けられており、水素発生剤が冷却室 40内へ落ち込む ことを防止する。ガス供給管 13からは、反応容器 3内で発生した水素ガスが排出され 、不図示の燃料電池セルに供給されることになる。
[0063] 気体収容容器 1、液体収容容器 2、反応容器 3、冷却室 40については、強度ゃ耐 食性などを考慮して、適宜の金属材料、榭脂材料、ガラス等により形成することがで きる。また、各容器を 1部品で構成する力、複数部品で構成するかについても任意で ある。また、複数の容器を 1部品で構成するようにしてもよい。
[0064] 本発明に係る液体定量排出装置によれば、バルブ 7を閉じた状態で気体収容容器 1内に圧縮空気を収容させ、その後、バルブ 7を所定量開くことで、液体収容容器 2 内の袋部材 15に圧縮空気を送り込むことができる。袋部材 15の内部には、徐々に圧 縮空気が送り込まれていき、袋部材 15は徐々に膨張する。膨張していく過程を図 11 (a)→(b)→(c)に示す。袋部材 15が膨張していくことで、膨張した体積の分だけ液 体収容容器 2の水が反応容器 3の方に押し出されることになる。
[0065] 圧縮空気により水を押圧しているので、水全体にわたって均一で安定した圧力を付 与することができるため、常時一定量の水を連通管 2bから送り出すことができる。また 、圧縮空気による押圧力を作用させることで、 1時間当たり 2〜3ccの少量であつたと しても、定量を安定して送り出すことができる。
[0066] 図 12は、液体定量排出装置の天地を逆にした状態であるが、かかる場合であって も、袋部材 15を介して圧縮空気により水を均等に押圧することができるため、水を定 量供給する能力に対して何らの悪影響を及ぼすことがない。従って、本発明に係る 液体定量排出装置は、装置の姿勢に関係なく定量の水を供給することができる。
[0067] <別実施形態 >
以上、本発明に係る液体定量排出装置について、種々の実施形態を説明してきた 。これらの各実施形態において採用されている構成は、他の実施形態においても適 宜採用することができる。
[0068] 本実施形態において、液体定量排出装置 (方法)の用途として燃料電池をあげて いるが、これに限定されるものではなぐ他の用途にも用いることができる。
[0069] 本実施形態において、反応容器 3への水の供給は、連通孔 2bと安全弁 30により行 なっているが、これに代えて、導入管と逆止弁の組み合わせにより液体排出路を構 成してちょい。
[0070] 本実施形態では、冷却室 4内への水の収容を綿 41に浸透させることで行なって 、 る力 力かる綿 41を使用せずに、水を直接収容するようにしてもよい。この場合、水が 他の領域に移動しな 、ように適宜、逆止弁を設けることが好ま 、。
[0071] 本実施形態において、液体定量排出装置 (方法)の用途として燃料電池をあげて いるが、これに限定されるものではなぐ他の用途にも用いることができる。

Claims

請求の範囲
[1] 液体が収容される液体収容容器と、
液体収容容器から液体を排出する液体排出路と、
圧縮気体を収容する気体収容容器と、
気体収容容器内の圧縮気体を液体収容容器内へ供給する気体供給路とを備え、 液体収容容器内の液体に圧縮気体を作用させることで、液体排出路から定量液体 を排出可能に構成したことを特徴とする液体定量排出装置。
[2] 請求項 1に記載の液体定量排出装置であって、
液体収容容器内を仕切るように配設される可動隔壁部を備え、この可動隔壁部に より仕切られた一方側に液体を収容し、他方側に圧縮気体を導入するように構成した
[3] 請求項 1に記載の液体定量排出装置であって、
気体供給路には、気体供給量を制御する制御機構が設けられる。
[4] 請求項 1に記載の液体定量排出装置であって、
液体は水素発生剤と反応して水素ガスを発生する反応液であり、液体排出路から 排出される反応液は、水素発生剤が収容された反応容器へ供給されるように構成さ れている。
[5] 液体収容容器に収容されている液体に対して圧縮気体を作用させるステップと、 この圧縮気体の作用により液体を液体収容容器から定量排出するステップと、を有 することを特徴とする液体定量排出方法。
[6] 請求項 5に記載の液体定量排出方法であって、
液体は水素発生剤と反応して水素ガスを発生する反応液であり、液体収容容器か ら排出される反応液が水素発生剤が収容された反応容器へ供給されるステップを有 する。
[7] 液体が収容される液体収容容器と、
液体収容容器から液体を排出する液体排出路と、
圧縮気体を収容する気体収容容器と、
気体収容容器内の圧縮気体を液体収容容器内へ供給する気体供給路と、 気体供給路の液体収容容器側端部に取り付けられた膨張性を有する袋部材とを 備え、
この袋部材内に圧縮気体を供給していくことにより液体収容容器内で袋部材を膨 張させ、袋部材が膨張した体積分の液体を液体排出路から排出するように構成した ことを特徴とする液体定量排出装置。
[8] 請求項 7に記載の液体定量排出装置であって、
気体供給路には、気体供給量を制御する制御機構が設けられる。
[9] 請求項 7に記載の液体定量排出装置であって、
液体は水素発生剤と反応して水素ガスを発生する反応液であり、液体排出路から 排出される反応液は、水素発生剤が収容された反応容器へ供給されるように構成さ れている。
[10] 液体収容容器に収容されて!ヽる液体に対して気体供給路を介して圧縮気体を作 用させるステップと、
この圧縮気体の作用により液体を液体収容容器に設けられた液体排出路力 排出 するステップとを有し、
圧縮気体を作用させるステップにおいて、気体供給路の液体収容容器側端部に取 り付けられた膨張性を有する袋部材内に圧縮気体を供給していくことにより液体収容 容器内で袋部材を膨張させ、この袋部材が膨張した体積分の液体を液体排出路か ら排出するように構成したことを特徴とする液体定量排出方法。
[11] 請求項 10に記載の液体定量排出方法であって、
液体は水素発生剤と反応して水素ガスを発生する反応液であり、液体収容容器か ら排出される反応液が水素発生剤が収容された反応容器へ供給されるステップを有 する。
PCT/JP2007/053652 2006-03-01 2007-02-27 液体定量排出装置及び液体定量排出方法 WO2007102342A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/280,703 US20090004512A1 (en) 2006-03-01 2007-02-27 Liquid Constant-Rate Emitting Apparatus and Method of Liquid Constant-Rate Emmision
EP07714995A EP2006018A4 (en) 2006-03-01 2007-02-27 CONSTANT RATE LIQUID-RELATED APPARATUS AND METHOD FOR DISPENSING LIQUID AT A CONSTANT RATE
CN2007800073852A CN101394920B (zh) 2006-03-01 2007-02-27 液体定量排出装置和液体定量排出方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-055285 2006-03-01
JP2006055285 2006-03-01
JP2006-113416 2006-04-17
JP2006-113398 2006-04-17
JP2006113398A JP2007265950A (ja) 2006-03-01 2006-04-17 液体定量排出装置及び液体定量排出方法
JP2006113416A JP2007283210A (ja) 2006-04-17 2006-04-17 液体定量排出装置及び液体定量排出方法

Publications (1)

Publication Number Publication Date
WO2007102342A1 true WO2007102342A1 (ja) 2007-09-13

Family

ID=38474780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053652 WO2007102342A1 (ja) 2006-03-01 2007-02-27 液体定量排出装置及び液体定量排出方法

Country Status (6)

Country Link
US (1) US20090004512A1 (ja)
EP (1) EP2006018A4 (ja)
KR (1) KR20090003284A (ja)
CN (1) CN101394920B (ja)
TW (1) TWI413550B (ja)
WO (1) WO2007102342A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1405581B1 (it) * 2009-03-10 2014-01-17 Univ Padova Produzione in situ di idrogeno tramite processo in splitting di acqua mediato da metalli o da specie inorganiche differenti dal litio e formanti leghe con il sodio
TW201213229A (en) 2010-09-30 2012-04-01 Young Green Energy Co Hydrogen production device, hydrogen addition device and hydrogen-additive article
CA2817086A1 (en) * 2010-11-08 2012-05-18 Signa Chemistry, Inc. Water reactive hydrogen fuel cell power system
CN102556962B (zh) 2010-12-30 2013-10-16 扬光绿能股份有限公司 氢气产生装置
CN103219534A (zh) 2012-01-19 2013-07-24 扬光绿能股份有限公司 燃料电池***及其控制方法
JP5980461B1 (ja) * 2015-06-18 2016-08-31 浩章 皆川 水素溶解液体吐出ポットおよび加圧された水素溶解液体を生成する方法
CN107349876A (zh) * 2017-08-30 2017-11-17 重庆博张机电设备有限公司 一种固碱生产设备及其碱液加糖装置
CN108404315B (zh) * 2018-03-01 2021-07-27 北方工业大学 一种安装式快速充气装置
CN108731961A (zh) * 2018-05-21 2018-11-02 苏州阿洛斯环境发生器有限公司 一种人工尘发生方法以及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123530U (ja) * 1990-03-28 1991-12-16
JPH09173817A (ja) * 1995-10-24 1997-07-08 Kenzo Yoshida ガス圧式加圧送水装置
JP2004063127A (ja) 2002-07-25 2004-02-26 Japan Storage Battery Co Ltd 燃料電池装置
JP2004059340A (ja) 2002-07-25 2004-02-26 Japan Storage Battery Co Ltd 水素製造装置
JP2004149394A (ja) 2002-11-01 2004-05-27 Uchiya Thermostat Kk 水素発生装置
JP2005089253A (ja) * 2003-09-18 2005-04-07 Iwatani Internatl Corp 水素発生方法及びその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1041925B (de) * 1957-03-11 1958-10-30 Riedel De Haeen Ag Vorrichtung zum Konstanthalten der Ausflussgeschwindigkeit einer Fluessigkeit
US5499758A (en) * 1994-08-19 1996-03-19 Mccann's Engineering & Manufacturing Co. Liquid dispenser for use with containers
DE19504556C2 (de) * 1995-02-11 1999-01-14 Sig Combibloc Gmbh Vorrichtung zum Dosieren einer vorgebbaren Menge einer Flüssigkeit
US5677108A (en) * 1995-04-28 1997-10-14 Polaroid Corporation On-press removable quenching overcoat for lithographic plates
US7481858B2 (en) * 2005-02-25 2009-01-27 Societe Bic Hydrogen generating fuel cell cartridges
US7674540B2 (en) * 2003-10-06 2010-03-09 Societe Bic Fuel cartridges for fuel cells and methods for making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123530U (ja) * 1990-03-28 1991-12-16
JPH09173817A (ja) * 1995-10-24 1997-07-08 Kenzo Yoshida ガス圧式加圧送水装置
JP2004063127A (ja) 2002-07-25 2004-02-26 Japan Storage Battery Co Ltd 燃料電池装置
JP2004059340A (ja) 2002-07-25 2004-02-26 Japan Storage Battery Co Ltd 水素製造装置
JP2004149394A (ja) 2002-11-01 2004-05-27 Uchiya Thermostat Kk 水素発生装置
JP2005089253A (ja) * 2003-09-18 2005-04-07 Iwatani Internatl Corp 水素発生方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006018A4 *

Also Published As

Publication number Publication date
EP2006018A2 (en) 2008-12-24
KR20090003284A (ko) 2009-01-09
EP2006018A9 (en) 2009-07-15
TW200744757A (en) 2007-12-16
TWI413550B (zh) 2013-11-01
US20090004512A1 (en) 2009-01-01
EP2006018A4 (en) 2011-11-23
CN101394920A (zh) 2009-03-25
CN101394920B (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2007102342A1 (ja) 液体定量排出装置及び液体定量排出方法
JP4459626B2 (ja) 液体供給燃料電池システムのための燃料容器及び送出装置
JP5779570B2 (ja) 圧力調整バルブ
KR101386444B1 (ko) 수소발생 연료전지 카트리지
US7270907B2 (en) Fuel container and delivery apparatus for a liquid feed fuel cell system
US20130026194A1 (en) Gas generation dispenser apparatus for on-demand fluid delivery
KR20070083866A (ko) 연료 카트리지용 밸브
JP2015505293A (ja) 水素発生燃料電池カートリッジ
US9051183B2 (en) Hydrogen generator having reactant pellet with concentration gradient
JP2008093604A (ja) 液体定量排出装置及び液体定量排出方法
JP2007287475A (ja) 液体定量排出装置及び液体定量排出方法
JP2007265950A (ja) 液体定量排出装置及び液体定量排出方法
JP2007111670A (ja) 小型液体供給装置、及び水素発生装置
JP2008266037A (ja) 水素発生装置
US20090208813A1 (en) Fuel cell
US9517932B2 (en) Hydrogen generator having liquid delivery member
JP2007145664A (ja) 水素発生装置
JP2007283210A (ja) 液体定量排出装置及び液体定量排出方法
JP2008105878A (ja) 水素発生装置
JP2007078058A (ja) マイクロバルブの保持方法および燃料電池
JP2009001456A (ja) 水素発生装置および水素発生方法
KR101580527B1 (ko) 공압피드백을 이용한 일원추진체 기반 공압 발생장치
JP2002033112A (ja) 電気エネルギー発生素子
JP2008266076A (ja) 水素発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12280703

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780007385.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087023825

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007714995

Country of ref document: EP