WO2007097287A1 - 撮像装置及びレンズ鏡筒 - Google Patents

撮像装置及びレンズ鏡筒 Download PDF

Info

Publication number
WO2007097287A1
WO2007097287A1 PCT/JP2007/052979 JP2007052979W WO2007097287A1 WO 2007097287 A1 WO2007097287 A1 WO 2007097287A1 JP 2007052979 W JP2007052979 W JP 2007052979W WO 2007097287 A1 WO2007097287 A1 WO 2007097287A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
image
imaging
unit
camera shake
Prior art date
Application number
PCT/JP2007/052979
Other languages
English (en)
French (fr)
Inventor
Naoto Yumiki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP07714505.0A priority Critical patent/EP1874043B1/en
Priority to US11/911,927 priority patent/US8736691B2/en
Priority to CN2007800003614A priority patent/CN101317445B/zh
Priority to JP2008501708A priority patent/JPWO2007097287A1/ja
Publication of WO2007097287A1 publication Critical patent/WO2007097287A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6815Motion detection by distinguishing pan or tilt from motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation

Definitions

  • the present invention relates to an imaging device and a lens barrel, and more particularly, to an imaging device and a lens barrel provided with a camera shake correction function and a photographing sensitivity changing function.
  • Imaging devices such as digital still cameras and digital video cameras capable of converting an optical image of a subject into an electrical image signal and outputting it are rapidly becoming widespread.
  • the usability for photographers etc. has been dramatically improved.
  • the captured image may be blurred and the image quality may be degraded.
  • Patent Document 1 discloses a digital camera provided with a shake correction optical system that reduces the influence on an image even when an image shake or the like occurs during shooting.
  • the digital camera described in Patent Document 1 corrects the disturbance of the image by moving the correction lens in the vertical and horizontal directions perpendicular to the optical axis according to the image blur at the time of shooting. This makes it possible to capture an image with reduced image blurring even with a compact, lightweight digital camera.
  • the digital camera described in Patent Document 1 does not need to emit light with a flash to prevent image blurring, so it is possible to take photographs with an atmosphere close to natural colors and under conditions. .
  • Patent Document 2 discloses a photographing apparatus and method including motion estimation means for estimating the motion of a subject and changing the shooting conditions such as shutter speed when the possibility of the subject moving is high. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-13671
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-157428
  • the digital camera provided with the shake correction optical system described in Patent Document 1 can reduce the image quality deterioration due to camera blur, it reduces the image quality deterioration due to subject blur. It is suggested that you do it.
  • Patent Document 2 only predicts the motion of the subject, and does not determine how fast the subject moves to cause subject blur, and therefore, the subject You can not always shoot at the optimal shutter speed according to the speed.
  • the present invention has been made in view of the problem, and an image pickup apparatus and lens capable of easily photographing an image of good image quality by reducing image deterioration caused by camera shake and subject shake.
  • An object of the present invention is to provide a lens barrel.
  • An imaging apparatus includes an imaging optical system for forming an optical image of a subject, an imaging sensor for receiving the formed optical image, converting the optical image into an electrical image signal, and outputting the signal.
  • a motion detection unit that detects a motion of an optical image of the subject at a predetermined time, and a control unit that controls an exposure time according to the motion of the optical image of the detected subject.
  • the imaging device body is an imaging device body that is used in combination with a lens barrel equipped with a camera shake correction unit that corrects blurring of an optical image caused by the movement of the imaging device body.
  • An imaging sensor that receives an optical image and converts it into an electrical image signal and outputs the same; a motion detection unit that measures the motion of the optical image of the subject during a predetermined time before shooting; and calculates the subject speed; And a controller configured to control an exposure time in accordance with the movement of the optical image of the subject.
  • a lens barrel according to the present invention includes an imaging optical system for forming an optical image of a subject, and an imaging sensor for receiving the formed optical image, converting it into an electrical image signal, and outputting it.
  • a motion detection unit that measures the motion of the optical image of the subject at a predetermined time before shooting and calculates the subject speed; and a control unit that controls the exposure time according to the motion of the detected optical image of the subject
  • an imaging device capable of reducing image quality deterioration due to camera shake or subject blurring and easily photographing an image of good image quality.
  • FIG. 1 is a block diagram showing a configuration of an imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 2A is a top view showing a schematic configuration of the imaging device according to the first embodiment
  • FIG. 2B is a rear view showing a schematic configuration of the imaging device according to the first embodiment.
  • FIG. 3 A block diagram showing an example of the configuration of a motion detection unit of the imaging device according to the first embodiment
  • FIG. 4 Configuration of a camera shake correction mechanism included in the camera shake correction unit of the imaging device according to the first embodiment Exploded perspective view showing
  • FIG. 5 A diagram showing a display example of a shooting mode selection screen displayed on the display unit of the imaging device according to the first embodiment.
  • FIG. 6 A flowchart showing the photographing process of the imaging device according to the first embodiment.
  • FIG. 7 A flow chart showing a photographing process of an imaging device according to Embodiment 2 of the present invention
  • FIG. 8 A flow chart showing photographing processing of the imaging device according to the fourth embodiment.
  • FIG. 9 A diagram showing a display example of displaying on the display unit an imaging image captured in the “camera shake correction mode” of the imaging device according to the fourth embodiment.
  • FIG. 10 A diagram showing a display example of displaying on a display unit four photographed images taken continuously after setting the “shooting sensitivity increase mode” of the imaging device according to the fourth embodiment.
  • FIG. 11 A diagram for explaining the relationship between the movement speed Vh of the subject of the imaging device according to Embodiment 4 and the imaging sensitivity S at the time of imaging
  • FIG. 12 The sensitivity is increased after setting the “shooting sensitivity increase mode” of the imaging apparatus according to the fourth embodiment
  • FIG. 1 is a block diagram showing a configuration of an imaging device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of the imaging device according to the present embodiment
  • FIG. 2A is a top view
  • a diagram 2B shows a rear view.
  • the present embodiment is an example applied to a digital camera having a camera shake correction function and an imaging sensitivity change function.
  • the moving speed of the subject hereinafter, also referred to as the subject speed
  • the subject speed means the moving speed of the optical image of the subject on the imaging surface caused by camera shake and / or subject shake. .
  • the digital camera 1 includes an imaging optical system L, a microcomputer 3, an imaging sensor 4, a CCD (Charge Coupled Device) drive control unit 5, an analog signal processing unit 6, and an AZD conversion unit. 7, digital signal processing unit 8, buffer memory 9, image compression unit 10, image recording control unit 11, image recording unit 12, image display control unit 13, camera shake correction unit 16, angular velocity sensor 18, a display unit 55, a shutter control unit 41, a shutter drive motor 42, a flash control unit 43, a strobe 44, a motion detection unit 100, a digital signal amplification unit 110, and a digital signal gain setting unit 111 And is configured.
  • the imaging optical system L is an optical system including three lens groups Ll, L2, and L3.
  • the first lens unit L1 and the second lens unit L2 perform zooming by moving in the optical axis direction.
  • the second lens unit L2 is a correction lens unit, which corrects the movement of the image by decentering the optical axis by moving in a plane perpendicular to the optical axis.
  • the third lens unit L3 performs focusing by moving in the optical axis direction.
  • the imaging optical system L is not limited to the above-described optical system configuration.
  • the digital camera 1 When mechanical vibration or shaking by the photographer or the like is applied to the digital camera 1, a shift occurs between the optical axis of the light irradiated from the subject toward the lens and the optical axis of the lens, so blurring is not achieved. An image is formed. Therefore, the digital camera 1 is provided with a camera shake correction unit 16 and a camera shake correction mechanism 20 in order to prevent formation of an unclear image.
  • the camera shake correction unit 16 and the camera shake correction mechanism 20 reduce the shake of the optical image caused by the shake of the photographer or the like or the vibration applied to the camera body.
  • the imaging sensor 4 is, for example, a CCD sensor that converts an optical image formed by the imaging optical system L into an electrical signal.
  • the imaging sensor 4 is drive-controlled by the CCD drive control unit 5.
  • the imaging sensor 4 may be a CMOS (Complementary Metal Oxide Semiconductor) sensor.
  • the microcomputer 3 controls the entire digital camera 1 and controls the movement of the subject.
  • the camera control processing for controlling the camera shake correction function and the photographing sensitivity changing function is executed.
  • the microcomputer 3 controls the camera shake correction function to operate the camera shake correction function when the object speed is smaller than the predetermined threshold, and the object speed is higher than the predetermined threshold when the object speed is higher than the predetermined threshold.
  • the gain of the sensitivity change function is made higher than when it is smaller, and the exposure time is further shortened, and multiple images are continuously taken under different exposure conditions. Details of the imaging control process will be described later according to the flow of FIG.
  • the microcomputer 3 can also receive signals from the power switch 35, the shutter operation unit 36, the shooting / reproduction switching operation unit 37, the cross control key 38, the MENU setting operation unit 39, and the SET operation unit 40, respectively.
  • the microcomputer 3 is an example of the control unit of the present invention.
  • a casing la of the digital camera 1 is supported by a photographer or the like when photographing an object.
  • a display unit 55, a power switch 35, a photographing Z reproduction switching operation unit 37, a cross operation key 38, a MENU setting operation unit 39, and a SET operation unit 40 are provided on the back of the housing la.
  • the power switch 35 is an operation member for turning on / off the power of the digital camera 1.
  • the photographing Z reproduction switching operation unit 37 is an operation member for switching to the photographing mode or the reproduction mode, and the photographer or the like can switch by rotating the lever.
  • a MENU setting operation unit 39 is an operation member for setting various operations of the digital camera 1.
  • the cross control key 38 is an operation member for selecting a desired menu by various photographers displayed on the display unit 55 by the photographer or the like pressing the upper, lower, left, and right regions.
  • the SET operation unit 40 is an operation member for returning various types of menu display to the previous display.
  • the shutter operation unit 36 and the zoom operation unit 57 are provided on the top surface of the housing la.
  • the zoom operation unit 57 is provided around the shutter operation unit 36 and can be rotated coaxially with the shutter operation unit 36.
  • the shutter operation unit 36 is, for example, a release button operated by the photographer or the like at the time of shooting.
  • a timing signal is output to the microcomputer 3.
  • the shutter operation unit 36 is a two-stage operation capable of half-press operation and full-press operation This is a pressing switch of the formula, and when the photographer etc. performs a half-press operation, it starts the motion detection, photometric processing and distance measurement processing of the subject described later.
  • a timing signal is output when the photographer etc. performs a full press operation continuously.
  • the shutter control unit 41 drives the shutter drive motor 42 in accordance with the control signal output from the microcomputer 3 having received the timing signal to operate the shutter.
  • the strobe control unit 43 controls the operation of the strobe 44.
  • the microcomputer 3 receiving the timing signal by the operation of the shutter operation unit 36 outputs a control signal to the flash control unit 43.
  • the strobe control unit 43 causes the strobe 44 to emit light based on the control signal.
  • the strobe 44 is controlled in accordance with the amount of light received by the imaging sensor 4. That is, when the output of the image signal from the imaging sensor 4 is equal to or less than a predetermined value, the flash control unit 43 automatically emits light in conjunction with the shutter operation. On the other hand, when the output of the image signal is equal to or more than a predetermined value, the strobe control unit 43 controls the strobe 44 not to emit light.
  • the strobe ON / OFF operation unit 56 is an operation unit for setting the operation of the strobe 44 regardless of the output of the image sensor 4 described above. That is, the strobe control unit 43 causes the strobe 44 to emit light when the strobe on / off control unit 56 is “on”, and does not emit the strobe 44 when “off”.
  • Image signals output from the imaging sensor 4 are sequentially output from the analog signal processing unit 6 to the AZD conversion unit 7, the digital signal processing unit 8, the digital signal amplification unit 110, the knock out memory 9, and the image compression unit 10. Sent and processed.
  • the analog signal processing unit 6 subjects the image signal output from the imaging sensor 4 to analog signal processing such as gamma processing.
  • the AZD conversion unit 7 converts the analog signal output from the analog signal processing unit 6 into a digital signal.
  • the digital signal processing unit 8 performs digital signal processing such as noise removal and contour enhancement on the image signal converted into the digital signal by the AZD conversion unit 7 and outputs the result to the motion detection unit 100 and the digital signal amplification unit 110.
  • the buffer memory 9 is a RAM (Random Access Memory), which stores image signals.
  • the digital signal gain setting unit 111 sets an amplification gain of the image signal subjected to digital signal processing.
  • the digital signal amplification unit 110 increases the image signal with the set amplification gain. Width and output to buffer memory 9.
  • the setting of amplification gain corresponds to the setting of imaging sensitivity.
  • the imaging sensitivity is expressed as a value corresponding to the ISO sensitivity, and can be set to, for example, an imaging sensitivity equivalent to ISO 80, 100, 200, 400, 800, 1600. Note that the imaging sensitivity that can be set is not limited to this. Also, the shooting sensitivity may be expressed by a value other than the ISO sensitivity.
  • the process of amplifying the image signal is not limited to the case of being performed by the digital signal amplification unit 110, and may be performed on the analog signal by the analog signal processing unit 6.
  • the amplification process may be performed by the imaging sensor 4.
  • the image signals stored in the buffer memory 9 are sequentially sent from the image compression unit 10 to the image recording unit 12 and processed.
  • the image signal stored in the buffer memory 9 is read according to an instruction from the image recording control unit 11 and transmitted to the image compression unit 10.
  • Data of the image signal transmitted to the image compression unit 10 is compressed into an image signal in accordance with an instruction from the image recording control unit 11.
  • the image signal has a smaller data size than the original data by this compression process.
  • the compression method for example, the JPEG (Joint Photographic Experts Group) method is used. Thereafter, the compressed image signal is recorded in the image recording unit 12 by the image recording control unit 11.
  • the image recording unit 12 associates and records an image signal and predetermined information to be recorded based on a command from the image recording control unit 11, for example, an internal memory and Z or a removable rim It is one bubble memory.
  • the predetermined information to be recorded together with the image signal includes the date and time when the image was taken, focal length information, shutter speed information, aperture value information, and imaging mode information, for example, Exif (ex. It is a format similar to the registered trademark format or the Exif (registered trademark) format.
  • the display unit 55 displays the image signal recorded in the image recording unit 12 or the buffer memory 9 as a visible image based on an instruction from the image display control unit 13.
  • the display form of the display unit 55 includes a display form in which only an image signal is displayed as a visible image, and a display form in which an image signal and information at the time of shooting are displayed as a visible image.
  • the motion detection unit 100 detects, for each frame, a vector (hereinafter referred to as a motion vector and! /7) That indicates the amount of positional deviation in the horizontal and vertical directions of the image between the frames based on the image signal converted into a digital signal. Ru. The details of the motion detection unit 100 will be described below.
  • FIG. 3 is a block diagram showing an example of the configuration of the motion detection unit 100.
  • the motion detection unit 100 includes a representative point storage unit 101, a correlation operation unit 102, and a motion vector detection unit 103.
  • the representative point storage unit 101 divides the image signal of the current frame input through the AZD conversion unit 7 and the digital signal processing unit 8 into a plurality of areas, and corresponds to the specific representative points included in each area.
  • the image signal is stored as a representative point signal.
  • the representative point storage unit 101 reads a representative point signal one frame before the current frame that has already been stored, and outputs the representative point signal to the correlation operation unit 102.
  • the correlation calculation unit 102 calculates the correlation between the representative point signal of one frame before and the representative point signal of the current frame, and compares the difference between the representative point signals.
  • the calculation result is output to the motion vector detection unit 103.
  • the motion vector detection unit 103 detects a motion vector of an image between one frame before and the current frame from the calculation result of the correlation calculation unit 102 in units of one pixel. The motion vector is then output to the microphone computer 3. The microcomputer 3 adjusts the gain and phase of the motion vector, and calculates the movement speed and direction per unit time of the subject on the image signal.
  • the process of detecting the movement of the subject is started, for example, by the photographer or the like pressing the shutter operation unit 36 halfway.
  • the processing may be started in conjunction with an operation of switching to the photographing mode by operating the photographing Z reproduction switching operation unit 37 after the photographer or the like turns on the power switch 35.
  • the camera shake correction unit 16 includes a position detection unit 15, a focusing drive control unit 14x, a pitching drive control unit 14y, DZA conversion units 17x and 17y, angular velocity sensors 18x and 18y, and AZD conversion units 19x and 19y.
  • the yawing drive control unit 14x and the pitching drive control unit 14y drive the correction lens unit L2 in two directions orthogonal to the optical axis AX of the imaging optical system L.
  • the position detection unit 15 detects the position of the correction lens group L2.
  • the position detection unit 15, the focusing drive control unit 14x, and the pitching drive control unit 14y described above are feedback control loops for driving and controlling the correction lens unit L2.
  • the angular velocity sensors 18x and 18y are sensors that detect the movement of the digital camera 1 itself including the imaging optical system L.
  • the angular velocity sensors 18x and 18y output positive and negative angular velocity signals according to the direction in which the digital camera moves with reference to the output when the digital camera 1 is at rest.
  • two angular velocity sensors are provided to detect two directions, ie, the yawing direction and the pitching direction.
  • the outputted angular velocity signal is subjected to filter processing, amplifier processing and the like, converted into a digital signal by the AZD conversion parts 19x and 19y, and given to the microcomputer 3. Then, the microcomputer 3 sequentially performs filtering, integration processing, phase compensation, gain adjustment, clipping processing, and the like on the angular velocity signal to calculate a drive control amount of the lens unit L2 necessary for camera shake correction, and a control signal.
  • Output as The control signal is output to the yawing drive control unit 14x and the pitching drive control unit 14y via the DZA conversion units 17x and 17y.
  • the yawing drive control unit 14x and the pitching drive control unit 14y drive the correction lens group L2 by a predetermined drive amount based on the control signal. As a result, camera shake can be corrected and image quality deterioration can be reduced.
  • FIG. 4 is an exploded perspective view showing a configuration of the camera shake correction mechanism 20 included in the camera shake correction unit 16.
  • the correction lens unit L 2 is fixed to the pitching movement frame 21.
  • the pitching moving frame 21 is slidably held in the Y direction with respect to the first moving frame 22 via the two pitching shafts 23a and 23b.
  • the coils 24x and 24y are fixed to the pitching movement frame 21.
  • the jaw moving frame 22 is slidably held in the X direction with respect to the fixed frame 25 via the yawing shafts 26a and 26b.
  • the magnet 27x and the yoke 28x are held by the fixed frame 25 and constitute an actuator 29x together with the coil 24x.
  • the magnet 27 y and the yoke 28 y are held by the fixed frame 25 and constitute an actuator 29 y together with the coil 24 y.
  • the element 30 is fixed to the pitching movement frame 21.
  • the light receiving element 31 is fixed to the fixed frame 25 and receives the light projected from the light emitting element 30 to detect two-dimensional position coordinates.
  • the light emitting element 30 and the light receiving element 31 constitute the position detection unit 15 described above.
  • the digital camera 1 will be described in selectable shooting modes.
  • the shooting mode for example, the shutter drive motor 42 is operated at intervals of 0.3 seconds to perform “continuous shooting mode” in which continuous shooting is performed twice or several times, or “sensitivity up & camera shake correction automatic selection” described later.
  • the microcomputer 3 controls various control units in accordance with each shooting mode.
  • FIG. 5 is a view showing a display example of the photographing mode selection screen displayed on the display unit 55.
  • the photographing mode selection screen can be displayed on the display unit 55 by the photographer or the like operating the MENU setting operation unit 39 or the cross control key 38.
  • the shooting mode includes “sensitivity up & camera shake correction automatic selection mode”, “sensitivity up mode”, “camera blur correction mode” and “mode off”, and the photographer etc.
  • a desired shooting mode can be set by selecting the corresponding icon 90-93.
  • FIG. 5 Although only a characteristic shooting mode selection icon is displayed and displayed in FIG. 5 according to the present embodiment, other photographing mode selection icons such as the “continuous shooting mode” described above are further displayed.
  • other photographing mode selection icons such as the “continuous shooting mode” described above are further displayed.
  • the shooting sensitivity is changed to a sensitivity higher than that of normal shooting (“sensitivity increase mode”). That is, the digital signal amplification unit 110 amplifies the image signal with a predetermined gain according to a command from the microphone computer 3. As a result, the exposure time can be shortened and shooting can be performed at a high shutter speed, so the influence of image blurring can be reduced.
  • the camera shake correction function operates (“camera shake correction mode”). That is, the camera shake correction mechanism 20 reduces camera shake by driving the correction lens group L2 in two directions in a plane orthogonal to the optical axis according to a command from the microcomputer 3.
  • the microcomputer 3 is automatically set to either “sensitivity up mode” or “camera shake correction mode” according to the moving speed of the subject. Switch.
  • the shooting sensitivity is set to a high sensitivity.
  • the subject moves at a slow speed that does not cause a subject blur.
  • the camera shake correction function operates to reduce image blur caused by camera shake.
  • FIG. 6 is a flowchart showing the photographing process of the digital camera 1, which is executed by the microcomputer 3. This flow starts, for example, when the power switch 35 of the digital camera 1 is operated to the ON side.
  • Step 1 when the photographer or the like operates the MENU setting operation unit 39 provided on the rear side of the housing la of the digital camera 1, a list of photographing modes is displayed on the display unit 55. If the photographer or the like selects the sensitivity up & camera shake correction automatic selection mode icon 90 among the displayed shooting mode selection icons, the process proceeds to Step 2.
  • Step 2 recognizing that the photographer or the like operates the shutter operation unit 36, the microcomputer 3 shifts the processing to Step 3.
  • the motion detection unit 100 detects the motion of the subject to be captured, by tracking the representative points of the captured image, and outputs a motion vector.
  • photometry processing and distance measurement processing are performed simultaneously with the motion detection processing.
  • the digital signal processing unit 8 calculates an exposure value based on the image signal output by the imaging sensor 4.
  • the microcomputer 3 automatically sets an appropriate shutter speed and an ISO sensitivity which is a shooting sensitivity based on the calculated exposure value.
  • the focus control unit performs focusing adjustment by moving the lens unit in the optical axis direction so that the contrast value of the image signal is peaked.
  • the motion detection unit 100 detects the motion of the subject to be photographed, and outputs a motion vector.
  • the microcomputer 3 calculates the motion speed Vh of the subject per unit time from the motion vector detected by the motion detection unit 100.
  • the motion velocity Vh is determined.
  • the digital camera 1 is set in advance with a predetermined value A, and the microcomputer 3 compares the movement speed Vh with the predetermined value A.
  • the predetermined value A is a threshold value at which subject blurring occurs, and may be a value unique to the camera, or may be set arbitrarily by the photographer or the like.
  • the shutter speed can be increased, so that by increasing the threshold value, the imaging sensitivity does not increase indiscriminately.
  • the digital camera 1 is provided with a separate child shooting mode or a pet shooting mode, When etc. selects the mode, the threshold may be decreased to give priority to increasing the imaging sensitivity.
  • the threshold may be reduced to give priority to the imaging sensitivity.
  • the microcomputer 3 determines that the subject is moving at a speed at which subject blur occurs, and shifts the processing to Step 6. If the motion speed Vh is smaller than the value A, the microcomputer 3 determines that the subject blur does not occur, and shifts the processing to Ste 99.
  • shoot with shutter speed and ISO sensitivity set in Step 3. For example, set the ISO sensitivity to 100 and shoot at a shirt speed of 1 Z 30 seconds.
  • the microcomputer 3 switches the imaging mode to the “sensitivity up mode” in Step 6. That is, the digital signal gain setting unit 111 sets a gain so as to have an ISO sensitivity higher than that set in Step 3 in Steps 6 and after.
  • Step 7 when it is recognized that the photographer etc. has operated the shutter operation unit fully, photographing processing is performed in Step 8. That is, an optical image of the subject is formed on the imaging sensor 4, and the imaging sensor 4 outputs an image signal.
  • the digital signal amplification unit 110 The image signal output from the loop signal processing unit 8 is amplified by the gain set in Step 6. The amplified image signal is recorded in the image recording unit 12, and the photographing process is ended.
  • the high sensitivity imaging sensitivity is set. As a result, the exposure time can be shortened, and fast shutter speed photography is possible, so that blurring of the subject can be prevented.
  • Step 9 the microcomputer 3 switches the shooting mode to the “camera shake correction mode” and operates the camera shake correction unit 16 and the camera shake correction mechanism 20. .
  • the camera shake correction unit 16 detects camera shake applied to the camera body by the angular velocity sensors 18x and 18y.
  • the external circuit power is also supplied to the coils 24x and 24y of the pitching movement frame 21 according to a command from the microcomputer 3, and the pitching movement frame 21 and the correction lens group L2 are provided by the magnetic circuit formed by the actuators 27x and 27y. Move in two directions X and Y in a plane orthogonal to the optical axis AX. At this time, since the light receiving element 29 detects the position of the pitching movement frame 21, high-accuracy position detection is possible.
  • Step 10 when the microcomputer 3 recognizes that the photographer or the like fully presses the shutter operation unit 36, the microcomputer 3 performs an imaging process in Step 11. That is, a subject image is formed on the imaging sensor 4, an image signal is output, and the output image signal is displayed on the display unit 55.
  • the camera shake correction function operates without the photographing sensitivity being changed. This makes it possible to reduce camera shake and capture images of good image quality.
  • the digital camera according to the present embodiment changes the shooting sensitivity to high sensitivity when the movement of the subject is fast, shortens the exposure time, and shoots at a high shutter speed. Thereby, it is possible to prevent the image quality deterioration due to the subject blurring. Further, the digital camera according to the present embodiment operates the camera shake correction function in a case where the movement of the subject is slow, so that image blur due to camera shake can be prevented and image quality deterioration can be reduced.
  • the movement of the subject is fast, and in the case of Since the shooting sensitivity is changed to a high sensitivity, the photographer does not have to observe the movement of the subject to determine whether or not the subject blur occurs, which is highly convenient.
  • the digital camera according to the present embodiment changes the shooting sensitivity to high sensitivity when the detected movement speed of the subject is larger than a predetermined value. As a result, although the subject does not generate subject blur and moves at speed, it does not cause the photographer to accidentally set the high sensitivity.
  • the digital camera according to the present embodiment has been described only in the case where the photographing sensitivity is changed to a high sensitivity when the movement speed Vh of the subject is larger than a predetermined value A, this is the only limitation. I can not. Change the digital camera to a high sensitivity shooting sensitivity, and activate the camera shake correction function.
  • the digital camera according to the present embodiment has substantially the same configuration as the digital camera according to the first embodiment, but differs in that the panning mode can be further selected as the shooting mode.
  • panning is a method in which when shooting a fast moving subject, the direction of the camera is not moved in the moving direction and the shutter operation unit 36 is pressed to shoot. The subject is captured by shooting in the panning mode. Is stationary, and the background can be photographed as it flows.
  • the same components as in Embodiment 1 are assigned the same reference numerals, and points different from Embodiment 1 will be mainly described.
  • FIG. 7 is a flowchart showing photographing processing of the digital camera according to the second embodiment. The process shown in FIG. 7 starts, for example, when the power switch 35 of the digital camera 1 is operated to the ON side.
  • Step 21 when the photographer operates the MENU setting operation unit 39, a list of selectable imaging modes is displayed on the display unit 55.
  • the shooting mode displayed in the present embodiment can be further selected as a follow shot mode.
  • the shooting mode is set to the panning mode.
  • the photographer half-presses the shutter operation unit 36 in Step 23 the photometric processing and the distance measurement processing are performed.
  • the computer 3 instructs the camera shake correction unit 16 and the camera shake correction mechanism 20 to operate the camera shake correction function.
  • the reason for operating the camera shake correction function is that an image blur due to camera shake is likely to occur because the shutter speed is set to a slow shutter speed to enable continuous shooting.
  • the camera shake correction unit 16 does not operate the correction lens group L2 in the direction in which the digital camera moves so as not to erroneously recognize the movement of the camera body due to panning as camera shake.
  • the camera shake correction mechanism 20 operates the correction lens unit in the vertical direction. Only work. That is, only the shake applied in the vertical direction is detected by the angular velocity sensor 18y which is the pitching direction, and the microcomputer 3 gives the camera shake correction mechanism 20 a command to cancel the detected shake.
  • the external circuit force also supplies current to the coil 24y of the pitching moving frame 21
  • the pitching moving frame 21 moves only in the Y direction orthogonal to the optical axis AX by the magnetic circuit formed by the actuator 27y.
  • the correction lens unit L2 does not operate in the yawing direction by supplying a current to the actuator 27x without responding to the output of the angular velocity sensor 18x.
  • the camera shake correction mechanism 20 moves the correction lens unit L2 only in the Y direction, it is possible to reduce image shake due to camera shake. In addition, the movement of the digital camera accompanying panning is not misjudged as camera shake.
  • Step 25 when the photographer fully presses the shutter operation unit 36 (Step 25), the photographing process is performed, and an optical image of the subject is formed on the imaging sensor 4 and the image is formed. A signal is output (Step 26). Thus, the photographing process ends.
  • the digital camera according to the present embodiment only a predetermined angular velocity sensor detects a blur when performing panning.
  • the movement of the digital power camera accompanying the panning can not be erroneously determined as camera shake, so that it is possible to shoot with a background unique to the panning.
  • image blurring due to camera shake can be reduced, an image of good image quality can be obtained.
  • the panning mode is not limited to the force set before shooting.
  • it is automatically determined from the output of the angular velocity sensor that May be
  • the digital camera according to the present embodiment differs from the digital camera according to the first and second embodiments in that the imaging sensitivity is set according to the movement speed of the object having the same configuration.
  • differences from Embodiments 1 and 2 will be mainly described.
  • the motion detection unit 100 detects the movement of the subject and outputs a detected vector. Then, the microcomputer 3 also calculates the movement velocity Vh of the subject as well as the output detection vector force. Further, the microcomputer 3 calculates the shutter speed at which a subject blur does not occur from the movement speed Vh of the subject, and sets the shooting sensitivity at which the shutter speed can be used. For example, when shooting an object that moves slowly at walking speed in an outdoor environment, the sensitivity is set to 100 ISO sensitivity. When shooting a moving object at a running speed, ISO sensitivity 400 It is set to a reasonable sensitivity.
  • the shooting sensitivity is set according to the movement of the subject, the photographer must perform complicated operations to set an appropriate shooting sensitivity. It is possible to capture an image of good image quality without subject blurring. In addition, since it is not necessary for the photographer to set the shooting sensitivity by himself, it is possible to provide a digital camera with a high degree of convenience without missing a photo opportunity.
  • the camera shake correction function may be operated at the same time. By this, it is possible to reduce the deterioration of the image quality due to camera shake, and it is possible to obtain an image of better image quality.
  • the camera shake correction function may be activated only when it has been set to a certain shooting sensitivity.
  • the hardware configuration of the imaging device according to the fourth embodiment of the present invention is substantially the same as in FIGS. 1 to 3 and thus the description thereof is omitted.
  • FIG. 8 is a flowchart showing the photographing process of the digital camera 1 according to the fourth embodiment of the present invention.
  • the same step numbers are assigned to the steps performing the same processing as the flow shown in FIG. 6 and the description of the duplicate parts is omitted.
  • Step 11 When the photographing process is performed in Step 11, a subject image is formed on the imaging sensor 4, an image signal is output, and the output image signal is displayed on the display unit 55 shown in FIG.
  • Step 30 the image signal is recorded in the image recording unit 12, and the photographing process is ended.
  • FIG. 9 is a view showing a display example in which a photographed image photographed in the “camera shake correction mode” is displayed on the display unit 55. As shown in FIG. As shown in FIG. 9, the display unit 55 displays an ISO sensitivity which is a photographing sensitivity together with the photographed image.
  • the camera shake correction function operates without the photographing sensitivity being changed. This makes it possible to reduce camera shake and capture images of good image quality.
  • the digital signal gain setting unit 111 sets the gain so that the ISO sensitivity is higher than the ISO sensitivity set in Step 3.
  • Step 7 when it is recognized that the photographer or the like has operated the shutter operation unit fully, continuous photographing processing is performed in Step 31 or less.
  • performing continuous shooting processing is characterized in that multiple (every four in this case) continuous shooting is performed under different exposure conditions that are not meaningful in itself. Perform continuous shooting of 4 images per second by operating the shutter operation section 36 once. Furthermore, we will increase the shooting sensitivity every time we shoot. The reason for this is assuming that the motion speed Vh of the subject becomes faster during shooting. For example, the digital signal gain setting unit 111 sets the gain in such a manner that the photographing sensitivity is increased from the ISO sensitivity 200 equivalent.
  • an optical image of the subject is formed on the imaging sensor 4, and the imaging sensor 4 outputs an image signal.
  • the digital signal amplification unit 110 amplifies the image signal output from the digital signal processing unit 8 with a gain set at an ISO sensitivity of 200. At this time, the shutter speed is set to 1/60 seconds.
  • the optical image of the subject is formed on the imaging sensor 4
  • the imaging sensor 4 outputs an image signal.
  • the digital signal amplification unit 110 amplifies the image signal output from the digital signal processing unit 8 with a gain set at an ISO sensitivity of 400 or so. At this time, the shutter speed is set to 1/125 seconds.
  • an optical image of the subject is formed on the imaging sensor 4, and the imaging sensor 4 outputs an image signal.
  • the digital signal amplification unit 110 amplifies the image signal output from the digital signal processing unit 8 with a gain set at an ISO sensitivity of 800 or so. At this time, the shutter speed is set to 1 Z 250 seconds.
  • Step 34 an optical image of the subject is formed on the imaging sensor 4, and the imaging sensor 4 outputs an image signal.
  • the digital signal amplification unit 110 amplifies the image signal output from the digital signal processing unit 8 with a gain set at an ISO sensitivity of approximately 1600.
  • the shutter speed is set to 1 Z 500 seconds.
  • the exposure time is set short so that the exposure value at that time is substantially the same.
  • Step 35 the display unit 55 shown in FIG. It is displayed. Furthermore, in step 36, the image signal taken four times continuously is recorded in the image recording unit 12, and the photographing process is ended.
  • FIG. 10 is a view showing a display example of displaying on the display unit 55 four photographed images continuously photographed after setting the “sensitivity up mode”. As shown in FIG. 10, the display unit 55 displays thumbnail images of a plurality of continuously captured images under different exposure conditions. Each thumbnail display shows thumbnail display numbers 14 and each ISO sensitivity.
  • four images are continuously recorded for four continuously captured images under different exposure conditions, but the photographer or the like selects and stores an arbitrary image. It may be possible.
  • the shooting mode is set to the “camera shake correction mode” before the “shutter half-press operation” of Step 2 described above.
  • the shooting mode is set to "camera shake correction mode”
  • camera shake correction is performed even when the shutter is pressed halfway. Since the camera shake correction is performed when detecting the movement of the subject, the movement detection can be performed in a state in which the influence of the camera shake is reduced, so that the accuracy of the movement detection can be enhanced.
  • the shooting mode is the continuation of the "camera shake correction mode".
  • the subject speed is calculated based on the detected movement of the optical image of the subject, and it is determined whether the subject speed is equal to or greater than a predetermined threshold A or not.
  • the camera shake correction unit 16 is controlled to operate the camera shake correction.
  • the gain of the digital signal gain setting unit 111 is increased. While increasing the ISO sensitivity, increasing the shutter speed and shortening the exposure time, shoot multiple images continuously under different exposure conditions with one shutter operation. By continuously shooting under multiple exposure conditions, even if the motion speed of the subject may change rapidly during shooting, any of multiple images captured continuously under multiple exposure conditions is a good image quality. Images are likely to be included.
  • the subject speed is slower than a predetermined value, by operating the camera shake correction function, it is possible to take a good image without camera shake. As a result, the photographer can easily capture an image regardless of the movement of the subject.
  • the shooting sensitivity is changed to a high sensitivity, the exposure time is shortened, and shooting is performed at a high shutter speed.
  • the camera shake correction unit 16 is operated, so that it is possible to prevent image blurring due to camera shake and reduce image quality deterioration. Therefore, the photographer can easily capture an image regardless of the movement of the subject.
  • the shooting sensitivity is automatically changed to a high sensitivity. Therefore, the photographer or the like observes the movement of the subject and determines whether or not the subject blur occurs. There is no need to judge and convenience is high.
  • the imaging sensitivity is changed to high sensitivity. In this way, even though the subject moves at a speed that does not cause subject blurring, the photographer etc. can not set the shooting sensitivity to a high sensitivity by mistake.
  • the photographer in the shutter full-press operation after changing to the “sensitivity up mode”, the photographer can perform continuous shooting under a plurality of exposure conditions by one shutter operation. Etc. can perform shooting under a plurality of exposure conditions at one time.
  • the photographing sensitivity and the shutter speed for each photographing it is possible to cope with the case where the moving speed of the subject Vh power is increased during photographing. For example, even in situations such as when shooting a child, the movement speed of the subject suddenly changes at the moment when the shutter release button is fully pressed, etc., the shutter speed may be increased during continuous shooting.
  • FIG. 11 is a view for explaining the relationship between the movement speed Vh of the subject and the photographing sensitivity S at the time of photographing.
  • T1 is a half press operation
  • T2 is a full press operation
  • T3 is each timing of photographing.
  • S1 to S4 are photographing sensitivity at the time of photographing
  • A is a predetermined threshold. It is determined whether the subject speed Vh is greater than or equal to a predetermined threshold A. If the subject speed is smaller than the threshold A, the camera shake correction unit 16 is selected. If the subject speed Vh is more than the threshold A, the ISO sensitivity is increased. Up and shut up the shutter speed.
  • motion vector detection of an object is started in conjunction with the “shutter half-press operation” (Step 4 in the flow of FIG. 8). Then, until immediately before the “shutter full-press operation” (Step 6 and Step 9 in the flow of FIG. 8), motion vector detection is performed every constant period, and the “shutter Let the subject speed at the time of the full-press action be the final subject speed Vh.
  • Fig. 11 (1) shows that the subject is not moving, (2) is moving at a constant speed, (3) is that the subject is accelerating at a constant rate, and (4) is that the subject is moving. Assuming that the camera is decelerating at a constant rate, the relationship between the speed change of the subject at the time of shooting the first image and the shooting sensitivity is as follows.
  • the shooting sensitivity is increased according to the subject speed Vh during the “shutter full-press operation”, and here, the shooting sensitivity S2 is set.
  • the acceleration is calculated, and the sensitivity is calculated by predicting the speed increase only for the time lag time from the “shutter full-press operation” to the actual shooting time.
  • the amount of decrease in speed is predicted and the sensitivity is set to the imaging sensitivity S4 (S4 ⁇ S2). Further, at this time, it is preferable to lower the shooting sensitivity and the shutter speed for each shooting, in addition to continuous shooting for the second and subsequent images.
  • the number of continuous shootings described in the situation where four shots are taken per second may be any other number. For example, if you want to shoot continuously two images per second, make sure that you can shoot under the conditions shown in the first and third photos in the flow in Figure 8.
  • the shutter operation unit is operated.
  • the system may be capable of shooting only during the
  • the present invention can be applied to any electronic device having an imaging device.
  • the present invention can be applied not only to digital cameras and video cameras, but also to information processing apparatuses such as mobile phones with cameras, portable information terminals such as PDAs (Personal Digital Assistants), and personal computers equipped with imaging devices.
  • information processing apparatuses such as mobile phones with cameras, portable information terminals such as PDAs (Personal Digital Assistants), and personal computers equipped with imaging devices.
  • PDAs Personal Digital Assistants
  • the imaging sensitivity is changed to a high sensitivity when the movement speed Vh of the subject is equal to or higher than the threshold A.
  • the imaging sensitivity is changed to a high sensitivity. May be operated.
  • the first shooting sensitivity is the same ISO sensitivity as the normal mode set in Step 3.
  • the shooting sensitivity and shutter speed may be changed according to the change of the object speed Vh during the “shutter half-press operation”.
  • an upper limit may be set in order to suppress deterioration of the photographing image quality.
  • the ISO sensitivity is set to 200 and the shutter speed is set to 1Z60 seconds has been described, but the present invention is not limited thereto. If it is faster than the movement speed, you may shoot the first image with the ISO sensitivity further increased, and increase the ISO sensitivity for each image and shoot continuously.
  • the configurations of the imaging optical system and the camera shake correction unit in each of the above embodiments are not limited to the above configurations.
  • the camera shake correction unit may drive the imaging sensor in two directions orthogonal to the optical axis with respect to the imaging optical system.
  • the camera shake correction unit may change the angle of the prism attached to the front surface of the lens barrel on the subject side, and some may drive the entire lens barrel and cause camera shake due to camera shake. If correction is possible, the configuration is not limited to these.
  • an electronic camera shake such as changing the image cutout position in the imaging sensor for correction, or combining the same object into a single image after photographing a plurality of images at a short shutter speed. It is obvious that even the correction method is not limited.
  • the motion speed of the subject is calculated using the motion vector, but the motion speed of the subject may be separately detected using an external sensor or the like.
  • the exposure time of the image sensor may be controlled by operating the shutter.
  • the exposure time of the image sensor may be controlled by an electronic shutter or the like.
  • the digital camera according to the embodiment includes the imaging optical system
  • the present invention is not limited to this. Yes.
  • the present invention can also be applied to an imaging apparatus in which a lens barrel holding an imaging optical system and a camera body including an imaging sensor are separately combined and used like a single-lens reflex camera system.
  • the present invention can be generally applied to a general system in which a lens barrel holding an imaging optical system and a camera body are separately prepared and used in combination by a photographer.
  • imaging device is used in the present embodiment, this is for convenience of description, and it goes without saying that the imaging device, a digital camera, an imaging method, and the like may be used.
  • each component constituting the digital camera for example, the type of imaging optical system, its driving unit and mounting method, etc., and further, the type of motion detecting unit, etc. are not limited to the embodiments described above.
  • the imaging device described above is also realized by a program for causing the imaging control method of the imaging device to function.
  • This program is stored in a computer readable recording medium.
  • the imaging device and the lens barrel according to the present invention are suitable for digital still cameras and digital video cameras that require images of good image quality, mobile phones equipped with a camera unit, PDAs, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

 手ブレや被写体ブレによる画質劣化を軽減し、良好な画質の画像を容易に撮影することのできる撮像装置を提供すること。撮像装置(1)は、被写体の光学的な像を形成する撮像光学系(L)と、形成された光学的な像を受光して電気的な画像信号に変換して出力する撮像センサ(4)と、出力された画像信号に基づいて撮影すべき被写体の動きを検出する動き検出部(100)と、検出された被写体の光学像の動きに応じて露光時間を制御するマイクロコンピュータ(3)とを備える。

Description

明 細 書
撮像装置及びレンズ鏡筒
技術分野
[0001] 本発明は、撮像装置及びレンズ鏡筒に関し、より詳細には、カメラブレ補正機能と 撮影感度変更機能とを備える撮像装置及びレンズ鏡筒に関する。
背景技術
[0002] 被写体の光学的な像を電気的な画像信号に変換して出力可能なデジタルスチル カメラやデジタルビデオカメラ等の撮像装置(以下、単にデジタルカメラという)が急速 に普及している。特に近年では、デジタルカメラの小型'軽量ィ匕及び光学ズームの高 倍率ィ匕が進み、撮影者等に対する使い勝手は格段に向上してきている。
[0003] しかし、デジタルカメラの小型'軽量ィ匕及び光学ズームの高倍率ィ匕に伴い、撮影し た画像にブレが生じ、画質が劣化する場合がある。
[0004] 特許文献 1には、撮影時に像ブレ等が生じても画像への影響を軽減する振れ補正 光学系を備えたデジタルカメラが開示されて 、る。特許文献 1に記載のデジタルカメ ラは、撮影時の像ブレに応じて補正レンズを光軸と垂直な上下左右方向に移動させ 、画像の乱れを補正する。これにより、小型 ·軽量ィ匕したデジタルカメラであっても像 ブレを軽減した画像を撮影することができる。また、特許文献 1に記載のデジタルカメ ラは、像ブレを防ぐためにストロボを発光させて撮影する必要がないので、自然の色 に近 、条件下で雰囲気のある写真を撮影することができるとして 、る。
[0005] 一方、撮影画像の画質を劣化させる原因としては、手ブレ等のようにカメラ本体に 加わる振動に起因するカメラブレ以外にも、撮影対象となる被写体が動くことによって 生じる被写体ブレがある。このような被写体ブレは、露光時間を短くして高速のシャツ タースピードで撮影することにより防ぐことができる。シャッタースピードは、例えば撮 影感度を高くしたり、ストロボ発光を行うことにより速くすることができる。以下、撮像面 における被写体の光学像のブレに関し、カメラ本体にカ卩わる振動に起因するものを力 メラブレといい、被写体の動きに起因するものを被写体ブレといい、カメラブレと被写 体ブレを総称して、撮像面に対する像ブレという。 [0006] 特許文献 2には、被写体の動きを推測する動き推測手段を備え、被写体が動く可 能性が高 、場合、シャッタースピードなどの撮影条件を変更する撮影装置及び方法 が開示されている。
特許文献 1 :特開 2000— 13671号公報
特許文献 2 :特開 2006— 157428号公報
発明の開示
発明が解決しょうとする課題
[0007] 一般に、撮影感度を高くすると撮像センサからの出力信号は増幅されるので、撮像 センサ力も発生するノイズも増幅されることになる。そのため、高感度で撮影した画像 にはノイズが多く含まれる。このように、必要以上に撮影感度を高くすることは画質劣 化の原因ともなる。したがって、周囲の明るさが不十分なために振れ補正光学系によ り補正を行ってもなお像ブレが発生する場合や、動きの速 ヽ被写体を撮影する場合 等に撮影感度を高くすることが望ましい。
[0008] し力しながら、このような従来の撮像装置にあっては、撮影者等は、被写体がどの 程度の速さで動けば被写体ブレが生じるのかを判断することは困難である。そのため 、被写体ブレのない撮影が可能であるにもかかわらず、被写体の動きを観察した撮 影者等は誤って被写体ブレが発生すると認識する場合がある。その結果、撮影者等 は撮影感度を高感度に変更し、不必要にノイズを多く含む画像が撮影される t 、う問 題があった。また、動きの速い被写体を撮影するためには、撮影直前に撮影者等は 撮影感度を変更しなければならず、折角のシャッターチャンスを逃してしまうという問 題があった。
[0009] すなわち、一般の撮影者にとっては、被写体の動き速度がどの程度であれば、被 写体ブレが生じ、あるいは生じないという判断ができない。つまり、被写体速度が速い 場合にカメラブレ補正機能を使用すれば、被写体ブレの生じた画像を撮影すること になり、被写体速度が遅い場合に撮影感度をアップさせると、ノイズが多い画像を撮 影することになり、良好な映像を得ることができな 、。
[0010] また、特許文献 1に記載された振れ補正光学系を備えたデジタルカメラは、カメラブ レによる画質劣化を軽減することができるものの、被写体ブレによる画質劣化を軽減 することにつ ヽては提案されて ヽな 、。
[0011] さらに、特許文献 2に記載されたデジタルカメラは、被写体の動きを予測するだけで あり被写体がどの程度の速さで動けば被写体ブレが生じるのかを判断するものでは な 、ため、被写体速度に合わせた最適なシャッタースピードにて撮影できるとは限ら ない。
[0012] 本発明は、カゝかる点に鑑みてなされたものであり、カメラブレや被写体ブレによる画 質劣化を軽減し、良好な画質の画像を容易に撮影することのできる撮像装置及びレ ンズ鏡筒を提供することを目的とする。
課題を解決するための手段
[0013] 本発明の撮像装置は、被写体の光学像を形成する撮像光学系と、前記形成された 光学像を受光して、電気的な画像信号に変換して出力する撮像センサと、撮影前の 所定時間における前記被写体の光学像の動きを検出する動き検出部と、前記検出さ れた被写体の光学像の動きに応じて露出時間を制御する制御部と、を備える構成を 採る。
[0014] 本発明の撮像装置本体は、撮像装置本体の動きに起因する光学像のブレを補正 するカメラブレ補正部を搭載したレンズ鏡筒と組み合わせて使用する撮像装置本体 であって、形成された光学像を受光して電気的な画像信号に変換して出力する撮像 センサと、撮影前の所定時間における前記被写体の光学像の動きを測定し、被写体 速度を算出する動き検出部と、前記検出された被写体の光学像の動きに応じて露出 時間を制御する制御部と、を備える構成を採る。
[0015] 本発明のレンズ鏡筒は、被写体の光学像を形成する撮像光学系と、前記形成され た光学的な像を受光して、電気的な画像信号に変換して出力する撮像センサと、撮 影前の所定時間における前記被写体の光学像の動きを測定し、被写体速度を算出 する動き検出部と、前記検出された被写体の光学像の動きに応じて露出時間を制御 する制御部と、有する撮像装置本体と組み合わせて使用されるレンズ鏡筒であって、 撮像装置本体の動きに起因する光学像のブレを補正するカメラブレ補正部と、前記 カメラブレ補正部と前記撮像装置本体の制御手段とのインタフェースと、を具備する 構成を採る。 発明の効果
[0016] 本発明によれば、手ブレゃ被写体ブレによる画質劣化を軽減し、良好な画質の画 像を容易に撮影することのできる撮像装置を提供することができる。
図面の簡単な説明
[0017] [図 1]本発明の実施の形態 1に係る撮像装置の構成を示すブロック図
[図 2]図 2Aは本実施の形態 1に係る撮像装置の概略構成を示す上面図、図 2Bは本 実施の形態 1に係る撮像装置の概略構成を示す背面図
[図 3]本実施の形態 1に係る撮像装置の動き検出部の構成の一例を示すブロック図 [図 4]本実施の形態 1に係る撮像装置のカメラブレ補正部に含まれるカメラブレ補正 機構の構成を示す分解斜視図
[図 5]本実施の形態 1に係る撮像装置の表示部に表示された撮影モード選択画面の 表示例を示す図
[図 6]本実施の形態 1に係る撮像装置の撮影処理を示すフロー図
[図 7]本発明の実施の形態 2に係る撮像装置の撮影処理を示すフロー図
[図 8]本実施の形態 4に係る撮像装置の撮影処理を示すフロー図
[図 9]本実施の形態 4に係る撮像装置の「カメラブレ補正モード」により撮影された撮 影画像を表示部に表示する表示例を示す図
[図 10]本実施の形態 4に係る撮像装置の「撮影感度アップモード」設定後連続撮影さ れた 4枚の撮影画像を表示部に表示する表示例を示す図
[図 11]本実施の形態 4に係る撮像装置の被写体の動き速度 Vhと撮影時の撮影感度 Sの関係を説明する図
[図 12]本実施の形態 4に係る撮像装置の「撮影感度アップモード」設定後感度アップ あり撮影画像と感度アップなし撮影画像とを表示部に表示する表示例を示す図 発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態について図面を参照して詳細に説明する。
[0019] (実施の形態 1)
図 1は、本発明の一実施の形態に係る撮像装置の構成を示すブロック図である。図
2は、本実施の形態に係る撮像装置の概略構成を示す図であり、図 2Aは上面図、図 2Bは背面図を示す。本実施の形態は、カメラブレ補正機能と撮影感度変更機能とを 備えるデジタルカメラに適用した例である。なお、以下の説明において、被写体の動 き速度 (以下、被写体速度ともいう。)とは、カメラブレと被写体ブレとの双方又は一方 に起因する、撮像面における被写体の光学像の移動速度を意味する。
[0020] 図 1において、デジタルカメラ 1は、撮像光学系 Lと、マイクロコンピュータ 3と、撮像 センサ 4と、 CCD (Charge Coupled Device)駆動制御部 5と、アナログ信号処理部 6と 、 AZD変換部 7と、デジタル信号処理部 8と、バッファメモリ 9と、画像圧縮部 10と、 画像記録制御部 11と、画像記録部 12と、画像表示制御部 13と、カメラブレ補正部 1 6と、角速度センサ 18と、表示部 55と、シャッター制御部 41と、シャッター駆動モータ 42と、ストロボ制御部 43と、ストロボ 44と、動き検出部 100と、デジタル信号増幅部 1 10と、デジタル信号ゲイン設定部 111とを備えて構成される。
[0021] 撮像光学系 Lは、 3つのレンズ群 Ll、 L2、 L3を含む光学系である。第 1レンズ群 L 1及び第 2レンズ群 L2は、光軸方向に移動することによりズーミングを行う。第 2レンズ 群 L2は、補正レンズ群であって、光軸に垂直な面内を移動することにより光軸を偏心 させて画像の動きを補正する。第 3レンズ群 L3は、光軸方向に移動することによりフ オーカシングを行う。なお撮像光学系 Lは、上記の光学系の構成に限るものではない
[0022] 機械的な振動、撮影者等による揺れ等がデジタルカメラ 1に加わると、被写体からレ ンズに向力つて照射される光の光軸とレンズの光軸とにズレが生じるため、不鮮明な 画像が形成される。そこで、デジタルカメラ 1は不鮮明な画像が形成されるのを防止 するためにカメラブレ補正部 16及びカメラブレ補正機構 20を備える。なお、カメラブ レ補正部 16及びカメラブレ補正機構 20は、撮影者等の揺れやカメラ本体に加わる 振動等によって生じる光学像のブレを軽減するものである。
[0023] 撮像センサ 4は、撮像光学系 Lにより形成される光学的な像を電気的な信号に変換 する、例えば CCDセンサである。撮像センサ 4は、 CCD駆動制御部 5により駆動制 御される。なお、撮像センサ 4は CMOS (Complementary Metal Oxide Semiconducto r)センサでもよい。
[0024] マイクロコンピュータ 3は、デジタルカメラ 1全体を制御するとともに、被写体の動きに 応じてカメラブレ補正機能と撮影感度変更機能とを制御する撮影制御処理を実行す る。マイクロコンピュータ 3は、被写体速度が所定の閾値より小さい場合には、カメラブ レ補正機能を制御してカメラブレ補正を動作させ、被写体速度が所定の閾値以上の 場合には、被写体速度が所定の閾値より小さい場合よりも撮影感度変更機能のゲイ ンを高くし更に露出時間を短くするとともに、異なる露出条件により複数枚の画像を 連続撮影する。撮影制御処理の詳細については、図 6のフローにより後述する。また 、マイクロコンピュータ 3は、電源スィッチ 35、シャッター操作部 36、撮影/再生切換 操作部 37、十字操作キー 38、 MENU設定操作部 39及び SET操作部 40の信号を 、それぞれ受信可能である。マイクロコンピュータ 3は本発明の制御部の一例である。
[0025] 図 2において、デジタルカメラ 1の筐体 laは、被写体を撮影する際に撮影者等によ つて支持される。筐体 laの背面には、表示部 55と電源スィッチ 35と撮影 Z再生切換 操作部 37と十字操作キー 38と MENU設定操作部 39と SET操作部 40が設けられ ている。
[0026] 電源スィッチ 35は、デジタルカメラ 1の電源の入切を行うための操作部材である。撮 影 Z再生切換操作部 37は、撮影モード又は再生モードに切換えるための操作部材 であり、撮影者等はレバーを回動させて切換えることができる。 MENU設定操作部 3 9は、デジタルカメラ 1の各種動作を設定するための操作部材である。十字操作キー 38は、撮影者等が上下左右の部位を押圧して、表示部 55に表示された各種メ-ュ 一画面力も所望のメニューを選択するための操作部材である。 SET操作部 40は、各 種メニュー表示を 1つ前の表示に戻すための操作部材である。
[0027] 図 2Bにおいて、筐体 laの上面には、シャッター操作部 36とズーム操作部 57が設 けられる。ズーム操作部 57は、シャッター操作部 36の周囲に設けられ、シャッター操 作部 36と同軸に回動可能である。撮影者等が撮影 Z再生切換操作部 37を操作して 撮影モードに切換えた後、ズーム操作部 57を右方向に回動させるとレンズ群は望遠 側に移動し、左方向に回動させるとレンズ群は広角側に移動する。
[0028] シャッター操作部 36は、撮影の際に撮影者等によって操作される、例えばレリーズ ボタンである。シャッター操作部 36が操作されると、タイミング信号がマイクロコンピュ ータ 3に出力される。シャッター操作部 36は、半押し操作と全押し操作が可能な二段 式の押下スィッチであり、撮影者等が半押し操作すると後述する被写体の動き検出、 測光処理及び測距処理を開始する。続ヽて撮影者等が全押し操作するとタイミング 信号が出力される。シャッター制御部 41は、タイミング信号を受信したマイクロコンビ ユータ 3から出力される制御信号にしたがって、シャッター駆動モータ 42を駆動し、シ ャッターを動作させる。
[0029] 再び図 1に戻り、デジタルカメラ 1の構成の説明を続ける。図 1中、ストロボ制御部 43 は、ストロボ 44の動作を制御する。シャッター操作部 36の操作によるタイミング信号を 受信したマイクロコンピュータ 3は、ストロボ制御部 43に制御信号を出力する。そして ストロボ制御部 43は、制御信号に基づいてストロボ 44を発光させる。ストロボ 44は、 撮像センサ 4が受光する光量に応じて制御される。すなわち、ストロボ制御部 43は、 撮像センサ 4からの画像信号の出力が一定値以下の場合にはシャッター動作と連動 して自動的に発光させる。一方、画像信号の出力が一定値以上の場合には、スト口 ボ制御部 43はストロボ 44を発光させないように制御する。
[0030] ストロボ入 Z切操作部 56は、上述の撮像センサ 4の出力に関係なくストロボ 44の動 作を設定するための操作部である。すなわち、ストロボ制御部 43は、ストロボ入 Z切 操作部 56が「入」の場合にはストロボ 44を発光させ、「切」の場合にはストロボ 44を発 光しない。
[0031] 撮像センサ 4から出力された画像信号は、アナログ信号処理部 6から、 AZD変換 部 7、デジタル信号処理部 8、デジタル信号増幅部 110、ノ ッファメモリ 9、画像圧縮 部 10へと、順次送られて処理される。アナログ信号処理部 6は、撮像センサ 4から出 力される画像信号にガンマ処理等のアナログ信号処理を施す。 AZD変換部 7は、ァ ナログ信号処理部 6から出力されたアナログ信号をデジタル信号に変換する。デジタ ル信号処理部 8は、 AZD変換部 7によりデジタル信号に変換された画像信号に対し てノイズ除去や輪郭強調等のデジタル信号処理を施し、動き検出部 100及びデジタ ル信号増幅部 110に出力する。バッファメモリ 9は、 RAM (Random Access Memory) であり、画像信号をー且記憶する。
[0032] デジタル信号ゲイン設定部 111は、デジタル信号処理された画像信号の増幅ゲイ ンを設定する。デジタル信号増幅部 110は、設定された増幅ゲインで画像信号を増 幅し、バッファメモリ 9に出力する。なお、増幅ゲインの設定は撮影感度の設定に対応 する。本実施の形態では、撮影感度は ISO感度に相当する値として表され、例えば I SO80、 100、 200、 400、 800、 1600相当の撮影感度に設定可能である。なお、設 定可能な撮影感度はこれに限られない。また、撮影感度は ISO感度相当以外の値で 表されてもよい。
[0033] また、画像信号を増幅する処理は、デジタル信号増幅部 110にお ヽて行われる場 合に限られず、アナログ信号処理部 6にてアナログ信号に対して行ってもよい。また 増幅処理は、撮像センサ 4にて行われてもよい。
[0034] バッファメモリ 9に記憶された画像信号は、画像圧縮部 10から画像記録部 12へと、 順次送られて処理される。バッファメモリ 9に記憶された画像信号は、画像記録制御 部 11の指令により読み出されて、画像圧縮部 10に送信される。画像圧縮部 10に送 信された画像信号のデータは、画像記録制御部 11の指令に従って画像信号に圧縮 処理される。画像信号は、この圧縮処理により、元のデータより小さなデータサイズに なる。かかる圧縮方法として、例え ¾JPEG (Joint Photographic Experts Group)方式 が用いられる。その後、圧縮された画像信号は、画像記録制御部 11により画像記録 部 12に記録される。
[0035] 画像記録部 12は、画像記録制御部 11の指令に基づ!/ヽて、画像信号と記録すべき 所定の情報とを関連付けて記録する、例えば内部メモリ及び Z又は着脱可能なリム 一バブルメモリである。なお、画像信号とともに記録すべき所定の情報には、画像を 撮影した際の日時と、焦点距離情報と、シャッタースピード情報と、絞り値情報と、撮 影モード情報とが含まれ、例えば Exif (登録商標)形式や Exif (登録商標)形式に類 する形式である。
[0036] 表示部 55は、画像表示制御部 13からの指令に基づいて、画像記録部 12あるいは バッファメモリ 9に記録された画像信号を可視画像として表示する。ここで表示部 55 の表示形態としては、画像信号のみを可視画像として表示する表示形態と、画像信 号と撮影時の情報とを可視画像として表示する表示形態とがある。動き検出部 100 は、デジタル信号に変換された画像信号に基づいてフレーム間の画像の水平'垂直 方向の位置ずれ量を示すベクトル(以下、動きベクトルと!/、う)をフレーム毎に検出す る。以下、動き検出部 100の詳細について説明する。
[0037] 図 3は、上記動き検出部 100の構成の一例を示すブロック図である。図 3において、 動き検出部 100は、代表点記憶部 101と、相関演算部 102と、動きベクトル検出部 1 03とを含んで構成される。
[0038] 代表点記憶部 101は、 AZD変換部 7及びデジタル信号処理部 8を経て入力され る現フレームの画像信号を複数の領域に分割し、各領域に含まれる特定の代表点に 対応する画像信号を代表点信号として記憶する。また、代表点記憶部 101は、既に 記憶されている現フレームよりも 1フレーム前の代表点信号を読み出して相関演算部 102に出力する。 相関演算部 102は、 1フレーム前の代表点信号と現フレームの代 表点信号間の相関演算を行い、代表点信号間の差を比較する。演算結果は動きべ タトル検出部 103に出力される。
[0039] 動きベクトル検出部 103は、相関演算部 102による演算結果から 1フレーム前と現 フレーム間の画像の動きベクトルを 1画素単位で検出する。そして動きベクトルは、マ イク口コンピュータ 3に出力される。マイクロコンピュータ 3は、動きベクトルに対するゲ イン及び位相などを調整し、画像信号上の被写体の単位時間あたりの動き速度及び 方向を算出する。
[0040] 被写体の動きを検出する処理は、例えば撮影者等がシャッター操作部 36を半押し 操作することにより開始される。なお、処理の開始は、撮影者等が電源スィッチ 35を ONにした後、撮影 Z再生切換操作部 37を操作して撮影モードに切り替える動作と 連動させてもよい。
[0041] 次に、カメラブレ補正機能を実現するカメラブレ補正部 16の構成について説明する 。カメラブレ補正部 16は、位置検出部 15と、ョーイング駆動制御部 14xと、ピッチング 駆動制御部 14yと、 DZA変換部 17x、 17y、角速度センサ 18x、 18yと、 AZD変換 部 19x、 19yとを含む。
[0042] ョーイング駆動制御部 14x及びピッチング駆動制御部 14yは、補正レンズ群 L2を 撮像光学系 Lの光軸 AXに直交する 2方向に駆動させる。位置検出部 15は、補正レ ンズ群 L2の位置を検出する。以上の位置検出部 15とョーイング駆動制御部 14xとピ ツチング駆動制御部 14yは、補正レンズ群 L2を駆動制御するための帰還制御ルー プを形成している。
[0043] 角速度センサ 18x、 18yは、撮像光学系 Lを含むデジタルカメラ 1自体の動きを検 出するセンサである。角速度センサ 18x、 18yは、デジタルカメラ 1が静止している状 態での出力を基準として、デジタルカメラが動く方向に応じて正負の角速度信号を出 力する。なお、本実施の形態では、ョーイング方向及びピッチング方向の 2方向を検 出するために角速度センサを 2個設けて 、る。
[0044] 出力された角速度信号は、フィルタ処理、アンプ処理等を経て、 AZD変換部 19x 、 19yによりデジタル信号に変換されてマイクロコンピュータ 3に与えられる。そして、 マイクロコンピュータ 3は、角速度信号に対してフィルタリング、積分処理、位相補償、 ゲイン調整、クリップ処理等を順次施して、カメラブレ補正に必要なレンズ群 L2の駆 動制御量を算出し、制御信号として出力する。かかる制御信号は、 DZA変換部 17x 、 17yを介してョーイング駆動制御部 14x、ピッチング駆動制御部 14yに出力される。
[0045] ョーイング駆動制御部 14x及びピッチング駆動制御部 14yは、制御信号に基づ!/、 て補正レンズ群 L2を所定の駆動量だけ駆動させる。これにより、カメラブレを補正し、 画質劣化を軽減することができる。
[0046] 図 4は、上記カメラブレ補正部 16に含まれるカメラブレ補正機構 20の構成を示す分 解斜視図である。
[0047] カメラブレ補正機構 20は、ピッチング移動枠 21と、ョーイング移動枠 22、ピッチング シャフト 23a、 23bと、 =fィノレ 24x、 24yと、固定枠 25と、ョーイングシャフト 26a、 26bと 、マグネット 27x、 27yと、ヨーク 28x、 28yと、ァクチユエータ 29x、 29yと、発光素子 3 0と、受光素子 31とを中心に構成される。
[0048] 補正レンズ群 L2は、ピッチング移動枠 21に固定される。ピッチング移動枠 21は、ョ 一イング移動枠 22に対して 2本のピッチングシャフト 23a、 23bを介して Y方向に摺動 可能に保持される。また、ピッチング移動枠 21には、コイル 24x、 24yが固定される。 ョーイング移動枠 22は、固定枠 25に対してョーイングシャフト 26a、 26bを介して X方 向に摺動可能に保持される。マグネット 27xとヨーク 28xとは固定枠 25に保持され、 コイル 24xとともにァクチユエータ 29xを構成する。同様に、マグネット 27yとヨーク 28 yとは固定枠 25に保持され、コイル 24yとともにァクチユエータ 29yを構成する。発光 素子 30は、ピッチング移動枠 21に固定される。また、受光素子 31は、固定枠 25に 固定され、発光素子 30の投射光を受光して 2次元の位置座標を検出する。かかる発 光素子 30と受光素子 31とは、上述の位置検出部 15を構成する。
[0049] 以下、上述のように構成されたカメラブレ補正機能と撮影感度変更機能とを備える デジタルカメラ 1の動作を説明する。
[0050] まず、デジタルカメラ 1にお 、て選択可能な撮影モードにっ 、て説明する。撮影モ ードには、例えば 0. 3秒間隔でシャッター駆動モータ 42を動作させて 2回又は複数 回の連続撮影を行う「連写モード」や、後述する「感度アップ &カメラブレ補正自動選 択モード」、「感度アップモード」、「カメラブレ補正モード」等が含まれ、撮影者等は所 望の撮影モードを選択可能である。撮影モードが選択されると、マイクロコンピュータ 3は各撮影モードに応じて各種制御部を制御する。
[0051] 図 5は、表示部 55に表示された撮影モード選択画面の表示例を示す図である。撮 影モード選択画面は、撮影者等が MENU設定操作部 39や十字操作キー 38を操作 することにより、表示部 55に表示させることができる。図 5に示すように、撮影モードは 、「感度アップ &カメラブレ補正自動選択モード」と、「感度アップモード」と、「カメラブ レ補正モード」と、「モード OFF」からなり、撮影者等はそれぞれ対応するアイコン 90 〜93を選択することにより所望の撮影モードに設定することができる。なお、図 5には 本実施の形態にぉ ヽて特徴的な撮影モード選択アイコンのみが表示されて ヽるが、 前述した「連写モード」等、他の撮影モード選択アイコンをさらに表示してもよ 、。
[0052] 感度アップモード選択アイコン 91が選択されると、通常の撮影よりも高感度の撮影 感度に変更される(「感度アップモード」)。すなわち、デジタル信号増幅部 110はマ イク口コンピュータ 3からの指令により画像信号を所定のゲインで増幅する。これにより 、露光時間を短くし、速いシャッタースピードで撮影することができるので、像ブレの 影響を小さくすることができる。
[0053] カメラブレ補正モード選択アイコン 92が選択されると、カメラブレ補正機能が動作す る(「カメラブレ補正モード」)。すなわち、カメラブレ補正機構 20は、マイクロコンピュ ータ 3からの指令により補正レンズ群 L2を光軸と直交する平面内の 2方向に駆動させ てカメラブレを軽減する。 [0054] 感度アップ &カメラブレ補正自動選択モードアイコン 90が選択されると、マイクロコ ンピュータ 3は、被写体の動く速度に応じて、「感度アップモード」又は「カメラブレ補 正モード」のいずれかに自動的に切り替える。これにより、被写体が被写体ブレを発 生させるような速度で動く場合には高感度の撮影感度に設定され、一方、被写体が 被写体ブレを発生させな 、ような遅 、速度で移動する場合にはカメラブレによる像ブ レを軽減するカメラブレ補正機能が動作する。
[0055] モード OFF選択アイコン 93が選択されると、上記の撮影感度アップ機能及びカメラ ブレ補正機能は動作せず、通常モードにて通常の撮影が可能である。次に、「感度 アップ &カメラブレ補正自動選択モード」が選択された場合の撮影処理にっ ヽて、図 6のフローチャートを用いて説明する。
[0056] 図 6は、デジタルカメラ 1の撮影処理を示すフローチャートであり、マイクロコンピュー タ 3により実行される。本フローは、例えばデジタルカメラ 1の電源スィッチ 35が ON側 に操作されると開始する。
[0057] Steplの処理では、撮影者等がデジタルカメラ 1の筐体 laの背面側に設けられた MENU設定操作部 39を操作すると表示部 55には撮影モードの一覧が表示される。 表示された撮影モード選択アイコンのうち、撮影者等が感度アップ &カメラブレ補正 自動選択モードアイコン 90を選択すると、処理は Step2に進む。
[0058] Step2では、撮影者等がシャッター操作部 36を操作したことを認識して、マイクロコ ンピュータ 3は処理を Step3へ移行させる。
[0059] Step3では、被写体の動きを検出する。動き検出処理では、動き検出部 100が撮 影対象となる被写体の動きを、撮影画像の代表点を追跡することにより検出し、動き ベクトルを出力する。また、動き検出処理と同時に測光処理及び測距処理を行う。測 光処理では、デジタル信号処理部 8は、撮像センサ 4により出力された画像信号に基 づいて露光値を演算する。マイクロコンピュータ 3は、演算された露光値に基づいて 適切なシャッタースピードと撮影感度である ISO感度とを自動設定する。また、測距 処理では、図示しな!、フォーカス制御部は画像信号のコントラスト値がピークとなるよ うにレンズ群を光軸方向に移動させ合焦調整を行う。また、動き検出部 100が撮影対 象となる被写体の動きを検出し、動きベクトルを出力する。 [0060] Step4では、マイクロコンピュータ 3は動き検出部 100により検出された動きベクトル から、単位時間あたりの被写体の動き速度 Vhを算出する。
[0061] Step5では、動き速度 Vhの判定処理を行う。デジタルカメラ 1には、予め所定の値 Aが設定されており、マイクロコンピュータ 3は動き速度 Vhと所定の値 Aとを比較する 。ここで、所定の値 Aは被写体ブレが生じる閾値となる値であり、カメラ固有の値であ つてもよいし、撮影者等により任意に設定されてもよい。例えば、ストロボを使用する 時には、シャッタースピードを速くすることができるので、閾値を大きくすることにより、 むやみに撮影感度が上がることがない。逆に、被写体として被写体速度の算出後撮 影時までに突然動くことの多い子供やペットを撮影する際には、デジタルカメラ 1に、 別途子供撮影モードあるいはペット撮影モードを設けることにより、撮影者等がその モードを選択した時には、閾値を小さくして、撮影感度をアップさせることを優先する ような方法であってもよ 、。
[0062] さらには、夜景や薄暗い室内での撮影、被写体までの距離が遠くてストロボ光が届 力な 、、あるいは望遠撮影のように使用時の焦点距離が長くてカメラブレの影響が大 きい場合にも、閾値を小さくして、撮影感度を優先させてもよい。比較の結果、動き速 度 Vhが値 A以上の場合、マイクロコンピュータ 3は被写体が被写体ブレを発生させる 速度で動いていると判断し、処理を Step6へ移行させる。動き速度 Vhが値 Aよりも小 さい場合、マイクロコンピュータ 3は、被写体ブレは発生しないと判断して、処理を Ste ρ9へ移行させる。被写体ブレが発生しない状況においては、 Step3で設定したシャ ッタースピードと ISO感度とで撮影する。例えば、 ISO感度を 100相当とし、シャツタ 一スピード 1Z30秒にて撮影する。
[0063] 上記 Step5で動き速度 Vhが値 A以上の場合、 Step6でマイクロコンピュータ 3は撮 影モードを「感度アップモード」に切り替える。すなわち、デジタル信号ゲイン設定部 1 11は、 Step6以降の Stepにおいて、 Step3で設定した ISO感度よりも高感度の ISO 感度となるようゲインを設定する。
[0064] Step7では、撮影者等がシャッター操作部を全押し操作されたことを認識すると、 S tep8で撮影処理を行う。すなわち、被写体の光学的な像が撮像センサ 4上に形成さ れ、撮像センサ 4は画像信号を出力する。そしてデジタル信号増幅部 110は、デジタ ル信号処理部 8から出力された画像信号に対し、 Step6において設定されたゲイン で増幅する。増幅された画像信号は画像記録部 12に記録され、撮影処理を終了す る。
[0065] このように、被写体の動き速度 Vhが所定の値 Aよりも大き 、場合には、高感度の撮 影感度に設定される。これにより露光時間を短くすることができ、速いシャッタースピ ードでの撮影が可能となるので、被写体ブレを防ぐことができる。
[0066] 一方、上記 Step5で動き速度 Vhが値 Aより小さい場合、 Step9では、マイクロコン ピュータ 3は撮影モードを「カメラブレ補正モード」に切り替え、カメラブレ補正部 16及 びカメラブレ補正機構 20を動作させる。カメラブレ補正部 16は、角速度センサ 18x、 18yによりカメラ本体に加わるカメラブレを検知する。そしてマイクロコンピュータ 3から の指令により、外部の回路力もピッチング移動枠 21のコイル 24x、 24yに電流が供給 され、ァクチユエータ 27x、 27yが形成する磁気回路により、ピッチング移動枠 21及 び補正レンズ群 L2は光軸 AXと直交する平面内の 2方向 X、 Y方向に移動する。この とき、受光素子 29はピッチング移動枠 21の位置を検出するので、高精度な位置検出 が可能である。
[0067] SteplOでは、マイクロコンピュータ 3は撮影者等がシャッター操作部 36を全押し操 作したことを認識すると、 Step 11で撮影処理を行う。すなわち、撮像センサ 4上に被 写体像が形成されて画像信号が出力され、出力された画像信号は、表示部 55に表 示される。
[0068] このように、被写体の動き速度 Vhが所定の値 Aよりも小さ 、場合には、撮影感度は 変更されずに、カメラブレ補正機能が動作する。これにより、カメラブレを軽減し、良 好な画質の画像を撮影することができる。
[0069] 以上のように、本実施の形態に係るデジタルカメラは、被写体の動きが速い場合に は高感度の撮影感度に変更し、露光時間を短くして高速のシャッタースピードで撮影 する。これにより被写体ブレによる画質劣化を防ぐことができる。また本実施の形態に 係るデジタルカメラは、被写体の動きが遅 、場合にはカメラブレ補正機能を動作させ るので、カメラブレによる像ブレを防ぎ、画質劣化を軽減することができる。
[0070] また、本実施の形態に係るデジタルカメラは、被写体の動きが速 、場合には自動的 に高感度の撮影感度に変更するので、撮影者は被写体の動きを観察して被写体ブ レが発生する力否かについて判断する必要がなく利便性が高い。
[0071] また、本実施の形態に係るデジタルカメラは、検出した被写体の動き速度が所定の 値よりも大きい場合に高感度の撮影感度に変更する。これにより、被写体が被写体ブ レを発生させな 、速度で動 、て 、るにもかかわらず、撮影者が誤って高感度の撮影 感度に設定することがない。
[0072] なお、本実施の形態に係るデジタルカメラは、被写体の動き速度 Vhが所定の値 A よりも大きい場合に、撮影感度を高感度に変更した場合についてのみ説明したが、こ れに限られない。デジタルカメラは、高感度の撮影感度に変更するとともに、カメラブ レ補正機能を動作させてもょ 、。
[0073] (実施の形態 2)
次に、実施の形態 2に係るデジタルカメラについて説明する。本実施の形態に係る デジタルカメラは、実施の形態 1に係るデジタルカメラとほぼ同様の構成を備えるが、 撮影モードとして、さらに流し撮りモードが選択可能である点で異なる。ここで流し撮り とは、速く動く被写体を撮影する場合に、その進行方向にカメラの向きを移動させな 力 シャッター操作部 36を押して撮影する方法であり、流し撮りモードにて撮影する ことにより被写体が静止し、かつ背景が流れるように写すことができる。以下、本実施 の形態では実施の形態 1と同一の構成要素については同一の符号を付し、実施の 形態 1と異なる点を中心に説明する。
[0074] 図 7は、実施の形態 2に係るデジタルカメラの撮影処理を示すフローチャートである 。図 7に示す処理は、例えばデジタルカメラ 1の電源スィッチ 35が ON側に操作される と開始する。
[0075] まず Step21の処理において、撮影者が MENU設定操作部 39を操作すると表示 部 55には選択可能な撮影モードの一覧が表示される。本実施の形態において表示 される撮影モードは、実施の形態 1に加えてさらに流し撮りモードが選択可能である。
[0076] Step22において、撮影者が流し撮りモード選択アイコンを選択すると、撮影モード は流し撮りモードに設定される。次に Step23において、撮影者がシャッター操作部 3 6を半押し操作すると、測光処理と測距処理が行われるとともに、 Step24でマイクロ コンピュータ 3はカメラブレ補正部 16及びカメラブレ補正機構 20に指令を与え、カメ ラブレ補正機能を動作させる。ここで、カメラブレ補正機能を動作させる理由は、流し 撮りを可能とするために遅いシャッタースピードに設定されるので、カメラブレによる 像ブレが生じやすいためである。なお、カメラブレ補正部 16は、流し撮りによるカメラ 本体の動きを誤ってカメラブレとして認識しないように、デジタルカメラの向きが移動 する方向には補正レンズ群 L2を動作させない。例えば、流し撮りを行うために撮影 者がデジタルカメラの向きを地面と水平な方向(右力 左、あるいは左力 右)へ動か す場合には、カメラブレ補正機構 20は補正レンズ群を垂直な方向のみに動作させる 。すなわち、ピッチング方向である角速度センサ 18yにより垂直方向に加わるブレの みを検知し、マイクロコンピュータ 3は検知されたブレを打ち消すような指令をカメラブ レ補正機構 20に与える。そして外部の回路力もピッチング移動枠 21のコイル 24yに 電流を供給すると、ァクチユエータ 27yにより形成された磁気回路により、ピッチング 移動枠 21は光軸 AXと直交する Y方向のみに移動する。なお、ョーイング方向につ いては、角速度センサ 18xの出力に応答せず、ァクチユエータ 27xに電流を供給す ることにより、補正レンズ群 L2はョーイング方向に動作しない。
[0077] このように、カメラブレ補正機構 20は、補正レンズ群 L2を Y方向のみに移動させる ので、カメラブレによる像ブレを軽減することができる。また、流し撮りに伴うデジタル カメラの動きをカメラブレと間違って判断されることがない。
[0078] 再び図 7に示すフローチャートにおいて、撮影者がシャッター操作部 36を全押し操 作すると(Step25)、撮影処理が行われ、被写体の光学的な像が撮像センサ 4上に 形成されて画像信号が出力される(Step26)。以上により撮影処理は終了する。
[0079] 以上のように、本実施の形態に係るデジタルカメラは、流し撮りを行う場合において 、所定の角速度センサのみがブレを検出する。これにより、流し撮りに伴うデジタル力 メラの動きを間違ってカメラブレとして判断することがな 、ので、流し撮り特有の背景 が流れるような撮影が可能である。また、流し撮り撮影においても、カメラブレによる像 ブレを軽減することができるので、良好な画質の画像を得ることができる。
[0080] なお、本実施の形態において、流し撮りモードは撮影前に設定された力 これに限 られない。例えば、角速度センサの出力から自動的に流し撮りモードであると判断し てもよい。
[0081] (実施の形態 3)
次に、実施の形態 3に係るデジタルカメラについて説明する。本実施の形態に係る デジタルカメラは、実施の形態 1及び 2に係るデジタルカメラとほぼ同様の構成を備え る力 被写体の動き速度に応じて撮影感度が設定される点で異なる。以下、実施の 形態 1及び 2と異なる点を中心に説明する。
[0082] 撮影者がシャッター操作部 36を半押し操作すると、動き検出部 100は被写体の動 きを検出し、検出ベクトルを出力する。そしてマイクロコンピュータ 3は、出力された検 出ベクトル力も被写体の動き速度 Vhを算出する。さらにマイクロコンピュータ 3は、被 写体の動き速度 Vhから被写体ブレの生じな ヽシャッタースピードを算出し、かかるシ ャッタースピードにて撮影可能な撮影感度に設定する。例えば、屋外の環境下で、歩 く速度でゆっくりと移動する被写体を撮影する場合には ISO感度 100相当の撮影感 度に設定され、走る速度で移動する被写体を撮影する場合には ISO感度 400相当 の撮影感度に設定される。
[0083] 以上のように、本実施の形態に係るデジタルカメラは、被写体の動きに応じて撮影 感度が設定されるので、撮影者は適切な撮影感度に設定するために複雑な操作を することなく被写体ブレのない良好な画質の画像を撮影することができる。また、撮影 者が自ら撮影感度を設定する必要がないので、シャッターチャンスを逃すことがなぐ 利便性の高 、デジタルカメラを提供できる。
[0084] なお、本実施の形態に係るデジタルカメラは、被写体の動きに応じて撮影感度を設 定する場合についてのみ説明したが、同時にカメラブレ補正機能を動作させてもよい 。これにより、カメラブレによる画質の劣化を軽減でき、さらに良好な画質の画像を得 ることができる。またあるいは、カメラブレ補正機能は一定の撮影感度に設定された 場合にのみ動作させてもよ 、。
[0085] (実施の形態 4)
本発明の実施の形態 4に係る撮像装置のハード的構成は、図 1乃至図 3とほぼ同 様であるため説明を省略する。
[0086] 図 8は、本発明の実施の形態 4のデジタルカメラ 1の撮影処理を示すフローチャート であり、図 6に示すフローと同一処理を行うステップには同一ステップ番号を付して重 複箇所の説明を省略する。
[0087] Step 11で撮影処理を行うと、撮像センサ 4上に被写体像が形成されて画像信号が 出力され、出力された画像信号は、図 9に示す表示部 55に表示される。
[0088] Step30では、画像信号画像記録部 12に記録して撮影処理を終了する。
[0089] 図 9は、「カメラブレ補正モード」により撮影された撮影画像を表示部 55に表示する 表示例を示す図である。図 9に示すように、表示部 55には撮影画像とともに撮影感 度である ISO感度を表示する。
[0090] このように、被写体の動き速度 Vhが所定の値 Aよりも小さ 、場合には、撮影感度は 変更されずに、カメラブレ補正機能が動作する。これにより、カメラブレを軽減し、良 好な画質の画像を撮影することができる。
[0091] 一方、上記 Step5で動き速度 Vhが値 A以上の場合、 Step6でマイクロコンピュータ
3は撮影モードを「感度アップモード」に切り替える。すなわち、デジタル信号ゲイン設 定部 111は、 Step3で設定した ISO感度よりも高感度の ISO感度となるようゲインを 設定する。
[0092] Step7では、撮影者等がシャッター操作部を全押し操作されたことを認識すると、 S tep31以下で連続撮影処理が行われる。
[0093] ここで、連続撮影処理を行うことそれ自体に意味があるのではなぐ異なる露出条件 で複数毎 (ここでは 4枚)連続撮影することに特徴がある。 1回のシャッター操作部 36 の操作により、 1秒間に 4枚の連続撮影を行う。さらには撮影ごとに、撮影感度を上げ ていく。この理由としては、被写体の動き速度 Vhが、撮影中に速くなつていくことを想 定している。例えば、デジタル信号ゲイン設定部 111は、撮影感度が ISO感度 200 相当から上げて 、くようにゲインを設定する。
[0094] Step31で 1枚目の撮影においては、被写体の光学的な像が撮像センサ 4上に形 成され、撮像センサ 4は画像信号を出力する。そしてデジタル信号増幅部 110は、デ ジタル信号処理部 8から出力された画像信号に対し、 ISO感度 200相当にて設定さ れたゲインで増幅する。この際、シャッタースピードは、 1/60秒にて設定される。
[0095] Step32で 2枚目の撮影にお 、ては、被写体の光学的な像が撮像センサ 4上に形 成され、撮像センサ 4は画像信号を出力する。そしてデジタル信号増幅部 110は、デ ジタル信号処理部 8から出力された画像信号に対し、 ISO感度 400相当にて設定さ れたゲインで増幅する。この際、シャッタースピードは、 1/125秒にて設定される。
[0096]
Figure imgf000021_0001
、ては、被写体の光学的な像が撮像センサ 4上に形 成され、撮像センサ 4は画像信号を出力する。そしてデジタル信号増幅部 110は、デ ジタル信号処理部 8から出力された画像信号に対し、 ISO感度 800相当にて設定さ れたゲインで増幅する。この際、シャッタースピードは、 1Z250秒にて設定される。
[0097] Step34で 4枚目の撮影にお 、ては、被写体の光学的な像が撮像センサ 4上に形 成され、撮像センサ 4は画像信号を出力する。そしてデジタル信号増幅部 110は、デ ジタル信号処理部 8から出力された画像信号に対し、 ISO感度 1600相当にて設定 されたゲインで増幅する。この際、シャッタースピードは、 1Z500秒にて設定される。
[0098] このように、感度アップモードでは、高感度、すなわち、通常モード、あるいは、カメ ラブレ補正モードに比べ、高い ISO感度での撮影が行われる。また、その際の露出 値は実質的に同一となるように、露出時間が短く設定される。
[0099] この連続撮影された 4枚の撮影画像は、露出値を一定に保つように、 ISO感度とシ ャッタースピードとを変化させたものであり、 Step35で、図 10に示す表示部 55にサ ムネイル表示される。さら〖こは、 Step36で 4枚連続撮影された画像信号を画像記録 部 12に記録して、撮影処理を終了する。
[0100] 図 10は、「感度アップモード」設定後連続撮影された 4枚の撮影画像を表示部 55 に表示する表示例を示す図である。図 10に示すように、表示部 55には、異なる露出 条件で複数毎連続撮影された撮影画像がサムネイル表示される。各サムネイル表示 には、サムネイル表示番号 1 4と、各 ISO感度が表示される。
[0101] 本実施の形態では、異なる露出条件で連続撮影された 4枚の撮影画像について、 自動的に 4枚記録するようにして 、るが、撮影者等が任意の画像を選択して保存でき る方法であってもよい。
[0102] このように、被写体の動き速度 Vhが所定の値 Aよりも大き 、場合には、高感度の撮 影感度に設定される。これにより露光時間を短くすることができ、速いシャッタースピ ードでの撮影が可能となるので、被写体ブレを防ぐことができる。 [0103] ここで、上記 Step2の「シャッター半押し動作」の前に、撮影モードを「カメラブレ補 正モード」にすることも可能である。撮影モードを「カメラブレ補正モード」にしておくと 、シャッター半押し動作の際にもカメラブレ補正が行われる。被写体の動き検出する 際には、カメラブレ補正を行っているため、手ブレの影響を少なくした状態によって、 動き検出を行うことができるので、動き検出の精度を高めることができる。つまり、撮像 センサ 4での像の動き力 被写体の動きによるものである力、撮影者等の像ブレによ るカメラ本体の動きの影響であるの力どうかを区別できる。この場合には、上記 Step9 では、撮影モードが「カメラブレ補正モード」の継続となる。
[0104] 以上のように、本実施の形態によれば、検出された被写体の光学像の動きに基づ いて被写体速度を算出し、被写体速度が所定の閾値 A以上力否かを判別し、被写 体速度が閾値 Aより小さい場合には、カメラブレ補正部 16を制御してカメラブレ補正 を動作させ、被写体速度が閾値 A以上の場合には、デジタル信号ゲイン設定部 111 のゲインを高くして ISO感度をアップし、シャッター速度を速くして露出時間を短くす るとともに、 1回のシャッター操作により異なる露出条件で複数枚の画像を連続撮影 する。複数の露出条件により連続撮影することで、被写体の動き速度が、撮影中に急 激に変わることがあっても複数の露出条件で連続撮影した複数の画像のいずれか〖こ は良好な画質の画像が含まれる可能性が高くなる。一方、被写体速度が所定値より 遅い場合には、カメラブレ補正機能を動作させることにより、カメラブレのない良好な 画像を撮影することができる。その結果、撮影者は被写体の動きによらず、簡単に撮 影することが可能となる。
[0105] 具体的には、被写体の光学像の動きが速い場合には高感度の撮影感度に変更し 、露光時間を短くして高速のシャッタースピードで撮影する。これにより被写体ブレに よる画質劣化を防ぐことができる。また、被写体の光学像の動きが遅い場合にはカメ ラブレ補正部 16を動作させるので、手ブレによる像ブレを防ぎ、画質劣化を軽減する ことができる。したがって、撮影者は被写体の動きによらず、簡単に撮影することが可 能となる。
[0106] また、被写体の光学像の動きが速い場合には自動的に高感度の撮影感度に変更 するので、撮影者等は被写体の動きを観察して被写体ブレが発生する力否かについ て判断する必要がなく利便性が高 、。
[0107] また、本実施の形態では、検出した被写体速度が閾値 A以上の場合に高感度の撮 影感度に変更する。これにより、被写体が被写体ブレを発生させない速度で動いて V、るにもかかわらず、撮影者等が誤って高感度の撮影感度に設定することがな!、。
[0108] 特に、本実施の形態では、「感度アップモード」に変更後のシャッター全押し動作時 には、 1回のシャッター操作により、複数の露出条件にて連続撮影を行うことにより、 撮影者等は、複数の露出条件における撮影を 1度に行うことができる。この場合、撮 影ごとに撮影感度及びシャッター速度を上げていくことにより、被写体の動き速度 Vh 力 撮影中に速くなつていく際にも対応することができる。例えば、子供の撮影時など 、被写体の動き速度がシャッター操作部を全押しした瞬間に急激に変わってしまった 等の状況にも、連続撮影の際にシャッタースピードを上げて撮影することにより、十分 に対応することが可能となる。このように、複数の露出条件により連続撮影し、記録し ておくことで、被写体の動き速度が、撮影中に急激に変わることがあっても複数の露 出条件で連続撮影した複数の画像のいずれか〖こは良好な画質の画像が含まれる可 能性が高ぐ被写体ブレのない画像が記録される。撮影者等は、異なる露出条件で 4 枚連続撮影されて画像が記録された画像記憶部 12から、例えばサムネイル表示番 号を選択して被写体ブレのない最良の画像を保存することができる。
[0109] ここで、「シャッター半押し動作」から「シャッター全押し動作」を経て撮影に至るまで に被写体の速度変化と撮影感度の関係について説明する。
[0110] 図 11は、被写体の動き速度 Vhと撮影時の撮影感度 Sの関係を説明する図である。
図 11中、 T1は半押し動作、 T2は全押し動作、 T3は撮影の各タイミングである。また 、 S1〜S4は撮影時の撮影感度、 Aは所定の閾値である。被写体速度 Vhが所定の 閾値 A以上カゝ否かを判別し、被写体速度が閾値 Aより小さい場合には、カメラブレ補 正部 16を、また被写体速度 Vhが閾値 A以上の場合には、 ISO感度をアップ及びシ ャッター速度を速くする。
[0111] 本実施の形態では、「シャッター半押し動作」と連動して、被写体の動きベクトル検 出を開始する(図 8のフローの Step4)。そして、「シャッター全押し動作」の直前まで( 図 8のフローの Step6,Step9)、一定期間毎に動きベクトル検出を行い、「シャッター 全押し動作」時の被写体速度を、最終の被写体速度 Vhとする。この場合、図 11 (1) は被写体に動きがない時、(2)は等速で移動している時、(3)は被写体が一定割合 で加速している時、(4)は被写体が一定割合で減速している時であるとすると、 1枚 目の撮影時の被写体の速度変化と撮影感度の関係は以下のようになる。
[0112] (1)「シャッター半押し動作」中の被写体速度 Vhが、閾値 Aより低く一定の場合 被写体速度 Vhが所定の閾値 Aより低いので、撮影感度アップは行わず、通常撮影 モードの撮影感度 S 1とする。
[0113] (2)「シャッター半押し動作」中の被写体速度 Vhが、閾値 Aより高く一定の場合
「シャッター全押し動作」時の被写体速度 Vhに応じて、撮影感度アップし、ここでは 撮影感度 S2に設定する。
[0114] (3)「シャッター半押し動作」中の被写体速度 Vhが、所定の閾値 Aを超え、徐々に 速度が速くなる場合
徐々に被写体速度 Vhが速くなるので、加速度を計算し、「シャッター全押し動作」 時から実際の撮影時までのタイムラグの時間分のみ、速度が速くなる分を予測して感 度を撮影感度 S3 (S2く S3)に設定する。また、このとき、 2枚目以降の連続撮影にお V、て、撮影ごとに撮影感度及びシャッター速度を上げて 、くことが好ま 、。
[0115] (4)「シャッター半押し動作」中の被写体速度 Vhが、所定の閾値 Aを超え、徐々に 遅くなる場合
上記(3)の場合とは逆に、被写体速度 Vhが徐々に遅くなる場合には、速度が遅く なる分を予測して感度を撮影感度 S4 (S4< S2)に設定する。また、このとき、 2枚目 以降の連続撮影にぉ 、て、撮影ごとに撮影感度及びシャッター速度を下げて 、くこと が好ましい。
[0116] なお、連続撮影の例として、 1秒間に 4枚撮影を行う状況について説明した力 連 続撮影枚数については、その他の枚数であってよいことは言うまでもない。例えば、 1 秒間に 2枚連続撮影する際には、図 8のフローにおいて、 1枚目と 3枚目に示す条件 により撮影できるようにすればょ 、。
[0117] また、実施の形態 4では、シャッター操作部を 1回操作すると連続して複数枚の画 像が撮影できる例について説明したが、シャッター操作部を操作している(押してい る)期間のみ、撮影可能なシステムとしてもよい。
[0118] 以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに 限定されることはない。
[0119] 撮像装置を有する電子機器であればどのような装置にも適用できる。例えば、デジ タルカメラ及びビデオカメラは勿論のこと、カメラ付き携帯電話機、 PDA (Personal Di gital Assistants)等の携帯情報端末、撮像装置を備えるパソコン等の情報処理装置 にも適用可能である。
[0120] 上記各実施の形態では、被写体の動き速度 Vhが閾値 A以上の場合に、撮影感度 を高感度に変更する例について説明したが、高感度の撮影感度に変更するとともに 、カメラブレ補正機能を動作させてもよい。
[0121] また、異なる露出条件で複数連続撮影するものであればよぐ高感度にて連続 4枚 撮影する前に、通常モードの撮影感度である ISO感度 100相当にて撮影し、 1回の シャッター操作により、通常撮影及び高感度撮影により合計 5枚撮影するようにしても よい。
[0122] また、カメラブレ補正モードにおいても、 1回のシャッター操作により、複数の露出条 件にて連続撮影を行うこととしてもよい。これにより、撮影者等は、複数の露出条件に おける撮影を 1度に行うことができる。この場合、 1枚目の撮影感度は、 Step3にて設 定した通常モードと同じ ISO感度となる。 2枚目以降は、撮影ごとに撮影感度及びシ ャッター速度を上げていくことにより、被写体の動き速度 Vhが、撮影中に速くなつて いく際にも対応することができる。例えば、子供の撮影時など、被写体の動き速度が シャッター操作部を全押しした瞬間に急激に変わってしまった等の状況にも、連続撮 影の際にシャッタースピードを上げて撮影することにより、十分に対応することが可能 となる。また、上述のように、「シャッター半押し動作」中の被写体速度 Vhの変化に応 じて撮影感度及びシャッター速度を変えるようにしてもよい。
[0123] また、図 12に示すように、 1回のシャッター操作により連写し、感度アップあり画像と 、感度アップなし画像とを異なる撮影感度にて撮影することにより、撮影後すぐ、ある いは再生時に、簡単に 2つのモードの撮影画像、画質を比較できるようにしてもよい。 さらには、画像を自動的に、あるいは十字操作キー 38などにて手動で拡大表示する ことにより、併せて 4枚の撮影画像を表示部 55に同時に表示させてもよい。
[0124] また、撮影感度については、撮影画質の劣化を抑えるために、上限を設定できるよ うにしてもよい。
[0125] また、セルフタイマーを用いた撮影時などでは、シャッター操作部 36を全押しした 後、撮影が開始されるまでの数秒前から、被写体の光学像の動きを検出できるように してもよい。なお、動きを検出している際には、被写体側力も認識できるように、デジ タルカメラ 1に設けられた LEDなどにて、点滅させるようにすればなおさらよ!/、。
[0126] また、異なる露出条件での連続撮影の例として、 ISO感度 200相当、シャッタースピ ード 1Z60秒に設定した場合について説明したが、これに限らず、被写体の動き速 度 Vhが前回の動き速度より、より速い場合には、 ISO感度をさらに上げた状態で 1枚 目を撮影し、 1枚ごとに ISO感度を上げて連続撮影するようにしてもよい。
[0127] また、上記各実施の形態における撮像光学系及びカメラブレ補正部の構成は、上 記の構成に限られない。例えば、カメラブレ補正部は撮像センサを撮像光学系に対 して光軸と直交する 2方向に駆動させてもよい。また例えば、カメラブレ補正部は、レ ンズ鏡筒の被写体側前面に取り付けられたプリズムの角度を変えてもょ ヽし、ある ヽ はレンズ鏡筒全体を駆動してもよぐカメラブレによる像ブレの補正が可能であれば 構成はこれらに限られない。
[0128] また、撮像センサ内での画像の切り出し位置を変えて補正する、あるいは同一の被 写体を短いシャッタースピードにて複数枚撮影した後に 1枚の画像に合成するなどの 電子式のカメラブレ補正方式であってもよぐその方式が限定されるものではないこと は明らかである。
[0129] また、上記各実施の形態では、被写体の動き速度は、動きベクトルを用いて算出し たが、これに限らず、別途外部センサ等を用いて被写体の動き速度を検出してもよい
[0130] また、上記各実施の形態では、シャッターを動作させることにより撮像センサへの露 光時間を制御した力 これに限らず、電子シャッター等により撮像センサの露光時間 を制御してもよい。
[0131] また、実施の形態に係るデジタルカメラは撮像光学系を備えたが、これに限られな い。一眼レフレックスカメラシステムのように、撮像光学系を保持するレンズ鏡筒と、撮 像センサを含むカメラ本体とが別々に組合わせて使用される撮像装置に対しても適 用することができる。例えば、撮像光学系を保持するレンズ鏡筒と、カメラ本体とが別 々に用意され、撮像者等が組合わせて使用されるシステム全般に適用できる。
[0132] また、本実施の形態では、撮像装置という名称を用いたが、これは説明の便宜上で あり、撮影装置、デジタルカメラ及び撮像方法等であってもよいことは勿論である。
[0133] さらに、上記デジタルカメラを構成する各構成部、例えば撮像光学系の種類、その 駆動部及び取付け方法など、さらには動き検出部の種類などは前述した実施の形態 に限られない。
[0134] また、以上説明した撮像装置は、この撮像装置の撮影制御方法を機能させるため のプログラムでも実現される。このプログラムはコンピュータで読み取り可能な記録媒 体に格納されている。
[0135] 本明細書は、 2006年 2月 20日出願の特願 2006— 042379に基づく。この内容は すべてここに含めておく。
産業上の利用可能性
[0136] 本発明に係る撮像装置及びレンズ鏡筒は、良好な画質の画像が要望されるデジタ ルスチルカメラやデジタルビデオカメラ、カメラ部を備えた携帯電話、 PDA等に好適 である。

Claims

請求の範囲
[1] 被写体の光学像を形成する撮像光学系と、
前記形成された光学像を受光して、電気的な画像信号に変換して出力する撮像セ ンサと、
撮影前の所定時間における前記被写体の光学像の動きを検出する動き検出部と、 前記検出された被写体の光学像の動きに応じて露出時間を制御する制御部と、を 備える、撮像装置。
[2] 撮像装置本体の動きに起因する前記光学像のブレを補正するカメラブレ補正部と 前記被写体の光学像の動きに応じて前記カメラブレ補正部を動作させる力否かを 判断するカメラブレ補正制御部と、をさらに備える、請求項 1記載の撮像装置。
[3] 前記動き検出部により検出された被写体の光学像の動きに基づいて被写体速度を 算出し、前記被写体速度が所定の閾値以上か否かを判別する被写体速度判別部を さらに備え、
前記制御部は、前記被写体速度が前記閾値より小さい場合に、前記カメラブレ補 正部を動作させる、請求項 2記載の撮像装置。
[4] 流し撮りが可能な撮像装置であって、
前記カメラブレ補正制御部は、流し撮り状態の場合に、前記カメラブレ補正部を動 作させる、請求項 2記載の撮像装置。
[5] 前記動き検出部により検出された被写体の光学像の動きに基づいて被写体速度を 算出し、前記被写体速度が所定閾値以上か否かを判別する被写体速度判別部をさ らに備え、
前記制御部は、前記被写体速度が前記閾値以上である場合に、前記被写体速度 が所定閾値より小さい場合に比べ、より短い露出時間で撮影を行う、請求項 1記載の 撮像装置。
[6] 前記制御部は、前記被写体速度が前記閾値より小さい場合に、前記カメラブレ補 正部を動作させる、請求項 5記載の撮像装置。
[7] 前記制御部は、撮影毎に異なる露出時間又は異なる画像信号の増幅率で、複数 回の撮影を行う、請求項 5記載の撮像装置。
[8] 前記制御部は、より後の撮影をより短い露出時間で、又は、より後の撮影をより高い 増幅率で撮影を行う、請求項 7記載の撮像装置。
[9] 前記制御部は、前記被写体速度に基づ!、て予測した撮影時の被写体速度に応じ て、露出時間又は画像信号の増幅率を制御する、請求項 5記載の撮像装置。
[10] 前記動き検出部により検出された被写体の光学像の動きに基づいて被写体速度を 算出し、前記被写体速度が所定閾値以上か否かを判別する被写体速度判別部をさ らに備え、
前記制御部は、前記被写体速度が前記閾値以上である場合に、前記被写体速度 が所定閾値より小さい場合に比べ、より高い前記画像信号の増幅率で撮影を行う、 請求項 1記載の撮像装置。
[11] 前記制御部は、前記被写体速度が前記閾値より小さい場合に、前記カメラブレ補 正部を動作させる、請求項 10記載の撮像装置。
[12] 前記制御部の閾値を外部から設定する閾値入力手段を有する請求項 5記載の撮 像装置。
[13] 前記制御部の閾値を外部力 設定する閾値入力手段を有する請求項 10記載の撮 像装置。
[14] 撮像装置本体の動きに起因する光学像のブレを補正するカメラブレ補正部を搭載 したレンズ鏡筒と組み合わせて使用する撮像装置本体であって、
形成された光学像を受光して電気的な画像信号に変換して出力する撮像センサと 撮影前の所定時間における前記被写体の光学像の動きを測定し、被写体速度を 算出する動き検出部と、
前記検出された被写体の光学像の動きに応じて露出時間を制御する制御部と、を 備える撮像装置本体。
[15] 被写体の光学像を形成する撮像光学系と、
前記形成された光学的な像を受光して、電気的な画像信号に変換して出力する撮 像センサと、 撮影前の所定時間における前記被写体の光学像の動きを測定し、被写体速度を 算出する動き検出部と、
前記検出された被写体の光学像の動きに応じて露出時間を制御する制御部と、を 有する撮像装置本体と組み合わせて使用されるレンズ鏡筒であって、
撮像装置本体の動きに起因する光学像のブレを補正するカメラブレ補正部と、前 記カメラブレ補正部と前記撮像装置本体の制御手段とのインタフェースと、を具備す るレンズ鏡筒。
PCT/JP2007/052979 2006-02-20 2007-02-19 撮像装置及びレンズ鏡筒 WO2007097287A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07714505.0A EP1874043B1 (en) 2006-02-20 2007-02-19 Image pick up apparatus
US11/911,927 US8736691B2 (en) 2006-02-20 2007-02-19 Image pickup apparatus to control an exposure time based on motion of a detected optical image
CN2007800003614A CN101317445B (zh) 2006-02-20 2007-02-19 摄像装置和摄像装置本体
JP2008501708A JPWO2007097287A1 (ja) 2006-02-20 2007-02-19 撮像装置及びレンズ鏡筒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-042379 2006-02-20
JP2006042379 2006-02-20

Publications (1)

Publication Number Publication Date
WO2007097287A1 true WO2007097287A1 (ja) 2007-08-30

Family

ID=38437327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052979 WO2007097287A1 (ja) 2006-02-20 2007-02-19 撮像装置及びレンズ鏡筒

Country Status (5)

Country Link
US (1) US8736691B2 (ja)
EP (1) EP1874043B1 (ja)
JP (1) JPWO2007097287A1 (ja)
CN (1) CN101317445B (ja)
WO (1) WO2007097287A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058837A (ja) * 2007-08-31 2009-03-19 Sony Corp 撮像装置、撮像方法及びプログラム
US8508600B2 (en) 2008-06-11 2013-08-13 Canon Kabushiki Kaisha Imaging apparatus for stabilizing an image
JP2019129507A (ja) * 2018-01-26 2019-08-01 キヤノン株式会社 電子機器およびその制御方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019939B2 (ja) 2007-04-19 2012-09-05 パナソニック株式会社 撮像装置及び撮像方法
JP2008294981A (ja) * 2007-05-28 2008-12-04 Panasonic Corp カメラシステム
JP5364245B2 (ja) * 2007-06-01 2013-12-11 パナソニック株式会社 カメラシステム
JP4986175B2 (ja) * 2007-12-28 2012-07-25 カシオ計算機株式会社 撮像装置及びプログラム
JP5065060B2 (ja) * 2008-01-16 2012-10-31 キヤノン株式会社 撮像装置及びその制御方法
JP5105616B2 (ja) * 2008-02-08 2012-12-26 カシオ計算機株式会社 撮像装置及びプログラム
KR101398470B1 (ko) * 2008-02-12 2014-06-27 삼성전자주식회사 촬상 장치용 손떨림 보정 모듈 및 이를 구비한 촬상 장치
JP2009251294A (ja) * 2008-04-07 2009-10-29 Konica Minolta Opto Inc 手振れ補正機構及びレンズ鏡胴並びに撮像装置
KR101597823B1 (ko) * 2009-03-19 2016-02-26 삼성전자주식회사 움직임 보상 장치
US20100277603A1 (en) * 2009-04-29 2010-11-04 Apple Inc. Image Capture Device to Minimize the Effect of Device Movement
US8786761B2 (en) 2009-06-05 2014-07-22 Apple Inc. Continuous autofocus mechanisms for image capturing devices
KR101626003B1 (ko) * 2009-08-24 2016-06-13 삼성전자주식회사 디지털 촬영장치
JP5493942B2 (ja) 2009-12-15 2014-05-14 ソニー株式会社 撮像装置と撮像方法
JP6046931B2 (ja) * 2011-08-18 2016-12-21 キヤノン株式会社 撮像装置およびその制御方法
US9148582B2 (en) * 2012-06-29 2015-09-29 Intel Corporation Method and system for perfect shot imaging from multiple images
KR101979803B1 (ko) * 2013-01-02 2019-05-17 삼성전자주식회사 고속 연사 가능한 디지털 촬영장치 및 그 제어방법
JP6494202B2 (ja) * 2013-08-07 2019-04-03 キヤノン株式会社 像振れ補正装置、その制御方法、および撮像装置
US9571720B2 (en) * 2013-12-10 2017-02-14 Olympus Corporation Image processing device, display device, imaging apparatus, image processing method, and program
JP6338424B2 (ja) * 2014-04-03 2018-06-06 キヤノン株式会社 画像処理装置およびその制御方法、撮像装置、プログラム
CN105635552B (zh) * 2014-10-30 2019-10-11 宇龙计算机通信科技(深圳)有限公司 一种防抖拍照方法、装置及终端
CN104660915B (zh) * 2015-02-09 2017-12-01 广东欧珀移动通信有限公司 全景拍照曝光的控制方法及装置
CN105991932A (zh) * 2015-02-09 2016-10-05 联想(北京)有限公司 数据处理方法及电子设备
CN105141857B (zh) * 2015-09-21 2018-12-11 广东欧珀移动通信有限公司 图像处理方法和装置
CN106921829A (zh) * 2015-12-25 2017-07-04 北京奇虎科技有限公司 一种拍照方法和装置及拍照设备
JP6851854B2 (ja) * 2017-02-22 2021-03-31 キヤノン株式会社 画像処理装置、撮像装置および画像処理装置の制御方法
CN110771142B (zh) * 2017-06-21 2021-11-19 富士胶片株式会社 摄像装置、摄像装置的控制方法及摄像装置的控制程序
US10419701B2 (en) 2017-06-26 2019-09-17 Facebook Technologies, Llc Digital pixel image sensor
US10686996B2 (en) 2017-06-26 2020-06-16 Facebook Technologies, Llc Digital pixel with extended dynamic range
US10349025B2 (en) * 2017-07-27 2019-07-09 Seiko Epson Corporation Projector and method of controlling projector
US10750097B2 (en) * 2017-08-14 2020-08-18 Facebooke Technologies, Llc Varying exposure time of pixels in photo sensor using motion prediction
US10598546B2 (en) 2017-08-17 2020-03-24 Facebook Technologies, Llc Detecting high intensity light in photo sensor
US11393867B2 (en) 2017-12-06 2022-07-19 Facebook Technologies, Llc Multi-photodiode pixel cell
US10911675B2 (en) * 2017-12-28 2021-02-02 Samsung Electronics Co., Ltd. Method for providing shake correction, signal processing device performing the method, and imaging device including the signal processing device
US10694112B2 (en) * 2018-01-03 2020-06-23 Getac Technology Corporation Vehicular image pickup device and image capturing method
US10969273B2 (en) 2018-03-19 2021-04-06 Facebook Technologies, Llc Analog-to-digital converter having programmable quantization resolution
US11004881B2 (en) 2018-04-03 2021-05-11 Facebook Technologies, Llc Global shutter image sensor
US11233085B2 (en) 2018-05-09 2022-01-25 Facebook Technologies, Llc Multi-photo pixel cell having vertical gate structure
US11089210B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Configurable image sensor
US10903260B2 (en) 2018-06-11 2021-01-26 Facebook Technologies, Llc Multi-photodiode pixel cell
US11906353B2 (en) 2018-06-11 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
US11089241B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Pixel cell with multiple photodiodes
US11463636B2 (en) 2018-06-27 2022-10-04 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
US10897586B2 (en) 2018-06-28 2021-01-19 Facebook Technologies, Llc Global shutter image sensor
US10931884B2 (en) 2018-08-20 2021-02-23 Facebook Technologies, Llc Pixel sensor having adaptive exposure time
US11956413B2 (en) 2018-08-27 2024-04-09 Meta Platforms Technologies, Llc Pixel sensor having multiple photodiodes and shared comparator
US11595602B2 (en) 2018-11-05 2023-02-28 Meta Platforms Technologies, Llc Image sensor post processing
US11102430B2 (en) 2018-12-10 2021-08-24 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
US11218660B1 (en) 2019-03-26 2022-01-04 Facebook Technologies, Llc Pixel sensor having shared readout structure
US11943561B2 (en) 2019-06-13 2024-03-26 Meta Platforms Technologies, Llc Non-linear quantization at pixel sensor
US11936998B1 (en) 2019-10-17 2024-03-19 Meta Platforms Technologies, Llc Digital pixel sensor having extended dynamic range
US11902685B1 (en) 2020-04-28 2024-02-13 Meta Platforms Technologies, Llc Pixel sensor having hierarchical memory
US11910114B2 (en) 2020-07-17 2024-02-20 Meta Platforms Technologies, Llc Multi-mode image sensor
US11956560B2 (en) 2020-10-09 2024-04-09 Meta Platforms Technologies, Llc Digital pixel sensor having reduced quantization operation
CN112235514A (zh) * 2020-10-13 2021-01-15 余波 一种基于人工智能的相机快门速度调节方法及装置
CN115706863B (zh) * 2021-08-12 2023-11-21 荣耀终端有限公司 视频处理方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211582A (ja) * 1990-01-26 1992-08-03 Olympus Optical Co Ltd 撮像装置
JPH06165047A (ja) * 1992-11-25 1994-06-10 Sony Corp 固体撮像装置
JPH07107367A (ja) * 1993-09-29 1995-04-21 Canon Inc 画像処理装置
JPH08327917A (ja) * 1995-06-01 1996-12-13 Nikon Corp 撮像装置
JPH11326980A (ja) 1998-05-13 1999-11-26 Minolta Co Ltd 手振れ補正機能を有するカメラシステム
JP2006157428A (ja) * 2004-11-29 2006-06-15 Fuji Photo Film Co Ltd 撮影装置及び撮影方法

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102196C2 (de) 1990-01-26 2002-08-01 Olympus Optical Co Abbildungsvorrichtung zum Nachführen eines Objektes
US5099322A (en) 1990-02-27 1992-03-24 Texas Instruments Incorporated Scene change detection system and method
JPH0519326A (ja) 1991-07-10 1993-01-29 Nikon Corp 自動露出条件ずらしカメラ
JP3152750B2 (ja) 1992-07-13 2001-04-03 オリンパス光学工業株式会社 撮影装置ならびにぶれ画像復元装置
DE69319677T2 (de) * 1992-09-11 1999-01-21 Canon Kk Vorrichtung zur Ausgleichung von Bildzittern
DE69426314T2 (de) * 1993-02-12 2001-04-12 Sony Corp Elektronische Zoomkontrolle und Bildstabilisierung
US5712474A (en) 1993-09-29 1998-01-27 Canon Kabushiki Kaisha Image processing apparatus for correcting blurring of an image photographed by a video camera
US5642431A (en) 1995-06-07 1997-06-24 Massachusetts Institute Of Technology Network-based system and method for detection of faces and the like
JPH10210473A (ja) * 1997-01-16 1998-08-07 Toshiba Corp 動きベクトル検出装置
JP3332808B2 (ja) 1997-06-26 2002-10-07 キヤノン株式会社 レンズ装置およびこれを用いたカメラシステム
JP3575989B2 (ja) 1998-06-25 2004-10-13 松下電器産業株式会社 画像動き補正装置
JP2001013671A (ja) 1999-06-30 2001-01-19 Toshiba Corp パターン形成方法
US6778210B1 (en) * 1999-07-15 2004-08-17 Olympus Optical Co., Ltd. Image pickup apparatus with blur compensation
JP3430994B2 (ja) 1999-09-28 2003-07-28 ミノルタ株式会社 カメラ
JP2001125173A (ja) 1999-10-26 2001-05-11 Minolta Co Ltd デジタルカメラ
JP2001245249A (ja) 2000-02-28 2001-09-07 Minolta Co Ltd デジタルカメラ
JP2001330882A (ja) 2000-05-24 2001-11-30 Canon Inc 被写体認識機能付きカメラ
JP2002040506A (ja) 2000-07-25 2002-02-06 Ricoh Co Ltd 撮像装置
JP2002084453A (ja) 2000-09-07 2002-03-22 Minolta Co Ltd 撮像装置
JP4794786B2 (ja) 2001-09-28 2011-10-19 株式会社リコー 撮像装置、自動露出方法、およびその方法をコンピュータが実行するためのプログラム
JP2003107335A (ja) 2001-09-28 2003-04-09 Ricoh Co Ltd 撮像装置、自動合焦方法、およびその方法をコンピュータが実行するためのプログラム
JP3886769B2 (ja) * 2001-10-26 2007-02-28 富士通株式会社 補正画像生成装置および補正画像生成プログラム
JP3760846B2 (ja) 2001-11-22 2006-03-29 コニカミノルタフォトイメージング株式会社 被写体抽出装置及び撮影装置
JP2003222790A (ja) 2002-01-31 2003-08-08 Minolta Co Ltd カメラ
JP2002354402A (ja) 2002-05-09 2002-12-06 Matsushita Electric Ind Co Ltd 一時記憶装置付きビデオカメラ
JP2003344891A (ja) 2002-05-23 2003-12-03 Canon Inc 撮影モード自動設定カメラ
JP4234968B2 (ja) 2002-09-27 2009-03-04 富士フイルム株式会社 デジタルカメラ
JP4076148B2 (ja) 2003-03-20 2008-04-16 株式会社リコー デジタルカメラ
US20040207743A1 (en) 2003-04-15 2004-10-21 Nikon Corporation Digital camera system
JP4196714B2 (ja) 2003-04-15 2008-12-17 株式会社ニコン デジタルカメラ
JP2004357202A (ja) * 2003-05-30 2004-12-16 Canon Inc 撮影装置
JP4211582B2 (ja) 2003-11-25 2009-01-21 パナソニック電工株式会社 車庫扉
JP2005184246A (ja) 2003-12-17 2005-07-07 Fuji Photo Film Co Ltd 撮像装置
JP4489608B2 (ja) 2004-03-31 2010-06-23 富士フイルム株式会社 ディジタル・スチル・カメラ,画像再生装置および顔画像表示装置ならびにそれらの制御方法
JP4154400B2 (ja) 2004-04-01 2008-09-24 キヤノン株式会社 撮像装置及びその制御方法及びプログラム
JP4572583B2 (ja) 2004-05-31 2010-11-04 パナソニック電工株式会社 撮像装置
JP4574249B2 (ja) 2004-06-29 2010-11-04 キヤノン株式会社 画像処理装置及びその方法、プログラム、撮像装置
JP4315341B2 (ja) 2004-08-03 2009-08-19 富士フイルム株式会社 流し撮り方法および撮影装置
JP4404822B2 (ja) * 2004-08-31 2010-01-27 三洋電機株式会社 手ぶれ補正装置および撮像機器
JP4748787B2 (ja) 2004-11-11 2011-08-17 キヤノン株式会社 撮像装置及びその制御方法
JP4389779B2 (ja) 2004-12-27 2009-12-24 ソニー株式会社 撮像画像信号の歪み補正方法および撮像画像信号の歪み補正装置
JP4667052B2 (ja) 2005-01-27 2011-04-06 キヤノン株式会社 撮像装置並びにそのカメラ本体及び交換レンズ
JP4193804B2 (ja) 2005-02-03 2008-12-10 カシオ計算機株式会社 撮像装置、画像記憶装置、撮像方法、記憶方法及びプログラム
JP4446288B2 (ja) 2005-03-25 2010-04-07 カシオ計算機株式会社 動画記録装置および動画記録処理プログラム
US7945938B2 (en) 2005-05-11 2011-05-17 Canon Kabushiki Kaisha Network camera system and control method therefore
JP2007013272A (ja) 2005-06-28 2007-01-18 Casio Comput Co Ltd 電子カメラ及び電子カメラ制御プログラム
JP2007041570A (ja) 2005-07-01 2007-02-15 Nikon Corp 電子カメラ
JP2007011140A (ja) 2005-07-01 2007-01-18 Olympus Imaging Corp 手振れ補正機能付きカメラシステム
JP4350725B2 (ja) 2005-08-05 2009-10-21 キヤノン株式会社 画像処理方法、画像処理装置、及び、画像処理方法をコンピュータに実行させるためのプログラム
JP4431532B2 (ja) 2005-09-16 2010-03-17 富士フイルム株式会社 対象画像の位置検出装置および方法ならびに対象画像の位置検出装置を制御するプログラム
CN100556081C (zh) 2005-11-11 2009-10-28 松下电器产业株式会社 照相机***
JP4769553B2 (ja) * 2005-11-16 2011-09-07 キヤノン株式会社 撮像装置
JP4766320B2 (ja) 2006-02-06 2011-09-07 カシオ計算機株式会社 撮像装置及びそのプログラム
US7877004B2 (en) 2006-03-03 2011-01-25 Olympus Imaging Corp. Imaging apparatus and imaging method
JP2008107608A (ja) 2006-10-26 2008-05-08 Fujifilm Corp 撮像装置および撮像方法
JP2008160175A (ja) 2006-12-20 2008-07-10 Olympus Imaging Corp デジタルカメラ
JP4976160B2 (ja) * 2007-02-22 2012-07-18 パナソニック株式会社 撮像装置
WO2009008164A1 (ja) 2007-07-09 2009-01-15 Panasonic Corporation デジタル一眼レフカメラ
KR101597823B1 (ko) 2009-03-19 2016-02-26 삼성전자주식회사 움직임 보상 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211582A (ja) * 1990-01-26 1992-08-03 Olympus Optical Co Ltd 撮像装置
JPH06165047A (ja) * 1992-11-25 1994-06-10 Sony Corp 固体撮像装置
JPH07107367A (ja) * 1993-09-29 1995-04-21 Canon Inc 画像処理装置
JPH08327917A (ja) * 1995-06-01 1996-12-13 Nikon Corp 撮像装置
JPH11326980A (ja) 1998-05-13 1999-11-26 Minolta Co Ltd 手振れ補正機能を有するカメラシステム
JP2006157428A (ja) * 2004-11-29 2006-06-15 Fuji Photo Film Co Ltd 撮影装置及び撮影方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1874043A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058837A (ja) * 2007-08-31 2009-03-19 Sony Corp 撮像装置、撮像方法及びプログラム
US8508600B2 (en) 2008-06-11 2013-08-13 Canon Kabushiki Kaisha Imaging apparatus for stabilizing an image
JP2019129507A (ja) * 2018-01-26 2019-08-01 キヤノン株式会社 電子機器およびその制御方法
JP7071137B2 (ja) 2018-01-26 2022-05-18 キヤノン株式会社 電子機器およびその制御方法

Also Published As

Publication number Publication date
CN101317445A (zh) 2008-12-03
US20090128640A1 (en) 2009-05-21
US8736691B2 (en) 2014-05-27
EP1874043A4 (en) 2011-03-09
EP1874043B1 (en) 2013-12-04
CN101317445B (zh) 2011-02-09
JPWO2007097287A1 (ja) 2009-07-16
EP1874043A1 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
JP4974704B2 (ja) 撮像装置
EP1874043B1 (en) Image pick up apparatus
JP5019939B2 (ja) 撮像装置及び撮像方法
JP4976160B2 (ja) 撮像装置
CN101547315B (zh) 摄像装置
JP5919543B2 (ja) デジタルカメラ
JP4551475B2 (ja) 撮像装置
JP4441565B2 (ja) 撮像装置
JP4872797B2 (ja) 撮像装置、撮像方法および撮像プログラム
JP2012054920A (ja) 撮像装置
JP2009225027A (ja) 撮像装置、撮像制御方法、及びプログラム
JP2007049484A (ja) デジタルカメラ
JP2008206021A (ja) 撮像装置及びレンズ鏡筒
JP4974829B2 (ja) 撮像装置
JP5385428B2 (ja) 撮像装置
JP2018014680A (ja) 撮像装置、制御方法及びプログラム
JP2024071858A (ja) ブレ補正装置、ブレ補正方法及び撮像装置
JP2006005417A (ja) 撮影装置
JP2015158627A (ja) 撮像装置およびその制御方法
JP2007097199A (ja) 撮像装置
JP2010252078A (ja) 撮像システム
JP2010187372A (ja) 表示制御装置および撮像装置
JP2004260859A (ja) 撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000361.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008501708

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11911927

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007714505

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2007714505

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE