WO2007093367A1 - Verdichter für eine brennkraftmaschine - Google Patents

Verdichter für eine brennkraftmaschine Download PDF

Info

Publication number
WO2007093367A1
WO2007093367A1 PCT/EP2007/001215 EP2007001215W WO2007093367A1 WO 2007093367 A1 WO2007093367 A1 WO 2007093367A1 EP 2007001215 W EP2007001215 W EP 2007001215W WO 2007093367 A1 WO2007093367 A1 WO 2007093367A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
flow
flow opening
bypass channel
channel
Prior art date
Application number
PCT/EP2007/001215
Other languages
English (en)
French (fr)
Inventor
Gernot Hertwerck
Lionel Le Clech
Paul Löffler
Siegfried Sumser
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to JP2008554656A priority Critical patent/JP5061126B2/ja
Publication of WO2007093367A1 publication Critical patent/WO2007093367A1/de
Priority to US12/228,898 priority patent/US8307648B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/105Final actuators by passing part of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/127Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/10Purpose of the control system to cope with, or avoid, compressor flow instabilities
    • F05D2270/101Compressor surge or stall

Definitions

  • the invention relates to a compressor for an internal combustion engine according to the preamble of claim 1, and more particularly to such a compressor as part of an exhaust gas turbocharger of an internal combustion engine.
  • An exhaust gas turbocharger of an internal combustion engine has an exhaust gas turbine arranged in the exhaust gas train, which is driven by the exhaust gases of the internal combustion engine, and a compressor in the intake tract of the combustion air, the compressor wheel of which is driven by the turbine wheel via a shaft.
  • the compressor wheel is supplied via an inflow duct combustion air at atmospheric pressure, which is compressed by the rotation of the compressor wheel to an increased boost pressure before it is fed to the cylinders of the internal combustion engine.
  • characteristic-stabilizing measures which also enable a shift in the pumping limit position to smaller mass flow rates, as a result of which the starting torque and the acceleration torque or the maximum possible engine torque of the internal combustion engine can be significantly increased.
  • bypass passage in the form of an annular gap within the compressor housing.
  • This bypass channel usually consists of a first flow opening upstream of the leading edge of the compressor wheel, a second flow opening downstream of the leading edge of the compressor wheel and an annular chamber connecting these two flow openings.
  • Another object of the invention is to enable a simple adaptation of the map-stabilizing measure to the respective internal combustion engine.
  • the compressor for an internal combustion engine includes a housing; an inflow channel defined in the housing; a compressor wheel whose Ver emphasizerradeintritt is arranged in the inflow channel; and a bypass passage having a first flow opening upstream of the compressor impeller inlet, a second flow opening downstream of the compressor impeller inlet, and an axial annular chamber connecting the first and second flow ports.
  • the compressor is further characterized in that an axial grid is provided in the axial annular chamber of the bypass channel, which impresses a Mitdrallides with respect to the air mass flow in the inflow channel of the flowing through the bypass channel from the second to the first flow opening air mass in the pumping boundary region of the compressor.
  • the axial grid in the annular chamber of the bypass channel causes an air mass flow from the first flow opening of the bypass channel in the inflow channel, which is effective in the outer peripheral region of the Verêtrradeintritts together with the main mass flow relieving.
  • Such aerodynamic relief of the outer blade portion of the compressor wheel means largely preventing flow separation, which results in stable operation of the compressor even at lower mass flow rates, i. especially in the area of the surge limit.
  • a narrowest flow cross section of the axial lattice is smaller than or equal to a flow cross section of the second flow lattice. Opening of the bypass channel.
  • the axial grid or its grid elements in the air flow direction from the second to the first flow opening of the bypass channel in the direction of the circumferential direction of the compressor wheel is curved inwardly to impart the desired Mitdrallraum described above.
  • the second flow opening of the bypass channel is formed in the overlapping region of the compressor wheel. Alternatively, it is radially outside the compressor wheel, i. formed downstream of the Verêtrradaustritts.
  • the second flow opening of the bypass channel can also be connected to a tapping point downstream of the compressor in the intake tract of the internal combustion engine.
  • the first flow opening of the bypass channel in the direction of the inflow channel is limited by a special wall element which introduces the air mass flow from the first flow opening of the bypass channel with an axial flow component in the inflow channel.
  • a special wall element which introduces the air mass flow from the first flow opening of the bypass channel with an axial flow component in the inflow channel.
  • the axial grid of the bypass channel is designed as a replaceable module, so that the compressor can be optimized in a simple manner and without changes to the housing and the like to the particular application or the respective internal combustion engine.
  • the present invention also relates to an exhaust gas turbocharger for an internal combustion engine having an exhaust gas turbine in the exhaust line of the internal combustion engine and a compressor of the type described above in the intake tract of the internal combustion engine.
  • Figure 1 is a schematic representation of a supercharged internal combustion engine with an exhaust gas turbocharger with a compressor according to the present invention.
  • FIG. 2 is a schematic sectional view of a compressor of the exhaust gas turbocharger of FIG. 1 according to a preferred embodiment
  • FIG. and 3 is an enlarged schematic representation of the construction of an axial grid in the bypass passage of the compressor of FIG. 2.
  • the illustrated in Fig. 1 internal combustion engine 10 has an exhaust gas turbocharger 11 with an exhaust gas turbine 12 in an exhaust line 14 of the internal combustion engine and a compressor 16, the compressor wheel is driven by the turbine via a shaft 18 in the intake manifold 20 of the internal combustion engine.
  • the turbine wheel of the exhaust gas turbine 12 is rotated by the exhaust gases, which are finally fed to an exhaust gas aftertreatment device 21.
  • the rotation of the turbine wheel is transmitted through the shaft 18 to the compressor wheel of the compressor 16, which sucks combustion air and compressed to an increased charge pressure.
  • the exhaust gas turbine 12 may additionally be provided with a variably adjustable turbine geometry 22, which permits a variable adjustment of the effective flow cross section to the turbine wheel as a function of the current operating state of the internal combustion engine 10.
  • the compressor 16 may also be equipped with a variable compressor geometry (not shown) that includes one or more baffles in the inflow region of the compressor wheel in order to optimize the flow conditions in the compressor in a wide range of parameters.
  • a charge air cooler 24 is arranged downstream of the compressor 16, which cools the compressed charge air before it is supplied to the cylinders of the internal combustion engine 10. Furthermore, the internal combustion engine 10 is assigned an exhaust gas recirculation device 26, via which exhaust gases from the exhaust gas strssen 14 upstream of the exhaust gas turbine 12 in the intake tract 20 downstream of the charge air cooler 24 can be returned.
  • This exhaust gas recirculation device 26 includes an exhaust pipe between the exhaust line 14 and the intake manifold 20, a valve device and an exhaust gas cooler, as indicated in Fig. 1.
  • the internal combustion engine 10 is further associated with a control and control unit 28, which controls the various units depending on various operating conditions of the internal combustion engine 10, in particular the valve device of the exhaust gas recirculation device 26, the variable turbine geometry 22 and the variable compressor geometry.
  • bypass channel 30 in which a special axial grille 32 is arranged.
  • the structure and arrangement of this bypass channel 30 with the axial grid 32 are explained below with reference to FIGS. 2 and 3 in more detail.
  • the compressor 16 has a housing 34 with an axially extending inflow channel 36 in which the compressor wheel 38 driven by the exhaust gas turbine 12 via the shaft 18 is arranged.
  • the compressor 38 sucks combustion air in the direction of arrow 40 through the inflow channel 36 and outputs it via a radially extending diffuser 42 in a spiral channel 44.
  • the compressed charge air is supplied from the spiral channel 44 via the charge air cooler 24 to the cylinders of the internal combustion engine 10.
  • the bypass channel 30 branches off, which is formed rotationally symmetrical to the longitudinal axis 46 of the compressor 16 and over which air can be demanded essentially coaxially with the inflow channel 36.
  • the bypass channel 30 has a first, substantially radially extending flow opening 48 upstream of the compressor impeller inlet 50, a second flow opening 52 downstream of the compressor impeller inlet 50 and an axial annular chamber 54 connecting the first and second flow openings 48, 52.
  • the second flow opening 52 is positioned downstream of the compressor wheel inlet 50, but still within the coverage area of the compressor wheel 38.
  • the bypass passage 30 is substantially concentric with the inflow passage 36, and the flow ports 48, 52 are in the form of circumferential annular grooves.
  • a wall section 56 defining the annular chamber 54 and separating the bypass channel 30 from the inflow channel 36 is fixedly connected to the housing 34 by struts (not shown) which mechanically stabilize and stiffen the wall section 56.
  • the bypass channel 30 is needed in particular in an operation of the compressor 16 in the region of the surge limit or the Stopfgrenze.
  • a partial mass flow of the air through the second flow opening 52 enters the annular chamber 54 downstream of the compressor impeller inlet 50, flows through the bypass passage 30 counter to the main flow direction of the combustion air and is returned via the first flow opening 48 back into the inflow passage 36 ,
  • the first flow opening 48 of the bypass channel 30 is delimited from the inflow channel 36 by a special wall element 58.
  • This wall element 58 which may also be movably formed or attached, forms a pipe bend, through which the air flow through the bypass channel 30 from the first Stromungso réelle 48 is introduced with an axial flow component in the feed channel 36, as indicated by an arrow 60 in Fig. 2.
  • the air flow through the bypass passage 30 at the introduction into the inflow passage 36 is deflected by 180 °.
  • the radially inner nozzle contour 62 of the wall element 58 causes the air flow dusenformig is guided to the compressor wheel inlet 50.
  • the diameter D 36 of the inflow channel 36 upstream of the wall member 58 is greater than or equal to the diameter D 62 of the radially inner edge of the nozzle contour 62 of the wall member 58. Additionally, this diameter D 62 of the nozzle contour 62 of the wall member 58 is preferably larger or equal to the diameter D 50 of the compressor wheel inlet 50. Overall, therefore, the relationship D 36 > D 62 ⁇ D 50 is preferred.
  • the axial grid 32 is provided in the annular chamber 54 of the bypass channel 30.
  • This axial grid 32 is illustrated in Fig. 3 in more detail.
  • the stream of air mass flowing from the second flow opening 52 into the annular chamber 54 is deflected by the axial grille 32 into a flow direction advantageous for the purpose of shifting the pumping limit, which after leaving the first flow opening 48 in the outer peripheral region of the compressor impeller inlet 50 aerodynamically with the main mass flow from the inflow channel 36 relieving effective.
  • the air flow in the outer peripheral region of the compressor impeller inlet 50 when it is imprinted a Mitdrallrial, which is characterized by the Axial grille 32 in the annular chamber 54 of the bypass channel 30 takes place.
  • the Axialgitteraustritt 64 facing the first flow opening 48 of the bypass channel 30 is therefore oriented substantially in the circumferential direction of the compressor wheel 38.
  • the grid members 66 of the axial grid 32 in the air flow direction from the second to the first flow openings 52, 48 of the bypass passage 30 are curved inward in the radial direction in the direction of the circumferential direction of the compressor wheel 38, as shown in FIG. 3.
  • the aerodynamic relief of the outer blade portion of the compressor wheel 38 thus effected substantially prevents flow separation, which in turn permits stable operation of the compressor 38 even at low mass flow rates, i. effected in the area of the surge line.
  • This effect can be enhanced by a suitable construction of the nozzle contour 62 of the wall element 58.
  • the axial grid 32 is formed in the annular chamber 54 of the bypass channel 30 so that its narrowest flow cross-section A 32 in the vicinity of the Axialgitteraustritts 64 is less than or equal to the flow cross-section A 52 of the second
  • Flow port 52 of the bypass passage 30 is (A 32 ⁇ A 52 ).
  • the sensitivity of the second flow opening 52 is attenuated in its effect.
  • the sensitive throughput-determining flow cross-section of the bypass channel 30 is located in the narrowest flow cross-section A 32 of the axial grating 32.
  • a pitch t of the axial grille 32 can be made variable over the circumference.
  • the axial grid 32 thus constructed can be designed as a replaceable module, so that the compressor 16 can be optimized to the particular application without changing the housing 34 and its surroundings.
  • the second flow opening 52 is preferably arranged at a higher diameter position D 52 in comparison to conventional compressors 16 without axial grille 32 in the bypass channel 30.
  • the second flow orifice 52 in the embodiment of FIG. 2 is positioned at a position within the coverage area of the compressor wheel 38, it is also conceivable to locate the second flow orifice 52 radially outward of the compressor wheel 38, i. to arrange downstream of the Verêtrradaustritts 68. This means that the second Stromungso réelle 52 leads, for example, from the diffuser 42 or the spiral channel 44 at a higher pressure level in the annular chamber 54.
  • the second Stromungso réelle 52 via a (not shown) channel with a tapping point 70 'or 70''upstream or downstream of the intercooler 24 in the intake tract 20 is connected.
  • the second flow opening 52 can also be connected to the exhaust line 14 of the internal combustion engine 10 via a channel (not shown).
  • Corresponding bleed points 72 ', 72''and72''' are, for example upstream or downstream of the exhaust gas turbine 12 and downstream of the exhaust aftertreatment 21.
  • fresh air and / or exhaust gas can be introduced into the annular chamber 54 of the bypass channel 30.
  • the axial grid 32 in combination with the position of the bleed point 70 ', 70 ", 72', 72", 72 '", must be designed to ensure the creation of a suitable pressure ratio and mass flow rate through the bypass channel 30. This will also be of the flow cross section A 52 of the second Stromungso réelle 52, the narrowest flow cross-section A 32 of the axial grid 32 and the grating outlet angle ⁇ 32 (see Fig. 3) influenced, which together to the desired Mitdrall- intensities at the compressor wheel inlet 50 should go.
  • the annular chamber 54 of the bypass channel 30 is formed in the example of FIG. 2 rotationally symmetrical upstream of the Axialgittereintritts 74.
  • annular chambers 54 are conceivable as a collecting space, which can cause a virtually uniform over the circumference, almost axial Leitgitterstromung.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Ein Verdichter (16) für eine Brennkraftmaschine (10), weist ein Gehäuse (34) ; einen in dem Gehäuse definierten Zuströmkanal (36) ; ein Verdichterrad (38) , wobei der Verdichterradeintritt (50) in dem Zuströmkanal angeordnet ist; und einen Bypasskanal (30), der eine erste Strömungsöffnung (48) stromauf des Verdichterradeintritts, eine zweite Strömungsöffnung (52) stromab des Verdichterradeintritts und eine die erste und die zweite Strömungsöffnung verbindende axiale Ringkammer (54) aufweist, auf . In der axialen Ringkammer (54) des Bypasskanals (30) ist ein Axialgitter (32) vorgesehen, das der durch den Bypasskanal (30) von der zweiten zur ersten Strömungsöffnung (52, 48) strömenden Luftmasse im Pumpgrenzenbereich des Verdichters (16) eine Mitdrallrichtung bezüglich des Luftmassestroms im Zuströmkanal (36) aufprägt, was eine aerodynamische Entlastung des Außenumfangsbereichs des Verdichterrades (38) bewirkt.

Description

Verdichter für eine Brennkraftmaschine
Die Erfindung betrifft einen Verdichter für eine Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1, und insbesondere einen solchen Verdichter als Teil eines Abgasturboladers einer Brennkraftmaschine.
Ein Abgasturbolader einer Brennkraftmaschine weist eine im Abgasstrang angeordnete Abgasturbine, welche von den Abgasen der Brennkraftmaschine angetrieben wird, sowie einen Verdichter im Ansaugtrakt der Verbrennungsluft, dessen Verdichterrad von dem Turbinenrad über eine Welle angetrieben wird, auf. Dem Verdichterrad wird über einen Zuströmkanal Verbrennungsluft unter Atmosphärendruck zugeführt, welche über durch die Rotation des Verdichterrades auf einen erhöhten Ladedruck verdichtet wird, bevor sie den Zylindern der Brennkraftmaschine zugeführt wird.
Die Entwicklung derartiger aufgeladener Brennkraftmaschinen mit einem gewünschten Momentenverhalten erfordert sowohl bei Nutzfahrzeugen als auch bei Personenkraftwagen zunehmend verbreiterte Verdichterkennfeldbereiche. Das Verdichterkennfeld, in dem das Totaldruckverhältnis (Verhältnis des Ausgangsdrucks zum Eingangsdruck des Verdichters) gegenüber dem Massedurchsatz aufgetragen ist, ist einerseits durch die Pumpgrenze des Verdichters, d.h. die minimal mögliche Volumenförderung, und andererseits durch die Stopfgrenze des Verdichters, d.h. die maximal mögliche Volumenförderung, begrenzt. Zwischen Pumpgrenze und Stopfgrenze ist ein stabiler Betrieb der Brennkraftmaschine mit konstanten Drehzahlen möglich. Bei kleineren Massedurchsätzen, d.h. links der Pumpgrenzenlage, ist ein stabiler Betrieb der Brennkraftmaschine aufgrund von Pumpstößen nicht durchführbar, wobei der Abgasturbolader hier oft bereits nach geringen Laufzeiten beschädigt wird.
Es werden deshalb seit einiger Zeit kennfeidstabilisierende Maßnahmen entwickelt, die auch eine Verschiebung der Pumpgrenzenlage zu kleineren Massedurchsätzen ermöglichen, wodurch das Anfahrmoment und das Beschleunigungsmoment bzw. das maximal mögliche Motormoment der Brennkraftmaschinen deutlich gesteigert werden können.
Als eine kennfeldstabilisierende Maßnahme wird vorgeschlagen, über der Radkontur des Verdichterrades parallel zum Zuströmkanal einen Bypasskanal in Form eines Ringspaltes innerhalb des Verdichtergehäuses vorzusehen. Dieser Bypasskanal besteht üblicherweise aus einer ersten Strömungsöffnung stromauf der Eintrittskante des Verdichterrades, einer zweiten Strömungsöffnung stromab der Eintrittskante des Verdichterrades und einer diese beiden Strömungsöffnungen verbindenden Ringkammer. Durch den parallel zum Zuströmkanal liegenden Bypasskanal ergeben sich Bypassmasseströme, die im Vergleich zu baugleichen Vorrichtungen ohne Bypass im Bereich der Pumpgrenze und im Bereich der Stopfgrenze eine Verschiebung in Richtung kleinerer bzw. größerer Massenströme ermöglichen.
Ein Abgasturbolader mit einem derartigen Verdichter mit Bypasskanal ist zum Beispiel in der DE 196 47 605 C2 beschrieben. In diesem Fall sind die Öffnungsbereiche der ersten und der zweiten Strömungsöffnung des Bypasskanals zusätzlich variabel ausgestaltet, um das Verdichterkennfeld nahe der Pumpgrenze und/oder der Stopfgrenze weiter optimieren zu können.
Ein weiterer Abgasturbolader dieser Art ist aus der DE 198 23 274 Cl bekannt. Bei diesem Verdichter ist ein zusätzliches Wandelement zum Verstellen des Öffnungsbereichs der ersten Strömungsöffnung des Bypasskanals stromauf des Verdichterradeintritts vorgesehen. Außerdem sind Streben zum Halten eines Wandabschnitts des Bypasskanals als axiales Leitgitter ausgebildet, um dem Luftmassestrom durch den Bypasskanal einen Drall aufzuprägen. Nähere Angaben zur Konstruktion dieser Streben sind in dem Dokument nicht vorhanden.
Weiter ist es in diesem Zusammenhang bekannt, ein Leitgitter oder mehrere Leitgitter in dem Zuströmkanal stromauf des Verdichterrades anzuordnen, um dem Luftmassestrom einen Drall aufzuprägen, der sich insbesondere im Bereich der Grenzen des Verdichterkennfeldes günstig auf das Funktionsverhalten des Verdichterrades auswirkt. Eine solche Konstruktion offenbaren beispielsweise die Druckschriften DE 102 33 042 Al, DE 103 29 281 Al und EP 0 749 520 Bl.
Ausgehend von dem vorgenannten Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, einen Verdichter für eine Brennkraftmaschine vorzusehen, dessen kennfeidstabilisierende Maßnahme in Form eines Bypasskanals weiterentwickelt ist und zu einer stabileren Verschiebung der Pumpgrenzenlage des Verdichters führt. Eine weitere Aufgabe der Erfindung ist es, eine einfache Anpassung der kennfeldstabilisierenden Maßnahme an die jeweilige Brennkraftmaschine zu ermöglichen. Diese Aufgaben werden durch einen Verdichter für eine Brennkraftmaschine mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Der Verdichter für eine Brennkraftmaschine enthält ein Gehäuse; einen in dem Gehäuse definierten Zuströmkanal; ein Verdichterrad, dessen Verdichterradeintritt in dem Zuströmkanal angeordnet ist; und einen Bypasskanal, der eine erste Strömungsöffnung stromauf des Verdichterradeintritts, eine zweite Strömungsöffnung stromab des Verdichterradeintritts und eine die erste und die zweite Strömungsöffnung verbindende axiale Ringkammer aufweist. Der Verdichter ist weiter dadurch gekennzeichnet, dass in der axialen Ringkammer des Bypasskanals ein Axialgitter vorgesehen ist, das der durch den Bypasskanal von der zweiten zur ersten Strömungsöffnung strömenden Luftmasse im Pumpgrenzenbereich des Verdichters eine Mitdrallrichtung bezüglich des Luftmassestroms im Zuströmkanal aufprägt.
Das Axialgitter in der Ringkammer des Bypasskanals bewirkt einen Luftmassestrom aus der ersten Strömungsöffnung des Bypasskanals in den Zuströmkanal, der im Außenumfangsbereich des Verdichterradeintritts zusammen mit dem Hauptmassestrom entlastend wirksam wird. Eine solche aerodynamische Entlastung des äußeren Schaufelbereichs des Verdichterrades bedeutet die weitgehende Verhinderung von Strömungsablösungen, was einen stabilen Betrieb des Verdichters auch bei kleineren Massedurchsätzen, d.h. insbesondere im Bereich der Pumpgrenze ermöglicht.
In einer bevorzugten Ausführungsform der Erfindung ist ein engster Strömungsquerschnitt des Axialgitters kleiner oder gleich einem Strömungsquerschnitt der zweiten Strömungs- Öffnung des Bypasskanals . Durch diese Festlegung wird die Sensibilität der zweiten Strömungsöffnung des Bypasskanals in ihrer Wirkung gedämpft, da der sensible durchsatzbestimmende Strömungsquerschnitt des Bypasskanals im engsten Strömungsquerschnitt des Axialgitters liegt.
In einer bevorzugten Ausgestaltung der Erfindung ist das Axialgitter bzw. sind dessen Gitterelemente in der Luftströmungsrichtung von der zweiten zur ersten Strömungsöffnung des Bypasskanals in Richtung der Umfangsrichtung des Verdichterrades nach innen gekrümmt, um die oben beschriebene gewünschte Mitdrallrichtung aufzuprägen.
In einer Ausgestaltung der Erfindung ist die zweite Strömungsöffnung des Bypasskanals im Überdeckungsbereich des Verdichterrades ausgebildet. Alternativ ist sie radial außerhalb des Verdichterrades, d.h. stromab des Verdichterradaustritts ausgebildet.
In einer weiteren Ausgestaltung der Erfindung kann die zweite Strömungsöffnung des Bypasskanals auch mit einer Abzapfstelle stromab des Verdichters im Ansaugtrakt der Brennkraftmaschine verbunden sein. Alternativ oder zusätzlich ist es auch möglich, die zweite Strömungsöffnung des Bypasskanals mit einer Abzapfstelle eines Abgasstrangs der Brennkraftmaschine zu verbinden, um in die Ringkammer des Bypasskanals Abgase einzuleiten .
In einer weiteren Ausgestaltung der Erfindung ist die erste Strömungsöffnung des Bypasskanals in Richtung zum Zuströmkanal durch ein spezielles Wandelement begrenzt, das den Luftmassestrom aus der ersten Strömungsöffnung des Bypasskanals mit einer axialen Strömungskomponente in den Zuströmkanal einleitet. In diesem Fall ist es bevorzugt, wenn der Durchmesser der radialen Innenkante des Wandelements kleiner oder gleich dem Durchmesser des Zuströmkanals stromauf des Wandelements ist und der Durchmesser der radialen Innenkante des Wandelements größer oder gleich dem Durchmesser des Verdichterradeintritts ist.
In einer besonders bevorzugten Ausführungsform der Erfindung ist das Axialgitter des Bypasskanals als ein auswechselbares Modul konzipiert, sodass der Verdichter auf einfache Weise und ohne Änderungen am Gehäuse und dergleichen auf den jeweiligen Anwendungsfall bzw. die jeweilige Brennkraftmaschine optimiert werden kann.
Die vorliegende Erfindung betrifft auch einen Abgasturbolader für eine Brennkraftmaschine, der eine Abgasturbine im Abgasstrang der Brennkraftmaschine sowie einen Verdichter der oben beschriebenen Art im Ansaugtrakt der Brennkraftmaschine aufweist .
Obige sowie weitere Merkmale und Vorteile der Erfindung werden aus der nachfolgenden Beschreibung von bevorzugten, nicht-einschränkenden Ausführungsbeispielen der Erfindung unter Bezugnahme auf die beiliegenden Zeichnungen besser verständlich. Darin zeigen:
Fig. 1 eine schematische Darstellung einer aufgeladenen Brennkraftmaschine mit einem Abgasturbolader mit einem Verdichter gemäß der vorliegenden Erfindung;
Fig. 2 eine schematische Schnittansicht eines Verdichters des Abgasturboladers von Fig. 1 gemäß einem bevorzugten Ausführungsbeispiel; und Fig. 3 eine vergrößerte schematische Darstellung der Konstruktion eines Axialgitters in dem Bypasskanal des Verdichters von Fig. 2.
Die in Fig. 1 veranschaulichte Brennkraftmaschine 10 weist einen Abgasturbolader 11 mit einer Abgasturbine 12 in einem Abgasstrang 14 der Brennkraftmaschine und einem Verdichter 16, dessen Verdichterrad vom Turbinenrad über eine Welle 18 angetrieben wird, im Ansaugtrakt 20 der Brennkraftmaschine auf. Im Betrieb der Brennkraftmaschine 10 wird das Turbinenrad der Abgasturbine 12 von den Abgasen in Drehung versetzt, welche schließlich einer Abgasnachbehandlungseinrichtung 21 zugeführt werden. Die Drehung des Turbinenrades wird durch die Welle 18 auf das Verdichterrad des Verdichters 16 übertragen, das so Verbrennungsluft ansaugt und auf einen erhöhten Ladedruck verdichtet.
Die Abgasturbine 12 kann zusätzlich mit einer variabel einstellbaren Turbinengeometrie 22 versehen sein, die eine variable Einstellung des wirksamen Strömungsquerschnitts zum Turbinenrad in Abhängigkeit vom aktuellen Betriebszustand der Brennkraftmaschine 10 erlaubt. Analog kann der Verdichter 16 ebenfalls mit einer variablen Verdichtergeometrie (nicht dargestellt) ausgestattet sein, die ein oder mehrere Leitgitter im Zuströmbereich des Verdichterrades umfasst, um die Strömungsverhältnisse im Verdichter in einem weiten Parameterbereich optimieren zu können.
Im Ansaugtrakt 20 ist stromab des Verdichters 16 ein Ladeluftkühler 24 angeordnet, der die verdichtete Ladeluft kühlt, bevor sie den Zylindern der Brennkraftmaschine 10 zugeführt wird. Ferner ist der Brennkraftmaschine 10 eine Abgasrück- führeinrichtung 26 zugeordnet, über die Abgase aus dem Abgas- sträng 14 stromauf der Abgasturbine 12 in den Ansaugtrakt 20 stromab des Ladeluftkühlers 24 zurückgeführt werden können. Diese Abgasrückführeinrichtung 26 enthält eine Abgasleitung zwischen dem Abgasstrang 14 und dem Ansaugtrakt 20, eine Ventilvorrichtung und einen Abgaskühler, wie in Fig. 1 angedeutet .
Der Brennkraftmaschine 10 ist ferner eine Regel- und Steuereinheit 28 zugeordnet, welche in Abhängigkeit von verschiedenen Betriebszuständen der Brennkraftmaschine 10 die diversen Aggregate steuert bzw. einstellt, insbesondere die Ventilvorrichtung der Abgasrückführeinrichtung 26, die variable Turbinengeometrie 22 und die variable Verdichtergeometrie .
Als kennfeidstabilisierende Maßnahme ist der Verdichter 16 des Abgasturboladers 11 mit einem Bypasskanal 30 versehen, in dem ein spezielles Axialgitter 32 angeordnet ist. Der Aufbau und die Anordnung dieses Bypasskanals 30 mit dem Axialgitter 32 werden nachfolgend unter Bezugnahme auf Fig. 2 und 3 in mehr Einzelheiten erläutert.
Fig. 2 zeigt im Schnitt den Verdichterteil 16 des Abgasturboladers 11 von Fig. 1. Der Verdichter 16 weist ein Gehäuse 34 mit einem axial verlaufenden Zuströmkanal 36 auf, in dem das von der Abgasturbine 12 über die Welle 18 angetriebene Verdichterrad 38 angeordnet ist. Das Verdichterrad 38 saugt Verbrennungsluft in Pfeilrichtung 40 durch den Zuströmkanal 36 an und gibt sie über einen radial verlaufenden Diffusor 42 in einen Spiralkanal 44 aus. Die verdichtete Ladeluft wird aus dem Spiralkanal 44 über den Ladeluftkühler 24 den Zylindern der Brennkraftmaschine 10 zugeleitet. Im Einstrombereich des Zustromkanals 36 zweigt der Bypass- kanal 30 ab, der rotationssymmetrisch zur Langsachse 46 des Verdichters 16 ausgebildet ist und über den im Wesentlichen koaxial zum Zustromkanal 36 Luft gefordert werden kann. Der Bypasskanal 30 weist eine erste, im Wesentlichen radial verlaufende Stromungsoffnung 48 stromauf des Verdichterradeintritts 50, eine zweite Stromungsoffnung 52 stromab des Verdichterradeintritts 50 und eine die erste und die zweite Stromungsoffnung 48, 52 verbindende axiale Ringkammer 54 auf. Im Fall des in Fig. 2 dargestellten Ausfuhrungsbeispiels ist die zweite Stromungsoffnung 52 stromab des Verdichterradeintritts 50, aber noch im Uberdeckungsbereich des Verdichterrades 38 positioniert. Der Bypasskanal 30 verlauft im Wesentlichen konzentrisch zum Zustromkanal 36, und die Stromungsoffnungen 48, 52 haben die Form von umlaufenden Ringnuten. Ein die Ringkammer 54 definierender und den Bypasskanal 30 von dem Zustromkanal 36 trennender Wandabschnitt 56 ist zum Beispiel über Streben (nicht dargestellt) fest mit dem Gehäuse 34 verbunden, die den Wandabschnitt 56 mechanisch stabilisieren und versteifen.
Der Bypasskanal 30 wird insbesondere bei einem Betrieb des Verdichters 16 im Bereich der Pumpgrenze oder der Stopfgrenze benotigt. Bei einem Betrieb nahe der Pumpgrenze tritt ein Teilmassestrom der Luft durch die zweite Stromungsoffnung 52 stromab des Verdichterradeintritts 50 in die Ringkammer 54 ein, durchströmt den Bypasskanal 30 entgegen der Haupt- stromungsrichtung der Verbrennungsluft und wird über die erste Stromungsoffnung 48 wieder in den Zustromkanal 36 zuruckgeleitet .
Wie in Fig. 2 dargestellt, ist die erste Stromungsoffnung 48 des Bypasskanals 30 gegenüber dem Zustromkanal 36 durch ein spezielles Wandelement 58 begrenzt. Dieses Wandelement 58, das wahlweise auch bewegbar ausgebildet bzw. angebracht sein kann, bildet einen Rohrkrümmer, durch den der Luftstrom durch den Bypasskanal 30 aus der ersten Stromungsoffnung 48 mit einer axialen Stromungskomponente in den Zustromkanal 36 eingeleitet wird, wie durch einen Pfeil 60 in Fig. 2 angedeutet. Mit anderen Worten wird der Luftstrom durch den Bypasskanal 30 bei der Einleitung in den Zustromkanal 36 um 180° umgelenkt. Die radial innen liegende Dusenkontur 62 des Wandelements 58 bewirkt, dass die Luftströmung dusenformig auf den Verdichterradeintritt 50 gefuhrt wird.
In einer bevorzugten Ausfuhrungsform des Verdichters 16 ist der Durchmesser D36 des Zustromkanals 36 stromauf des Wandelements 58 großer oder gleich dem Durchmesser D62 der radialen Innenkante der Dusenkontur 62 des Wandelements 58. Außerdem ist dieser Durchmesser D62 der Dusenkontur 62 des Wandelements 58 vorzugsweise großer oder gleich dem Durchmesser D50 des Verdichterradeintritts 50. Insgesamt gilt damit bevorzugt die Beziehung D36 > D62 ≥ D50.
Wie bereits oben erwähnt, ist in der Ringkammer 54 des Bypasskanals 30 das Axialgitter 32 vorgesehen. Dieses Axialgitter 32 ist in Fig. 3 naher veranschaulicht. Der von der zweiten Stromungsoffnung 52 in die Ringkammer 54 stromende Luftmassestrom wird durch das Axialgitter 32 in eine bezuglich des Ziels der Verschiebung der Pumpgrenze vorteilhafte Stromungsrichtung umgelenkt, die nach Verlassen der ersten Stromungsoffnung 48 im Außenumfangsbereich des Verdichterradeintritts 50 mit dem Hauptmassestrom aus dem Zustromkanal 36 aerodynamisch entlastend wirksam ist.
Als aerodynamisch entlastend wirksam ist die Luftströmung im Außenumfangsbereich des Verdichterradeintritts 50 dann, wenn ihr eine Mitdrallwirkung aufgeprägt wird, was durch das Axialgitter 32 in der Ringkammer 54 des Bypasskanals 30 erfolgt. Der der ersten Strömungsöffnung 48 des Bypasskanals 30 zugewandte Axialgitteraustritt 64 ist daher im Wesentlichen in der Umfangsrichtung des Verdichterrades 38 orientiert. Mit anderen Worten sind die Gitterelemente 66 des Axialgitters 32 in der Luftströmungsrichtung von der zweiten zur ersten Strömungsöffnung 52, 48 des Bypasskanals 30 in Richtung der Umfangsrichtung des Verdichterrades 38 in radialer Richtung nach innen gekrümmt, wie in Fig. 3 dargestellt.
Die so bewirkte aerodynamische Entlastung des äußeren Schaufelbereichs des Verdichterrades 38 bedeutet eine weitgehende Verhinderung der Strömungsablösungen, was wiederum einen stabilen Betrieb des Verdichters 38 auch bei kleinen Massedurchsätzen, d.h. im Bereich der Pumpgrenze bewirkt. Dieser Effekt kann durch eine geeignete Konstruktion der Düsenkontur 62 des Wandelements 58 noch verstärkt werden.
Vorzugsweise ist das Axialgitter 32 in der Ringkammer 54 des Bypasskanals 30 so ausgebildet, dass sein engster Strömungsquerschnitt A32 in der Nähe des Axialgitteraustritts 64 kleiner oder gleich dem Strömungsquerschnitt A52 der zweiten
Strömungsöffnung 52 des Bypasskanals 30 ist (A32 < A52) .
Durch diese Festlegung wird die Sensibilität der zweiten Strömungsöffnung 52 in ihrer Wirkung gedämpft. Der sensible durchsatzbestimmende Strömungsquerschnitt des Bypasskanals 30 liegt in dem engsten Strömungsquerschnitt A32 des Axialgitters 32. Zur Optimierung einer dämpfenden Wirkung beziehungsweise der Reduktion von Störungen hinsichtlich der Schwingungsanregung des Radeintritts 50, kann eine Teilung t des Axialgitters 32 über dem Umfang variabel gestaltet werden . Vorteilhafterweise kann das so konstruierte Axialgitter 32 als ein auswechselbares Modul konzipiert sein, sodass der Verdichter 16 ohne Änderungen des Gehäuses 34 und seiner Umgebung auf den jeweiligen Anwendungsfall optimiert werden kann .
Um ein für den Luftmassestrom durch den Bypasskanal 30 treibendes Druckverhaltnis von der zweiten Stromungsoffnung 52 bis zum Axialgitteraustritt 64 zu bekommen, wird die zweite Stromungsoffnung 52 bevorzugt im Vergleich zu herkömmlichen Verdichtern 16 ohne Axialgitter 32 im Bypasskanal 30 an einer höheren Durchmesserposition D52 angeordnet.
Wahrend die zweite Stromungsoffnung 52 in dem Ausfuhrungsbeispiel von Fig. 2 an einer Position im Uberdeckungsbereich des Verdichterrades 38 positioniert ist, ist es auch denkbar, die zweite Stromungsoffnung 52 radial außerhalb des Verdichterrades 38, d.h. stromab des Verdichterradaustritts 68 anzuordnen. Dies bedeutet, dass die zweite Stromungsoffnung 52 zum Beispiel vom Diffusor 42 oder vom Spiralkanal 44 bei einem höheren Druckniveau in die Ringkammer 54 fuhrt.
Es ist ferner auch möglich, dass die zweite Stromungsoffnung 52 über einen (nicht dargestellten) Kanal mit einer Abzapfstelle 70' oder 70'' stromauf bzw. stromab des Ladeluft- kuhlers 24 im Ansaugtrakt 20 verbunden ist. Alternativ oder zusatzlich zu den obigen Positionen der Abzapfstellen 70' , 70'' und der zweiten Stromungsoffnung 52 kann die zweite Stromungsoffnung 52 über einen (nicht dargestellten) Kanal auch mit dem Abgasstrang 14 der Brennkraftmaschine 10 verbunden sein. Entsprechende Abzapfstellen 72', 72'' und 72''' liegen beispielhaft stromauf bzw. stromab der Abgasturbine 12 bzw. stromab der Abgasnachbehandlungseinrichtung 21. Auf diese Weise kann Frischluft und/oder Abgas in die Ringkammer 54 des Bypasskanals 30 eingeleitet werden.
Das Axialgitter 32 muss in Kombination mit der Position der Abzapfstelle 70', 70", 72', 72", 72'" so ausgelegt sein, dass die Erzeugung eines geeigneten Druckverhaltnisses und Massedurchsatzes durch den Bypasskanal 30 gewahrleistet ist. Dies wird zudem vom Stromungsquerschnitt A52 der zweiten Stromungsoffnung 52, dem engsten Stromungsquerschnitt A32 des Axialgitters 32 und dem Gitteraustrittswinkel α32 (siehe Fig. 3) beeinflusst, die zusammen zu den gewünschten Mitdrall- intensitaten am Verdichterradeintritt 50 fuhren sollen.
Die Ringkammer 54 des Bypasskanals 30 ist in dem Beispiel von Fig. 2 rotationssymmetrisch stromauf des Axialgittereintritts 74 ausgebildet. Um die Ablosestorungen bei der Ausströmung aus der zweiten Stromungsoffnung 52 vor dem Axialgittereintritt 74 klein zu halten, sind aber auch deutlich größere Ringkammern 54 als Sammelraum vorstellbar, die eine über den Umfang nahezu gleichförmige, fast axiale Leitgitterstromung bewirken können.
Bezugszeichenliste
Brennkraftmaschine Abgasturbolader Abgasturbine Abgasstrang Verdichter Welle Ansaugtrakt Abgasnachbehandlungseinrichtung variable Turbinengeometrie Ladeluftkühler Abgasrückführeinrichtung Regel- und Steuereinheit Bypasskanal Axialgitter Gehäuse Zuströmkanal Verdichterrad Strömungsrichtung in 36 Diffusor Spiralkanal Längsachse erste Strömungsöffnung Verdichterradeintritt zweite Strömungsöffnung Ringkammer Wandabschnitt Wandelement Strömungsrichtung Düsenkontur Axialgitteraustritt Gitterelemente Verdichterradaustritt Abzapfstellen Abzapfstellen Axialgittereintritt

Claims

Patentansprüche
1. Verdichter (16) für eine Brennkraftmaschine (10), mit einem Gehäuse (34); einem in dem Gehäuse definierten Zuströmkanal (36) ; einem Verdichterrad (38), wobei der Verdichterradeintritt
(50) in dem Zuströmkanal angeordnet ist; und einem Bypasskanal (30), der eine erste Strömungsöffnung
(48) stromauf des Verdichterradeintritts, eine zweite Strömungsöffnung (52) stromab des Verdichterradeintritts und eine die erste und die zweite Strömungsöffnung verbindende axiale Ringkammer (54) aufweist, dadurch gekennzeichnet, dass in der axialen Ringkammer (54) des Bypasskanals (30) ein Axialgitter (32) vorgesehen ist, das der durch den Bypasskanal (30) von der zweiten zur ersten Strömungsöffnung (52, 48) strömenden Luftmasse im Pumpgrenzenbereich des Verdichters (16) eine Mitdrallrichtung bezüglich des Luftmassestroms im Zuströmkanal (36) aufprägt.
2. Verdichter nach Anspruch 1, dadurch gekennzeichnet, dass ein engster Strömungsquerschnitt (A32) des Axialgitters (32) kleiner oder gleich einem Strömungsquerschnitt (A52) der zweiten Strömungsöffnung (52) des Bypasskanals (30) ist.
3. Verdichter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Axialgitter (32) in der Luftströmungsrichtung von der zweiten zur ersten Strömungsöffnung (52, 48) des Bypasskanals (30) in Richtung der Umfangsrichtung des Verdichterrades (38) nach innen gekrümmt ist.
4. Verdichter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Axialgitter (32) über seinem Umfang eine variable Teilung t aufweist.
5. Verdichter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweite Strömungsöffnung (52) des Bypasskanals (30) im Überdeckungsbereich des Verdichterrades (38) ausgebildet ist.
6. Verdichter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweite Strömungsöffnung (52) des Bypasskanals (30) radial außerhalb des Verdichterrades (38) ausgebildet ist.
7. Verdichter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweite Strömungsöffnung (52) des Bypasskanals (30) mit einer Abzapfstelle (70', 70'') stromab des Verdichters (16) verbunden ist.
8. Verdichter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die zweite Strömungsöffnung (52) des Bypasskanals (30) mit einer Abzapfstelle (72', 72", 72'") eines Abgasstrang (14) der Brennkraftmaschine (10) verbunden ist.
9. Verdichter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die erste Strömungsöffnung (48) des Bypasskanals (30) in Richtung zum Zuströmkanal (36) durch ein Wandelement (581 begrenzt ist, das den Luftmassenstrom aus der ersten Strömungsöffnung (48) des Bypasskanals (30) mit einer axialen Strömungskomponente in den Zuströmkanal (36) einleitet.
10. Verdichter nach Anspruch 9, dadurch gekennzeichnet, dass der Durchmesser (Dβ2) der radialen Innenkante des Wandelements (58) kleiner oder gleich dem Durchmesser (D36) des Zuströmkanals (36) stromauf des Wandelements ist.
11. Verdichter nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Durchmesser (D62) der radialen Innenkante des Wandelements (58) größer oder gleich dem Durchmesser (D50) des Verdichterradeintritts (50) ist.
12. Verdichter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Axialgitter (32) des Bypasskanals (30) als ein auswechselbares Modul ausgebildet ist.
13. Abgasturbolader für eine Brennkraftmaschine, mit einer Abgasturbine (12) im Abgasstrang (14) der Brennkraftmaschine (10) ; und einem Verdichter (16) nach einem der Ansprüche 1 bis 12 im Ansaugtrakt (20) der Brennkraftmaschine.
PCT/EP2007/001215 2006-02-17 2007-02-13 Verdichter für eine brennkraftmaschine WO2007093367A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008554656A JP5061126B2 (ja) 2006-02-17 2007-02-13 内燃機関用コンプレッサ
US12/228,898 US8307648B2 (en) 2006-02-17 2008-08-15 Compressor for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006007347A DE102006007347A1 (de) 2006-02-17 2006-02-17 Verdichter für eine Brennkraftmaschine
DE102006007347.9 2006-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/228,898 Continuation-In-Part US8307648B2 (en) 2006-02-17 2008-08-15 Compressor for an internal combustion engine

Publications (1)

Publication Number Publication Date
WO2007093367A1 true WO2007093367A1 (de) 2007-08-23

Family

ID=38066924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/001215 WO2007093367A1 (de) 2006-02-17 2007-02-13 Verdichter für eine brennkraftmaschine

Country Status (4)

Country Link
US (1) US8307648B2 (de)
JP (1) JP5061126B2 (de)
DE (1) DE102006007347A1 (de)
WO (1) WO2007093367A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560987A (zh) * 2008-04-17 2009-10-21 霍尼韦尔国际公司 带有喘振控制的离心式压缩机及有关方法
WO2010020324A1 (de) * 2008-08-22 2010-02-25 Daimler Ag Verdichter für eine brennkraftmaschine
US20110088392A1 (en) * 2008-09-17 2011-04-21 Siegfried Sumser Radial compressor, particularly for an exhaust gas turbocharger of an internal combustion engine
WO2011082942A3 (de) * 2009-12-16 2011-12-01 Piller Industrieventilatoren Gmbh Turboverdichter
EP2440791A1 (de) * 2009-06-08 2012-04-18 MAN Diesel & Turbo SE Verdichterlaufrad
JP2012509428A (ja) * 2008-11-18 2012-04-19 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャのコンプレッサ
US20130152582A1 (en) * 2010-09-02 2013-06-20 Borgwarner Inc. Compressor recirculation into annular volume
CN103620225A (zh) * 2012-03-22 2014-03-05 松下电器产业株式会社 离心压缩机
EP2975269A1 (de) * 2014-07-16 2016-01-20 Toyota Jidosha Kabushiki Kaisha Zentrifugalverdichter
US9726185B2 (en) 2013-05-14 2017-08-08 Honeywell International Inc. Centrifugal compressor with casing treatment for surge control
US9951793B2 (en) 2016-06-01 2018-04-24 Borgwarner Inc. Ported shroud geometry to reduce blade-pass noise

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007005986U1 (de) * 2007-04-24 2008-09-04 Mann+Hummel Gmbh Verbrennungsluft- und Abgasanordnung eines Verbrennungsmotors
DE102007056154A1 (de) 2007-11-21 2009-05-28 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung
DE102009052162B4 (de) * 2009-11-06 2016-04-14 Mtu Friedrichshafen Gmbh Verdichteranordnung und Verfahren zur Herstellung einer solchen
US8517664B2 (en) * 2010-01-19 2013-08-27 Ford Global Technologies, Llc Turbocharger
DE102011017419B4 (de) 2010-04-19 2021-11-18 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Ablenkeinheit für eine Gasströmung in einem Kompressor und Kompressor, der diese enthält
DE102010028975A1 (de) * 2010-05-14 2012-03-29 Abb Turbo Systems Ag Verdichtergehäusezusatz
DE112013002453B4 (de) * 2012-06-18 2022-01-20 Borgwarner Inc. Verdichterabdeckung für Turbolader
WO2014074432A1 (en) * 2012-11-08 2014-05-15 Borgwarner Inc. Centrifugal compressor with inlet swirl slots
CN102996507A (zh) * 2012-12-21 2013-03-27 中国北车集团大连机车研究所有限公司 离心式压气机内循环装置
DE102013007333A1 (de) * 2013-04-27 2014-10-30 Volkswagen Ag Verdichter einer Ladeeinrichtung einer Brennkraftmaschine und Verfahren zum Betreiben eines Verdichters einer Ladeeinrichtung einer Brennkraftmaschine
JP5622965B1 (ja) * 2013-07-04 2014-11-12 三菱重工業株式会社 遠心圧縮機
AT514577B1 (de) * 2013-10-09 2015-02-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Betreiben einer mit einem Generator gekoppelten Brennkraftmaschine
JP6308875B2 (ja) * 2014-06-02 2018-04-11 日野自動車株式会社 オイルセパレータ構造
JP6336878B2 (ja) * 2014-10-07 2018-06-06 日野自動車株式会社 オイルセパレータ構造
DE102015211270A1 (de) * 2015-06-18 2016-12-22 Bayerische Motoren Werke Aktiengesellschaft Turbolader für ein Kraftfahrzeug
CN105332929A (zh) * 2015-12-11 2016-02-17 中国北方发动机研究所(天津) 带反向导叶的旁通再循环离心压气机
US10212185B1 (en) * 2016-02-22 2019-02-19 The Regents Of The University Of California Defending side channel attacks in additive manufacturing systems
WO2018219449A1 (en) 2017-05-31 2018-12-06 Volvo Truck Corporation A method and vehicle system using such method
DE102017216256B3 (de) 2017-09-14 2019-03-07 Continental Automotive Gmbh Verdichter für eine Aufladevorrichtung einer Brennkraftmaschine und Aufladevorrichtung für eine Brennkraftmaschine
US11268523B2 (en) 2017-10-10 2022-03-08 Daikin Industries, Ltd. Centrifugal compressor with recirculation structure
DE102018209558A1 (de) * 2018-06-14 2019-12-19 BMTS Technology GmbH & Co. KG Radialverdichter
DE102022204160A1 (de) * 2022-04-28 2023-11-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines mehrstufigen Luftverdichtungssystems, mehrstufiges Luftverdichtungssystem sowie Brennstoffzellensystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003660A1 (de) * 1990-08-28 1992-03-05 AKTIENGESELLSCHAFT KüHNLE, KOPP & KAUSCH Kennfeldstabilisierung bei einem radialverdichter
GB2319304A (en) * 1996-11-18 1998-05-20 Daimler Benz Ag Exhaust-gas turbocharger
DE10049198A1 (de) * 2000-10-05 2002-04-11 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine und Verfahren hierzu
DE10252767A1 (de) * 2002-11-13 2004-05-27 Daimlerchrysler Ag Verdichter im Ansaugtrakt einer Brennkraftmaschine
WO2005001257A1 (de) * 2003-06-27 2005-01-06 Daimlerchrysler Ag Brennkraftmaschine mit einem verdichter im ansaugtrakt und verfahren hierzu

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675279A5 (de) * 1988-06-29 1990-09-14 Asea Brown Boveri
DE19816645B4 (de) 1998-04-15 2005-12-01 Daimlerchrysler Ag Abgasturboladerturbine
DE19823274C1 (de) * 1998-05-26 1999-10-14 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE10244535A1 (de) * 2002-09-25 2004-04-08 Daimlerchrysler Ag Brennkraftmaschine mit einem Verdichter im Ansaugtrakt
JP2007127108A (ja) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003660A1 (de) * 1990-08-28 1992-03-05 AKTIENGESELLSCHAFT KüHNLE, KOPP & KAUSCH Kennfeldstabilisierung bei einem radialverdichter
GB2319304A (en) * 1996-11-18 1998-05-20 Daimler Benz Ag Exhaust-gas turbocharger
DE10049198A1 (de) * 2000-10-05 2002-04-11 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine und Verfahren hierzu
DE10252767A1 (de) * 2002-11-13 2004-05-27 Daimlerchrysler Ag Verdichter im Ansaugtrakt einer Brennkraftmaschine
WO2005001257A1 (de) * 2003-06-27 2005-01-06 Daimlerchrysler Ag Brennkraftmaschine mit einem verdichter im ansaugtrakt und verfahren hierzu

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110557A1 (de) * 2008-04-17 2009-10-21 Honeywell International Inc. Kreiselverdichter mit Überspannungskontrolle und zugehöriges Verfahren
US8272832B2 (en) 2008-04-17 2012-09-25 Honeywell International Inc. Centrifugal compressor with surge control, and associated method
CN101560987A (zh) * 2008-04-17 2009-10-21 霍尼韦尔国际公司 带有喘振控制的离心式压缩机及有关方法
WO2010020324A1 (de) * 2008-08-22 2010-02-25 Daimler Ag Verdichter für eine brennkraftmaschine
US20110088392A1 (en) * 2008-09-17 2011-04-21 Siegfried Sumser Radial compressor, particularly for an exhaust gas turbocharger of an internal combustion engine
US8522549B2 (en) * 2008-09-17 2013-09-03 Daimler Ag Radial compressor, particularly for an exhaust gas turbocharger of an internal combustion engine
JP2012509428A (ja) * 2008-11-18 2012-04-19 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャのコンプレッサ
EP2440791A1 (de) * 2009-06-08 2012-04-18 MAN Diesel & Turbo SE Verdichterlaufrad
US8926264B2 (en) 2009-12-16 2015-01-06 Piller Industrieventilatoren Gmbh Turbo compressor having a flow diversion channel
WO2011082942A3 (de) * 2009-12-16 2011-12-01 Piller Industrieventilatoren Gmbh Turboverdichter
US20130152582A1 (en) * 2010-09-02 2013-06-20 Borgwarner Inc. Compressor recirculation into annular volume
US9091232B2 (en) * 2010-09-02 2015-07-28 Borgwarner Inc. Compressor recirculation into annular volume
CN103620225A (zh) * 2012-03-22 2014-03-05 松下电器产业株式会社 离心压缩机
US9394913B2 (en) 2012-03-22 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Centrifugal compressor
CN103620225B (zh) * 2012-03-22 2017-02-22 松下知识产权经营株式会社 制冷循环装置
US9726185B2 (en) 2013-05-14 2017-08-08 Honeywell International Inc. Centrifugal compressor with casing treatment for surge control
EP2975269A1 (de) * 2014-07-16 2016-01-20 Toyota Jidosha Kabushiki Kaisha Zentrifugalverdichter
US9771856B2 (en) 2014-07-16 2017-09-26 Toyota Jidosha Kabushiki Kaisha Centrifugal compressor
US9951793B2 (en) 2016-06-01 2018-04-24 Borgwarner Inc. Ported shroud geometry to reduce blade-pass noise

Also Published As

Publication number Publication date
US20090013689A1 (en) 2009-01-15
US8307648B2 (en) 2012-11-13
JP5061126B2 (ja) 2012-10-31
DE102006007347A1 (de) 2007-08-30
JP2009526937A (ja) 2009-07-23

Similar Documents

Publication Publication Date Title
WO2007093367A1 (de) Verdichter für eine brennkraftmaschine
DE19618160C2 (de) Abgasturbolader für eine Brennkraftmaschine
DE112015001237B4 (de) Abgasturbolader
EP0982482B1 (de) Abgasturbolader
WO2009018887A1 (de) Abgasturbolader für eine hubkolben-brennkraftmaschine
DE202007005986U1 (de) Verbrennungsluft- und Abgasanordnung eines Verbrennungsmotors
WO2006007936A1 (de) Brennkraftmaschine mit einem abgasturbolader
DE102008049782A1 (de) Abgasturbolader für eine Brennkraftmaschine
WO2006117073A1 (de) Abgasturbolader für eine brennkraftmaschine
WO2009012990A1 (de) Radialverdichter mit einem diffusor für den einsatz bei einem turbolader
WO2006117072A1 (de) Turbine mit einem turbinenrad für einen abgasturbolader einer brennkraftmaschine und abgasturbolader für eine brennkraftmaschine
DE102004029830A1 (de) Turbinenrad in einer Abgasturbine eines Abgasturboladers
EP1881173B1 (de) Multidiffusor für eine Hubkolbenbrennkraftmaschine, sowie Hubkolbenbrennkraftmaschine
DE102008052088A1 (de) Turbinengehäuse für einen Abgasturbolader und Brennkraftmaschine
DE10132672A1 (de) Abgasturbolader für eine Brennkraftmaschine
EP1673525B1 (de) Verdichter im ansaugtrakt einer brennkraftmaschine
DE19630224A1 (de) Motorbremsvorrichtung
DE102005011482B4 (de) Abgasturbolader mit einem Verdichter und einer Abgasturbine
EP2652290A1 (de) Verdichter für die aufladung einer brennkraftmaschine
DE102004039299A1 (de) Turboverdichter für eine Brennkraftmaschine
WO2017102041A1 (de) Ventilelement für eine turbine eines abgasturboladers
DE102005019776B4 (de) Brennkraftmaschine mit einer Abgasrückführvorrichtung
DE102014212606A1 (de) Kraftfahrzeug und Luftfilterbox
DE102011111747A1 (de) Verdichter für einen Abgasturbolader
DE102011120168A1 (de) Verdichter für einen Abgasturbolader

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008554656

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07722803

Country of ref document: EP

Kind code of ref document: A1