WO2007091670A1 - Apparatus and method for processing wafer - Google Patents

Apparatus and method for processing wafer Download PDF

Info

Publication number
WO2007091670A1
WO2007091670A1 PCT/JP2007/052329 JP2007052329W WO2007091670A1 WO 2007091670 A1 WO2007091670 A1 WO 2007091670A1 JP 2007052329 W JP2007052329 W JP 2007052329W WO 2007091670 A1 WO2007091670 A1 WO 2007091670A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
tape
frame
mounting
dicing
Prior art date
Application number
PCT/JP2007/052329
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Azuma
Kazuya Fukuoka
Original Assignee
Tokyo Seimitsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co., Ltd. filed Critical Tokyo Seimitsu Co., Ltd.
Publication of WO2007091670A1 publication Critical patent/WO2007091670A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67219Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one polishing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • Wafer processing apparatus and method Wafer processing apparatus and method
  • the present invention relates to a wafer processing apparatus and method, and more particularly, to a wafer processing apparatus capable of performing a planar processing force of a semiconductor wafer and mounting a wafer cut to a chip size on an integrated line. And a method.
  • each process such as probing, dicing, die bonding, and wire bonding is performed on a wafer having a semiconductor device or electronic component formed on the surface. After passing, it is generally resin-molded to become finished products such as semiconductor devices and electronic parts.
  • a protective sheet also referred to as a protective tape
  • a back surface grinding process is performed in which the wafer is ground from the back surface and covered to a predetermined thickness (step S103).
  • a frame mounting process is performed in which a wafer is attached to a dicing frame using a dicing sheet (also referred to as dicing tape) having an adhesive on one side, and the wafer and the dicing frame are separated. They are integrated (step S105). In this state, the wafer is adsorbed on the dicing sheet side and attached to the surface to protect the wafer. Is peeled off (step S107).
  • a dicing sheet also referred to as dicing tape
  • the wafer from which the protective sheet has been peeled is conveyed to the dicing saw together with the frame, and is cut into individual chips with a diamond blade that rotates at high speed (step S109). As shown in FIG. 14, the cut individual chips are not attached to the dicing sheet S but remain in the wafer state, and here, for convenience, the chips maintained in the wafer state are shown here.
  • the aggregate of T is also called woofer W.
  • the cut wafer W is radially expanded in the dicing sheet S to widen the intervals between the individual chips T (step S111), and in the chip mounting process, a package substrate such as a lead frame is formed. (Step S113
  • Chips are manufactured through the above-described steps.
  • Patent Document 1 JP 2002-192367 A
  • Patent Document 2 JP 2002-192368 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-192369
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-192370
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-192371
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-205180
  • the wafer is divided into chips by a laser beam instead of a diamond blade that rotates at high speed, so that a large force is not applied to the wafer and no chipping or cracking occurs.
  • there is no need for cutting water because there is no heat or swarf generated by the direct contact with the wafer.
  • a modified region is formed in the interior to divide the wafer and divide it into chips, so more chips from one wafer where the distance between the chips is much narrower than cutting with a diamond blade. Can be obtained.
  • the present invention has been made for such a problem, and provides a wafer processing apparatus and method for dividing a wafer diced by a laser dicing apparatus into chips without damaging the wafer. Objective.
  • the wafer processing apparatus of the present invention comprises a grinding means for grinding a back surface of a wafer to which a protective tape for protecting a pattern formed on the surface is attached with a grindstone, Polishing means for polishing the back surface of the wafer while pressing the wafer after grinding against a polishing cloth, and irradiating the polished wafer with laser light to form a modified region inside the wafer.
  • Modified region forming means for forming and cutting cleaning means for cleaning the wafer after cutting with plasma, irradiation means for irradiating the surface of the cleaned wafer with ultraviolet light, and ultraviolet light irradiation
  • the dicing tape is expanded by pressing a holding ring that holds the expanded state in an expanded state, and each chip of the wafer after cutting is expanded. And an expanding means for expanding the interval between them.
  • a frame supply means for supplying a frame for mounting the wafer W to the wafer processing apparatus, storage of the holding ring and the holding to the expanding means.
  • the back surface of the wafer on which the protective tape for protecting the pattern formed on the surface is attached is ground, then polished, and then laser diced and plasma cleaned wafer. It is transported to the irradiation means of the AHA mount device by a surface transport device with full suction.
  • an irradiation process of ultraviolet light (hereinafter referred to as UV light) is performed on the protective sheet attaching surface to reduce the adhesive strength of the protective sheet.
  • the wafer subjected to the ultraviolet irradiation treatment is mounted on the frame supplied by the frame supplying means with the dicing tape attached to the back surface by the tape mounting means in the wafer mounting device.
  • the wafer mounted on the frame is peeled off by the tape peeling means in the wafer mounting device.
  • the wafer from which the protective sheet has been peeled is pressed and expanded from the holding ring force dicing tape side supplied from the holding ring supply means by the expanding means in the wafer mounting device. Wafers that have been expanded to increase the spacing between the chips and have been held in the expanded state by the retaining ring are stored in the cassette by the wafer storage means and are transported out of the wafer mounting device.
  • the wafer can complete each process from the back surface grinding process to the UV light irradiation process, mounting to the frame, peeling of the protective sheet, and expanding with a small moving distance in the apparatus. Is possible. Therefore, the possibility of damaging the chip during transport and work in each process is minimized. In addition, since it is stored in the force set in an expanded state, the chip mounting process can be performed immediately, so that the throughput can be improved.
  • the tape mount means is the wafer.
  • a die attach film is also attached between the woofer and the dicing tape.
  • the grinding power of the back surface starts with a small moving distance in the apparatus, and the UV light irradiation process, the mounting to the frame, and the protection Each process up to sheet peeling and expanding can be completed, and the wafer diced by the laser dicing apparatus can be divided into chips without causing damage.
  • FIG. 1 is a plan view schematically showing the configuration of a wafer processing apparatus according to the present invention.
  • FIG.2 Whole perspective view of the woofer flat gear device
  • FIG. 3 Plan view of the planar processing apparatus shown in Fig. 2
  • FIG. 4 is a cross-sectional view showing the structure of the polishing stage of the planar processing apparatus shown in FIG.
  • FIG. 5 is a perspective view showing a partition plate of the planar processing apparatus shown in FIG.
  • FIG. 6 Plan view of partition plate shown in Fig. 5
  • FIG. 7 Cross section taken along line 7-7 of divider shown in Fig. 6
  • FIG. 8 Side view schematically showing the configuration of the laser dicing machine
  • FIG. 9 Plan view schematically showing the configuration of the woofer mounting device
  • FIG. 10 Side view schematically showing the structure of the UV light irradiation device of the woofer mount device
  • FIG. 11] (a) to (e) are side views schematically showing the operation sequence of the wafer mount device after UV light irradiation.
  • FIG. 13 is a flowchart showing a conventional chip manufacturing method for semiconductor devices and electronic components.
  • FIG.14 Perspective view of woofer mounted on frame
  • Coarse grinding stage 120 Fine grinding stage 122 ... Polishing stage 123 123 Polishing cloth cleaning stage 124 124 Wafer cleaning stage 231 Laser -Head, 231D ... Condensation lens, L ... Laser light, C ... Cassette, F ... Frame, K ... Modification area, R ... Retaining ring, W ... Wafer BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a plan view showing an overall configuration of a wafer processing apparatus 10 to which the present invention is applied.
  • This woofer processing apparatus 10 is composed of a plane processing apparatus 10A, a laser dicing apparatus 10B, and a woofer mounting apparatus IOC from the upstream side (left side). The following is a description in order.
  • Fig. 2 is a perspective view of the planar carriage device 10A
  • Fig. 3 is a plan view.
  • the main body 112 of the planar cleaning apparatus 10A includes a cassette storage stage 114, an alignment stage 116, a rough grinding stage 118, a fine grinding stage 120, a polishing stage 122, and a polishing cloth cleaning stage. 123, a polishing cloth dressing stage 127, and a wafer cleaning stage 124 are provided.
  • the rough grinding stage 118, the fine grinding stage 120, and the polishing stage 122 are partitioned by a partition plate 125 indicated by a two-dot chain line in FIG. 3, and the working fluid used in each stage 118, 120, 122 is It is prevented from splashing on adjacent stages.
  • the partition plate 125 is fixed to the index table 134 as shown in FIGS. 5 and 6, and four chucks (corresponding to holding means) 132, 136, It is formed in a cross shape so as to partition 138 and 140.
  • Polishing stage 122 Is covered by a casing 202 having a top plate 200 for isolation from other stages.
  • a brush 204 is attached to the side surface of the casing 202 through which the partition plate 125 passes.
  • the brush 204 is attached to the cutting plate 125 when the chuck 140 is located at the processing position.
  • the upper surface 125A and the side surface 125B are contacted.
  • the polishing stage 122 is held in a substantially airtight state by the casing 202, the partition plate 125, and the brush 204, so that the grinding processing liquid used in the fine grinding stage 120 is used.
  • the polishing stage 122 performs chemical mechanical polishing, and the chemical polishing agent is contained in the polishing liquid. Therefore, if the polishing liquid is mixed in such a polishing liquid, There arises a problem that the concentration decreases and the processing time becomes longer. Therefore, the provision of the partition plate 125 can solve the above problem.
  • top plates 200, 206, 208 are formed with through holes 201, 207, 209 through which the heads of the respective stages are passed.
  • Reference numeral 210 in FIG. 6 is a brush for isolating the rough grinding stage 118 from the outside, and the brush 210 is in contact with the upper surface and the side surface of the partition plate 125.
  • cassettes 126 and 126 force S are set so as to be detachable, and these cassettes 126 and 126 have a large number of wafers W before back grinding. It is stored. The wafers W are held one by one by the hand 131 of the transfer robot 130 and sequentially transferred to the alignment stage 116 of the next process.
  • the transfer robot 130 may be suspended and supported by a beam (not shown) standing on the main body 112 via an elevating device, or may be installed on the upper surface 112A of the main body 112. Transport port When the bot 130 is suspended and supported, the cassette storage stage 114 and the alignment stage 11 Since the distance to 6 can be narrowed, the planar carriage device 10A can be downsized. Since the robot 130 is a general-purpose 6-axis joint robot, and its configuration is well known, the description thereof is omitted here.
  • the alignment stage 116 is a stage for aligning the wafer W transported from the cassette 126 to a predetermined position. Wafer W aligned at this alignment stage 116 is again sucked and held by the hand 131 of the transfer robot 130 and then transported toward the empty chuck 132, where it is sucked and held on the chucking surface of this chuck 132. Is done.
  • the chuck 132 is installed on the index table 134, and the chucks 136, 138, and 140 having the same function are arranged on the circumference of the rotation axis 135 indicated by the broken line in FIG. Are installed at intervals of 90 degrees.
  • the chuck 136 is positioned on the rough grinding stage 118, and the adsorbed wafer W is roughly ground here.
  • the chuck 138 is positioned on the precision grinding stage 120, and the attracted wafer W is finish-ground here (Seken X
  • the adsorbed UENO, W-powered polishing, the work-affected layer caused by grinding, and the woofer W thickness variation are removed.
  • the chucks 132, 136, 138, and 140 have a spindle 194 and a rotating motor 192 connected to their lower surfaces, respectively, and are rotated by the driving force of these motors 192.
  • the chucks 132, 136, 138, 140 are moved by the motor 137 while the motor 192 and the spindle 194 are connected to the chucks 132, 136, 138, 140. It is a device.
  • the chucks 132, 136, 138, and 140 of the present embodiment have a suction surface made of ceramics or the like. It is made of a porous material made of a sintered body. As a result, wafer W is adsorbed and held on the surface of the porous material.
  • the chuck 132 positioned at the chuck position of the wafer W shown in FIG. 3 is cleaned by the cleaner device 142 (see FIG. 3) before the wafer W is conveyed.
  • the cleaner device 142 is slidably provided on the rail 144, and is moved along the rail 144 and positioned on the chuck 132 when cleaning the suction surface.
  • the cleaner device 142 has a removing member 143.
  • the removing member 143 is brought into contact with the suction surface of the chuck 132 to remove dust such as sludge adhering to the suction surface. If the suction surface of the chuck 132 is a porous material having a sintered body force such as ceramics, the removing member 143 uses the porous material.
  • the thickness of the wafer W attracted and held by the chuck 32 can be measured by, for example, a pair of measurement gauges 136 and 138.
  • Each of these measurement gauges 136 and 138 has a contact (not shown). One contact is in contact with the upper surface (back surface) of the wafer W, and the other contact is in contact with the upper surface of the chuck 132.
  • These measurement gauges 136 and 138 can detect the thickness of wafer W as a difference between in-process gauge readings with the upper surface of the chuck 132 as a reference point.
  • the woofer W whose thickness has been measured is positioned on the rough grinding stage 118 by turning 90 degrees in the direction of arrow A in FIGS.
  • the back side of wafer W is roughly ground by whetstone 146.
  • the cup-type grindstone 146 is connected to an output shaft (not shown) of the motor 148 and is attached to the grindstone feeder 152 via a support casing 150 of the motor 148.
  • the grindstone feeder 152 moves the cup-type grindstone 146 up and down together with the motor 148, and the cup-type turret 146 is pressed against the back surface of the wafer W by this downward movement.
  • the downward movement amount of the cup-type grindstone 146 that is, the grinding amount by the cup-type mortar 146, is the reference position of the cup-shaped turret 146 registered in advance and the woofer W detected by the measurement gauges 236 and 238. It is set based on the thickness.
  • the wafer W whose back surface has been coarsely ground in the rough grinding stage 118 is measured by a thickness measurement gauge (not shown) after the cup-type turret 146 is retracted from the wafer W.
  • the wafer W whose thickness was measured, was positioned on the precision grinding stage 120 by the 90-degree rotation of the index table 134 in the same direction, and was refined by the cup-type grinding wheel 154 of the precision grinding stage 120
  • the structure of the fine grinding stage 120 is the same as that of the rough grinding stage 118, its description is omitted here.
  • one 1S grinding stage having two grinding stages may be provided.
  • the thickness measurement using a measurement gauge may be performed in-line.
  • the wafer W whose back surface has been precisely ground in the precision grinding stage 120 is measured for its thickness by a thickness measurement gauge (not shown) after the cup-type turret 154 is retracted from the wafer W.
  • the wafer W whose thickness has been measured is positioned on the polishing stage 122 by the 90-degree rotation of the index table 134 in the same direction, and is supplied from the polishing cloth 156 shown in FIG. 4 of the polishing stage 122 and the polishing cloth 156. Polishing is performed by the slurry, and the modified layer generated on the back surface is removed.
  • the thickness measurement using a measurement gauge may be performed in-line.
  • FIG. 4 is a structural diagram of the polishing stage 122.
  • a polishing cloth 156 of the polishing stage 120 shown in FIG. 4 is attached to a polishing head 1601 connected to an output shaft 160 of a motor (corresponding to a rotating means) 158.
  • guide blocks 162 and 162 constituting a linear motion guide are provided on the side surface of the motor 158, and the guide block 162 and 162 force are moved up and down to the guide rail 166 provided on the side surface of the support plate 164. It is freely engaged. Therefore, the polishing cloth 156 is attached together with the motor 158 and is attached to the support plate 164 so as to be movable up and down.
  • the support plate 164 is provided at the tip of the long arm 168 disposed horizontally.
  • a base end portion of the arm 1168 is connected to an output shaft 174 of a motor 172 disposed in the casing 70. Therefore, when the motor 172 is driven, the arm 168 can rotate around the output shaft 174.
  • the polishing position of the polishing pad 156 indicated by the solid line in FIG. It can be moved within the range of the polishing cloth cleaning position by 3 and the dressing position by the polishing dressing stage 127.
  • the polishing cloth cleaning stage 123 cleans the surface of the polishing cloth 156 and removes polishing scraps attached to the surface.
  • the polishing cloth 156 can be exemplified by foamed polyurethane, polishing cloth, and the like, and the polishing cloth cleaning stage 23 is provided with a removing member such as a brush for removing polishing debris. This removal member is rotationally driven when the polishing cloth 156 is cleaned, and the polishing cloth 156 is also rotationally driven by the motor 158 (see FIG. 4).
  • the abrasive cloth dressing stage 127 is made of the same material as the abrasive cloth 156, for example, polyurethane foam.
  • Guide blocks 176, 176 constituting a linear motion guide are provided on the side surface of the casing 170.
  • the guide blocks 176, 176 are moved up and down to a guide rail 180 provided on the side surface of the housing 178 for the screw feeder. It is freely engaged.
  • a nut member 182 is projected from the side surface of the casing 170.
  • the nut member 182 is disposed in the housing 178 through an opening 179 formed in the housing 178, and is screwed to a screw rod 180 of a screw feed device (corresponding to a positioning feed mechanism). .
  • An output shaft 184 of a motor 182 is connected to the upper end of the screw rod 180.
  • the casing 170 is moved up and down by the feeding action of the screw feeding device and the straight movement action of the guide block 176 and the rail 180.
  • the polishing pad 156 is greatly moved in the vertical direction, and the interval between the polishing head 161 and the wafer W is set to a predetermined interval.
  • a piston 188 of an air cylinder device (corresponding to a pressurizing mechanism) 186 is connected to the upper surface of the motor 158 via a through hole 169 of the arm 168.
  • a regulator 190 that controls the internal pressure P of the cylinder is connected to the air cylinder device 186. Therefore, when the internal pressure P is controlled by the regulator 190, the pressing force (pressure contact force) of the polishing pad 156 against the woofer W can be controlled.
  • the wafer W polished by the polishing stage 122 is sucked and held by the hand 1 97 of the robot 196 shown in FIG. 3 after the polishing cloth 156 is retracted from the upper position of the wafer W by the rotation of the arm 168.
  • the toner is transferred to the wafer cleaning stage 124.
  • the robot The illustration of G 96 is omitted.
  • the wafer W that has been polished is not easily damaged because the damaged layer has been removed. Therefore, the wafer W is damaged during transfer by the robot 196 and during cleaning at the wafer cleaning stage 124. Nah ...
  • the wafer cleaning stage 124 As the wafer cleaning stage 124, a stage having a rinse cleaning function and a spin drying function is applied. The wafer W that has been cleaned and dried at the wafer cleaning stage 124 is sucked and held by the hand 131 of the robot 130 and stored in a predetermined shelf of the cassette 126. The above is the flow of the woofer planar care process in the planar care apparatus 10A.
  • FIG. 8 is a side view schematically showing the configuration of the laser dicing apparatus 10B.
  • the laser dicing apparatus 10B is a two-head apparatus, which includes a chuck table 212, a guide base (not shown) (X guide base, Y guide base, Z guide base), laser heads 231, 231 and not shown. Control means and the like are provided.
  • the chuck table 212 sucks and mounts the wafer W, is rotated in the ⁇ direction by a ⁇ rotation shaft (not shown), and is moved in the X direction (by an X table (not shown) mounted on the X guide base ( Processed in the direction perpendicular to the paper).
  • a Y guide base (not shown) is provided above the chuck table 212.
  • This Y guide base is provided with two Y tables (not shown), and two sets of Z guide rails (not shown) are attached to each Y table.
  • Each Z guide rail is provided with a Z table (not shown).
  • a laser head 231 is attached to each Z table via a holder 232, and the two laser heads 231 and 23 1 are independent of each other. As a result, it is moved in the Z direction and indexed in the Y direction independently.
  • the laser dicing apparatus 10B includes a wafer transfer means, an operation panel, a television monitor, an indicator lamp, and the like (not shown).
  • Switches and display devices for operating each part of the laser dicing apparatus 10B are attached to the operation plate.
  • the TV monitor displays a wafer image captured by a CCD camera (not shown) or displays program contents and various messages.
  • Indicator light is laser Displays the operating status such as the end of processing, emergency stop, etc. during processing of one dicing machine 10B.
  • the laser head 231 is adapted to irradiate the wafer W placed on the chuck table 212 provided on the base 211 of the laser dicing apparatus 10B with the laser beam L so as to irradiate the wafer W.
  • the laser head 231 includes a laser oscillator 231A, a collimator lens 231B, and a mirror 231.
  • the laser light L oscillated by laser oscillator 231 A is collimated horizontally by collimating lens 231B.
  • the mirror 231C is reflected in the vertical direction and is condensed by the condensation lens 231D.
  • the condensing point of the laser beam L is set inside the thickness direction of the wafer W placed on the chuck table 212, the laser beam L transmitted through the surface of the wafer W is energized at the condensing point.
  • a modified region such as a crack region due to multiphoton absorption, a melting region, or a refractive index change region is formed near the condensing point inside the wafer.
  • the laser head 231 has a tilt mechanism (not shown), and can irradiate the laser beam L at an arbitrary angle with respect to the wafer surface.
  • the modified region K formed in the vicinity of the condensing point inside the wafer is as shown in FIG. FIG. 15 shows a state in which the modified region K is formed at the focal point of the laser beam L incident on the wafer W. In this state, wafer W is moved in the horizontal direction, and reforming regions K are continuously formed.
  • the wafer W is cleaved starting from the reformed areas K, ⁇ , etc. by applying a force that naturally cleaves from the reformed areas K, ⁇ , or a slight external force. In this case, wafer W is easily divided into chips without causing any chipping on the front and back surfaces.
  • the wafer and the W are usually attached to the dicing frame F via the dicing sheet S having an adhesive on one side. Mounted and transported in this state during the laser dicing process.
  • FIG. 9 is a plan view schematically showing the configuration of the wafer mount device 10C.
  • Wafer mounting device IOC consists of tape mount (tape mounting means) 11, tape remover (tape peeling means) 12, and tape expander (expanding means) 13, plasma cleaning device (cleaning means) 19, UV An irradiation device (irradiation means) 18 is provided. Further, a frame stocker (frame supply means) 15 is provided near the tape mount 11, a ring stocker (holding ring supply means) 17 and a cassette stocker (wafer storage means) 14 are provided near the expander 13, respectively. .
  • the protective sheet 21 that protects the pattern formed on the front surface is affixed, the back surface is ground and polished flat, and then laser dicing is performed.
  • the protective sheet 21 is adhered to the front side. It is sucked by the suction pad 42 toward the surface.
  • the wafer W that has been transferred to the wafer mount device 10 C by the transfer device 41 is first transferred to the plasma cleaning device 19.
  • Plasma cleaning device 19 generates plasma such as oxygen and hydrogen and applies it to wafer W to remove organic contaminants remaining on wafer W and improve the quality of the reformed region formed by laser dicing. . This suppresses the occurrence of chipping during expansion.
  • an atmospheric pressure plasma cleaning device product name: Aiplasma
  • Matsushita Electric Works, Ltd. can be suitably used as the plasma cleaning device.
  • the UV irradiation device 18 has a plurality of UV light-emitting tubes 26, 26,... Arranged in parallel in the case 27 and irradiates ultraviolet light upward. .
  • the woofer W When the woofer W is transported and passed through the UV irradiation device 18 by the transport device 41, the surface to which the protective sheet 21 is adhered is irradiated with UV light, and is attached to the protective device. The adhesive strength of the sheet 21 is reduced. Thereby, peeling of the protective sheet 21 becomes easy.
  • the UV irradiation device 18 has been described as having a structure in which the UV arc tubes 26 are arranged in parallel in the case 27.
  • the present invention is not limited to this structure, and the UV irradiation device 18A shown in FIG.
  • Various structures such as a structure having a reflecting plate 28 having a concave cross section and reflecting UV light emitted from a UV arc tube 26 provided in the central portion in parallel upward can be applied.
  • the woofer W that has passed through the UV irradiation device 18 is transported to the table 16, and as shown in FIG. 11 (a), the woofer W is placed on the table 16 with the surface side to which the protective sheet 21 is attached facing down. It is supposed to be placed.
  • the table 16 is provided with a vacuum suction mechanism (not shown), and sucks the frame F (see FIG. 14) and the wafer W supplied by the arm 32 of the frame stocker 15 force transfer device 31. .
  • the table 16 is moved along the guide 36 by a driving device (not shown) and passes under the tape mount 11! /.
  • the tape mount 11 is positioned above the guide 36, and is slid onto the back side of the wafer W sucked and placed on the table 16 by the dicing tape 22 as shown in FIG. 11 (b). I came to mount F! /, Ru.
  • the dicing tape 22 is wound around the supply reel 37, and the dicing tape 22 passes through a guide reel (not shown) and is wound around the winding reel 38 so as to spread in parallel with the wafer W. It is being taken.
  • the dicing tape 22 is attached to the frame F and the wafer W located below the tape mount 11 by a roller (not shown) provided on the tape mount 11. Mount by pressing and sticking.
  • a die attach film 23 (hereinafter referred to as DAF) used for bonding the diced chip and the substrate is attached between the wafer W and the dicing tape 22. .
  • DAF die attach film 23
  • the tape remover 12 peels the protective sheet 21 from the surface of the wafer W on which the frame F is mounted by the dicing tape 22! / ⁇
  • the wafer W on which the frame F is mounted must be reversed so that the surface side on which the protective sheet 21 is adhered is placed on the table mover 12 from the table 16 by the transport device 39.
  • the protective sheet 21 is peeled off by an arm (not shown). Since the adhesive strength of the protective sheet 21 is reduced by the UV light irradiated by the UV irradiation device 18, it can be easily peeled off from the wafer W.
  • the expander 13 presses the holding ring R supplied from the ring stocker 17 by the arm 34 of the transfer device 33 from the dicing tape 22 side of the wafer W mounted on the frame F, and the expander 13 It is a device that performs expansion.
  • the wafer W after the protective sheet 21 is peeled off by the transport device 39 is transported to the expander 13.
  • the expander 13 cools the wafer W as necessary, fixes the frame F by the frame fixing mechanism 25, pushes up the holding ring R, and dicing tape 22 by the lifting mechanism 24.
  • This is a device that expands the dicing tape 22 in a radial fashion by pressing to the right. This splits wafer W into individual chips T
  • the holding ring R is a ring for fitting into the frame F to hold the expanded state.
  • the expanded wafer W is returned to the tape reel 12 side by the transport device 39 together with the holding ring R.
  • the expanded wafer W on the tape remover 12 is moved on the guide 35 by a moving means (not shown), and into the cassette C placed on the cassette stocker 14 as shown in FIG. 11 (e). It is designed to be stored sequentially.
  • the cassette stocker 14 is a storage device that includes an elevator that mounts the cassette C and moves up and down, and sequentially changes the position where the wafer W is stored.
  • the cassette C is unloaded from the wafer mount device 10 by a transfer device (not shown), and a new cassette C is set in the cassette stocker 14. It is like that.
  • FIG. 12 is a flowchart showing the operation sequence of the woofer mounting method.
  • the woofer mounting device 10C is transported by being attracted with the woofer W force whole surface adsorption type conveying device 41 facing down the protective sheet 21 side.
  • a protective sheet 21 is attached to the front surface side (lower surface side) on which the pattern is formed, and the rear surface (upper surface) is ground, followed by laser dicing.
  • the wafer W that has been transported is placed on the plasma cleaning device 19, and plasma cleaning is performed (step Sl).
  • plasma cleaning is performed in wafer W, organic contaminants remaining on wafer W are removed by plasma cleaning, and the quality of the modified region formed by laser dicing is improved.
  • wafer W passes over UV irradiation device 18 (step S2). At this time, UV light is irradiated from the UV irradiation device 18 toward the protective sheet 21, and the protective sheet
  • the adhesive strength of 21 decreases.
  • the wafer W that has passed through the UV irradiation device 18 is placed on the table 16 with the surface side to which the protective sheet 21 is attached facing down, as shown in FIG. 11 (a). .
  • the wafer W placed on the table 16 is sucked to the table 16 by a vacuum suction mechanism (not shown).
  • frame F is supplied from frame stocker 15 by arm 32 of transfer device 31.
  • the wafer W is located at the center of the frame F, and moves along with the frame F to the lower side of the tape mount 11 when the table 16 moves along the guide 36.
  • the dicing tape 22 is attached to the back surface of the wafer W and the frame F by a roller (not shown), unnecessary portions are cut by a cutter (not shown), and the wafer W is mounted on the frame F (step S3).
  • the wafer W mounted on the frame F by the tape mount 11 is reversed by the conveying device 39 and conveyed to the tape remover 12 with the protective sheet 21 facing upward.
  • the wafer W sent to the tape remover 12 is peeled off from the protective sheet 21 adhered to the surface (step S4).
  • the wafer W from which the protective sheet 21 has been peeled off is transported to the expander 13 by the transport device 39.
  • the expander 13 fixes the frame F by the frame fixing mechanism 25, and is supplied from the ring stocker 17 by the arm 34 of the transport device 33.
  • the holding ring R is also pressed against the dicing tape 22 side force to expand wafer W (step S5).
  • the wafer W is expanded and divided into individual chips T, ⁇ ..., And the retaining ring R is fitted to the frame F to maintain the expanded state. As a result, the wafer W can be transported in the expanded state.
  • the expanded wafer W is sequentially stored together with the retaining ring R in the cassette C placed on the cassette stocker 14 (step S6).
  • Cassette stocker 14 moves cassette C up and down to adjust the storage position of wafer W.
  • the cassette C is transported from the wafer mount device 10, and a new cassette C is placed on the cassette stocker 14.
  • the planar processing (back surface polishing ij, surface polishing) is performed by the planar processing apparatus 10A, and the laser dicing apparatus 10B is used.
  • the diced woofer W is stored in a cassette while maintaining the expanded state after completing the UV light irradiation process, mounting to the frame, peeling of the protective sheet, and expanding process with a short moving distance in the device. It becomes possible to do.
  • the chip mounting process can be performed immediately, so that the throughput can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A wafer processing apparatus is provided with a flat plane processing apparatus (10A) for grinding and then polishing the rear plane of a wafer (W) whereupon a protection tape is adhered for protecting a pattern formed on the front plane by using a grinding stone; a laser dicing apparatus (10B) for irradiating the polished wafer with a laser beam to form a modified region inside the wafer and cutting the wafer; a cleaning means (19) for cleaning the cut wafer with plasma; a UV irradiation apparatus (18) for irradiating the cleaned wafer with UV light; a tape mounter (11) for mounting a frame (F); a tape remover (12) for removing the protection tape (21); and an expander (13) for expanding a distance between the wafer (W) and each chip (T). Thus, processes from the rear plane grinding to UV light irradiation, mounting onto the frame, removal and expanding can be performed with a short moving distance within the apparatus.

Description

明 細 書  Specification
ゥエーハ加工装置及び方法  Wafer processing apparatus and method
技術分野  Technical field
[0001] 本発明は、ゥ ーハ加工装置及び方法に係り、特に、半導体ゥ ーハの平面加工 力 チップサイズに切断されたゥエーハのマウントまでを一貫ラインで行うことができる ゥ ーハ加工装置及び方法に関する。  [0001] The present invention relates to a wafer processing apparatus and method, and more particularly, to a wafer processing apparatus capable of performing a planar processing force of a semiconductor wafer and mounting a wafer cut to a chip size on an integrated line. And a method.
背景技術  Background art
[0002] 半導体装置や電子部品等の製造工程では、先ず表面に半導体装置や電子部品 等が形成されたゥエーハに対して、プロ一ビング、ダイシング、ダイボンディング、及 びワイヤボンディング等の各工程を経た後、榭脂モールドされて半導体装置や電子 部品等の完成品となるのが一般的である。  [0002] In the manufacturing process of semiconductor devices and electronic components, first, each process such as probing, dicing, die bonding, and wire bonding is performed on a wafer having a semiconductor device or electronic component formed on the surface. After passing, it is generally resin-molded to become finished products such as semiconductor devices and electronic parts.
[0003] ところで近年、メモリーカードや薄型 ICカード等に組込まれる極薄の半導体装置や 電子部品の需要が高まっており、厚さが 100 m以下の極薄ゥ ーハの要求が増大 している。このため、従来ではプロ一ビング工程の後に、ダイシング工程によってゥェ ーハを個々のチップに分割していた力 これに代えて、ダイシング工程の前にゥエー ハの裏面を研削(バックグラインド)し、 100 μ m以下の極薄ゥエーハとしてからダイシ ングを行うようになってきた。  [0003] By the way, in recent years, the demand for ultra-thin semiconductor devices and electronic components incorporated in memory cards, thin IC cards, etc. has increased, and the demand for ultra-thin woofers with a thickness of 100 m or less has increased. . For this reason, conventionally, after the probing process, the force used to divide the wafer into individual chips by the dicing process. Instead, the back surface of the wafer is ground (back grind) before the dicing process. Dicing has been started after making ultra-thin wafers of 100 μm or less.
[0004] このような背景の下に、従来の半導体装置や電子部品等のチップ製造方法では、 図 13のフロー図に示されるように、以下のような手順でチップの製造が行われる。  [0004] Against this background, in the conventional chip manufacturing method for semiconductor devices and electronic components, as shown in the flowchart of FIG. 13, the chip is manufactured in the following procedure.
[0005] 先ず、表面に半導体装置や電子部品等が多数形成されたゥエーハの表面を保護 するため、片面に粘着剤を有する保護シート (保護テープとも称される)がゥエーハ表 面に貼られる(ステップ S 101)。次に、ゥヱーハを裏面から研削して所定の厚さにカロ ェする裏面研削工程が行われる (ステップ S 103)。  [0005] First, in order to protect the surface of a wafer on which a large number of semiconductor devices, electronic components, and the like are formed, a protective sheet (also referred to as a protective tape) having an adhesive on one side is attached to the surface of the wafer ( Step S 101). Next, a back surface grinding process is performed in which the wafer is ground from the back surface and covered to a predetermined thickness (step S103).
[0006] 裏面研削工程の後、片面に粘着剤を有するダイシングシート (ダイシングテープとも 称される)を用いてゥヱーハをダイシング用フレームに取付けるフレームマウント工程 が行われ、ゥエーハとダイシング用のフレームとが一体化される(ステップ S105)。こ の状態でゥエーハをダイシングシート側で吸着し、表面に貼付されて 、る保護シート が剥離される (ステップ S 107)。 [0006] After the back surface grinding process, a frame mounting process is performed in which a wafer is attached to a dicing frame using a dicing sheet (also referred to as dicing tape) having an adhesive on one side, and the wafer and the dicing frame are separated. They are integrated (step S105). In this state, the wafer is adsorbed on the dicing sheet side and attached to the surface to protect the wafer. Is peeled off (step S107).
[0007] 保護シートが剥離されたゥエーハは、フレームごとダイシングソ一に搬送され、高速 回転するダイヤモンドブレードで個々のチップに切断される (ステップ S 109)。切断さ れた個々のチップは、図 14に示されるように、ダイシングシート Sに貼付されたままバ ラバラにならず、ゥエーハ状態を保っているので、ここでは、便宜上このゥエーハ状態 を保ったチップ Tの集合体をもゥエーハ Wと呼ぶことにする。 [0007] The wafer from which the protective sheet has been peeled is conveyed to the dicing saw together with the frame, and is cut into individual chips with a diamond blade that rotates at high speed (step S109). As shown in FIG. 14, the cut individual chips are not attached to the dicing sheet S but remain in the wafer state, and here, for convenience, the chips maintained in the wafer state are shown here. The aggregate of T is also called woofer W.
[0008] 切断されたゥエーハ Wは、エキスパンド工程において、ダイシングシート Sが放射状 に引き伸ばされて、個々のチップ Tの間隔が広げられ (ステップ S111)、チップマウン ト工程において、リードフレーム等のパッケージ基材にマウントされる(ステップ S113[0008] In the expanding process, the cut wafer W is radially expanded in the dicing sheet S to widen the intervals between the individual chips T (step S111), and in the chip mounting process, a package substrate such as a lead frame is formed. (Step S113
)。以上のような工程によりチップの製造が行われる。 ). Chips are manufactured through the above-described steps.
[0009] ところが、従来のチップ製造方法では、厚さが 100 μ m以下の極薄のゥヱーハ Wを ダイシングソ一により切断した際、切断時にゥエーハ Wにチッビングや割れが生じ、多 くの不良チップが発生する問題があった。 However, in the conventional chip manufacturing method, when an extremely thin wafer W having a thickness of 100 μm or less is cut with a dicing saw, chipping or cracking occurs in the wafer W during cutting, and many defective chips are formed. There was a problem that occurred.
この問題を解決する手段として、従来のダイシングソ一による切断に代えて、ゥエーハ As a means to solve this problem, instead of cutting with a conventional dicing saw, a wafer is used.
Wの内部に集光点を合わせたレーザー光を入射させ、ゥヱーハ内部に多光子吸収 による改質領域を形成して個々のチップ Tに分割するレーザー加工方法に関する技 術が提案されている (たとえば、特許文献 1〜6参照。 )0 There has been proposed a technology related to a laser processing method in which a laser beam with a converging point is made incident inside W, a modified region by multiphoton absorption is formed inside the wafer, and divided into individual chips T (for example, , See Patent Documents 1 to 6.) 0
特許文献 1 :特開 2002— 192367号公報  Patent Document 1: JP 2002-192367 A
特許文献 2 :特開 2002— 192368号公報  Patent Document 2: JP 2002-192368 A
特許文献 3 :特開 2002— 192369号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-192369
特許文献 4:特開 2002— 192370号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-192370
特許文献 5 :特開 2002— 192371号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2002-192371
特許文献 6:特開 2002— 205180号公報  Patent Document 6: Japanese Patent Laid-Open No. 2002-205180
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 上記の特許文献 1〜6で提案されている技術は、従来のダイシングソ一によるダイ シング装置に代えて、図 15に示されるように、レーザー光源 LSから出射されたレー ザ一光 Lをゥヱーハ Wの内部に集光させ、ゥヱーハ Wの内部に連続して改質領域 K を形成することによりゥエーハ wを割断するダイシング装置(以下、レーザーダイシン グ装置と称する)を提案したものである。 [0010] The techniques proposed in Patent Documents 1 to 6 described above, instead of a conventional dicing machine using a dicing saw, as shown in FIG. 15, a laser beam L emitted from a laser light source LS. Is concentrated in the interior of the woofer W, and the reforming region K continues in the interior of the woofer W. A dicing apparatus (hereinafter referred to as a laser dicing apparatus) that cleaves wafers w by forming the wafer is proposed.
[0011] レーザーダイシング装置では、高速回転するダイヤモンドブレードに代えて、レー ザ一光によりゥエーハがチップに分割されるため、ゥエーハに大きな力が力からず、 チッビングや割れが発生しない。また、ゥエーハに直接接触する部分がなぐ熱や切 削屑が発生しないため、切削水を必要としない。更に、内部に改質領域を形成してゥ エーハの割段を行 、チップに分割するため、チップの間隔がダイヤモンドブレードに よる切断よりも非常に狭ぐ一枚のゥエーノ、からより多くのチップを得られる。  In the laser dicing apparatus, the wafer is divided into chips by a laser beam instead of a diamond blade that rotates at high speed, so that a large force is not applied to the wafer and no chipping or cracking occurs. In addition, there is no need for cutting water because there is no heat or swarf generated by the direct contact with the wafer. In addition, a modified region is formed in the interior to divide the wafer and divide it into chips, so more chips from one wafer where the distance between the chips is much narrower than cutting with a diamond blade. Can be obtained.
[0012] し力しながら、レーザーダイシング装置では、ダイシング後に各工程に使用される装 置間を搬送される際、チップ間隔が狭いため、隣り合うチップが接触してチップにダメ ージが発生する問題があった。  [0012] However, in the laser dicing apparatus, when the wafer is transported between devices used in each process after dicing, the chip interval is narrow, so adjacent chips come into contact with each other and damage is generated on the chip. There was a problem to do.
[0013] 本発明は、このような問題に対してなされたものであり、レーザーダイシング装置に よりダイシングされたゥエーハを、ダメージを与えることなくチップに分割するゥエーハ 加工装置及び方法を提供することを目的とする。 The present invention has been made for such a problem, and provides a wafer processing apparatus and method for dividing a wafer diced by a laser dicing apparatus into chips without damaging the wafer. Objective.
課題を解決するための手段  Means for solving the problem
[0014] 本発明のゥヱーハ加工装置は、前記目的を達成するために、表面に形成されたパ ターンを保護する保護用テープが貼着されたゥエーハの裏面を砥石で研削加工する 研削手段と、研削加工後の前記ゥ ーハを研磨布に押圧しながら前記ゥ ーハの裏 面を研磨加工する研磨手段と、研磨後の前記ゥエーハにレーザー光を照射し、前記 ゥエーハ内部へ改質領域を形成して切断加工を行う改質領域形成手段と、切断加工 後の前記ゥヱーハをプラズマにより洗浄する洗浄手段と、洗浄後の前記ゥヱーハの表 面に紫外線光を照射する照射手段と、紫外線光照射後の前記ゥエーハの裏面にダ イシングテープ (DAF付き)を貼着して前記ゥエーハをフレームへマウントするテープ マウント手段と、前記ダイシングテープが貼着された前記ゥ ーハの表面に貼着され て 、る前記保護用テープの剥離を行うテープ剥離手段と、前記保護用テープが剥離 された前記切断後のゥ ーハの前記ダイシングテープが貼着された側より、前記ダイ シングテープのエキスパンドとエキスパンドされた状態の保持を行なう保持リングを押 圧して該ダイシングテープのエキスパンドを行 、、前記切断後のゥエーハの各チップ 間の間隔を拡張するエキスパンド手段と、を備えたことを特徴としている。 [0014] In order to achieve the above object, the wafer processing apparatus of the present invention comprises a grinding means for grinding a back surface of a wafer to which a protective tape for protecting a pattern formed on the surface is attached with a grindstone, Polishing means for polishing the back surface of the wafer while pressing the wafer after grinding against a polishing cloth, and irradiating the polished wafer with laser light to form a modified region inside the wafer. Modified region forming means for forming and cutting, cleaning means for cleaning the wafer after cutting with plasma, irradiation means for irradiating the surface of the cleaned wafer with ultraviolet light, and ultraviolet light irradiation A tape mounting means for attaching a dicing tape (with DAF) to the rear surface of the wafer and mounting the wafer on a frame, and a surface of the wafer on which the dicing tape is attached. A tape peeling means for peeling off the protective tape, and a side of the dicing tape of the cut wafer from which the protective tape has been peeled off. The dicing tape is expanded by pressing a holding ring that holds the expanded state in an expanded state, and each chip of the wafer after cutting is expanded. And an expanding means for expanding the interval between them.
[0015] また、本発明は、前記発明において、前記ゥ ーハ加工装置には、前記ゥエーハ W をマウントするフレームを供給するフレーム供給手段と、前記保持リングの貯蔵と前記 エキスパンド手段への前記保持リングの供給とを行なう保持リング供給手段と、前記 エキスパンド手段によりエキスパンドされ、該保持リングによりエキスパンドされた状態 が保持された前記ゥエーハをカセットへ収納するゥエーハ収納手段とが備えられてい ることを特徴としている。 [0015] Further, in the present invention according to the present invention, a frame supply means for supplying a frame for mounting the wafer W to the wafer processing apparatus, storage of the holding ring and the holding to the expanding means. A holding ring supplying means for supplying the ring; and a wafer storing means for storing the wafer expanded by the expanding means and held in the expanded state by the holding ring in a cassette. It is said.
[0016] 本発明によれば、表面に形成されたパターンを保護する保護用テープが貼着され たゥヱーハの裏面が研削され、次いで研磨され、その後にレーザーダイシングされ、 プラズマ洗浄されたゥエーハがゥエーハマウント装置の照射手段へ全面吸着の面搬 送装置により搬送されてくる。照射手段では、保護シート貼着面へ紫外線光 (以下、 UV光と称する)の照射工程が行われ、保護シートの粘着力を低下させる。紫外線照 射処理をされたゥエーハは、ゥエーハマウント装置内のテープマウント手段により、裏 面へダイシングテープが貼着されてフレーム供給手段より供給されたフレームへマウ ントされる。 [0016] According to the present invention, the back surface of the wafer on which the protective tape for protecting the pattern formed on the surface is attached is ground, then polished, and then laser diced and plasma cleaned wafer. It is transported to the irradiation means of the AHA mount device by a surface transport device with full suction. In the irradiating means, an irradiation process of ultraviolet light (hereinafter referred to as UV light) is performed on the protective sheet attaching surface to reduce the adhesive strength of the protective sheet. The wafer subjected to the ultraviolet irradiation treatment is mounted on the frame supplied by the frame supplying means with the dicing tape attached to the back surface by the tape mounting means in the wafer mounting device.
[0017] フレームにマウントされたゥエーハは、ゥエーハマウント装置内のテープ剥離手段に より保護シートが剥離される。保護シートが剥離されたゥエーハは、保持リング供給手 段より供給された保持リング力 ダイシングテープ側より、ゥエーハマウント装置内のェ キスパンド手段によって押圧されてエキスパンドされる。エキスパンドされて各チップ 間の間隔が広がり、保持リングによりエキスパンド状態が保持されたゥエーハは、ゥェ ーハ収納手段によりカセットへ収納されてゥエーハマウント装置力 搬出される。  The wafer mounted on the frame is peeled off by the tape peeling means in the wafer mounting device. The wafer from which the protective sheet has been peeled is pressed and expanded from the holding ring force dicing tape side supplied from the holding ring supply means by the expanding means in the wafer mounting device. Wafers that have been expanded to increase the spacing between the chips and have been held in the expanded state by the retaining ring are stored in the cassette by the wafer storage means and are transported out of the wafer mounting device.
[0018] これにより、ゥエーハは、装置内の少ない移動距離で、裏面の研削加工から始まつ て、 UV光照射工程、フレームへのマウント、保護シート剥離、及びエキスパンドまで の各工程を終了することが可能となる。よって、搬送中や各工程の作業中にチップへ ダメージを与える可能性が最小限に抑えられる。また、エキスパンドされた状態で力 セットへ格納されるため、チップマウント工程を直ちに進められるのでスループットの 向上が可能となる。  [0018] Thereby, the wafer can complete each process from the back surface grinding process to the UV light irradiation process, mounting to the frame, peeling of the protective sheet, and expanding with a small moving distance in the apparatus. Is possible. Therefore, the possibility of damaging the chip during transport and work in each process is minimized. In addition, since it is stored in the force set in an expanded state, the chip mounting process can be performed immediately, so that the throughput can be improved.
[0019] また、本発明では、前記発明にお 、て、前記テープマウント手段は、前記ゥエーハ へ前記ダイシングテープを貼着する際、前記ゥヱーハと前記ダイシングテープの間へ ダイアタッチフィルムを貼着することも特徴としている。 [0019] Further, in the present invention, in the invention, the tape mount means is the wafer. When the dicing tape is attached, a die attach film is also attached between the woofer and the dicing tape.
[0020] これにより、ダイボンディングを行う工程が簡略ィ匕され、スループットの向上が可能と なる。  [0020] This simplifies the process of performing die bonding and makes it possible to improve throughput.
[0021] 以上説明したように、本発明のゥエーハ加工装置及び方法によれば、装置内の少 ない移動距離で、裏面の研削加工力 始まって、 UV光照射工程、フレームへのマウ ント、保護シート剥離、及びエキスパンドまでの各工程を終了することが可能となり、 レーザーダイシング装置によりダイシングされたゥエーハを、ダメージを与えることなく チップに分割することができる。  [0021] As described above, according to the wafer processing apparatus and method of the present invention, the grinding power of the back surface starts with a small moving distance in the apparatus, and the UV light irradiation process, the mounting to the frame, and the protection Each process up to sheet peeling and expanding can be completed, and the wafer diced by the laser dicing apparatus can be divided into chips without causing damage.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明に係るゥ ーハ加工装置の構成を模式的に表した平面図 FIG. 1 is a plan view schematically showing the configuration of a wafer processing apparatus according to the present invention.
[図 2]ゥ ーハの平面カ卩ェ装置の全体斜視図  [Fig.2] Whole perspective view of the woofer flat gear device
[図 3]図 2に示した平面加工装置の平面図  [Fig. 3] Plan view of the planar processing apparatus shown in Fig. 2
[図 4]図 2に示した平面加工装置の研磨ステージの構造を示す断面図  FIG. 4 is a cross-sectional view showing the structure of the polishing stage of the planar processing apparatus shown in FIG.
[図 5]図 2に示した平面加工装置の仕切板を示す斜視図  FIG. 5 is a perspective view showing a partition plate of the planar processing apparatus shown in FIG.
[図 6]図 5に示した仕切板の平面図  [Fig. 6] Plan view of partition plate shown in Fig. 5
[図 7]図 6に示した仕切板の 7— 7線に沿う断面図  [Fig. 7] Cross section taken along line 7-7 of divider shown in Fig. 6
[図 8]レーザーダイシング装置の構成を模式的に表した側面図  [Fig. 8] Side view schematically showing the configuration of the laser dicing machine
[図 9]ゥ ーハマウント装置の構成を模式的に表した平面図  [Fig. 9] Plan view schematically showing the configuration of the woofer mounting device
[図 10]ゥ ーハマウント装置の UV光照射装置の構造を模式的に示した側面図  [Fig. 10] Side view schematically showing the structure of the UV light irradiation device of the woofer mount device
[図 11] (a)〜(e)は UV光照射後のゥエーハマウント装置の動作順序を模式的に示し た側面図  [Fig. 11] (a) to (e) are side views schematically showing the operation sequence of the wafer mount device after UV light irradiation.
[図 12]ゥエーハマウント装置の動作 序を示したフロー図  [Figure 12] Flow chart showing the operation of the wafer mount device
[図 13]従来の半導体装置や電子部品等のチップ製造方法を示したフロー図  FIG. 13 is a flowchart showing a conventional chip manufacturing method for semiconductor devices and electronic components.
[図 14]フレームにマウントされたゥ ーハの斜視図  [Fig.14] Perspective view of woofer mounted on frame
[図 15]レーザーダイシングの原理を示した側面断面図  [Figure 15] Cross-sectional side view showing the principle of laser dicing
[図 16]別の UV照射装置の構造を模式的に示した側面図  [Figure 16] Side view schematically showing the structure of another UV irradiation device
符号の説明 [0023] 10· ··ゥヱーハ加工装置、 10A…平面加工装置、 10B…レーザーダイシング装置、 10C…ゥエーハマウント装置、 11· ··テープマウント(テープマウント手段)、 12· ··テー プリムーバ(テープ剥離手段)、 13· ··テープエキスパンダ (エキスパンド手段)、 14· ·· カセットストッカー、 15…フレームストッカー(ダイシングフレーム供給手段)、 16…テ 一ブル、 17· ··リングストッカー (保持リング供給手段)、 18、 18A UV照射装置 (照 射手段)、 21· ··保護シート、 22· ··ダイシングテープ、 23· ··ダイアタッチフィルム(DA F)、 114…カセット収納ステージ、 116…ァライメントステージ、 118…粗研削ステー ジ、 120· ··精研削ステージ、 122…研磨ステージ、 123…研磨布洗浄ステージ、 124 …ゥエーハ洗浄ステージ、 231· ··レーザーヘッド、 231D…コンデンスレンズ、 L…レ 一ザ一光、 C…カセット、 F…フレーム、 K…改質領域、 R…保持リング、 W…ゥエーハ 発明を実施するための最良の形態 Explanation of symbols [0023] 10 ··· Woofer processing device, 10A ... Planar processing device, 10B ... Laser dicing device, 10C ... Wafer mounting device, 11 ··· Tape mount (tape mounting means), 12 ··· Tape mover (tape) Stripping means), 13 ... Tape expander (expanding means), 14 ... Cassette stocker, 15 ... Frame stocker (dicing frame supply means), 16 ... Table, 17 ... Ring stocker (holding ring supply) Means), 18, 18A UV irradiation device (irradiation means), 21 ... protective sheet, 22 ... dicing tape, 23 ... die attach film (DA F), 114 ... cassette storage stage, 116 ... Alignment stage 118 ... Coarse grinding stage 120 ... Fine grinding stage 122 ... Polishing stage 123 123 Polishing cloth cleaning stage 124 124 Wafer cleaning stage 231 Laser -Head, 231D ... Condensation lens, L ... Laser light, C ... Cassette, F ... Frame, K ... Modification area, R ... Retaining ring, W ... Wafer BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、添付図面に従って、本発明に係るゥエーハ加工装置及び方法の好ましい実 施の形態について詳説する。 Hereinafter, preferred embodiments of the wafer processing apparatus and method according to the present invention will be described in detail with reference to the accompanying drawings.
[0025] 図 1は、本発明が適用されるゥ ーハ加工装置 10の全体構成を示す平面図であるFIG. 1 is a plan view showing an overall configuration of a wafer processing apparatus 10 to which the present invention is applied.
。このゥヱーハ加工装置 10は、上流側(左側)より、平面加工装置 10A、レーザーダ イシング装置 10B、及びゥ ーハマウント装置 IOCで構成されている。以下、順に説 明する。 . This woofer processing apparatus 10 is composed of a plane processing apparatus 10A, a laser dicing apparatus 10B, and a woofer mounting apparatus IOC from the upstream side (left side). The following is a description in order.
[0026] 図 2は、平面カ卩ェ装置 10Aの斜視図であり、図 3は平面図である。図 2に示されるよ うに平面カ卩ェ装置 10Aの本体 112には、カセット収納ステージ 114、ァライメントステ ージ 116、粗研削ステージ 118、精研削ステージ 120、研磨ステージ 122、研磨布洗 浄ステージ 123、研磨布ドレッシングステージ 127、及びゥエーハ洗浄ステージ 124 が設けられている。  [0026] Fig. 2 is a perspective view of the planar carriage device 10A, and Fig. 3 is a plan view. As shown in FIG. 2, the main body 112 of the planar cleaning apparatus 10A includes a cassette storage stage 114, an alignment stage 116, a rough grinding stage 118, a fine grinding stage 120, a polishing stage 122, and a polishing cloth cleaning stage. 123, a polishing cloth dressing stage 127, and a wafer cleaning stage 124 are provided.
[0027] また、粗研削ステージ 118、精研削ステージ 120、研磨ステージ 122は、図 3の二 点鎖線で示される仕切板 125によって仕切られ、各々のステージ 118、 120、 122で 使用する加工液が隣接するステージに飛散するのが防止されている。  [0027] Further, the rough grinding stage 118, the fine grinding stage 120, and the polishing stage 122 are partitioned by a partition plate 125 indicated by a two-dot chain line in FIG. 3, and the working fluid used in each stage 118, 120, 122 is It is prevented from splashing on adjacent stages.
[0028] 仕切板 125は図 5、図 6に示されるようにインデックステーブル 134に固定されるとと もに、インデックステーブル 134に設置された 4台のチャック(保持手段に相当) 132、 136、 138、 140を仕切るように十字形状に形成されている。また、研磨ステージ 122 は、他のステージから隔離するために、天板 200を有するケーシング 202によって覆 われている。 [0028] The partition plate 125 is fixed to the index table 134 as shown in FIGS. 5 and 6, and four chucks (corresponding to holding means) 132, 136, It is formed in a cross shape so as to partition 138 and 140. Polishing stage 122 Is covered by a casing 202 having a top plate 200 for isolation from other stages.
[0029] このケーシング 202の、仕切板 125が通過する側面には、図 7の如くブラシ 204が 取り付けられており、このブラシ 204は、チャック 140が加工位置に位置した時に、仕 切板 125の上面 125A及び側面 125Bに接触される。  [0029] As shown in Fig. 7, a brush 204 is attached to the side surface of the casing 202 through which the partition plate 125 passes. The brush 204 is attached to the cutting plate 125 when the chuck 140 is located at the processing position. The upper surface 125A and the side surface 125B are contacted.
[0030] これにより、チャック 140が加工位置に位置すると、ケーシング 202、仕切板 125、 及びブラシ 204によって研磨ステージ 122が略気密状態に保持されるので、精研削 ステージ 120で使用される研削加工液やカ卩ェ屑が研磨ステージ 122に浸入するのを 防止でき、また、研磨ステージ 122で使用される研磨カ卩工液が研磨ステージ 122から 飛散するのを防止できる。  Accordingly, when the chuck 140 is positioned at the processing position, the polishing stage 122 is held in a substantially airtight state by the casing 202, the partition plate 125, and the brush 204, so that the grinding processing liquid used in the fine grinding stage 120 is used. In addition, it is possible to prevent the dust from entering the polishing stage 122 and to prevent the polishing liquid used in the polishing stage 122 from scattering from the polishing stage 122.
[0031] したがって、双方の加工液が混入することに起因する加工不具合を防止できる。本 例の研磨ステージ 122は、化学機械研磨を行うもので、研磨加工液に化学研磨剤が 含有されているので、このような研磨カ卩工液に研削加工液が混入すると、化学研磨 剤の濃度が低下し、加工時間が長くなるという不具合が生じる。よって、仕切板 125 を設けることによって、前記不具合を解消できる。  [0031] Accordingly, it is possible to prevent a processing failure caused by mixing of both processing liquids. In this example, the polishing stage 122 performs chemical mechanical polishing, and the chemical polishing agent is contained in the polishing liquid. Therefore, if the polishing liquid is mixed in such a polishing liquid, There arises a problem that the concentration decreases and the processing time becomes longer. Therefore, the provision of the partition plate 125 can solve the above problem.
[0032] なお、粗研削ステージ 118は、図 5、図 6の如く本体 112の側面、天板 206、及び仕 切板 125によって囲まれており、また、精研削ステージ 120も同様に本体 112の側面 、天板 208、及び仕切板 125【こよって囲まれて!/ヽる。これらの天板 200、 206、 208 には、各ステージのヘッドが揷通される貫通孔 201、 207、 209が形成されている。  Note that the rough grinding stage 118 is surrounded by the side surface of the main body 112, the top plate 206, and the cutting plate 125 as shown in FIGS. 5 and 6, and the fine grinding stage 120 is also the same as that of the main body 112. Side, top plate 208, and partition plate 125 [enclosed! These top plates 200, 206, 208 are formed with through holes 201, 207, 209 through which the heads of the respective stages are passed.
[0033] 図 6の符号 210は、粗研削ステージ 118を外部から隔離するためのブラシであり、こ のブラシ 210は仕切板 125の上面及び側面に接触されている。  Reference numeral 210 in FIG. 6 is a brush for isolating the rough grinding stage 118 from the outside, and the brush 210 is in contact with the upper surface and the side surface of the partition plate 125.
[0034] 図 2、図 3に示されるカセット収納ステージ 114には、 2台のカセット 126、 126力 S着 脱自在にセットされ、これらのカセット 126、 126には裏面研削前のゥエーハ Wが多数 枚収納されている。このゥエーハ Wは、搬送用ロボット 130のハンド 131によって 1枚 ずつ保持されて、次工程のァライメントステージ 116に順次搬送される。  [0034] In the cassette storage stage 114 shown in FIGS. 2 and 3, two cassettes 126 and 126 force S are set so as to be detachable, and these cassettes 126 and 126 have a large number of wafers W before back grinding. It is stored. The wafers W are held one by one by the hand 131 of the transfer robot 130 and sequentially transferred to the alignment stage 116 of the next process.
[0035] 搬送用ロボット 130は、本体 112に立設された図示しないビームに昇降装置を介し て吊り下げ支持してもよぐまた、本体 112の上面 112Aに設置してもよい。搬送用口 ボット 130を吊り下げ支持すると、カセット収納ステージ 114とァライメントステージ 11 6との間隔を狭くすることができるので、平面カ卩ェ装置 10Aの小型化を図ることができ る。ロボット 130は、汎用の 6軸関節ロボットであり、その構成は周知であるので、ここ ではその説明を省略する。 The transfer robot 130 may be suspended and supported by a beam (not shown) standing on the main body 112 via an elevating device, or may be installed on the upper surface 112A of the main body 112. Transport port When the bot 130 is suspended and supported, the cassette storage stage 114 and the alignment stage 11 Since the distance to 6 can be narrowed, the planar carriage device 10A can be downsized. Since the robot 130 is a general-purpose 6-axis joint robot, and its configuration is well known, the description thereof is omitted here.
[0036] ァライメントステージ 116は、カセット 126から搬送されたゥヱーハ Wを所定の位置 に位置合わせするステージである。このァライメントステージ 116で位置合わせされた ゥエーハ Wは、搬送用ロボット 130のハンド 131に再度吸着保持された後、空のチヤ ック 132に向けて搬送され、このチャック 132の吸着面に吸着保持される。 The alignment stage 116 is a stage for aligning the wafer W transported from the cassette 126 to a predetermined position. Wafer W aligned at this alignment stage 116 is again sucked and held by the hand 131 of the transfer robot 130 and then transported toward the empty chuck 132, where it is sucked and held on the chucking surface of this chuck 132. Is done.
[0037] チャック 132は、インデックステーブル 134に設置され、また、同機能を備えたチヤッ ク 136、 138、 140力 インデックステーブル 134の図 3の破線で示される回転軸 135 を中心とする円周上に 90度の間隔をもって設置されている。 [0037] The chuck 132 is installed on the index table 134, and the chucks 136, 138, and 140 having the same function are arranged on the circumference of the rotation axis 135 indicated by the broken line in FIG. Are installed at intervals of 90 degrees.
[0038] また、回転軸 135には、図 3に破線で示されるモータ (移動手段に相当) 137のスピ ンドル (不図示)が連結されている。チャック 136は、粗研削ステージ 118に位置され ており、吸着したゥエーハ Wがここで粗研削される。 Further, a spindle (not shown) of a motor (corresponding to a moving means) 137 indicated by a broken line in FIG. The chuck 136 is positioned on the rough grinding stage 118, and the adsorbed wafer W is roughly ground here.
[0039] また、チャック 138は、精研削ステージ 120に位置され、吸着したゥエーハ Wがここ で仕上げ研削(精研肖 |J、スパークアウト)される。更に、チャック 140は、研磨ステージ[0039] Further, the chuck 138 is positioned on the precision grinding stage 120, and the attracted wafer W is finish-ground here (Seken X | J, spark out). Furthermore, the chuck 140 is a polishing stage.
122〖こ位置され、吸着したゥエーノ、 W力 こで研磨され、研削で生じた加工変質層、 及びゥヱーハ Wの厚さのバラツキ分が除去される。 At 122 °, the adsorbed UENO, W-powered polishing, the work-affected layer caused by grinding, and the woofer W thickness variation are removed.
[0040] チャック 132、 136、 138、 140は、図 4の如くその下面にスピンドル 194と回転用モ ータ 192が各々連結され、これらのモータ 192の駆動力によって回転される。モータAs shown in FIG. 4, the chucks 132, 136, 138, and 140 have a spindle 194 and a rotating motor 192 connected to their lower surfaces, respectively, and are rotated by the driving force of these motors 192. motor
192は、支持部材 193を介してインデックステーブル 134に支持されている。 192 is supported by the index table 134 via a support member 193.
[0041] したがって、本実施の形態の平面加工装置 10Aは、モータ 192とスピンドル 194が チャック 132、 136、 138、 140に連結された状態で、チャック 132、 136、 138、 140 がモータ 137によって移動される装置である。 Accordingly, in the flat surface processing apparatus 10A of the present embodiment, the chucks 132, 136, 138, 140 are moved by the motor 137 while the motor 192 and the spindle 194 are connected to the chucks 132, 136, 138, 140. It is a device.
[0042] これ【こより、チャック 132、 136、 138、 140をモータ 137で移動させる毎【こ、スピンド、 ノレ 194をチャック 132、 136、 138、 140力ら切り離したり、次の移動位置に設置され たスピンドノレ 194にチャック 132、 136、 138、 140を連結したりする手間を省くこと力 S できる。 [0042] Each time the chucks 132, 136, 138, 140 are moved by the motor 137, the spindle, the drill 194 are separated from the chucks 132, 136, 138, 140, and the chuck is installed at the next moving position. It is possible to save the trouble of connecting the chucks 132, 136, 138, 140 to the spinneret 194.
[0043] 本実施の形態のチャック 132、 136、 138、 140は、その吸着面がセラミックス等の 焼結体からなるポーラス材で形成されて 、る。これによつてゥエーハ Wがポーラス材 の表面にしつ力りと吸着保持される。 [0043] The chucks 132, 136, 138, and 140 of the present embodiment have a suction surface made of ceramics or the like. It is made of a porous material made of a sintered body. As a result, wafer W is adsorbed and held on the surface of the porous material.
[0044] 図 3に示されるゥエーハ Wのチャック位置に位置されているチャック 132は、ゥェー ハ Wが搬送されてくるまえに、その吸着面がクリーナ装置 142 (図 3参照)によって洗 浄される。クリーナ装置 142は、レール 144にスライド移動自在に設けられ、吸着面を 洗浄する際に、レール 144に沿って移動されチャック 132上に位置される。  [0044] The chuck 132 positioned at the chuck position of the wafer W shown in FIG. 3 is cleaned by the cleaner device 142 (see FIG. 3) before the wafer W is conveyed. . The cleaner device 142 is slidably provided on the rail 144, and is moved along the rail 144 and positioned on the chuck 132 when cleaning the suction surface.
[0045] クリーナ装置 142は除去部材 143を有し、この除去部材 143がチャック 132の吸着 面に当接されて吸着面に付着したスラッジ等のゴミを除去する。除去部材 143は、チ ャック 132の吸着面がセラミックス等の焼結体力もなるポーラス材の場合には、そのポ 一ラス材が用いられて 、る。  [0045] The cleaner device 142 has a removing member 143. The removing member 143 is brought into contact with the suction surface of the chuck 132 to remove dust such as sludge adhering to the suction surface. If the suction surface of the chuck 132 is a porous material having a sintered body force such as ceramics, the removing member 143 uses the porous material.
[0046] チャック 32に吸着保持されたゥヱーハ Wは、たとえば一対の測定ゲージ 136、 138 によってその厚さを測定することもできる。これらの測定ゲージ 136、 138は、それぞ れ図示しない接触子を有し、一方の接触子はゥエーハ Wの上面 (裏面)に、他方の接 触子はチャック 132の上面に接触されている。これらの測定ゲージ 136、 138は、チ ャック 132の上面を基準点としてゥエーハ Wの厚さをインプロセスゲージ読取値の差 として検出することができる。  [0046] The thickness of the wafer W attracted and held by the chuck 32 can be measured by, for example, a pair of measurement gauges 136 and 138. Each of these measurement gauges 136 and 138 has a contact (not shown). One contact is in contact with the upper surface (back surface) of the wafer W, and the other contact is in contact with the upper surface of the chuck 132. These measurement gauges 136 and 138 can detect the thickness of wafer W as a difference between in-process gauge readings with the upper surface of the chuck 132 as a reference point.
[0047] 厚さが測定されたゥ ーハ Wは、インデックステーブル 34の図 2、図 3の矢印 A方向 の 90度の回動で粗研削ステージ 118に位置され、粗研削ステージ 118のカップ型砥 石 146によってゥエーハ Wの裏面が粗研削される。  [0047] The woofer W whose thickness has been measured is positioned on the rough grinding stage 118 by turning 90 degrees in the direction of arrow A in FIGS. The back side of wafer W is roughly ground by whetstone 146.
[0048] このカップ型砥石 146は図 2に示されるように、モータ 148の図示しない出力軸に 連結され、また、モータ 148のサポート用ケーシング 150を介して砥石送り装置 152 に取り付けられている。砥石送り装置 152は、カップ型砥石 146をモータ 148とともに 昇降移動させるもので、この下降移動によりカップ型砲石 146がゥエーハ Wの裏面に 押し付けられる。  As shown in FIG. 2, the cup-type grindstone 146 is connected to an output shaft (not shown) of the motor 148 and is attached to the grindstone feeder 152 via a support casing 150 of the motor 148. The grindstone feeder 152 moves the cup-type grindstone 146 up and down together with the motor 148, and the cup-type turret 146 is pressed against the back surface of the wafer W by this downward movement.
[0049] これにより、ゥヱーハ 126の裏面粗研削が行われる。カップ型砥石 146の下降移動 量は、即ち、カップ型砲石 146による研削量は、予め登録されているカップ型砲石 14 6の基準位置と、測定ゲージ 236、 238で検出されたゥヱーハ Wの厚さとに基づいて 設定される。 [0050] 粗研削ステージ 118で裏面が粗研削されたゥエーハ Wは、ゥエーハ Wからカップ型 砲石 146が退避移動した後、図示しない厚さ測定ゲージによってその厚さが測定さ れる。厚さが測定されたゥヱーハ Wは、インデックステーブル 134の同方向の 90度の 回動で精研削ステージ 120に位置され、精研削ステージ 120のカップ型砥石 154に よって精研肖 |J、スパークアウトされる。 [0049] Thereby, the back surface rough grinding of the wafer 126 is performed. The downward movement amount of the cup-type grindstone 146, that is, the grinding amount by the cup-type mortar 146, is the reference position of the cup-shaped turret 146 registered in advance and the woofer W detected by the measurement gauges 236 and 238. It is set based on the thickness. The wafer W whose back surface has been coarsely ground in the rough grinding stage 118 is measured by a thickness measurement gauge (not shown) after the cup-type turret 146 is retracted from the wafer W. The wafer W, whose thickness was measured, was positioned on the precision grinding stage 120 by the 90-degree rotation of the index table 134 in the same direction, and was refined by the cup-type grinding wheel 154 of the precision grinding stage 120 | J, spark out Is done.
[0051] この精研削ステージ 120の構造は、粗研削ステージ 118の構造と同一なので、ここ ではその説明を省略する。なお、本実施の形態では、研削ステージを 2か所設けた 1S 研削ステージは 1か所でもよい。また、測定ゲージによる厚さ測定は、インライン で実施してもよい。  [0051] Since the structure of the fine grinding stage 120 is the same as that of the rough grinding stage 118, its description is omitted here. In the present embodiment, one 1S grinding stage having two grinding stages may be provided. In addition, the thickness measurement using a measurement gauge may be performed in-line.
[0052] 精研削ステージ 120で裏面が精研削されたゥエーハ Wは、ゥエーハ Wからカップ型 砲石 154が退避移動した後、図示しない厚さ測定ゲージによってその厚さが測定さ れる。厚さが測定されたゥヱーハ Wは、インデックステーブル 134の同方向の 90度の 回動で研磨ステージ 122に位置され、研磨ステージ 122の図 4に示される研磨布 15 6と、研磨布 156から供給されるスラリとによって研磨され、その裏面に生じている加 ェ変質層が除去される。なお、測定ゲージによる厚さ測定は、インラインで実施しても よい。  The wafer W whose back surface has been precisely ground in the precision grinding stage 120 is measured for its thickness by a thickness measurement gauge (not shown) after the cup-type turret 154 is retracted from the wafer W. The wafer W whose thickness has been measured is positioned on the polishing stage 122 by the 90-degree rotation of the index table 134 in the same direction, and is supplied from the polishing cloth 156 shown in FIG. 4 of the polishing stage 122 and the polishing cloth 156. Polishing is performed by the slurry, and the modified layer generated on the back surface is removed. The thickness measurement using a measurement gauge may be performed in-line.
[0053] 図 4は、研磨ステージ 122の構造図である。図 4に示される研磨ステージ 120の研 磨布 156は、モータ(回転手段に相当) 158の出力軸 160に連結された研磨ヘッド 1 61に取り付けられている。また、モータ 158の側面には、直動ガイドを構成するガイド ブロック 162、 162が設けられており、このガイドブロック 162、 162力 サポートプレ ート 164の側面に設けられたガイドレール 166に上下移動自在に係合されている。し たがって、研磨布 156はモータ 158ととも〖こ、サポートプレート 164に対して上下移動 自在に取り付けられている。  FIG. 4 is a structural diagram of the polishing stage 122. A polishing cloth 156 of the polishing stage 120 shown in FIG. 4 is attached to a polishing head 1601 connected to an output shaft 160 of a motor (corresponding to a rotating means) 158. In addition, guide blocks 162 and 162 constituting a linear motion guide are provided on the side surface of the motor 158, and the guide block 162 and 162 force are moved up and down to the guide rail 166 provided on the side surface of the support plate 164. It is freely engaged. Therefore, the polishing cloth 156 is attached together with the motor 158 and is attached to the support plate 164 so as to be movable up and down.
[0054] サポートプレート 164は、水平に配置された長尺アーム 168の先端に設けられてい る。このアーム 1168の基端部は、ケーシング 70内に配置されたモータ 172の出力軸 174に接続されている。したがって、モータ 172が駆動されると、アーム 168は出力軸 174を中心に回動することができる。  [0054] The support plate 164 is provided at the tip of the long arm 168 disposed horizontally. A base end portion of the arm 1168 is connected to an output shaft 174 of a motor 172 disposed in the casing 70. Therefore, when the motor 172 is driven, the arm 168 can rotate around the output shaft 174.
[0055] これにより、研磨布 156を図 2の実線で示した研磨位置と、研磨布洗浄ステージ 12 3による研磨布洗浄位置と、研磨布ドレッシングステージ 127によるドレス位置との範 囲内で移動させることができる。研磨布 156は、研磨布洗浄位置に移動された際に、 研磨布洗浄ステージ 123によって、その表面が洗浄されて表面に付着している研磨 屑等が除去される。 Thus, the polishing position of the polishing pad 156 indicated by the solid line in FIG. It can be moved within the range of the polishing cloth cleaning position by 3 and the dressing position by the polishing dressing stage 127. When the polishing cloth 156 is moved to the polishing cloth cleaning position, the polishing cloth cleaning stage 123 cleans the surface of the polishing cloth 156 and removes polishing scraps attached to the surface.
[0056] なお、研磨布 156としては、発泡ポリウレタン、研磨布等を例示することができ、研 磨布洗浄ステージ 23には、研磨屑を除去するブラシ等の除去部材が設けられている 。この除去部材は、研磨布 156の洗浄時に回転駆動され、研磨布 156も同様にモー タ 158 (図 4参照)によって回転駆動される。研磨布ドレッシングステージ 127には、研 磨布 156と同じ材料、たとえば発泡ポリウレタンが採用されている。  [0056] The polishing cloth 156 can be exemplified by foamed polyurethane, polishing cloth, and the like, and the polishing cloth cleaning stage 23 is provided with a removing member such as a brush for removing polishing debris. This removal member is rotationally driven when the polishing cloth 156 is cleaned, and the polishing cloth 156 is also rotationally driven by the motor 158 (see FIG. 4). The abrasive cloth dressing stage 127 is made of the same material as the abrasive cloth 156, for example, polyurethane foam.
[0057] ケーシング 170の側面には、直動ガイドを構成するガイドブロック 176、 176が設け られ、このガイドブロック 176、 176力 ねじ送り装置用ハウジング 178の側面に設け られたガイドレール 180に上下移動自在に係合されている。また、ケーシング 170の 側面には、ナット部材 182が突設されている。  [0057] Guide blocks 176, 176 constituting a linear motion guide are provided on the side surface of the casing 170. The guide blocks 176, 176 are moved up and down to a guide rail 180 provided on the side surface of the housing 178 for the screw feeder. It is freely engaged. A nut member 182 is projected from the side surface of the casing 170.
[0058] このナット部材 182は、ハウジング 178に形成された開口部 179を介してハウジング 178内に配設され、ねじ送り装置 (位置決め送り機構に相当)のねじ棒 180に螺合さ れている。ねじ棒 180の上端には、モータ 182の出力軸 184が連結されている。  The nut member 182 is disposed in the housing 178 through an opening 179 formed in the housing 178, and is screwed to a screw rod 180 of a screw feed device (corresponding to a positioning feed mechanism). . An output shaft 184 of a motor 182 is connected to the upper end of the screw rod 180.
[0059] したがって、モータ 182が駆動されて、ねじ棒 184が回転されると、ねじ送り装置の 送り作用と、ガイドブロック 176とレール 180の直進作用とによって、ケーシング 170 が上下移動される。これによつて、研磨布 156が上下方向に大きく移動され、研磨へ ッド 161とゥエーハ Wとの間隔が所定の間隔に設定される。  Therefore, when the motor 182 is driven and the screw rod 184 is rotated, the casing 170 is moved up and down by the feeding action of the screw feeding device and the straight movement action of the guide block 176 and the rail 180. As a result, the polishing pad 156 is greatly moved in the vertical direction, and the interval between the polishing head 161 and the wafer W is set to a predetermined interval.
[0060] ところで、モータ 158の上面には、エアシリンダ装置 (加圧機構に相当) 186のピスト ン 188がアーム 168の貫通孔 169を介して連結されている。また、エアシリンダ装置 1 86には、シリンダの内圧 Pを制御するレギユレータ 190が接続されている。したがって 、このレギユレータ 190によって内圧 Pを制御すると、ゥヱーハ Wに対する研磨布 156 の押圧力 (圧接力)を制御することができる。  Incidentally, a piston 188 of an air cylinder device (corresponding to a pressurizing mechanism) 186 is connected to the upper surface of the motor 158 via a through hole 169 of the arm 168. In addition, a regulator 190 that controls the internal pressure P of the cylinder is connected to the air cylinder device 186. Therefore, when the internal pressure P is controlled by the regulator 190, the pressing force (pressure contact force) of the polishing pad 156 against the woofer W can be controlled.
[0061] 研磨ステージ 122で研磨されたゥエーハ Wは、アーム 168の回動で研磨布 156が ゥエーハ Wの上方位置から退避移動した後に、図 3に示されるロボット 196のハンド 1 97で吸着保持されてゥヱーハ洗浄ステージ 124に搬送される。なお、図 2ではロボッ ト 96の図示を省略している。 The wafer W polished by the polishing stage 122 is sucked and held by the hand 1 97 of the robot 196 shown in FIG. 3 after the polishing cloth 156 is retracted from the upper position of the wafer W by the rotation of the arm 168. The toner is transferred to the wafer cleaning stage 124. In Fig. 2, the robot The illustration of G 96 is omitted.
[0062] 研磨終了したゥエーハ Wは、加工変質層が除去されているので、容易に破損するこ とはなく、よって、ロボット 196による搬送時、及びゥエーハ洗浄ステージ 124における 洗浄時にお 、て破損しな 、。  [0062] The wafer W that has been polished is not easily damaged because the damaged layer has been removed. Therefore, the wafer W is damaged during transfer by the robot 196 and during cleaning at the wafer cleaning stage 124. Nah ...
[0063] ゥエーハ洗浄ステージ 124としては、リンス洗浄機能、及びスピン乾燥機能を有する ステージが適用されている。ゥエーハ洗浄ステージ 124で洗浄乾燥終了したゥエーハ Wは、ロボット 130のハンド 131に吸着保持されて、カセット 126の所定の棚に収納さ れる。以上が、平面カ卩ェ装置 10Aにおけるゥヱーハ平面カ卩ェ工程の流れである。  [0063] As the wafer cleaning stage 124, a stage having a rinse cleaning function and a spin drying function is applied. The wafer W that has been cleaned and dried at the wafer cleaning stage 124 is sucked and held by the hand 131 of the robot 130 and stored in a predetermined shelf of the cassette 126. The above is the flow of the woofer planar care process in the planar care apparatus 10A.
[0064] 次に、レーザーダイシング装置 10Bの構成について説明する。図 8はレーザーダイ シング装置 10Bの構成を模式的に表した側面図である。  Next, the configuration of the laser dicing apparatus 10B will be described. FIG. 8 is a side view schematically showing the configuration of the laser dicing apparatus 10B.
[0065] レーザーダイシング装置 10Bは、 2ヘッドの装置であり、チャックテーブル 212、図 示しないガイドベース(Xガイドベース、 Yガイドベース、 Zガイドベース)、レーザーへ ッド 231、 231、及び図示しない制御手段等が備えられている。  [0065] The laser dicing apparatus 10B is a two-head apparatus, which includes a chuck table 212, a guide base (not shown) (X guide base, Y guide base, Z guide base), laser heads 231, 231 and not shown. Control means and the like are provided.
[0066] チャックテーブル 212は、ゥエーハ Wを吸着載置し、不図示の Θ回転軸により、 Θ 方向に回転されるとともに、 Xガイドベース上に取り付けられた不図示の Xテーブルに より X方向(紙面に垂直方向)に加工送りされる。  [0066] The chuck table 212 sucks and mounts the wafer W, is rotated in the Θ direction by a Θ rotation shaft (not shown), and is moved in the X direction (by an X table (not shown) mounted on the X guide base ( Processed in the direction perpendicular to the paper).
[0067] チャックテーブル 212の上方には、図示しない Yガイドベースが設けられている。こ の Yガイドベースには、図示しない 2個の Yテーブルが設けられ、それぞれの Yテー ブルには、図示しない 2組の Zガイドレールが取り付けられている。それぞれの Zガイ ドレールには、不図示の Zテーブルが設けられ、それぞれの Zテーブルには、ホルダ 232を介してレーザーヘッド 231が取付けられており、 2個のレーザーヘッド 231、 23 1はそれぞれ独立して Z方向に移動されるとともに、独立して Y方向に割り出し送りさ れるようになっている。  A Y guide base (not shown) is provided above the chuck table 212. This Y guide base is provided with two Y tables (not shown), and two sets of Z guide rails (not shown) are attached to each Y table. Each Z guide rail is provided with a Z table (not shown). A laser head 231 is attached to each Z table via a holder 232, and the two laser heads 231 and 23 1 are independent of each other. As a result, it is moved in the Z direction and indexed in the Y direction independently.
[0068] レーザーダイシング装置 10Bは、この他に図示しないゥヱーハ搬送手段、操作板、 テレビモニタ、及び表示灯等から構成されている。  In addition to this, the laser dicing apparatus 10B includes a wafer transfer means, an operation panel, a television monitor, an indicator lamp, and the like (not shown).
[0069] 操作板には、レーザーダイシング装置 10Bの各部を操作するスィッチ類や表示装 置が取付けられている。テレビモニタは、図示しない CCDカメラで撮像したゥエーハ 画像の表示、又はプログラム内容や各種メッセージ等を表示する。表示灯は、レーザ 一ダイシング装置 10Bの加工中、加工終了、非常停止等の稼動状況を表示する。 [0069] Switches and display devices for operating each part of the laser dicing apparatus 10B are attached to the operation plate. The TV monitor displays a wafer image captured by a CCD camera (not shown) or displays program contents and various messages. Indicator light is laser Displays the operating status such as the end of processing, emergency stop, etc. during processing of one dicing machine 10B.
[0070] レーザーヘッド 231は、レーザーダイシング装置 10Bのベース 211に設けられたチ ャックテーブル 212に載置されたゥエーハ Wにレーザー光 Lを照射するよう、ゥエーハ[0070] The laser head 231 is adapted to irradiate the wafer W placed on the chuck table 212 provided on the base 211 of the laser dicing apparatus 10B with the laser beam L so as to irradiate the wafer W.
Wの上方に位置付けられている。 Positioned above W.
[0071] レーザーヘッド 231は、レーザー発振器 231A、コリメートレンズ 231B、ミラー 231[0071] The laser head 231 includes a laser oscillator 231A, a collimator lens 231B, and a mirror 231.
C、コンデンスレンズ 23 ID等からなり、図 8に示されるように、レーザー発振器 231 A 力 発振されたレーザー光 Lは、コリメートレンズ 231Bで水平方向に平行光線とされC, Condensation lens 23 ID, etc., as shown in Fig. 8, the laser light L oscillated by laser oscillator 231 A is collimated horizontally by collimating lens 231B.
、ミラー 231Cで垂直方向に反射され、コンデンスレンズ 231Dによって集光されるよ うに構成されている。 The mirror 231C is reflected in the vertical direction and is condensed by the condensation lens 231D.
[0072] レーザー光 Lの集光点を、チャックテーブル 212に載置されたゥヱーハ Wの厚さ方 向内部に設定すると、ゥエーハ Wの表面を透過したレーザー光 Lは集光点でエネル ギ一が集中され、ゥ ーハ内部の集光点近傍に多光子吸収によるクラック領域、溶融 領域、屈折率変化領域等の改質領域を形成する。  [0072] When the condensing point of the laser beam L is set inside the thickness direction of the wafer W placed on the chuck table 212, the laser beam L transmitted through the surface of the wafer W is energized at the condensing point. As a result, a modified region such as a crack region due to multiphoton absorption, a melting region, or a refractive index change region is formed near the condensing point inside the wafer.
[0073] また、レーザーヘッド 231は、図示しない傾斜機構を有しており、レーザー光 Lをゥ エーハ面に対して任意の角度に傾斜させて照射させることができるようになつている。  Further, the laser head 231 has a tilt mechanism (not shown), and can irradiate the laser beam L at an arbitrary angle with respect to the wafer surface.
[0074] ゥエーハ内部の集光点近傍に形成される改質領域 Kについては、既述の図 15の 如くである。この図 15は、ゥエーハ Wの内部に入射されたレーザー光 Lが集光点に 改質領域 Kを形成した状態を示しして 、る。この状態でゥエーハ Wが水平方向に移 動され、改質領域 Kが連続して形成される。  [0074] The modified region K formed in the vicinity of the condensing point inside the wafer is as shown in FIG. FIG. 15 shows a state in which the modified region K is formed at the focal point of the laser beam L incident on the wafer W. In this state, wafer W is moved in the horizontal direction, and reforming regions K are continuously formed.
[0075] ゥエーハ Wは改質領域 K、 Κ…を起点として自然に割断する力、又は僅かな外力を 加えることによって改質領域 Κ、 Κ…を起点として割断される。この場合、ゥエーハ W は表面や裏面にはチッビングが発生せずに容易にチップに分割される。  [0075] The wafer W is cleaved starting from the reformed areas K, Κ, etc. by applying a force that naturally cleaves from the reformed areas K, Κ, or a slight external force. In this case, wafer W is easily divided into chips without causing any chipping on the front and back surfaces.
[0076] レーザーダイシング装置 10Bでゥヱーハ Wをレーザーダイシングする場合、通常、 図 16に示されるように、ゥエーノ、 Wは片方の面に粘着剤を有するダイシングシート S を介してダイシング用のフレーム Fにマウントされ、レーザーダイシング工程中はこの 状態で搬送される。  [0076] In the case of laser dicing the wafer W with the laser dicing apparatus 10B, as shown in Fig. 16, the wafer and the W are usually attached to the dicing frame F via the dicing sheet S having an adhesive on one side. Mounted and transported in this state during the laser dicing process.
[0077] 次に、ゥエーハマウント装置 10Cの構成について説明する。図 9はゥエーハマウント 装置 10Cの構成を模式的に表した平面図である。 [0078] ゥエーハマウント装置 IOCは、テープマウント(テープマウント手段) 11、テープリム ーバ (テープ剥離手段) 12、及びテープエキスパンダ (エキスパンド手段) 13、プラズ マ洗浄装置 (洗浄手段) 19、 UV照射装置 (照射手段) 18を備えている。更に、テー プマウント 11近傍にはフレームストッカー(フレーム供給手段) 15、エキスパンダ 13近 傍にはリングストッカー (保持リング供給手段) 17、及びカセットストッカー(ゥエーハ収 納手段) 14がそれぞれ設けられている。 [0077] Next, the configuration of the wafer mount device 10C will be described. FIG. 9 is a plan view schematically showing the configuration of the wafer mount device 10C. [0078] Wafer mounting device IOC consists of tape mount (tape mounting means) 11, tape remover (tape peeling means) 12, and tape expander (expanding means) 13, plasma cleaning device (cleaning means) 19, UV An irradiation device (irradiation means) 18 is provided. Further, a frame stocker (frame supply means) 15 is provided near the tape mount 11, a ring stocker (holding ring supply means) 17 and a cassette stocker (wafer storage means) 14 are provided near the expander 13, respectively. .
[0079] ゥエーハマウント装置 10Cへは、全面吸着式の搬送装置 41の吸着パッド 42により、 レーザーダイシング後のゥ ーハ Wが搬送されてくる。ゥ ーハ wは、既述したように [0079] The wafer W after laser dicing is transported to the wafer mount device 10C by the suction pad 42 of the full-surface suction-type transport device 41. Woo w
、表面に形成されたパターンを保護する保護用シート 21が貼着され、裏面を平坦に 研削及び研磨された後にレーザーダイシングされたものであり、保護用シート 21が貼 着された表面側を下に向けて吸着パッド 42に吸着されるようになっている。 The protective sheet 21 that protects the pattern formed on the front surface is affixed, the back surface is ground and polished flat, and then laser dicing is performed. The protective sheet 21 is adhered to the front side. It is sucked by the suction pad 42 toward the surface.
[0080] 搬送装置 41によりゥエーハマウント装置 10Cへ搬送されてきたゥエーハ Wは、先ず 、プラズマ洗浄装置 19へ搬送される。プラズマ洗浄装置 19は、酸素、水素等のブラ ズマを発生させてゥエーハ Wへ当て、ゥエーハ W上に残る有機汚染物を除去し、レー ザ一ダイシングにより形成された改質領域の質を改善する。これにより、エキスパンド 時の欠けの発生を抑える。プラズマ洗浄装置 19としては、例えば松下電工株式会社 製大気圧プラズマクリーニング装置 (製品名: Aiplasma)等が好適に利用可能である The wafer W that has been transferred to the wafer mount device 10 C by the transfer device 41 is first transferred to the plasma cleaning device 19. Plasma cleaning device 19 generates plasma such as oxygen and hydrogen and applies it to wafer W to remove organic contaminants remaining on wafer W and improve the quality of the reformed region formed by laser dicing. . This suppresses the occurrence of chipping during expansion. As the plasma cleaning device 19, for example, an atmospheric pressure plasma cleaning device (product name: Aiplasma) manufactured by Matsushita Electric Works, Ltd. can be suitably used.
[0081] プラズマ洗浄装置 19により洗浄されたゥヱーハ Wは、 UV照射装置 18へ搬送され る。 UV照射装置 18は、図 10に示されるように、複数の UV発光管 26、 26· ··がケー ス 27内に平行に並べられ、上方に向けて紫外線光を照射するようになっている。 The wafer W cleaned by the plasma cleaning device 19 is transported to the UV irradiation device 18. As shown in FIG. 10, the UV irradiation device 18 has a plurality of UV light-emitting tubes 26, 26,... Arranged in parallel in the case 27 and irradiates ultraviolet light upward. .
[0082] ゥ ーハ Wは、 UV照射装置 18上を搬送装置 41により搬送されて通過する際に、 保護用シート 21が貼着された表面に UV光が照射され、貼着された保護用シート 21 の粘着力が低下する。これにより、保護用シート 21の剥離が容易になる。  [0082] When the woofer W is transported and passed through the UV irradiation device 18 by the transport device 41, the surface to which the protective sheet 21 is adhered is irradiated with UV light, and is attached to the protective device. The adhesive strength of the sheet 21 is reduced. Thereby, peeling of the protective sheet 21 becomes easy.
[0083] なお、 UV照射装置 18は、ケース 27内に平行に UV発光管 26を並べた構造で説 明したが、この構造に限らず、図 16に示される UV照射装置 18Aのように、断面凹面 形状の反射板 28を有し、中央部に設けられた UV発光管 26から照射された UV光を 上方へ平行に反射する構造等、様々な構造が適用可能である。 [0084] UV照射装置 18を通過したゥヱーハ Wは、テーブル 16まで搬送され、図 11の(a) に示されるように、保護用シート 21が貼着された表面側を下にしてテーブル 16に載 置されるようになっている。 [0083] The UV irradiation device 18 has been described as having a structure in which the UV arc tubes 26 are arranged in parallel in the case 27. However, the present invention is not limited to this structure, and the UV irradiation device 18A shown in FIG. Various structures such as a structure having a reflecting plate 28 having a concave cross section and reflecting UV light emitted from a UV arc tube 26 provided in the central portion in parallel upward can be applied. [0084] The woofer W that has passed through the UV irradiation device 18 is transported to the table 16, and as shown in FIG. 11 (a), the woofer W is placed on the table 16 with the surface side to which the protective sheet 21 is attached facing down. It is supposed to be placed.
[0085] テーブル 16には、不図示の真空吸着機構が設けられており、フレームストッカー 15 力 搬送装置 31のアーム 32により供給されるフレーム F (図 14参照)とゥ ーハ Wと を吸着する。テーブル 16は、不図示の駆動装置によりガイド 36に沿って移動し、テ ープマウント 11の下方を通過するようになって!/、る。  [0085] The table 16 is provided with a vacuum suction mechanism (not shown), and sucks the frame F (see FIG. 14) and the wafer W supplied by the arm 32 of the frame stocker 15 force transfer device 31. . The table 16 is moved along the guide 36 by a driving device (not shown) and passes under the tape mount 11! /.
[0086] テープマウント 11は、ガイド 36の上方に位置し、テーブル 16上に吸着載置された ゥエーハ Wの裏面側へ、図 11の(b)に示されるように、ダイシングテープ 22によりフレ ーム Fをマウントするようになって!/、る。  [0086] The tape mount 11 is positioned above the guide 36, and is slid onto the back side of the wafer W sucked and placed on the table 16 by the dicing tape 22 as shown in FIG. 11 (b). I came to mount F! /, Ru.
[0087] テープマウント 11において、ダイシングテープ 22が供給リール 37に卷きつけられて おり、ダイシングテープ 22が不図示のガイドリールを経て、ゥエーハ Wに対して平行 に広がるように卷取りリール 38へ巻き取られるようになって 、る。  [0087] In the tape mount 11, the dicing tape 22 is wound around the supply reel 37, and the dicing tape 22 passes through a guide reel (not shown) and is wound around the winding reel 38 so as to spread in parallel with the wafer W. It is being taken.
[0088] ゥエーハ Wをダイシングテープ 22によりフレーム Fへマウントする際には、テープマ ゥント 11の下方に位置したフレーム Fとゥエーハ Wとへ、テープマウント 11に設けられ た不図示のローラによりダイシングテープ 22を押圧して貼着することによりマウントす る。  [0088] When the wafer W is mounted on the frame F with the dicing tape 22, the dicing tape 22 is attached to the frame F and the wafer W located below the tape mount 11 by a roller (not shown) provided on the tape mount 11. Mount by pressing and sticking.
[0089] このとき、ゥエーハ Wとダイシングテープ 22との間には、ダイシングされたチップと基 板とを接合する際に使用されるダイアタッチフィルム 23 (以下、 DAFと称する)が貼着 される。これにより、ダイボンディングを行う工程が簡略ィ匕され、スループットの向上が 可能となる。  [0089] At this time, a die attach film 23 (hereinafter referred to as DAF) used for bonding the diced chip and the substrate is attached between the wafer W and the dicing tape 22. . As a result, the die bonding process is simplified and the throughput can be improved.
[0090] ダイシングテープ 22を貼着した後は、テープマウント 11に設けられた不図示のカツ ターにより不要な部分が切断除去されるようになって!/、る。  [0090] After the dicing tape 22 is attached, unnecessary parts are cut and removed by a cutter (not shown) provided on the tape mount 11.
[0091] テープリムーバ 12は、図 11の(c)に示されるように、ダイシングテープ 22によりフレ ーム Fがマウントされたゥエーハ Wの表面より保護シート 21を剥離するようになって!/ヽ る。 [0091] As shown in FIG. 11 (c), the tape remover 12 peels the protective sheet 21 from the surface of the wafer W on which the frame F is mounted by the dicing tape 22! / ヽThe
[0092] フレーム Fがマウントされたゥエーハ Wは、テーブル 16から搬送装置 39によりテー プリムーバ 12上へ保護シート 21が貼着された表面側が上となるように反転させなが ら搬送され、不図示のアームにより保護シート 21が剥離されるようになっている。保護 シート 21は、 UV照射装置 18により照射された UV光により粘着力が低下されて 、る ため、ゥエーハ W上から容易に剥離することが可能である。 [0092] The wafer W on which the frame F is mounted must be reversed so that the surface side on which the protective sheet 21 is adhered is placed on the table mover 12 from the table 16 by the transport device 39. The protective sheet 21 is peeled off by an arm (not shown). Since the adhesive strength of the protective sheet 21 is reduced by the UV light irradiated by the UV irradiation device 18, it can be easily peeled off from the wafer W.
[0093] エキスパンダ 13は、リングストッカー 17から搬送装置 33のアーム 34により供給され る保持リング Rを、フレーム Fにマウントされたゥエーハ Wのダイシングテープ 22側より 押圧し、ダイシングされたゥエーハ Wのエキスパンドを行う装置である。  [0093] The expander 13 presses the holding ring R supplied from the ring stocker 17 by the arm 34 of the transfer device 33 from the dicing tape 22 side of the wafer W mounted on the frame F, and the expander 13 It is a device that performs expansion.
[0094] このエキスパンダ 13へは、搬送装置 39により保護シート 21が剥離された後のゥェ ーハ Wが搬送される。エキスパンダ 13は、図 11の(d)に示されるように必要に応じゥ エーハ Wを冷却し、フレーム Fをフレーム固定機構 25により固定し、保持リング Rを押 し上げ機構 24によりダイシングテープ 22へ押圧してダイシングテープ 22を放射状に エキスパンドする装置である。これにより、ゥエーハ Wは個々のチップ Tに分割される  The wafer W after the protective sheet 21 is peeled off by the transport device 39 is transported to the expander 13. As shown in FIG. 11 (d), the expander 13 cools the wafer W as necessary, fixes the frame F by the frame fixing mechanism 25, pushes up the holding ring R, and dicing tape 22 by the lifting mechanism 24. This is a device that expands the dicing tape 22 in a radial fashion by pressing to the right. This splits wafer W into individual chips T
[0095] 保持リング Rはフレーム Fに嵌合してエキスパンド状態を保持するためのリングであ る。エキスパンド後のゥエーハ Wは、保持リング Rごと搬送装置 39によりテープリムー ノ 12側へ戻される。テープリムーバ 12上のエキスパンド後のゥエーハ Wは、不図示 の移動手段によってガイド 35上を移動し、図 11の(e)に示されるように、カセットストツ カー 14に載置されたカセット C内へ順次収納されるようになっている。 [0095] The holding ring R is a ring for fitting into the frame F to hold the expanded state. The expanded wafer W is returned to the tape reel 12 side by the transport device 39 together with the holding ring R. The expanded wafer W on the tape remover 12 is moved on the guide 35 by a moving means (not shown), and into the cassette C placed on the cassette stocker 14 as shown in FIG. 11 (e). It is designed to be stored sequentially.
[0096] カセットストッカー 14は、カセット Cを載置して上下するエレベータを備え、ゥエーハ Wを収納する位置を順次変更していく収納装置である。そして、カセット Cの全ての 収納位置へゥ ーハ Wが収納された時点で、不図示の搬送装置によりカセット Cをゥ エーハマウント装置 10から搬出し、新しいカセット Cがカセットストッカー 14へセットさ れるようになっている。  The cassette stocker 14 is a storage device that includes an elevator that mounts the cassette C and moves up and down, and sequentially changes the position where the wafer W is stored. When the woofer W is stored in all the storage positions of the cassette C, the cassette C is unloaded from the wafer mount device 10 by a transfer device (not shown), and a new cassette C is set in the cassette stocker 14. It is like that.
[0097] 次に、ゥ ーハマウント方法について説明する。図 12はゥ ーハマウント方法の動 作順序を示したフロー図である。  Next, a woofer mounting method will be described. Fig. 12 is a flowchart showing the operation sequence of the woofer mounting method.
[0098] まず、ゥヱーハマウント装置 10Cには、図 10に示されるように、ゥヱーハ W力 全面 吸着型の搬送装置 41により保護用シート 21側を下方に向けて吸着されて搬送され てくる。このゥエーハ Wは、パターンが形成された表面側(下面側)へ保護シート 21が 貼着され、裏面(上面)を研削された後にレーザーダイシングされたものである。 [0099] 搬送されてきたゥエーハ Wは、プラズマ洗浄装置 19へ載置され、プラズマ洗浄が行 われる(ステップ Sl)。ゥエーハ Wは、プラズマ洗浄によりゥエーハ W上に残る有機汚 染物が除去され、レーザーダイシングにより形成された改質領域の質が改善される。 First, as shown in FIG. 10, the woofer mounting device 10C is transported by being attracted with the woofer W force whole surface adsorption type conveying device 41 facing down the protective sheet 21 side. In this wafer W, a protective sheet 21 is attached to the front surface side (lower surface side) on which the pattern is formed, and the rear surface (upper surface) is ground, followed by laser dicing. [0099] The wafer W that has been transported is placed on the plasma cleaning device 19, and plasma cleaning is performed (step Sl). In wafer W, organic contaminants remaining on wafer W are removed by plasma cleaning, and the quality of the modified region formed by laser dicing is improved.
[0100] プラズマ洗浄後、ゥエーハ Wは、 UV照射装置 18上を通過する(ステップ S 2)。この とき、 UV照射装置 18から保護用シート 21へ向けて UV光が照射され、保護用シート[0100] After the plasma cleaning, wafer W passes over UV irradiation device 18 (step S2). At this time, UV light is irradiated from the UV irradiation device 18 toward the protective sheet 21, and the protective sheet
21の粘着力が低下する。 The adhesive strength of 21 decreases.
[0101] UV照射装置 18を通過したゥエーハ Wは、図 11の(a)に示されるように、保護用シ ート 21が貼着された表面側を下にしてテーブル 16へ載置される。 [0101] The wafer W that has passed through the UV irradiation device 18 is placed on the table 16 with the surface side to which the protective sheet 21 is attached facing down, as shown in FIG. 11 (a). .
[0102] テーブル 16へ載置されたゥエーハ Wは、不図示の真空吸着機構によりテーブル 16 へ吸着される。ゥエーハ Wが吸着された後、フレーム Fが搬送装置 31のアーム 32に よりフレームストッカー 15から供給される。 The wafer W placed on the table 16 is sucked to the table 16 by a vacuum suction mechanism (not shown). After wafer W is adsorbed, frame F is supplied from frame stocker 15 by arm 32 of transfer device 31.
[0103] ゥエーハ Wは、フレーム Fの中心に位置し、テーブル 16がガイド 36に沿って移動す ることによりフレーム Fとともにテープマウント 11下方へ移動する。 The wafer W is located at the center of the frame F, and moves along with the frame F to the lower side of the tape mount 11 when the table 16 moves along the guide 36.
[0104] テープマウント 11の下方へゥエーハ Wが移動した後、図 11の(b)に示されるように[0104] After the wafer W moves down the tape mount 11, as shown in Fig. 11 (b)
、不図示のローラによりダイシングテープ 22がゥエーハ Wの裏面とフレーム Fへ貼着 され、不図示のカッターにより不要部分が切断されてゥエーハ Wがフレーム Fへマウ ントされる(ステップ S3)。 The dicing tape 22 is attached to the back surface of the wafer W and the frame F by a roller (not shown), unnecessary portions are cut by a cutter (not shown), and the wafer W is mounted on the frame F (step S3).
[0105] ダイシングテープ 22がゥエーハ Wの裏面へ貼着される際には、ゥエーハ Wとダイシ ングテープ 22の間には、チップと基板を接合する際に使用される DAF23が貼着さ れる。これにより、エキスパンド後のダイボンディング工程が簡略ィ匕され、スループット の向上が可能となる。 [0105] When the dicing tape 22 is attached to the back surface of the wafer W, between the wafer W and the dicing tape 22, the DAF 23 used for bonding the chip and the substrate is attached. This simplifies the die bonding process after expansion and improves the throughput.
[0106] テープマウント 11によりフレーム Fへマウントされたゥエーハ Wは、搬送装置 39によ り、反転して保護シート 21を上に向けながらテープリムーバ 12へ搬送される。テープ リムーバ 12へ送られたゥエーハ Wは、表面に貼着された保護シート 21が剥離される ( ステップ S4)。  The wafer W mounted on the frame F by the tape mount 11 is reversed by the conveying device 39 and conveyed to the tape remover 12 with the protective sheet 21 facing upward. The wafer W sent to the tape remover 12 is peeled off from the protective sheet 21 adhered to the surface (step S4).
[0107] 保護シート 21が剥離されたゥエーハ Wは、エキスパンダ 13へ搬送装置 39により搬 送される。エキスパンダ 13は、図 11の(e)に示されるように、フレーム Fをフレーム固 定機構 25により固定し、リングストッカー 17から搬送装置 33のアーム 34により供給さ れた保持リング Rをダイシングテープ 22側力も押圧してゥエーハ Wのエキスパンドを 行う(ステップ S 5)。 The wafer W from which the protective sheet 21 has been peeled off is transported to the expander 13 by the transport device 39. As shown in FIG. 11 (e), the expander 13 fixes the frame F by the frame fixing mechanism 25, and is supplied from the ring stocker 17 by the arm 34 of the transport device 33. The holding ring R is also pressed against the dicing tape 22 side force to expand wafer W (step S5).
[0108] ゥエーハ Wは、エキスパンドされて個々のチップ T、 Τ…へ分割され、保持リング Rは 、フレーム Fに嵌合してエキスパンド状態を保持する。これにより、ゥエーハ Wはェキ スパンドされた状態のまま搬送することが可能となる。  The wafer W is expanded and divided into individual chips T, Τ..., And the retaining ring R is fitted to the frame F to maintain the expanded state. As a result, the wafer W can be transported in the expanded state.
[0109] エキスパンドされたゥエーハ Wは、カセットストッカー 14に載置されたカセット Cへ保 持リング Rごと順次収納されて 、く(ステップ S6)。  The expanded wafer W is sequentially stored together with the retaining ring R in the cassette C placed on the cassette stocker 14 (step S6).
[0110] カセットストッカー 14は、カセット Cを上下させてゥエーハ Wの収納位置を調整する。  [0110] Cassette stocker 14 moves cassette C up and down to adjust the storage position of wafer W.
カセット Cの全てのゥヱーハ収納部へゥヱーハ Wが収納されると、カセット Cはゥエー ハマウント装置 10より搬送され、新しいカセット Cがカセットストッカー 14へ載置される  When the woofer W is stored in all the woofer storage sections of the cassette C, the cassette C is transported from the wafer mount device 10, and a new cassette C is placed on the cassette stocker 14.
[0111] 以上説明したように、本発明に係わるゥヱーノ、加工装置及びゥヱーハ加工方法によ れば、平面加工装置 10Aにより平面加工 (裏面研肖 ij、表面研磨)され、レーザーダイ シング装置 10Bによりダイシングされたゥ ーハ Wを、装置内の少ない移動距離で、 UV光照射工程、フレームへのマウント、保護シート剥離、及びエキスパンドまでの各 工程を終了し、エキスパンド状態を保ったままカセットに収納することが可能となる。 [0111] As described above, according to the wafer, the processing apparatus, and the wafer processing method according to the present invention, the planar processing (back surface polishing ij, surface polishing) is performed by the planar processing apparatus 10A, and the laser dicing apparatus 10B is used. The diced woofer W is stored in a cassette while maintaining the expanded state after completing the UV light irradiation process, mounting to the frame, peeling of the protective sheet, and expanding process with a short moving distance in the device. It becomes possible to do.
[0112] これにより、搬送中や各工程の作業中にチップへダメージを与える可能性が最小 限に抑えられ、極薄のゥエーハであっても高品質にチップ形状へカ卩ェ可能である。  [0112] This minimizes the possibility of damage to the chip during transport and work in each process, and even a very thin wafer can be scanned into the chip shape with high quality.
[0113] また、エキスパンドされた状態でカセットへ格納されるため、チップマウント工程を直 ちに進められるのでスループットの向上が可能となる。  [0113] Further, since the expanded state is stored in the cassette, the chip mounting process can be performed immediately, so that the throughput can be improved.

Claims

請求の範囲 The scope of the claims
[1] 表面に形成されたパターンを保護する保護用テープが貼着されたゥエーハの裏面 を砥石で研削加工する研削手段と、  [1] A grinding means for grinding the back surface of the wafer with a protective tape for protecting the pattern formed on the surface with a grindstone,
研削加工後の前記ゥヱーハを研磨布に押圧しながら前記ゥヱーハの裏面を研磨カロ ェする研磨手段と、  Polishing means for polishing and calcining the back surface of the wafer while pressing the wafer after grinding against a polishing cloth;
研磨後の前記ゥ ーハにレーザー光を照射し、前記ゥエーハ内部へ改質領域を形 成して切断加工を行う改質領域形成手段と、  A modified region forming means for irradiating the polished wafer with laser light to form a modified region inside the wafer and performing a cutting process;
切断加工後の前記ゥエーハをプラズマにより洗浄する洗浄手段と、  Cleaning means for cleaning the wafer after cutting with plasma;
洗浄後の前記ゥエーハの表面に紫外線光を照射する照射手段と、  An irradiation means for irradiating the surface of the wafer after cleaning with ultraviolet light;
紫外線光照射後の前記ゥ ーハの裏面にダイシングテープを貼着して前記ゥエー ハをフレームへマウントするテープマウント手段と、  Tape mounting means for attaching a dicing tape to the back surface of the wafer after irradiation with ultraviolet light and mounting the wafer on a frame;
前記ダイシングテープが貼着された前記ゥ ーハの表面に貼着されている前記保 護用テープの剥離を行うテープ剥離手段と、  A tape peeling means for peeling off the protective tape attached to the surface of the wafer to which the dicing tape is attached;
前記保護用テープが剥離された前記切断後のゥヱーハの前記ダイシングテープが 貼着された側より、前記ダイシングテープのエキスパンドとエキスパンドされた状態の 保持を行なう保持リングを押圧して該ダイシングテープのエキスパンドを行 、、前記 切断後のゥエーハの各チップ間の間隔を拡張するエキスパンド手段と、  The dicing tape expands by pressing a holding ring that holds the expanded state of the dicing tape and the expanded state from the side where the dicing tape is attached to the cut wafer after the protective tape is peeled off. Expanding means for extending the distance between each chip of the wafer after cutting,
を備えたことを特徴とするゥエーハ加工装置。  A wafer processing apparatus characterized by comprising:
[2] 前記ゥエーハ加工装置には、前記ゥエーハをマウントするフレームを供給するフレ ーム供給手段と、  [2] In the wafer processing apparatus, frame supply means for supplying a frame for mounting the wafer,
前記保持リングの貯蔵と前記エキスパンド手段への前記保持リングの供給とを行な う保持リング供給手段と、  Holding ring supply means for storing the holding ring and supplying the holding ring to the expanding means;
前記エキスパンド手段によりエキスパンドされ、該保持リングによりエキスパンドされ た状態が保持された前記ゥエーハをカセットへ収納するゥエーハ収納手段とが備えら れて 、ることを特徴とする請求項 1に記載のゥヱーハ加工装置。  2. The wafer processing according to claim 1, further comprising wafer storage means for storing the wafer expanded by the expanding means and held in the expanded state by the holding ring in a cassette. apparatus.
[3] 前記テープマウント手段は、前記ゥエーハへ前記ダイシングテープを貼着する際、 前記ゥエーハと前記ダイシングテープの間へダイアタッチフィルムを貼着することを特 徴とする請求項 1又は請求項 2に記載のゥ ーハ加工装置。 表面に形成されたパターンを保護する保護用テープが貼着されたゥエーハの裏面 を研削加工し、研削後の前記ゥエーハの裏面を研磨カ卩ェし、研磨後の前記ゥエーハ にレーザー光を照射して内部へ改質領域を形成し、改質領域形成後の前記ゥエー ハをプラズマ洗浄し、洗浄後の前記ゥエーハの表面に紫外線光を照射し、ダイシング テープを介して前記ゥエーハをフレームへマウントし、前記保護用テープを前記ゥェ ーハから剥離し、前記ダイシングテープのエキスパンドを行!、各チップ間の間隔を拡 張するゥ ーハ加工方法にぉ 、て、 [3] The tape mounting means is characterized in that when the dicing tape is attached to the wafer, a die attach film is attached between the wafer and the dicing tape. The woofer processing device described in 1. Grind the backside of the wafer with the protective tape that protects the pattern formed on the surface, polish the backside of the ground wafer, and irradiate the ground wafer with laser light. Forming a modified region inside, plasma cleaning the wafer after forming the modified region, irradiating the surface of the wafer after cleaning with ultraviolet light, and mounting the wafer on a frame via a dicing tape. Then, the protective tape is peeled off from the wafer, the dicing tape is expanded !, and the wafer processing method for extending the distance between the chips is used.
同一のゥエーハマウント装置上でプラズマ洗浄、紫外線光の照射、フレームへのマ ゥント、保護シートの剥離、及びダイシングテープのエキスパンドを行うことを特徴とす るゥエーハ加工方法。  A wafer processing method comprising performing plasma cleaning, ultraviolet light irradiation, mounting on a frame, peeling of a protective sheet, and dicing tape expansion on the same wafer mounting apparatus.
PCT/JP2007/052329 2006-02-10 2007-02-09 Apparatus and method for processing wafer WO2007091670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006034384A JP2007214457A (en) 2006-02-10 2006-02-10 Wafer processing equipment and method therefor
JP2006-034384 2006-02-10

Publications (1)

Publication Number Publication Date
WO2007091670A1 true WO2007091670A1 (en) 2007-08-16

Family

ID=38345262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052329 WO2007091670A1 (en) 2006-02-10 2007-02-09 Apparatus and method for processing wafer

Country Status (2)

Country Link
JP (1) JP2007214457A (en)
WO (1) WO2007091670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434463B2 (en) 2017-08-28 2024-02-20 リンテック株式会社 Substrate transfer system and substrate transfer method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238853A (en) * 2008-03-26 2009-10-15 Tokyo Seimitsu Co Ltd Wafer processing method and wafer processing apparatus
JP2014036144A (en) * 2012-08-09 2014-02-24 Lintec Corp Sheet application device and sheet application method
JP6100484B2 (en) * 2012-08-09 2017-03-22 リンテック株式会社 Conveying apparatus and conveying method
JP6180742B2 (en) * 2013-01-17 2017-08-16 株式会社ディスコ Tape sticking method and tape sticking device
JP2014229702A (en) * 2013-05-21 2014-12-08 株式会社ディスコ Laser processing device
JP6877207B2 (en) * 2017-03-28 2021-05-26 株式会社ディスコ Wafer processing system
JP6865828B2 (en) * 2017-07-12 2021-04-28 東京エレクトロン株式会社 Transport equipment, substrate processing system, transport method, and substrate processing method
DE102017212858A1 (en) * 2017-07-26 2019-01-31 Disco Corporation Method for processing a substrate
JP7373268B2 (en) 2018-03-29 2023-11-02 リンテック株式会社 Individual piece forming apparatus and individual piece forming method
JP7033496B2 (en) * 2018-05-09 2022-03-10 リンテック株式会社 Individual piece forming device and individual piece forming method
JP7033497B2 (en) * 2018-05-09 2022-03-10 リンテック株式会社 Individual piece forming device and individual piece forming method
JP7033495B2 (en) * 2018-05-09 2022-03-10 リンテック株式会社 Individual piece forming device and individual piece forming method
JP7402601B2 (en) 2018-05-09 2023-12-21 リンテック株式会社 Individual piece forming apparatus and individual piece forming method
JP7033494B2 (en) * 2018-05-09 2022-03-10 リンテック株式会社 Individual piece forming device and individual piece forming method
JP2021027305A (en) * 2019-08-09 2021-02-22 株式会社ディスコ Plasma etching apparatus
CN117099186A (en) * 2021-03-31 2023-11-21 琳得科株式会社 Method for producing monolithic workpiece with resin film, and apparatus for producing monolithic workpiece with resin film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254857A (en) * 1999-01-06 2000-09-19 Tokyo Seimitsu Co Ltd Flat face machining device and machining of flat face
JP2003338467A (en) * 2002-03-12 2003-11-28 Hamamatsu Photonics Kk Method for cutting semiconductor substrate
JP2004079746A (en) * 2002-08-16 2004-03-11 Tokyo Seimitsu Co Ltd Method of manufacturing chip
JP2004146727A (en) * 2002-10-28 2004-05-20 Tokyo Seimitsu Co Ltd Transferring method of wafer
JP2004241443A (en) * 2003-02-03 2004-08-26 Sanyo Electric Co Ltd Manufacturing method of semiconductor apparatus
JP2005166925A (en) * 2003-12-02 2005-06-23 Tokyo Seimitsu Co Ltd Method and device for wafer processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254857A (en) * 1999-01-06 2000-09-19 Tokyo Seimitsu Co Ltd Flat face machining device and machining of flat face
JP2003338467A (en) * 2002-03-12 2003-11-28 Hamamatsu Photonics Kk Method for cutting semiconductor substrate
JP2004079746A (en) * 2002-08-16 2004-03-11 Tokyo Seimitsu Co Ltd Method of manufacturing chip
JP2004146727A (en) * 2002-10-28 2004-05-20 Tokyo Seimitsu Co Ltd Transferring method of wafer
JP2004241443A (en) * 2003-02-03 2004-08-26 Sanyo Electric Co Ltd Manufacturing method of semiconductor apparatus
JP2005166925A (en) * 2003-12-02 2005-06-23 Tokyo Seimitsu Co Ltd Method and device for wafer processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434463B2 (en) 2017-08-28 2024-02-20 リンテック株式会社 Substrate transfer system and substrate transfer method

Also Published As

Publication number Publication date
JP2007214457A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
WO2007091670A1 (en) Apparatus and method for processing wafer
WO2007099986A1 (en) Wafer processing method
WO2007099787A1 (en) Wafer processing method
US10755946B2 (en) Method for producing a wafer from a hexagonal single crystal ingot by applying a laser beam to form a first production history, an exfoliation layer, and a second production history
US20080076334A1 (en) Wafer grinding method
JP2010199227A (en) Grinding device
JP2008155292A (en) Method and apparatus for machining substrate
JP5604186B2 (en) Processing equipment
TW201904703A (en) Wafer producing apparatus
KR20180134285A (en) Apparatus for generating wafer
JP7483069B2 (en) Substrate Transfer System
JP2013247132A (en) Method for processing plate-like object
JP6137798B2 (en) Laser processing apparatus and protective film coating method
KR20210030198A (en) Processing apparatus
JP2011031359A (en) Polishing tool, polishing device, and polishing machining method
KR20180057545A (en) Processing method of a wafer
JP2022157038A (en) Machining device
JP7235566B2 (en) Laminated device chip manufacturing method
JP4850666B2 (en) Wafer processing equipment
JP2019068077A (en) Laser processing device and laser processing method
JP6979608B2 (en) Grinding device and grinding method
JP2017123475A (en) System and method of manufacturing thin chip with high flexural strength
JP2010023163A (en) Processing device
KR20230131771A (en) Method for processing wafer
JP2022028781A (en) Crack developing device and crack developing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713985

Country of ref document: EP

Kind code of ref document: A1