WO2007091654A1 - 液体クロマトグラフィ装置 - Google Patents

液体クロマトグラフィ装置 Download PDF

Info

Publication number
WO2007091654A1
WO2007091654A1 PCT/JP2007/052269 JP2007052269W WO2007091654A1 WO 2007091654 A1 WO2007091654 A1 WO 2007091654A1 JP 2007052269 W JP2007052269 W JP 2007052269W WO 2007091654 A1 WO2007091654 A1 WO 2007091654A1
Authority
WO
WIPO (PCT)
Prior art keywords
eluent
sample
liquid chromatography
column
pipe
Prior art date
Application number
PCT/JP2007/052269
Other languages
English (en)
French (fr)
Inventor
Koji Sugiyama
Toshikatsu Sakai
Yoshikiyo Hongo
Akira Sezaki
Takanori Kamada
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to EP07708253A priority Critical patent/EP1988392B1/en
Priority to JP2007557895A priority patent/JP5260967B2/ja
Priority to US12/223,814 priority patent/US8361390B2/en
Priority to CN2007800127528A priority patent/CN101438151B/zh
Publication of WO2007091654A1 publication Critical patent/WO2007091654A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0036Flash degasification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • G01N2030/342Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient fluid composition fixed during analysis

Definitions

  • the present invention relates to a liquid chromatography apparatus capable of reducing the influence of dissolved oxygen in an eluent introduced into a column.
  • a high performance liquid chromatography device (HPLC device) using high performance liquid chromatography (HPLC) is widely used (for example, patent documents).
  • HPLC device high performance liquid chromatography device
  • HPLC high performance liquid chromatography
  • FIG. 12 a general HPLC apparatus prepares a sample containing a biological component in a sample preparation unit 90 and then introduces the sample into the analytical column 91. It is configured to adsorb to the filler.
  • the biological component adsorbed on the filler is desorbed by supplying the eluent from the eluent bottle 93 to the analysis column 91 by the liquid feed pump 92.
  • the desorbed liquid from the analysis column 91 is introduced into the photometric mechanism 94, and the absorbance of the desorbed liquid is continuously measured by the photometric mechanism 94, whereby the biological component is analyzed.
  • a deaeration device 93 is installed upstream of the liquid feed pump 91 in order to perform separation analysis stably (see, for example, Patent Document 2).
  • the deaerator 93 is for removing gas such as oxygen present in the eluent.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-133445
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-275229
  • the deaerator 93 the degree of decompression of the decompression space 94 related to the state of dissolved gas in the eluent is fixed, and the residence time (flow rate) of the eluent in the decompression space 94 is also fixed. Has been. For this reason, the deaerator 93 can remove only a certain amount of gas regardless of the state of dissolved gas in the eluent.
  • the dissolved gas amount in the eluent fluctuates due to environmental temperature fluctuations, etc. Therefore, the amount of dissolved gas in the eluent supplied to the analytical column 90 will fluctuate. As a result, if the analysis is performed in an environment where the environmental temperature fluctuates greatly, the analysis result will not be stable. If the analysis is performed in an environment where the environmental temperature is different, the analysis results in each environment will be lost. The result will be different.
  • glycohemoglobin is grasped as a proportion of glycated hemoglobin in the total amount of hemoglobin.
  • the ratio between oxyhemoglobin and deoxyhemoglobin in hemoglobin varies.
  • the photometric mechanism 92 dilutes the blood sample and introduces it into the analytical column 90 in a relatively high oxygen state, the maximum absorption wavelength of oxyhemoglobin of 415 ⁇ m is used as the measurement wavelength. ing. For this reason, the ratio of oxyhemoglobin to deoxyhemoglobin fluctuates in an environment with a large change in environmental temperature. It becomes difficult.
  • An object of the present invention is to appropriately suppress the influence of dissolved oxygen in an eluent on analysis results.
  • a liquid chromatography comprising a column holding a packing material and one or more eluent holding parts holding an eluent to be supplied to the column.
  • a liquid chromatography apparatus further comprising a dissolved oxygen concentration adjusting means for maintaining a constant dissolved oxygen concentration in the eluent supplied to the column.
  • the liquid chromatography apparatus of the present invention is, for example, for degassing the eluent before the eluent holding force is supplied to the column, and has a gas permeable membrane and a vacuum space.
  • the apparatus further includes an air device.
  • the dissolved oxygen concentration adjusting means has, for example, a temperature measuring means for directly or indirectly measuring the temperature of the eluent supplied to the column, and based on the measurement result of the temperature measuring means. It is preferable that the dissolved oxygen concentration in the eluent is adjusted by adjusting the degree of decompression in the decompression space.
  • the liquid chromatography apparatus of the present invention further includes a first pipe that connects between the eluent holding unit and the deaerator, and a second pipe that connects between the deaerator and the column.
  • the temperature measuring means is configured to measure, for example, the temperature of the eluent present in the first pipe, the second pipe, or the deaerator, or the temperature in the reduced pressure space.
  • the temperature measuring means in this case has, for example, a thermistor provided in the first pipe, the second pipe or the deaerator.
  • the temperature measuring means may also be configured to measure the ambient temperature around the liquid chromatography device or the temperature inside the liquid chromatography device.
  • the environmental temperature is any one of the temperature around the apparatus, the temperature of the outer wall of the apparatus, or the temperature of the eluent holder.
  • the liquid chromatography apparatus of the present invention is configured to include dissolved oxygen concentration measuring means for measuring the dissolved oxygen concentration in the eluent present in the pipe, instead of the temperature measuring means. You can also.
  • the dissolved oxygen concentration adjusting means adjusts the degree of pressure reduction in the reduced pressure space based on the measurement result of the dissolved oxygen concentration measuring means, and dissolves dissolved oxygen in the eluent. It is preferable that the concentration is adjusted.
  • the dissolved oxygen concentration measuring means includes, for example, an oxygen sensor for measuring the oxygen concentration of the eluent in the first pipe, the second pipe, or the deaerator.
  • the deaeration device further includes, for example, a pump for decompressing the decompression space.
  • the dissolved oxygen concentration adjusting means is preferably configured to control the suction force by controlling the driving of the pump (for example, the driving voltage or the open state of the valve) and adjust the degree of decompression of the decompression space. ,.
  • the dissolved oxygen concentration adjusting means may be configured to have a temperature control mechanism for heating or cooling the eluent.
  • the temperature control mechanism is configured to adjust the temperature of the eluent, for example, when the eluent passes through the first pipe, the second pipe, or the deaerator.
  • the temperature control mechanism is also configured to adjust the temperature of the eluent based on the measurement result of the temperature measurement means for directly or indirectly measuring the temperature of the eluent supplied to the column. May be.
  • the liquid chromatography apparatus of the present invention may be configured to further include oxygen partial pressure fluctuation suppressing means for suppressing fluctuations in oxygen partial pressure in the reduced pressure space of the deaeration device.
  • the pipe for supplying the eluent to the column has a poorly oxygen permeable part formed of a material having low oxygen permeability.
  • the oxygen hardly permeable portion is provided, for example, in all or a part of the second pipe connecting the deaerator and the column.
  • the liquid chromatography apparatus of the present invention further includes, for example, an analysis unit including a column and temperature-controlled at a constant temperature.
  • the oxygen hardly permeable part is preferably provided at least in a portion extending from the analysis unit in the second pipe.
  • the analysis unit is further provided with a hold provided in the middle of the second pipe.
  • the oxygen permeation section is connected to the deaerator and the hold in the second pipe. It is preferable to provide between.
  • the liquid chromatography apparatus of the present invention includes a detection mechanism for detecting a specific component in a sample based on a desorbed liquid having a column force, an additional pipe for connecting the column and the detection mechanism, It is supposed to be further provided.
  • the additional piping is made of a material with low oxygen permeability. It is preferable to have a hardly oxygen permeable part formed of a material.
  • the oxygen hardly permeable part is formed of, for example, nylon, polyetheretherketone (PEEK), polyethylene, or stainless steel (SUS).
  • the liquid chromatography apparatus of the present invention may further include a sample preparation means for preparing a sample to be introduced into the column.
  • the sample preparation means is, for example, to dilute a specimen containing red blood cells using a diluent after hemolyzing red blood cells, and leave the diluted sample for a certain period of time so that the oxygen saturation is 85% or more. It is preferable to configure.
  • the sample preparation means is configured to use, for example, a diluent having high oxygen saturation and to stand for a certain time after dilution.
  • the standing time after dilution is preferably 1 minute or longer. It is preferable to use a diluent having an oxygen saturation of 85% or more.
  • the sample preparation means may also be configured so that the oxygen saturation in the sample is 85% or more by opening the diluted sample to the atmosphere for a certain period of time.
  • the air release time is, for example, 1 minute or more, preferably 1 to 2 minutes.
  • the sample preparation means may be configured such that oxygen saturation in the sample is 85% or more by publishing the sample using air or an oxygen-rich gas.
  • the sample preparation means is configured, for example, to collect the preparation sample from an upper part of a layer containing a lot of blood cells in a sample containing blood cells.
  • the sample preparation means also collects and prepares a sample for preparation from the upper part of the blood cell layer when the blood sample containing red blood cells is separated into a blood cell layer rich in red blood cells and a plasma layer in which red blood cells are poor. It is configured to prepare the sample for introduction to be introduced into the column using the sample for treatment.
  • the sample preparation means in this case includes, for example, a detection means for detecting an interface between a blood cell layer and a plasma layer, and a sampling nozzle for collecting a preparation sample from the upper layer of the blood cell layer. It is said.
  • the sampling nozzle collects the sample for preparation from the upper part of the blood cell layer based on the detection result by the detection means, for example, the upper interfacial force in the blood cell layer, the distance force, the blood cell layer thickness 5-30 It is operated to collect a region force preparation sample in the region in the range of% or in the range of 0.5 to 5. Omm from the upper interface in the blood cell layer.
  • the liquid chromatography apparatus of the present invention is configured to measure, for example, darcohemoglobin in a sample.
  • a liquid chromatograph configured to measure a glycohemoglobin in a sample by supplying a sample and an eluent to a column holding a packing material.
  • a liquid chromatography apparatus comprising a means for making the ratio of oxyhemoglobin and deoxyhemoglobin in the column constant for each measurement.
  • FIG. 1 is an overall perspective view showing an example of an HPLC apparatus according to the present invention.
  • FIG. 2 is a schematic configuration diagram of the HPLC apparatus shown in FIG.
  • FIG. 3 is a piping diagram showing a part of the degassing unit in the HPLC apparatus shown in FIG. 1 in section.
  • FIG. 4 is a perspective view for explaining an interface detection mechanism of the HPLC apparatus shown in FIG. 1.
  • FIG. 5 is a sectional view taken along line V—V in FIG.
  • FIG. 6 is a cross-sectional view and an enlarged view of a main part for explaining a sampling method.
  • FIG. 7 is a cross-sectional view for explaining a photometric unit in the HPLC apparatus shown in FIG. 1.
  • FIG. 8 is a schematic configuration diagram corresponding to FIG. 2 for explaining another example of the HPLC apparatus according to the present invention.
  • FIG. 9 is a piping diagram showing, in section, a part corresponding to FIG. 3 for explaining another example of the deaeration unit in the HPLC apparatus according to the present invention.
  • FIG. 10 is a schematic diagram showing another example of oxygen saturation means in the HPLC apparatus according to the present invention.
  • FIG. 11 is a graph showing measurement results of dissolved oxygen concentration in Examples and Comparative Examples.
  • FIG. 12 is a schematic configuration diagram showing an example of a conventional HPLC apparatus (high performance liquid chromatography apparatus).
  • FIG. 13 is a piping diagram showing a part in section for explaining the degassing device in the HPLC apparatus shown in FIG. 12.
  • the HPLC apparatus X shown in FIGS. 1 and 2 is configured to automatically measure the glycohemoglobin concentration in whole blood by setting the blood collection tube 11 held in the rack 10 to the tape 20. It has been.
  • This HPLC system X consists of multiple eluent bottles 12A, 12B, 12C (drawings There are 3), and the device body 2.
  • Each eluent bottle 12A, 12B, 12C holds an eluent to be supplied to an analysis column 60 described later, and is arranged in the holder portion 21 in the apparatus main body 2.
  • the eluent for example, buffers having different pH and salt concentrations are used.
  • the apparatus main body 2 has a deaeration unit 4, a sample preparation unit 5, an analysis unit 6, and a photometric unit 7 housed in the housing 3 in addition to the table 20 and the holder unit 21 described above. is doing.
  • the table 20 moves the rack 10 set at a predetermined site so that the blood collection tube 11 held in the rack 10 is moved to a position where it can be collected by a nozzle 51 in the sample preparation unit 5 described later. It is configured.
  • the casing 3 is provided with an operation panel 30 and a display panel 31.
  • the operation panel 30 is provided with a plurality of operation buttons 32. By operating the operation buttons 32, signals for performing various operations (analysis operation, printing operation, etc.) are generated. Or you can make various settings (such as setting analysis conditions and entering the subject's ID).
  • the display panel 31 is used to display analysis results and errors, as well as operation procedures and operation status at the time of setting.
  • the degassing unit 4 is for removing the eluent force dissolved gas before supplying the eluent to the analysis unit 6 (analysis column 60).
  • the eluent bottles 12A, 12B, and 12C are connected to the eluent bottles 12A, 12B, and 12C via 80A, 80B, and 8OC, and the manifold 61 of the analysis unit 6 is connected to the eluent bottles 12A, 81B, and 81C.
  • the deaeration unit 4 is composed of U & Wl ' ⁇ A, 40B, 40C, Channo 41, Snoiranole 42 ⁇ , 42 ⁇ , 42C (three on the drawing), pump 43, calculation unit 44 and control unit 45.
  • the temperature measuring units 40 ⁇ , 40 ⁇ , and 40C are for measuring the temperature of the eluent introduced into the chamber 41, and are provided in the vicinity of the chamber 41 in the pipes 80 ⁇ , 80 ⁇ , and 80C.
  • This thermometer is equipped with a thermistor (not shown in the figure) installed inside the pipe 80A, 80B, 80C. It is configured to measure the eluent temperature directly.
  • the measurement results in the temperature measurement units 40A, 40B, and 40C are output to the calculation unit 44.
  • the chamber 41 defines a plurality of decompression spaces 41A, 41B, 41C (three in the drawing) and accommodates the spiral tubes 42A, 42B, 42C.
  • the spiral tubes 42A, 42B, and 42C allow the eluent to flow inside, and allow the dissolved gas in the eluent to permeate, and are hollow by a known gas permeable membrane such as silicon. Is formed.
  • the spiral tubes 42A, 42B, and 42C have a spiral shape, thereby ensuring a large flow path length in the decompression spaces 41A, 41B, and 41C, and contacting the gas in the decompression spaces 41A, 41B, and 41C. While ensuring a large area, the residence time of the eluent in the decompression spaces 41A, 41B, and 41C can be secured large.
  • the pump 43 is for discharging the gas in the decompression spaces 41A, 41B, and 41C through the pipe 82 and decompressing the decompression spaces 41A, 41B, and 41C.
  • the operation of the pump 43 is controlled by the control unit 45.
  • the calculating unit 44 is for calculating a control amount for the pump 43 based on the temperature data of the eluent transmitted from the temperature measuring units 40A, 40B, and 40C.
  • the calculation unit 44 is configured to calculate a control amount for the pump 43 in accordance with, for example, a predetermined relational expression between the temperature of the eluent and the suction pressure of the pump 43.
  • the suction pressure is adjusted by, for example, the open state of a valve (not shown) in the pump 43 or the driving power (driving voltage) of the pump 43.
  • the control unit 45 is for controlling the operation of the pump 43 according to the control amount calculated by the calculation unit 44.
  • the calculation unit 44 and the control unit 45 are constituted by, for example, a CPU, a ROM, and a RAM.
  • the sample preparation unit 5 is for preparing a sample to be introduced into the analysis column 60 from the blood cell components collected from the blood collection tube 11.
  • the sample preparation unit 5 includes an interface detection mechanism 50, a nozzle 51, a preparation liquid tank 52, and a dilution tank 53.
  • the interface detection mechanism 50 detects the interface 13C between the plasma layer 13A and the blood cell layer 13B in the blood sample 13 of the blood collection tube 11 by an optical technique. It is configured as a transmissive photosensor.
  • This interface detection mechanism 50 has a U-shaped The light irradiating unit 55 and the light receiving unit 56 are arranged in a state of facing each other with respect to the rudder 54. The blood collection tube 11 is moved across the space between the light irradiation unit 55 and the light receiving unit 56 on the table 20 while being held by the rack 10.
  • the light irradiation unit 55 is capable of irradiating light in a certain range in the vertical direction of the blood collection tube 11.
  • the light irradiation unit 55 emits light having a peak wavelength in a wavelength range (500 to 570 nm) where light absorption by red blood cells is large.
  • Irradiable linear light sources are used.
  • the light irradiation unit 55 for example, a point light source configured to be able to scan in the vertical direction can be adopted.
  • the light receiving unit 56 is for receiving light transmitted through the blood collection tube 11 and is capable of receiving light in a certain range in the up and down direction of the blood collection tube 11.
  • a line sensor or an area sensor can be used.
  • the interface detection mechanism 50 may have, for example, a reflection type photosensor that detects light reflected on the surface of the blood collection tube 11, and is not limited to an optical method.
  • the interface 13C between the plasma layer 13A and the blood cell layer 13B may be detected by a change in insertion resistance when the is inserted into the blood collection tube 11 or a change in electrical resistance.
  • the nozzle 51 is for collecting various liquids including the blood sample 13 of the blood collection tube 11, and can suck and discharge the liquid. At the same time, it can be moved vertically and horizontally.
  • the operation of the nozzle 51 is controlled by a control means (not shown).
  • the interface 13C detected by the interface detection mechanism 50 is used as a reference from the interface 13C. In the lower part, it is operated to collect blood cell components from the blood cell layer 13B.
  • the preparation liquid tank 52 shown in FIG. 2 holds a preparation liquid for preparing a sample for introduction to be introduced into the analysis column 60 based on the blood sample 13.
  • this preparation liquid tank 52 as preparation liquid, hemolyzed blood for lysing red blood cells, diluted liquid for diluting hemolyzed blood, and the like are held. It is preferable to use a diluent having a high oxygen saturation, for example, a oxygen saturation of 85% or more.
  • a nozzle 51 is used for collecting the preparation liquid from the preparation liquid tank 52.
  • Dilution tank 53 is used for hemolyzing red blood cells in blood sample 13 and diluting the hemolyzed blood for introduction.
  • the sample for introduction is brought into contact with the atmosphere to increase the oxygen saturation (dissolved oxygen concentration) in the sample for introduction.
  • the dilution tank 53 is connected to an injection nozzle 63 in an analysis unit 6 described later via a pipe 83, and the analysis column is connected to the dilution tank 53 via an introduction sample force injection valve 63 prepared in the dilution tank 53. It is configured so that it can be installed in 60.
  • the dilution tank 53 is also open at the top to bring the sample for introduction into contact with the atmosphere.
  • the analysis unit 6 controls the adsorption / desorption of biological components with respect to the packing material of the analytical column 60, and supplies various biological components to the photometric unit 7.
  • the temperature is controlled by an external temperature control mechanism.
  • the set temperature in the analysis unit 6 is about 40 ° C, for example.
  • the analytical column 60 holds a filler for selectively adsorbing hemoglobin in a sample.
  • the filler for example, a methacrylate ester copolymer is used.
  • the analytical unit 6 includes a hold 61, a liquid feed pump 62, and an injection valve 63! /.
  • the hold 61 is used to selectively supply the eluent from the specific eluent bottles 12A, 12B, and 12C out of the plurality of eluent bottles 12A, 12B, and 12C to the injection valve 63. It is.
  • the hold 61 is connected to the decompression spaces 41A, 41B, 41C (spiral pipes 42A, 42B, 42C) of the deaeration unit 4 via pipes 81A, 81B, 81C, and to the injection valve 63 via the pipe 84. Connected!
  • the whole is formed of a material having low oxygen permeability, such as nylon, polyetheretherketone (PEEK), polyethylene or stainless steel (SUS). .
  • a material having low oxygen permeability such as nylon, polyetheretherketone (PEEK), polyethylene or stainless steel (SUS).
  • the liquid feed pump 62 is for applying power for moving the eluent to the injection nozzle 63, and is provided in the middle of the pipe 84.
  • the liquid feed pump 62 is operated, for example, so that the flow rate of the eluent becomes 1.0 to 2. OmlZmin.
  • the injection valve 63 collects a fixed amount of the sample for introduction and allows the sample for introduction to be introduced into the analysis column 60.
  • the injection valve 63 includes a plurality of introduction ports and discharge ports (not shown). Yes.
  • This injection valve 63 has an injection valve Group 64 is connected.
  • the injection loop 64 can hold a certain amount of liquid (for example, several / z L), and the injection loop 64 communicates with the dilution tank 53 from the dilution tank 53 by appropriately switching the injection valve 63.
  • a state in which a sample for introduction is supplied to the injection loop 64 a state in which the injection loop 64 communicates with the analytical column 60 via the pipe 85, and a sample for introduction is introduced into the analytical column 60 from the injection loop 64, or the injection loop In Fig. 64, it is possible to select the state where the cleaning liquid is supplied to the cleaning tank.
  • a hexagonal valve can be used.
  • the photometric unit 7 is for optically detecting hemoglobin contained in the desorption liquid from the analytical column 60.
  • the photometric cell 70, the light source 71, the beam splitter is used.
  • the photometric cell 70 is for defining a photometric area.
  • the photometric cell 70 has an introduction flow path 70A, a photometry flow path 70B, and a discharge flow path 70C, and these flow paths 70A, 70B, and 70C communicate with each other.
  • the introduction channel 70A is for introducing the desorbed liquid from the analysis column 60 (see FIG. 2) into the photometric channel 70B, and is connected to the analysis column 60 via a pipe 86.
  • the pipe 86 is formed of a material having low oxygen permeability, such as nylon, polyetheretherketone (PEEK), polyethylene, or stainless steel (SUS), as with the pipes 81A, 81B, 81C described above. Things are used.
  • the photometric flow path 70B circulates the desorbed liquid to be measured and provides a field for measuring the desorbed liquid, and is formed in a straight line.
  • the photometric flow path 70B is open at both ends, and both ends are closed by the transparent cover 75.
  • the discharge channel 70C is for discharging the desorbed liquid from the photometric channel 70B, and is connected to a waste liquid tank 88 via a pipe 87 (see FIG. 2).
  • the light source 71 is for irradiating the detachment liquid flowing through the photometric flow path 70B with light.
  • the light source 71 is arranged in a state of facing the end face 70Ba (transparent cover 75) of the photometric flow path 70B so that the optical axis L passes through the center of the photometric flow path 70B.
  • a light source capable of emitting light in a wavelength range including light having a maximum absorption wavelength of oxyhemoglobin of 415 nm and a reference wavelength of 500 nm, for example, a halogen lamp is used.
  • a light source other than the halogen lamp for example, one provided with one or a plurality of LED elements.
  • the beam splitter 72 is for splitting the light emitted from the light source 71 and having passed through the photometric flow path 70B to be incident on the measurement light receiving system 73 and the reference light receiving system 74. On the optical axis L, it is arranged in a state inclined by 45 degrees. As the beam splitter 72, various known ones such as a half mirror can be used.
  • the measurement light receiving system 73 selectively receives light of 415 nm, which is the maximum absorption wavelength of oxyhemoglobin, out of the light transmitted through the beam splitter 72 and is disposed on the optical axis L. Yes.
  • the measurement light receiving system 73 includes an interference filter 73A that selectively transmits 415 nm light, and a light receiving element 73B that receives the light transmitted through the interference filter 73A.
  • As the light receiving element 73B a photodiode can be used.
  • the reference light receiving system 74 selectively receives light having a reference wavelength of 500 nm out of light reflected by the beam splitter 72 and whose optical path is changed.
  • the measurement light receiving system 74 includes an interference filter 74A that selectively transmits light of 500 nm, and a light receiving element 74B that receives light transmitted through the interference filter 74A.
  • a photodiode can be used as the light receiving element 74B.
  • the rack 10 is first set in a predetermined position of the table 20 with the blood collection tube 11 containing the blood sample 13 held in the rack 10. To do.
  • the blood sample 13 in the blood collection tube 11 is separated into a plasma layer 13A and a blood cell layer 13B in advance. Such separation can be performed using a centrifuge or by allowing the blood cell components to settle naturally.
  • the plasma layer 13A and the blood cell layer 13B may be separated in the HPLC apparatus X by incorporating a centrifuge into the HPLC apparatus X.
  • the blood collection layer 11 is set on the table 20 It may be carried out by standing for a certain time.
  • the rack 10 is moved on the table 20, and the blood sample 13 is collected from the target blood collection tube 11.
  • the measurement start instruction is made by the user operating the predetermined operation button 32 of the HPLC device X. Be made.
  • Collection of blood sample 13 from blood collection tube 11 is performed in a region separated by a certain distance D from interface 13C after detecting interface 13C between plasma layer 13A and blood cell layer 13B in interface detection mechanism 50.
  • the interface detection mechanism 50 detects the interface 13C between the plasma layer 13A and the blood cell layer 13B by detecting the portion where the light absorption changes significantly based on the amount of light received by the light receiving unit 56. be able to.
  • the blood sample 13 from the upper part of the blood cell layer 13B is operated by operating the nozzle 51 based on the detection result of the interface detection mechanism 50. Is collected.
  • the nozzle 51 has a distance D force from the interface 13C between the plasma layer 13A and the blood cell layer 13B, for example, a region in the range of 5 to 30% with respect to the thickness of the blood cell layer 13B, or a distance D of 0.5.
  • the tip is located in a region in the range of ⁇ 5 Omm, and the blood sample 13 is operated to be collected from the blood collection tube 11 by performing a suction operation in this state.
  • the upper layer of the blood cell layer 13B has higher oxygen saturation (dissolved oxygen concentration) than the lower layer. Also, when the blood sample 13 is left standing, the distance of the gas phase force is small! /, And the upper layer part of the blood cell layer 13B has oxygen saturation (dissolved oxygen concentration) compared to the lower part. Get higher. Therefore, if the operation of the nozzle 51 is controlled based on the detection result of the interface 13C in the interface detection mechanism 50, and the upper layer force in the blood cell layer 13B is also collected, the oxygen saturation (dissolved oxygen concentration) A high blood sample 13 can be collected. Further, when the blood sample 13 is also collected with a partial force having a distance D as far as the interface 13C force, the upper layer blood sample 13 of the blood cell layer 13B can be reliably collected.
  • the blood sample 13 collected by the nozzle 51 is supplied to the dilution tank 53 by operating the nozzle 51.
  • the dilution tank 53 further includes a hemolyzing agent and dilution from the preparation tank 52.
  • the liquid is sequentially supplied, and the sample for introduction is prepared by mixing the liquid in the dilution tank 53 by pipetting operation using the nozzle 51.
  • the sample for introduction prepared in the dilution tank 53 is supplied to the injection loop 64 after being brought into contact with the atmosphere for a certain period of time in the dilution tank 53, and is held in the injection loop 64.
  • the sample for introduction When the sample for introduction is brought into contact with the atmosphere for a certain period of time, the dissolved oxygen concentration of the sample for introduction is increased.
  • the oxygen saturation of the sample for introduction is increased in this way, the sample for introduction can be supplied to the injection loop 64 or the analytical column 60 with a high dissolved oxygen concentration. That is, the proportion of V and oxyhemoglobin in the hemoglobin contained in the sample for introduction can be increased.
  • the contact time between the sample for introduction and the atmosphere is, for example, 1 to 2 minutes. This is because, when the open time to the atmosphere is too short, a sufficient amount of oxygen cannot be dissolved in the sample for introduction. On the other hand, when the open time to the atmosphere is too long, the injection loop is prepared after the sample for introduction is prepared. This is because the time until the sample for introduction is increased and the measurement time becomes longer.
  • a diluent having a high oxygen saturation for example, one having an oxygen saturation of 85% or more
  • the eluent is supplied to the injection valve 63.
  • the eluent is supplied from the eluent bottles 12A, 12B, and 12C to the injection valve 63 through the deaeration unit 4 and the mould 61 by the power of the liquid feed pump 62, and is also supplied to a plurality of eluent bottles 12A. , 12B, 12C, the eluent bottle 12A, 12B, 12C to be supplied is selected by controlling the hold 61.
  • the temperature measuring unit 4 In the deaeration unit 4, while the eluent flows through the pipes 80A, 80B, 80C, the temperature measuring unit 4 The eluent temperature is measured at OA, 40B, and 40C. The measurement results in the temperature measurement units 40A, 40B, and 40C are output to the calculation unit 44, and the calculation unit 44 determines the pump 43 based on the temperature data of the eluent transmitted from the temperature measurement units 4OA, 40B, and 40C. The amount of control is calculated.
  • This calculation unit 44 is, for example, a relational expression between a predetermined temperature of the eluent and a suction force of the pump 43 (for example, an open state of a valve (not shown) in the pump 43 or a driving power (driving voltage) of the pump 43). Then, the control amount is calculated for the pump 43.
  • the control unit 45 is operated according to the control amount calculated by the calculation unit 44.
  • the amount of gas exhausted from the decompression spaces 41A, 41B, and 41C via the pipe 82 is adjusted according to the temperature of the eluent (dissolved oxygen concentration).
  • the degree of decompression of the decompression spaces 41A, 41B, and 41C is adjusted by the pump 43 in accordance with the temperature of the eluent (dissolved oxygen concentration).
  • the eluent flowing through the pipes 80A, 80B, and 80C flows through the spiral pipes 42A, 42B, and 42C inside the decompression spaces 41A, 41B, and 41C, and then the spiral pipes 42A, 42B, and 42C are discharged. Is done.
  • the spiral tubes 42A, 42B, and 42C are made of a material having high gas permeability, and the decompression spaces 41A, 41B, and 41C are decompressed by the pump 43, so that the eluent is a snail tube.
  • dissolved gas including dissolved oxygen is removed from the dissolved solution.
  • the degree of decompression of the decompression spaces 41A, 41B, and 41C is adjusted according to the temperature of the eluent, so when the eluent is discharged also in the decompression spaces 41A, 41B, and 41C,
  • the dissolved oxygen concentration of the eluent regardless of the temperature of the eluent is kept constant.
  • the eluent temperature is affected by the temperature outside the HPLC device X (environment temperature).
  • the degassing unit 4 the eluent with a constant dissolved oxygen concentration is discharged regardless of the environment temperature. It becomes possible.
  • the ambient temperature fluctuates, the dissolved oxygen concentration of the eluent discharged from the degassing unit 4 can be kept constant even if the measurement is performed at different ambient temperatures. It can be done.
  • the eluent discharged from the decompression spaces 41A, 41B, 41C is supplied to the manifold 61 via the pipes 81A, 81B, 81C, and then passed through the pipe 84. Through Then, it is introduced into the injection valve 63.
  • pipes 81A, 81B, 81C are made of a material having a low oxygen permeability. Therefore, while the eluent supplied to the hold 61 flows through the pipes 81 A, 8 IB, 81 C, reabsorption of gas such as oxygen into the eluent is suppressed. As a result, the eluent having a constant dissolved oxygen concentration in the deaeration unit 4 is supplied to the hold 61 while maintaining its state appropriately.
  • the eluent supplied to the injection valve 63 is supplied to the analysis column 60 via the pipe 85.
  • the sample for introduction of the injection loop 64 is introduced into the analysis column 60 together with the eluent.
  • the introduction starting force of the introduction sample has also passed for a certain period of time
  • the eluent is continuously supplied to the analytical column 60 and the injection loop 64 is washed by switching the injection nozzle 63.
  • a sample for introduction is prepared from the blood sample 13 of the blood collection tube 11 different from the previous one, and after the washing of the injection loop 64, Again, the sample for introduction is introduced into the injection loop 64.
  • Such preparation, introduction, and washing of the sample for introduction are repeated according to the number of blood collection tubes 11 (blood samples 13) to be measured while appropriately switching the injection valve 63.
  • daricohemoglobin is adsorbed to the filler by introducing the introduction sample.
  • the type of eluent supplied to the analytical column 60 is appropriately switched by the matrix 61 to desorb the glycated hemoglobin adsorbed on the packing material.
  • the flow rates of the plurality of eluents are supplied to the analytical column 60 with different flow rates, and the time (retention time) that passes through the pipes 81A, 81B, 81C differs for each of the multiple types of eluents. Even in this case, reabsorption of oxygen in the pipes 81A, 81B, 81C is appropriately suppressed. Therefore, in the analysis column 60, even when the type (flow rate) of the eluent is changed in the measurement of one blood sample 13, the amount of dissolved oxygen in the eluent moving through the analysis column 60 is appropriately suppressed. Is done. As a result, the measurement results are prevented from deviating from the true value due to oxygen reabsorption in the pipes 81A, 81B, 81C, and accurate measurement is performed. It becomes possible.
  • the desorption solution containing glycohemoglobin discharged from the analytical column 60 is supplied to the photometric cell 70 of the photometric unit 7 via the pipe 86.
  • a desorption liquid is introduced into the photometric cell 70 through the pipe 86 and the introduction flow path 70A.
  • the desorption liquid passes through the photometry flow path 70B and the discharge flow path 70C, and then passes through the pipe 87 to the waste liquid tank 88. Led to.
  • the pipe 86 is made of a material having a low oxygen permeability. Therefore, resorption of a gas such as oxygen into the desorption liquid while the desorption liquid is supplied from the analysis column 60 to the photometry unit 7 (photometry cell 70) via the pipe 86 is suppressed. As a result, the desorbing liquid is supplied from the analytical column 60 to the photometric unit 7 while the dissolved oxygen concentration is kept constant. Further, as in the case of the pipes 81A, 81B, and 81C, it is possible to suppress a decrease in measurement accuracy due to manufacturing differences in the oxygen permeability of the pipe 86 between the plurality of HPLC apparatuses X.
  • the light is continuously irradiated to the desorbed liquid by the light source 71 when the desorbed liquid passes through the photometric channel 70 B.
  • the light transmitted through the photometric flow path 70B is split by the beam splitter 72 and then received by the measurement light receiving system 73 and the reference light receiving system 74.
  • the measurement light receiving system 73 light of 415 nm, which is the maximum absorption wavelength of oxyhemoglobin transmitted through the interference filter 73A, is selectively received by the light receiving element 73B.
  • the reference light receiving system 74 light having a reference wavelength of 500 nm transmitted through the interference filter 74A is selectively received by the light receiving element 74B.
  • the light reception results of the light receiving elements 73A and 74A are output to an arithmetic circuit (not shown), which calculates the chromatogram of hemoglobin and the concentration of glycohemoglobin (the ratio of glycohemoglobin to the total amount of hemoglobin). Is done. Calculation results in the calculation circuit are displayed. Displayed on panel 31 and printed out automatically or by user button operation.
  • the dissolved oxygen concentration of the eluent is kept constant in the degassing unit 4, and the degassing unit 4 is connected to the degassing unit 4 by pipes 81A, 81B, 81C having low oxygen permeability. Is supplied to the manifold 61 while maintaining the dissolved oxygen concentration substantially constant.
  • the hold 61 constitutes the analysis unit 6 together with the injection valve 63 and the analysis force ram 60, and the analysis unit 6 is controlled to a constant temperature. Therefore, the dissolved solution supplied from the hold 61 to the analytical column 60 is less likely to cause a change in dissolved oxygen concentration due to a temperature change.
  • the HPLC apparatus X can suppress instability of measurement results due to fluctuations in the dissolved oxygen concentration of the eluent.
  • the dissolved oxygen concentration in the sample for introduction to be introduced into the analytical column 60 is prepared based on the blood sample 13 from which the upper force of the blood cell layer 13B is also collected, and after the preparation, the analytical column 60 Prior to introduction into the sample, the sample for introduction is substantially saturated in the dilution tank 53. Therefore, since the dissolved oxygen concentration is uniform in the introduction sample introduced into the analysis column 60, the ratio of oxyhemoglobin to deoxyhemoglobin in the introduction sample is kept constant to the analysis column 60. It becomes possible to supply. In addition, reabsorption of oxygen in the pipe 86 is suppressed until the desorbed liquid is supplied from the analytical column 60 to the photometric unit 7. As a result, for the photometric unit 7, the variation in the ratio of oxyhemoglobin and deoxyhemoglobin for each sample to be introduced is suppressed, and it is possible to suppress the variation in the measurement results due to this variation. Become.
  • the present invention is not limited to the above-described embodiment, and can be variously changed.
  • the degree of decompression in the decompression spaces 41A, 41B, and 41C of the deaeration unit 4 be sure to install temperature measuring units 40A, 40B, and 40C in the piping 80A, 80B, and 80C and directly adjust the eluent temperature
  • the temperature measurement unit 40 is installed inside the device to measure the temperature inside the device, and the temperature measurement unit 40 is installed outside the device as shown in Fig. 8B.
  • the ambient temperature outside the equipment for example, the ambient temperature of equipment X, the housing of equipment X 3 Or the temperature of the eluent bottles 12A, 12B, and 12C).
  • the temperature measurement unit is installed in piping 81A, 81B, 81C, spiral tubes 42A, 42B, 42C, and decompression spaces 41A, 41B, 41C (see Fig. 3) connected to the hold 61 in the deaeration unit 4. May be.
  • the temperature measuring units 40A, 4OB, 40C shown in FIGS. 2 and 3 are replaced with self-tubes 80A, 80B, 80C, self-tubes 81A, 81B, 81C.
  • a dissolved oxygen measuring sensor may be provided on the lull tubes 42 ⁇ , 42 ⁇ , and 42C.
  • the deaeration unit is not limited to the configuration in which the spiral tube is accommodated in the decompression space, and may be a configuration in which the eluent circulation space and the decompression space are partitioned by a film-like gas permeable membrane. .
  • the deaeration unit 4 does not necessarily need to adjust the dissolved oxygen concentration of the eluent by adjusting the degree of decompression of the decompression spaces 41A, 41B, and 41C, as shown in FIG.
  • the temperature of A, 41B, 41C can be configured to make the dissolved oxygen concentration constant by temperature control mechanism 46 ⁇ , 46 ⁇ , 46C.
  • the eluent is 80 ,, 80 ⁇ , 80C!
  • the temperature of the eluent when circulating through the 81A, 81B, 81C, 84, 85.
  • the dissolved oxygen concentration may be made constant by adjusting the flow rate of the eluent according to the eluent and the ambient temperature, and the residence time in the depressurized space 41A, 41B, 41C.
  • the depressurized space 41A, 41B, A configuration may be provided that includes oxygen partial pressure fluctuation suppressing means for suppressing fluctuations in oxygen partial pressure in 41C.
  • the entire piping 81A, 81B, 81C is made of a material having a low oxygen gas permeability.
  • a part of the piping 81A, 81B, 81C is made of a material having a low oxygen gas permeability.
  • Pipes other than 81A, 81B, and 81C can be used for pipes 80, 80, 80C, 84, and 85! / although they have low oxygen gas permeability, they can be made of any material.
  • the present invention is not limited to an HPLC device for measuring the concentration of glycohemoglobin in blood, but when a sample other than blood is used, a component other than the concentration of glycohemoglobin is measured, or a liquid other than an HPLC device is used. Chromatographic equipment, even applied be able to.
  • the dissolved oxygen concentration was measured with a dissolved oxygen concentration measuring device connected to the inlet of the hold in a glycated hemoglobin measuring device ("ADAMS Ale HA-8 160"; ARKRAY, Inc.).
  • ADAMS Ale HA-8 160 a glycated hemoglobin measuring device
  • the dissolved oxygen concentration in the eluent introduced into the analytical column was measured by supplying the eluent in the same manner as the analysis.
  • eluent trade names “61A”, “618” and “61” (manufactured by ARKRAY, Inc.) were used, and the eluent was supplied at a flow rate of 1.7 mlZmin.
  • the environmental temperature (temperature outside the equipment) was set to 10 ° C and 30 ° C.
  • T is 7 items.
  • the dissolved oxygen concentration in the eluent varies greatly between 10 ° C and 30 ° C, which are general environmental temperature ranges when using a glycated hemoglobin measuring device. ing.
  • the ratio of oxyhemoglobin to deoxyhemoglobin in glycohemoglobin that also elutes the analytical column force varies as the dissolved oxygen concentration in the eluent varies depending on the environmental temperature. For this reason, when measuring glycated hemoglobin at the maximum absorption wavelength of oxyhemoglobin, it can be seen that the measured value fluctuates even when the same concentration sample is used due to fluctuations in the environmental temperature.
  • the concentration of glycated hemoglobin was measured when the ambient temperature was 10 ° C and 30 ° C. Measurement was performed using a lycohemoglobin measuring apparatus (“ADAMS Ale HA-8160”; manufactured by ARKRAY, Inc.). As samples, blood collected from healthy individuals (healthy human samples) and blood collected from patients with diabetes (diabetic patient blood) were used. The measurement results of glycated hemoglobin are shown in Table 2 below, and the healthy human specimen is shown in FIG. 11A and the diabetic patient specimen is shown in FIG. 11B.
  • the influence of the environmental temperature on the measurement result of the glycated hemoglobin concentration was examined by adjusting the degree of decompression in the deaerator based on the temperature of the eluent.
  • the measured value of glycated hemoglobin was measured using a glycated hemoglobin measuring device ("ADAMS Ale HA-8160"; manufactured by ARKRAY, Inc.) in the same manner as the HPLC device described above with reference to Figs.
  • the deaeration unit is configured as shown in Fig. 3, and the piping connecting the deaerator and the mold is made of Teflon (registered trademark) made of nylon (trade name ⁇ N 2-1 -1/8 (milk white) "
  • the deaeration unit uses a thermistor (trade name “PB3-43-S2”; manufactured by Shibaura Electronics Co., Ltd.) as the temperature measurement unit, and the pressure of the pump was changed to the following formula 1 according to the temperature of the eluent. However, it was configured to adjust.
  • a thermistor trade name “PB3-43-S2”; manufactured by Shibaura Electronics Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

 本発明は、脱気装置4を備えた液体クロマトグラフィ装置Xに関する。液体クロマトグラフィ装置Xは、カラム60に供給される溶離液中の溶存酸素濃度を一定に維持するための溶存酸素濃度調整手段をさらに備えた。好ましくは、溶存酸素濃度調整手段は、溶離液の温度を測定するための温度測定手段40A,40B,40Cでの測定結果に基づいて、脱気装置4の減圧空間の減圧度を調整して溶離液中の溶存酸素濃度を調整するように構成される。  

Description

明 細 書
液体クロマトグラフィ装置
技術分野
[0001] 本発明は、カラムに導入される溶離液中の溶存酸素の影響を低減することができる 液体クロマトグラフィ装置に関する。 背景技術
[0002] 血液などの生体試料を用いて生体成分を分離分析する場合には、高速液体クロマ トグラフィ (HPLC)を利用した高速液体クロマトグラフィ装置 (HPLC装置)が広く用 いられている(たとえば特許文献 1参照)。一般的な HPLC装置は、図 12に示したよう に、試料調製ユニット 90にお 、て生体成分を含んだ試料を調製した後にその試料を 分析カラム 91に導入させ、生体成分を分析カラム 91の充填剤に吸着させるように構 成されている。その一方で、充填剤に吸着させた生体成分は、送液ポンプ 92によつ て溶離液ボトル 93から分析カラム 91に溶離液を供給することによって脱離させられる 。分析カラム 91からの脱離液は、測光機構 94に導入され、この測光機構 94におい て脱着液の吸光度を連続的に測定することにより、生体成分の分析が行なわれる。
[0003] 一方、の HPLC装置 9では、分離分析を安定して行なうため、送液ポンプ 91の上流 に脱気装置 93を設置している(たとえば特許文献 2参照)。脱気装置 93は、溶離液 中に存在する酸素等の気体を除去するためのものである。この脱気装置 93を設ける ことにより、溶離液に溶存する気体が気泡となることが抑制され、送液ポンプ 91の流 量が不安定になるのを防止することができるため、 HPLC装置 9において分離分析を 安定して行なうことができるようになる。
[0004] 図 13に示したように、脱気装置 95としては、減圧空間 96に配置したガス透過性チ ユーブ 97に溶離液を流通させるとともに、ポンプ 98によって減圧空間 96を減圧する ことで、溶離液中の溶存気体を吸引除去するように構成されたものがある(たとえば 特許文献 3参照)。すなわち、溶離液中の溶存気体は、ガス透過性チューブ 97の内 部を溶離液が流通する際にガス透過性チューブ 97の外部 (減圧空間 96)へ移動さ せられること〖こより除去される。 [0005] 特許文献 1 :特開平 7— 120447号公報
特許文献 2:特開 2001— 133445号公報
特許文献 3:特開 2000 - 275229号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、溶離液への気体の溶解量は、溶離液の温度によって異なるため、装 置外部の温度 (環境温度)が変動した場合、ある 、は環境温度が異なる状態で生体 成分の分析を行なった場合には、溶離液中の溶存気体の状態 (溶解量)が異なった ものとなる。その一方で、脱気装置 93においては、溶離液中の溶存気体の状態に関 係なぐ減圧空間 94の減圧度が固定されており、また減圧空間 94における溶離液の 滞留時間(流量)も固定されている。そのため、脱気装置 93においては、溶離液中の 溶存気体の状態に関係なぐ一定量の気体しか除去することができないため、環境 温度の変動などによって溶離液の溶存気体量が変動した場合には、分析カラム 90 に供給される溶離液中の溶存気体量が変動することとなる。その結果、環境温度が 大きく変動する環境下で分析を行なった場合には分析結果が安定しなくなり、また、 環境温度が異なる環境下で分析を行なった場合にはそれぞれの環境下での分析結 果が異なったものとなる。
[0007] また、血液試料中のグリコヘモグロビン濃度を測定する場合には、グリコへモグロビ ンは、ヘモグロビン総量におけるグリコヘモグロビンの割合として把握される。しかし ながら、溶離液中の溶存酸素が環境温度の変動などに伴って変動した場合には、へ モグロビン中のォキシヘモグロビンとデォキシヘモグロビンとの比率が変動する。そ の一方で、測光機構 92においては、血液試料を希釈して酸素が比較的多い状態で 分析カラム 90に導入することから、ォキシヘモグロビンの最大吸収波長である 415η mを測定波長として使用している。そのため、環境温度の変化が大きな環境下では、 ォキシヘモグロビンとデォキシヘモグロビンとの比率が変動することとなるため、ォキ シヘモグロビンの最大吸収波長によってグリコヘモグロビンの濃度を正確に測定する のが困難となる。
課題を解決するための手段 [0008] 本発明は、溶離液中の溶存酸素が分析結果に与える影響を適切に抑制することを 課題としている。
[0009] 本発明の第 1の側面においては、充填剤を保持したカラムと、上記カラムに供給す るための溶離液を保持した 1または複数の溶離液保持部と、を備えた液体クロマトグ ラフィ装置であって、上記カラムに供給される溶離液中の溶存酸素濃度を、一定に維 持するための溶存酸素濃度調整手段をさらに備えている、液体クロマトグラフィ装置 が提供される。
[0010] 本発明の液体クロマトグラフィ装置は、たとえば溶離液保持部力もカラムに溶離液 を供給するまでの間に溶離液を脱気するためのものであり、かつガス透過膜および 減圧空間を有する脱気装置をさらに備えている。この場合、溶存酸素濃度調整手段 は、たとえばカラムに供給される溶離液の温度を直接的または間接的に測定するた めの温度測定手段を有し、かつ温度測定手段での測定結果に基づいて、減圧空間 の減圧度を調整して溶離液中の溶存酸素濃度を調整するように構成するのが好まし い。
[0011] 本発明の液体クロマトグラフィ装置は、溶離液保持部と脱気装置との間を接続する 第 1配管と、脱気装置と上記カラムとの間を接続する第 2配管と、をさらに備えたもの とされる。この場合、温度測定手段は、たとえば第 1配管内、第 2配管内、または脱気 装置内に存在する溶離液の温度、もしくは減圧空間内の温度を測定するように構成 される。この場合の温度測定手段は、たとえば第 1配管、第 2配管あるいは脱気装置 の内部に設けられたサーミスタを有するものとされる。
[0012] 温度測定手段はまた、液体クロマトグラフィ装置の周りの環境温度、または液体クロ マトグラフィ装置の内部の温度を測定するように構成されたものであってもよい。ここ で、環境温度とは、装置の周辺の温度、装置外壁の温度、もしくは溶離液保持部の 温度のうちのいずれかのことである。
[0013] 本発明の液体クロマトグラフィ装置は、温度測定手段に代えて、配管内の存在する 溶離液中の溶存酸素濃度を測定するための溶存酸素濃度測定手段を備えたものと して構成することもできる。この場合、溶存酸素濃度調整手段は、溶存酸素濃度測定 手段での測定結果に基づ ヽて、減圧空間の減圧度を調整して溶離液中の溶存酸素 濃度を調整するように構成するのが好ましい。溶存酸素濃度測定手段は、たとえば 第 1配管内、第 2配管内または脱気装置内の溶離液の酸素濃度を測定するための酸 素センサを含むものとされる。
[0014] 脱気装置は、たとえば減圧空間を減圧するためのポンプをさらに備えたものとされ る。この場合、溶存酸素濃度調整手段は、ポンプの駆動 (たとえば駆動電圧あるいは 弁の開放状態)を制御することにより吸引力を制御し、減圧空間の減圧度を調整する ように構成するのが好まし 、。
[0015] 溶存酸素濃度調整手段は、溶離液を加熱または冷却するための温調機構を有す るものとして構成することもできる。この場合、温調機構は、たとえば溶離液が第 1配 管、第 2配管または脱気装置を通過する際に、溶離液の温度を調整するように構成さ れる。また、温調機構は、カラムに供給される溶離液の温度を直接的または間接的に 測定するための温度測定手段での測定結果に基づ 、て、溶離液の温度を調整する ように構成してもよい。
[0016] 本発明の液体クロマトグラフィ装置は、脱気装置の減圧空間における酸素分圧の 変動を抑制するための酸素分圧変動抑制手段をさらに備えた構成であってもよい。
[0017] 溶離液保持部力 カラムに溶離液を供給するための配管は、酸素透過性の低い材 料により形成された酸素難透過部を有するものとして構成するのが好ま 、。この場 合の酸素難透過部は、たとえば脱気装置とカラムとの間を接続する第 2配管の全部 または一部に設けられる。
[0018] 本発明の液体クロマトグラフィ装置は、たとえばカラムを含み、かつ一定温度に温調 された分析ユニットをさらに備えたものとされる。この場合の酸素難透過部は、少なく とも第 2配管における分析ユニットから延出する部分に設けるのが好ましい。
[0019] 分析ユニットは、第 2配管の途中に設けられたマ-ホールドをさらに備えたものとさ れ、この場合には、酸素難透過部は、第 2配管における脱気装置とマ-ホールドとの 間に設けるのが好ましい。
[0020] 本発明の液体クロマトグラフィ装置は、カラム力もの脱離液に基づいて、試料中の 特定成分を検出するための検出機構と、カラムと検出機構との間を接続する追加の 配管と、をさらに備えたものとされる。この場合、追加の配管は、酸素透過性の低い材 料により形成された酸素難透過部を有するものとするのが好ましい。
[0021] 酸素難透過部は、たとえばナイロン、ポリエーテルエーテルケトン (PEEK)、ポリエ チレン、またはステンレス(SUS)により形成される。
[0022] 本発明の液体クロマトグラフィ装置は、カラムに導入する試料を調製するための試 料調製手段をさらに備えたものとすることもできる。試料調製手段は、たとえば赤血球 を含む検体を、赤血球を溶血させた後に希釈液を用いて希釈し、かつ、希釈後の試 料を一定時間放置して酸素飽和度を 85%以上とするように構成するのが好ましい。
[0023] 試料調製手段は、たとえば希釈液として酸素飽和度の高いものを用いるとともに、 希釈後において一定時間放置するように構成される。希釈後における放置時間は、 1分以上であるのが好ましい。希釈液として、酸素飽和度が 85%以上のものを用いる のが好ましい。
[0024] 試料調製手段はまた、希釈後の試料を一定時間大気開放させることにより、試料中 の酸素飽和度を 85%以上とするように構成してもよい。この場合の大気開放時間は 、たとえば 1分間以上とされ、好ましくは 1〜2分間とされる。
[0025] 試料調製手段は、空気または酸素リッチなガスを用いて試料をパブリングすること により、試料中の酸素飽和度を 85%以上とする構成であってもよい。
[0026] 試料調製手段は、たとえば血球を含む試料における血球を多く含む層の上層部か ら上記調製用試料を採取するように構成される。試料調製手段はまた、赤血球を含 む血液試料を、赤血球がリッチな血球層と赤血球がプア一な血漿層とに分離させた ときの血球層の上層部から調製用試料を採取し、かつ調製用試料を用いてカラムに 導入する導入用試料を調製するように構成される。この場合の試料調製手段は、たと えば血球層と血漿層との界面を検出するための検出手段と、血球層の上層部から調 製用試料を採取するためのサンプリングノズルと、を備えたものとされる。
[0027] サンプリングノズルは、検出手段による検出結果に基づいて、血球層の上層部から 調製用試料を採取するように、たとえば血球層における上部界面力 距離力 血球 層の厚みに対して 5〜30%の範囲にある領域、あるいは血球層における上部界面か らの距離が 0. 5〜5. Ommの範囲にある領域力 調製用試料を採取するように動作 させられる。 [0028] 本発明の液体クロマトグラフィ装置は、たとえば試料中のダルコヘモグロビンを測定 するように構成される。
[0029] 本発明の第 2の側面にぉ ヽては、充填剤を保持したカラムに対して、試料および溶 離液を供給して試料中のグリコヘモグロビンを測定するように構成された液体クロマト グラフィ装置であって、上記カラムにおけるォキシヘモグロビンとデォキシへモグロビ ンの比率を、各回の測定毎に、一定にするための手段を備えている、液体クロマトグ ラフィ装置が提供される。
図面の簡単な説明
[0030] [図 1]本発明に係る HPLC装置の一例を示す全体斜視図である。
[図 2]図 1に示した HPLC装置の概略構成図である。
[図 3]図 1に示した HPLC装置における脱気ユニットを説明するための一部を断面で 示した配管図である。
[図 4]図 1に示した HPLC装置の界面検出機構を説明するための斜視図である。
[図 5]図 4の V— V線に沿う断面図である。
[図 6]試料採取方法を説明するための断面図および要部拡大図である。
[図 7]図 1に示した HPLC装置における測光ユニットを説明するための断面図である。
[図 8]本発明に係る HPLC装置の他の例を説明するための図 2に相当する概略構成 図である。
[図 9]本発明に係る HPLC装置における脱気ユニット他の例を説明するための図 3に 相当する一部を断面で示した配管図である。
[図 10]本発明に係る HPLC装置における酸素飽和手段の他の例を示す模式図であ る。
[図 11]実施例および比較例での溶存酸素濃度の測定結果を示すグラフである。
[図 12]従来の HPLC装置 (高速液体クロマトグラフィ装置)の一例を示す概略構成図 である。
[図 13]図 12に示した HPLC装置における脱気装置を説明するための一部を断面で 示した配管図である。
符号の説明 [0031] X HPLC装置
12 A, 12B, 12C 溶離液ボトノレ
13 血液試料
13A 血漿層
13B 血球層
13C 界面
4 脱気ユニット (脱気装置)
40, 40A, 40B, 40C 温度測定部
41A, 41B, 41C 減圧空間
42A, 42B, 42C スノ ィラル管
43 ポンプ
5 試料調製ユニット
50 界面検出機構
51 ノズル
54 パブリング機構
6 分析ユニット
60 分析カラム
61 マ二ホールド
7 測光ュ-ット (検出機構)
80A, 80B, 80C 配管
81A, 81B, 81C 配管
84 配管
86 配管
発明を実施するための最良の形態
[0032] 以下、本発明の具体的な例について、図 1ないし図 7を参照して説明する。
[0033] 図 1および図 2に示した HPLC装置 Xは、ラック 10に保持させた採血管 11をテープ ル 20にセットして、全血中のグリコヘモグロビン濃度を自動で測定するように構成さ れたものである。この HPLC装置 Xは、複数の溶離液ボトル 12A, 12B, 12C (図面 上は 3つ)、および装置本体 2を備えている。
[0034] 各溶離液ボトル 12A, 12B, 12Cは、後述する分析カラム 60に供給すべき溶離液 を保持したものであり、装置本体 2におけるホルダ部 21に配置されている。溶離液と しては、たとえば pHや塩濃度の異なるバッファが使用される。
[0035] 装置本体 2は、上述のテーブル 20およびホルダ部 21の他に、筐体 3の内部に収容 された、脱気ユニット 4、試料調製ユニット 5、分析ユニット 6、および測光ユニット 7を 有している。
[0036] テーブル 20は、所定部位にセットされたラック 10を移動させることにより、ラック 10 に保持させた採血管 11を、後述する試料調製ユニット 5におけるノズル 51により採取 可能な位置に移動させるように構成されている。
[0037] 筐体 3には、操作パネル 30および表示パネル 31が設けられて!/、る。操作パネル 30 は、複数の操作ボタン 32が設けられたものであり、操作ボタン 32を操作することによ り、各種の動作 (分析動作や印字動作など)を行わせるための信号を生成させ、ある いは各種の設定 (分析条件の設定や被験者の ID入力など)を行うことができる。表示 パネル 31は、分析結果やエラーである旨を表示するとともに、設定時における操作 手順や操作状況などを表示するためのものである。
[0038] 図 2に示したように、脱気ユニット 4は、分析ユニット 6 (分析カラム 60)に溶離液を供 給する前に、溶離液力 溶存気体を除去するためのものであり、配管 80A, 80B, 8 OCを介して溶離液ボトル 12A, 12B, 12Cに、配管 81A, 81B, 81Cを介して分析 ユニット 6のマ-ホールド 61に連結されている。図 3に示したように、脱気ユニット 4は 、 U&Wl' ^A, 40B, 40C,チャンノ 41、 のスノイラノレ 42Α, 42Β, 42C (図面上は 3つ)、ポンプ 43、演算部 44および制御部 45を有している。
[0039] 温度測定部 40Α, 40Β, 40Cは、チャンバ 41に導入させる溶離液の温度を測定す るためのものであり、配管 80Α, 80Β, 80Cにおけるチャンバ 41の近傍に設けられて 、る。この温度視 IJ定咅 40Β, 40Ciま、酉己管 80A, 80B, 80Cの内咅 こ酉己置さ れたサ一ミスタ(図示略)を備えており、配管 80A, 80B, 80Cに存在する溶離液の 温度を直接測定できるように構成されている。この温度測定部 40A, 40B, 40Cにお ける測定結果は、演算部 44に出力される。 [0040] チャンバ 41は、複数の減圧空間 41A, 41B, 41C (図面上は 3つ)を規定するととも に、スパイラル管 42A, 42B, 42Cを収容するためのものである。
[0041] スパイラル管 42A, 42B, 42Cは、内部において溶離液を流通させるものであるとと もに、溶離液中の溶存気体を透過させるものであり、シリコンなどの公知のガス透過 膜により中空に形成されている。このスパイラル管 42A, 42B, 42Cは、スパイラル状 とされることにより、減圧空間 41A, 41B, 41C内での流路長が大きく確保されており 、減圧空間 41A, 41B, 41Cにおける気体との接触面積を大きく確保しつつ、減圧 空間 41A, 41B, 41Cにおける溶離液の滞留時間を大きく確保できるように構成され ている。
[0042] ポンプ 43は、配管 82を介して減圧空間 41A, 41B, 41Cの気体を排出し、減圧空 間 41A, 41B, 41Cを減圧するためのものである。このポンプ 43は、制御部 45によつ て、その動作が制御されている。
[0043] 演算部 44は、温度測定部 40A, 40B, 40Cから送信されてくる溶離液の温度デー タに基づいて、ポンプ 43に対する制御量を演算するためのものである。この演算部 4 4は、たとえば予め定めておいた溶離液の温度とポンプ 43の吸引圧力との関係式に したがって、ポンプ 43に対する制御量を演算するように構成される。吸引圧力は、た とえばポンプ 43における弁(図示略)の開放状態あるいはポンプ 43の駆動電力(駆 動電圧)により調整される。
[0044] 制御部 45は、演算部 44において演算された制御量にしたがってポンプ 43の動作 を制御するためのものである。
[0045] 演算部 44および制御部 45は、たとえば CPU、 ROMおよび RAMにより構成される
[0046] 図 2に示したように、試料調製ユニット 5は、採血管 11から採取した血球成分から、 分析カラム 60に導入する試料を調製するためのものである。この試料調製ユニット 5 は、界面検出機構 50、ノズル 51、調製液タンク 52および希釈槽 53を有している。
[0047] 図 4ないし図 6に示したように、界面検出機構 50は、採血管 11の血液試料 13にお ける血漿層 13Aと血球層 13Bとの界面 13Cを光学的手法により検出するためのもの であり、透過型のフォトセンサとして構成されている。この界面検出機構 50は、 U字ホ ルダ 54に対して、互いに対面した状態で光照射部 55および受光部 56を配置したも のである。採血管 11は、テーブル 20において、ラック 10に保持された状態で光照射 部 55と受光部 56との間の空間を横切るように移動させられる。
[0048] 光照射部 55は、採血管 11における上下方向の一定範囲に光を照射可能なもので あり、たとえば赤血球での光吸収の大きな波長範囲(500〜570nm)にピーク波長を 有する光を照射可能な線状光源が用いられている。光照射部 55としては、たとえば 点状光源を上下方向に走査可能に構成したものを採用することもできる。一方、受光 部 56は、採血管 11を透過した光を受光するためのものであり、採血管 11における上 下方向の一定範囲において受光可能とされている。このような受光部 56としては、た とえばラインセンサあるいはエリアセンサを使用することができる。
[0049] もちろん、界面検出機構 50としては、たとえば採血管 11の表面において反射した 光を検出する反射型のフォトセンサを有するものであってもよぐまた光学的手法に 限らず、たとえばノズル 51を採血管 11に挿入したときの挿入抵抗の変化により、ある いは電気抵抗の変化により血漿層 13Aと血球層 13Bとの界面 13Cを検出するように 構成してちょい。
[0050] 図 2および図 6に示したように、ノズル 51は、採血管 11の血液試料 13をはじめとす る各種の液体を採取するためのものであり、液体の吸引'吐出が可能であるとともに、 上下方向および水平方向に移動可能とされている。このノズル 51の動作は、図外の 制御手段によって制御されており、採血管 11から血液試料 13を採取する場合には、 界面検出機構 50において検出された界面 13Cを基準として、その界面 13Cよりも若 干下方にお 、て、血球層 13Bから血球成分を採取するように動作させられる。
[0051] 図 2に示した調製液タンク 52は、血液試料 13をもとに、分析カラム 60に導入する導 入用試料を調製するための調製液を保持したものである。この調製液タンク 52には、 調製液として、赤血球の溶血させるための溶血液、溶血液を希釈するための希釈液 などが保持されている。希釈液としては、酸素飽和度の高いもの、たとえば酸素飽和 度が 85%以上のものを使用するのが好ましい。調製液タンク 52からの調製液の採取 には、ノズル 51が使用される。
[0052] 希釈槽 53は、血液試料 13中の赤血球を溶血させ、かつ溶血液を希釈して導入用 試料を調製する場を提供するとともに、導入用試料を大気に接触させて導入用試料 における酸素飽和度 (溶存酸素濃度)を高めるためのものである。この希釈槽 53は、 後述する分析ユニット 6におけるインジェクションノ レブ 63に配管 83を介して接続さ れており、希釈槽 53にお 、て調製された導入用試料力インジェクションバルブ 63を 介して分析カラム 60に導入できるように構成されている。希釈槽 53はまた、導入用試 料を大気に接触させるために上部が開放されて 、る。
[0053] 図 2に示したように、分析ユニット 6は、分析カラム 60の充填剤に対する生体成分の 吸着 ·脱着をコントロールし、各種の生体成分を測光ユニット 7に供するためのもので あり、図外の温調機構により温度コントロールされている。分析ユニット 6における設 定温度は、たとえば 40°C程度とされる。分析カラム 60は、試料中のヘモグロビンを選 択的に吸着させるための充填剤を保持させたものである。充填剤としては、たとえば メタクリル酸エステル共重合体が使用される。
[0054] 分析ユニット 6は、分析カラム 60の他に、マ-ホールド 61、送液ポンプ 62、およびィ ンジェクシヨンバルブ 63を有して!/、る。
[0055] マ-ホールド 61は、複数の溶離液ボトル 12A, 12B, 12Cのうちの特定の溶離液 ボトル 12A, 12B, 12Cから、インジェクションバルブ 63に選択的に溶離液を供給さ せるためのものである。このマ-ホールド 61は、配管 81A, 81B, 81Cを介して脱気 ユニット 4の減圧空間 41A, 41B, 41C (スパイラル管 42A, 42B, 42C)に接続され 、配管 84を介してインジェクションバルブ 63に接続されて!、る。
[0056] ここで、配管 81A, 81B, 81Cとしては、全体が酸素透過性の低い材料、たとえば ナイロン、ポリエーテルエーテルケトン(PEEK)、ポリエチレンまたはステンレス(SUS )により形成されたものが使用される。
[0057] 送液ポンプ 62は、溶離液をインジェクションノ レブ 63に移動させる動力を付与する ためのものであり、配管 84の途中に設けられている。送液ポンプ 62は、たとえば溶離 液の流量が 1. 0〜2. OmlZminとなるように動作させられる。
[0058] インジェクションバルブ 63は、一定量の導入用試料を採取するとともに、その導入 用試料を分析カラム 60に導入可能とするものであり、複数の導入ポートおよび排出 ポート(図示略)を備えている。このインジェクションバルブ 63には、インジェクションル ープ 64が接続されている。このインジェクションループ 64は、一定量(たとえば数 /z L )の液体を保持可能なものであり、インジェクションバルブ 63を適宜切り替えることに より、インジェクションループ 64が希釈槽 53と連通して希釈槽 53からインジェクション ループ 64に導入用試料が供給される状態、インジェクションループ 64が配管 85を介 して分析カラム 60と連通してインジェクションループ 64から導入用試料が分析カラム 60に導入される状態、あるいはインジェクションループ 64に図外の洗浄槽カも洗浄 液が供給される状態を選択することができる。このようなインジェクションバルブ 63とし ては、たとえば六方ノ レブを使用することができる。
[0059] 図 7に示したように、測光ユニット 7は、分析カラム 60からの脱着液に含まれるへモ グロビンを光学的に検出するためのものであり、測光セル 70、光源 71、ビームスプリ ッタ 72、測定用受光系 73および参照用受光系 74を有している。
[0060] 測光セル 70は、測光エリアを規定するためのものである。この測光セル 70は、導入 流路 70A、測光流路 70Bおよび排出流路 70Cを有しており、これらの流路 70A, 70 B, 70Cがー連に連通している。導入流路 70Aは、分析カラム 60 (図 2参照)からの 脱離液を測光流路 70Bに導入するためのものであり、分析カラム 60に配管 86を介し て接続されている。配管 86としては、 先に説明した配管 81A, 81B, 81Cと同様に 、全体が酸素透過性の低い材料、たとえばナイロン、ポリエーテルエーテルケトン (P EEK)、ポリエチレンまたはステンレス(SUS)により形成されたものが使用される。測 光流路 70Bは、測光対象となる脱離液を流通させ、かつ脱離液を測光するための場 を提供するものであり、直線状に形成されている。この測光流路 70Bは、両端が開放 しているとともに、両端部が透明カバー 75により塞がれている。排出流路 70Cは、測 光流路 70Bの脱離液を排出するためのものであり、配管 87を介して廃液槽 88に接 続されている(図 2参照)。
[0061] 光源 71は、測光流路 70Bを流通する脱離液に光を照射するためのものである。こ の光源 71は、光軸 Lが測光流路 70Bの中心を通過するように、測光流路 70Bの端面 70Ba (透明カバー 75)に対面した状態で配置されている。光源 71としては、ォキシ ヘモグロビンの最大吸収波長である 415nmおよび参照波長である 500nmの光を含 んだ波長範囲の光を出射可能なもの、たとえばハロゲンランプが使用されている。も ちろん、光源 71としては、ハロゲンランプ以外のもの、たとえば 1または複数の LED 素子を備えたものを使用することもできる。
[0062] ビームスプリッタ 72は、光源 71から出射された光のうち、測光流路 70Bを透過した 光を分割して測定用受光系 73および参照用受光系 74に入射させるためのものであ り、光軸 L上において、 45度傾斜した状態で配置されている。ビームスプリッタ 72とし ては、ハーフミラーなどの公知の種々のものを使用することができる。
[0063] 測定用受光系 73は、ビームスプリッタ 72を透過した光のうち、ォキシヘモグロビン の最大吸収波長である 415nmの光を選択的に受光するものであり、光軸 L上に配置 されている。この測定用受光系 73は、 415nmの光を選択的に透過させる干渉フィル タ 73Aと、干渉フィルタ 73Aを透過した光を受光するための受光素子 73Bと、を備え ている。受光素子 73Bとしては、フォトダイオードを使用することができる。
[0064] 参照用受光系 74は、ビームスプリッタ 72において反射して光路が変えられた光のう ち、参照波長である 500nmの光を選択的に受光するものである。この測定用受光系 74は、 500nmの光を選択的に透過させる干渉フィルタ 74Aと、干渉フィルタ 74Aを 透過した光を受光するための受光素子 74Bと、を備えている。受光素子 74Bとしては 、フォトダイオードを使用することができる。
[0065] 次に、 HPLC装置 Xの動作について説明する。
[0066] HPLC装置 Xを用いてグリコヘモグロビンを測定する場合には、まず血液試料 13が 入った採血管 11をラック 10に保持させた状態で、ラック 10をテーブル 20の所定の部 位にセットする。採血管 11の血液試料 13は、予め血漿層 13 Aと血球層 13Bに分離 されている。このような分離は、遠心分離機を用いて、あるいは血球成分を自然沈降 させること〖こより行なうことができる。
[0067] 血漿層 13Aと血球層 13Bとの分離は、 HPLC装置 Xに遠心分離機を組み込んで H PLC装置 Xにおいて行なうようにしてもよぐまた、テーブル 20に採血管 11をセットし た状態で一定時間静置することにより行ってもよい。
[0068] HPLC装置 Xにお 、ては、測定開始の指示が確認された場合、テーブル 20にお いてラック 10を移動させ、目的とする採血管 11から血液試料 13を採取する。測定開 始の指示は、使用者が HPLC装置 Xの所定の操作ボタン 32を操作することにより行 なわれる。
[0069] 採血管 11からの血液試料 13の採取は、界面検出機構 50において血漿層 13Aと 血球層 13Bとの界面 13Cを検出した後、その界面 13Cから一定距離 Dだけ下方に 離れた領域において行なわれる。より具体的には、界面検出機構 50では、光照射部 55から採血管 11に対して光を照射するとともに、採血管 11を透過した光が受光部 5 6において受光される。ここで、光照射部 55として赤血球での光吸収の大きな波長範 囲にピーク波長を有する光を照射した場合には、血漿層 13Aに比べて、血球層 13B での光吸収がより大きくなる。そのため、界面検出機構 50においては、光吸収が著し く変化する部分を受光部 56での受光量に基づいて検出することにより、血漿層 13A と血球層 13Bとの間の界面 13Cを検出することができる。
[0070] 界面検出機構 50において界面 13Cの検出が終了した場合には、界面検出機構 5 0での検出結果に基づいてノズル 51を動作させることにより、血球層 13Bの上層部か ら血液試料 13が採取される。この場合、ノズル 51は、血漿層 13Aと血球層 13Bとの 間の界面 13Cから距離 D力 たとえば血球層 13Bの厚みに対して 5〜30%の範囲に ある領域、あるいは距離 Dが 0. 5〜5. Ommの範囲にある領域に先端が位置させら れ、この状態において吸引動作を行なうことにより採血管 11から血液試料 13を採取 するように動作させられる。
[0071] ここで、遠心分離などにより血球成分を採血管 11の底部に分離した場合には、血 球層 13Bの上層部は、下層部に比べて酸素飽和度 (溶存酸素濃度)が高くなり、また 血液試料 13を静置してぉ 、た場合にも、気相力もの距離が小さ!/、血球層 13Bの上 層部は、下層部に比べて酸素飽和度 (溶存酸素濃度)が高くなる。そのため、界面検 出機構 50における界面 13Cの検出結果に基づいてノズル 51の動作を制御し、血球 層 13Bにおける上層部力も血液試料 13を採取するようにすれば、酸素飽和度 (溶存 酸素濃度)の高い血液試料 13を採取することができる。また、界面 13C力もの距離 D が先の領域にある部分力も血液試料 13を採取する場合には、血球層 13Bの上層部 力 血液試料 13を確実に採取することができる。
[0072] ノズル 51によって採取された血液試料 13は、ノズル 51を動作させることによって希 釈槽 53に供給される。希釈槽 53にはさらに、調製液タンク 52から溶血剤および希釈 液が順次供給され、ノズル 51を利用したピペッティング操作によって希釈槽 53内の 液体を混合することによって導入用試料が調製される。
[0073] 希釈槽 53において調製された導入用試料は、希釈槽 53において大気と一定時間 接触させた後にインジェクションループ 64に供給され、インジェクションループ 64に おいて保持される。
[0074] 導入用試料を一定時間大気と接触させた場合には、導入用試料の溶存酸素濃度 が増加させられる。このようにして導入用試料の酸素飽和度を増加させた場合には、 インジェクションループ 64ひ 、ては分析カラム 60に対して溶存酸素濃度の高 、導入 用試料を供給することができる。すなわち、導入用試料に含まれるヘモグロビンにお V、て、ォキシヘモグロビンの割合を大きなものとすることができる。
[0075] ここで、導入用試料と大気との接触時間(大気開放時間)は、たとえば 1〜2分とされ る。これは、大気開放時間が短すぎる場合には導入用試料に対して十分な量の酸素 を溶存させることができない一方で、大気開放時間が長すぎる場合には導入用試料 調製後からインジェクションループ 64へ導入用試料を導入するまでの時間が大きく なって測定時間が長くなつてしまうからである。
[0076] また、希釈液として酸素飽和度の高いもの、たとえば酸素飽和度が 85%以上のも のを使用する場合には、必ずしも希釈後の導入用試料を大気開放する必要はない。 すなわち、酸素飽和度の高い希釈液を用いる場合には、希釈槽 53として閉鎖された ものを用いる場合であっても一定時間(たとえば 1分以上)放置することにより、希釈 後の導入用試料の酸素飽和度を高めることができ、ォキシヘモグロビンの割合を大き なちのとすることができる。
[0077] HPLC装置 Xにおいてはさらに、測定開始の指示が確認された場合には、インジェ クシヨンバルブ 63に対して溶離液が供給される。溶離液は、送液ポンプ 62の動力に より、溶離液ボトル 12A, 12B, 12Cから脱気ユニット 4、マ-ホールド 61を介してイン ジェクシヨンバルブ 63に供給され、また複数の溶離液ボトル 12A, 12B, 12Cのうち のいずれの溶離液ボトル 12A, 12B, 12Cの溶離液を供給するかは、マ-ホールド 6 1を制御することによって選択される。
[0078] 脱気ユニット 4では、溶離液が配管 80A, 80B, 80Cを流通する間に温度測定部 4 OA, 40B, 40Cにおいて溶離液の温度が測定される。この温度測定部 40A, 40B, 40Cにおける測定結果は演算部 44に出力され、演算部 44において、温度測定部 4 OA, 40B, 40Cから送信されてくる溶離液の温度データに基づいて、ポンプ 43の制 御量が演算される。この演算部 44は、たとえば予め定めておいた溶離液の温度とポ ンプ 43の吸引力(たとえばポンプ 43における弁(図示略)の開放状態あるいはポンプ 43の駆動電力(駆動電圧)との関係式にしたがって、ポンプ 43に対する制御量の演 算を行なう。演算部 44においてポンプ 43の制御量が演算された場合には、制御部 4 5は、演算部 44において演算された制御量にしたがってポンプ 43の動作を制御する 。これにより、配管 82を介して減圧空間 41A, 41B, 41Cから排気される気体の量が 、溶離液の温度 (溶存酸素濃度)に応じて調整される、その結果、脱気ユニット 4では 、溶離液の温度 (溶存酸素濃度)に応じて、ポンプ 43によって減圧空間 41A, 41B, 41Cの減圧度が調整される。
[0079] 一方、配管 80A, 80B, 80Cを流通する溶離液は、減圧空間 41A, 41B, 41Cの 内部においてスパイラル管 42A, 42B, 42Cを流通した後に、スパイラル管 42A, 42 B, 42C力 排出される。このとき、スパイラル管 42A, 42B, 42Cがガス透過性の高 い材質により形成されているとともに、減圧空間 41A, 41B, 41Cがポンプ 43によつ て減圧されているため、溶離液がスノィラル管 42A, 42B, 42Cを流通する間に、溶 離液からは溶存酸素を含めた溶存ガスが除去される。そして、脱気ユニット 4では、溶 離液の温度に応じて減圧空間 41A, 41B, 41Cの減圧度が調整されるため、溶離液 が減圧空間 41A, 41B, 41C力も排出される際には、溶離液の温度に関係なぐ溶 離液の溶存酸素濃度が一定とされる。ここで、溶離液の温度は、 HPLC装置 Xの外 部の温度 (環境温度)の影響を受ける力 脱気ユニット 4においては、環境温度に関 係なく溶存酸素濃度が一定の溶離液を排出することが可能となる。これにより、環境 温度の変動が生じた場合、ある!、は異なる環境温度下で測定が行なわれる場合であ つても、脱気ユニット 4から排出される溶離液の溶存酸素濃度を略一定なものとするこ とがでさる。
[0080] 減圧空間 41A, 41B, 41C (スパイラル管 42 A, 42B, 42C)から排出された溶離 液は、配管 81A, 81B, 81Cを介してマ-ホールド 61に供給された後、配管 84を介 してインジェクションバルブ 63に導入される。
[0081] ここで、配管 81A, 81B, 81Cとしては、酸素透過率の低い材料により形成されたも のが使用されている。そのため、マ-ホールド 61に供給される溶離液が配管 81 A, 8 IB, 81Cを流通する間においては、溶離液に酸素などのガスが再吸収されることが 抑制される。その結果、脱気ユニット 4において溶存酸素濃度が一定なものとされた 溶離液は、その状態を適切に維持したままマ-ホールド 61に供給されることとなる。
[0082] インジェクションバルブ 63に供給された溶離液は、配管 85を介して分析カラム 60に 供給される。その一方で、インジェクションバルブ 63の切替操作を行うことにより、イン ジェクシヨンループ 64の導入用試料が溶離液とともに分析カラム 60に導入される。導 入用試料の導入開始力も一定時間経過した場合には、インジェクションノ レブ 63の 切替操作を行うことにより、分析カラム 60に対して引き続き溶離液を供給するとともに 、インジェクションループ 64の洗浄を行なう。一方、インジェクションループ 64の洗浄 と同時的に、先に説明したのと同様にして、先とは異なる採血管 11の血液試料 13か ら導入用試料を調製し、インジェクションループ 64の洗浄後においては、再び導入 用試料をインジェクションループ 64に導入する。このような導入用試料の調製、導入 、洗浄は、インジェクションバルブ 63を適宜切り替えつつ、測定対象となる採血管 11 (血液試料 13)の数に応じて繰り返し行なわれる。
[0083] 一方、分析カラム 60においては、導入用試料が導入されることにより、充填剤にダリ コヘモグロビンが吸着する。充填剤にグリコヘモグロビンを吸着させた後においては 、マ-ホールド 61によって、分析カラム 60に供給する溶離液の種類を適宜切り替え 、充填剤に吸着したグリコヘモグロビンを脱着させる。
[0084] このとき、複数の溶離液相互で流量を異ならせて分析カラム 60に供給し、複数種 類の溶離液ごとに配管 81A, 81B, 81Cを通過する時間(滞留時間)が異なったもの となったとしても、配管 81A, 81B, 81Cにおける酸素の再吸収が適切に抑制される 。そのため、分析カラム 60では、 1つの血液試料 13の測定において、溶離液の種類 (流量)を変えたとしても、分析カラム 60を移動する溶離液における溶存酸素の量が 変化することが適切に抑制される。その結果、配管 81A, 81B, 81Cでの酸素の再 吸収に起因して、測定結果が真値からズレてしまうことを抑制し、正確な測定を行なう ことが可能となる。
[0085] また、複数の HPLC装置 X相互では配管 81 A, 81B, 81Cの酸素透過性について 製造間差が生じることも想定され、その場合には、複数の HPLC装置 X相互での配 管 81A, 81B, 81Cでの再吸収量が異なったものとなるため、複数の HPLC装置 X 相互での測定精度に差が生じてしまうことが懸念されるが、配管 81A, 81B, 81Cと して酸素透過性の低いものを使用することにより、配管 81A, 81B, 81Cの製造間差 の影響を極力抑制することが可能となる。
[0086] 分析カラム 60から排出されるグリコヘモグロビンを含む脱着液は、配管 86を介して 測光ユニット 7の測光セル 70に供給される。測光セル 70に対しては、配管 86および 導入流路 70Aを介して脱着液が導入され、この脱着液は測光流路 70Bおよび排出 流路 70Cを通過した後に、配管 87を介して廃液槽 88に導かれる。
[0087] ここで、配管 86としては、酸素透過率の低い材料により形成されたものが使用され ている。そのため、配管 86を介して分析カラム 60から測光ユニット 7 (測光セル 70)に 脱離液が供給される間において、脱離液に酸素などのガスが再吸収されることが抑 制される。その結果、測光ニット 7に対しては、溶存酸素濃度が一定に維持されたま まに分析カラム 60から脱離液が供給されることとなる。また、配管 81A, 81B, 81Cの 場合と同様に、複数の HPLC装置 X相互での配管 86の酸素透過性について製造間 差に起因する測定精度の低下を抑制することが可能となる。
[0088] 測光ユニット 7においては、脱離液が測光流路 70Bを通過する際に、光源 71によつ て脱離液に対して連続的に光が照射される。その一方で、測光流路 70Bを透過した 光は、ビームスプリッタ 72において分割された後、測定用受光系 73および参照用受 光系 74において受光される。測定用受光系 73では、干渉フィルタ 73Aを透過したォ キシヘモグロビンの最大吸収波長である 415nmの光が受光素子 73Bにおいて選択 的に受光される。一方、参照用受光系 74では、干渉フィルタ 74Aを透過した参照波 長である 500nmの光が受光素子 74Bにおいて選択的に受光される。
[0089] 受光素子 73A, 74Aでの受光結果は、図外の演算回路に出力され、この演算回路 にお ヽてヘモグロビンのクロマトグラム、グリコヘモグロビンの濃度(ヘモグロビン総量 におけるグリコヘモグロビンの割合)が演算される。演算回路での演算結果は、表示 パネル 31に表示され、また自動的あるいは使用者のボタン操作によってプリントァゥ トされる。
[0090] このような HPLC装置 Xでは、溶離液の溶存酸素濃度は、脱気ユニット 4にお ヽて 一定ィ匕されるとともに、酸素透過性の低い配管 81A, 81B, 81Cにより脱気ユニット 4 からの溶離液を、溶存酸素濃度を略一定に維持したままマ二ホールド 61に供給する ようにしている。その一方で、マ-ホールド 61は、インジェクションバルブ 63や分析力 ラム 60とともに分析ユニット 6を構成するものであるとともに、分析ユニット 6がー定温 度に温調されている。そのため、マ-ホールド 61から分析カラム 60に供給される溶 離液は、温度変化に起因する溶存酸素濃度の変化が生じにくくなつている。その結 果、分析カラム 60に対しては、環境温度に関係なぐ溶存酸素濃度が一定化された 溶離液を供給することが可能となる。したがって、 HPLC装置 Xでは、溶離液の溶存 酸素濃度の変動など起因する測定結果の不安定性を抑制することが可能となる。
[0091] 一方、分析カラム 60に導入するための導入用試料における溶存酸素濃度は、血球 層 13Bの上部力も採取した血液試料 13に基づいて調製されるとともに、調製後にお いては、分析カラム 60に導入する前に、希釈槽 53において導入用試料を実質的に 飽和させられている。そのため、分析カラム 60に導入される導入用試料は、溶存酸 素濃度が画一化されるため、導入用試料におけるォキシヘモグロビンとデォキシへ モグロビンの比率を、一定ィ匕して分析カラム 60に供給することが可能となる。しかも、 分析カラム 60から測光ユニット 7に脱離液が供給されるまでの間において、配管 86 での酸素の再吸収が抑制されている。その結果、測光ユニット 7に対しては、導入用 試料ごとのォキシヘモグロビンとデォキシヘモグロビンとの比率のバラツキが抑制さ れ、このバラツキに起因する測定結果のバラツキを抑制することが可能となる。
[0092] 本発明は、上述した実施の形態には限定されず、種々に変更可である。たとえば、 脱気ユニット 4の減圧空間 41A, 41B, 41Cの減圧度を調整するに当たっては、必ず しも配管 80A, 80B, 80Cに温度測定部 40A, 40B, 40Cを設けて溶離液の温度を 直接測定する必要はなぐたとえば図 8Aに示したように温度測定部 40を装置内部に 設けて装置内部の温度を測定するようにし、図 8Bに示したように温度測定部 40を装 置外部に設けて装置外部の環境温度 (たとえば装置 Xの周辺温度、装置 Xの筐体 3 の外壁の温度、あるいは溶離液ボトル 12A, 12B, 12Cの温度)を測定するように構 成してもよい。また、温度測定部は、脱気ユニット 4におけるマ-ホールド 61と接続さ れた配管 81A, 81B, 81C、スパイラル管 42A, 42B, 42C、減圧空間 41A, 41B, 41C (図 3参照)に設けてもよい。さらに、図 2および図 3に示した温度測定部 40A, 4 OB, 40C【こ代えて、酉己管 80A, 80B, 80C、酉己管 81A, 81B, 81C、ある!/ヽ ίまスノ ィ ラル管 42Α, 42Β, 42Cに溶存酸素測定センサ(酸素サンサ)を設けてもよい。
[0093] また、脱気ユニットとしては、減圧空間にスパイラル管を収容させた構成に限らず、 フィルム状のガス透過膜によって、溶離液流通空間と減圧空間とを区画した構成で あってもよい。さらに、脱気ユニット 4は、必ずしも減圧空間 41A, 41B, 41Cの減圧 度を調整することにより、溶離液の溶存酸素濃度を一定ィヒする必要はなぐ図 9に示 したように、減圧空間 41 A, 41B, 41Cの温度を温調機構 46Α, 46Β, 46Cによって 溶離液の溶存酸素濃度を一定化するように構成してもよぐまた、溶離液が配管 80Α , 80Β, 80C、ある!/、 ίま酉己管 81A, 81B, 81C, 84, 85を流通する際に溶離液の温 度を調整するようにしてもよい。さらに、溶離液や環境温度に応じて溶離液の流量を 調整して、減圧空間 41A, 41B, 41Cにおける滞留時間により溶存酸素濃度を一定 化するようにしてもよぐまた減圧空間 41A, 41B, 41Cにおける酸素分圧の変動を 抑制するための酸素分圧変動抑制手段を備えた構成であってもよい。
[0094] 本発明ではさらに、配管 81A, 81B, 81Cの全体が酸素ガスの透過率の低い材料 により形成されていた力 配管 81A, 81B, 81Cの一部を酸素ガスの透過率の低い 材料により形成してもよぐまた配管 81A, 81B, 81C以外の配管 80Α, 80Β, 80C, 84, 85につ!/、ても酸素ガスの透過率の低 、材料により形成してもよ 、。
[0095] また、希釈槽 53において調製された導入用試料の酸素飽和度 (溶存酸素濃度)を 高めるための手段としては、たとえば図 10に示したように希釈槽 53の導入用試料を 、酸素リッチなガス、あるいは空気によりパブリングするパブリング機構 54を採用する ことちでさる。
[0096] 本発明はさらに、血液中のグリコヘモグロビン濃度を測定するための HPLC装置に 限らず、血液以外の検体を用いる場合、グリコヘモグロビン濃度以外の成分を測定 する場合、あるいは HPLC装置以外の液体クロマトグラフィ装置にっ 、ても適用する ことができる。
実施例
[0097] (参考例)
本参考例にお 、ては、環境温度と溶存酸素濃度との関係につ 、て検討した。
[0098] 溶存酸素濃度の測定は、グリコヘモグロビン測定装置(「ADAMS Ale HA— 8 160」;アークレイ株式会社製)におけるマ-ホールドの入口に溶存酸素濃度測定装 置を接続した状態とし、通常の分析と同様にして溶離液を供給することにより、分析 カラムに導入される溶離液中の溶存酸素濃度を測定した。
[0099] 溶離液としては、商品名「61A」、 「618」ぉょび「61じ」(アークレイ株式会社製)を 用い、溶離液は、流量が 1. 7mlZminとなるようにして供給した。環境温度 (装置外 部の温度)は、 10°Cおよび 30°Cに設定した。溶存酸素濃度の測定結果については 、 T 己表丄に し 7こ。
[0100] [表 1]
Figure imgf000023_0001
[0101] 表 1から分力るように、グリコヘモグロビン測定装置を使用する場合の一般的な環境 温度範囲である 10°Cと 30°Cにおいては、溶離液中の溶存酸素濃度が大きく異なつ ている。すなわち、環境温度によって溶離液中の溶存酸素濃度が変動することで、 分析カラム力も溶離されるグリコヘモグロビンにおけるォキシヘモグロビンとデォキシ ヘモグロビンとの比率が変動することが伺える。そのため、ォキシヘモグロビンの最大 吸収波長においてグリコヘモグロビンを測定する場合には、環境温度が変動すること により、同一濃度の検体を用いる場合であっても、実測値が変動することが伺える。
[0102] (比較例)
本比較例では、環境温度がグリコヘモグロビンの測定値に与える影響にっ 、て検
B、Jした。
[0103] グリコヘモグロビンの濃度は、環境温度を 10°Cおよび 30°Cとした場合について、グ リコヘモグロビン測定装置(「ADAMS Ale HA— 8160」;アークレイ株式会社製 )を用いて測定した。検体としては、健常人から採取した血液 (健常人検体)および糖 尿病患者から採取した血液 (糖尿患者血液)を用いた。グリコヘモグロビンの測定結 果については下記表 2に示すとともに、健常人検体については図 11Aに、糖尿病患 者検体につ ヽては図 11Bにそれぞれ示した。
[0104] [表 2]
Figure imgf000024_0001
[0105] 表 2、図 11Aおよび図 1 IB力 分力るように、環境温度が異なる場合には、健常人 検体および糖尿病患者検体ともに、測定値が異なったものとなった。
[0106] (実施例)
本実施例では、溶離液の温度に基づ!ヽて脱気装置における減圧度を調整した場 合にっ 、て、環境温度がグリコヘモグロビン濃度の測定結果に与える影響にっ 、て 検討した。
[0107] グリコヘモグロビンの測定値は、グリコヘモグロビン測定装置(「ADAMS Ale H A— 8160」;アークレイ株式会社製)を、図 1ないし図 7を参照して先に説明した HPL C装置と同様に、脱気ユニットを図 3に示した構成とするとともに、脱気装置とマ-ホ 一ルドとの間を繋ぐ配管を、テフロン (登録商標)製のもの力もナイロン製 (商品名「N 2- 1 - 1/8 (乳白色)」 ッタ 'ムアー株式会社製)に変更したものを用いて行なった
[0108] 脱気ユニットは、温度測定部としてサーミスタ(商品名「PB3— 43— S2」;株式会社 芝浦電子製)を用い、溶離液の温度に応じて、ポンプの圧力を下記数式 1にしたがつ て調整するように構成した。
[0109] [数 1] 圧力 P ( T 0 r r ) =— 3. 0 5 T + 1 6 0 ; T =温度 (°C ) [0110] 検体としては、比較例と同様に、健常人から採取した血液 (健常人検体)および糖 尿病患者から採取した血液 (糖尿患者血液)を用いた。グリコヘモグロビンの測定結 果については下記表 3に示すとともに、健常人検体については図 11 Aに、糖尿病患 者検体につ ヽては図 11Bにそれぞれ示した。
[0111] [表 3]
Figure imgf000025_0001
[0112] 表 3、図 11Aおよび図 1 IB力 分力るように、溶離液の温度に応じて減圧空間の減 圧度 (ポンプの圧力)を調整して溶離液中の溶存酸素濃度を一定となるように試みた 場合には、環境温度が異なっていても、健常人検体および糖尿病患者検体ともに、 測定値が略同一なものとなった。すなわち、溶離液の温度、あるいは溶離液の温度 に影響を与える環境温度に応じて、溶離液中の溶存酸素濃度を一定化した場合に は、環境温度などの影響を受けることなぐ測定値を安定化させることができる。

Claims

請求の範囲
[1] 充填剤を保持したカラムと、
上記カラムに供給するための溶離液を保持した 1または複数の溶離液保持部と、 を備えた液体クロマトグラフィ装置であって、
上記カラムに供給される溶離液中の溶存酸素濃度を、一定に維持するための溶存 酸素濃度調整手段をさらに備えている、液体クロマトグラフィ装置。
[2] 上記溶離液保持部から上記カラムに上記溶離液を供給するまでの間に上記溶離 液を脱気するためのものであり、かつガス透過膜および減圧空間を有する脱気装置 をさらに備えており、
上記溶存酸素濃度調整手段は、上記カラムに供給される上記溶離液の温度を直 接的または間接的に測定するための温度測定手段を有しており、かつ、上記温度測 定手段での測定結果に基づ!/、て、上記減圧空間の減圧度を調整して上記溶離液中 の溶存酸素濃度を調整するように構成されている、請求項 1に記載の液体クロマトグ ラフィ装置。
[3] 上記溶離液保持部と上記脱気装置との間を接続する第 1配管と、
上記脱気装置と上記カラムとの間を接続する第 2配管と、
をさらに備えており、
上記温度測定手段は、上記第 1配管内、上記第 2配管内、または上記脱気装置内 に存在する上記溶離液の温度、もしくは上記減圧空間内の温度を測定するように構 成されている、請求項 2に記載の液体クロマトグラフィ装置。
[4] 上記温度測定手段は、当該液体クロマトグラフィ装置の周りの環境温度、または当 該クロマトグラフの装置内部の温度を測定するように構成されている、請求項 2に記 載の液体クロマトグラフィ装置。
[5] 上記溶離液保持部力 上記カラムに上記溶離液を供給するための配管と、
上記溶離液保持部力 上記カラムに上記溶離液を供給するまでの間に上記溶離 液を脱気するためのものであり、かつ上記配管の途中に設けられたガス透過膜およ び減圧空間を有する脱気装置と、
をさらに備えており、 上記溶存酸素濃度調整手段は、上記配管内の存在する上記溶離液中の溶存酸 素濃度を測定するための溶存酸素濃度測定手段を有しており、かつ、上記溶存酸素 濃度測定手段での測定結果に基づ!、て、上記減圧空間の減圧度を調整して上記溶 離液中の溶存酸素濃度を調整するように構成されている、請求項 1に記載の液体ク 口マトグラフィ装置。
[6] 上記配管は、上記溶離液保持部と上記脱気装置との間を接続する第 1配管と、上 記脱気装置と上記カラムとの間を接続する第 2配管と、を含んでおり、
上記溶存酸素濃度測定手段は、上記第 1配管内、上記第 2配管内または上記脱気 装置内の溶離液の酸素濃度を測定するための酸素センサを含んでいる、請求項 5に 記載の液体クロマトグラフィ装置。
[7] 上記溶存酸素濃度調整手段は、上記溶離液を加熱または冷却するための温調機 構を有して 、る、請求項 1に記載の液体クロマトグラフィ装置。
[8] 上記溶離液保持部から上記カラムに上記溶離液を供給するまでの間に上記溶離 液を脱気するための脱気装置と、
上記溶離液保持部と上記脱気装置との間を接続する第 1配管と、
上記脱気装置と上記カラムとの間を接続する第 2配管と、
をさらに備えており、
上記温調機構は、上記溶離液が上記第 1配管、第 2配管または上記脱気装置を通 過する際に、上記溶離液の温度を調整するように構成されている、請求項 7に記載の 液体クロマトグラフィ装置。
[9] 上記カラムに供給される上記溶離液の温度を直接的または間接的に測定するため の温度測定手段をさらに備えており、
上記温調機構は、上記温度測定手段での測定結果に基づいて、溶離液の温度を 調整するように構成されている、請求項 8に記載の液体クロマトグラフィ装置。
[10] 上記溶離液保持部から上記カラムに上記溶離液を供給するまでの間に上記溶離 液を脱気するためのものであり、かつガス透過膜および減圧空間を有する脱気装置 をさらに備えており、
上記減圧空間における酸素分圧の変動を抑制するための酸素分圧変動抑制手段 をさらに備えている、請求項 1に記載の液体クロマトグラフィ装置。
[11] 上記溶離液保持部から上記カラムに上記溶離液を供給するための配管をさらに備 えており、
上記配管は、酸素透過' I·生の低レ、材料により形成された酸素難透過部を有している 、請求項 1に記載の液体クロマトグラフィ装置。
[12] 上記溶離液保持部から上記カラムに上記溶離液を供給するまでの間に上記溶離 液を脱気するための脱気装置をさらに備えており、かつ、
上記配管は、上記溶離液保持部と上記脱気装置との間を接続する第 1配管と、上 記脱気装置と上記カラムとの間を接続する第 2配管と、を含んでおり、
上記酸素難透過部は、上記第 2配管の全部または一部に設けられている、請求項 11に記載の液体クロマトグラフィ装置。
[13] 上記カラム力 の脱離液に基づいて、試料中の特定成分を検出するための検出機 構と、上記カラムと上記検出機構との間を接続する配管と、をさらに備えており、 上記配管は、酸素透過性の低レ、材料により形成された酸素難透過部を有してレ、る 、請求項 1に記載の液体クロマトグラフィ装置。
[14] 上記カラムに導入する試料を調製するための試料調製手段をさらに備えており、 上記試料調製手段は、試料中の酸素飽和度を 85%以上とするように構成されてい る、請求項 1に記載の液体クロマトグラフィ装置。
[15] 上記試料調製手段は、赤血球を含む検体を、赤血球を溶血させた後に希釈液を 用いて希釈し、かつ、希釈後の試料を一定時間放置して酸素飽和度を 85%以上と するように構成されている、請求項 14に記載の液体クロマトグラフィ装置。
[16] 上記試料調製手段は、希釈後の試料を一定時間大気開放させることにより、上記 試料中の酸素飽和度を 85%以上とするように構成されている、請求項 15に記載の 液体クロマトグラフィ装置。
[17] 上記試料調製手段は、 1分間以上大気開放させることにより、上記試料中の酸素飽 和度を 85%以上とするように構成されている、請求項 16に記載の液体クロマトグラフ ィ装置。
[18] 上記試料調製手段は、上記希釈液として酸素飽和度の高いものを用いるとともに、
|^耆れ¾ ^紙 (規則 91) 希釈後において一定時間放置するように構成されている、請求項 15に記載の液体ク 口マトグラフィ装置。
[19] 希釈後における放置時間は、 1分以上である、請求項 18に記載の液体クロマトダラ フィ装置。
[20] 上記希釈液として、酸素飽和度が 85%以上のものを用いる、請求項 18に記載の液 体クロマトグラフィ装置。
[21] 上記試料調製手段は、空気または酸素リッチなガスを用いて上記試料をパブリング するためのパブリング機構を有している、請求項 14に記載の液体クロマトグラフィ装 置。
[22] 上記カラムに導入する試料を調製するための試料調製手段をさらに備えており、 上記試料調製手段は、血球を含む試料における血球を多く含む層の上層部から 上記調製用試料を採取するように構成されて 、る、請求項 1に記載の液体クロマトグ ラフィ装置。
[23] 上記試料調製手段は、赤血球を含む血液試料を、赤血球がリッチな血球層と赤血 球がプア一な血漿層とに分離させたときの上記血球層の上層部力 調製用試料を採 取し、かつ上記調製用試料を用いて上記カラムに導入する導入用試料を調製するよ うに構成されて 、る、請求項 22の 、ずれかにに記載の液体クロマトグラフィ装置。
[24] 上記試料調製手段は、上記血球層と上記血漿層との界面を検出するための検出 手段と、
上記血球層の上層部から上記調製用試料を採取するためのサンプリングノズルと、 を備えており、
上記サンプリングノズルは、上記検出手段による検出結果に基づいて、上記血球 層の上層部力も上記調製用試料を採取するように動作させられる、請求項 23に記載 の液体クロマトグラフィ装置。
[25] 上記サンプリングノズルは、上記血球層における上記界面力 距離力 上記血球 層の厚みに対して 5〜30%の範囲にある領域から上記調製用試料を採取するように 動作させられる、請求項 24に記載の液体クロマトグラフィ装置。
[26] 上記サンプリングノズルは、上記血球層における上記界面からの距離が 0. 5〜5. Ommの範囲にある領域力 上記調製用試料を採取するように動作させられる、請求 項 24に記載の液体クロマトグラフィ装置。
[27] 試料中のグリコヘモグロビンを測定するように構成されて 、る、請求項 1に記載の液 体クロマトグラフィ装置。
[28] 充填剤を保持したカラムに対して、試料および溶離液を供給して試料中のグリコへ モグロビンを測定するように構成された液体クロマトグラフィ装置であって、
上記カラムにおけるォキシヘモグロビンとデォキシヘモグロビンの比率を、各回の 測定毎に、一定にするための手段を備えている、液体クロマトグラフィ装置。
PCT/JP2007/052269 2006-02-09 2007-02-08 液体クロマトグラフィ装置 WO2007091654A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07708253A EP1988392B1 (en) 2006-02-09 2007-02-08 Liquid chromatograph
JP2007557895A JP5260967B2 (ja) 2006-02-09 2007-02-08 液体クロマトグラフィ装置
US12/223,814 US8361390B2 (en) 2006-02-09 2007-02-08 Liquid chromatograph
CN2007800127528A CN101438151B (zh) 2006-02-09 2007-02-08 液体色谱仪装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006032123 2006-02-09
JP2006-032123 2006-02-09

Publications (1)

Publication Number Publication Date
WO2007091654A1 true WO2007091654A1 (ja) 2007-08-16

Family

ID=38345248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052269 WO2007091654A1 (ja) 2006-02-09 2007-02-08 液体クロマトグラフィ装置

Country Status (5)

Country Link
US (1) US8361390B2 (ja)
EP (2) EP2221616B1 (ja)
JP (1) JP5260967B2 (ja)
CN (1) CN101438151B (ja)
WO (1) WO2007091654A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017615A1 (en) * 2006-02-16 2009-01-21 Arkray, Inc. Degasifier and liquid chromatograph equipped therewith
EP2518653A2 (en) 2011-04-25 2012-10-31 Arkray, Inc. Information processing apparatus and user terminal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10434440B2 (en) 2013-08-12 2019-10-08 Waters Technologies Corporation Mobile phase controller for supercritical fluid chromatography systems
JP1574851S (ja) * 2016-08-29 2017-04-24
JP6855751B2 (ja) 2016-10-28 2021-04-07 コニカミノルタ株式会社 中継装置、中継装置用プログラム、および、情報処理システム
CN113663365A (zh) * 2020-05-14 2021-11-19 佛山汉腾生物科技有限公司 气泡陷阱机构及层析***

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133767A (en) 1977-06-14 1979-01-09 Spectra-Physics, Inc. Chromatographic apparatus and method
JPS60255120A (ja) * 1984-06-01 1985-12-16 Showa Denko Kk 脱気用装置
EP0489569A2 (en) 1990-12-04 1992-06-10 Spectra-Physics, Inc. Degassing a liquid
JPH0687870U (ja) * 1993-06-04 1994-12-22 アロカ株式会社 自動分注装置
JPH07120447A (ja) 1993-10-25 1995-05-12 Hitachi Ltd グリコヘモグロビン分析計
JPH07260545A (ja) * 1994-03-17 1995-10-13 Sony Corp 液の境界検出装置と液分離装置
US5693122A (en) 1994-12-23 1997-12-02 Hewlett Packard Company Basic structure for a liquid chromatography degasser
US5743941A (en) 1995-06-06 1998-04-28 Systec, Inc. Bottle top solvent degasser
JP2000275229A (ja) 1999-03-26 2000-10-06 Moore Kk 脱気装置
JP2001108506A (ja) * 1999-10-13 2001-04-20 Aloka Co Ltd 層境界面検出装置
JP2001133445A (ja) 1999-11-05 2001-05-18 Shimadzu Corp 液体クロマトグラフ
JP2003107063A (ja) 2001-09-28 2003-04-09 Nippon Soda Co Ltd 高速液体クロマトグラフィーの脱気装置及び脱気方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779708A (en) * 1972-01-31 1973-12-18 Us Navy Method and means for determining oxyhemoglobin association and dissociation curves of whole blood or other liquids
IT1019866B (it) * 1974-08-09 1977-11-30 Biomedix Ag Apparecchiatura per la determinazio ne della concentrazione di emoglobi na totale ossigenata e risotta car bossiemoglobina del la capacita dell emoglobina per lo ossigeno della saturazione per centuale in ossigeno e in ossido di carbonio nel sangue o in solu zioni di emoglobina
JPS6432703U (ja) * 1987-08-19 1989-03-01
KR960016715B1 (ko) * 1993-04-16 1996-12-20 주식회사 유공 신속 생화학적 산소요구량(bod) 측정방법 및 그 장치
US5691453A (en) * 1995-06-07 1997-11-25 Biopure Corporation Separation of polymerized hemoglobin from unpolymerized hemoglobin on hydroxyapatite using HPLC
AT406712B (de) * 1996-11-26 2000-08-25 Gottfried Mag Dr Stubauer Probenaufgabevorrichtung für eine einrichtung zur bestimmung der sauerstoffkonzentration einer probe
JPH11137907A (ja) * 1997-11-11 1999-05-25 Moore Kk 脱気装置
EP0973031B1 (en) * 1998-07-17 2005-01-12 Agilent Technologies, Inc. (a Delaware corporation) Apparatus for degassing liquids
US6248157B1 (en) * 1999-08-20 2001-06-19 Systec Inc. Vacuum degassing
US6322752B1 (en) * 1999-09-08 2001-11-27 Coulter International Corp. Method and apparatus for aspirating and dispensing liquids
EP2017615B1 (en) * 2006-02-16 2014-01-22 ARKRAY, Inc. Degasifier and liquid chromatograph equipped therewith
JP5041733B2 (ja) * 2006-05-23 2012-10-03 積水メディカル株式会社 ヘモグロビン類の測定方法
US8017016B2 (en) * 2006-07-07 2011-09-13 Sims Carl W Method and apparatus for pervaporation control in chromatographic systems
US7947112B1 (en) * 2007-07-16 2011-05-24 Rheodyne, Llc Method for degassing a fluid

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133767A (en) 1977-06-14 1979-01-09 Spectra-Physics, Inc. Chromatographic apparatus and method
JPS60255120A (ja) * 1984-06-01 1985-12-16 Showa Denko Kk 脱気用装置
EP0489569A2 (en) 1990-12-04 1992-06-10 Spectra-Physics, Inc. Degassing a liquid
JPH0687870U (ja) * 1993-06-04 1994-12-22 アロカ株式会社 自動分注装置
JPH07120447A (ja) 1993-10-25 1995-05-12 Hitachi Ltd グリコヘモグロビン分析計
JPH07260545A (ja) * 1994-03-17 1995-10-13 Sony Corp 液の境界検出装置と液分離装置
US5693122A (en) 1994-12-23 1997-12-02 Hewlett Packard Company Basic structure for a liquid chromatography degasser
US5743941A (en) 1995-06-06 1998-04-28 Systec, Inc. Bottle top solvent degasser
JP2000275229A (ja) 1999-03-26 2000-10-06 Moore Kk 脱気装置
JP2001108506A (ja) * 1999-10-13 2001-04-20 Aloka Co Ltd 層境界面検出装置
JP2001133445A (ja) 1999-11-05 2001-05-18 Shimadzu Corp 液体クロマトグラフ
JP2003107063A (ja) 2001-09-28 2003-04-09 Nippon Soda Co Ltd 高速液体クロマトグラフィーの脱気装置及び脱気方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1988392A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017615A1 (en) * 2006-02-16 2009-01-21 Arkray, Inc. Degasifier and liquid chromatograph equipped therewith
EP2017615A4 (en) * 2006-02-16 2009-07-29 Arkray Inc DEGASTER AND CHROMATOGRAPH IN ASSOCIATED LIQUID PHASE
EP2518653A2 (en) 2011-04-25 2012-10-31 Arkray, Inc. Information processing apparatus and user terminal

Also Published As

Publication number Publication date
EP1988392A1 (en) 2008-11-05
CN101438151B (zh) 2012-08-29
EP2221616A2 (en) 2010-08-25
EP2221616A3 (en) 2011-06-01
CN101438151A (zh) 2009-05-20
US20090275119A1 (en) 2009-11-05
JPWO2007091654A1 (ja) 2009-07-02
JP5260967B2 (ja) 2013-08-14
EP1988392A4 (en) 2009-04-08
EP2221616B1 (en) 2013-11-20
EP1988392B1 (en) 2012-08-22
US8361390B2 (en) 2013-01-29

Similar Documents

Publication Publication Date Title
EP2083274B1 (en) Blood analysis apparatus
JP5324913B2 (ja) 脱気装置およびそれを備えた液体クロマトグラフィ装置
US8268625B2 (en) Method of measuring glycated hemoglobin concentration and concentration measuring apparatus
JP5260967B2 (ja) 液体クロマトグラフィ装置
JP2007212277A (ja) 液体クロマトグラフィ装置
EP2015053B1 (en) Method for determination of glycosylated hemoglobin level and apparatus for determination of the level
EP1148337B1 (en) Method for analyzing impurities in a gas stream
EP2151682A1 (en) Substrate concentration measurement method and substrate concentration measurement apparatus
JP2012093352A (ja) 気泡除去方法、気泡除去装置、それを用いた分析装置、気泡除去制御プログラム、およびこのプログラムの記憶媒体
JP5044454B2 (ja) 液体クロマトグラフ装置及び液体クロマトグラフィー
JP2007240500A (ja) 液体クロマトグラフィ装置
JP6350307B2 (ja) 脱気装置
JP2001133445A (ja) 液体クロマトグラフ
JP2007240499A (ja) 試料調製方法および液体クロマトグラフィ装置
EP1063511A2 (en) Device for analyzing organic compounds, particularly in aqueous and gaseous samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007557895

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007708253

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780012752.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12223814

Country of ref document: US