WO2007091371A1 - 直流電力貯蔵装置 - Google Patents

直流電力貯蔵装置 Download PDF

Info

Publication number
WO2007091371A1
WO2007091371A1 PCT/JP2006/324707 JP2006324707W WO2007091371A1 WO 2007091371 A1 WO2007091371 A1 WO 2007091371A1 JP 2006324707 W JP2006324707 W JP 2006324707W WO 2007091371 A1 WO2007091371 A1 WO 2007091371A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power storage
storage medium
power
regenerative
Prior art date
Application number
PCT/JP2006/324707
Other languages
English (en)
French (fr)
Inventor
Tadashi Uemura
Original Assignee
Meidensha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corporation filed Critical Meidensha Corporation
Priority to CN2006800516983A priority Critical patent/CN101365606B/zh
Publication of WO2007091371A1 publication Critical patent/WO2007091371A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/02Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a DC power storage device that is connected in parallel to an outside line of a DC electric railway and supplies electric power during electric vehicle operation and absorbs electric power during regenerative operation, and in particular, measures against voltage drop on the outside line
  • the present invention also relates to a charge / discharge control method for a power storage medium for regenerative power absorption measures for electric vehicles and regenerative invalidation prevention measures for electric vehicles.
  • the DC power regenerated by the electric vehicle 1 is converted into AC power with the voltage and frequency controlled by the inverter device 2 and the inverter transformer 3 with the outside line as the DC power source. Regenerate to AC power source side.
  • an AC load that absorbs regenerative power is required, and a transformer, an AC circuit breaker, an inverter device, a DC circuit breaker, and the like are necessary, and the entire device becomes expensive.
  • the DC power regenerated by the electric vehicle 1 is converted into DC power that is voltage-controlled by the chopper device 4 and absorbed by the regenerative resistance device 5 as heat.
  • the DC side of rectifier 6 is equipped with a DC power storage device consisting of step-up / down booster 7 and DC power storage device 8, and the external line voltage is reduced by regenerative operation of electric vehicle 1.
  • step-down control of the external line voltage is performed by the chiba 7 and the regenerative power is absorbed as the charging current of the DC power storage device 8 through the external line force chiba 7 (for example, Patent Document 1, Patent Document) 2).
  • the outside line voltage is boosted and controlled from the DC power storage device 8 to the outside line through the DC 7
  • the DC power storage device 8 By supplying power to the side, it can also be used for voltage drop countermeasures. It is also possible to level the load from the AC power supply side.
  • FIG. 5 shows a main circuit configuration of the DC power storage device.
  • the step-up / down booster 7 includes a semiconductor switch SW1 having one end connected to the outer line in a direction in which the charging current flowing from the outer line can be controlled, and a high-voltage side arm composed of the diode D1 connected in reverse parallel to the semiconductor switch SW1, and the semiconductor
  • the switch SW1 has the same current control direction and the semiconductor switch SW2 connected in series with the other end of the semiconductor switch SW1, and the low-voltage side arm composed of the diode D2 connected in reverse parallel to the semiconductor switch SW2, and the other of the semiconductor switch SW1. It consists of a rear tuttle L with one end connected to the end and the other end connected to an electric double layer capacitor EDLC.
  • switch SW2 is operated as a chopper, a short-circuit current flows from EDLC to EDLC through EDLC through L ⁇ SW2 during the ON period, and electromagnetic energy is accumulated in rear tuttle L, and from EDLC to rear tuttle L ⁇ D1 during the OFF period.
  • a discharge current is sent to the outside line along the path to suppress the voltage drop on the outside line.
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 2001-260718
  • the terminal voltage (standby voltage) of the electric double layer capacitor is set to the external line voltage in the configuration shown in FIG.
  • the value is lower than the lower limit voltage of the rated voltage range of, and is set as a value to prevent discharge from the electric double layer capacitor to the outside line through the path of the rear tuttle L ⁇ diode D1.
  • the terminal voltage of the electric double layer capacitor is externally Increase to a value close to the lower limit voltage of the rated voltage range of the line voltage.
  • the terminal voltage (standby voltage) of the electric double layer capacitor is 1200V or less.
  • the voltage drop of the external voltage is suppressed from the electric double layer capacitor by the step-up / step-down control using the step-up / step-down chip.
  • the terminal voltage of the electric double layer capacitor is set lower than the lower limit voltage of the rated voltage range of the external line voltage, so that the electric energy stored in the electric double layer capacitor is limited. .
  • the number of electric double layer capacitors in parallel and increase the controllable current capacity of the buck-boost chiba it is conceivable to increase the number of electric double layer capacitors in parallel and increase the controllable current capacity of the buck-boost chiba, but this leads to an increase in the size and cost of the DC power storage device. .
  • the power that can be kept within the same voltage range as the charging operation for full voltage when the voltage drop countermeasure is taken can be suppressed more when the terminal voltage of the electric double layer capacitor is high, and when the regenerative power is absorbed, the electric double layer capacitor The more regenerative power can be absorbed when the terminal voltage of the battery is low and the amount of charging power is small. Since these powers use the amount of discharged power supplied and the amount of charged power absorbed in the same voltage range, the amount of power that can simultaneously handle both the voltage drop countermeasure and the regenerative power absorption countermeasure is the amount of power at full charge. And it is less than the amount of power at the time of the minimum charge, and both functions cannot be satisfied at the same time.
  • Patent Document 1 and Patent Document 2 When absorbing regenerative power using a DC power storage device, Patent Document 1 and Patent Document 2 cannot absorb regenerative power when the power storage medium such as an electric double layer capacitor is fully charged, and When regenerative driving is performed, regenerative invalidation occurs. This necessitates the installation of a regenerative power absorption resistance device. In addition, since the electric power storage medium remains fully charged until an electric vehicle that operates in a row is displayed, if the regenerative operation of the electric vehicle continues, regenerative invalidation will occur continuously.
  • An object of the present invention is to increase the sum of the amount of power supplied to the outside line and the amount of absorbed power compared to the conventional device that does not increase the size and cost of the DC power storage device, and increases the voltage of the outside line.
  • An object of the present invention is to provide a direct current power storage device that can cope with descent suppression and regenerative power absorption of an electric vehicle, and can prevent regenerative invalidation of an electric vehicle.
  • the present invention provides a DC power storage device in which a DC Z-DC converter such as a buck-boost chiba is provided between a power storage medium such as an electric double layer capacitor and an external line.
  • a DC Z-DC converter such as a buck-boost chiba
  • the external line voltage rises to the no-load voltage of the rectifier exceeding the upper limit voltage of the rated voltage range of the external line.
  • the external line and the power storage medium are controlled by the continuity control of the DC Z-DC converter.
  • the terminal voltage of the power storage medium is charged to the rectifier no-load voltage by
  • the continuity control of the DC Z-DC converter device controls the connection between the external line and the power storage medium.
  • the regenerative power from the electric vehicle in regenerative operation is absorbed as the charging power of the power storage medium, and the regenerative current narrowing function of the electric vehicle is used to increase the pant point voltage of the electric vehicle that performs regenerative operation. Therefore, when the external line voltage falls below the lower limit voltage, the terminal voltage of the power storage medium is stepped down or stepped up to discharge from the power storage medium to the outside line.
  • the line voltage is held at the lower limit voltage and is characterized by the following configuration.
  • a DC power storage device in which a DC Z-DC converter is provided between the power storage medium and the outside line of the DC electric railway,
  • the regenerative power absorption means exceeds the upper limit voltage due to absorption of regenerative power from the electric vehicle, and when the external line voltage rises due to conduction between the power storage medium and the external line, the regenerative power possessed by the electric vehicle
  • the terminal voltage of the power storage medium is suppressed to be equal to or less than the maximum voltage of the terminal voltage in cooperation with the regenerative current narrowing operation by the current narrowing function.
  • the DC Z-DC converter conducts between the external line and the power storage medium, and charges the terminal voltage of the power storage medium to the no-load voltage of the rectifier. It is characterized by that.
  • the terminal voltage is lower than the external line voltage when the external line is equal to or higher than the lower limit voltage and the terminal voltage of the power storage medium is equal to or lower than the upper limit voltage of the external line.
  • the power storage medium is charged from the external line side while stepping down the external line voltage, and when the terminal voltage is higher than the external line voltage, the power storage medium is charged from the external line side while increasing the external line voltage. It is characterized by.
  • the terminal voltage of the power storage medium is greater than the external voltage.
  • a discharge control switch for controlling or cutting off the discharge current from the power storage medium to the outside line is provided.
  • the semiconductor switch SW1 whose one end is connected to the external line in a direction that can control the charging current flowing from the external line cable, and the high-voltage side arm composed of the diode D1 connected in reverse parallel to the semiconductor switch SW1, and the current to the semiconductor switch SW1 can be controlled.
  • Low-voltage side arm consisting of semiconductor switch SW2 in the same direction and connected in series with the other end of semiconductor switch SW1 and diode D2 connected in reverse parallel to semiconductor switch SW2, and one end connected to the other end of semiconductor switch SW1
  • a step-up / down pressure chiyotsuba consisting of the rear tuttle L
  • Discharge control comprising a semiconductor switch SW3 connected between the other end of the rear tuttle L and the power storage medium, and capable of controlling a discharge current from the power storage medium, and a diode D3 connected in reverse parallel to the semiconductor switch SW3 With the switch,
  • FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention.
  • the main circuit configuration different from that in FIG. 5 is connected between the other end of the rear tuttle L and the power storage medium.
  • a discharge control switch 9 comprising a semiconductor switch SW3 oriented to control the discharge current from the power storage medium and a diode D3 connected in reverse parallel to the semiconductor switch SW3 is provided.
  • the electric double layer capacitor uses a capacitor whose maximum charging voltage exceeds the maximum voltage that is expected to be generated on the outside line due to regenerative power from the electric vehicle.
  • the rectifier is charged to no-load voltage exceeding the upper limit of the rated voltage range.
  • (b) Regenerative power absorption countermeasures and regenerative invalidation prevention countermeasures are provided in order to establish conduction between the external line and the electric double layer capacitor when the external line voltage exceeds the upper limit voltage of the rated voltage range.
  • the switches SW1 and SW3 are turned on (conducted) to absorb the regenerative power as the charging power for the electric double layer capacitor, and this power absorption prevents the electric vehicle from being regenerated invalid due to a sudden rise in the external voltage.
  • the regenerative power absorbed by charging the electric double layer capacitor can be effectively used by discharging it to the electric vehicle that operates the electric double layer capacitor.
  • the electric double layer capacitor is cooperated with the regenerative current narrowing operation by the regenerative current narrowing function of the electric vehicle.
  • the terminal voltage and the external line voltage are coordinated so that the maximum voltage is not exceeded! / ⁇ , and regenerative invalidation is not caused by the regenerative current limiting control of the electric vehicle even in this state!
  • the narrowing down of the regenerative current by the electric vehicle is provided in an existing electric vehicle, and the punter voltage of the electric vehicle is monitored, and when this voltage exceeds a specified value, the regenerative current is reduced accordingly. By narrowing down from 100% to 0%, the punter point voltage is prevented from rising excessively.
  • the aperture ratio is 1.0 (0% aperture), and when it is 1800V or more, the aperture ratio is 0 (diaphragm amount 100%). Between 1600V and 1800V, the aperture ratio is reduced linearly in proportion to the voltage to 0 to suppress the regenerative current. Excess braking energy due to this regenerative current reduction is absorbed by the mechanical brake.
  • the rated voltage range of the external line is DC 1600V (upper limit) to 1200V (lower limit), and the no-load voltage of rectifier 6 is DC 1620V.
  • the maximum charging voltage of the electric double layer capacitor EDLC is DC 18 OOV.
  • the control device 10 turns on (conducts) the semiconductor switch SW 1 of the buck-boost chopper 7 when the external line voltage is 1600 V or more.
  • the control device 10 supplies electric power from the rectifier 6 of the feeder substation.
  • the multilayer capacitor EDLC is charged, and the charging voltage is charged to 1620V, the no-load voltage of rectifier 6.
  • the control device 10 supplies the electric power from the electric double layer capacitor EDLC in parallel with the power supply from the rectifier 6. Since the terminal voltage of the electric double layer capacitor EDLC is in an equilibrium state, the discharge control switch 9 is turned on (conducted). However, when the external line voltage falls below 1600V (however, 1200V or more), the discharge control switch 9 is turned off, and only the rectifier 6 supplies power to the power line within the rated voltage range of the external line.
  • the terminal voltage of the electric double layer capacitor EDLC rises due to the regenerative power of the electric car, and the electric car's punter point voltage also rises.
  • the regenerative current is also reduced by the function.
  • the waveform A) in Fig. 3 shows that the terminal voltage of the electric double layer capacitor EDL C naturally decreases because the external switch tries to maintain voltage balance with the external line voltage in the surrounding section by turning on the semiconductor switch SW3. Then, if there is no load, it will settle to 1620V, the rectifier no-load voltage.
  • the electric double layer capacitor EDLC and the electric vehicle are supplied with power up to the rectifier no-load voltage, and below the no-load voltage
  • the rectifier and electric double-layer capacitor EDLC supply power to the electric car in parallel, and the external voltage settles below the upper limit voltage by the electric car that operates in a row (waveform B in Fig. 3).
  • the outside line voltage may temporarily exceed the rated voltage upper limit (1600V), but eventually it will fall below the rectifier no-load voltage or the rated voltage upper limit.
  • the terminal voltage of the electric double layer capacitor EDLC is controlled in the range of 16 OOV to 1800V.
  • the control device 10 performs switching control of the semiconductor switch SW3.
  • the terminal voltage of the electric double layer capacitor EDLC is stepped down to start discharging the electric double layer capacitor EDLC force through the rear tuttle L and the diode D1, and the voltage drop is suppressed in cooperation with the power supply from the rectifier 6 side.
  • the control device 10 controls the semiconductor switch SW3 to turn off and stops discharging from the electric double layer capacitor EDLC. Switch the buck-boost chopper to boost control and charge the electric double layer capacitor EDLC (Fig. 3 Waveform C '), control stops when charging up to 1600V.
  • control device 10 When the external voltage returns to the lower limit of 1200 V or more by suppressing this voltage drop (time t6: waveform D in Fig. 3), the control device 10 charges the electric double layer capacitor EDLC by the step-down control of the step-up / down booster 7. (Waveform D 'in Fig. 3), step-down control is stopped when charging up to 1600V.
  • the control device 10 stops the control of the step-up / step-down capacitor.
  • the electric double layer capacitor EDLC is charged (waveform E 'in Fig. 3).
  • the terminal voltage of the electric double layer capacitor EDLC is controlled in the range of 500V to 1600V.
  • the electric double layer capacitor EDLC can be charged and discharged in a wider voltage range (500V to 1600V) than the conventional device when taking measures against voltage drop.
  • the electric double layer capacitor EDLC has the same capacity as that of the conventional device. Even without increasing the number of units in parallel, the amount of power that can be supplied to suppress the voltage drop can be greatly increased.
  • charge / discharge control is performed so that the terminal voltage of the electric double layer capacitor is close to the upper limit voltage of the rated voltage range of the external line when the external line is not loaded and during normal load.
  • the terminal voltage of the electric double layer capacitor may be charged and discharged within the range of the lower limit voltage and the upper limit voltage of the rated voltage range of the external line.
  • the terminal of the electric double layer capacitor is satisfied while satisfying both functions of voltage drop countermeasures and regenerative power absorption countermeasures from this state.
  • the terminal voltage of the electric double layer capacitor is naturally reduced while balancing the voltage of the entire outside line, and the regenerative electric vehicle continues. If the electric double layer capacitor continues to rise, regenerative deactivation will be prevented by controlling the electric vehicle current.
  • regenerative power is absorbed when the external line voltage exceeds the upper limit voltage of the rated voltage range, and voltage drop occurs when the external line voltage falls below the lower limit voltage of the rated voltage range. Can be suppressed.
  • the electric double layer capacitor can be charged and discharged in a wide voltage range. Therefore, the electric double layer capacitor can be regenerated while maintaining the same amount of power as the full charge of the conventional device. Since power can be absorbed, both the functions of voltage drop countermeasures and regenerative power absorption countermeasures are satisfied, and when the terminal voltage of the electric double layer capacitor exceeds the no-load voltage of the rectifier, Even if it does not exist, the terminal voltage of the electric double layer capacitor naturally decreases while balancing the voltage of the entire outside line, and even if the electric vehicle that performs regenerative operation continues to rise, the terminal voltage of the electric double layer capacitor continues to rise. Regenerative invalidation does not occur due to electric vehicle current throttling control.
  • the amount of power that can be supplied for suppressing the voltage drop without increasing the size and cost of the DC power storage device can be significantly increased.
  • FIG. 1 is a circuit configuration diagram of a DC power storage device showing an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of regenerative current narrowing characteristics of an electric vehicle.
  • FIG. 5 is a main circuit configuration diagram of a conventional DC power storage device.
  • FIG. 6 is an operation waveform diagram for preventing regeneration invalidation and voltage drop suppression of an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

【課題】直流電力貯蔵装置の大型化およびコスト高を招くことなく、外線の電圧降下抑制、電気車の回生電力吸収および電気車の回生失効防止をする。 【解決手段】電気二重層キャパシタEDLCの端子電圧(待機電圧)は、き電系統の無負荷時および通常負荷時には外線の定格電圧範囲の上限電圧近くにしておく。  外線電圧が定格電圧範囲の上限電圧を越えたときには、回生電力を電気二重層キャパシタで吸収し、これに並行して、電気車が回生電流絞り動作によって、電気二重層キャパシタの端子電圧がその最大電圧を超えないようにする(回生失効防止)。外線電圧が定格電圧範囲の下限電圧を下回ったときには、昇降圧チョッパの降圧動作と昇圧動作による電気二重層キャパシタからの放電電力によって外線電圧がその定格電圧範囲の下限を下回らないよう保持する(電圧降下抑制)。

Description

明 細 書
直流電力貯蔵装置
技術分野
[0001] 本発明は、直流電気鉄道の外線に並列に接続され、電気車のカ行運転時に電力 を供給および回生運転時の電力を吸収する直流電力貯蔵装置に係り、特に外線の 電圧降下対策、電気車の回生電力吸収対策および電気車の回生失効防止対策の ための電力貯蔵媒体の充放電制御方式に関する。
背景技術
[0002] 直流き電系統において、閑散線区の変電所は、その間隔が比較的長い距離を有し て設備される。このため、変電所力も遠隔した地点に位置する電気車では、その起動 時など、大きな電流が流れるときに外線の電圧降下が大きくなり、パンタ点の電圧が 規定値よりも低くなつてしまうことが予測される。この電圧降下を補償するため、電源 送り出し変電所 (DCVR)を設置したり、電気車側でノッチ抑制を行って ヽる。
[0003] また、閑散線区では、電気車が回生運転状態にあるときに、この回生エネルギーを 他の電気車でカ行電力として吸収する機会が少ないため、電気車側で回生失効 (電 気制動不能)となり易い。また、閑散地区でなくとも、電気車が回生運転状態のときに 他の電気車がカ行状態を終了した場合には、負荷の急激な減少による回生失効が 起こる。
[0004] この回生失効では、電気車側は回生動作を中止し、電気ブレーキ力 機械ブレー キに制動切り替えを行うが、切り替え操作の移行時間による制動遅れが生じる。この 制動遅れにより、電気車の定点停止の失敗、機械ブレーキを急制動することで、車輪 とブレーキシュ一の磨耗増による寿命短縮などの問題が残る。この回生失効防止の ための回生電力吸収対策としては以下の方式のものがある。
[0005] ( 1)インバータ装置による交流電源への電力回生方式
図 4の(a)に示すように、電気車 1が回生する直流電力を、外線側を直流電源とする インバータ装置 2とインバータ用変圧器 3によって電圧と周波数を制御した交流電力 に変換し、交流電源側に回生する。 [0006] この方式の場合、回生電力を吸収する交流負荷が必要であること、及び変圧器、 交流遮断器、インバータ装置、直流遮断器等が必要であり、装置全体が高コストにな る。
[0007] (2)チヨツバによる回生抵抗装置への電力回生方式
図 4の (b)に示すように、電気車 1が回生する直流電力を、チヨッパ装置 4によって 電圧制御した直流電力に変換し、これを回生抵抗装置 5で熱として吸収させる。
[0008] この方式の場合、回生電力の全てを抵抗装置によって熱吸収させるため、回生電 力は有効利用されないことや、大型の抵抗装置が必要になる。また、抵抗装置に発 生する熱量の放散処理のための換気設備や放熱設備が必要であり、チヨツバ等を含 めると比較的高価な設備になる。
[0009] (3)直流電力貯蔵装置を利用した電力回生方式
図 4の (c)に示すように、整流器 6の直流側に、昇降圧チヨツバ 7と直流電力蓄積装 置 8からなる直流電力貯蔵装置を設備し、電気車 1の回生運転によって外線電圧が その定格電圧範囲の上限を超えた場合は、チヨツバ 7により外線電圧を降圧制御し、 外線力 チヨツバ 7を通して直流電力蓄積装置 8の充電電流として回生電力を吸収さ せる(例えば、特許文献 1、特許文献 2参照)。
[0010] この方式は、電気車のカ行運転によって外線の定格電圧範囲の下限を下回った場 合は、チヨツバ 7により外線電圧を昇圧制御し、直流電力蓄積装置 8からチヨツバ 7を 通して外線側に電力供給を行うことで電圧降下対策にも利用できる。また、交流電源 側からみた負荷の平準化を図ることもできる。
[0011] 図 5は、直流電力貯蔵装置の主回路構成を示す。昇降圧チヨツバ 7は、外線から流 れ込む充電電流を制御できる向きに一端を外線に接続した半導体スィッチ SW1およ び該半導体スィッチ SW1と逆並列接続したダイオード D1からなる高圧側アームと、 前記半導体スィッチ SW1と電流を制御できる向きが同じで且つ半導体スィッチ SW1 の他端と直列接続した半導体スィッチ SW2および該半導体スィッチ SW2と逆並列 接続したダイオード D2からなる低圧側アームと、前記半導体スィッチ SW1の他端に 一端を接続して他端を電気二重層キャパシタ EDLCに接続したリアタトル Lとからなる [0012] この構成において、図 6に示すように、電気車 1の回生動作で外線電圧が定格電圧 範囲の上限を超えたときに、昇降圧チヨツバにより外線電圧を降圧する制御を行う。 すなわち、スィッチ SW1をスイッチング動作させ、そのオン期間には外線から SW1→ Lを通して EDLCに充電電流を流し、そのオフ期間にはリアタトル Lから EDLC→D2 を通した循環電流で EDLCに充電電流を流し、回生電力を EDLCの充電電力として 回生する。
[0013] また、図 6に示すように、電気車 1のカ行動作で外線電圧が定格電圧範囲の下限を 下回ったときに、昇降圧チヨツバにより外線電圧を昇圧する制御を行う。すなわち、ス イッチ SW2をチヨッパ動作させ、そのオン期間には EDLCから L→SW2を通して ED LCに短絡電流を流してリアタトル Lに電磁エネルギーとして蓄積し、そのオフ期間に は EDLCからリアタトル L→D1の経路で外線に放電電流を流し、外線の電圧降下を 抑制する。
[0014] なお、直流電力蓄積装置 8には、電気二重層キャパシタのほかに蓄電池が使用さ れる。この蓄電池を用いる場合は、長時間のエネルギー蓄積および蓄積量に優れる 1S 急速充放電特性で劣り、立ち上がりの速い回生電力等の充電に遅れが生じるこ とや、電気車の始動'加速時等の負荷急変に追従した放電に遅れが生じ、外線電圧 の急変や回生失効を招く恐れがある。一方、電気二重層キャパシタを用いる場合は、 急速充放電性能に優れ、電気車からの回生電力吸収や、負荷急変に応動できる。 特許文献 1:日本国の公開特許公報である特開 2000— 233669号公報
特許文献 2:日本国の公開特許公報である特開 2001— 260718号公報
発明の開示
[0015] (第 1の課題)
電気二重層キャパシタと昇降圧チヨツバで構成する直流電力貯蔵装置を利用して、 外線の電圧降下抑制を図る場合、図 5の構成では、電気二重層キャパシタの端子電 圧 (待機電圧)を外線電圧の定格電圧範囲の下限電圧よりも低!、値としておき、電気 二重層キャパシタからリアタトル L→ダイオード D1の経路による外線側への放電を防 止する。また、外線の電圧降下発生に際して、電気二重層キャパシタカも供給できる 電力量 (蓄積電力量)の最大化を図るため、電気二重層キャパシタの端子電圧を外 線電圧の定格電圧範囲の下限電圧に近い値まで高めておく。
[0016] 例えば、 1500V系統では、外線電圧が 1200V (外線電圧の定格電圧範囲の下限 )以下で電気二重層キャパシタカ 電力供給する場合、電気二重層キャパシタの端 子電圧 (待機電圧)を 1200V以下とし、この電気二重層キャパシタから昇降圧チヨッ パによる昇圧制御で外線電圧の電圧降下を抑制する。
[0017] 上記のように、図 5の構成では、電気二重層キャパシタの端子電圧は、外線電圧の 定格電圧範囲の下限電圧よりも低くするため、電気二重層キャパシタの蓄積電力量 が制限される。この蓄積電力量を高めるには、電気二重層キャパシタの並列台数を 多くすると共に昇降圧チヨツバの可制御電流容量を高めることが考えられるが、これ では直流電力貯蔵装置の大型化およびコスト高を招く。
[0018] (第 2の課題)
直流電力貯蔵装置を利用して電圧降下抑制と回生電力吸収を行う場合、特許文 献 1、特許文献 2では、外線電圧が低下したときに昇降圧チヨツバにより電気二重層 キャパシタ EDLC端子電圧を昇圧制御して電圧降下を抑制し、外線電圧が上昇した ときに昇降圧チヨツバにより外線電圧を降圧制御して回生電力を吸収する。この場合 、電圧降下対策と回生電力吸収対策の両方に対応可能にするためには、電気二重 層キャパシタの端子電圧 (待機電圧)は、電圧降下抑制のための放電動作時と回生 電力吸収のための充電動作時とで同じ電圧範囲にされる力 電圧降下対策時には 電気二重層キャパシタの端子電圧が高い満充電の方がより多くの電圧降下を抑制で き、回生電力吸収時には電気二重層キャパシタの端子電圧が低い充電電力量が少 ない方がより多くの回生電力を吸収できる。これら力 、同じ電圧範囲で供給する放 電電力量と吸収する充電電力量とを利用するため、電圧降下対策と回生電力吸収 対策の両機能を同時に対応可能な電力量は前記満充電時の電力量や最低充電時 の電力量に比べて少なくなり、両機能を同時に満足できない。
[0019] このため、電圧降下対策と回生電力吸収対策の両機能に対応可能にした充放電 電力量を確保するには、上記の第 1の課題と同様に、電気二重層キャパシタの並列 台数を多くすると共に昇降圧チヨツバの可制御電流容量を高めることになり、直流電 力貯蔵装置の大型化およびコスト高になる。 [0020] なお、充放電電力量を高めるため、電圧降下対策用として端子電圧 (待機電圧)を 低くした直流電力貯蔵装置と、回生電力吸収対策用として端子電圧を高くした直流 電力貯蔵装置との 2台の装置構成とすることも考えられるが、これでは設備の大型化 およびコスト高の課題を解消できるものでな 、。
[0021] (第 3の課題)
直流電力貯蔵装置を利用して回生電力の吸収を行う場合、特許文献 1、特許文献 2では電気二重層キャパシタなどの電力貯蔵媒体が満充電の場合、回生電力の吸 収ができず、電気車が回生運転を行うと回生失効が起こる。このため、回生電力吸収 用抵抗装置の設置が必要になってしまう。また、カ行運転する電気車があらわれるま で電力貯蔵媒体は満充電のままであるため、電気車の回生運転が連続した場合に は連続して回生失効が起こってしまう。
[0022] 本発明の目的は、直流電力貯蔵装置の大型化およびコスト高を招くことなぐ従来 装置と比べて外線への供給電力量と吸収電力量との和を増やし、より多くの外線の 電圧降下抑制、電気車の回生電力吸収との対応を可能にするとともに、電気車の回 生失効防止を可能にした直流電力貯蔵装置を提供することにある。
[0023] 本発明は、前記の課題を解決するため、電気二重層キャパシタなどの電力貯蔵媒 体と外線との間に昇降圧チヨツバなどの直流 Z直流変換装置を設けた直流電力貯蔵 装置とし、無負荷時には外線の定格電圧範囲の上限電圧を越える整流器無負荷電 圧まで外線電圧が上昇するので、前記上限電圧を越えたときに、直流 Z直流変換装 置の導通制御で外線と電力貯蔵媒体の間を導通させることで、電力貯蔵媒体の端子 電圧を整流器無負荷電圧まで充電し、
回生電力吸収対策には外線電圧 (昇降圧チヨツバと外線とを接続する端子の電圧 、以下同じ)が上限電圧を越えたときに、直流 Z直流変換装置の導通制御で外線と 電力貯蔵媒体の間を導通させ、回生運転の電気車からの回生電力を電力貯蔵媒体 の充電電力として吸収させると共に、回生運転を行う電気車のパンタ点電圧の上昇 には、電気車がもつ回生電流絞り込み機能を利用して電気車の回生失効を防止し、 電圧降下対策には外線電圧が下限電圧を下回ったときに電力貯蔵媒体の端子電 圧を降圧制御または昇圧制御を行 ヽ、電力貯蔵媒体から外線に放電させることで外 線電圧をその下限電圧に保持するもので、以下の構成を特徴とする。
[0024] (1)電力貯蔵媒体と直流電気鉄道の外線との間に直流 Z直流変換装置を設けた 直流電力貯蔵装置であって、
前記直流 Z直流変換装置は、
外線電圧が外線の定格電圧範囲の上限電圧を越えたとき、外線と前記電力貯蔵 媒体との間を導通することで該電力貯蔵媒体を充放電し、外線電圧が前記上限電圧 を下回ったとき、外線と前記電力貯蔵媒体との間を遮断する回生電力制御手段と、 外線電圧が外線の定格電圧範囲の下限電圧を下回り、且つ前記電力貯蔵媒体の 端子電圧が前記外線電圧より高いとき、該電力貯蔵媒体の端子電圧を降圧させなが ら該電力貯蔵媒体から外線側に放電し、外線電圧が前記下限電圧を下回り、且つ 前記電力貯蔵媒体の端子電圧が前記外線電圧より低!ヽとき、該電力貯蔵媒体の端 子電圧を昇圧させながら該電力貯蔵媒体から外線側に放電する電圧降下抑制手段 と、
を備えたことを特徴とする。
[0025] (2)前記回生電力吸収手段は、電気車からの回生電力の吸収によって前記上限 電圧を越え、前記電力貯蔵媒体と外線との導通で外線電圧が上昇したとき、電気車 がもつ回生電流絞り込み機能による回生電流絞り込み動作との協働によって、前記 電力貯蔵媒体の端子電圧を該端子電圧の最大電圧以下に抑制することを特徴とす る。
[0026] (3)前記直流 Z直流変換装置は、外線の無負荷時には、外線と前記電力貯蔵媒 体との間を導通し、該電力貯蔵媒体の端子電圧を整流器の無負荷電圧まで充電す ることを特徴とする。
[0027] (4)前記直流 Z直流変換装置は、外線が前記下限電圧以上で前記電力貯蔵媒体 の端子電圧が外線の上限電圧以下のとき、前記端子電圧が外線電圧より低!、場合 には外線電圧を降圧させながら外線側から該電力貯蔵媒体に充電し、前記端子電 圧が外線電圧より高い場合には外線電圧を昇圧させながら外線側から該電力貯蔵 媒体に充電する手段を備えたことを特徴とする。
[0028] (5)前記直流 Z直流変換装置は、前記電力貯蔵媒体の端子電圧が外線電圧より も高 ヽ場合、該電力貯蔵媒体から外線側への放電電流を制御または遮断する放電 制御スィッチを備えたことを特徴とする。
[0029] (6)前記直流 Z直流変換装置の主回路は、
外線カゝら流れ込む充電電流を制御できる向きに一端を外線に接続した半導体スィ ツチ SW1および該半導体スィッチ SW1と逆並列接続したダイオード D1からなる高圧 側アームと、前記半導体スィッチ SW1と電流を制御できる向きが同じで且つ半導体 スィッチ SW1の他端と直列接続した半導体スィッチ SW2および該半導体スィッチ S W2と逆並列接続したダイオード D2からなる低圧側アームと、前記半導体スィッチ S W1の他端に一端を接続したリアタトル Lとからなる昇降圧チヨツバと、
前記リアタトル Lの他端と前記電力貯蔵媒体との間に接続し、該電力貯蔵媒体から の放電電流を制御できる向きの半導体スィッチ SW3および該半導体スィッチ SW3と 逆並列接続したダイオード D3からなる放電制御スィッチと、
を備えたことを特徴とする。
発明を実施するための最良の形態
[0030] 図 1は、本発明の実施形態を示す回路構成図であり、主回路構成が図 5と異なる部 分は、リアタトル Lの他端と前記電力貯蔵媒体との間に接続し、該電力貯蔵媒体から の放電電流を制御できる向きの半導体スィッチ SW3および該半導体スィッチ SW3と 逆並列接続したダイオード D3からなる放電制御スィッチ 9を設けた点にある。
[0031] 制御装置 10は、昇降圧チヨツバ 7の昇降圧制御機能に加えて、放電制御スィッチ 9 のスイッチングおよび導通 Z遮断制御機能を設け、各種電圧条件設定と電圧検出信 号の監視の基に、以下の制御手段を設ける。
[0032] なお、本実施形態の説明と図面は、き電変電所の整流器の直流側、電力貯蔵装置 のき電線出力側、き電線、架線およびトロリ線を総称して外線と呼称して説明する。
[0033] (a)電気二重層キャパシタは、その充電電圧上限を、電気車からの回生電力によつ て外線に発生すると想定される最大電圧以上のものを使用し、外線の無負荷時には 外線の定格電圧範囲の上限を超える整流器の無負荷電圧まで充電されている。
[0034] (b)回生電力吸収対策と回生失効防止対策は、外線電圧が定格電圧範囲の上限 電圧を越えたとき、外線と前記電気二重層キャパシタとの間を導通させるために、ス イッチ SW1と SW3をオン (導通)制御し、回生電力を電気二重層キャパシタへの充 電電力として吸収させ、この電力吸収によって外線電圧の急激な電圧上昇による電 気車の回生失効を防止すると共に、電気二重層キャパシタへの充電によって吸収し た回生電力を電気二重層キャパシタカ カ行運転を行う電気車への放電によって回 生電力を有効利用できるようにする。
[0035] この電力吸収による外線電圧の上昇が継続し、さらに外線電圧が上昇した場合に は、電気車がもつ回生電流絞り込み機能による回生電流絞り込み動作との協働によ つて、電気二重層キャパシタの端子電圧と外線電圧がその最大電圧を超えな!/ヽよう に協調されると共に、この状態においても電気車の回生電流絞り込み制御によって 回生失効を起こさな!/、ようにする。
[0036] (c)電圧降下対策は、外線電圧が定格電圧範囲の下限電圧を下回ったとき、外線 電圧より電気二重層キャパシタの端子電圧が高い場合には、放電制御スィッチ 9の 半導体スィッチ SW3をスイッチング動作させ、前記電気二重層キャパシタの端子電 圧を降圧制御して電気二重層キャパシタカ 外線側に放電させ、この放電によって 外線電圧をその定格電圧範囲の下限電圧以上に保持する。さらに、この放電で電気 二重層キャパシタの端子電圧が外線電圧よりも低くなつたときに半導体スィッチ SW3 をオン (導通)制御および昇降圧チヨッパ 7の半導体スィッチ SW2をスイッチング動作 に切り替えて、前記電気二重層キャパシタの端子電圧を昇圧制御して放電を継続さ せ、外線電圧をその定格電圧範囲の下限電圧以上に保持する。
[0037] なお、電気車による回生電流の絞り込みは、既存の電気車に装備されるものであり 、電気車のパンタ点電圧を監視し、この電圧が規定値以上のときにはそれに応じて 回生電流を 100%から 0%に絞り込むことにより、過剰にパンタ点電圧が上昇するの を防止する。一般的には、 DC1500V系の電気車では、図 2に示すように、パンタ点 電圧が DC1600V以下では絞り率 1.0 (絞り量 0%)、 DC1800V以上で絞り率 0 (絞 り量 100%)とし、 1600V〜1800Vの間は電圧に比例して直線的に絞り率を 0に向 けて下げ、回生電流を抑制する。この回生電流の絞り込みによる余剰の制動エネル ギ一は機械ブレーキにより吸収される。
[0038] 以下、電圧降下対策、回生電力吸収対策および回生失効防止対策のための制御 動作を 1500V系統に適用した場合の具体例を詳細に説明する。
[0039] (1)き電系統の運転条件
外線の定格電圧範囲を DC1600V (上限)〜 1200V (下限)とし、整流器 6の無負 荷電圧を DC 1620Vとする。電気二重層キャパシタ EDLCの充電最大電圧を DC 18 OOVとする。
[0040] (2)無負荷時
制御装置 10は、外線電圧が 1600V以上で昇降圧チヨッパ 7の半導体スィッチ SW 1をオン (導通)制御し、電気二重層キャパシタ EDLCが 1600V未満の場合、き電変 電所の整流器 6から電気二重層キャパシタ EDLCを充電し、その充電電圧は整流器 6の無負荷電圧の 1620Vまで充電される。
[0041] (3)通常負荷時
制御装置 10は、電気車がカ行運転されて外線電圧が整流器無負荷電圧の 1620 Vより低下した場合、整流器 6からの給電と並列に、電気二重層キャパシタ EDLCか らの電力供給を外線電圧と電気二重層キャパシタ EDLCの端子電圧が平衡状態な ので放電制御スィッチ 9のオン (導通)制御で行う。ただし、外線電圧が 1600Vを下 回る時点(ただし、 1200V以上)で放電制御スィッチ 9をオフ制御し、外線の定格電 圧範囲内では整流器 6のみ力 カ行電力を供給する。
[0042] (4)回生電力吸収対策と回生失効防止対策
図 3に示すように、電気車からの回生電力によって外線電圧が上昇し、外線電圧が その定格電圧範囲の上限となる 1600Vを越えたとき(時刻 tl)、制御装置 10は昇降 圧チヨッパ 7の半導体スィッチ SW1のオン(導通)制御と半導体スィッチ SW3のオン 制御を行う。このとき、電気二重層キャパシタ EDLCの端子電圧も 1600Vであるため 、半導体スィッチ SW1のオン制御により外線側力 電気二重層キャパシタ EDLCへ 充電電流を流し、その充電で回生電力を吸収する。
[0043] このとき、電気車の回生電力で電気二重層キャパシタ EDLCの端子電圧が上昇す ると共に、電気車のパンタ点電圧も上昇し、このパンタ点電圧の上昇に伴って電気車 の電流絞り込み機能により回生電流も減少する。また、電気車の回生運転が終了し たとき(外線電圧の上昇が終了し、整流器無負荷電圧の 1620Vに向け電圧が下が つたとき、図 3の波形 A)に、今度は半導体スィッチ SW3のオン制御によって、外線が 周囲の区間の外線電圧と電圧平衡を保とうとするため、電気二重層キャパシタ EDL Cの端子電圧が自然低下し、その後無負荷であれば整流器無負荷電圧の 1620Vに 落ち着く。前記上限電圧を越えているときに、カ行運転する電気車が存在する場合 には、整流器無負荷電圧までは電気二重層キャパシタ EDLCカゝら電気車への電力 供給となり、無負荷電圧以下では整流器と電気二重層キャパシタ EDLCが並列に電 気車への電力供給を行 1ヽ、外線電圧はカ行運転する電気車によって上限電圧以下 に落ち着く(図 3の波形 B)。
[0044] また、電気二重層キャパシタの端子電圧が外線の定格電圧上限(1600V)以下に なったときは半導体スィッチ SW3のオフ (遮断)制御によって電気二重層キャパシタ EDLC力もの放電を停止し、電気車には整流器 6からの電力供給のみになる。
[0045] 電気車の回生動作が継続し、電気二重層キャパシタ EDLCの端子電圧が最大電 圧 1800Vに達したとき(時刻 t2)、電気車からの回生電流は電流絞り込み動作によつ て零になり、外線電圧も定格電圧上限(1600V)を越えて一時的に 1800Vになるが 、回生電流が零であるためそれ以上の電圧上昇はなぐ回生失効を防止する。
[0046] したがって、回生電力吸収対策および回生失効防止対策では、外線電圧は一時 的に定格電圧上限(1600V)を越えることもあるが最終的には整流器無負荷電圧ま たは定格電圧上限以下に落ち着き、電気二重層キャパシタ EDLCの端子電圧は 16 OOV〜 1800Vの範囲に制御される。
[0047] (5)電圧降下対策
図 3に示すように、電気車がカ行運転し、外線電圧が定格電圧範囲の下限(1200 V)を下回ったとき(時刻 t3)、制御装置 10は、半導体スィッチ SW3をスイッチング制 御することで、電気二重層キャパシタ EDLCの端子電圧を降圧制御して電気二重層 キャパシタ EDLC力もリアタトル Lおよびダイオード D1を通して放電を開始し、整流器 6側からの電力供給と協働して電圧降下を抑制する。この電圧降下抑制で、外線電 圧が下限 1200V以上に戻ったとき(時刻 t4:図 3の波形 C)、制御装置 10は半導体 スィッチ SW3をオフ制御して電気二重層キャパシタ EDLCからの放電を停止させ、 昇降圧チヨッパを昇圧制御に切り替えて電気二重層キャパシタ EDLCを充電し(図 3 の波形 C' )、 1600Vまでの充電で制御を停止する。
[0048] また、外線電圧が下限電圧 1200V以上に戻らず、電圧降下抑制の継続で、電気 二重層キャパシタ EDLCの端子電圧が外線電圧よりも低くなつたとき(時刻 t5)、制御 装置 10は半導体スィッチ SW3をオン (導通)制御に、昇降圧チヨツバ 7の半導体スィ ツチ SW2をスイッチング動作に切り替え、前記端子電圧を昇圧制御することで放電を 継続させ、整流器 6側からの電力供給と協働して、外線電圧の電圧降下抑制を行う。 この放電で、電気二重層キャパシタ EDLCの端子電圧は下限電圧(1200V)以下に 低下していく。この電圧降下抑制で、外線電圧が下限 1200V以上に戻ったとき(時 刻 t6 :図 3の波形 D)、制御装置 10は、昇降圧チヨツバ 7の降圧制御で電気二重層キ ャパシタ EDLCを充電し(図 3の波形 D' )、 1600Vまでの充電で降圧制御を停止す る。
[0049] また、外線の電圧降下が継続し、電気二重層キャパシタ EDLCの放電でその端子 電圧が最低電圧 500Vにまで達したとき(時刻 t7)、制御装置 10は昇降圧チヨツバの 制御を停止する。電気車のカ行運転が終了し(時刻 t8)、外線電圧が 1200V以上に 戻ったとき(時刻 t9:図 3の波形 E)、電気二重層キャパシタ EDLCを充電する(図 3の 波形 E' )。
[0050] したがって、電気二重層キャパシタ EDLCの端子電圧は 500V〜1600Vの範囲に 制御される。
[0051] すなわち、電気二重層キャパシタ EDLCは、電圧降下対策時に、従来装置に比べ て、広い電圧範囲(500V〜1600V)で充放電が可能となり、電気二重層キャパシタ EDLCが従来装置のそれと同じ容量 (並列台数を多くすることなく)であっても電圧降 下抑制のために供給できる電力量を大幅に高めることができる。
[0052] なお、実施形態では、昇降圧チヨツバと放電制御スィッチで直流 Z直流変換装置を 構成する場合で説明した力 電気二重層キャパシタ EDLCと外線との間の電力の充 放電を可能にした、他の充放電回路構成にした直流 Z直流変換装置を使用して同 等の作用効果を得ることができる。
[0053] また、実施形態では、外線の無負荷時および通常負荷時に、電気二重層キャパシ タの端子電圧を外線の定格電圧範囲の上限電圧近くになるよう充放電制御しておく 場合を示したが、電気二重層キャパシタの端子電圧を外線の定格電圧範囲の下限 電圧と上限電圧の範囲内に充放電しておくことでもよい。
[0054] 例えば、電気二重層キャパシタの端子電圧を下限電圧と上限電圧の中間値として おき、この状態から電圧降下対策と回生電力吸収対策の両機能を満足しつつ、かつ 電気二重層キャパシタの端子電圧が整流器の無負荷電圧以上となった場合には力 行車両が存在しなくとも、外線全体の電圧平衡を取りながら電気二重層キャパシタの 端子電圧を自然低下させ、さらに回生電気車が連続して電気二重層キャパシタが上 昇し続けた場合には電気車の電流絞り制御により回生失効を起こさないようにする。
[0055] また、実施形態では、電力貯蔵媒体として電気二重層キャパシタを使用する場合を 示したが、ハイブリッドキャパシタ、大容量キャパシタ、蓄電池を使用しても、同等の作 用効果を得ることができる。さら〖こ、半導体スィッチを任意の電圧で制御する例を示し たが、この任意の電圧に不感帯を設けることで、半導体スィッチのチャタリングを防止 でさることは勿!^のことである。
[0056] 以上のとおり、本発明によれば、外線電圧が定格電圧範囲の上限電圧を越えたと きは回生電力を吸収し、外線電圧が定格電圧範囲の下限電圧を下回ったときは電 圧降下を抑制することができる。
[0057] し力も、従来装置に比べて、電気二重層キャパシタは広い電圧範囲で充放電を可 能としたため、従来装置の満充電と同等以上の電気二重層キャパシタの電力蓄積量 としながらも回生電力の吸収が可能であるため、電圧降下対策と回生電力吸収対策 の両機能を満足しつつ、かつ電気二重層キャパシタの端子電圧が整流器の無負荷 電圧以上となった場合にはカ行車両が存在しなくとも、外線全体の電圧平衡を取り ながら電気二重層キャパシタの端子電圧は自然低下し、さらに回生運転を行う電気 車が連続して電気二重層キャパシタの端子電圧が上昇し続けた場合でも電気車の 電流絞り込み制御により回生失効が起こらない。
[0058] また、直流電力貯蔵装置の大型化およびコスト高を招くことなぐ電圧降下抑制の ために供給できる電力量を大幅に高めることができる。
図面の簡単な説明
[0059] [図 1]本発明の実施形態を示す直流電力貯蔵装置の回路構成図。 [図 2]電気車の回生電流絞り込み特性の例を示す図。
圆 3]実施形態における電気車の回生失効防止と電圧低下抑制の動作波形図。 圆 4]従来の電力回生方式を示す図。
[図 5]従来の直流電力貯蔵装置の主回路構成図。
[図 6]電気車の回生失効防止と電圧低下抑制の動作波形図。

Claims

請求の範囲
[1] 電力貯蔵媒体と直流電気鉄道の外線との間に直流 Z直流変換装置を設けた直流 電力貯蔵装置であって、
前記直流 Z直流変換装置は、
外線電圧が外線の定格電圧範囲の上限電圧を越えたとき、外線と前記電力貯蔵 媒体との間を導通することで該電力貯蔵媒体を充放電し、外線電圧が前記上限電圧 を下回ったとき、外線と前記電力貯蔵媒体との間を遮断する回生電力制御手段と、 外線電圧が外線の定格電圧範囲の下限電圧を下回り、且つ前記電力貯蔵媒体の 端子電圧が前記外線電圧より高いとき、該電力貯蔵媒体の端子電圧を降圧させなが ら該電力貯蔵媒体から外線側に放電し、外線電圧が前記下限電圧を下回り、且つ 前記電力貯蔵媒体の端子電圧が前記外線電圧より低!ヽとき、該電力貯蔵媒体の端 子電圧を昇圧させながら該電力貯蔵媒体から外線側に放電する電圧降下抑制手段 と、
を備えたことを特徴とする直流電力貯蔵装置。
[2] 前記回生電力吸収手段は、電気車からの回生電力の吸収によって前記上限電圧 を越え、前記電力貯蔵媒体と外線との導通で外線電圧が上昇したとき、電気車がも つ回生電流絞り込み機能による回生電流絞り込み動作との協働によって、前記電力 貯蔵媒体の端子電圧を該端子電圧の最大電圧以下に抑制することを特徴とする請 求項 1に記載の直流電力貯蔵装置。
[3] 前記直流 Z直流変換装置は、外線の無負荷時には、外線と前記電力貯蔵媒体と の間を導通し、該電力貯蔵媒体の端子電圧を整流器の無負荷電圧まで充電するこ とを特徴とする請求項 1または 2に記載の直流電力貯蔵装置。
[4] 前記直流 Z直流変換装置は、外線が前記下限電圧以上で前記電力貯蔵媒体の 端子電圧が外線の上限電圧以下のとき、前記端子電圧が外線電圧より低い場合に は外線電圧を降圧させながら外線側から該電力貯蔵媒体に充電し、前記端子電圧 が外線電圧より高い場合には外線電圧を昇圧させながら外線側から該電力貯蔵媒 体に充電する手段を備えたことを特徴とする請求項 1乃至 3記載の直流電力貯蔵装 置。
[5] 前記直流 Z直流変換装置は、前記電力貯蔵媒体の端子電圧が外線電圧よりも高 Vヽ場合、該電力貯蔵媒体から外線側への放電電流を制御または遮断する放電制御 スィッチを備えたことを特徴とする請求項 1乃至 4記載の直流電力貯蔵装置。
[6] 前記直流 Z直流変換装置の主回路は、
外線カゝら流れ込む充電電流を制御できる向きに一端を外線に接続した半導体スィ ツチ SW1および該半導体スィッチ SW1と逆並列接続したダイオード D1からなる高圧 側アームと、前記半導体スィッチ SW1と電流を制御できる向きが同じで且つ半導体 スィッチ SW1の他端と直列接続した半導体スィッチ SW2および該半導体スィッチ S W2と逆並列接続したダイオード D2からなる低圧側アームと、前記半導体スィッチ S W1の他端に一端を接続したリアタトル Lとからなる昇降圧チヨツバと、
前記リアタトル Lの他端と前記電力貯蔵媒体との間に接続し、該電力貯蔵媒体から の放電電流を制御できる向きの半導体スィッチ SW3および該半導体スィッチ SW3と 逆並列接続したダイオード D3からなる放電制御スィッチと、
を備えたことを特徴とする請求項 1乃至 5記載の直流電力貯蔵装置。
PCT/JP2006/324707 2006-02-10 2006-12-12 直流電力貯蔵装置 WO2007091371A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800516983A CN101365606B (zh) 2006-02-10 2006-12-12 Dc电力存储设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006033988A JP4572840B2 (ja) 2006-02-10 2006-02-10 直流電力貯蔵装置
JP2006-033988 2006-02-10

Publications (1)

Publication Number Publication Date
WO2007091371A1 true WO2007091371A1 (ja) 2007-08-16

Family

ID=38344978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324707 WO2007091371A1 (ja) 2006-02-10 2006-12-12 直流電力貯蔵装置

Country Status (6)

Country Link
JP (1) JP4572840B2 (ja)
KR (1) KR100991460B1 (ja)
CN (1) CN101365606B (ja)
MY (1) MY151762A (ja)
TW (1) TWI331431B (ja)
WO (1) WO2007091371A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040348A (ja) * 2008-08-06 2010-02-18 Kawasaki Heavy Ind Ltd 直流電源の開閉方法とその装置
EP2602148A4 (en) * 2010-08-02 2017-12-20 Panasonic Intellectual Property Management Co., Ltd. Vehicle power source device
EP2700534B1 (en) * 2011-04-22 2018-04-18 Mitsubishi Electric Corporation Charging apparatus
EP3766720A1 (de) * 2019-07-18 2021-01-20 Siemens Mobility GmbH Fahrzeug zum betrieb an einem streckenseitigen gleichspannungsnetz

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978354B2 (ja) * 2007-07-17 2012-07-18 株式会社明電舎 直流電力貯蔵装置
JP5044340B2 (ja) * 2007-09-12 2012-10-10 株式会社東芝 蓄電要素を用いた変電所及び電気鉄道き電システム
JP5187624B2 (ja) * 2008-06-30 2013-04-24 川崎重工業株式会社 電気鉄道システムを利用したマイクログリッド
JP5391900B2 (ja) * 2009-03-24 2014-01-15 株式会社明電舎 電気鉄道用き電線電圧補償装置における充電制御方法
US8525495B2 (en) * 2009-06-03 2013-09-03 Lincoln Global, Inc. Input current generator for buck-boost circuit control
JP5493604B2 (ja) * 2009-09-03 2014-05-14 株式会社明電舎 直流電気鉄道の電力貯蔵装置
CN102193608A (zh) * 2010-03-03 2011-09-21 广达电脑股份有限公司 可调整限电流平均电路及应用其的***装置及计算机***
KR100973142B1 (ko) * 2010-04-01 2010-07-29 이대교 고용량 커패시터를 이용한 차량 전기부하의 전력보상장치 및 방법
EP2915693B1 (en) * 2012-10-31 2020-09-16 Kabushiki Kaisha Toshiba Power management device and power management system
CN104648166A (zh) * 2014-12-12 2015-05-27 江苏大学 一种车载复合电源再生制动能量回收***及方法
DE102015012415B4 (de) * 2015-09-25 2021-06-10 Audi Ag Vorhersage eines Spannungseinbruchs in einem Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251403A (ja) * 1985-04-26 1986-11-08 Toshiba Corp 電気車制御用電力変換装置
JP2000233669A (ja) * 1999-02-18 2000-08-29 Meidensha Corp 直流き電系統の給電システム
JP2001260719A (ja) * 2000-03-16 2001-09-26 Railway Technical Res Inst 電鉄用直流き電システム
JP2005162076A (ja) * 2003-12-04 2005-06-23 Hitachi Ltd 電鉄用回生電力吸収制御方法及び装置並びに電力変換器の制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075121A (zh) * 1992-12-02 1993-08-11 郭福库 当量吸流变压器供电方式

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251403A (ja) * 1985-04-26 1986-11-08 Toshiba Corp 電気車制御用電力変換装置
JP2000233669A (ja) * 1999-02-18 2000-08-29 Meidensha Corp 直流き電系統の給電システム
JP2001260719A (ja) * 2000-03-16 2001-09-26 Railway Technical Res Inst 電鉄用直流き電システム
JP2005162076A (ja) * 2003-12-04 2005-06-23 Hitachi Ltd 電鉄用回生電力吸収制御方法及び装置並びに電力変換器の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040348A (ja) * 2008-08-06 2010-02-18 Kawasaki Heavy Ind Ltd 直流電源の開閉方法とその装置
EP2602148A4 (en) * 2010-08-02 2017-12-20 Panasonic Intellectual Property Management Co., Ltd. Vehicle power source device
EP2700534B1 (en) * 2011-04-22 2018-04-18 Mitsubishi Electric Corporation Charging apparatus
EP3766720A1 (de) * 2019-07-18 2021-01-20 Siemens Mobility GmbH Fahrzeug zum betrieb an einem streckenseitigen gleichspannungsnetz

Also Published As

Publication number Publication date
KR20080072068A (ko) 2008-08-05
TW200737643A (en) 2007-10-01
MY151762A (en) 2014-06-30
KR100991460B1 (ko) 2010-11-04
JP2007210513A (ja) 2007-08-23
TWI331431B (en) 2010-10-01
CN101365606B (zh) 2011-03-09
JP4572840B2 (ja) 2010-11-04
CN101365606A (zh) 2009-02-11

Similar Documents

Publication Publication Date Title
WO2007091371A1 (ja) 直流電力貯蔵装置
EP2241472B1 (en) Power storage control apparatus and method of electric vehicle
JP3964857B2 (ja) 電鉄用回生電力吸収制御方法
CA2657758C (en) Power converter and controller using such converter for electric rolling stock
CA2768235C (en) Propulsion control apparatus for electric motor car
KR101419203B1 (ko) 전기차 추진용 전력 변환 장치
KR100890951B1 (ko) 전기이중층 커패시터를 이용한 도시철도의 회생전력저장시스템
US8710702B2 (en) Regenerative power storage system mounted on DC electric railway car
JP3618273B2 (ja) 電鉄用直流き電システム
JP5902534B2 (ja) 鉄道車両の駆動装置
JP4848729B2 (ja) 直流電気鉄道の電力貯蔵装置
JP4978354B2 (ja) 直流電力貯蔵装置
JP4238190B2 (ja) 電力貯蔵式回生電力吸収装置およびその制御方法
JP2004358984A (ja) 電鉄用直流電力供給設備
JP5604984B2 (ja) 電気鉄道システムのき電電圧制御方法
JP5777669B2 (ja) 電気車用制御装置
JP2010000810A (ja) 直流き電系統の給電方式
JP6240023B2 (ja) 電力変換装置及びそれを備えた鉄道車両
JP5509442B2 (ja) 電力変換装置及び電気鉄道システム
CN107878206B (zh) 制动能源回收模块
JP2001320831A (ja) 電鉄用電気車
JP2018016108A (ja) 蓄電装置
JP2001206110A (ja) 饋電電圧補償装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12008501409

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1020087015332

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680051698.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834462

Country of ref document: EP

Kind code of ref document: A1