WO2007088977A1 - L-アミノ酸の製造法 - Google Patents

L-アミノ酸の製造法 Download PDF

Info

Publication number
WO2007088977A1
WO2007088977A1 PCT/JP2007/051815 JP2007051815W WO2007088977A1 WO 2007088977 A1 WO2007088977 A1 WO 2007088977A1 JP 2007051815 W JP2007051815 W JP 2007051815W WO 2007088977 A1 WO2007088977 A1 WO 2007088977A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
amino acid
promoter
enzyme
synthase
Prior art date
Application number
PCT/JP2007/051815
Other languages
English (en)
French (fr)
Inventor
Akira Imaizumi
Larisa Gotlibovna Airikh
Vera Georgievna Doroshenko
Irina Sergeevna Tsyrenzhapova
Original Assignee
Ajinomoto Co., Inc.
Ajinomoto-Genetika Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc., Ajinomoto-Genetika Research Institute filed Critical Ajinomoto Co., Inc.
Priority to EP07707964.8A priority Critical patent/EP1990416B1/en
Publication of WO2007088977A1 publication Critical patent/WO2007088977A1/ja
Priority to US12/184,637 priority patent/US8394612B2/en
Priority to RU2008133840/10A priority patent/RU2405040C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan

Definitions

  • the present invention relates to a method for producing an L amino acid using a microorganism, and more particularly, to a method for producing an L amino acid such as L lysine, L-threonine, L-felanalanin, L triftophan.
  • L-lysine, L-threonine, and L-triftophan are industrially useful amino acids as additives for animal feeds, health food ingredients, amino acid infusions, and the like, and L-phenylalanine is an industrially useful precursor for sweeteners.
  • L-amino acids are industrially produced by fermentation using microorganisms belonging to the genera Brevibacterium, Corynebacterium, Escherichia and the like. In these production methods, strains isolated from natural forces, artificial mutants of the strains, and microorganisms modified by recombinant DNA technology to increase the activity of basic L-amino acid biosynthetic enzymes, etc. It is used. (Patent Documents 1 to 9)
  • Patent Document 2 EP0733712B
  • Patent Document 3 EP1477565A
  • Patent Document 4 EP0796912A
  • Patent Document 5 EP0837134A
  • Patent Document 6 WO01 / 53459
  • Patent Document 7 EP1170376A
  • Patent Document 10 US5, 763, 230
  • An object of the present invention is to provide a method for producing an L amino acid by a fermentation method that is further improved than before.
  • the present invention provides the following.
  • L-amino acid is induced by inducing expression by the promoter.
  • a microorganism having an ability to produce L-amino acids belonging to the family Enterobacteriaceae, which has been modified so as to increase the activity of the biosynthetic enzyme is cultured in a medium, and L amino acids are produced and accumulated in the medium.
  • a method for producing an L amino acid wherein the L amino acid is further collected, wherein the phosphorus concentration in the medium is a concentration at which expression by the promoter is induced.
  • the L amino acid biosynthesis enzyme is depleted of phosphorus.
  • microorganism according to any one of 1 to 6, wherein the microorganism belonging to the family Enterobacteriaceae is a microorganism selected from the group consisting of Escherichia bacteria, Enterobacter bacteria, Pantoea bacteria, Klebsiella bacteria, Serratia bacteria the method of.
  • L amino acid is one or two or more L-amino acids selected from the group consisting of L-lysine, L-threonine, L-tryptophan, L-ferranin, and L-glutamic acid The method according to one item.
  • the L amino acid is L lysine
  • the L amino acid biosynthetic enzymes are dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate 9.
  • the epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinase, and succinylaminopimelate deacylase are one or more enzymes selected from the group consisting of Method.
  • the L-amino acid is L-threonine
  • the L-amino acid biosynthesis enzyme is aspartokinase III, aspartate semialdehyde dehydrogenase, aspartokinase I encoded by the thr operon, homoserine kinase, and threonine synthase.
  • the method according to 8 which is one or more enzymes selected from the group consisting of:
  • L-amino acid is L-glutamic acid
  • L-amino acid biosynthesis enzyme power glutamate dehydrogenase, glutamine synthetase, glutamate synthase, isocitrate dehydrogenase, aconite hydratase, citrate synthase, phosphoenolpyruvate carboxylase, pyruvate
  • the L-amino acid is an aromatic L-amino acid
  • the L-amino acid biosynthesis gene is 3-deoxy D arabinohepturonic acid 7-phosphate synthase, 3-dehydroquinate synthase, shikimate dehydratase, shikimate kinase, 5-enolate pyruvate shikimate 3-phosphate synthase, chorismate synthase, prephenate dehydratase 9.
  • the enzyme is one or more enzymes selected from the group consisting of mutase mutase.
  • a microorganism belonging to the family Enterobacteriaceae such as an Escherichia bacterium having a high productivity of L-amino acids such as L-lysine and L-feruaranin.
  • L-amino acids such as L-lysine and L-ferroalanine can be obtained in high yield.
  • FIG. 1 is a diagram showing a production process of a plasmid pMW-lysAR having a lysR gene and a lysA gene.
  • FIG. 2 is a diagram showing a production process of plasmid pMW-PphoA-lysA having a promoter sequence of phoA gene in the upstream region of lysA gene.
  • the microorganism of the present invention introduces a DNA fragment to which a structural gene encoding an L amino acid biosynthetic enzyme is connected downstream of the pho regulon promoter so as to be expressed by the promoter. It is a microorganism having the ability to produce L-amino acid belonging to the family Enterobacteriaceae, which has been modified so that the activity of the L amino acid biosynthesis enzyme is increased by induction.
  • the L-amino acid-producing ability refers to the ability to produce and accumulate L-amino acids in the medium or in the cells when the microorganism of the present invention is cultured in the medium.
  • the microorganism of the present invention may be capable of producing a plurality of L amino acids. Microorganisms capable of producing L amino acids are inherently L amino acids.
  • the microorganisms described in 1-2) below have been modified to have L-amino acid production ability using recombinant DNA technology. It may be.
  • L-amino acid is not particularly limited !, but basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L citrulline, L-isoleucine, L-alanine Aliphatic amino acids such as L-valine, L-leucine, and L-glycine, amino acids that are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, and L-fe- Aromatic amino acids such as luranin, L-tyrosine, L-tryptophan, sulfur-containing amino acids such as L-cystine, L-cystine, L-methionine, L-glutamic acid, L-aspartic acid, L-glutamine, L-asparagine, etc.
  • basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine,
  • L-lysine, L-ferroalanine, L-tryptophan, L-threonine, and L-glutamic acid are preferable.
  • the microorganism of the present invention may be capable of producing two or more amino acids.
  • the DNA fragment used in the present invention is a DNA fragment in which a structural gene encoding an L amino acid biosynthesis enzyme is connected downstream of the pho regulon promoter so as to be expressed by the promoter.
  • the pho regulon refers to a group of genes whose expression is induced when the intracellular phosphorus concentration decreases. Normally, transcription factors are regulated by phoB-phoR histidine-aspartate phosphate relay control. It means a group of genes that are controlled through a pathway that activates.
  • PhoR of sensor kinase senses intracellular phosphorus concentration, autophosphorylates histidine residues, and transfers phosphate to specific aspartate residues of PhoB protein, which is a response regulator and transcription factor .
  • the response regulator, PhoB protein is activated by this phosphate and controls the transcription of many genes.
  • genes belonging to the pho regulon include pstSCAB, ugpBAEC, ugpQ, bap, phnSTUV, phnCDE, phoE, phoA and the like.
  • the pho regulon promoter is a promoter of a gene belonging to the pho regulon. Usually, it is a promoter that exists upstream of a gene that undergoes transcriptional regulation by the two-component regulatory system of phoB-phoR when the intracellular phosphorus concentration decreases. Has a region to join. Specific examples include promoters of genes selected from phoA, phoB, phoE, phoH, asr, argP, ugpB, pstS, psiE and phnC. Information on these genes is shown below.
  • Sequence number of the promoter sequence The lower number is the sequence number of the sequence of 500b P upstream of the start codon.
  • the upper number is the sequence number of the promoter sequence registered in GenBank.
  • the pho regulon promoter sequence is preferably a promoter having pho BOX.
  • Pho BOX is a sequence that is highly conserved by microorganisms in the region where phoB binds. Specifically, it is a sequence conserved about 100 bp to 10 bp upstream of the start codon, CTGTCATA (A / T) A (T / A) CTGT (C / A) A (C / T) (SEQ ID NO: 21) This is a stored sequence. (Neid hardt, F. shi. Et ai., Escherichia coll and Salmonella Typhimurium, American Society f or Microbiology, Washington DC, shi hapter 87, Figure 6)
  • the promoter sequence may contain a mutation that does not affect the activity of inducing expression when the intracellular phosphorus concentration is decreased.
  • phoA, phoB, phoE, phoH, asr, argP, u gpB, pstS, psiE, and phnC force Usually 90% or more, preferably 95% of the promoter sequence (SEQ ID NO: 1 to 20) of the selected gene. % Or more, more preferably 97% homology, and may have an activity of inducing expression when the intracellular phosphorus concentration decreases.
  • the CTG TCATA (A / T) A (T / A) CTGT (C / A) A (C / T) sequence of SEQ ID NO: 21 has a homology of 97% or more, preferably 99% or more, more preferably! /, CTGTCAT is stored in 35 areas! /, Preferably!
  • the homology (identity) of the nucleotide sequence can be determined by, for example, the algorithm BLA ST (Pro. Natl. Acad. Sci. USA, 90, 5873 (1993) by Karlin and Altschul or FASTA (Methods EnzymoL, 183, 6 3 ( 1990 ”, based on this algorithm BLAST, programs called BLAS TN and BLASTX have been developed (see www.ncbi.nlm.nih.gov). Usually, such a program is used to calculate the specified value.
  • the "L amino acid biosynthesis enzyme” may be any enzyme that is metabolically involved in L-amino acid biosynthesis, but under the condition that the phosphorus concentration in the latter half of the culture is lowered. Enzymes with reduced expression levels are preferred.
  • the latter half of the culture mainly means the amino acid production phase and is distinguished from the cell growth phase.
  • Cell growth phase in the present invention means 3 hours from the start of culture, preferably 6 hours, particularly preferably within 10 hours, when phosphorus and carbon sources are mainly used for cell growth, That is, it means the time when the microorganisms are growing logarithmically, and the “second half of the culture” in the present invention means 6 hours until the end of the culture, preferably 10 hours, particularly preferably 20 hours before, and the carbon source is mainly L. —It means when it is used for amino acid production. [0021] For the enzyme whose expression level is decreased under the condition that the phosphorus concentration is decreased in the second half of the culture, the enzyme activity in the second half of the culture and the first half of the culture in the growth phase (logarithmic growth phase) should be compared. Can be confirmed. It can also be confirmed by comparing the amount of mRNA in the latter half of the culture and the first half of the culture by DNA macroarray or RT-PCR.
  • the gene encoding the L-amino acid biosynthetic enzyme is a gene effective for L-amino acid production, only one gene may be used, or a combination of a plurality of genes may be used.
  • the target gene may be an endogenous gene present on the chromosome of Escherichia coli or an exogenous gene derived from another microorganism! /.
  • L-lysine biosynthetic enzymes include dihydrodipicolinate synthase gene (dapA), aspartokinase gene (lysC), dihydrodipicolinate reductase gene (dapB), diaminopimelate decarboxylase Gene (lysA (SEQ ID NO: 28)), diaminobimelate dehydrogenase gene (ddh) (international publication No. 96/40934 pamphlet), phosphoenolpyruvate carboxylase gene (pp C ) (Japanese Patent Laid-Open No.
  • Aspartate aminotransferase gene (aspC) (Japanese Patent Publication No. 6-102028), diaminopimelate epimerase gene (dapF) (Japanese Patent Laid-Open No. 2003-135066), aspartate semialdehyde dehydrogenase gene (asd) ( International Publication No. 00/61723 pamphlet) and other genes of the enzyme of the diaminopimelate pathway or homoaconit Examples thereof include genes such as enzymes of the aminoadipate pathway such as the tomate hydratase gene (JP 2000-157276 A).
  • tetrahydrodipicolinate succinase gene (dapD) and succinyl diaminobimelate deacylase gene (dapE) can be mentioned.
  • dapB, lysA, ddh, pe pC, aspC, dapF, asd, dapD, and dapE are preferred.
  • the entire nucleotide sequence of Escherichia coli has already been clarified (Science, 277, 1453-1474 (1997)), and the gene sequence is based on the target gene reported in this document or the gene registered in GenBank. Can be obtained.
  • L-glutamate biosynthetic enzymes include L-glutamate dehydrogenase gene (gdh), glutamine synthetase gene (glnA), glutamate synthase gene (gltBD), isocitrate dehydrogenase gene (icd), Aconitic acid hydratase Gene (acn), citrate synthase gene (gltA), pyruvate dehydrogenase gene (pdh) and the like (US Pat. Nos. 6,197,559, 6,331,419, European Patent 09992982).
  • phosphoenolpyruvate carboxylase gene pepC
  • pyruvate carboxylase gene pc
  • pyruvate kinase gene pykA, pykF
  • phosphonolpyruvate synthase gene pp S
  • 6-phosphodarconate dehydratase gene edd
  • 2 keto 3 deoxy 6 phosphodarconate aldolase gene eda
  • L-threonine biosynthetic enzymes include aspartokinase III gene (lysC), aspartate semialdehyde dehydrogenase gene (asd), and aspartokinase encoded by the thr operator. Examples include I gene (thrA), homoserine kinase gene (thr B), and threonine synthase gene (thrC).
  • L-threonine shares a biosynthetic system with L-lysine, and a gene encoding an L-lysine biosynthetic enzyme may be amplified.
  • L-threonine biosynthetic enzyme The enzymatic activity of the L-threonine biosynthetic enzyme is suppressed by the final product, L-threonine. It is desirable to use as a structural gene a modified gene that encodes an L-threonine biosynthetic enzyme so that it is not subject to feedback inhibition by L-threonine (WO 02/26993, Biotechnology Letters vol24, No. 21, November 2002, International Publication No. 2005/049808 pamphlet).
  • L-tryptophan, L-fe-lanalanin, and L-tyrosine are all aromatic amino acids and share a biosynthetic system.
  • the gene encoding the biosynthetic enzyme for aromatic amino acids is 3-deoxy.
  • Examples of the gene encoding the L-trybutophane biosynthetic enzyme include an anthralate synthase gene (trpE), a phosphodariserate dehydrogenase gene (serA), and a tryptophan synthase gene (trpAB). It is more effective to mutate the dalycerate dehydrogenase gene (serA) so that it is not subject to feedback inhibition and use the resulting mutant gene (International Publication W093 / 12235 pamphlet).
  • recombinant DNA containing tryptophan operon may be used as a structural gene.
  • tributophane operon containing a gene encoding a desensitized anthranilate synthase (JP 57-71397, JP 62-244382, US Pat. No. 4,371,614). Specification). Further, by enhancing the expression of a gene encoding tryptophan synthase (trpBA) in the tryptophan operon, the ability to produce L-tritophan can be improved or imparted. Tryptophan synthase is composed of ⁇ and j8 subunits and is encoded by trpA and trpB, respectively (US Pat. No. 4,371,614).
  • L-ferulanin and L-tyrosine biosynthetic enzymes include prephenate dehydratase gene (tyrA / pheA; US Pat. No. 4,371,614, Patent No. 3060688), tyrosine aminotransferase gene ( tyrB; US Pat. No. 5,091,314 specification), chorismate mutase gene (pheA SEQ ID NO: 40).
  • Prefenate dehydratase and chorismate mutase are known to be subject to feedback inhibition by the final product, ferrolanin, and it is preferable to introduce a mutation that does not cause feedback inhibition to ferroalanine.
  • prephosphate dehydratase or chorismate mutase in which the 338th tryptophan residue of the above is substituted with another amino acid, desirably arginine or glycine residue (Patent No. 3060668, special Kaihei 1—235597).
  • L-phenylalanine can also be efficiently produced. Can be obtained (EP1484410).
  • L-arginine biosynthetic enzymes include N-acetyl glutamate synthase gene (argA), N-acetyl tiltamyl phosphate reductase gene (arg C), and ol-tin acetyl transferase gene (argj).
  • N-Acetylglutamate kinase gene argB
  • Acetylol-tin transaminase gene argD
  • Acetylrutin deacetylase gene argE
  • Ornithine force rumoyltransferase gene arginyl-succinate synthase gene (argG), arginyl-succinate lyase gene (argH), and rubamoyl phosphate synthase (carAB) force selected from one or more (JP-A-63-79597) issue).
  • the N-acetyl glutamate synthase gene (argA) is more preferably a mutant gene in which feedback inhibition by L-arginine in which the amino acid sequence corresponding to the 15th to 19th positions of the wild type is replaced is released. Yes (European Application Publication No. 1170361).
  • L-tout Icine, L-parin, and L-isoleucine are branched chain amino acids and have a common biosynthetic system.
  • a gene encoding a common enzyme in the branched chain amino acid biosynthetic system is a pyruvate dehydrogenase gene. ( ace E) (International Publication No. 03076635 pamphlet).
  • L-parin and L-isoleucine biosynthetic enzymes include: acetohydroxy acid synthase gene (ilvGM), branched chain amino acid aminotransferase gene (ilvE), dihydroxy acid dehydratase gene (ilvD), threo- And the ndehydratase gene (ilvA).
  • ilvGMEDA constitutes an operon and may be used as an operon or individual genes may be used alone. Since the ilvGMEDA operon is subject to operon expression regulation by L-valine and / or L-isoleucine and / or L-tissue isine, the expression suppression by the generated Lino ⁇ phosphorus is released. For this reason, it is preferable that a region necessary for the ate-use is removed or mutated (US Pat. No. 5,998,178).
  • L-isoleucine is produced using L-threonine as a precursor. Therefore, L In order to increase the ability to produce soleucine, it is preferable to increase the supply of L-threonine, that is, to strengthen the biosynthesis system of L-threonine. Therefore, as a gene encoding an L-isoleucine biosynthetic enzyme, the aforementioned L-threonine biosynthetic system may be strengthened together with a gene encoding a biosynthetic enzyme specific to L-isoleucine.
  • the genes encoding the L-tout isin biosynthetic enzymes include the 2-isopropylmalate synthase gene (leuA), 2-isopropylmalate isomerase gene (leuD), and 2-isopropylpropylmalate dehydrogenase gene (leuB). ), Branched chain amino acid aminotransferase genes (ilvE; Canadian Patent 1341352). Since 2-isopropylmalate synthase is feedback-inhibited by L-leucine, it is preferable to use leuA in which feedback inhibition of isopropylmalate synthase by L-leucine is desensitized U, (US Pat. No. 6,403,342). Issue description).
  • L-histidine biosynthetic enzymes include ATP phosphoribosyltransferase gene (hisG), phosphoribosyl AMP cyclohydrolase gene (hisl), phosphoribosyl-ATP pyrophosphohydrase gene (hisIE), phospho Ribosylformimimino-5-aminoimidazolecarboxyamide ribotide isomerase gene (hisA), amidotransferase gene (hisH), histidinol phosphate aminotransferase gene (hisC), histidinol phosphatase gene (hisB), And histidinol dehydrogenase gene (hisD) (US Pat. No. 4,388,405).
  • L-cystine biosynthetic enzymes include phosphodariserate dehydrogenase gene (serA), serine acetyltransferase gene (cysE; WO 2005/007841 pamphlet), cysteine synthase gene ( cysK) (International Publication No. 03/06666 pamphlet).
  • the DNA fragment of the present invention can be obtained by the following method.
  • the pho regulon promoter sequence and the L-amino acid biosynthesis gene are cloned separately by PCR or the like.
  • Oligonucleotides used for PCR are designed with reference to known databases. If a restriction enzyme site is linked to the N-terminal side of the PCR oligonucleotide, two types of DNA can be linked easily.
  • plasmid used for gene cloning autonomous plasmids are used in the family Enterobacteriaceae. Specifically, pBR322, pTWV228 (Takara Bio), pMWl 9 (-Tubong Gene), pUC19, pSTV29 (Takara Bio), RSF1010 (Gene vol.75 (2 ), P271-288, 1989). In addition, phage DNA vectors can be used.
  • a DNA fragment can be introduced into a host as follows. That is, the DNA fragment can be introduced by ligating a DNA functioning with a vector functioning in a host microorganism, preferably a multicopy vector, to produce a recombinant DNA, and transforming the host with this.
  • a restriction enzyme that matches the ends of the DNA fragment containing the target gene.
  • Disconnect Ligation is usually performed using a ligase such as T4 DNA ligase.
  • the target genes may be loaded on separate vectors or on the same vector. Conventional methods well known to those skilled in the art are used for DNA cleavage, ligation, and other methods such as chromosome DNA preparation, PCR, plasmid DNA preparation, transformation, and setting of oligonucleotides used as primers. be able to.
  • the DNA of the present invention can also be obtained by linking a pho regulon promoter upstream of the target gene.
  • the introduction of the pho regulon promoter ' ⁇ upstream of the target gene is described in Sambrook, J., and Russell, DW Molecular Cloning A Labora tory Manual / Third Edition.New York: Cold Spring Harbor Laboratory Press (2001) etc. It can be achieved by the gene replacement method by the homologous recombination method described.
  • the pho regulon promoter can be inserted upstream of the target gene as long as it does not reduce the enzyme activity encoded by the target gene.
  • the upstream of the SD sequence (Shine-Dalgalno sequence) is preferable, and the promoter of the target gene itself may be substituted.
  • the entire promoter sequence of the target gene itself may be replaced with a pho regulon promoter, for example, a promoter selected from phoA, phoB, phoE, phoH, asr, argP, ugpB, pstS, psiE and phnC.
  • the pho box may be introduced into the upstream region of the target gene.
  • the sequence of CTGTCATA (A / T) A (T / A) CTGT (C / A) A (C / T) (sequence No. 21) more specifically, a CTGTCAT sequence may be introduced into the ⁇ 35 region of the target gene.
  • the introduction of the DNA of the present invention can also be achieved by introduction onto the chromosomal DNA of a microorganism.
  • homologous recombination is performed by using as a target sequences that exist in multiple copies on chromosomal DNA and gene loci that are unnecessary for the production of target substances on the chromosome.
  • site-directed mutagenesis by gene replacement using homologous recombination has already been established, including a method using linear DNA and a method using a plasmid containing a temperature-sensitive replication origin (US Patent No. 1). No. 6303383, or JP 05-007491 A).
  • Repetitive DNA and inverted repeats present at the ends of transposable elements can be used as sequences that exist in multiple copies on chromosome DNA.
  • the target gene can be mounted on a transposon, transferred, and introduced onto the chromosomal DNA.
  • At least one copy of the DNA of the present invention may be introduced into the cells of the microorganism, but the expression is preferably further increased by increasing the copy number. For example, increasing the number of copies in a cell to 2 or more, preferably 3 or more, more preferably 4 copies or more. Can be mentioned.
  • An increase in the copy number can be achieved by mounting the target gene on a multicopy vector.
  • the vectors that can replicate autonomously in Enterobacteriaceae include autonomous pUC19, pUC18, pH SG299, pHSG399, pHSG398, pACYC184 (pHSG ⁇ pACYC is available from Takara Bio Inc.), RSF1010 (Gene vol.75 (2), p271-288, 1989), pBR322, pMW219, pMW119 (pMW is available from Tubongene), P STV28, pSTV29 (manufactured by Takano). (Microbiological Review 60 (3) 512-538 (1996), US5, 538, 873) In addition, ⁇ phage DNA vectors and Mu phage vectors can also be used. (EP0332448)
  • An increase in copy number can also be achieved by introducing multiple copies of the DNA of the present invention onto the chromosome of a microorganism.
  • homologous recombination is performed using a sequence in which multiple copies exist on the chromosomal DNA as a target.
  • site-directed mutagenesis by gene replacement using homologous recombination has already been established, including a method using linear DNA and a method using a plasmid containing a temperature-sensitive replication origin (US Patent No. 1). No. 6303383, or JP 05-007491 A).
  • sequences that exist in multiple copies on chromosomal DNA repetitive DNA and inverted repeats at the ends of transposable elements can be used.
  • a target gene can be mounted on a transposon, transferred, and introduced in multiple copies on chromosomal DNA.
  • the enzymatic activity of the L-lysine biosynthetic system is also increased by the method of V and deviation.
  • enhanced expression of the target gene can be achieved by replacing the promoter sequence of the L-amino acid biosynthesis gene upstream or downstream of the pho regulon promoter with a stronger one. Is also achieved (see Japanese Patent Laid-Open No. 1-215280).
  • promoters Known as one ter. By substituting these promoters, the expression of the target gene is enhanced and the enzyme activity is amplified.
  • a method for assessing promoter strength and examples of strong promoters are described by Goldstein et al. (Prokaryotic promoters in biotec hnology. Biotechnol. Annu. Rev., 1995, 1, 105-128). These promoters were linked upstream or downstream of the p ho regulon promoter, pho the regulation Interview Ron promoter and express the strong promoter both are controlled, and desirable Rukoto.
  • the promoter of the L-amino acid biosynthetic gene is introduced into the promoter region of the target gene with a few base substitutions and modified to be more powerful. It is also possible to do. Furthermore, it is known that the substitution of several nucleotides in the spacer between the ribosome binding site (RBS) and the start codon, especially in the sequence immediately upstream of the start codon, has a significant effect on the translation efficiency of mRNA. These can be modified.
  • the target gene expression regulatory region can be determined using a promoter search vector or gene analysis software such as GENETYX. The expression regulatory sequence can be replaced, for example, in the same manner as the gene replacement using the temperature-sensitive plasmid described above.
  • the gene encoding the L-amino acid biosynthetic enzyme of the present invention may differ in the base sequence of the target gene depending on the Escherichia coli strain, so the gene used in the present invention is As long as it has the activity encoded by the gene of interest, it is a mutant that encodes a protein having a sequence including substitution, deletion, insertion or addition of one or several amino acids at one or more positions, or an artificial It may be a variant.
  • “several” differs depending on the position and type of the amino acid residue in the three-dimensional structure of the protein. Specifically, it is 2 to 20, preferably 2 to 10, more preferably 2 to 5. It is a piece.
  • conservative mutations are conservative substitutions, which are considered conservative substitutions: Ala to Ser or Thr, Arg to Gln, His or Lys, Asn to Glu , Gln, Lys, His or Asp, Asp to Asn, Glu or Gin, Cys to Ser or Ala, Gin to Asn, Glu, Lys, His, Asp or Arg, Glu to Asn, Gln, Lys or Asp, Gly to Pro, His to Asn, Lys, Gln, Arg or Tyr, lie to Leu, Met, Val or Phe, Le u to Ile, Met, Val or Phe, Lys to Asn, Glu, Gln, His or Arg, Met to Ile, Leu, Val or Phe, Phe to Trp, Tyr, Met, lie Or place in Leu Substitution, Ser to Thr or Ala, Thr to Ser or Ala, Trp
  • a gene encoding an L-amino acid biosynthetic enzyme is hybridized under stringent conditions with a probe whose base sequence or base sequence can be prepared as long as the activity of the encoded enzyme is maintained. Even if it is DNA! “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, DNAs with high homology, for example, DNAs with 70% or more homology, hybridize, and DNAs with lower homology do not hybridize! /, Conditions, or normal Southern hybrids The condition of washing the dispersion!
  • Is 60 ° C, 1 X SSC, 0.1% SDS, preferably 0.1 X SSC, 0.1% SDS, more preferably 68 ° C. , 0.1 X SSC, 0.1% SDS, salt concentration corresponding to temperature, temperature is preferably washed once, more preferably 2 to 3 times.
  • the length of the probe is a force appropriately selected according to the hybridization conditions. Usually, the length is 100 bp to 1 Kbp.
  • the gene encoding the L-amino acid biosynthetic enzyme is 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more compared to the wild-type sequence. It is possible to use a sequence encoding a protein having the same homology and encoding a protein having the activity of an L-amino acid biosynthesis enzyme. The method for calculating homology is the same as described for the promoter sequence. In addition, since the degeneracy of the gene differs depending on the host to be introduced, it may be replaced with a codon that is easy to use in each host to be introduced.
  • the N-terminal side and C-terminal side may be extended or deleted.
  • the length of extension 'deletion is 50 or less, preferably 20 or less, more preferably 10 or less, particularly preferably 5 or less in amino acid residues.
  • the amino acid sequence may be obtained by extending or deleting 5 amino acids from the 50 amino acids on the N-terminal side and extending 5 amino acids from the 50 amino acids on the C-terminal side.
  • Examples of the parent strain of the microorganism of the present invention include Escherichia bacteria and Pantoea bacteria. Microorganisms belonging to the family Enterobacteriaceae can be used. Other microorganisms belonging to the family Enterobacteriaceae include the genus Enterobacter, Klebsiella, Serratia, Erwinia, Salmonella, Morganella. Examples of such microorganisms belonging to the family Enterobacteriaceae belonging to ⁇ -proteobacteria.
  • Enteropakuta bacteria belonging to the genus Enterobakuta ⁇ ⁇ agglomerans (Enterobac ter agglomerans), Enarono rather Kuta 1 ⁇ - / 'Erokunesu (Enterobacter aerogenes) or the like
  • Enteropactor agglomerans has been reclassified as pantoea agglomerans, pantoea ananatis, pantoea stewartii agglomerans, etc., by 16S rRNA nucleotide sequence analysis, etc.
  • pantoea ananatis When pantoea ananatis is bred using genetic engineering techniques, pantoea ananatis AJ13355 (FERM BP-6614), AJ13356 (FERM BP-6615), AJ 13601 (FERM BP-7207) and Their derivatives can be used. These strains were identified as Enteropactor agglomerans at the time of isolation, and the force deposited as Enterobacter agglomerans As described above, the 16S rRNA nucleotide sequence was resolved. It is reclassified as Pantair Ananatis by analysis.
  • auxotrophy, analog resistance, metabolic control mutation, and other properties imparted may be single or two or more.
  • L amino acid biosynthesis enzymes whose expression is enhanced may be used alone or in combination of two or more.
  • imparting properties such as auxotrophy, analog tolerance, and metabolic control mutations may be combined with increased biosynthetic enzyme activity.
  • An auxotrophic mutant strain capable of producing L amino acids, an analog resistant strain of L amino acids, or a metabolically controlled mutant strain is obtained by subjecting a parent strain or a wild strain to normal mutation treatment, that is, irradiation with X-rays or ultraviolet rays, or N —Methyl N'-tro-I N-trosoguanidine (NTG), treated with mutagen such as ethylmethan sulfonate (EMS), and so on.
  • NTG Metal N —Methyl N'-tro-I N-trosoguanidine
  • EMS ethylmethan sulfonate
  • it can be obtained by selecting those that show metabolic control mutations and have the ability to produce L-amino acids.
  • Examples of parent strains of L-threonine producing bacteria include E. coli TDH-6 / pVIC40 (VKPM B-399 6) (U.S. Pat.No. 5,175,107, U.S. Pat.No. 5,705,371), E. coli. E. coli 472T23 / pYN7 (ATC C 98081) (U.S. Patent No. 5,631,157), E. coli NRRL-21593 (U.S. Patent No. 5,939,307), E. coli FERM BP-3756 (U.S. Patent No. 5,474,918), E. coli FERM BP-3519 and FE RM BP-3520 (U.S. Pat.No.
  • E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978), E. coli Examples include, but are not limited to, strains belonging to the genus Escherichia such as E. coli VL643 and VL2055 (EP 1149911 A).
  • TDH-6 strain lacks the thrC gene, is sucrose-utilizing, and has the ilvA gene force S leaky mutation. This strain also has a mutation in the rhtA gene that confers resistance to high concentrations of threonine or homoserine.
  • the strain B-3996, to RSF1010-derived vector, plasmid was obtained by inserting the thrA * BC operon which includes a mutant t hrA gene pVIC40 Hold. This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I which is substantially desensitized to feedback inhibition by threonine.
  • the B-3996 stock was deposited on 19 November 1987 in the all-union 'scientific' centre 'of'antibiotics' (Nagatinskaya Street 3- A, 117105 Moscow, Russia) with the deposit number RIA 1867. Yes.
  • This strain was also assigned to Lucian 'National' Collection 'Ob'Industrial'Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on 7 April 1987. Deposited at 3996.
  • E. coli VKPM B-5318 (EP 0593792B) can also be used as a parent strain of L-threonine-producing bacteria.
  • Strain B-5318 is prototrophic for isoleucine and has been replaced by the control region force of the threonine operon in plasmid pVIC40, the temperature-sensitive lambda phage C1 repressor and the PR promoter.
  • ⁇ B-5318 was deposited with Lucian's National Collection of Industrial Microorganisms (VKPM) on May 3, 1990 under the accession number VKPM B-5318.
  • the bacterium of the present invention is further modified so that expression of one or more of the following genes is increased.
  • RhtA gene encoding a putative transmembrane protein
  • the thrA gene encoding aspartokinase homoserine dehydrogenase I of Escherichia coli is known (nucleotide numbers 337 to 2799, GenBank accession NC_000913.2, gi: 49175990).
  • the thrA gene is located between the thrL gene and the thr B gene in the chromosome of E. coli K-12.
  • the thrB gene encoding the homoserine kinase of Escherichia coli is known (nucleotide numbers 2801 to 3733, GenBank accession NC_00091 3.2, gi: 49175990).
  • the thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12.
  • the thr C gene encoding the threon synthase of Escherichia coli is known (nucleotide numbers 3734-5020, GenBank accession NC—0009 13.2, gi: 49175990).
  • the thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12. All three genes function as a single threonine operon.
  • the transcription-affecting region is preferably removed from the operon (WO200 5/049808, WO2003 / 097839).
  • thrA gene encoding asphalt kinase homoserine dehydrogenase I resistant to feedback inhibition by threonine
  • thrB gene and thrC gene are well-known in threonogenic E. coli VKPM B-3996 strain. It can be obtained as one operon from the plasmid pVIC40. Details of plasmid P VIC40, are described in U.S. Patent No. 5,705,371.
  • the rhtA gene is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes an element of the glutamine transport system.
  • the rhtA gene is identical to ORF1 (ybiF gene, nucleotide number 764-16541, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene.
  • the unit that expresses the protein encoded by ORF1 is called the rhtA gene (rht: resistant to homoserine and threonine).
  • the rhtA23 mutation was found to be a G ⁇ A substitution at position -1 relative to the ATG start codon, and V, RU (AB3 ⁇ 4 I'RA and rS of the ⁇ h International and ongress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A).
  • the asd gene of E. coli is already known (nucleotide numbers 3572511 to 3571408, Gen Bank accession NC— 000913.1, gi: 16131307), and PCR using primers made based on the nucleotide sequence of the gene (See White, TJ et al., Trends Genet., 5, 185 (1989)). Other microbial asd genes can be obtained as well.
  • the aspC gene of E. coli is already known (nucleotide numbers 983742 to 984932, GenBank accession NC — 000913.1, gi: 16128895), can be obtained by PCR. Other microbial aspC genes can be obtained in the same way.
  • L-lysine-producing bacteria belonging to the genus Escherichia include mutants having resistance to L-lysine analogs.
  • L-lysine analogues inhibit the growth of bacteria belonging to the genus Escherichia, but this inhibition is completely or partially released when L-lysine is present in the medium.
  • L-lysine analogs include, but are not limited to, oxalidine, lysine hydroxamate, S- (2-aminoethyl) L-cysteine (AEC), ⁇ -methyllysine, oc-chlorocaprolatatam, and the like.
  • Mutants having resistance to these lysine analogs can be obtained by subjecting bacteria belonging to the genus Escherichia to normal artificial mutation treatment.
  • Specific examples of bacterial strains useful for the production of L-lysine include Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185; see US Pat. No. 4,346,170) and Escherichia coli VL611. In these microorganisms, feedback inhibition of aspartokinase by L-lysine is released.
  • WC196 strain Can be used as an L-lysine-producing bacterium of Escherichia coli. This strain was bred by imparting AECffif property to the W3110 strain derived from Escherichia coli K-12.
  • This strain was named Escherichia coli AJ13069.December 6, 1994, National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (now National Institute of Advanced Industrial Science and Technology, Patent Biodeposition Center, ⁇ 305-8566 Japan Deposited at Ibaraki Prefectural Tsukuba 1-chome, 1-chome, 1-Chuo 6) with deposit number FE RM P-14690, transferred to international deposit under the Budapest Treaty on September 29, 1995, with deposit number FERM BP-5252 (US Pat. No. 5,827,698).
  • Examples of parent strains of L-lysine-producing bacteria also include strains in which expression of one or more genes encoding L-lysine biosynthetic enzymes are increased.
  • genes encoding L-lysine biosynthesis enzymes include dihydrodipicolinate synthase gene (dapA), aspartokinase gene (lysC), dihydrodipicolinate reductase gene (dapB), diaminopimelate decarboxylase gene (lysA), diaminobimelin Acid dehydrogenase gene (ddh) (US Pat. No.
  • phosphoenolpyruvate carboxylase gene ppc
  • aspartate semialdehyde dehydrogenase gene aslutase gene Forces
  • ppc phosphoenolpyruvate carboxylase gene
  • aspartate semialdehyde dehydrogenase gene aspartate semialdehyde dehydrogenase gene
  • aslutase gene Forces include child (aspA) (EP 1253195 A), but are not limited to these.
  • the parent strain is a gene involved in energy efficiency (cyo) (EP 1170376 A), a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) (US Patent No. 5,830,716), ybjE gene (WO2005 / 073390) ), Or the expression level of these combinations may be increased.
  • Examples of parent strains of L-lysine-producing bacteria also include strains in which the activity of the enzyme that catalyzes the reaction that branches the biosynthetic pathway of L-lysine to produce compounds other than L-lysine is reduced or deficient. It is done. Biosynthesis pathway of L-lysine
  • Examples of enzymes that catalyze a reaction that branches to produce compounds other than L-lysine include homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malate enzyme (WO2005). / 010175).
  • Examples of parent strains of L cysteine-producing bacteria include E. coli JM15 (US Pat.No. 6,218,168, Russian Patent Application No. 2003121601), cells transformed with different cysE alleles encoding a feedback inhibition resistant serine transferase.
  • E. coli W3110 U.S. Pat.No. 5,972,663 having an overexpressed gene encoding a protein suitable for excretion of highly toxic substances
  • E. coli strain with reduced cysteine desulfhydrase activity JP11155571A2
  • Examples include, but are not limited to, strains belonging to the genus Escherichia such as E. coli W3110 (WO0127307A1) in which the activity of the positive cysteine regulator encoded by the cysB gene is increased.
  • Examples of parent strains of L-mouth Icine-producing bacteria include leucine-resistant E. coil strains (for example, 57 strains (V KPM B-7386, US Pat. No. 6,124,121) or j8-2 chelanalanin, 3 hydroxyleucine, 4 E. coli strains resistant to leucine analogs such as azaleucine and 5,5,5-trifluoroleucine (JP 62-34397 B and JP 8-70879 A), obtained by the genetic engineering method described in WO96 / 06926 Strains belonging to the genus Escherichia such as E. coli strains and E. coli H-9068 (JP 8-70879 A).
  • leucine-resistant E. coil strains for example, 57 strains (V KPM B-7386, US Pat. No. 6,124,121) or j8-2 chelanalanin, 3 hydroxyleucine, 4 E. coli strains resistant to leucine analogs such as azale
  • the bacterium of the present invention has increased expression of one or more genes involved in L-leucine biosynthesis. May be improved. Examples of such genes include the leuABCD operon gene represented by a mutant leuA gene (US Pat. No. 6,403,342) encoding isopropylmalate synthase that is not subject to feedback inhibition by L-leucine. Furthermore, the bacterium of the present invention may be improved by increasing the expression of one or more genes encoding a protein that excretes bacterial cell force L-amino acids. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) (EP 12 39041 A2).
  • Examples of parent strains of L-histidine producing bacteria include E. coli 24 strain (VKPM B-5945, RU20036 77), E. coli 80 strain (VKPM B-7270, RU2119536), E. coli NRRL B-12116-B12121 (US Pat.No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP -6676) (US Pat.No. 6,344,347), E. coli H-9341 (FERM BP-6674) (EP1085087), E. coli AI80 / pFM201 (US Pat. No. 6,258,554), and other strains belonging to the genus Escherichia, but not limited thereto.
  • Examples of parent strains of L-histidine-producing bacteria also include strains in which expression of one or more genes encoding L-histidine biosynthetic enzymes are increased.
  • genes that encode L-histidine biosynthetic enzymes include ATP phosphoribosyltransferase gene (hisG), phosphoribosyl AMP cyclohydrolase gene (hisl), phosphoribosyl-ATP pyrophosphohydrolase gene (hisIE), phosphoribosylformimimino- 5-aminoimidazolecarboxamide ribotide isomerase gene (hisA), amide transferase gene (hisH), histidinol phosphate aminotransferase gene (hisC), histidinol phosphatase gene (hisB), histidinol dehydrogenase gene ( hisD).
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, L-histidine-producing ability is determined by the ATP phosphoribosyltransferase gene (hisG ) Can be efficiently increased by introducing mutations that confer resistance to feedback inhibition ( Russian Patent Nos. 2003677 and 2119536).
  • specific examples of strains capable of producing L-histidine include E. coli FERM-P 5038 and 5048 into which a vector carrying a DNA encoding an L-histidine biosynthesis enzyme has been introduced. 005099 A), E.
  • E. coli strain (EP1016710A) introduced with rht, an amino acid transport gene, E. coli that has conferred resistance to sulfaguadin, DL-1,2,4-triazole-3-alanine and streptomycin 80 shares (VKPM B-7270, Russian Patent No. 2119536).
  • Examples of parent strains of L-glutamic acid-producing bacteria include, but are not limited to, strains belonging to the genus Escherichia such as E. coli VL334thrC + (EP 1172433).
  • E. coli VL334 (V KPM B-1641) is an L-isoleucine and L-threonine auxotrophic strain having mutations in the thrC gene and the ilvA gene (US Pat. No. 4,278,765).
  • the wild type allele of the thrC gene was introduced by general transduction using Bataterophage P1 grown in cells of wild type E. coli K12 strain (VKPM B-7).
  • VKPM B-8961 an L-isoleucine-requiring strain L-glutamic acid producing bacterium VL334thrC + (VKPM B-8961) was obtained.
  • Examples of parent strains of L-glutamic acid-producing bacteria include, but are not limited to, strains in which expression of one or more genes encoding L-glutamic acid biosynthetic enzymes are increased.
  • genes encoding L-glutamate biosynthetic enzymes include glutamate dehydrogenase gene (gdh), glutamine synthetase gene (glnA), glutamate synthetase gene (gltAB), isocitrate dehydrogenase gene (icd), aconitic acid hydratase Gene (acn), citrate synthase gene (glta), phosphoenolpyruvate carboxylase gene (pepC), pyruvate carboxylase gene (pyc), pyruvate dehydrogenase gene (pdh), pyruvate kinase gene (pykA, pykF) , Phosphoenolpyruvate synthase
  • Glucose phosphate isomerase gene (pgi) and the like.
  • parent strains of L-glutamic acid-producing bacteria include strains that diminish or lack the activity of enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-glutamic acid to produce compounds other than L-glutamic acid. Also mentioned.
  • Such enzymes include isocitrate lyase (aceA), ⁇ -ketoglutarate dehydrogenase (sucA), phosphotransacetylase (pta), acetate kinase (ack), adetoxyacid synthase (ilvG ), Acetate lactate synthase (ilvl), formate acetyltransferase (pfl), ratate dehydrogenase (Wh), glutamate decarboxylase (gadAB), etc. (in parentheses the gene encoding the enzyme) Name).
  • aceA isocitrate lyase
  • sucA ⁇ -ketoglutarate dehydrogenase
  • pta phosphotransacetylase
  • ack acetate kinase
  • ilvG adetoxyacid synthase
  • ilvl Acetate lactate synthase
  • pfl formate acetyltransfera
  • E. coli W3110sucA is the E. coli W3110 ⁇ - ketoglutarate dehydrogenase gene (hereinafter also referred to as "sucA gene") is a strain obtained by disrupting the. This strain is completely deficient in a-ketoglutarate dehydrogenase.
  • L-glutamic acid-producing bacteria include those belonging to the genus Escherichia and having resistance to aspartic acid antagonists. These strains may be deficient in a-ketoglutarate dehydrogenase.For example, E. coli AJ13199 (FERM BP-5807) (US Pat. No. 5.908,768) and L-glutamate resolution is reduced. FFRM P-12379 (US Pat. No. 5,393,671); AJ13138 (FERM BP-5565) (US Pat. No. 6,110,714) and the like.
  • L-glutamic acid-producing bacteria examples include bacteria belonging to the genus Pantoea in which ⁇ -ketoglutarate dehydrogenase activity is deficient or ⁇ -ketoglutarate dehydrogenase activity is reduced, as described above. Can be obtained.
  • An example of such a strain is Pantoea ananatis AJ13356 (US Pat. No. 6,331,419).
  • the deposit number FERM P-16645 was deposited at address 1 in the center 6), transferred to an international deposit under the Budapest Treaty on January 11, 1999, and the deposit number FERM BP-6616 was assigned.
  • Pantoea ananatis AJ13356 is deficient in ⁇ -ketoglutarate dehydrogenase activity due to disruption of a KGDH-El subunit gene (sucA).
  • this strain When isolated, this strain was called Enterobacter agglomerans and deposited as Enterobacter agglomerans A J13356. However, it has been reclassified as Pantoea anana tis based on the base sequence of 16S rRNA. AJ13356 has been deposited with the above depository as Enterobacter agglomerans, but is described as Pantoea ananatis in this specification.
  • Examples of parent strains of L-phenenorealan producing bacteria include E. coli AJ12739 (tyrA :: Tnl0, tyr R) (VKPM B-8197), E.coli HW1089 (ATCC 55371) carrying the mutant pheA34 gene ( (US Pat. No. 5,354,672), E.coli MWEC101—b (KR8903681), E.coli NRRL B—121 41, NRRL B-12145, NRRL B-12146, NRRL B-12147 (US Pat. No. 4,407,952), etc. Strains belonging to the genus Escherichia, but are not limited thereto. The parent strains include E.
  • E. coli K-12 [W3110 (tyrA) / pPHAB] (FERM BP-3566), E. coli K-12 [W3110 (tyrA) / pPHAD] (FERM BP-12659), E E. coli K-12 [W3110 (tyrA) / pPHATerm] (FER M BP-12662) and E. coli K-12 [W3110 (tyrA) / pBR-aroG4, p ACMAB] (FERM BP- 3579) can also be used (EP 488424 Bl).
  • MG1655 AtyrA AtyrR PL-yddG belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (U.S. Application Publication No. 2 003/0148473 Al (WO 03/044192) and 2003/0157667 Al).
  • L-tryptophan-producing bacteria examples include E. coli JP4735 / pMU3028 (DSM10122) and JP6015 / pMU91 (DSM10123) (US Patent No. 1) lacking the tryptophal-tRNA synthetase encoded by the mutant trpS gene. 5, 756,345), E. coli with a serA allele that encodes a phosphodalisellate dehydrogenase that is not subject to feedback inhibition by serine and a trpE allele that encodes an anthralate synthase that is not subject to feedback inhibition by tryptophan SV164 (pGH5) (US Pat.No.
  • L-trybutophane-producing bacteria belonging to the genus Escherichia with an increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (US Application Publications 2003/0148 473 A1 and 2003/0157667 Al).
  • Examples of parent strains of L-tryptophan-producing bacteria include strains in which one or more of the activities of an enzyme selected from anthralate synthase, phosphoglycerate dehydrogenase (serA), and tryptophan synthase (trpAB) are increased. It is done. Since both anthra-rate synthase and phosphodallyselate dehydrogenase are subject to feed knock inhibition by L-tryptophan and L-serine, mutations that cancel feedback inhibition may be introduced into these enzymes. Specific examples of strains having such mutations include E.
  • coli SV164 that retains desensitized anthralate synthase and phosphodalylate dehydrogenase from which feedback inhibition has been eliminated.
  • Examples include a transformant obtained by introducing plasmid pGH5 (WO 94/08031) containing a mutant serA gene to be encoded.
  • Examples of parent strains of L-trybutophane-producing bacteria include strains into which a tryptophan operon containing a gene encoding desensitized anthralate synthase has been introduced (JP 57-71397 A, JP 62 -244382 A, USA) (Patent No. 4,371,614). Furthermore, L-tryptophan-producing ability may be imparted by increasing the expression of a gene encoding tryptophan synthase in the tryptophan operon (trpBA). Tribtophan synthase consists of ⁇ and
  • Examples of parent strains of L-proline-producing bacteria include strains belonging to the genus Escherichia such as E. coli 702ilvA (VKPM B-8012) (EP 1172433), which lacks the ilvA gene and can produce L-proline. Not limited to these!
  • the bacterium of the present invention may be improved by increasing the expression of one or more genes involved in L-proline biosynthesis.
  • An example of a gene preferable for L-proline-producing bacteria includes a proB gene (German Patent No. 3127361) encoding glutamate kinase that is desensitized to feedback inhibition by L-proline.
  • the bacterium of the present invention may be improved by increasing the expression of one or more genes encoding a protein that excretes L-amino acids. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) (EP1239041 A2).
  • bacteria belonging to the genus Escherichia having L-proline producing ability include NRRL B-124 03 and NRRL B-12404 (British Patent No. 2075056), VKPM B-8012 ( Russian Patent Application No. 20 00124295), Examples include E. coli strains such as a plasmid variant described in German Patent No. 3127361 and a plasmid variant described in Bloom FR et al (The 15th Miami winter symposium, 1983, p.34).
  • Examples of parent strains of L-arginine-producing bacteria include E. coli 237 strain (VKPM B-7925) (US Application Publication 2002/058315 Al) and its derivative strain ( Russia) that retains mutant N-acetylglutamate synthase Patent application No. 2001112869), E. coli strain 382 (VKPM B-7926) (E P1170358A1), arginine-producing strain introduced with argA gene encoding N-acetylglutamate synthetase (EP1170361A1), etc. Examples include, but are not limited to, stocks.
  • Examples of parent strains of L-arginine-producing bacteria also include strains in which expression of one or more genes encoding L-arginine biosynthetic enzymes are increased.
  • An example of a gene encoding an L-arginine biosynthetic enzyme is the N-acetyltiltamyl phosphate reductase residue.
  • argC Arginosuccinate synthetase gene
  • argH arginosuccinate lyase gene
  • carAB rubamoyl phosphate synthase gene
  • parental strains of L-parin producing bacteria include, but are not limited to, strains modified to overexpress the ilvGMEDA operon (US Pat. No. 5,998,178). It is preferable to remove the region of the ilvGMEDA operon that is required for the fat-use, so that the operon expression is not attenuated by the produced L-parin. In addition, it is preferred that the ilvA gene of the operon is destroyed and threonine deaminase activity is reduced.
  • Examples of parent strains of L-paline-producing bacteria also include mutant strains having aminoacyl t-RNA synthetase mutations (US Pat. No. 5,658,766).
  • E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase can be used.
  • E. coli VL1970 was acquired on 24 June 1988 by Lucian National 'Collection' Ob 'Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) with accession number VKPM. Deposited at B-4411.
  • a mutant strain (WO96 / 06926) that requires lipoic acid for growth and lacks Z or H + -ATPase can be used as a parent strain.
  • parent strains of L-isoleucine-producing bacteria include mutant strains resistant to 6-dimethylaminopurine (JP 5-304969 A), resistant to isoorcinoid analogs such as thiisoleucine and isoleucine hydroxymate. Mutants, and mutants resistant to DL-ethionine and Z or arginine hydroxymate (JP 5-130882 IV) are included, but not limited thereto.
  • a recombinant strain transformed with a gene encoding a protein involved in L-isoleucine biosynthesis such as threonine deaminase and acetohydroxy acid synthase can also be used as a parent strain.
  • the microorganism of the present invention obtained as described above is cultured in a medium having a concentration that induces the expression of phosphorus concentration in the medium, and the expression by the regulon promoter, and amino acid is produced and accumulated in the culture.
  • L-amino acid can also be efficiently produced by collecting L-amino acid.
  • a medium in which phosphorus is the first rate-determining factor is defined as a medium having a limited phosphorus concentration.
  • concentration at which expression by the pho regulon promoter is induced is also referred to as “phosphorus restricted concentration”.
  • the medium used in the present invention may be any medium as long as it contains a carbon source and a nitrogen source as nutrient sources, but is a medium adjusted so that the concentration of phosphorus in the fermentation medium becomes a phosphorus-restricted concentration.
  • the phosphorus may be any as long as it contains a phosphorus molecule, but among them, phosphate is preferable as an addition form in which phosphoric acid is preferred.
  • the salt is not particularly limited, and phosphoric acid polymers such as potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and pyrophosphoric acid, which may be ammonium salt, calcium salt, or sodium salt, are used. Further, the medium may contain only one of these substances or two or more of them.
  • the phosphorus-restricted concentration may be any concentration as long as the Pho regulon promoter is activated compared to a medium containing a large amount of phosphorus (ie, containing phosphorus at a concentration that does not become a rate-limiting factor for growth).
  • concentration of phosphorus contained in the fermentation medium is usually 200 ⁇ or less, more preferably 150 ⁇ or less, even more preferably 100 ⁇ or less, and even more preferably 10 or less. More preferably, it is controlled to 4 mm or less. In the latter half of the culture, the phosphorus concentration in the medium may be zero.
  • the fermentation medium may be temporarily deficient as long as it contains the minimum amount of phosphorus necessary for the growth of microorganisms.
  • temporary may mean, for example, a state in which phosphorus is insufficient in about 20%, 40%, and a maximum of about 60% of the entire fermentation time. Fermentation at this time
  • the phosphorus concentration contained in the medium is preferably 0.001 ⁇ or more, preferably 0.005 ⁇ or more, more preferably 0.01 ⁇ or more, and even more preferably 0.05 ⁇ or more.
  • any of batch culture, fed-batch culture, and continuous culture can be used.
  • seed culture in order to keep L-amino acid accumulation above a certain level, seed culture may be performed separately from seed culture and main culture.
  • the seed culture and the main culture may be performed in a batch culture, which may be performed by fed-batch culture or continuous culture.
  • the "initial medium” means a medium used for batch culture before fed-batch, and the “feed-batch medium” means fed-batch culture. This means the medium that is supplied to the fermenter when performing.
  • the “fermentation medium” means a medium in the fermenter, and L amino acids are also recovered from this fermentation medium force.
  • the “fermentor” means a vessel for performing L-amino acid fermentation, and either a fermentation tank or a jar armor may be used. Further, the capacity may be any capacity as long as L amino acid can be produced and recovered.
  • Phosphorus may be adjusted to have a phosphorus-restricted concentration in the initial medium, may be restricted to have a phosphorus-restricted concentration in the fed-batch medium, or a combination thereof.
  • concentration of phosphorus when the concentration of phosphorus is restricted by flow culture, the phosphorus concentration in the fermentation medium is 200 M or less, preferably 150 ⁇ or less, more preferably 100 ⁇ or less, even more preferably 10 ⁇ or less, More preferably, it is controlled to 4 mm or less.
  • these phosphorus may be mixed in both the initial culture medium and the feeding medium, or the phosphorus in the feeding medium may be changed to the initial culture medium.
  • Phosphorus is preferably limited to a phosphorus-restricted concentration in the latter half of the culture, which is the L-amino acid production phase.
  • the method of the present invention includes a step of growing a microorganism having L-amino acid-producing ability (growth phase) and a step of producing L-amino acid (L-amino acid production phase)
  • phosphorus is phosphorylated in the L-amino acid production phase.
  • growth phase where L-amino acid-accumulating microorganisms are allowed to grow
  • Phosphorus may be restricted to a phosphorus-limiting concentration that exceeds the phosphorus-limiting concentration and may be contained in the medium.
  • the phosphorus content need not be in the above range over the entire period.
  • Phosphorus may be present at the beginning of the same stage so that the content exceeds the above range, and may be reduced according to the culture time.
  • the latter half of the culture mainly means the amino acid production phase, and is distinguished from the cell growth phase.
  • the “growth phase” in the present invention means a period of 3 hours, preferably 6 hours, particularly preferably within 10 hours from the start of culture, when phosphorus is mainly used for cell growth, that is, a microorganism.
  • L A period used for amino acid production.
  • the carbon source contained in the medium used in the present invention as the carbon source, saccharides such as glucose, glycerol, fructose, sucrose, maltose, mannose, galactose, starch carohydrate, molasses and the like can be used.
  • glucose and sucrose are preferable.
  • organic acids such as acetic acid and citrate, and alcohols such as ethanol can be used alone or in combination with other carbon sources.
  • kane molasses kane molasses, beet molasses, potato, itest molasses and citrus molasses
  • hydrolysates of natural raw materials such as cellulose, starch, corn, cereal and tapio force may be used. It may be used.
  • carbon dioxide dissolved in the culture solution can be used as a carbon source.
  • These carbon sources can be used for both initial and fed-batch media.
  • these carbon sources may be mixed in both the initial culture medium and the feed medium, or the carbon source of the feed medium may be changed to the initial culture medium.
  • the initial medium is cultured with glucose and the fed-batch medium is cultured with sucrose.
  • the nitrogen source contained in the medium of the present invention includes ammonia, ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, ammonium acetate, urea.
  • Ammonium salts or nitrates such as ammonia gas and ammonia water used for pH adjustment can also be used as a nitrogen source.
  • Peptone, yeast extract, meat extract, malt extract, corn steep liquor, soybean hydrolyzate, etc. can also be used.
  • These nitrogen sources can be used for both the initial medium and the feed medium. Further, these nitrogen sources may be mixed in both the initial culture medium and the fed-batch medium, or the nitrogen source in the fed-batch medium may be changed to the initial culture medium.
  • the medium of the present invention may contain a sulfur source in addition to a carbon source, a nitrogen source and a phosphorus source.
  • a sulfur source may be used as long as it contains sulfur molecules, but sulfates such as sulfates, thiosulfates, and sulfites, and sulfur-containing amino acids such as cysteine, cystine, and dartathione are desirable. Ammoum is desired.
  • the medium of the present invention may contain a growth promoting factor in addition to the carbon source, nitrogen source and phosphorus source.
  • a growth promoting factor in addition to the carbon source, nitrogen source and phosphorus source.
  • trace metals, amino acids, vitamins, fatty acids, nucleic acids, and peptone, casamino acid, yeast extract, soybean protein degradation products, and the like containing these can be used.
  • Examples of trace metals include iron, manganese, magnesium, calcium, and vitamins include vitamin B, vitamin B, vitamin B, nicotinic acid, nicotinamide, vitamin
  • growth-promoting factors may be included in the initial medium or
  • the medium of the present invention is preferably supplemented with the required nutrients.
  • aeration is carried out at a fermentation temperature of 20 to 45 ° C, particularly preferably at 33 to 42 ° C.
  • the oxygen concentration is usually adjusted to 5 to 50%, preferably about 10%.
  • aeration culture is usually performed with the pH adjusted to 5-9.
  • the pH drops during the culture for example, neutralize with an alkali such as ammonia gas, aqueous ammonia, etc., the ability to hold calcium carbonate.
  • an alkali such as ammonia gas, aqueous ammonia, etc.
  • the concentration of accumulated L-amino acid may be any concentration that can be collected and recovered from a medium higher than that of the wild strain, but is 50 g / L or more, preferably 75 g / L or more, and more preferably 100 g / L. L or more.
  • the method for collecting the culture fluid L-amino acid after completion of the culture may be performed according to a known recovery method.
  • the culture fluid power is also collected by removing concentrated cells by centrifugation or the like and then concentrating and crystallizing.
  • E. coli L-lysine producing bacterium WC196 (FERM BP-5252) was used to evaluate lysine production ability.
  • the culture solution volume at the start of the culture was 20 mL, and the mixture was shaken back and forth at a rotation speed of 120 rpm and cultured at 37 ° C.
  • the cell concentration (OD600) was determined by measuring the turbidity at 600 nm with a spectrophotometer (Beckman) using a culture solution diluted with 0.1 N hydrochloric acid at an appropriate magnification.
  • the residual glucose concentration and L-lysine concentration were measured with a Biotech Analyzer (Sakura Seiki) after diluting the culture supernatant sterilized by centrifugation with water to an appropriate magnification.
  • the culture was performed for 24 to 65 hours, and the culture was continued until all the glucose in the culture was consumed.
  • the culture medium contains yeast.
  • Extract-derived phosphorus is contained in an amount of about 0.25g / L in terms of KHPO.
  • Incubation was performed at lmM in the foot condition and 50 M in the phosphate deficient condition. Start culture The culture volume at that time was 50 mL, and the mixture was shaken back and forth at a rotation speed of 120 rpm and cultured at 37 ° C. All media, containers, etc. were used after autoclaving.
  • RNA 20 ⁇ g of the obtained RNA was used as a substrate, dATP, dGTP, dTTP were each lmM, and dCTP labeled with 33 P was used as a substrate with a specific activity of 1500 MBq as a substrate.
  • Reverse transcription reaction was performed using Kit, and labeled cDNA of each phase was obtained.
  • the lysA gene (hereinafter abbreviated as PphoA-1 ysA) in which the promoter is replaced with the promoter of the phoA gene is a crossover PCR method (Link AJ, Phillips D, Church GM, J. Bacteriol. Vol.l79.p6228-6237,1997). Described). Genomic DNA obtained from E. coli K-12 strain with the primers LysA-1 and LysA-2 (SEQ ID NOs: 22 and 23) and phoAp-l and phoAp-2 (SEQ ID NOs: 26 and 27) listed in Table 4 below. PCR was performed on each cage.
  • the molar ratios of the primers LysA-1 and LysA-2 and phoAp-1 and phoAp-2 were 10: 1.
  • the obtained first PCR product was used as a saddle shape, and a second PCR was performed using primers LysA-1 and phoAp-1.
  • the obtained PCR product was cleaved with BamHI and Hindlll, and ligation reaction was performed using DNA ligation kit ver.2 (Takara Shuzo) together with pMW118 (-Tubong Gene) cleaved with BamHI-Hindlll.
  • This binding reaction transforms DH5 a-competent cells (Takara Shuzo) and seeds them on an LB agar plate (LB + Ap plate) containing 50 g / mL of ampicillin (Ap) (Nacalai Testa) at 37 ° C. Selected. Colonies were cultured in LB medium containing 50 ⁇ g / mL Ap at 37 ° C., and plasmids were extracted using Wizard Plus Miniprep (Promega). The extracted plasmid was cleaved with BamHI and Hindlll, and one having an insertion sequence of the desired length was selected to construct the desired plasmid pMW-PphoA-lysA.
  • E. coli WC196 was transformed with this plasmid pMW-PphoA-lysA to obtain the target strain WC196 / pMW-PphoA-lysA.
  • PCR was performed using genomic DNA obtained from E. coli K-12 strain in a saddle shape.
  • the obtained PCR product was cleaved with BamHI and Hindlll, and ligation reaction was performed using DNA ligation kit ver.2 (Takara Shuzo) with pMW118 (-Tubong Gene) combined with BamHI-Hindlll.
  • DH5 a-competent cells (Takara Shuzo) were transformed, and ampicillin (Ap) (Naka (LB) was plated on an LB agar plate (LB + Ap plate) containing 50 ⁇ g / mL, and one was selected at 37 ° C.
  • the colony was cultured in a test tube at 37 ° C in LB medium containing 50 g / mL Ap, and the plasmid was extracted using Wizard Plus Miniprep (Promega). The extracted plasmid was cleaved with BamHI and Hindlll, and one having an insertion sequence of the desired length was selected to construct the desired plasmid pMW-lysAR.
  • E. coli WC196 was transformed with this plasmid pMW-lysAR to obtain the target strain WC196 / pMW-lysAR.
  • KH PO is cultured at lg / L.
  • the culture volume at the start of culture is 2
  • the culture was performed at 37 ° C with OmL, reciprocal shaking at a rotation speed of 120 rpm. All media, containers, etc. were used after autoclaving. At this time, the bacterial cell concentration, dalcose concentration, and lysine accumulation in the culture solution were measured.
  • the cell concentration (OD600) was determined by measuring the turbidity at 600 nm with a spectrophotometer (Beckman) using a culture solution diluted with 0.1 N hydrochloric acid at an appropriate magnification. The residual glucose concentration and lysine concentration were measured with a Biotech Analyzer (Sakura Seiki) after diluting the supernatant of the culture solution sterilized by centrifugation at an appropriate magnification.
  • the culture was performed for 24 to 65 hours, and the culture was continued until all the glucose in the culture was consumed.
  • E. coli MG1655 AtyrA AtyrR P-yddG strain was reported for E. coli BW25113 strain
  • the promoter P is located upstream of the chromosomal gene aroG4 of the above strain, and the ⁇ Red system (D
  • DNA fragments containing the phoA gene promoter were amplified by PCR using 32 primers.
  • the primer of SEQ ID NO: 31 contains at its 5 ′ end a Bglll site necessary for ligation to other fragments including chloramphee-columa.
  • the primer of SEQ ID NO: 32 contains 36 nucleotides complementary to the 5 ′ end region of the aroG gene necessary for further integration into the chromosome using the ⁇ Red system.
  • the DNA fragment containing the Cm R marker that will be encoded by the cat gene was obtained by PCR using primers SEQ ID NO 33 and 34 pMWl 18- attL- Cm- attR as a template (WO 05/010175).
  • the primer of SEQ ID NO: 33 contains a Bglll site necessary for ligation to the above-mentioned fragment containing the promoter of the phoA gene at its 5 ′ end.
  • the primer of SEQ ID NO: 34 is a ⁇ Red system.
  • Complementary 36 nucleotides are included in the 5 'terminal region of the aroG gene, which is necessary for further integration into the chromosome using the chromosomal DNA. The two PCR fragments obtained were treated with Bgin restriction enzyme and ligated.
  • the obtained ligation product was amplified by PCR using the primers of SEQ ID NOs: 32 and 34, and assembled into the chromosome of MG1655 AtyrA AtyrR, P-yddG, MUD-aroG4-pheA B -aroL strain.
  • Figure 4 shows the structure of the fragment incorporated into the body. The sequence of this fragment is shown in SEQ ID NO: 35.
  • strain II got it. This correlates with the low L-feuraranin production of strain II when compared to strain I.
  • the final cell concentration was low and equal in both strains.
  • Both strains produced significantly more L-phenol-lanalanin than strain I, which produced significantly more L-phenylalanine under phosphate restriction compared to phosphate-excess conditions.
  • the high level of L-ferulanin production in both strains is explained by the prolonged stationary phase due to phosphate limitation.
  • the significantly higher ability of strain II for L-fetalanine biosynthesis is explained by the higher activity of DAHP synthase, particularly in the stationary phase.
  • the present invention provides an improved process for producing L-amino acids such as L-lysine and L-ferulanine. Explanation of self-row]
  • SEQ ID NO: 1 phoA gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 2 phoA gene promoter sequence (GenBank)
  • SEQ ID NO: 3 phoB gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 4 phoB gene promoter sequence (GenBank)
  • SEQ ID NO: 5 phoE gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 6 phoE gene promoter sequence (GenBank)
  • SEQ ID NO: 7 phoH gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 8 phoH gene promoter sequence (GenBank)
  • SEQ ID NO: 9 asr gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 10 asr gene promoter sequence (GenBank)
  • SEQ ID NO: 11 argP gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 12 argP gene promoter sequence (GenBank)
  • SEQ ID NO: 13 ug P B gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 14 ugpB gene promoter sequence (GenBank)
  • SEQ ID NO: 15 pstS gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 16 pstS gene promoter sequence (GenBank)
  • SEQ ID NO: 17 psiE gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 18 psiE gene promoter sequence (GenBank)
  • SEQ ID NO: 19 phnC gene promoter sequence (500 bp upstream of the start codon)
  • SEQ ID NO: 20 phnC gene promoter sequence (GenBank)
  • SEQ ID NO: 22 Primer for lysA gene amplification
  • SEQ ID NO: 23 Primer for lysA gene amplification
  • SEQ ID NO: 24 Primer for lysA gene amplification
  • SEQ ID NO: 25 lysA gene amplification primer
  • SEQ ID NO: 26 primer for amplifying the phoA gene promoter
  • SEQ ID NO: 27 primer for amplifying the phoA gene promoter
  • SEQ ID NO: 28 lysA gene
  • SEQ ID NO: 29 Amino acid sequence encoded by lysA gene
  • SEQ ID NO: 30 MG1655 ⁇ tvrA ⁇ tyrR.P-integrated into yddG'MUD-aroG4-pheA B -aroL strain
  • SEQ ID NO: 31 Primer for amplification of DNA fragment containing phoA gene promoter
  • SEQ ID NO: 32 Primer for amplification of DNA fragment containing phoA gene promoter
  • SEQ ID NO: 33 Primer for amplification of DNA fragment containing Cm R marker
  • SEQ ID NO: 34 Primer for amplification of DNA fragment containing Cm R marker
  • SEQ ID NO: 35 MG1655 ⁇ tvrA ⁇ tyrR'P— yddG'MUD— (P-aroG4) — pheA B — aroL strain
  • SEQ ID NO: 36 aroG gene
  • SEQ ID NO: 37 Amino acid sequence encoded by aroG gene (3-deoxy-D-alapinoheprolonate-7-phosphate synthase)
  • SEQ ID NO: 38 aroL gene
  • SEQ ID NO: 39 Amino acid sequence encoded by aroL gene (Shikimate kinase)
  • SEQ ID NO: 40 pheA gene
  • SEQ ID NO: 41 Amino acid sequence encoded by pheA gene (prefenate dehydratase, chorismate mutase)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

phoレギュロンプロモーターの下流に、そのプロモーターにより発現するように、L-アミノ酸生合成系酵素をコードする構造遺伝子が接続されたDNA断片を導入することにより、前記プロモーターによる発現の誘導によってL-アミノ酸生合成系酵素の活性が増大するように改変された、腸内細菌科に属するL-アミノ酸生産能を有する微生物を培地で培養して、L-アミノ酸を該培地に生成蓄積させ、該培地よりL-アミノ酸を採取する、L-アミノ酸の製造方法であって、前記培地中のリン濃度が、前記プロモーターによる発現が誘導される濃度である方法。

Description

明 細 書
L一アミノ酸の製造法
技術分野
[0001] 本発明は微生物を用いた L アミノ酸の製造法、特に L リジン、 L—スレオニン、 L —フエ-ルァラニン、 L トリブトファン等の L アミノ酸の製造法に関する。 L リジン 、 L—スレオニン、 L トリブトファンは、動物飼料用の添加物、健康食品の成分、アミ ノ酸輸液等として、 L フエ二ルァラニンは甘味料の前駆体として産業上有用なし アミノ酸である。
背景技術
[0002] L—アミノ酸は、ブレビバクテリウム属、コリネバクテリウム属、ェシエリヒア属等に属 する微生物を用いた発酵法により工業生産されている。これらの製造法においては、 自然界力 分離された菌株または該菌株の人工変異株、さらには、組換え DNA技術 により塩基性 L—アミノ酸生合成酵素の活性が増大するように改変された微生物など が用いられている。(特許文献 1〜9)
[0003] また、一般的に細菌を用い、生産培養を行う際には、微生物の過剰な生育は基質 の目的生産物への分配を減少させることになるために、培地中の栄養分の添加量を 必要に応じて制限することが必要となる場合がある。制限する栄養分としては、要求 アミノ酸やリンが挙げられる。培養液中のリン濃度を一定範囲内に制限し、細菌の過 剰な生育を抑制するような培養方法としては、特許文献 1に記載の方法が挙げられる 特許文献 1 : EP0643135B
特許文献 2 : EP0733712B
特許文献 3 : EP1477565A
特許文献 4: EP0796912A
特許文献 5 : EP0837134A
特許文献 6 :WO01/53459
特許文献 7 : EP1170376A 特許文献 10 : US5, 763, 230
発明の開示
[0004] 本発明は、従来よりもさらに改良された発酵法による L アミノ酸の製造法を提供す ることを課題とする。
[0005] 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、腸内細菌科に 属する微生物において、細胞内、あるいは培養液中のリンの濃度がある濃度以下に 低下したときに、 phoレギュロン (regulon)プロモーター配列の下流に L-アミノ酸生合成 系の酵素をコードする遺伝子が接続された発現構築物を導入することにより、その細 菌による L -アミノ酸の生産が改善されることを見 、だし、この知見に基づ!/、て本発 明を完成した。
[0006] 本発明は下記のものを提供する。
1. phoレギュロンプロモーターの下流に、そのプロモーターにより発現するように、 L アミノ酸生合成系酵素をコードする構造遺伝子が接続された DNA断片を導入す ることにより、前記プロモーターによる発現の誘導によって L アミノ酸生合成系酵素 の活性が増大するように改変された、腸内細菌科に属する L-アミノ酸生産能を有す る微生物を培地で培養して、 L アミノ酸を該培地に生成蓄積させ、該培地より L アミノ酸を採取する、 L アミノ酸の製造方法であって、前記培地中のリン濃度が、前 記プロモーターによる発現が誘導される濃度である方法。
2. 肯 ij記 phoレギュ Pンプ Pモーター力 phoA, phoB, phoE, phoH, asr, argP, ugpB , pstS, psiE及び phnCから選択される遺伝子のプロモーターである 1に記載の製造法
3. 前記 phoレギュロンプロモーター力 pho boxを有するプロモーターである、 1又 は 2に記載の製造法。
4. 前記培地中のリン濃度が、 200 M/L以下に制御される 1〜3のいずれか一項 に記載の製造法。
5. 前記 L アミノ酸生合成系酵素が、改変前の微生物においては、リンが枯渴し た条件下で発現レベルが低下するものである、 1〜4のいずれか一項に記載の製造 法。
6. 前記 DNA断片がマルチコピー型ベクターに搭載されている、又は、微生物の 染色体 DN A上に導入されている、 1〜5のいずれか一項に記載の方法。
7. 前記腸内細菌科に属する微生物が、ェシエリヒア属細菌、ェンテロバクター属 細菌、パントエア属細菌、クレブシエラ細菌、セラチア属細菌からなる群より選ばれる 微生物である、 1〜6のいずれか一項に記載の方法。
8. 前記 L アミノ酸が L リジン、 L—スレオニン、 L トリプトファン、 L フエ-ル ァラニン、 L -グルタミン酸力 なる群より選択される 1種または 2種以上の L -アミノ酸 である 1〜7のいずれか一項に記載の方法。
9. 前記 L アミノ酸が L リジンであり、 L アミノ酸生合成系酵素がジヒドロジピ コリン酸レダクターゼ、ジアミノピメリン酸脱炭酸酵素、ジアミノピメリン酸デヒドロゲナ ーゼ、ホスホェノールピルビン酸カルボキシラーゼ、ァスパラギン酸アミノトランスフエ ラーゼ、ジアミノピメリン酸ェピメラーゼ、ァスパラギン酸セミアルデヒド脱水素酵素、テ トラヒドロジピコリン酸スクシ-ラーゼ、及び、スクシ-ルジアミノピメリン酸デアシラーゼ 力 なる群より選択される 1種または 2種以上の酵素である 8に記載の方法。
10. 前記 L—アミノ酸が Lースレオニンであり、 L—アミノ酸生合成系酵素がァスパ ルトキナーゼ III、ァスパラギン酸セミアルデヒドデヒドロゲナーゼ、 thrオペロンにコード されるァスバルトキナーゼ I、ホモセリンキナーゼ、及び、スレオニンシンターゼからな る群より選択される 1種または 2種以上の酵素である 8に記載の方法。
11. 前記 L アミノ酸が L グルタミン酸であり、 L アミノ酸生合成系酵素力 グ ルタミン酸デヒドロゲナーゼ、グルタミンシンテターゼ、グルタミン酸シンターゼ、イソク ェン酸デヒドロゲナーゼ、アコニット酸ヒドラターゼ、クェン酸シンターゼ、ホスホエノー ルピルビン酸カルボキシラーゼ、ピルビン酸カルボキシラーゼ、ピルビン酸デヒドロゲ ナーゼ、ピルビン酸キナーゼ、ホスホェノールピルビン酸シンターゼ、 6—ホスホダル コン酸デヒドラターゼ、及び、 2 ケトー 3 デォキシ 6 ホスホダルコン酸アルドラ ーゼ力 なる群より選択される 1種または 2種以上の酵素である 8に記載の方法。
12. 前記 L—アミノ酸が芳香族 L—アミノ酸であり、 L—アミノ酸生合成系遺伝子が 、 3—デォキシ D ァラビノヘプッロン酸 7—リン酸シンターゼ、 3—デヒドロキネ ートシンターゼ、シキミ酸デヒドラターゼ、シキミ酸キナーゼ、 5—ェノール酸ピルビン シキミ酸 3—リン酸シンターゼ、コリスミ酸シンターゼ、プレフェン酸デヒドラターゼ、コリ スミ酸ムターゼカ なる群より選択される 1種または 2種以上の酵素である 8に記載の 方法。
[0007] 本発明により、 L—リジン、 L—フエ-ルァラニンなどの L—アミノ酸の生産性の高い エシ リヒア属細菌などの腸内細菌科に属する微生物が提供され、この微生物を用 V、ることにより L リジン、 L -フエ-ルァラニンなどの L -アミノ酸を高収率で得ること ができる。
図面の簡単な説明
[0008] [図 l]lysR遺伝子及び lysA遺伝子を有するプラスミド pMW-lysARの製造工程を示す 図である。
[図 2]lysA遺伝子の上流領域に phoA遺伝子のプロモーター配列を有するプラスミド p MW-PphoA-lysAの製造工程を示す図である。
[図 3]MG1655 AtyrA AtyrR, P - yddG , MUD- aroG4- pheAB -aroL株に組み込まれ
L
ている断片の構造を示す。
[図 4]MG1655 Δ tyrA Δ tyrR, P -yddG, MUD- (P - aroG4)-pheAB - aroL株に組み
L PhoA
込まれて 、る断片の構造を示す。
発明を実施するための最良の形態
[0009] < 1 >本発明の微生物
本発明の微生物は、 phoレギュロンプロモーターの下流に、そのプロモーターにより 発現するように、 L アミノ酸生合成系の酵素をコードする構造遺伝子が接続された DNA断片を導入することにより、前記プロモーターによる発現の誘導によって L アミ ノ酸生合成系酵素の活性が増大するように改変された、腸内細菌科に属する L-アミ ノ酸生産能を有する微生物である。ここで、 L アミノ酸生産能とは、本発明の微生物 を培地中で培養したときに、培地中または菌体内に L アミノ酸を生成し、蓄積する 能力をいう。なお、本発明の微生物は複数の L アミノ酸の生産能を有するものであ つてもよい。 L アミノ酸の生産能を有する微生物としては、本来的に L アミノ酸の 生産能を有するものであってもよいが、下記く 1—2>で説明するような微生物を、変 異法ゃ組換え DNA技術を利用して、 L アミノ酸の生産能を有するように改変したも のであってもよい。
[0010] L-アミノ酸の種類は特に制限されな!、が、 L-リジン、 L-オル二チン、 L-アルギニン、 L-ヒスチジン、 L シトルリン等の塩基性アミノ酸、 L-イソロイシン、 L-ァラニン、 L-バリ ン、 L-ロイシン、 L-グリシン等の脂肪族アミノ酸、 L-スレオニン、 L-セリン等のヒドロキ シモノアミノカルボン酸であるアミノ酸、 L-プロリン等の環式アミノ酸、 L-フエ-ルァラ ニン、 L-チロシン、 L-トリプトファン等の芳香族アミノ酸、 L-システィン、 L-シスチン、 L -メチォニン等の含硫アミノ酸、 L-グルタミン酸、 L-ァスパラギン酸、 L-グルタミン、 L- ァスパラギン等の酸性アミノ酸又はその酸アミドが挙げられる力 中でも L—リジン、 L —フエ-ルァラニン、 L トリプトファン、 L-スレオニン、 L グルタミン酸が好ましい。 本発明の微生物は 2種類以上のアミノ酸の生産能を有するものであってもよい。
[0011] < 1 1 >本発明の DNA断片
本発明に用いる DNA断片は、 phoレギュロンプロモーターの下流に、そのプロモー ターにより発現するように、 L アミノ酸生合成系の酵素をコードする構造遺伝子が接 続された DNA断片である。
[0012] phoレギュロンとは、細胞内のリン濃度が低下した際に発現が誘導される遺伝子群 を意味し、通常には、 phoB-phoRのヒスチジン—ァスパラギン酸リン酸リレー制御によ り転写因子を活性ィ匕する経路を経て制御を受ける遺伝子群を意味する。
[0013] センサーキナーゼの PhoRが細胞内のリン濃度を感知し、ヒスチジン残基を自己リン 酸化し、レスポンスレギュレーターであり転写因子である PhoBタンパク質の特定のァ スパラギン酸残基にリン酸を転移する。レスポンスレギュレーターである PhoBタンパク 質はこのリン酸ィ匕によって活性ィ匕され、多くの遺伝子の転写を制御する。
[0014] 例えば phoレギュロンに属する遺伝子としては、 pstSCAB, ugpBAEC, ugpQ, bap, ph nSTUV, phnCDE, phoE, phoA等があげられる。
[0015] また、 phoレギュロンプロモーターとは、 phoレギュロンに属する遺伝子のプロモータ 一である。通常には、細胞内のリンの濃度が低下した際に phoB-phoRの二成分制御 系によって転写調節を受ける遺伝子の上流に存在するプロモーターであり、 PhoBが 結合する領域を有する。具体的には、 phoA, phoB, phoE, phoH, asr, argP, ugpB, ps tS, psiE及び phnCから選択される遺伝子のプロモーターが挙げられる。これらの遺伝 子の情報を以下に示す。
[表 1]
【表 1
Figure imgf000008_0001
プロモーター配列の配列番号:下段の番号は、 開始コドン上流 500bPの配列の配列番号 上段の番号は、 GenBankに登録されたプロモーター配列の配列番号を示す。 また、 phoレギュロンプロモーター配列としては、 pho BOXを有するプロモーターが 好ましい。 Pho BOXとは、 phoBが結合する領域で微生物で高度に保存されている配 列である。具体的には、開始コドンの約 100bp〜10bp上流に保存されている配列で、 好ましくは CTGTCATA(A/T)A(T/A)CTGT(C/A)A(C/T) (配列番号 21)の配列を有 し、 -35領域の一部である CTGTCATが最も高度に保存されている配列である。 (Neid hardt, F. し. et ai., Escherichia coll and Salmonella Typhimurium, American Society f or Microbiology, Washington D. C.,し hapter 87, Figure 6 )
[0018] プロモーターの配列には、細胞内のリン濃度が低下した際に発現を誘導する活性 に影響しない変異が存在してもよい。例えば、 phoA, phoB, phoE, phoH, asr, argP, u gpB, pstS, psiE及び phnC力 選択される遺伝子のプロモーターの配列(配列番号 1 〜20)に対して、通常 90%以上、好ましくは 95%以上、より好ましくは 97%の相同性 を有し、細胞内のリン濃度が低下した際に発現を誘導する活性を有するものであり得 る。よりタナ 3;しく ίま、 pnoA, phoB, phoE, phoH, asr, argP, ugpB, pstS, psiE及び phnC 力 選択される遺伝子のプロモーターの配列(配列番号 1〜20)に対して、通常 94 %以上、好ましくは 97%以上、より好ましくは 99%の相同性で、配列番号 21の CTG TCATA(A/T)A(T/A)CTGT(C/A)A(C/T)配列ある!/、は 35領域に CTGTCATが保 存されて!/、ることが好まし!/、。
[0019] 塩基配列の相同性(同一性)は、例えば Karlin and Altschulによるアルゴリズム BLA ST(Pro. Natl. Acad. Sci. USA, 90, 5873(1993》や FASTA(Methods EnzymoL, 183, 6 3 (1990》を用いて決定することができる。このアルゴリズム BLASTに基づいて、 BLAS TNや BLASTXとよばれるプログラムが開発されて!ヽる(www. ncbi.nlm.nih.gov参照)。 相同性は、通常には、このようなプログラムにより、その規定値を用いて算出される。
[0020] 本発明において、「L アミノ酸生合成系酵素」とは、代謝上 L-アミノ酸生合成に関 与する酵素であればいずれでもよいが、培養後半のリン濃度が低下している条件で 、発現量が低下している酵素が好ましい。本発明において培養後半とは、主にアミノ 酸生産期を意味し、菌体増殖期と区別される。本発明における「菌体増殖期」とは、 培養開始から 3時間、好ましくは 6時間、特に好ましくは、 10時間以内の、リン及び炭 素源が主に菌体生育に使用されている時期、すなわち微生物が対数的に増殖して いる時期を意味し、本発明における「培養後半」とは、培養終了まで 6時間、好ましく は 10時間、特に好ましくは 20時間前で、炭素源が主に L—アミノ酸生産に用いられ ている時期でを意味する。 [0021] 培養後半のリン濃度が低下している条件で発現量が低下している酵素は、培養後 半と菌体の増殖期 (対数増殖期)である培養前半の酵素活性を比較することにより確 認できる。また、 DNAマクロアレイや、 RT-PCR等によって培養後半と培養前半の mRN A量を比較することによつても確認できる。
[0022] L-アミノ酸生合成系酵素をコードする遺伝子は、 L-アミノ酸生産に効果がある遺伝 子である限り、 1遺伝子のみを用いてもよいし、複数の遺伝子の組み合わせて用いて もよい。また、 目的遺伝子は、ェシエリヒア'コリの染色体上に存在する内因性の遺伝 子であってもよ 、し、他微生物由来の外因性の遺伝子であってもよ!/、。
[0023] 以下、 L-アミノ酸生合成系酵素をコードする遺伝子に関して詳細に説明する。
[0024] L—リジン生合成系酵素をコードする遺伝子としては、ジヒドロジピコリン酸合成酵素 遺伝子(dapA)、ァスパルトキナーゼ遺伝子 (lysC)、ジヒドロジピコリン酸レダクターゼ 遺伝子 (dapB)、ジアミノピメリン酸脱炭酸酵素遺伝子 (lysA (配列番号 28))、ジアミノビ メリン酸デヒドロゲナーゼ遺伝子 (ddh) (以上、国際公開第 96/40934号パンフレット)、 ホスホェノールピルビン酸カルボキシラーゼ遺伝子 (ppC) (特開昭 60-87788号公報) 、ァスパラギン酸アミノトランスフェラーゼ遺伝子 (aspC) (特公平 6-102028号公報)、ジ アミノピメリン酸ェピメラーゼ遺伝子 (dapF) (特開 2003- 135066号公報)、ァスパラギン 酸セミアルデヒド脱水素酵素遺伝子 (asd) (国際公開第 00/61723号パンフレット)等の ジアミノピメリン酸経路の酵素の遺伝子、あるいはホモアコニット酸ヒドラターゼ遺伝子 (特開 2000-157276号公報)等のアミノアジピン酸経路の酵素等の遺伝子が挙げられ る。また、テトラヒドロジピコリン酸スクシ-ラーゼ遺伝子 (dapD)、スクシ-ルジアミノビ メリン酸デアシラーゼ遺伝子(dapE)が挙げられる。これらのうち、 dapB、 lysA、 ddh、 pe pC、 aspC、 dapF、 asd、 dapD、及び、 dapEが好ましい。ェシエリヒア'コリの全塩基配列 は既に明らかにされており(Science, 277, 1453-1474 (1997))、この文献に報告され ている目的遺伝子、あるいは GenBankに登録されている遺伝子を元に遺伝子配列を 取得できる。
[0025] L—グルタミン酸生合成系酵素をコードする遺伝子としては、 L—グルタミン酸デヒド ロゲナーゼ遺伝子 (gdh)、グルタミンシンテターゼ遺伝子 (glnA)、グルタミン酸シンター ゼ遺伝子 (gltBD)、イソクェン酸デヒドロゲナーゼ遺伝子 (icd)、アコニット酸ヒドラターゼ 遺伝子 (acn)、クェン酸シンターゼ遺伝子(gltA)、ピルビン酸デヒドロゲナーゼ遺伝子 (pdh)などが挙げられる(米国特許 6,197,559号、 6,331,419号明細書、欧州特許 09992 82号明細書)。また、ホスホェノールピルビン酸カルボキシラーゼ遺伝子(pepC)、ピ ルビン酸カルボキシラーゼ遺伝子 (pc)、ピルビン酸キナーゼ遺伝子 (pykA,pykF)、ホ スホェノールピルビン酸シンターゼ遺伝子 (ppS)、 6—ホスホダルコン酸デヒドラターゼ 遺伝子(edd)、及び、 2 ケトー 3 デォキシ 6 ホスホダルコン酸アルドラーゼ遺 伝子 (eda) (欧州特許 1352966号)などが挙げられる。
[0026] L—スレオニン生合成系酵素をコードする遺伝子としては、ァスパルトキナ一ゼ III遺 伝子(lysC)、ァスパラギン酸セミアルデヒドデヒドロゲナーゼ遺伝子(asd)、 thrオペ口 ンにコードされるァスバルトキナーゼ I遺伝子 (thrA)、ホモセリンキナーゼ遺伝子 (thr B)、スレオニンシンターゼ遺伝子 (thrC)が挙げられる。また、 Lースレオニンは Lーリ ジンと生合成系が共通しており、 L-リジン生合成系酵素をコードする遺伝子を増幅し てもよい。
[0027] Lースレオニン生合成系酵素は、最終産物の Lースレオニンによって酵素活性が抑 制される。 L—スレオニンによるフィードバック阻害を受けないように L—スレオニン生 合成系酵素をコードする遺伝子を改変した遺伝子を構造遺伝子として用いることが 望ましい(国際公開第 02/26993号パンフレット、 Biotechnology Letters vol24,No.21, November 2002、国際公開第 2005/049808号パンフレット参照)。
[0028] L—トリプトファン、 L—フエ-ルァラニン、 L—チロシンは共に芳香族アミノ酸で生合 成系が共通しており、芳香族アミノ酸の生合成系酵素をコードする遺伝子としては、 3 —デォキシ— D ァラピノへプッロン酸— 7—リン酸シンターゼ (aroF,aroG:配列番号 36)、 3 デヒドロキネートシンターゼ遺伝子(aroB)、シキミ酸デヒドラターゼ遺伝子、 シキミ酸キナーゼ遺伝子(aroL:配列番号 38)、 5 -ェノール酸ピルビンシキミ酸 3 -リ ン酸シンターゼ遺伝子 (aroA)、コリスミ酸シンターゼ遺伝子 (aroC)が挙げられる(欧州 出願公開 763127号明細書)。
[0029] また、 3 デォキシ D ァラビノヘプッロン酸 7 リン酸シンターゼ(aroF、 aroG )は、芳香族アミノ酸によるフィードバック阻害を受けるので、フィードバック阻害を受 けないように改変してもよい。例えば、 aroFの場合、 N末端より 147番目の L ァスパ ラギン酸または 181番目の L—セリンが他のアミノ酸残基に、 aroGの場合、 N末端より 146番目の L ァスパラギン酸、 147番目の L—メチォニン、 150番目の L プロリン もしくは 202番目の Lーァラニンの 1アミノ酸残基、または 157番目の L—メチォニン 及び 219番目の L ァラニンの 2アミノ酸残基を他のアミノ酸に置換した変異型 aroF、 aroG遺伝子を用いることが出来る(EP0488424)。
[0030] L—トリブトファン生合成系酵素をコードする遺伝子としては、アントラ-ル酸合成酵 素遺伝子 (trpE)、ホスホダリセリン酸デヒドロゲナーゼ遺伝子 (serA)もしくはトリプトファ ンシンターゼ遺伝子 (trpAB)が挙げられ、ホスホダリセレートデヒドロゲナーゼ遺伝子( serA)を、フィードバック阻害を受けないように変異させ、得られた変異型遺伝子を用 いるとより有効である(国際公開 W093/12235号パンフレット)。また、トリプトファンォ ペロンを含む組換え DNAを構造遺伝子として用いてもよい。具体的には、脱感作型 アントラニル酸合成酵素をコードする遺伝子を含むトリブトファンオペロンが挙げられ る(特開昭 57-71397号公報、特開昭 62-244382号公報、米国特許第 4,371,614明細 書)。また、トリプトファンオペロンのうち、トリプトファンシンターゼをコードする遺伝子( trpBA)の発現を強化することによつても、 L トリブトファン生産能を向上又は付与す ることができる。トリプトファンシンターゼは、 α及び j8サブユニットからなり、それぞれ t rpA、 trpBによってコードされている(米国特許第 4,371,614明細書)。
[0031] L フエ-ルァラニン、 Lーチロシン生合成系酵素をコードする遺伝子としては、プレ フェン酸デヒドラターゼ遺伝子(tyrA/pheA;米国特許 4371614号明細書、特許 30606 88号公報)、チロシンアミノトランスフェラーゼ遺伝子 (tyrB ;米国特許第 5,091,314号 明細書)、コリスミ酸ムターゼ遺伝子 (pheA 配列番号 40)があげられる。プレフェン酸 デヒドラターゼ、コリスミ酸ムターゼは、最終産物であるフエ-ルァラニンにフィードバ ック阻害を受けることが知られており、フエ-ルァラニンにフィードバック阻害を受けな いような変異を導入することが好ましい。例えば、配列番号 40の 330番目のセリン残 基を他のアミノ酸残基、望ましくはプリン残基に、あるいは、配列番号 40の 226番目 のトリプトファン残基を他のアミノ酸に置換すること、配列番号 40の 338番目のトリプト ファン残基を他のアミノ酸、望ましくはアルギニン、グリシン残基に置換した、プレフエ ン酸デヒドラターゼ、コリスミ酸ムターゼを用いることが好ましい(特許 3060668号、特 開平 1— 235597)。また、副生物を細胞内に取り込む遺伝子、例えば、 L トリプトフ アンの取り込み遺伝子 tnaB,mtrや、 Lーチロシンの取り込み遺伝子である tyrPの発現 量を向上させることによつても、効率よく L フエ二ルァラニンを生産する菌株を取得 することができる(EP1484410)。
[0032] L アルギニン生合成系酵素をコードする遺伝子としては、 N ァセチルグルタミン 酸シンターゼ遺伝子(argA)、 N ァセチルダルタミルリン酸レダクターゼ遺伝子(arg C)、オル-チンァセチルトランスフェラーゼ遺伝子(argj)、 N -ァセチルグルタミン酸キ ナーゼ遺伝子(argB)、ァセチルオル-チントランスアミナーゼ遺伝子(argD)、ァセチ ルォル二チンデァセチラーゼ遺伝子(argE)、オル二チン力ルバモイルトランスフェラ ーゼ遺伝子(argF)、アルギ-ノコハク酸シンターゼ遺伝子(argG)、アルギ-ノコハク 酸リアーゼ遺伝子(argH)、及び、力ルバモイルリン酸シンターゼ(carAB)力 選ばれ る 1種又は 2種以上が挙げられる(特開昭 63-79597号)。 N-ァセチルグルタミン酸シン ターゼ遺伝子 (argA)は、野生型の 15位〜 19位に相当するアミノ酸配列が置換され た L アルギニンによるフィードバック阻害が解除された変異型の遺伝子を用いるとよ り好適である(欧州出願公開 1170361号明細書)。
[0033] L一口イシン、 L-パリン、 L-イソロイシンは分岐鎖アミノ酸で生合成系が共通しており 、分岐鎖アミノ酸生合成系の共通の酵素をコードする遺伝子としては、ピルビン酸デ ヒドロゲナーゼ遺伝子 (aceE)が挙げられる(国際公開第 03076635号パンフレット)。
[0034] L-パリン、 L-イソロイシン生合成系酵素をコードする遺伝子としては、ァセトヒドロキ シ酸シンターゼ遺伝子 (ilvGM)、分岐鎖アミノ酸アミノトランスフェラーゼ遺伝子 (ilvE) 、ジヒドロキシ酸デヒドラターゼ遺伝子 (ilvD)、スレオ-ンデヒドラターゼ遺伝子 (ilvA) が挙げられる。中でも ilvGMEDAはオペロンを構成しており、オペロンとして用いても よいし、個々の遺伝子を単独で使用してもよい。尚、 ilvGMEDAオペロンは、 Lーバ リン及び/又は L—イソロイシン及び/又は L一口イシンによるオペロンの発現調節( ァテ-ユエーシヨン)を受けるので、生成する Lーノ《リンによる発現抑制を解除するた めに、ァテ-ユエーシヨンに必要な領域が除去又は変異されて 、ることが好ま ヽ( 米国特許 5,998,178号明細書)。
[0035] また、 L—イソロイシンは、 Lースレオニンを前駆体として生成される。従って、 Lーィ ソロイシンの生産能を高めるには、 Lースレオニンの供給を増加すること、すなわち L —スレオニンの生合成系を強化することが好ましい。従って、 L—イソロイシン生合成 系酵素をコードする遺伝子として、 L—イソロイシン固有の生合成系酵素をコードする 遺伝子とともに、前記の Lースレオニン生合成系を強化してもよい。
[0036] L一口イシン生合成系酵素をコードする遺伝子としては、 2—イソプロピルリンゴ酸シ ンターゼ遺伝子(leuA)、 2—イソプロピルリンゴ酸イソメラーゼ遺伝子 (leuD)、 2—イソ プロピルリンゴ酸デヒドロゲナーゼ遺伝子 (leuB)、分岐鎖アミノ酸アミノトランスフェラー ゼ遺伝子 (ilvE;カナダ特許 1341352号明細書)が挙げられる。 2—イソプロピルリンゴ 酸シンターゼは、 L-ロイシンによってフィードバック阻害を受けるので、 L—ロイシンに よるイソプロピルリンゴ酸シンターゼのフィードバック阻害が脱感作された leuAを用い ることが好ま U、 (米国特許第 6,403,342号明細書)。
[0037] L—ヒスチジン生合成系酵素をコードする遺伝子としては、 ATPホスホリボシルトラ ンスフェラーゼ遺伝子(hisG)、ホスホリボシル AMPサイクロヒドロラーゼ遺伝子(hisl) 、ホスホリボシル -ATPピロホスホヒドラーゼ遺伝子(hisIE)、ホスホリボシルフオルミミノ —5—ァミノイミダゾールカルボキシアミドリボタイドイソメラーゼ遺伝子 (hisA)、アミドト ランスフェラーゼ遺伝子 (hisH)、ヒスチジノールホスフェートアミノトランスフェラーゼ遺 伝子(hisC)、ヒスチジノールフォスファターゼ遺伝子(hisB)、ヒスチジノールデヒドロゲ ナーゼ遺伝子 (hisD)等が挙げられる(米国特許 4,388,405号明細書)。
[0038] L-システィン生合成系酵素をコードする遺伝子としては、ホスホダリセリン酸デヒドロ ゲナーゼ遺伝子 (serA)、セリンァセチルトランスフェラーゼ遺伝子 (cysE;国際公開第 2005/007841号パンフレット)、システィンシンターゼ遺伝子(cysK)が挙げられる(国 際公開第 03/06666号パンフレット)。
[0039] 本発明の DNA断片は、以下のような方法で取得できる。
まず、 phoレギュロンプロモーター配列と、 L-アミノ酸生合成系遺伝子は別々に PCR 等によってクローユングされる。 PCRに用いるオリゴヌクレオチドは、公知のデータべ ースを参考にして設計される。また PCRのオリゴヌクレオチドの N末端側に制限酵素サ イトを連結しておくと、簡単に 2種の DNAを連結できる。
[0040] 遺伝子のクローユングに使用されるプラスミドとしては、腸内細菌科において自律複 製可能なものであればよぐ具体的には、 pBR322、 pTWV228 (宝バイオ社)、 pMWl l 9 (-ツボンジーン社)、 pUC19、 pSTV29 (宝バイオ社製)、 RSF1010 (Gene vol.75 (2), P271-288, 1989)等が挙げられる。他にもファージ DNAのベクターも利用できる。
[0041] 次に本発現 DNA断片を腸内細菌科に属する微生物に導入する方法について説明 する。
[0042] 例えば、以下のようにして、 DNA断片を宿主に導入することができる。すなわち、 DN A断片を、宿主微生物で機能するベクター、好ましくはマルチコピー型ベクターと連 結して組み換え DNAを作製し、これで宿主を形質転換することにより導入できる。
[0043] 目的遺伝子 (phoレギュロンプロモーターの制御下に発現する遺伝子)を上記べクタ 一に連結して組み換え DNAを調製するには、目的遺伝子を含む DNA断片の末端 に合うような制限酵素でベクターを切断する。連結は、 T4 DNAリガーゼ等のリガ一 ゼを用いて行うのが普通である。目的遺伝子は、それぞれ別個のベクターに搭載し てもよく、同一のベクターに搭載してもよい。 DNAの切断、連結、その他、染色体 DN Aの調製、 PCR、プラスミド DNAの調製、形質転換、プライマーとして用いるオリゴヌ クレオチドの設定等の方法は、当業者によく知られている通常の方法を採用すること ができる。これらの方法は、 Sambrook, J., Fritsch, E. F., and Maniatis, T., "Molecula r Cloning A Laboratory Manual, Second Edition , Cold Spring Harbor Laboratory Pr ess, (1989)等に記載されている。上記のようにして調製した組換え DNAを微生物に 導入するには、十分な形質転換効率が得られる方法ならば、いかなる方法を用いて もよいが、例えば、エレクト口ポレーシヨン法(Canadian Journal of Microbiology, 43. 1 97(1997))が挙げられる。
[0044] また、目的遺伝子の上流に phoレギュロンプロモーターを連結させることによつても、 本発明の DNAを取得することが出来る。目的遺伝子の上流に phoレギュロンプロモー タ' ~~を 人す ことは、 Sambrook, J., and Russell, D.W. Molecular Cloning A Labora tory Manual/Third Edition. New York: Cold Spring Harbor Laboratory Press (2001) 等に記載されている相同組換え法による遺伝子置換法によって達成することができ る。目的遺伝子の上流に、 phoレギュロンプロモーターを挿入する位置は、目的遺伝 子のコードする酵素活性を低下させない位置に挿入すれば、いずれでもよいが、望 ましくは SD配列(Shine-Dalgalno配列)の上流が好ましく、目的遺伝子自身のプロモ 一ターと置換してもよい。
[0045] 目的遺伝子自身のプロモーター配列全体を、 phoレギュロンプロモーター、例えば、 phoA,phoB,phoE,phoH,asr,argP,ugpB,pstS,psiE及び phnCから選ばれるプロモーター に置換してもよい。また、目的遺伝子上流領域に、 pho Boxを導入してもよぐ具体的 には、 CTGTCATA(A/T)A(T/A)CTGT(C/A)A(C/T)の配列(配列番号 21)、さらに具 体的には、目的遺伝子の- 35領域に CTGTCAT配列を導入してもよい。 (Neidhardt, F. C. et al., Eschencnia coli and Salmonella Typhimurium, American Society for Mic robiology, Washington D. C, Chapter 87, Figure 6 )
[0046] また、本発明の DNAの導入は、微生物の染色体 DNA上に導入することによつても 達成できる。具体的には、染色体 DNA上に多コピー存在する配列や、染色体上の 目的物質生産に不要な遺伝子座位を標的に利用して相同組換えにより行う。このよ うな相同組換えを利用した遺伝子置換による部位特異的変異導入は既に確立して おり、直鎖上 DNAを用いる方法や温度感受性複製起点を含むプラスミドを用いる方 法などがある(米国特許第 6303383号、又は特開平 05-007491号公報)。染色体 DN A上に多コピー存在する配列としては、レペティティブ DNA、転移因子の端部に存 在するインバーティッド 'リピートが利用できる。あるいは、特開平 2-109985号公報に 開示されているように、目的遺伝子をトランスポゾンに搭載してこれを転移させて染色 体 DNA上に導入することも可能である。
[0047] また、本発明の DNAの導入は、 Datsenkoと Wannerによって最初に開発された「Red -driven integrationと呼ばれる方法(Proc. Natl. Acad. Sci. USA, 2000, vol. 97, N o. 12, p6640- 6645)によっても行うことができる。「Red- driven integration方法によ れば、目的とする遺伝子の一部を合成オリゴヌクレオチドの 5'側に、抗生物質耐性遺 伝子の一部を 3'側にデザインした合成オリゴヌクレオチドをプライマーとして用いて得 られた PCR産物を用いて、 1段階で染色体上に本発明の DNAの挿入が可能となる。
[0048] 本発明の DNAは、微生物の細胞内に少なくとも 1コピー導入されていればよいが、 コピー数を増大させることにより発現をさらに上昇させておく好ましい。例えば、細胞 内でのコピー数を 2以上、好ましくは 3以上、さらに好ましくは 4コピー以上に増大させ ることが挙げられる。
[0049] コピー数の増大は、 目的遺伝子をマルチコピー型ベクターに搭載することにより達 成できる。腸内細菌科で自律複製可能なベクターとしては、 自律 pUC19、 pUC18、 pH SG299, pHSG399, pHSG398, pACYC184, (pHSGゝ pACYCは宝バイオ社より入手可) , RSF1010 (Gene vol.75 (2), p271- 288, 1989) , pBR322, pMW219、 pMW119 (pMW は-ツボンジーン社より入手可)、 PSTV28、 pSTV29 (宝ノィォ社製)等が挙げられる。 (Microbiological Review 60(3) 512— 538(1996),US5,538,873)他にも λファージ DNA のベクターや Muファージのベクターも利用できる。(EP0332448)
[0050] コピー数の増大は、本発明の DNAを微生物の染色体上に多コピー導入することに よっても達成できる。微生物の染色体 DNA上に目的遺伝子を多コピーで導入する には、染色体 DNA上に多コピー存在する配列を標的に利用して相同組換えにより 行う。このような相同組換えを利用した遺伝子置換による部位特異的変異導入は既 に確立しており、直鎖上 DNAを用いる方法や温度感受性複製起点を含むプラスミド を用いる方法などがある(米国特許第 6303383号、又は特開平 05-007491号公報)。 染色体 DNA上に多コピー存在する配列としては、レペティティブ DNA、転移因子の 端部に存在するインバーティッド 'リピートが利用できる。あるいは、特開平 2-109985 号公報に開示されているように、 目的遺伝子をトランスポゾンに搭載してこれを転移さ せて染色体 DNA上に多コピー導入することも可能である。 V、ずれの方法によっても 形質転換株内の目的遺伝子のコピー数が上昇する結果、 L リジン生合成系の酵素 活性が増大する。
[0051] 目的遺伝子の発現増強は、上記の遺伝子増幅による以外に、 phoレギュロンプロモ 一ターの上流あるいは下流の L-アミノ酸生合成系遺伝子のプロモーター配列をより 強力なものに置換することによつても達成される(特開平 1-215280号公報参照)。たと えば、 lacプロモーター、 trpプロモーター、 trcプロモーター、 tacプロモーター、ラム ダファージの Pプロモーター、 Pプロモーター、 tetプロモーター等が強力なプロモ
R L
一ターとして知られている。これらのプロモーターへの置換により、 目的遺伝子の発 現が強化されることによって酵素活性が増幅される。プロモーターの強度の評価法及 び強力なプロモーターの例は、 Goldsteinらの餘文(Prokaryotic promoters in biotec hnology. Biotechnol. Annu. Rev., 1995, 1, 105- 128)等に記載されている。これらの プロモーターは、 phoレギュロンプロモーターの上流あるいは下流に連結し、 phoレギ ュロンプロモーターと強力なプロモーター共に発現が制御されて 、ることが望まし 、。
[0052] また、 L-アミノ酸生合成系遺伝子の固有のプロモーターに国際公開 WO00Z189 35に開示されているように、目的遺伝子のプロモーター領域に数塩基の塩基置換を 導入し、より強力なものに改変することも可能である。さらに、リボソーム結合部位 (RB S)と開始コドンとの間のスぺーサ、特に開始コドンのすぐ上流の配列における数個の ヌクレオチドの置換が mRNAの翻訳効率に非常に影響を及ぼすことが知られており 、これらを改変することも可能である。目的遺伝子の発現調節領域は、プロモーター 検索ベクターや GENETYX等の遺伝子解析ソフトを用いて決定することが出来る。発 現調節配列の置換は、例えば、上述の温度感受性プラスミドを用いた遺伝子置換と 同様にして行うことができる。
[0053] また、本発明の L-アミノ酸生合成系酵素をコードする遺伝子は、ェシエリヒア'コリの 種ゃ菌株によって目的遺伝子の塩基配列に差異が存在することがあるため、本発明 に用いる遺伝子は目的遺伝子がコードする活性を有する限り、 1若しくは複数の位置 での 1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタ ンパク質をコードする変異体又は人為的な改変体であってもよい。ここで、「数個」と は、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、 具体的には 2から 20個、好ましくは、 2から 10個、より好ましくは 2から 5個である。上 記の 1若しくは数個のアミノ酸の置換、欠失、挿入、または付カ卩は、酵素活性が維持 される保存的変異である。保存的変異の代表的なものは、保存的置換であり、保存 的置換とみなされる置換としては、 Alaから Ser又は Thrへの置換、 Argから Gln、 His又 は Lysへの置換、 Asnから Glu、 Gln、 Lys、 His又は Aspへの置換、 Aspから Asn、 Glu又 は Ginへの置換、 Cysから Ser又は Alaへの置換、 Ginから Asn、 Glu、 Lys, His, Asp又は Argへの置換、 Gluから Asn、 Gln、 Lys又は Aspへの置換、 Glyから Proへの置換、 Hisか ら Asn、 Lys, Gln、 Arg又は Tyrへの置換、 lieから Leu、 Met, Val又は Pheへの置換、 Le uから Ile、 Met, Val又は Pheへの置換、 Lysから Asn、 Glu、 Gln、 His又は Argへの置換、 Metから Ile、 Leu、 Val又は Pheへの置換、 Pheから Trp、 Tyr、 Met, lie又は Leuへの置 換、 Serから Thr又は Alaへの置換、 Thrから Ser又は Alaへの置換、 Trpから Phe又は Tyr への置換、 Tyrから His、 Phe又は Trpへの置換、及び、 Valから Met、 lie又は Leuへの置 換が挙げられる。
[0054] また、 L-アミノ酸生合成系酵素をコードする遺伝子は、コードされる酵素の活性が 維持される限り、その塩基配列または同塩基配列力 調製され得るプローブとストリン ジェントな条件下でハイブリダィズする DNAであってもよ!/、。「ストリンジェントな条件」 とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成され ない条件をいう。一例を示せば、相同性が高い DNA同士、例えば 70%以上の相同 性を有する DNA同士がハイブリダィズし、それより相同性が低い DNA同士がハイブ リダィズしな!/、条件、あるいは通常のサザンハイブリダィゼーシヨンの洗!、の条件であ る 60°C、 1 X SSC, 0. 1%SDS、好ましくは、 0. 1 X SSC、 0. 1%SDSさらに好まし くは、 68°C、 0. 1 X SSC、 0. 1%SDSに相当する塩濃度、温度で、 1回より好ましく は 2〜3回洗浄する条件が挙げられる。プローブの長さは、ハイブリダィゼーシヨンの 条件により適宜選択される力 通常には、 100bp〜lKbpである。
[0055] さらに、 L-アミノ酸生合成系酵素をコードする遺伝子は、野生型の配列と比較して 8 0%以上、好ましくは 90%以上、より好ましくは 95%以上、特に好ましくは 97%以上 の相同性を有するタンパク質をコードし、かつ、 L-アミノ酸生合成系酵素の活性を有 するタンパク質をコードする配列を用いることが出来る。相同性の算出方法は、プロ モーター配列に関して説明したのと同様である。また、それぞれ導入する宿主により 、遺伝子の縮重性が異なるので、それぞれ導入される宿主で使用しやすいコドンに 置換したものでもよい。同様に目的遺伝子は、 L-アミノ酸生合成系酵素の活性を有 するタンパク質をコードする限り、 N末端側、 C末端側が延長したものあるいは削られ ているものでもよい。例えば延長 '削除する長さは、アミノ酸残基で 50以下、好ましく は 20以下、より好ましくは 10以下、特に好ましくは 5以下である。より具体的には、アミ ノ酸配列の N末端側 50アミノ酸から 5アミノ酸、 C末端側 50アミノ酸から 5アミノ酸延長 · 削除したものでもよい。
[0056] く 1—2 >親株
本発明の微生物の親株としては、ェシエリヒア属細菌、パントエア属細菌を代表とす る腸内細菌科に属する微生物を用いることができる。その他の腸内細菌科に属する 微生物としては、ェンテロパクター(Enterobacter)属、クレブシエラ(Klebsiella)属、セ ラチア(Serratia)属、ェルビ-ァ(Erwinia)属、サルモネラ(Salmonella)属、モルガネラ (Morganella)属などの γ —プロテオバクテリアに属する腸内細菌科に属する微生物 が挙げられる。
[0057] ェシエリヒア属細菌としては、ナイトハルトらの著書((Backmann, B. J. 1996. Derivat ions ana Genotypes of some mutant derivatives of Escherichia coli K— 12, p. 2460—2 488. Table 1. In F. D. Neidhardt (ed.), Eschericnia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washi ngton, D.C.)に挙げられるもの、例えばェシエリヒア'コリ等が利用できる。ェシエリヒア 'コリの野生株としては、例えば K12株又はその誘導体、ェシエリヒア'コリ MG1655株( ATCC No.47076)、及び W3110株(ATCC No.27325)等が挙げられる。これらを入手 するには、例えばアメリカン'タイプ'カルチャー 'コレクション (ATCC)より分譲を受け ることができる(住所 P.O. Box 1549, Manassas, VA 20108, United States of Americ a ) 0
[0058] また、ェンテロパクター属細菌としては、ェンテロバクタ^ ~ ·アグロメランス(Enterobac ter agglomerans)、ェンァロノくクタ1 ~~ · /'エロクネス (Enterobacter aerogenes)等、パン トエア属細菌としてはパントエア.アナナティス(pantoea ananatis)が挙げられる。尚、 近年、ェンテロパクター.アグロメランスは、 16S rRNAの塩基配列解析などにより、 パントエア .アグロメランス (Pantoea agglomerans)又はパントエア ·アナナティス (Panto ea ananatis)、パントエア'スチューアルティ(Pantoea stewartii)アグロメランス等に再 分類されているものがある。本発明においては、腸内細菌科に分類されるものであれ ば、ェンテロパクター属又はパントエア属のいずれに属するものであってもよい。パン トエア ·アナナティスを遺伝子工学的手法を用いて育種する場合には、パントエア ·ァ ナナティス AJ13355株(FERM BP— 6614)、 AJ13356株(FERM BP— 6615) 、 AJ 13601株(FERM BP— 7207)及びそれらの誘導体を用いることができる。こ れらの株は、分離された当時はェンテロパクター ·アグロメランスと同定され、ェンテロ バクタ一.アグロメランスとして寄託された力 上記のとおり、 16S rRNAの塩基配列解 析などにより、パントエア ·アナナティスに再分類されて 、る。
[0059] L アミノ酸生産能を付与するには、栄養要求性変異株、アナログ耐性株又は代謝 制御変異株の取得や、 L アミノ酸の生合成系酵素の発現が増大した組換え株の創 製等、従来、ェシエリヒア属細菌等の育種に採用されてきた方法を適用することがで きる (アミノ酸発酵、(株)学会出版センター、 1986年 5月 30日初版発行、第 77〜: LOO 頁参照)。ここで、 L アミノ酸生産菌の育種において、付与される栄養要求性、アナ ログ耐性、代謝制御変異等の性質は、単独でもよぐ 2種又は 3種以上であってもよ い。また、発現が増強される L アミノ酸生合成系酵素も、単独であっても、 2種又は 3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性 質の付与と、生合成系酵素の活性の増大が組み合わされてもよ 、。
[0060] L アミノ酸生産能を有する栄養要求性変異株、 L アミノ酸のアナログ耐性株、又 は代謝制御変異株は、親株又は野生株を通常の変異処理、すなわち X線や紫外線 の照射、または N—メチル N' -トロ一 N -トロソグァ-ジン(NTG)、ェチルメタ ンスルフォネート(EMS)等の変異剤処理などによって処理し、得られた変異株の中か ら、栄養要求性、アナログ耐性、又は代謝制御変異を示し、かつ L—アミノ酸生産能 を有するものを選択することによって得ることができる。
[0061] Lースレオニン生産菌
Lースレオ-ン生産菌の親株の例としては、 E. coli TDH-6/pVIC40 (VKPM B-399 6) (米国特許第 5, 175, 107号、米国特許第 5, 705,371号)、 E. coli 472T23/pYN7 (ATC C 98081) (米国特許第 5, 631, 157号)、 E. coli NRRL- 21593 (米国特許第 5,939,307号) 、 E. coli FERM BP- 3756 (米国特許第 5,474,918号)、 E. coli FERM BP- 3519及び FE RM BP- 3520 (米国特許第 5, 376,538号)、 E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978》、 E. coli VL643及び VL2055 (EP 1149911 A)など のエシ リヒア属に属する株が挙げられるがこれらに限定されない。
[0062] TDH- 6株は thrC遺伝子を欠損し、スクロース資化性であり、また、その ilvA遺伝子 力 Sリーキー (leaky)変異を有する。この株はまた、 rhtA遺伝子に、高濃度のスレオニン またはホモセリンに対する耐性を付与する変異を有する。 B-3996株は、 RSF1010由 来ベクターに、変異 thrA遺伝子を含む thrA*BCオペロンを挿入したプラスミド pVIC40 を保持する。この変異 thrA遺伝子は、スレオニンによるフィードバック阻害が実質的 に解除されたァスバルトキナーゼホモセリンデヒドロゲナーゼ Iをコードする。 B-3996 株は、 1987年 11月 19日、オールユニオン 'サイエンティフィック 'センタ一'ォブ 'アン チビォテイクス (Nagatinskaya Street 3- A, 117105 Moscow, Russia)に、受託番号 RIA 1867で寄託されている。この株は、また、 1987年 4月 7日、ルシアン 'ナショナル'コレク シヨン'ォブ 'インダストリアル 'マイクロオルガ-ズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号 B- 3996で寄託されている。
[0063] E. coli VKPM B-5318 (EP 0593792B)は、 L-スレオニン生産菌の親株としても使用 できる。 B-5318株は、イソロイシンに関し原栄養性であり、プラスミド pVIC40中のスレ ォニンオペロンの制御領域力 温度感受性ラムダファージ C1リプレッサー及び PRプ 口モーターにより置換されている。 νκΡΜ B- 5318は、 1990年 5月 3日、ルシアン'ナショ ナル .コレクシヨン'ォブ ·インダストリアル ·マイクロオルガ-ズムズ (VKPM)に、受託番 号 VKPM B- 5318で寄託されている。
[0064] 好ましくは、本発明の細菌は、さらに、下記の遺伝子の 1種以上の発現が増大する ように改変される。
スレオニンによるフィードバック阻害に耐性のァスバルトキナーゼホモセリンデヒドロゲ ナーゼ Iをコードする変異 thrA遺伝子
ホモセリンキナーゼをコードする thrB遺伝子
スレオ-ンシンターゼをコードする thrC遺伝子
推定トランスメンブランタンパク質をコードする rhtA遺伝子
ァスパラギン酸 13ーセミアルデヒドデヒドロゲナーゼをコードする asd遺伝子 ァスパラギン酸アミノトランスフェラーゼ (ァスパラギン酸トランスアミナーゼ)をコードす る aspC遺 子
[0065] Escherichia coliのァスバルトキナーゼホモセリンデヒドロゲナーゼ Iをコードする thrA 遺伝子が知られている (ヌクレオチド番号 337〜2799, GenBank accession NC_000913 .2, gi: 49175990)。 thrA遺伝子は、 E. coli K- 12の染色体において、 thrL遺伝子と thr B遺伝子との間に位置する。 Escherichia coliのホモセリンキナーゼをコードする thrB 遺伝子が知られている (ヌクレオチド番号 2801〜3733, GenBank accession NC_00091 3.2, gi: 49175990)。 thrB遺伝子は、 E. coli K- 12の染色体において、 thrA遺伝子と th rC遺伝子との間に位置する。 Escherichia coliのスレオ-ンシンターゼをコードする thr C遺伝子が知られている (ヌクレオチド番号 3734〜5020, GenBank accession NC— 0009 13.2, gi: 49175990)。 thrC遺伝子は、 E. coli K- 12の染色体において、 thrB遺伝子と y aaXオープンリーディングフレームとの間に位置する。三つの遺伝子は、全て、単一 のスレオニンオペロンとして機能する。スレオニンオペロンの発現を増大させるには、 転写に影響するァテ-ユエ一ター領域を、好ましくは、オペロンから除去する (WO200 5/049808, WO2003/097839)。
[0066] スレオニンによるフィードバック阻害に耐性のァスバルトキナーゼホモセリンデヒドロ ゲナーゼ Iをコードする変異 thrA遺伝子、ならびに、 thrB遺伝子及び thrC遺伝子は、 スレオ-ン生産 E. coli VKPM B- 3996株に存在する周知のプラスミド pVIC40から一つ のオペロンとして取得できる。プラスミド PVIC40の詳細は、米国特許第 5,705,371号に 記載されている。
[0067] rhtA遺伝子は、グルタミン輸送系の要素をコードする glnHPQオペロンに近い E. col i染色体の 18分に存在する。 rhtA遺伝子は、 ORF1 (ybiF遺伝子,ヌクレオチド番号 76 4〜1651, GenBank accession number AAA218541, gi:440181)と同一であり、 pexB遺 伝子と ompX遺伝子との間に位置する。 ORF1によりコードされるタンパク質を発現す るユニットは、 rhtA遺伝子と呼ばれている (rht:ホモセリン及びスレオニンに耐性)。ま た、 rhtA23変異が、 ATG開始コドンに対して- 1位の G→A置換であることが判明して V、る (AB¾ I'RAし rS of the 丄 h Internationalし ongress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemist ry and Molecular Biology, San Francisco, California August 24—29, 1997, abstract N o. 457, EP 1013765 A)。
[0068] E. coliの asd遺伝子は既に知られており (ヌクレオチド番号 3572511〜3571408, Gen Bank accession NC— 000913.1, gi: 16131307)、その遺伝子の塩基配列に基づいて作 製されたプライマーを用いる PCRにより得ることができる (White, T.J. et al., Trends G enet., 5, 185 (1989)参照)。他の微生物の asd遺伝子も同様に得ることができる。
[0069] また、 E. coliの aspC遺伝子も既に知られており (ヌクレオチド番号 983742〜984932, GenBank accession NC_000913.1 , gi: 16128895)、 PCRにより得ることができる。他の微 生物の aspC遺伝子も同様に得ることができる。
[0070] L リジン生産菌
ェシエリヒア属に属する L—リジン生産菌の例としては、 L—リジンアナログに耐性を 有する変異株が挙げられる。 L—リジンアナログはェシエリヒア属に属する細菌の生 育を阻害するが、この阻害は、 L リジンが培地に共存するときには完全にまたは部 分的に解除される。 L リジンアナログの例としては、ォキサリジン、リジンヒドロキサメ ート、 S - (2—アミノエチル) L システィン (AEC)、 γ—メチルリジン、 oc—クロロカ プロラタタムなどが挙げられる力 これらに限定されない。これらのリジンアナログに対 して耐性を有する変異株は、ェシエリヒア属に属する細菌を通常の人工変異処理に 付すことによって得ることができる。 L リジンの生産に有用な細菌株の具体例として は、 Escherichia coli AJ11442 (FERM BP- 1543, NRRL B- 12185;米国特許第 4,346, 1 70号参照)及び Escherichia coli VL611が挙げられる。これらの微生物では、ァスパル トキナーゼの L リジンによるフィードバック阻害が解除されている。
[0071] WC196株力 Escherichia coliの L—リジン生産菌として使用できる。この菌株は、 Es cherichia coli K-12に由来する W3110株に AECffif性を付与することにより育種された 。同株は、 Escherichia coli AJ13069株と命名され、 1994年 12月 6日、工業技術院生命 工学工業技術研究所 (現独立行政法人産業技術総合研究所特許生物寄託セン ター、 τ 305-8566 日本国茨城県つくば巿東 1丁目 1番地 1中央第 6)に受託番号 FE RM P-14690として寄託され、 1995年 9月 29日にブダペスト条約に基づく国際寄託に 移管され、受託番号 FERM BP-5252が付与されている (米国特許第 5,827,698号)。
[0072] L-リジン産生菌の親株の例としては、 L リジン生合成系酵素をコードする遺伝子 の 1種以上の発現が増大している株も挙げられる。 L リジン生合成系酵素をコード する遺伝子の例としては、ジヒドロジピコリン酸シンターゼ遺伝子 (dapA)、ァスパルトキ ナーゼ遺伝子 (lysC)、ジヒドロジピコリン酸レダクターゼ遺伝子 (dapB)、ジアミノピメリン 酸デカルボキシラーゼ遺伝子 (lysA)、ジアミノビメリン酸デヒドロゲナーゼ遺伝子 (ddh) (米国特許第 6,040, 160号)、ホスホェノールピルビン酸カルボキシラーゼ遺伝子 (ppc) 、ァスパラギン酸セミアルデヒドデヒドロゲナーゼ遺伝子 (asd)及びアスルターゼ遺伝 子 (aspA) (EP 1253195 A)が挙げられる力 これらに限定されない。また、親株は、ェ ネルギー効率に関与する遺伝子 (cyo) (EP 1170376 A)、ニコチンアミドヌクレオチドト ランスヒドロゲナーゼをコードする遺伝子 (pntAB) (米国特許第 5,830,716号)、 ybjE遺 伝子 (WO2005/073390)、または、これらの組み合わせの発現量が増大していてもよ い。
[0073] L リジン産生菌の親株の例としては、 L リジンの生合成経路力 分岐して L リ ジン以外の化合物を生成する反応を触媒する酵素の活性が低下または欠損してい る株も挙げられる。 L—リジンの生合成経路力 分岐して L—リジン以外の化合物を 生成する反応を触媒する酵素の例としては、ホモセリンデヒドロゲナーゼ、リジンデカ ルボキシラーゼ (米国特許第 5,827,698号)、及び、リンゴ酸酵素 (WO2005/010175)が 挙げられる。
[0074] L システィン生産菌
L システィン生産菌の親株の例としては、フィードバック阻害耐性のセリンァセチ ルトランスフェラーゼをコードする異なる cysEアレルで形質転換された E. coli JM15(米 国特許第 6,218,168号、ロシア特許出願第 2003121601号)、細胞に毒性の物質を排 出するのに適したタンパク質をコードする過剰発現遺伝子を有する E. coli W3110 ( 米国特許第 5,972,663号)、システィンデスルフォヒドラーゼ活性が低下した E. coli株 ( JP11155571A2), cysB遺伝子によりコードされる正のシスティンレギュレーターの活性 が上昇した E. coli W3110 (WO0127307A1)などのェシエリヒア属に属する株が挙げら れるがこれらに限定されない。
[0075] L一口イシン生産菌
L一口イシン生産菌の親株の例としては、ロイシン耐性の E. coil株(例えば、 57株 (V KPM B-7386,米国特許第 6,124,121号)または j8— 2 チェ-ルァラニン、 3 ヒドロ キシロイシン、 4ーァザロイシン、 5,5,5-トリフルォロロイシンなどのロイシンアナログ耐 性の E.coli株 (JP 62-34397 B及び JP 8-70879 A)、 WO96/06926に記載された遺伝子 工学的方法で得られた E. coli株、 E. coli H-9068 (JP 8-70879 A)などのエシ リヒア 属に属する株が挙げられるがこれらに限定されない。
[0076] 本発明の細菌は、 L-ロイシン生合成に関与する遺伝子の 1種以上の発現が増大さ れることにより改良されていてもよい。このような遺伝子の例としては、 L-ロイシンによ るフィードバック阻害を受けないイソプロピルリンゴ酸シンターゼをコードする変異 leu A遺伝子 (米国特許第 6,403,342号)に代表される leuABCDオペロンの遺伝子が挙げ られる。さらに、本発明の細菌は、細菌の細胞力 L-アミノ酸を排出するタンパク質を コードする遺伝子の 1種以上の発現が増大されることにより改良されていてもよい。こ のような遺伝子の例としては、 b2682遺伝子及び b2683遺伝子 (ygaZH遺伝子) (EP 12 39041 A2)が挙げられる。
[0077] L ヒスチジン生産菌
L—ヒスチジン生産菌の親株の例としては、 E. coli 24株 (VKPM B-5945, RU20036 77)、 E. coli 80株 (VKPM B-7270, RU2119536)、 E. coli NRRL B- 12116 - B12121 ( 米国特許第 4,388,405号)、 E. coli H- 9342 (FERM BP- 6675)及び H- 9343 (FERM BP -6676) (米国特許第 6,344,347号)、 E. coli H-9341 (FERM BP-6674) (EP1085087)、 E. coli AI80/pFM201 (米国特許第 6,258,554号)などのェシエリヒア属に属する株が 挙げられるがこれらに限定されな!ヽ。
[0078] L-ヒスチジン生産菌の親株の例としては、 L-ヒスチジン生合成系酵素をコードする 遺伝子の 1種以上の発現が増大した株も挙げられる。 L-ヒスチジン生合成系酵素を コードする遺伝子の例としては、 ATPホスホリボシルトランスフェラーゼ遺伝子 (hisG)、 ホスホリボシル AMPサイクロヒドロラーゼ遺伝子 (hisl)、ホスホリボシル -ATPピロホスホ ヒドロラーゼ遺伝子 (hisIE)、ホスホリボシルフオルミミノ- 5-ァミノイミダゾールカルボキ サミドリボタイドイソメラーゼ遺伝子 (hisA)、アミドトランスフェラーゼ遺伝子 (hisH)、ヒス チジノールホスフェートアミノトランスフェラーゼ遺伝子 (hisC)、ヒスチジノールフォスフ ァターゼ遺伝子 (hisB)、ヒスチジノールデヒドロゲナーゼ遺伝子 (hisD)などが挙げられ る。
[0079] hisG及び hisBHAFIにコードされる L-ヒスチジン生合成系酵素は L-ヒスチジンにより 阻害されることが知られており、従って、 L-ヒスチジン生産能は、 ATPホスホリボシルト ランスフェラーゼ遺伝子 (hisG)にフィードバック阻害への耐性を付与する変異を導入 することにより効率的に増大させることができる (ロシア特許第 2003677号及び第 21195 36号)。 [0080] L-ヒスチジン産生能を有する株の具体例としては、 L-ヒスチジン生合成系酵素をコ ードする DNAを保持するベクターを導入した E. coli FERM-P 5038及び 5048 (JP 56- 005099 A)、アミノ酸輸送の遺伝子である rhtを導入した E.coli株 (EP1016710A)、スル ファグァ-ディン、 DL-1, 2,4-トリァゾール- 3-ァラニン及びストレプトマイシンに対する 耐性を付与した E. coli 80株 (VKPM B-7270,ロシア特許第 2119536号)などが挙げら れる。
[0081] L グルタミン酸生産菌
L グルタミン酸生産菌の親株の例としては、 E. coli VL334thrC+ (EP 1172433)など のエシ リヒア属に属する株が挙げられるがこれらに限定されない。 E. coli VL334 (V KPM B-1641)は、 thrC遺伝子及び ilvA遺伝子に変異を有する L-イソロイシン及び L- スレオニン要求性株である (米国特許第 4,278,765号)。 thrC遺伝子の野生型アレルは 、野生型 E. coli K12株(VKPM B-7)の細胞で増殖したバタテリオファージ P1を用いる 一般的形質導入により導入された。この結果、 L-イソロイシン要求性株 L-グルタミン 酸生産菌 VL334thrC+ (VKPM B-8961)が得られた。
[0082] L-グルタミン酸生産菌の親株の例としては、 L-グルタミン酸生合成系酵素をコード する遺伝子の 1種以上の発現が増大した株が挙げられるがこれらに限定されない。 L -グルタミン酸生合成系酵素をコードする遺伝子の例としては、グルタミン酸デヒドロゲ ナーゼ遺伝子(gdh)、グルタミンシンテターゼ遺伝子 (glnA)、グルタミン酸シンテター ゼ遺伝子 (gltAB)、イソクェン酸デヒドロゲナーゼ遺伝子 (icd)、アコニット酸ヒドラターゼ 遺伝子 (acn)、クェン酸シンターゼ遺伝子 (glta)、ホスホェノールピルビン酸カルボキシ ラーゼ遺伝子 (pepC)、ピルビン酸カルボキシラーゼ遺伝子 (pyc)、ピルビン酸デヒドロ ゲナーゼ遺伝子 (pdh)、ピルビン酸キナーゼ遺伝子 (pykA,pykF)、ホスホェノールピル ビン酸シンターゼ遺伝子 (pps)、エノラーゼ遺伝子 (eno)、ホスホグリセロムターゼ遺伝 子 (pgm)、ホスホグリセレートキナーゼ遺伝子 (pgk)、グリセルアルデヒド- 3-ホスフエ一 トデヒドロゲナーゼ遺伝子 (gap)、トリオースホスフェートイソメラーゼ遺伝子 (tpi)、フル クトースビスホスフェートアルドラーゼ遺伝子 (lbp)、ホスホフルクトキナーゼ遺伝子(plk
)、グルコースホスフェートイソメラーゼ遺伝子 (pgi)などが挙げられる。
[0083] クェン酸シンテターゼ遺伝子、ホスホェノールピルビン酸カルボキシラーゼ遺伝子 、及び zまたはグルタミン酸デヒドロゲナーゼ遺伝子の発現が増大するように改変さ れた株の例としては、 EP1078989A、 EP955368A及び EP952221Aに開示されたものが 挙げられる。
[0084] L-グルタミン酸産生細菌の親株の例としては、 L—グルタミン酸の生合成経路から 分岐して L グルタミン酸以外の化合物を生成する反応を触媒する酵素の活性が低 下または欠損している株も挙げられる。このような酵素の例としては、イソクェン酸リア ーゼ (aceA)、 α -ケトグルタレートデヒドロゲナーゼ (sucA)、ホスホトランスアデチラーゼ (pta)、アセテートキナーゼ (ack)、アデトヒドロキシ酸シンターゼ (ilvG)、ァセトラクテート シンターゼ (ilvl)、フオルメートァセチルトランスフェラーゼ (pfl)、ラタテートデヒドロゲナ ーゼ (Wh)、グルタミン酸デカルボキシラーゼ (gadAB)などが挙げられる(括弧内は、そ の酵素をコードする遺伝子の名である)。 α -ケトグルタレートデヒドロゲナーゼ活性が 欠損した、または、 α -ケトグルタレートデヒドロゲナーゼ活性が低下したェシエリヒア 属に属する細菌、及び、それらの取得方法は米国特許第 5,378,616号及び第 5,573, 945号に記載されている。
[0085] 具体例としては下記のものが挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ 12624 (FERM BP- 3853)
E. coli AJ 12628 (FERM BP- 3854)
E. coli AJ 12949 (FERM BP- 4881)
[0086] E. coli W3110sucA::Kmrは、 E. coli W3110の α -ケトグルタレートデヒドロゲナーゼ 遺伝子(以下、「sucA遺伝子」ともいう)を破壊することにより得られた株である。この株 は、 a -ケトグルタレートデヒドロゲナーゼを完全に欠損して 、る。
[0087] L-グルタミン酸産生菌の他の例としては、ェシエリヒア属に属し、ァスパラギン酸代 謝拮抗物質に耐性を有するものが挙げられる。これらの株は、 a -ケトグルタレートデ ヒドロゲナーゼを欠損していてもよぐ例えば、 E. coli AJ13199 (FERM BP- 5807) (米 国特許第 5.908,768号)、さらに L-グルタミン酸分解能が低下した FFRM P-12379(米 国特許第 5, 393,671号); AJ13138 (FERM BP-5565) (米国特許第 6, 110,714号)などが 挙げられる。 [0088] L-グルタミン酸産生菌の例としては、 α -ケトグルタレートデヒドロゲナーゼ活性が欠 損した、または、 α -ケトグルタレートデヒドロゲナーゼ活性が低下したパントエア属に 属する細菌が挙げられ、上記のようにして得ることができる。このような株の例としては 、 Pantoea ananatis AJ13356(米国特許第 6,331,419号)がある。 Pantoea ananatis AJ13 356は、 1998年 2月 19日、工業技術院生命工学工業技術研究所 (現独立行政法人 産業技術総合研究所特許生物寄託センター、 T 305-8566 日本国茨城県つくば巿 東 1丁目 1番地 1中央第 6)に受託番号 FERM P-16645として寄託され、 1999年 1月 1 1日にブダペスト条約に基づく国際寄託に移管され、受託番号 FERM BP-6616が付 与されている。 Pantoea ananatis AJ13356は、 a KGDH- Elサブユニット遺伝子 (sucA) の破壊により α -ケトグルタレートデヒドロゲナーゼ活性が欠損している。この株は、単 離 れた時には、 Enterobacter agglomeransと | 疋 れ、 Enterobacter agglomerans A J13356として寄託された。し力し、 16S rRNAの塩基配列などに基づき、 Pantoea anana tisに再分類されている。 AJ13356は、上記寄託機関に Enterobacter agglomeransとし て寄託されているが、本明細書では、 Pantoea ananatisとして記載する。
[0089] L フエ-ルァラニン生産菌
L—フエニノレアラ-ン生産菌の親株の例としては、 E.coli AJ12739 (tyrA::Tnl0, tyr R) (VKPM B- 8197)、変異型 pheA34遺伝子を保持する E.coli HW1089 (ATCC 55371 ) (米国特許第 5, 354,672号)、 E.coli MWEC101— b (KR8903681)、 E.coli NRRL B— 121 41, NRRL B- 12145, NRRL B- 12146及び NRRL B- 12147 (米国特許第 4,407,952号) などのェシエリヒア属に属する株が挙げられるがこれらに限定されない。また、親株と して、 E. coli K-12 [W3110 (tyrA)/pPHAB] (FERM BP- 3566)、 E. coli K- 12 [W3110 (tyrA)/pPHAD] (FERM BP- 12659)、 E. coli K-12 [W3110 (tyrA)/pPHATerm] (FER M BP- 12662)及び AJ 12604と命名された E. coli K-12 [W3110 (tyrA)/pBR-aroG4, p ACMAB] (FERM BP- 3579)も使用できる (EP 488424 Bl)。さらに、 yedA遺伝子または yddG遺伝子にコードされるタンパク質の活性が増大したェシエリヒア属に属する L-フ ェ-ルァラニン産生菌 MG1655 AtyrA AtyrR,PL-yddGも使用できる (米国出願公開 2 003/0148473 Al (WO 03/044192)及び 2003/0157667 Al)。
[0090] L—トリプトファン生産菌 L—トリブトファン生産菌の親株の例としては、変異 trpS遺伝子によりコードされるトリ プトファ-ル -tRNAシンテターゼが欠損した E. coli JP4735/pMU3028 (DSM10122)及 び JP6015/pMU91 (DSM10123) (米国特許第 5, 756,345号)、セリンによるフィードバッ ク阻害を受けないホスホダリセリン酸デヒドロゲナーゼをコードする serAアレル及びトリ プトファンによるフィードバック阻害を受けないアントラ-ル酸シンターゼをコードする t rpEアレルを有する E. coli SV164 (pGH5) (米国特許第 6, 180,373号)、トリプトフアナ一 ゼが欠損した E. coli AGX17 (pGX44) (NRRL B- 12263)及び AGX6(pGX50)aroP (NR RL B-12264) (米国特許第 4,371, 614号)、ホスホェノールピルビン酸産生能が増大し た E. coli AGX17/pGX50,pACKG4-pps (WO9708333,米国特許第 6,319,696号)など のエシ リヒア属に属する株が挙げられるがこれらに限定されない。
[0091] さらに、 yedA遺伝子または yddG遺伝子にコードされるタンパク質の活性が増大した ェシエリヒア属に属する L-トリブトファン産生菌も使用できる (米国出願公開 2003/0148 473 A1及び 2003/0157667 Al)。
[0092] L-トリプトファン産生菌の親株の例としては、アンスラ-レートシンターゼ、ホスホグリ セレートデヒドロゲナーゼ(serA)、及び、トリプトファンシンターゼ (trpAB)から選ばれる 酵素の活性の一種以上が増大した株も挙げられる。アンスラ-レートシンターゼ及び ホスホダリセレートデヒドロゲナーゼは共に L-トリプトファン及び L-セリンによるフィード ノ ック阻害を受けるので、フィードバック阻害を解除する変異をこれらの酵素に導入し てもよい。このような変異を有する株の具体例としては、脱感作型アンスラ-レートシ ンターゼを保持する E. coli SV164、及び、 E. coli SV164に、フィードバック阻害が解 除されたホスホダリセレートデヒドロゲナーゼをコードする変異 serA遺伝子を含むプラ スミド pGH5 (WO 94/08031)を導入することにより得られた形質転換株が挙げられる。
[0093] L-トリブトファン生産菌の親株の例としては、脱感作型アンスラ-レートシンターゼを コードする遺伝子を含むトリプトファンオペロンが導入された株 (JP 57-71397 A, JP 62 -244382 A,米国特許第 4,371,614号)も挙げられる。さらに、 L-トリプトファン生産能を 、トリプトファンオペロン (trpBA)中のトリプトファンシンターゼをコードする遺伝子の発 現を増大させること〖こより付与してもよい。トリブトファンシンターゼは、それぞれ trpA 及び trpBによりコードされる α及び |8サブユニットからなる。さらに、 L-トリプトファン生 産能を、イソクェン酸リアーゼ-リンゴ酸シンターゼォペロンの発現を増大させることに より改良してもよい (WO2005/103275)。
[0094] L プロリン生産菌
L—プロリン生産菌の親株の例としては、 ilvA遺伝子が欠損し、 L-プロリンを産生で きる E. coli 702ilvA (VKPM B- 8012) (EP 1172433)などのェシエリヒア属に属する株が 挙げられるがこれらに限定されな!ヽ。
[0095] 本発明の細菌は、 L-プロリン生合成に関与する遺伝子の一種以上の発現を増大 することにより改良されていてもよい。 L-プロリン産生菌に好ましい遺伝子の例として は、 L-プロリンによるフィードバック阻害が解除されたグルタミン酸キナーゼをコード する proB遺伝子 (ドイツ特許第 3127361号)が挙げられる。さら〖こ、本発明の細菌は、 細菌の細胞力も L-アミノ酸を排出するタンパク質をコードする遺伝子の一種以上の 発現が増大することにより改良されていてもよい。このような遺伝子としては、 b2682 遺伝子及び b2683遺伝子 (ygaZH遺伝子) (EP1239041 A2)が挙げられる。
[0096] L-プロリン生産能を有するェシエリヒア属に属する細菌の例としては、 NRRL B-124 03及び NRRL B-12404 (英国特許第 2075056号)、 VKPM B- 8012 (ロシア特許出願 20 00124295)、ドイツ特許第 3127361号に記載のプラスミド変異体、 Bloom F.R. et al (Th e 15th Miami winter symposium, 1983, p.34)に記載のプラスミド変異体などの E. coli 株が挙げられる。
[0097] L アルギニン生産菌
L アルギニン生産菌の親株の例としては、 E. coli 237株(VKPM B-7925) (米国出 願公開 2002/058315 Al)、及び、変異 N-ァセチルグルタミン酸シンターゼを保持する その誘導体株 (ロシア特許出願第 2001112869号)、 E. coli 382株(VKPM B-7926) (E P1170358A1), N-ァセチルグルタミン酸シンテターゼをコードする argA遺伝子が導入 されたアルギニン産生株 (EP1170361A1)などのェシエリヒア属に属する株が挙げられ るがこれらに限定されない。
[0098] L-アルギニン産生菌の親株の例としては、 L-アルギニン生合成系酵素をコードす る遺伝子の 1種以上の発現が増大した株も挙げられる。 L-アルギニン生合成系酵素 をコードする遺伝子の例としては、 N-ァセチルダルタミルホスフェートレダクターゼ遺 伝子 (argC)、オル-チンァセチルトランスフェラーゼ遺伝子 (argj)、 N-ァセチルダルタ ミン酸キナーゼ遺伝子 (argB)、ァセチルオル-チントランスアミナーゼ遺伝子 (argD)、 オル-チン力ルバモイルトランスフェラーゼ遺伝子 (argF)、アルギノコハク酸シンテタ ーゼ遺伝子 (argG)、アルギノコハク酸リアーゼ遺伝子 (argH)、力ルバモイルリン酸シン ターゼ遺伝子(carAB)が挙げられる。
[0099] L パリン生産菌
L パリン生産菌の親株の例としては、 ilvGMEDAオペロンを過剰発現するように改 変された株 (米国特許第 5,998,178号)が挙げられるがこれらに限定されない。ァテ- ユエーシヨンに必要な ilvGMEDAオペロンの領域を除去し、生産される L-パリンにより オペロンの発現が減衰しないようにすることが好ましい。さらに、オペロンの ilvA遺伝 子は破壊され、スレオ-ンデアミナーゼ活性が減少することが好ま 、。
[0100] L-パリン産生菌の親株の例としては、アミノアシル t-RNAシンテターゼの変異を有 する変異株 (米国特許第 5,658,766号)も挙げられる。例えば、イソロイシン tRNAシンテ ターゼをコードする ileS遺伝子に変異を有する E. coli VL1970が使用できる。 E. coli VL1970は、 1988年 6月 24日、ルシアン ·ナショナル 'コレクション 'ォブ'インダストリァ ル.マイクロオルガ-ズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号 VKPM B- 4411で寄託されている。
[0101] さらに、生育にリポ酸を要求する、及び Zまたは、 H+-ATPaseを欠失している変異 株 (WO96/06926)を親株として用いることができる。
[0102] L イソロイシン生産菌
L—イソロイシン生産菌の親株の例としては、 6—ジメチルァミノプリンに耐性を有す る変異株 (JP 5-304969 A)、チアイソロイシン、イソロイシンヒドロキシメートなどのイソ口 イシンアナログに耐性を有する変異株、さらに DL-ェチォニン及び Zまたはアルギ- ンヒドロキシメートに耐性を有する変異株 (JP 5-130882 Α).が挙げられるがこれらに限 定されない。さらに、スレオ-ンデァミナーゼ、ァセトヒドロキシ酸シンターゼなどの L- イソロイシン生合成に関与するタンパク質をコードする遺伝子で形質転換された組換 え株もまた親株として使用できる 0P 2-458 A, FR 0356739,及び米国特許第 5,998,1 78号)。 [0103] < 2 >本発明の製造法
上記のようにして得られる本発明微生物を、培地中のリン濃度力 ¾hoレギュロンプロ モーターによる発現が誘導される濃度である培地中で培養し、該培養物中にし アミ ノ酸を生産蓄積させ、該培養物力も L—アミノ酸を採取することにより、 L—アミノ酸を 効率よく製造することができる。
[0104] 微生物を培養した場合、微生物自身では生合成できな!ヽような栄養源、あるいは栄 養源の生合成を行うために必要な元素が枯渴した場合、微生物の生育は停止する。 このような物質は多数ある力 この中でもっとも最初に枯渴した物質の量により、微生 物の生育は制限される。従って、本発明においては、必要な栄養源のうち、リンが第 1 の生育の律速因子となっているような培地を、リン濃度が制限された培地と定義する 。また、 phoレギュロンプロモーターによる発現が誘導される濃度を「リン制限濃度」と もいう。
[0105] 本発明で用いられる培地は、栄養源として炭素源、窒素源を含んでいればいずれ でもよいが、発酵培地中のリンの濃度がリン制限濃度になるように調整された培地で ある。ここで、リンとは、リン分子を含んでいるものであればいずれでもよいが、中でも リン酸が好ましぐ添加形態としては、リン酸塩が好ましい。塩としては特に制限され ず、アンモ-ゥム塩、カルシウム塩、ナトリウム塩でもよぐリン酸 2水素カリウム、リン酸 水素 2カリウム、ピロリン酸などのリン酸ポリマー等が用いられる。また培地中にこれら の物質を 1種のみ含んでいてもよいし、 2種以上含んでいてもよい。リン制限濃度は、 リンを大量に含む (すなわちリンが生育の律速因子とならない濃度でリンを含む)培地 と比べて Phoレギュロンプロモーターが活性ィ匕される濃度であれば、いずれでもよい 力 具体的には、発酵培地に含まれるリン濃度で通常には発酵培地中のリン濃度を 好ましくは 200 μ Μ以下、より好ましく 150 μ Μ以下、さらに好ましくは 100 μ Μ以下、より 一層好ましくは 10 Μ以下、より一層好ましくは 4 Μ以下に制御する。培養後半であ れば、培地中のリン濃度は 0であってもよい。
[0106] 尚、発酵培地には微生物の生育に最低限必要なリン量を含んでいればよぐ一時 的に不足している状態になってもよい。一時的とは、例えば発酵全体の時間のうち約 20%、 40%、最大で約 60%の時間でリンが不足している状態でもよい。このとき発酵 培地に含まれるリン濃度は、 0.001 μ Μ以上、好ましくは 0.005 μ Μ以上、より好ましく は 0.01 μ Μ以上、より一層好ましくは 0.05 μ Μ以上含まれていることが好ましい。
[0107] 本発明の培養法は、回分培養 (batch culture)、流加培養 (Fed -batch culture)、 連続培養法(continuous culture)のいずれも用いることができる。また、本発明におい ては、 L—アミノ酸蓄積を一定以上に保っために、種培養と本培養と分けて行っても よぐ種培養をフラスコ等のしんとう培養、あるいは回分培養で行い、本培養を流加培 養、連続培養で行ってもよぐ種培養、本培養ともに回分培養で行ってもよい。
[0108] ここで本発明にお ヽて、「初発培地」とは、流加させる前の回分培養 (batch)培養に 用いる培地のことを意味し、「流加培地」とは、流加培養を行う際に発酵槽に供給する 培地のことを意味する。また、本発明において「発酵培地」とは、発酵槽中の培地を 意味し、この発酵培地力も L アミノ酸が回収される。また、本発明において、「発酵 槽」とは、 L アミノ酸発酵を行う器を意味し、発酵タンクを用いてもジャーフアーメンタ 一を用いてもよい。また、その容量は、 L アミノ酸を生成 '回収できる容量であれば いずれでもよい。
[0109] リンは初発培地でリン制限濃度になるように調整されていてもよいし、流加培地でリ ン制限濃度になるように制限してもよいし、これらを組み合わせてもよい。例えば流カロ 培養によりリンの濃度を制限する場合には、発酵培地中のリン濃度を 200 M以下、 好ましく 150 μ Μ以下、さらに好ましくは 100 μ Μ以下、より一層好ましくは 10 μ Μ以下、 より一層好ましくは 4 Μ以下に制御する。
[0110] また、初発培地、流加培地とも、これらのリンを混合してもよいし、流加培地のリンを 初発培地と変更してもよい。
[0111] 尚、リンは、 L-アミノ酸生産期である培養後半においてリン制限濃度に制限されて いることが好ましい。例えば、本発明の方法が、 L アミノ酸生産能を持つ微生物を 増殖させる段階 (増殖期)と、 L アミノ酸を産生させる段階 (L アミノ酸生産期)を含 む場合、 L アミノ酸生産期においてリンをリン制限濃度に制限すればよぐ Lーァミノ 酸蓄積微生物を増殖させる増殖期においては、リンをリン制限濃度を超えて培地に 含有させてもよぐリン制限濃度に制限してもよい。また、 L アミノ酸を産生させる段 階においても、その段階の全期間でリンの含有量が前記の範囲である必要はなぐ 同段階の初期に含有量が前記範囲以上になるようにリンを存在させ、培養時間に応 じて減少、してちよい。
[0112] 本発明において培養後半とは、主にアミノ酸生産期を意味し、菌体増殖期と区別さ れる。本発明における「増殖期」とは、培養開始から 3時間、好ましくは 6時間、特に好 ましくは、 10時間以内の、リンが主に菌体生育に使用されている時期、すなわち微生 物が対数的に増殖している時期を意味し、本発明における「培養後半」とは、培養終 了まで 6時間、好ましくは 10時間、特に好ましくは 20時間前の期間で、炭素源が主 に L—アミノ酸生産に用いられて 、る時期を意味する。
[0113] 本発明に用いられる培地に含まれる炭素源としては、炭素源としては、グルコース、 グリセロール、フラクトース、スクロース、マルトース、マンノース、ガラクトース、澱粉カロ 水分解物、糖蜜等の糖類が使用でき、特にグルコース、スクロースが好ましい。その 他、酢酸、クェン酸等の有機酸、エタノール等のアルコール類も単独あるいは他の炭 素源と併用して用いることができる。また、炭素源となる原料としては、ケインモラセス 、ビートモラセス、ノ、ィテストモラセス、シトラスモラセスを用いてもよいし、セルロース、 デンプン、コーン、シリアル、タピオ力等の天然原料の加水分解物を用いてもよい。ま た培養液中に溶存した二酸ィ匕炭素も炭素源として使用出来る。これらの炭素源が初 発培地にも流加培地にも用いることができる。また、初発培地、流加培地とも、これら の炭素源を混合してもよいし、流加培地の炭素源を初発培地と変更してもよい。例え ば、初発培地をグルコースで培養し、流加培地をスクロースで培養する場合である。
[0114] 本発明の培地中に含まれる窒素源としては、アンモニア、硫酸アンモ-ゥム、炭酸 アンモ-ゥム、塩化アンモ-ゥム、リン酸アンモ-ゥム、酢酸アンモ-ゥム、ゥレア等の アンモ-ゥム塩または硝酸塩等が使用することができ、 pH調整に用いられるアンモ- ァガス、アンモニア水も窒素源として利用できる。また、ペプトン、酵母エキス、肉ェキ ス、麦芽エキス、コーンスティープリカ一、大豆加水分解物等も利用出来る。これらの 窒素源は、初発培地にも流加培地にも用いることができる。また、初発培地、流加培 地とも、これらの窒素源を混合してもよいし、流加培地の窒素源を初発培地と変更し てもよい。
[0115] また本発明の培地には、炭素源、窒素源、リン源の他に硫黄源を含んでいることが 好ましい。硫黄源としては、硫黄分子を含んでいるものであればいずれでもよいが、 硫酸塩、チォ硫酸塩、亜硫酸塩等の硫酸塩、システィン、シスチン、ダルタチオン等 の含硫アミノ酸が望ましく、なかでも硫酸アンモ-ゥムが望ま 、。
[0116] また本発明の培地には、炭素源、窒素源、リン源の他に、増殖促進因子を含んで いてもよい。増殖促進因子とは、微量金属類、アミノ酸、ビタミン、脂肪酸、核酸、更に これらのものを含有するペプトン、カザミノ酸、酵母エキス、大豆たん白分解物等が使 用できる。
[0117] 微量金属類としては、鉄、マンガン、マグネシウム、カルシウム等が挙げられ、ビタミ ンとしては、ビタミン B、ビタミン B、ビタミン B、ニコチン酸、ニコチン酸アミド、ビタミン
1 2 6
B 等が挙げられる。これらの増殖促進因子は初発培地に含まれていてもよいし、流
12
加培地に含まれて 、てもよ 、。
[0118] また本発明の培地には、生育にアミノ酸などを要求する栄養要求性変異株を使用 する場合には要求される栄養素を補添することが好ましい。
[0119] 培養は、通常には発酵温度 20〜45°C、特に好ましくは 33〜42°Cで通気培養を行 う。ここで酸素濃度は、通常には 5〜50%に、好ましくは 10%程度に調節して行う。ま た、通常、 pHを 5〜9に制御し、通気培養を行う。培養中に pHが下がる場合には、例 えば、炭酸カルシウムをカ卩える力、アンモニアガス、アンモニア水等のアルカリで中和 する。このような条件下で、好ましくは 10時間〜 120時間程度培養することにより、培 養液中に著量の L アミノ酸が蓄積される。蓄積される L—アミノ酸の濃度は野生株よ り高ぐ培地中から採取 ·回収できる濃度であればいずれでもよいが、 50g/L以上、好 ましくは 75g/L以上、さらに好ましくは 100g/L以上である。
[0120] 培養終了後の培養液力 L—アミノ酸を採取する方法は、公知の回収方法に従つ て行えばよい。例えば、培養液力も遠心分離等によって菌体を除去した後に、濃縮 晶析することによって採取される。
実施例 1
[0121] 以下に、実施例を挙げて本発明を更に具体的に説明する
[0122] [実施例 1]
(1)大腸菌 L リジン生産菌のリン制限条件下での培養 大腸菌 L リジン生産菌 WC196(FERM BP-5252)を用いて、リジンの生産能を評価 した。グルコースを 40g/L、 MgSO 7水和物を lg/L、 KH POを 0または 0.125、 0.5、 lg/
4 2 4
L、 (NH ) SOを 16g/L、 FeSO 7水和物を 10mg/L、 MnSO 4〜5水和物を 10mg/L、酵
4 2 4 4 4
母エキスを 2g/L、 CaCOを 50g/L含む培地にて 500mL容坂ロフラスコを用いて培養し
3
た。培養開始時の培養液量は 20mLとし、回転速度 120rpmで往復振とうし、 37°Cで培 養を行った。
[0123] 培地、容器等は全てオートクレープ滅菌を行った後に供した。このとき、培養液中 の菌体濃度、グルコース濃度、及び L-リジン蓄積を測定した。菌体濃度 (OD600)は、 適当倍率に 0.1規定塩酸で希釈した培養液を用い、 600nmの濁度を分光光度計 (べッ クマン社)で測定して求めた。残存グルコース濃度、及び L-リジン濃度は遠心分離に より除菌した培養液上清を適当倍率に水で希釈した後にバイオテックアナライザー( サクラ精器)により測定した。培養は 24〜65時間行い、培養液中のグルコースが全て 消費されるまで培養を行った。
[0124] 下表 2に示すように、 KH POを 0.5または 1.0g/Lとして培養を行ったときには、 OD60
2 4
0に示すように最終の到達菌体量がほぼ同一であるのに対して、 KH POを 0または 0.
2 4
125g/Lとして培養を行ったときには、最終の到達菌体量が低下した。これは、リンが 培養途中で欠乏している、すなわちリンが制限されているためと考えられる。更に、 K H POを 0または 0.125g/Lとして培養を行ったときには、リジン蓄積も対照 (1.0g/L)に
2 4
比較して減少が認められた。なお、培養液中には KH PO由来のリンのほかに、酵母
2 4
エキス由来のリンが KH PO換算で約 0.25g/L含まれている。
2 4
[0125] すなわち、リンが制限されている条件においては、 L—リジン生産菌は生育が低下 し、 L リジンの生産能も低下することが示された。
[0126] (2)大腸菌野生株の遺伝子発現解析
大月昜菌野生株 MG1655を、 22.2 mMグルコース、 50 mM NaCl、 0.523 mM NH Cl、 1
4 mM (NH ) SO、 0.01 mM FeSO - 7H 0、 0.005 mM CaCl、 0.01 mM MnSO -4-5H O
4 2 4 4 2 2 4 2
、 1 mMチアミン- HC1、 40 mM MOPS- KOH(pH7.2)、及び、種々の濃度の KH POを
2 4 含む培地にて、 500mL容坂ロフラスコを用いて培養した。 KH POの濃度はリン酸充
2 4
足条件においては lmM、リン酸不足条件では 50 Mとして培養を行った。培養開始 時の培養液量は 50mLとし、回転速度 120rpmで往復振とうし、 37°Cで培養を行った。 培地、容器等は全てオートクレープ滅菌を行った後に供した。
[0127] リン酸充足条件の対数増殖期、及びリン酸不足条件でリン酸が枯渴して増殖が停 止した 2時間後にフラスコより約 10mLの培養液をサンプリングし、直ちに氷上にて冷 却した後に冷却遠心機にて 10000 X g、 2分の条件で遠心分離を行 ヽ培養液上清を 除去した。回収した菌体から、 QIAGEN社の RNeasy kitを用い、添付のプロトコール によって全 RNAを回収した。得られた RNAは、ァガロースゲル電気泳動にて分解され ることなく回収されていることを確認し、紫外線領域の吸光度を測定することにより濃 度を定量した。得られた RNAは、 _80°Cにて密閉保存し、次の DNAマクロアレイを用い た遺伝子発現解析に供した。
[0128] 得られた RNA20 μ gを铸型に、 dATP、 dGTP、 dTTPを各 lmM、及び33 Pでラベルされ た dCTPを比放射能で 1500MBqの量で基質として用い、 Promega社の Reverse Transc ription Kitを用いて逆転写反応を行い、各フェーズのラベルされた cDNAを得た。
[0129] 得られた cDNAをプローブとして、 Genosys社の大腸菌マクロアレイメンブレンに対し て、プロトコールに従い、ハイブリダィゼーシヨンを行い、ハイブリダィゼーシヨン終了 後にメンブレンの洗浄を行った。洗浄後のメンブレンを密閉し、イメージングプレート に 48時間、暗黒下で密着させ感光させた。感光させたイメージングプレートを、富士 フィルム社製フルォロイメージングアナライザー FLA-3000Gにより読取り、得られた読 取り画像を DNAアレイ画像解析システム AISにとりこみ、各スポットの濃度を定量する ことにより、各フェーズでの遺伝子発現プロファイルのデータを得た。
[0130] 得られた DNAアレイデータより、対数増殖期には発現レベルが高いが、リンが枯渴 して増殖が停止した時期には発現レベルが低下するような遺伝子をスチューデントの t検定により、糖代謝系、及びリジン生合成系の遺伝子の中から探索した。その結果、 lysA遺伝子の遺伝子発現が有意に低下していることを見出した (表 3)。また、得られ た DNAアレイデータより、対数増殖期には発現レベルが低いが、リンが枯渴して増殖 が停止した時期には発現レベルが増加するような遺伝子をスチューデントの t検定に より、大腸菌の全遺伝子の中から探索した。その結果、 phoA遺伝子の遺伝子発現が 有意に増加して 、ることを見出した (表 3)。 [0131] 培養液中のリン酸濃度は、培養液を 10000rpm、 2分間の条件で遠心分離した後に 培養液を適当な濃度に希釈し、ピーテストヮコー (和光純薬工業)を用いて分析を行 つた o
[0132] (3)プロモーター領域を phoA遺伝子のプロモーターに置換した lysA遺伝子を増幅し た菌株の構築
プロモーターを phoA遺伝子のプロモーターに置換した lysA遺伝子(以下、 PphoA-1 ysAと略す)は、クロスオーバー PCR法(Link AJ, Phillips D, Church GM、 J.Bacteriol. Vol.l79.p6228-6237,1997記載)により構築した。下表 4に記載したプライマー LysA-1 ,LysA-2 (配列番号 22及び 23)と phoAp-l,phoAp-2 (配列番号 26及び 27)で E.coli K-12株より取得したゲノム DNAを铸型にそれぞれ PCRを行った。この際、プライマー L ysA-1と LysA-2、及び phoAp-1と phoAp-2のモル比は 10:1にて行った。得られた一回 目の PCR産物を铸型に、プライマー LysA-1と phoAp-1を用いて二回目の PCRを行つ た。得られた PCR産物は BamHIと Hindlllで切断し、 pMW118 (-ツボンジーン社)を Ba mHI-Hindlllで切断したものと合わせて DNA ligation kit ver.2 (宝酒造)を用いてライ ゲーシヨン反応を行った。この結合反応液にて DH5 aコンビテント細胞(宝酒造)を形 質転換し、アンピシリン (Ap) (ナカライテスタ)を 50 g/mL含む LB寒天プレート (LB+ Apプレート)にまき、 37°Cでコロニーを選択した。コロニーを 50 μ g/mLの Apを含む LB 培地で 37°Cにて試験管培養し、 Wizard Plus Miniprep(Promega社)を用いてプラスミド を抽出した。抽出したプラスミドは、 BamHIと Hindlllで切断し、 目的の長さの挿入配列 を有するものを選択して、 目的とするプラスミド pMW-PphoA-lysAを構築した。
[0133] このプラスミド pMW-PphoA-lysAにて E.coli WC196の形質転換を行い、 目的とする 菌株 WC 196/pMW- PphoA- lys Aを得た。
[0134] (4) lysA遺伝子、及び lysR遺伝子を増幅した菌株の構築
下表 4に記載したプライマー LysA-3,LysA- 4(配列番号 24及び 25)を用い、 E.coli K -12株より取得したゲノム DNAを铸型に PCRを行つた。得られた PCR産物は BamHIと H indlllで切断し、 pMW118 (-ツボンジーン社)を BamHI-Hindlllで切断したものと合わ せて DNA ligation kit ver.2 (宝酒造)を用いてライゲーシヨン反応を行った。この結合 反応液にて DH5 aコンビテント細胞(宝酒造)を形質転換し、アンピシリン (Ap) (ナカ ライテスタ)を 50 μ g/mL含む LB寒天プレート(LB+Apプレート)にまき、 37°Cでコ口- 一を選択した。コロニーを 50 g/mLの Apを含む LB培地で 37°Cにて試験管培養し、 Wizard Plus Miniprep(Promega社)を用いてプラスミドを抽出した。抽出したプラスミド は、 BamHIと Hindlllで切断し、 目的の長さの挿入配列を有するものを選択して、 目的 とするプラスミド pMW-lysARを構築した。
[0135] このプラスミド pMW-lysARにて E.coli WC196の形質転換を行い、 目的とする菌株 WC 196/pMW- lys ARを得た。
[0136] (5) 2種の lysA遺伝子増幅株による L—リジン生産
上記(3)及び(4)にて作成した株、及びベクターのみのコントロールとして WC196/ PMW118を用いて、 L-リジンの生産能を評価した。グルコースを 40g/L、 MgSO 7水和
4 物を lg/L、 KH POを 0、 0.125、または lg/L、 (NH ) SOを 16g/Lゝ FeSO 7水和物を 10
2 4 4 2 4 4
mg/L、 MnSO 4 aCO
4〜5水和物を 10mg/L、酵母エキスを 2g/L、 C を 50g/L、アンピシリ
3
ンを 100 g/mL含む培地にて 500mL容坂ロフラスコを用いて培養した。上記(1)で示 したように、 KH POを 0または 0.125g/Lで培養した条件では、リンが制限されており、
2 4
KH POを lg/Lで培養した条件ではリンが充足している。培養開始時の培養液量は 2
2 4
OmLとし、回転速度 120rpmで往復振とうし、 37°Cで培養を行った。培地、容器等は全 てオートクレープ滅菌を行った後に供した。このとき、培養液中の菌体濃度、ダルコ ース濃度、及びリジン蓄積を測定した。菌体濃度 (OD600)は、適当倍率に 0.1規定塩 酸で希釈した培養液を用い、 600nmの濁度を分光光度計 (ベックマン社)で測定して 求めた。残存グルコース濃度、及びリジン濃度は遠心分離により除菌した培養液上 清を適当倍率に水で希釈した後にバイオテックアナライザー (サクラ精器)により測定 した。培養は 24〜65時間行い、培養液中のグルコースが全て消費されるまで培養を 行った。
[0137] 結果を下表 5に示す。リンが培養中常に充足しており、生育制限物質となっていな い条件下(KH PO力 S lg/L含まれている培地)においては、いずれの株でも生育、リジ
2 4
ン蓄積ともほぼ同等であった。一方、リンが培養途中に枯渴して生育制限物質となつ ている条件(KH PO力 S0.125または 0g/L含まれている条件)においては、コントロール
2 4
株、及び WC196/pMW-lysARにおいてはリジン蓄積が低下するのに対して、 WC196 /pMW-PphoA-lysAにおいてはこれらの株に比較してリジン蓄積が顕著に増加する: とが確認された。すなわち、 phoAプロモーターにより発現するような lysA遺伝子を導 y y y y
入することで、リンを制限した培養条件においてリジンの生産能が向上することが確 ひ c3<<) ノ o
[0138] [表 2] 表 2 様々な KH2P04濃度条件下での大腸菌リジン生産菌 WC196のリジン生産能
KH2P04(g L) 1 02 1.5 0.125 0
OD600 20.82 21.004 o 4フ 16.91 9.87
Lys(g L) 1.21 1.16 0.63 0.39
[表 3] 表 3 リン充足条件、 リン枯渴条件での lysA遺伝子、 及び phoA遺伝子の発現 遣 キ名
lysA 14.2Ί 14.67 1 1.78 4.51 3.84 0.0Q14 phoA 24.98 24,46 18.17 624.66 565.3 6.38E-05
[0140] [表 4」 表 4 使用したプライマ一一覧 (上から順に、 配列番号 2 2〜2 7 )
GCGGATCC TCCATGCCAAAATGATCCCGGATGCTGA GACAAAAGCOCaaACACCAaAAATGGCACATTCACTGTTCAGCACCG GCGGATCC GGTATGGTGCTGATCAACCGTATCCTGCCT GAAAGCTTGCGCAGTGTTTTGCCTGTGT
pho/ψ-Ι GCAAGCTTATOCGCTGAOTTTTTTTCTCTTAATTAT
phoAp-2 CGGTGCT OAACAaTGAATGTGaCAT Ί TCT GGT GT CCGGGCTT TTGT
[0141] [表 5」 表 5 phoAプロモーターを連結した lysA遺伝子を増幅した WC196におけるリン制限 時の Lys生産
K¾P04(giL) 1 0.125 0
Hasmid
ΟΌ6 0 24.75 25.70 24,00 16.81 18.47 20.21 10,10 uji 12.91
Ly ) 1.21 i.29 1.32 1.14 1.20 IJ65 0.44 0.52 0.74 [0142] [実施例 2]
( 1) L フエ二ルァラニン生産菌株の構築
E. coli MG1655 AtyrA AtyrR,P - yddG株を、 E. coli BW25113株に関して報告され
L
ている方法 (WO03044192A1)と同様にして構築した。カセット MUD- aroG4-pheAB - ar oL-CmRを、ヘルパープラスミド pHTIO (フナコシ社製)を用いて染色体に組み込んだ 。その後、 λファージの attR及び attLで挟まれたマーカー CmRを、ヘルパープラスミド pMW-int-hisを用いて切り出した(WO05/010175)。結果的に細菌染色体に組み込ま れた断片の構造を図 3に示す。この断片の配列を配列番号 30に示す。遺伝子 aroG4 及び pheABは、それぞれ、 Phe阻害に耐性の酵素をコードする、 E.coliの遺伝子 aroG 及び pheAの変異体である。(EP0488424B, JP03225597B, JP03060668B)全ての遺伝 子はそれらの本来のプロモーターの制御下にある。 pheAB遺伝子は、了テニユエータ 一を欠失させた。このカセットの組み込み位置を決定した。その位置は、左側の Mu末 端を基準にして、 E. coli物理的地図において 4581838である。このようにして、 MG165 5 AtyrA AtyrR,P -yddG, MUD- aroG4- pheAB - aroL株が得られた。
L
[0143] 上述の株の染色体の遺伝子 aroG4の上流にプロモーター P を、 λ Redシステム (D
PhoA
atsenko, K.A. and Wanner, B丄., Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6640—6 645)によって組み込むことにより、他の株 MG1655 AtyrA AtyrR,P -yddG,MUD-(P
L Pho
- aroG4)- pheAB- aroLを構築した。
A
[0144] プロモーター P の組み込みのために、 MG1655株の染色体から、配列番号 31及
PhoA
び 32のプライマーを用いる PCRによって phoA遺伝子のプロモーターを含む DNA断 片を増幅した。配列番号 31のプライマーは、その 5'末端に、クロラムフエ-コールマ 一力一を含む他の断片に連結させるために必要な Bglll部位を含む。配列番号 32の プライマーは、 λ Redシステムを用いてさらに染色体に組み込むために必要な、 aroG 遺伝子の 5'末端領域に相補的な 36ヌクレオチドを含む。 cat遺伝子によりコードされ る CmRマーカーを含む DNA断片を、 pMWl 18- attL- Cm- attRをテンプレートとして配 列番号 33及び 34のプライマーを用いる PCRにより得た (WO 05/010175)。配列番号 3 3のプライマーは、その 5'末端に、 phoA遺伝子のプロモーターを含む上記断片に連 結させるために必要な Bglll部位を含む。配列番号 34のプライマーは、 λ Redシステ ムを用いてさらに染色体に組み込むために必要な、 aroG遺伝子の 5'末端領域に相 補的な 36ヌクレオチドを含む。二つの得られた PCR断片を Bgin制限酵素で処理し、 連結した。得られた連結産物を配列番号 32及び 34のプライマーを用いる PCRで増 幅し、 MG1655 AtyrA AtyrR,P - yddG,MUD- aroG4- pheAB- aroL株の染色体に組み
L
込んだ。その後、 λファージの attR及び attLで挟まれたマーカー CmRを、へルパープ ラスミド pMW- int- hisを用いて切り出した (WO05/010175)。このようにして、 MG1655 A tyrA Δ tyrR.P - yddG,MUD- (P - aroG4)- pheAB- aroL株を得た。結果的に細菌染色
L PhoA
体に組み込まれた断片の構造を図 4に示す。この断片の配列を配列番号 35に示す
[0145] (2) L—フエ-ルァラニン生産
両構築株は、 aroG4遺伝子の調節においてのみ相違する。すなわち、カセット MUD - aroG4- pheAB- aroLでは構成的であり、 MUD- (P - aroG4)- pheAB- aroLではリン酸
PhoA
の入手可能性により調節される。 aroG4遺伝子産物は、芳香族経路の第 1反応を触 媒するので、その活性は、炭素フローを芳香族化合物(例えば、 Phe)の生合成に向 けるのに極めて重要である。構築された両 L—フエ二ルァラニン生産株の試験を、下 記表 6に示す組成の培地を用いて試験管発酵により行った。
[0146] [表 6]
-表 6 試験管発酵の培地組成
Figure imgf000043_0001
[0147] KH PO の濃度は変化させた。発酵は、グルコースが消費された時に終了した (約 3
2 4
0時間)。発酵 (6回の独立した実験)の結果を表 7に示す。
[0148] [表 7] 表 7 試験管発酵
Figure imgf000044_0001
[0149] 表 7から分力るように、株 IIの場合は、 L—フエ-ルァラニン生合成は、リン酸が培地 中に高濃度で存在するときに減少し、リン酸の利用が制限されたときに増カロした。実 際、リン酸過剰条件 (1 g/1 KH PO )では、株 Iの最終細胞濃度は、株 IIよりも若干低か
2 4
つた。このことは、株 Iと比較したときに株 IIの L—フエ-ルァラニン生産が低いことと相 関する。リン酸の制限下 (0.6及び 0.4 g/1)では、最終細胞濃度は低くなり、また、両方 の株で等しくなつた。両方の株は、リン酸過剰条件と比較してリン酸制限下で L—フエ 二ルァラニンをより多く生産した力 株 Πは、株 Iよりも有意に多く L—フエ-ルァラニン を生産した。両株の L—フエ-ルァラニン生産レベルが高いことは、リン酸制限により 定常期が延長されたことにより説明される。株 IIの L—フエ-ルァラニン生合成の能力 が有意に高いことは、特に定常期における DAHPシンターゼの活性が高いことにより 説明される。
産業上の利用可能性
[0150] 本発明により、 L—リジン、 L—フエ-ルァラニンなどの L—アミノ酸の、改良された製 造法が提供される。 己列の説明]
配列番号 1 : phoA遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 2: phoA遺伝子プロモーター配列(GenBank)
配列番号 3 : phoB遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 4: phoB遺伝子プロモーター配列(GenBank)
配列番号 5 : phoE遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 6: phoE遺伝子プロモーター配列(GenBank)
配列番号 7 : phoH遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 8: phoH遺伝子プロモーター配列(GenBank)
配列番号 9: asr遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 10: asr遺伝子プロモーター配列(GenBank)
配列番号 11 : argP遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 12: argP遺伝子プロモーター配列(GenBank)
配列番号 13 : ugPB遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 14: ugpB遺伝子プロモーター配列(GenBank)
配列番号 15 : pstS遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 16: pstS遺伝子プロモーター配列(GenBank)
配列番号 17 : psiE遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 18 : psiE遺伝子プロモーター配列(GenBank)
配列番号 19 : phnC遺伝子プロモーター配列(開始コドン上流 500 bp) 配列番号 20: phnC遺伝子プロモーター配列(GenBank)
配列番号 21 : pho BOX
配列番号 22: lysA遺伝子増幅用プライマー
配列番号 23 : lysA遺伝子増幅用プライマー
配列番号 24: lysA遺伝子増幅用プライマー
配列番号 25 : lysA遺伝子増幅用プライマー
配列番号 26 : phoA遺伝子プロモーター増幅用プライマー
配列番号 27 : phoA遺伝子プロモーター増幅用プライマー 配列番号 28 :lysA遺伝子
配列番号 29: lysA遺伝子がコードするアミノ酸配列
配列番号 30: MG1655 Δ tvrA Δ tyrR.P - yddG'MUD- aroG4- pheAB- aroL株に組み込
L
まれている断片
配列番号 31 : phoA遺伝子プロモーターを含む DNA断片の増幅用プライマー 配列番号 32 : phoA遺伝子プロモーターを含む DNA断片の増幅用プライマー 配列番号 33: CmRマーカーを含む DNA断片の増幅用プライマー
配列番号 34: CmRマーカーを含む DNA断片の増幅用プライマー
配列番号 35: MG1655 Δ tvrA Δ tyrR'P— yddG'MUD— (P - aroG4)— pheAB— aroL株に
L PhoA
糸且み込まれている断片
配列番号 36 : aroG遺伝子
配列番号 37: aroG遺伝子がコードするアミノ酸配列(3—デォキシー D—ァラピノへ プッロン酸ー7—リン酸シンターゼ)
配列番号 38 : aroL遺伝子
配列番号 39: aroL遺伝子がコードするアミノ酸配列(シキミ酸キナーゼ)
配列番号 40: pheA遺伝子
配列番号 41 :pheA遺伝子がコードするアミノ酸配列(プレフェン酸デヒドラターゼ、コ リスミ酸ムターゼ)

Claims

請求の範囲
[1] phoレギュロンプロモーターの下流に、そのプロモーターにより発現するように、 Lーァ ミノ酸生合成系酵素をコードする構造遺伝子が接続された DNA断片を導入すること により、前記プロモーターによる発現の誘導によって L アミノ酸生合成系酵素の活 性が増大するように改変された、腸内細菌科に属する L-アミノ酸生産能を有する微 生物を培地で培養して、 L アミノ酸を該培地に生成蓄積させ、該培地より L ァミノ 酸を採取する、 L アミノ酸の製造方法であって、前記培地中のリン濃度が、前記プ 口モーターによる発現が誘導される濃度である方法。
[2] 前記 phoレギュロンプロモーター力 phoA, phoB, phoE, phoH, asr, argP, ugpB, pstS, psiE及び phnCから選択される遺伝子のプロモーターである請求項 1に記載の製造 法。
[3] 前記 phoレギュロンプロモーターが、 pho boxを有するプロモーターである、請求項 1 又は 2に記載の製造法。
[4] 前記培地中のリン濃度が、 200 M/L以下に制御される請求項 1〜3のいずれか一 項に記載の製造法。
[5] 前記 L アミノ酸生合成系酵素が、改変前の微生物においては、リンが枯渴した条 件下で発現レベルが低下するものである、請求項 1〜4のいずれか一項に記載の製 造法。
[6] 前記 DNA断片がマルチコピー型ベクターに搭載されている、又は、微生物の染色体
DNA上に導入されている、請求項 1〜5のいずれか一項に記載の方法。
[7] 前記腸内細菌科に属する微生物が、ェシエリヒア属細菌、ェンテロパクター属細菌、 パントエア属細菌、クレブシエラ細菌、セラチア属細菌力 なる群より選ばれる微生物 である、請求項 1〜6のいずれか一項に記載の方法。
[8] 前記 L アミノ酸が L リジン、 L—スレオニン、 L トリプトファン、 L フエ-ルァラ- ン、 L グルタミン酸力もなる群より選択される 1種または 2種以上の L -アミノ酸である 請求項 1〜7のいずれか一項に記載の方法。
[9] 前記 L—アミノ酸が L—リジンであり、 L—アミノ酸生合成系酵素がジヒドロジピコリン酸 レダクターゼ、ジアミノピメリン酸脱炭酸酵素、ジアミノピメリン酸デヒドロゲナーゼ、ホ スホェノールピルビン酸カルボキシラーゼ、ァスパラギン酸アミノトランスフェラーゼ、 ジアミノピメリン酸ェピメラーゼ、ァスパラギン酸セミアルデヒド脱水素酵素、テトラヒド ロジピコリン酸スクシ-ラーゼ、及び、スクシ-ルジアミノピメリン酸デアシラーゼからな る群より選択される 1種または 2種以上の酵素である請求項 8に記載の方法。
[10] 前記 L アミノ酸が Lースレオニンであり、 L アミノ酸生合成系酵素がァスパルトキナ ーゼ III、ァスパラギン酸セミアルデヒドデヒドロゲナーゼ、 thrオペロンにコードされるァ スバルトキナーゼ I、ホモセリンキナーゼ、及び、スレオニンシンターゼからなる群より 選択される 1種または 2種以上の酵素である請求項 8に記載の方法。
[11] 前記 L アミノ酸が L グルタミン酸であり、 L アミノ酸生合成系酵素力 グルタミン 酸デヒドロゲナーゼ、グルタミンシンテターゼ、グルタミン酸シンターゼ、イソクェン酸 デヒドロゲナーゼ、アコニット酸ヒドラターゼ、クェン酸シンターゼ、ホスホェノールピル ビン酸カルボキシラーゼ、ピルビン酸カルボキシラーゼ、ピルビン酸デヒドロゲナーゼ 、ピルビン酸キナーゼ、ホスホェノールピルビン酸シンターゼ、 6—ホスホダルコン酸 デヒドラターゼ、及び、 2 ケトー 3 デォキシ 6 ホスホダルコン酸アルドラーゼか らなる群より選択される 1種または 2種以上の酵素である請求項 8に記載の方法。
[12] 前記 L—アミノ酸が芳香族 L—アミノ酸であり、 L—アミノ酸生合成系遺伝子が、 3 デ ォキシ D ァラピノへプッロン酸 7—リン酸シンターゼ、 3 デヒドロキネートシン ターゼ、シキミ酸デヒドラターゼ、シキミ酸キナーゼ、 5—ェノール酸ピルビンシキミ酸 3—リン酸シンターゼ、コリスミ酸シンターゼ、プレフェン酸デヒドラターゼ、コリスミ酸ム ターゼカ なる群より選択される 1種または 2種以上の酵素である請求項 8に記載の方 法。
PCT/JP2007/051815 2006-02-02 2007-02-02 L-アミノ酸の製造法 WO2007088977A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07707964.8A EP1990416B1 (en) 2006-02-02 2007-02-02 Method for production of l-amino acid
US12/184,637 US8394612B2 (en) 2006-02-02 2008-08-01 Method for production of an L-amino acid
RU2008133840/10A RU2405040C2 (ru) 2006-02-02 2008-08-19 Способ получения l-аминокислоты

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-025620 2006-02-02
JP2006025620A JP2009095237A (ja) 2006-02-02 2006-02-02 L−アミノ酸の製造法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/184,637 Continuation US8394612B2 (en) 2006-02-02 2008-08-01 Method for production of an L-amino acid

Publications (1)

Publication Number Publication Date
WO2007088977A1 true WO2007088977A1 (ja) 2007-08-09

Family

ID=38327545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051815 WO2007088977A1 (ja) 2006-02-02 2007-02-02 L-アミノ酸の製造法

Country Status (5)

Country Link
US (1) US8394612B2 (ja)
EP (1) EP1990416B1 (ja)
JP (1) JP2009095237A (ja)
RU (1) RU2405040C2 (ja)
WO (1) WO2007088977A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181503A (zh) * 2011-04-15 2011-09-14 江苏汉光生物工程有限公司 一种发酵生产l-苯丙氨酸的方法
WO2019030808A1 (ja) * 2017-08-07 2019-02-14 地方独立行政法人大阪産業技術研究所 芳香族化合物を産生する微生物
CN111670252A (zh) * 2018-03-20 2020-09-15 Cj第一制糖株式会社 新型启动子及其应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915018B2 (en) * 2004-10-22 2011-03-29 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria of the Enterobacteriaceae family
RU2396336C2 (ru) 2007-09-27 2010-08-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПОЛУЧЕНИЯ АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Escherichia
US8692070B2 (en) * 2009-11-04 2014-04-08 Iowa Corn Promotion Board Plants with improved nitrogen utilization and stress tolerance
CN105189527A (zh) 2013-03-14 2015-12-23 科德克希思公司 低-磷酸盐可阻遏的启动子
RU2014105547A (ru) 2014-02-14 2015-08-20 Адзиномото Ко., Инк. СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА ENTEROBACTERIACEAE, ИМЕЮЩЕЙ СВЕРХЭКСПРЕССИРУЕМЫЙ ГЕН yajL
WO2017127567A1 (en) * 2016-01-19 2017-07-27 Genebiologics, Llc Production of arginine-rich proteins and use as a fertilizer and germination enhancer
US20220411806A1 (en) * 2019-10-23 2022-12-29 Duke University Compositions, systems, and methods for high level expression of recombinant protein
CN116555134A (zh) * 2022-01-29 2023-08-08 廊坊梅花生物技术开发有限公司 产苏氨酸菌株的构建方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488424A2 (en) 1990-11-30 1992-06-03 Ajinomoto Co., Inc. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation
JPH05236947A (ja) * 1991-02-05 1993-09-17 Ajinomoto Co Inc 発酵法による芳香族アミノ酸の製造法
WO1996017930A1 (fr) 1994-12-09 1996-06-13 Ajinomoto Co., Inc. Nouveau gene de decarboxylase de lysine et procede de production de lysine l
EP0733710A1 (en) 1993-12-08 1996-09-25 Ajinomoto Co., Inc. Process for producing l-lysine by fermentation
EP0796916A1 (en) 1996-03-22 1997-09-24 Triple-A B.V. Improvement of amino acid fermentation processes
WO1998004715A1 (en) 1996-07-30 1998-02-05 Archer-Daniels-Midland Company Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
EP0837134A2 (en) 1996-10-15 1998-04-22 Ajinomoto Co., Inc. Process for producing L-amino acid through fermentation
WO2001053459A1 (fr) 2000-01-21 2001-07-26 Ajinomoto Co., Inc. Procede de production de l-lysine
EP0643135B1 (en) 1992-11-10 2001-08-01 Ajinomoto Co., Inc. Dna encoding aspartokinase iii mutants and their use for the production of l-threonine by fermentation
EP0733712B1 (en) 1993-10-28 2001-12-12 Ajinomoto Co., Inc. Process for producing substance
EP1170376A1 (en) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Method for producing substances utilizing microorganisms
JP2002153285A (ja) 2000-11-20 2002-05-28 Tosoh Corp 新規耐熱性アミノトランスフェラーゼ
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
US20050079571A1 (en) 2001-07-30 2005-04-14 Collier Katherine D Phosphate limited inducible promoter and a bacillus expression system
WO2005087802A2 (en) 2004-03-11 2005-09-22 Genentech, Inc. Process for producing polypeptides

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763230A (en) 1996-03-22 1998-06-09 Triple-A B.V. P/A Produkschap Voor Veevoedor Amino acid fermentation processes
JP4035855B2 (ja) * 1996-06-05 2008-01-23 味の素株式会社 L−リジンの製造法
RU2212447C2 (ru) 2000-04-26 2003-09-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Штамм escherichia coli - продуцент аминокислоты (варианты) и способ получения аминокислот (варианты)
US20020155556A1 (en) 2000-12-22 2002-10-24 Ajinomoto Co., Inc Method of producing target substance by fermentation
RU2229513C2 (ru) 2001-11-23 2004-05-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-аминокислот, штамм escherichia coli - продуцент l-аминокислоты (варианты)
AU2003205041A1 (en) 2002-07-12 2004-01-29 Ajinomoto Co., Inc. Method for producing target substance by fermentation
BR0304860A (pt) 2002-11-11 2004-08-31 Ajinomoto Kk Método para produzir uma substância alvo pela utilização de uma-bactéria pertencente ao gênero escherichia
JP4821606B2 (ja) 2003-03-12 2011-11-24 味の素株式会社 効率的にL−グルタミン酸を生産するためのプロモーター変異による細菌のsucAB発現の最適化
JP2005021154A (ja) 2003-06-11 2005-01-27 Ajinomoto Co Inc L−アミノ酸の製造法
DE602005016763D1 (de) 2004-01-30 2009-11-05 Ajinomoto Kk L-aminosäure produzierender mikroorganismus und verfahren zur l-aminosäureproduktion
US20050191684A1 (en) 2004-02-25 2005-09-01 Zimenkov Danila V. Method for producing L-amino acids
US7915018B2 (en) 2004-10-22 2011-03-29 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria of the Enterobacteriaceae family

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488424A2 (en) 1990-11-30 1992-06-03 Ajinomoto Co., Inc. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation
JPH05236947A (ja) * 1991-02-05 1993-09-17 Ajinomoto Co Inc 発酵法による芳香族アミノ酸の製造法
EP0643135B1 (en) 1992-11-10 2001-08-01 Ajinomoto Co., Inc. Dna encoding aspartokinase iii mutants and their use for the production of l-threonine by fermentation
EP0733712B1 (en) 1993-10-28 2001-12-12 Ajinomoto Co., Inc. Process for producing substance
JPH11285381A (ja) * 1993-12-08 1999-10-19 Ajinomoto Co Inc 発酵法によるl―リジンの製造法
EP0733710A1 (en) 1993-12-08 1996-09-25 Ajinomoto Co., Inc. Process for producing l-lysine by fermentation
EP1477565A1 (en) 1993-12-08 2004-11-17 Ajinomoto Co., Inc. Method of producing L-lysine by fermentation
WO1996017930A1 (fr) 1994-12-09 1996-06-13 Ajinomoto Co., Inc. Nouveau gene de decarboxylase de lysine et procede de production de lysine l
EP0796912A1 (en) 1994-12-09 1997-09-24 Ajinomoto Co., Inc. Novel lysine decarboxylase gene and process for producing l-lysine
EP0796916A1 (en) 1996-03-22 1997-09-24 Triple-A B.V. Improvement of amino acid fermentation processes
JP2000515763A (ja) * 1996-07-30 2000-11-28 アルケー―ダニエルス―ミッドランド カンパニー Escherichia coliの新規株、その調製方法、およびL―トレオニン産生のための発酵プロセスにおけるその使用
WO1998004715A1 (en) 1996-07-30 1998-02-05 Archer-Daniels-Midland Company Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
EP0837134A2 (en) 1996-10-15 1998-04-22 Ajinomoto Co., Inc. Process for producing L-amino acid through fermentation
WO2001053459A1 (fr) 2000-01-21 2001-07-26 Ajinomoto Co., Inc. Procede de production de l-lysine
EP1170376A1 (en) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Method for producing substances utilizing microorganisms
JP2002153285A (ja) 2000-11-20 2002-05-28 Tosoh Corp 新規耐熱性アミノトランスフェラーゼ
US20050079571A1 (en) 2001-07-30 2005-04-14 Collier Katherine D Phosphate limited inducible promoter and a bacillus expression system
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
WO2005087802A2 (en) 2004-03-11 2005-09-22 Genentech, Inc. Process for producing polypeptides

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
LAIRD ET AL., PROTEIN EXPRESSION AND PURIFICATION, vol. 39, 2005, pages 237 - 246
LAIRD M.W. ET AL.: "Optimization of BLyS production and purification from Escherichia coli", PROTEIN EXPR. PURIF., vol. 39, no. 2, 2005, pages 237 - 246, XP003015562 *
MAKINO ET AL., J.MOL.BIOL, vol. 190, 1986, pages 37 - 44
MAKINO K. ET AL.: "Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12", J. MOL. BIOL., vol. 190, no. 1, 1996, pages 37 - 44, XP003015564 *
See also references of EP1990416A4 *
SILEN ET AL., J. BACTERIOL., 1989, pages 1320 - 1325
SILEN J.L. ET AL.: "Analysis of prepro-alpha-lytic protease expression in Escherichia coli reveals that the pro region is required for activity", J. BACTERIOL., vol. 171, no. 3, 1989, pages 1320 - 1325, XP003015563 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181503A (zh) * 2011-04-15 2011-09-14 江苏汉光生物工程有限公司 一种发酵生产l-苯丙氨酸的方法
WO2019030808A1 (ja) * 2017-08-07 2019-02-14 地方独立行政法人大阪産業技術研究所 芳香族化合物を産生する微生物
JPWO2019030808A1 (ja) * 2017-08-07 2020-07-02 地方独立行政法人大阪産業技術研究所 芳香族化合物を産生する微生物
JP7034496B2 (ja) 2017-08-07 2022-03-14 地方独立行政法人大阪産業技術研究所 芳香族化合物を産生する微生物
CN111670252A (zh) * 2018-03-20 2020-09-15 Cj第一制糖株式会社 新型启动子及其应用
CN111670252B (zh) * 2018-03-20 2023-12-12 Cj第一制糖株式会社 新型启动子及其应用

Also Published As

Publication number Publication date
JP2009095237A (ja) 2009-05-07
US20100184162A1 (en) 2010-07-22
RU2008133840A (ru) 2010-02-27
EP1990416A4 (en) 2009-11-04
RU2405040C2 (ru) 2010-11-27
EP1990416B1 (en) 2014-09-10
US8394612B2 (en) 2013-03-12
EP1990416A1 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US7811798B2 (en) Method for producing an L-amino acid by fermentation using a bacterium having an enhanced ability to utilize glycerol
EP1999266B1 (en) Method for producing l-amino acid
EP2201125B1 (en) A method for producing l-lysine and l-threonine
US8394612B2 (en) Method for production of an L-amino acid
EP1899452B1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the fucpikur operon
JP2009118740A (ja) L−アミノ酸の製造法
JP2009165355A (ja) L−アミノ酸を生産する微生物及びl−アミノ酸の製造法
JP2007185184A (ja) L−アミノ酸生産菌及びl−アミノ酸の製造法
US20090155861A1 (en) Method for producing an l-amino acid using a bacterium of the enterobacteriaceae family
US10787691B2 (en) Method for producing L-amino acid
US8691537B2 (en) Method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of the rcsA gene
EP2596137A1 (en) A method for producing an l- amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the bssr gene
WO2012002486A1 (ja) L-アミノ酸の製造法
JP2010263789A (ja) L−アミノ酸生産菌及びl−アミノ酸の製造法
CA2595501A1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family having a pathway of glycogen biosynthesis disrupted
US8313933B2 (en) L-amino acid producing bacterium and method for producing L-amino acid
WO2008032757A1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the alsabc operon
WO2010101053A1 (ja) L-アミノ酸の製造法
WO2007083788A1 (en) A method for producing an l-amino acid using a bacterium of enterobacteriaceae family with attenuated expression of the lrha gene
WO2008105276A1 (en) A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY WITH ATTENUATED EXPRESSION OF THE ycbPONME OPERON (ssuEADCB OPERON)
HUE025593T2 (en) Method for L-Amino Acid Production by Enterobacteriaceae Bacteria by Reducing FimZ GENE Production
WO2007139220A1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with attenuated expression of the yehabcde cluster
WO2007086544A1 (en) A method for producing an l-amino acid using a bacterium of enterobacteriaceae family with attenuated expression of the bisc gene
WO2008004682A1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with attenuated expression of the yrah-r cluster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007707964

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP