WO2007088707A1 - 多孔質樹脂フィルム用微孔形成剤及び、これを配合してなる多孔質樹脂フィルム用組成物 - Google Patents

多孔質樹脂フィルム用微孔形成剤及び、これを配合してなる多孔質樹脂フィルム用組成物 Download PDF

Info

Publication number
WO2007088707A1
WO2007088707A1 PCT/JP2007/000043 JP2007000043W WO2007088707A1 WO 2007088707 A1 WO2007088707 A1 WO 2007088707A1 JP 2007000043 W JP2007000043 W JP 2007000043W WO 2007088707 A1 WO2007088707 A1 WO 2007088707A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming agent
resin film
porous resin
micropore
porous
Prior art date
Application number
PCT/JP2007/000043
Other languages
English (en)
French (fr)
Inventor
Makoto Nagamatsu
Seiya Shimizu
Hidemitsu Kasahara
Hisakazu Hojo
Original Assignee
Maruo Calcium Co., Ltd.
Sumitomo Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruo Calcium Co., Ltd., Sumitomo Chemical Co., Ltd. filed Critical Maruo Calcium Co., Ltd.
Priority to EP07706292A priority Critical patent/EP1985650A4/en
Priority to US12/162,893 priority patent/US7977410B2/en
Priority to KR1020087018841A priority patent/KR101380184B1/ko
Priority to JP2007556800A priority patent/JP5305663B2/ja
Priority to CN2007800043734A priority patent/CN101379120B/zh
Publication of WO2007088707A1 publication Critical patent/WO2007088707A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/462Sulfates of Sr or Ba
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Micropore-forming agent for porous resin film and porous resin film composition comprising the same
  • the present invention relates to a micropore forming agent for a porous resin film and a composition for a porous resin film obtained by blending the same, and more specifically, the micropore forming agent for a porous film of the present invention. Since the inorganic particles constituting the material have almost no coarse particles, the strength deterioration of the porous resin film hardly occurs, the distribution width of the pore diameter of the porous film is uniform, and the pore diameter can be controlled. Furthermore, since there are very few impurities having conductivity, for example, a micropore-forming agent that gives a porous resin film suitable for electric member applications such as capacitors and battery separators, and a porous material formed by blending the micropore-forming agent The present invention relates to a resin film composition. Background art
  • Porous resin films made of synthetic resin include filter media such as water purifiers and air purifiers, synthetic paper, sanitary materials, medical materials, building materials, air permeable sheets for agriculture, separators for various batteries, etc. It is used as a material for separators for electrolytic capacitors, and in any application, further improvements and developments are required, such as making thin films that maintain strength.
  • lithium secondary batteries used in mopile equipment such as mobile phones and laptop computers have a higher energy density with respect to volume and weight than nickel-hydrogen secondary batteries. Since it was put into practical use at the beginning of the decade, it shows high production and usage growth.
  • lithium secondary batteries which are their main power sources, are also required to improve their performance.
  • the required physical properties of separators made of a porous resin film are required.
  • various physical properties such as higher capacity, durability, and safety are required.
  • the thickness of the resin and film that can be selected is limited for each application.
  • porous films used as sanitary goods such as diapers and bed covers and clothing materials such as gloves have been used as separators for lithium secondary batteries.
  • Patent Document 2 Japanese Patent Laid-Open No. 9 _ 1 7 6 3 5 2
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 2 — 2 6 4 2 0 8
  • porous resin films produced by conventional manufacturing methods are not only suitable for large batteries and automotive batteries, which are expected to increase in the future. There is a need for improvements.
  • the lithium battery using the obtained porous film as a separator has a high internal stake, although the reason is not clear.
  • the output obtained is wasted and is not satisfactory as a separator film.
  • the current method for producing a film having micropores can be broadly divided into a method in which inorganic particles are combined and stretched uniaxially or biaxially to form micropores (voids) between the particles and the resin.
  • a method of dissolving the particles themselves by acid, alkali, etc. a method of adding a wax-based additive that can be easily extracted in a later process to thermoplastic resin fat, molding, and removing with a solvent such as ether. is there.
  • the micropore-forming agent in the resin composition for a film requires a sharp particle size distribution with no particle dispersibility or coarse particles, and also has a conductive impurity. What is less is required.
  • the present inventors have found that inorganic particles prepared by a specific method have very few coarse particles and conductive impurities, and the porous film.
  • the resin composition for a porous film containing additives is used for a film stretched uniaxially or biaxially, for example, fine pores are produced and used as a separator for a lithium secondary battery, for example.
  • the present inventors have found that the above problems can be solved, such as obtaining good film characteristics, and have completed the present invention.
  • claim 1 of the present invention contains a micropore forming agent for a porous resin film, which comprises inorganic particles and satisfies the following formulas (a) to (d):
  • Claim 2 of the present invention contains the micropore forming agent for a porous resin film according to claim 1, wherein the inorganic particles are selected from calcium carbonate, calcium phosphate, magnesium hydroxide, and barium sulfate.
  • the inorganic particles are selected from calcium carbonate, calcium phosphate, magnesium hydroxide, and barium sulfate.
  • Claim 3 of the present invention includes the micropore-forming agent for a porous resin film according to claim 1, wherein the inorganic particles are calcium carbonate.
  • Claim 4 of the present invention is characterized in that the inorganic particles are surface-treated with a surfactant (A) and a compound (B) having a chelating ability with respect to an alkaline earth metal.
  • A surfactant
  • B compound having a chelating ability with respect to an alkaline earth metal.
  • Claim 5 of the present invention satisfies the following formula (e):
  • the content of the micropore forming agent for a porous resin film according to any one of 1 to 4.
  • Claim 6 of the present invention satisfies the following formula (f):
  • the content of the micropore forming agent for a porous resin film according to any one of 1 to 5 is as follows.
  • H x Amount of insoluble hydrochloric acid contained in 5 OO g of micropore forming agent
  • Claim 7 of the present invention satisfies the following formula (g):
  • the content of the micropore forming agent for a porous resin film according to any one of 1 to 6.
  • F c Amount of free carbon insoluble in hydrochloric acid contained in 500 g of micropore forming agent
  • Claim 8 of the present invention provides a composition for a porous resin film comprising the pore forming agent according to any one of claims 1 to 7 in a resin for a porous film. Content.
  • Claim 9 of the present invention is that the porous film resin is an olefin resin.
  • Claim 10 of the present invention comprises the composition for a porous resin film according to claim 8 or 9, which is used for a battery separator.
  • the inorganic particles constituting the microporous film forming agent of the present invention have almost no coarse particles, the strength of the porous resin film is hardly deteriorated, and the pore diameter of the porous film is small. Uniform distribution width and control of gap diameter. Furthermore, since it has very few conductive impurities, it is useful for electrical components such as capacitors and battery separators when blended in resin for film. A porous resin film can be provided.
  • Formulas (a) and (b) serve as indices for knowing the dispersion state of the micropore forming agent for a porous resin film of the present invention (hereinafter sometimes simply referred to as micropore forming agent).
  • Equation (a) is the average particle size (D50) measured with Microtrac FR A and should be 0.1 to 1.5 m. Although it is technically possible to make the average particle diameter (D50) less than 0.1 m, it is not preferable in terms of cost, and if it exceeds 1.5 m, it is composed of aggregates of primary particles. Since the secondary particles have a strong cohesive force and are present as secondary particles even in the resin, they cannot be used for the purpose of the present invention.
  • battery separators are required to be thinner, have high porosity, and have high air permeability due to improved battery performance, but because of mechanical properties such as insulation and piercing strength, Since the dispersion needs to be closer to the primary particles, it is preferably 0.1 to 1.0 m, and more preferably 0.1 to 0.7 m.
  • Equation (b) is a maximum particle diameter (D a) as measured by Microtrac FRA and needs to be 20 m or less. Maximum particle size (D a) is 20 m If it exceeds the above range, it will not be possible to use it for the intended purpose of the present invention because it will cause problems such as the formation of larger holes than intended. Among the applications of porous resin films, especially for battery separators, if there are large pores, a short circuit occurs and overdischarge is likely to occur, which is more dangerous, and is more preferably 15 m or less, and even more preferably 7 m or less. is there.
  • the measurement method of particle size distribution is as shown below.
  • Methanol is used as a medium for measurement with Microtrac FRA (laser diffraction particle size distribution analyzer).
  • Microtrac FRA laser diffraction particle size distribution analyzer
  • an ultrasonic disperser US S-300T manufactured by Nippon Seiki Seisakusho Co., Ltd.
  • Predispersion was performed at a constant condition for 2 seconds.
  • Formula (c) is a BET specific surface area (S w) of the micropore forming agent of the present invention by a nitrogen adsorption method, and requires 3 to 6 Om 2 Zg.
  • Sw specific surface area
  • the specific surface area (Sw) is less than 3m 2 Zg, the primary particles are too large, and when blended into the battery separator film, large pores are formed that are larger than intended, and when the particle size exceeds 60m 2 Zg, the particles are dispersed. It is not preferable in view of the property and cannot be used for the purpose of the present invention. Therefore, it is preferably 5 to 3 Om 2 Zg, more preferably 7 to 2 Om 2 Zg.
  • NOVA VA 2000 type manufactured by Chua Ionics was used.
  • Equation (d) is a volume resistivity (Ir) obtained by quantifying the insulating properties of hydrochloric acid insoluble matter of the micropore forming agent of the present invention.
  • I r must be 1.
  • OX 1 05 ( ⁇ -cm) especially for porous resin films, battery separators can cause internal discharge. It cannot be used for the purpose of the present invention. Therefore, it is preferably 1.0 X 10 6 ( ⁇ 2 cm) or more, more preferably 1.0 X 1 0 7 ( ⁇ 3 cm) or more.
  • a cell (tablet) obtained by adjusting the density of the insoluble hydrochloric acid contained in the micropore-forming agent to a volume fraction of about 65% was obtained from a high resistance meter (Agilent Technologies, Inc. 4 3 In 3 9 B), the volume resistivity at a voltage of 5 V was measured.
  • micropore-forming agent To collect hydrochloric acid-insoluble matter, mix the micropore-forming agent with an appropriate amount of methanol (special grade reagent), and then add 37% hydrochloric acid (special grade reagent) to dissolve the micropore-former. The solution is filtered through an Omnipore membrane (MIL LIPORE) with a pore size of 10 m. If the micropore forming agent is surface-treated with a surface treatment agent, the surface treatment agent remains on the filter after filtration, so it must be thoroughly washed with ether or methanol. Then, it was dried and weighed to collect hydrochloric acid insoluble matter.
  • MIL LIPORE Omnipore membrane
  • the micropore-forming agent of the present invention includes calcium carbonate, barium sulfate, magnesium hydroxide, calcium phosphate, talcite compound, basic magnesium carbonate, silica, titanium oxide, aluminum hydroxide, boehmite, alumina, Examples include talc and clay.
  • divalent metal compounds such as calcium carbonate, calcium phosphate, magnesium hydroxide, and barium sulfate are suitable from the viewpoint of insulation, and as described above, the chemically synthesized product has a particle size of inorganic particles. And preferable in terms of purity. A preferred method for producing a divalent metal compound is shown below.
  • the synthesis method of calcium carbonate is generally a carbon dioxide gas compound method, which is obtained by reacting lime milk obtained by adding water to quick lime obtained by calcining limestone and carbon dioxide gas produced during calcining.
  • the obtained particles are fine, and the primary particles have a uniform particle size.
  • the particle size can be adjusted and coarse particles can be removed depending on the reaction conditions and post-reaction process, which is excellent in terms of economics and physical load on the physical properties of the resulting particles. Is preferred.
  • the calcium carbonate particles obtained from the lime milk and the reaction use gravity, centrifugal force, buoyancy beneficiation, etc., for the purpose of removing impurities and coarse particles when they are in the form of water slurry. It is preferable to perform classification using a sieve, a filter, etc.
  • a classification operation such as air classification on the calcium carbonate or the surface-treated calcium carbonate powder obtained after drying and crushing to remove aggregates generated by drying.
  • the reaction between lime milk and phosphoric acid is suitable in terms of the production of fine particles.
  • the particle size can be adjusted by hydrothermal aging using an autoclave. Subsequent steps can be pulverized by the same method as the calcium carbonate described above.
  • the adjustment of lime milk and countermeasures for impurities thereafter are preferably performed in the same manner as the above-described calcium carbonate.
  • the reaction between lime milk or caustic soda and seawater bitter is preferable in terms of producing fine particles.
  • the particle size can be adjusted by hydrothermal aging using a photoclave, as in the case of calcium phosphate. After washing the secondary salt such as calcium chloride contained in the magnesium hydroxide water slurry with water, it is preferable to dry powder and take measures against impurities by the method described above.
  • a method for synthesizing barium sulfate a method obtained by reacting barium sulfide obtained by firing a heavy crystal and an aqueous solution of bow nitrate is suitable in terms of the production of fine particles.
  • After the reaction like magnesium hydroxide, after hydrothermal aging and washing with sodium sulfide sub-salt, it is preferable to carry out dry pulverization and countermeasures against impurities by the methods described above.
  • calcium carbonate in particular, is used until dry powdering. It is the most preferable micropore forming agent because it is safe and simple, can be produced at low cost, and has high acid solubility, so it has little effect on the resin film.
  • a surface treatment agent and a treatment method are not particularly limited, and a general treatment agent can be appropriately treated by a conventional method.
  • a surfactant (A) and an alkaline earth metal are used as a treatment method in which dispersibility with a resin and agglomerates in a resin film hardly occur.
  • a surfactant (A) and an alkaline earth metal are used as a treatment method in which dispersibility with a resin and agglomerates in a resin film hardly occur.
  • a surfactant (A) and an alkaline earth metal are used.
  • examples thereof include a method in which a compound (B) having a sharp ability is used in combination.
  • Surfactants (A) that can be used in the present invention include saturated fatty acids, unsaturated fatty acids, alicyclic carboxylic acids, resin acids and salts thereof, esters, alcohol surfactants, Sorbitan fatty acid esters, amide-based amine surfactants, polyoxyalkylene alkyl ethers, polyoxyethylene nonyl phenyl ether, alpha-olefin sodium sulfonate, long-chain alkyl amino acids, amine amines, alkylamines, quaternary Ammonium salts are exemplified, and these may be used alone or in combination of two or more as required.
  • Examples of the saturated fatty acid include force puric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and the like.
  • Examples of the unsaturated fatty acid include oleic acid, linoleic acid, linolenic acid, and the like.
  • Examples of the cyclic carboxylic acid include naphthenic acid having a carboxyl group at the end of a cyclopentane ring or cyclohexane ring, and examples of the resin acid include abietic acid, pimaric acid, and neoabetic acid.
  • Examples of the alcohol-based surfactant include sodium alkyl sulfate ester and alkyl ether sulfate ester sodium.
  • Examples of sorbitan fatty acid esters include sorbitan monolaurate and polyoxyethylene sorbitan monostearate.
  • Examples of amide-based surfactants include fatty acid alcohol amides, alkylamine oxides, and the like.
  • Examples of the reoxyalkylene alkyl ethers include polyoxyethylene alkyl ethers and polyoxyethylene lauryl ethers, and examples of the long-chain alkyl amino acids include lauryl betaine and stearyl betaine.
  • Examples of amine oxides include polyoxyethylene fatty acid amides and alkylamine oxides.
  • Examples of alkylamines include stearylamine acetate.
  • Examples of quaternary ammonium salts include stearyl-trimethylammonium.
  • Chloride is the fourth class Ammonium Sulhue.
  • Examples of the above-mentioned various acid salts include, but are not limited to, alkaline metal salts such as strength and sodium, specifically potassium laurate, potassium myristate, potassium palmitate, sodium palmitate, stearin. Saturated fatty acid salts such as potassium acid and sodium stearate, unsaturated fatty acid salts such as potassium oleate and sodium oleate, alicyclic carboxylates such as lead naphthenate and lead cyclohexylbutyrate, abietic acid strength Naryum is mentioned
  • esters of the various acids include, for example, force ethyl propylate, force vinyl acetate, diisopropyl adipate, ethyl propyl caprate, force aryl acrylate, ethyl caprate, vinyl caprate, and jetyl sebacate.
  • the above surfactants are used alone or in combination of two or more as necessary.
  • micropores surface-treated with each salt of saturated fatty acid, unsaturated fatty acid, alicyclic carboxylic acid and resin acid When the forming agent is blended in the resin, it preferably has good dispersibility without impairing the insulation and heat resistance of the resin, and more preferably a mixture of fatty acid metal salt.
  • the composition is 50 to 98% by weight of alkali metal salts of straight chain fatty acids having a C number of 16 or more such as palmitic acid, stearic acid, arachidic acid, behenic acid, strong puric acid, laurin
  • the Al-rich metal salt of a linear fatty acid having 10 to 14 carbon atoms such as acid or myristic acid is present in a proportion of 2 to 50% by weight.
  • an alkali metal salt of a linear fatty acid having 18 or more carbon atoms such as stearic acid or oleic acid, particularly a potassium salt is preferable.
  • lauric acid having a C number of 12 is preferred from the viewpoint of dispersibility.
  • the content of straight chain fatty acid having 16 or more carbon atoms in the composition of the alkali metal salt of straight chain fatty acid is less than 50% by weight, the reason is not clear compared to that of 50% by weight or more, but in the resin of organic particles. Dispersibility of the resin is slightly worse. If it exceeds 98% by weight, the voids (micropores) generated between the resin and the particles are too small compared to 98% by weight or less. There is a tendency and is not preferable.
  • the content of linear fatty acid having 10 to 14 carbon atoms in the fatty acid composition is less than 2% by weight, the effect of addition is insufficient as compared with that of 2% by weight or more, and on the contrary, it exceeds 50% by weight.
  • those having a content of 50% by weight or less are not preferred because the affinity with the resin is impaired, and problems such as whitening and bleeding to the resin surface after molding tend to occur.
  • the alkali metal salt of the above-mentioned linear fatty acid as the surfactant (A)
  • the amount of the surfactant (A) used varies depending on the specific surface area of the inorganic particles. In general, the larger the specific surface area, the larger the amount used.
  • the amount used is less than 0.1% by weight, it is difficult to obtain a sufficient dispersion effect. On the other hand, if it exceeds 15% by weight, bleeding to the surface of the porous film, a decrease in the strength of the porous film, etc. are likely to occur.
  • Examples of the compound (B) having a chelating ability with respect to an alkaline earth metal that can be used in the present invention include ethylenediamine tetraacetic acid, nitric acid triacetic acid, and hydroxyethylethylenediamine amine trioxide.
  • Aminocarboxylic acid-based chelating agents represented by acetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, phosphonic acid-based chelating agents such as hydroxyethylidene diphosphite, nitrilotrismethylene phosphonic acid,
  • a water treatment agent comprising an aluminum compound such as polyaluminum chloride, a polycarboxylic acid such as polyacrylic acid or cuenic acid or a salt thereof, a salt of a polyacrylic acid maleic acid-titaconic acid copolymer, or
  • phosphoric acid represented by polyphosphoric acid and condensed phosphoric acid and salts thereof.
  • polycarboxylic acid salts include sodium polyacrylate and ammonium polyacrylate.
  • copolymer salts include acrylic acid and maleic acid copolymer (polymerization ratio 100: 80, etc.) ammonium salt.
  • phosphoric acid salts such as ammonium salts of polymers (polymerization ratio 100: 80, etc.) include sodium hexametaphosphate, sodium polyphosphate, and sodium pyrophosphate.
  • the compound (B) having chelating ability with respect to the alkaline earth metal may be used alone or in combination of two or more as required.
  • the compound (B) having a chelating ability for these alkaline earth metals when high insulation properties such as a lithium secondary battery are required, polyphosphoric acid, condensed phosphoric acid, And a polyvalent carboxylic acid or a salt thereof is preferable, and among them, a condensed cyclic phosphoric acid or a metaphosphoric acid is preferable.
  • the amount of the compound (B) having a chelating ability with respect to the alkaline earth metal varies depending on the specific surface area of the inorganic particles, the resin used, the compounding conditions, etc. as described in the surfactant (A). Therefore, it is generally difficult to define, but usually 0.05 to 5% by weight or less is preferable with respect to the inorganic particles.
  • the amount used is less than 0.05% by weight, it is difficult to obtain a sufficient dispersion effect, and even when added in an amount exceeding 5% by weight, it is difficult to further improve the effect.
  • the surface treatment method in the surface treatment using the surfactant (A) and the compound (B) having a chelating ability with respect to an alkaline earth metal, for example, one / ⁇ one mixer is used.
  • a method called dry processing where a surface treatment agent is directly mixed with the powder using a mixer such as Yanchenshi Iru Mixer and heated as necessary, surface treatment is also possible.
  • Dissolving compound (B) which has chelating ability for earth metal, in water or hot water, adding it to the stirring water slurry of calcium carbonate, surface treatment, dehydration and drying
  • a combination of the two may be used, but the wet method alone is preferably used mainly from the viewpoint of the degree of treatment on the surface of calcium carbonate particles and the economical viewpoint.
  • the amount of heat loss that is, the amount of the surface treatment agent.
  • the amount of the surface treatment agent that can be contained in the exemplified micropore forming agent of the present invention is the specific surface area of inorganic particles, the type of surface treatment, the resin used, the compound Since it varies depending on the conditions, etc., it is not limited in general. However, it is usually preferable that the surface treatment agent ratio (As) is 1 to 4 mgZm 2 .
  • the method for measuring the surface treatment rate is shown below.
  • H x Amount of insoluble hydrochloric acid contained in 5 OO g of micropore forming agent
  • the formula (f) shows the amount of impurities in the micropore forming agent as the amount of hydrochloric acid insolubles.
  • the hydrochloric acid insoluble content (HX) is preferably 500 ppm or less, more preferably 30 O p pm or less, more preferably 150 p pm or less. If it exceeds 500 ppm, as described above, for example, in battery separator applications, it may cause a short circuit or fire.
  • the amount of insoluble hydrochloric acid contained in 500 g of the micropore forming agent was measured.
  • the measurement method for hydrochloric acid insoluble matter was based on the measurement method in the above formula (d).
  • F c Hydrochloric acid-insoluble free carbon content in 500 g of micropore-forming agent
  • the substance include (free) carbon. If the amount of carbon contained in the micropore-forming agent exceeds 30 ppm, there is a risk of short-circuiting. Therefore, it is more preferably 1 O p pm or less, and even more preferably 3 p pm or less.
  • the method for measuring the carbon content is shown below.
  • void filtration is performed in the same manner as the hydrochloric acid insoluble matter measurement in the above formula (d).
  • the dried glass fiber filter paper containing hydrochloric acid insolubles was subjected to free carbon measurement using a high-frequency induction heating furnace method (EMIA-320, manufactured by Horiba).
  • the mixture from the atmosphere is high, and in the manufacturing process of the micropore forming agent, measures are taken in the air suction process in the drying process to the packing operation. It is preferable. Specifically, removal by various filters can be generally used.
  • the filter diameter is Although not limited, it is usually possible to use a filter diameter of 0.1 to 100 mm. When the filter diameter is less than 0.1 m, the frequency of replacement increases due to clogging of the filter, so it is not practical, and when it exceeds 100 m, impurities in the atmosphere may easily pass through. Becomes higher. More preferably, it is 0.3 to 50 m.
  • the micropore forming agent for a porous resin film comprising the surface-treated inorganic particles obtained as described above is used for a porous resin film by being combined with an olefin resin among various resins, particularly thermoplastic resins.
  • the composition is suitable for the production of a porous film for various uses, particularly for a battery separator.
  • the resin used in the present invention is not particularly limited, and examples thereof include polyester, polycarbonate, polyethylene, polypropylene, ethylene-propylene copolymer, and copolymers of ethylene or propylene and other monomers. .
  • polyolefin resins such as polyethylene and polypropylene are preferred from the viewpoint of providing a shutdown mechanism as described above, handling during battery production, and cost.
  • a polyethylene resin is more preferable.
  • the blending ratio of the porous film filler and these resins is not particularly limited, and varies greatly depending on the type and application of the resin, the desired physical properties and cost, and may be appropriately determined according to them.
  • it is usually 60 to 150 parts by weight, preferably about 80 to 120 parts by weight, based on 100 parts by weight of the resin.
  • aramid fiber for the purpose of improving the heat resistance, weather resistance, and stability characteristics of the film within a range not inhibiting the efficacy of the micropore forming agent for the porous resin film of the present invention, aramid fiber, fatty acid, fatty acid amide, Lubricants such as ethylene bis-stearic acid amide and sorbitan fatty acid ester, plasticizers and stabilizers, antioxidants, etc. may be added, and additives generally used in resin compositions for films, such as lubricants, antioxidants, etc. Agent, heat stabilizer, light stabilizer, UV absorber, neutralizer, anti-fogging agent, anti-pro A capping agent, an antistatic agent, a slip agent, a coloring agent, etc. may be blended.
  • the micropore forming agent for a porous resin film of the present invention and the above-mentioned various additives are combined with a resin, it is usually heated and kneaded with a single or twin screw extruder, a kneader, a Banbury mixer, etc. After the sheet is prepared, the film is stretched uniaxially or biaxially to obtain a porous film product having fine pores.
  • a film is formed using a known molding machine such as T-die extrusion or inflation molding, and these are acid-treated to dissolve the pore-forming agent for the porous resin film of the present invention, thereby forming fine pores. It is good also as a porous film product which has.
  • resin There are two types of resin: pellets, and powder (skyew) adjusted to any particle size. Powder dispersion is used to disperse the particles. Henschel mixer, tumbler type mixer, re-pump It is preferable to mix using a known mixer such as a renderer.
  • the micropore forming agent for a porous resin film of the present invention shows good physical properties in terms of dispersibility in the resin, etc., compared with particles other than the present invention, even when used as a pellet-like resin. In addition, it is particularly good when mixed with a resin in the form of a resin.
  • a Henschel mixer in addition to Merits®, which can be mixed quickly, it adheres to the inner wall of the mixer and the mixing blade. There are few occurrences of altered resins and aggregates that induce adhesion inside the mixer, mixing workability, and less strain on the strainer in the kneading extruder in the subsequent process, etc. It has the characteristics.
  • the raw material charging method is also determined appropriately in consideration of the impact on the MI value of the resin itself in addition to the dispersion of particles in the resin. Is done.
  • the micropore-forming agent for a porous resin film of the present invention is blended with a resin, it is selected in consideration of the above, but a mixture mixed with a resin powder having an appropriate particle size range by a Henschel mixer or the like is biaxial.
  • a method of quantitatively charging the hopper of a kneader such as a kneader is preferable.
  • the pellets containing various additives such as the micropore forming agent for the porous resin film of the present invention, which is once called a master batch. And then melted and formed into a film together with an additive-free resin.
  • a plurality of T-die extruders in the above process may be stacked or a multilayer film may be introduced by introducing a process of stretching during stretching, and the purpose of imparting printability to the above film It is also possible to coat the ink receiving layer by subjecting the film surface to a surface treatment such as plasma discharge.
  • % means “% by weight” unless otherwise specified.
  • the raw stone ash obtained by baking gray dense limestone with kerosene as a heat source in a fluidized tank kiln was dissolved into slaked lime slurry, and reacted with carbon dioxide to synthesize calcium carbonate. After removing foreign substances and coarse particles from the calcium carbonate water slurry with a sieve (400 mesh), the calcium carbonate slurry is subjected to particle growth by aging. A water slurry containing 10% 2 Zg calcium carbonate was obtained.
  • the surfactant (A) and chelate compound (B) shown below were surface-treated using 3.5% and 1.2% of the calcium carbonate solid content, respectively, and surface-treated calcium carbonate A slurry was obtained.
  • Example 1 When synthesizing calcium carbonate by reacting slaked lime slurry with carbon dioxide, add 1.0% of citrate, a particle growth inhibitor, to calcium hydroxide, and surfactant (A) and chelating agent Except for changing the addition amount of (B) to 10% and 1.5%, respectively, the same operation as in Example 1 was carried out to obtain a calcium carbonate slurry having a BET specific surface area of 35 m 2 Zg. A powder was obtained. Table 1 shows various physical properties of the obtained surface-treated calcium carbonate powder.
  • the surface-treated calcium carbonate powder was processed in the same manner as in Example 1 except that the addition amounts of the surfactant (A) and the chelating agent (B) were changed to 6.0% and 1.5%, respectively. Got. Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • Example 1 Except not performing an air classification process, it operated similarly to Example 1 and obtained the surface treatment calcium carbonate powder. Table 1 shows various physical properties of the obtained surface-treated calcium carbonate powder.
  • Example 1 Surface treatment was carried out in the same manner as in Example 1 except that surfactant (B) was not added and the dust collection filter was changed from H EPA to a 10 m simple filter (repair efficiency 90-92%). A calcium carbonate powder was obtained. Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • Example 1 Except for the process where chelating agent (B) is changed to ammonium polyacrylate and no dust collection filter (HEPA) is used, the same operation as in Example 1 is performed. A surface-treated calcium carbonate powder was obtained. Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • the surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the foreign matter and coarse particle removal step by the sieve and the air classification step were not performed.
  • Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the foreign matter and coarse particle removal step, air classification step, and dust collection filter (H E P A) step were not performed using a sieve.
  • Table 1 shows various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the heat source was changed to a shuffling kiln using coke instead of kerosene.
  • Table 1 shows various physical properties of the obtained surface-treated calcium carbonate powder.
  • the heat source was changed to a shaft-type kiln using coke, and the same procedure as in Example 1 was performed except that the foreign matter and coarse particle removal step and the air classification step were not carried out using a sieve to obtain a surface-treated calcium carbonate powder. It was. Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the surfactant (A) was not added.
  • Table 2 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • the raw stone ash obtained by baking gray dense limestone with kerosene as a heat source in a fluidized tank kiln was dissolved into a slaked lime slurry, which was reacted with a phosphoric acid aqueous solution to synthesize calcium phosphate (hydroxyapatite). .
  • the calcium phosphate water slurry is sieved After removing foreign substances and coarse particles, hydrothermal reaction is performed in an autoclave for the purpose of growing the particles of the calcium phosphate slurry, and water containing 10% calcium phosphate having a BET specific surface area of 58 m 2 Z g. A slurry was obtained.
  • Example 2 Thereafter, after dehydration, drying and crushing, the same procedure as in Example 1 was performed, except that the treatment amounts of the surfactant (A) and the chelate compound (B) were 15% and 2%. A surface-treated calcium phosphate powder was obtained. Table 2 shows the physical properties of the surface-treated calcium phosphate powder.
  • the raw calcium ash obtained by baking gray dense limestone with kerosene as a heat source in a fluidized tank kiln was dissolved into a slaked lime slurry and reacted with an aqueous sodium hydroxide solution to synthesize magnesium hydroxide.
  • hydrothermal reaction is performed in an autoclave for the purpose of growing the particles of the magnesium hydroxide slurry, and a BET specific surface area of 15 m 2 An aqueous slurry containing 10% of Z g of magnesium hydroxide was obtained.
  • Example 2 Thereafter, after dehydration, washing with water, drying, and crushing, the same treatment as in Example 1 was conducted except that the treatment amounts of the surfactant (A) and the Kiry ⁇ compound (B) were 4% and 1.2%.
  • Surface treated magnesium hydroxide powder was obtained by the method. Table 2 shows the physical properties of the obtained surface-treated magnesium hydroxide powder.
  • Example 2 shows various physical properties of the obtained surface-treated calcium carbonate powder.
  • Polyethylene resin Hi-Z Million 340M manufactured by Mitsui Chemicals, Inc.
  • poly A mixed polyethylene resin prepared by mixing ethylene wax (High Wax 110 P manufactured by Mitsui Chemicals, Inc.) at a ratio of 7: 3 was prepared, and the micropore forming agent obtained in Examples 1 to 13 and Comparative Examples 1 to 6 And a mixed resin volume ratio of 3: 7 were charged into a Henschel mixer and mixed for 5 minutes to obtain a composition for a porous resin film of a micropore forming agent and a resin.
  • composition obtained was melt-kneaded and film-formed with a twin-screw kneader 2 D25W manufactured by Toyo Seiki Co., Ltd. equipped with a T-die to obtain a film with a film thickness of 80 m.
  • a porous resin film having a thickness of 20 m was obtained by stretching about 5 times in the length direction under temperature.
  • the obtained porous resin film was evaluated for the following 1) to 5). The results are shown in Tables 3 and 4.
  • the permeability of ions was evaluated by measuring the conductivity of Li ions moving through the solution.
  • the measurement method is as follows.
  • the porous film obtained in the present invention (preliminarily cut into a 47 mm diameter) is sandwiched between the filter holder used in the filtration test etc. and the 250 ml funnel instead of the filter paper filter.
  • After fixing with a clamp insert ethylene carbonate ⁇ , ethylmethyl carbonate ⁇ , and dimethyl carbonate into a 1 L suction bottle filled with a mixed solution of 30:35:35 by volume, and then add another mixed solution to the electrolyte.
  • 200 ml of electrolytic solution in which Li PF 6 was dissolved to 1 mol ZL was poured into the panel, and 30 minutes later, the electrical conductivity of the electrolytic solution in the suction bottle was measured.
  • Tables 3 and 4 The larger the electrical conductivity, the better the ion permeability.
  • the average pore radius (m) was measured with a porosimeter by a mercury intrusion method (Type 9520 manufactured by Shimadzu Corporation) in accordance with JISK 115.
  • the average pore radius is preferably less than 0.1 m from the viewpoint of electrolyte holding.
  • the Gurley value of the porous film was measured with a B-type DENSO (manufactured by Toyo Seiki Co., Ltd.). The results are shown in Tables 3 and 4.
  • the Gurley air permeability is generally proportional to the pore diameter of the porous film, but if there is a problem on the separator surface, the Gurley value is high, and if pinholes are generated, the Gurley value is low. The state of the porous film can be grasped. Therefore, the range of the Gurley value is usually 50 to 500 (seconds 00 m l), and preferably 100 to 300 (seconds 00 m I). If it is outside the above range, there may be some problem.
  • a mixture of a positive electrode active material (L i Mn 2 0 4 ) and a conductive agent (acetylene black) is used as the positive electrode, and a metal L i thickly attached to a Ni mesh is used as the negative electrode.
  • the porous film produced by the comparative example was pinched
  • the electrolyte using L i CI 0 4 electrolyte (PC / DMC organic solvent), the condition of constant current charge and discharge, 0. 9mA, 3. 5 ⁇ 4. Performed between 3V, the number of measurement cycles 1000.
  • Tables 5 to 8 show the charge and discharge capacities for 1 and 1000 measurement cycles. The capacity reduction of the cycle is lower, that is, the capacity maintenance ratio of the 100th cycle with respect to the first cycle's capacity “(10: 00th cycle capacity Z 1st cycle capacity) X 1 A battery separator having a larger value of “0 0 (%)” was a good battery separator.
  • the charge / discharge cycle characteristics are ranked as follows, and are shown in Tables 5 to 8.
  • the fine pore-forming agent for a porous film of the present invention is such that the inorganic particles constituting it have almost no coarse particles, so that the strength of the porous resin film is hardly deteriorated.
  • the distribution width of the diameter is uniform, the gap diameter can be controlled, and the conductive impurities are extremely small. Therefore, it is possible to provide a resin composition which is blended with a resin to give a porous resin film suitable for use in electric members such as capacitors and battery separators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 無機粒子からなり、(a)0.1 ≦ D50 ≦ 1.5(μm)(D50:マイクロトラックFRAにおける大きな粒子側から起算した重量累計50%平均粒子径)、(b)Da ≦ 20(μm)(Da:マイクロトラックFRAにおける最大粒子径)、(c)3 ≦ Sw ≦ 60(m2 /g )(Sw:窒素吸着法によるBET比表面積)、(d)Ir ≧ 1.0×105 (Ω・cm)(Ir:塩酸不溶分の体積抵抗率)を満足する多孔質樹脂フィルム用微孔形成剤を提供する。  本発明の多孔質樹脂フィルム用微孔形成剤は、コンデンサーや電池セパレータ等の電気的用途に好適な多孔質樹脂フィルムを与える樹脂組成物を提供することができる。

Description

明 細 書
多孔質樹脂フィル厶用微孔形成剤及び、 これを配合してなる多孔質 樹脂フイルム用組成物
技術分野
[0001 ] 本発明は、 多孔質樹脂フィルム用微孔形成剤及び、 これを配合してなる多 孔質樹脂フィルム用組成物に関し、 さらに詳しくは、 本発明の多孔質フィル ム用微孔形成剤を構成する無機粒子は、 粗大粒子を殆ど有さないことから、 多孔質樹脂フィルムの強度劣化が起こりにくく、 多孔質フィルムの空隙径の 分布幅が均一で且つ空隙径を制御することができ、 さらには導電性を有する 不純物が極めて少ないことから、 例えばコンデンサーゃ電池セパレータ等の 電気部材用途に好適な多孔質樹脂フィルムを与える微孔形成剤及び、 該微孔 形成剤を配合してなる多孔質樹脂フィルム用組成物に関するものである。 背景技術
[0002] 合成樹脂からなる多孔質樹脂フィルムは、 浄水器や空気清浄機等の濾材、 合成紙、 衛生材料、 医療用材料、 建築用材料、 農業用透気性シート、 各種電 池のセパレータ等、 電解コンデンサー用のセパレータ等の材料として使用さ れており、 いずれの用途においても強度を保持した薄膜化など、 更なる改良 と発展が求められている。
特に近年、 携帯電話やノートパソコン等のモパイル機器に使用されている リチウム二次電池は、 ニッケル水素二次電池等に比べ、 容積や重量に対して 高エネルギー密度を有していることから、 1990年代初頭に実用化されて以来 、 高い生産量と使用量の伸び率を示している。
そして、 各種モパイル機器の更なる性能向上に伴い、 それらの主電源たる リチウム二次電池にも更なる性能向上が求められ、 正負の両電極と同様、 多 孔質樹脂フィルムからなるセパレータの要求物性も高容量化、 耐久性、 安全 性など様々な物性が求められている。
[0003] 電池セパレータは、 その本来の目的である両極の電気絶縁性に加えて、 ィ オンが透過しやすいほど内部抵抗が低下し電池としての性能が向上する点か ら、 より薄く、 高空孔率で、 高通気性を有することが望まれる。
しかし、 セパレータの機能である絶縁性と内部抵抗の低減は相反するもの であり、 単純に薄くすれば良いというものでもなく、 更に寸法安定性、 電解 液に対する濡れ性、 保持性、 耐腐食性が良好で、 化学的、 電気絶縁性的に安 定であることや、 突き刺し強度などの機械特性に優れ、 捲回時の作業性、 コ ス卜等にも考慮する必要がある。
加えて、 リチウム二次電池用セパレータには、 その安全性確保の観点から 、 誤接続等により異常電流が発生すると電池内の温度が上昇し、 樹脂が溶融 して孔を塞いで電池反応を停止させるシャツ卜ダウン機能も重要な項目であ る。
以上の要求に対して、 選択可能な樹脂やフィルムの膜厚等は、 用途毎に制 限されているのが実情である。
これまで、 リチウム二次電池用セパレータとして、 おむつやベッドカバー 等の衛生用品や手袋等の衣料の素材として使用されている多孔質フィルムが 使用されている。
しかし、 要請される要求に、 より適した多孔質フィルムの研究開発が進め られており、 例えば平均粒径 0. 01〜 10 mの樹脂粒子と β核剤をポリプロピ レンに配合してポリプロピレン組成物をフィルムに加工し、 これをロール延 伸して多孔質フィルムを得る方法が提案されている (例えば、 特許文献 1参 照) 。
更に、 電池の内部抵抗について多孔質フィルムの延伸ムラや空孔の大きさ やバラツキに着目し、 溶融粘度が高く、 且つ、 溶融伸びの低い樹脂を熱可塑 性樹脂に充填剤を添加し、 溶融混練、 延伸をすることで、 均質性の高い多孔 質フィルムを得る方法が提案されている (例えば、 特許文献 2参照) 。 特許文献 1 :特開平 9 _ 1 7 6 3 5 2号公報
特許文献 2:特開 2 0 0 2 _ 2 6 4 2 0 8号公報
発明の開示 発明が解決しょうとする課題
[0005] しかし、 従来の製造法による多孔質樹脂フィルムでは、 ますます進展する 大容量,高出力化のみならず、 今後、 期待される大型電池や自動車用バッテ リー用途には不十分で、 更なる改良が求められている。
例えば、 先に挙げた特許文献 1の方法では、 得られた多孔質フィルムをセ パレータとして使用したリチウム電池は、 理由は定かでないが電池の内部抵 杭が高くなリ、 正■負両極の改良によって得られた出力が浪費されてしまい 、 セパレータフイルムとして満足できるものではない。
[0006] また、 特許文献 2の方法で多孔質フィルムを製造すると、 有機粒子を使用 すれば、 フィルムからの脱落が生じやすく、 当初設計した空孔径、 空隙率を 保持する事が難しく、 電池セパレータに用いた場合、 短絡を起こし過放電を 起こすため好ましくない。 また、 微孔形成剤として無機粒子を添加する場合 、 例えば天然鉱物系は粒度分布が総体的にブロードであり、 一定以上の微細 粒度を有する物性を得るには、 新たな粉砕■分級技術が確率するまで待たね ばならない。 また、 化学合成系においても、 一定以上の微細粒度を有する粉 体を得ることはできても、 粒度の分散安定性の面で課題が残されていたり、 純度においても導電性を有する不純物が含有されている場合が多く、 充電し た電池の放電を招いたり、 過放電による短絡を引き起こす危険性がある等、 多くの課題が残されている。
[0007] 微孔を有するフィルムを作製する現在の方法を大別すると、 無機粒子を配 合し 1軸ないし 2軸に延伸して粒子と樹脂間に微孔 (空隙) を生成させる方 法、 酸,アルカリ等によって粒子自体を溶解する方法、 熱可塑性樹脂脂に、 後工程で容易に抽出可能なワックス系の添加剤を加えて成形を行い、 エーテ ルなどの溶媒で除去するという方法等がある。 いずれの方法においてもフィ ルム中に形成される空隙ないし空孔の大きさにバラツキが少なく、 且つ、 空 隙のフィルム面内における分布が一様な多孔質フィルムとする必要がある。 このためには、 フィルム用樹脂組成物中での微孔形成剤は、 粒子の分散性 や粗大粒子のないシャープな粒度分布が必要で、 且つ導電性を有する不純物 が少ないものが求められる。
課題を解決するための手段
[0008] 本発明者らは、 上記課題の解決のため鋭意検討した結果、 特定の方法で調 整したした無機粒子は、 粗大粒子や、 導電性を有する不純物が極めて少なく 、 更に該多孔質フィルム用添剤を配合した多孔質フィルム用樹脂組成物が、 例えば 1軸ないし 2軸に延伸したフィルムに使用された場合に良好な微孔を 生成し、 例えばリチウム 2次電池のセパレータとして使用された場合に良好 なフィルム特性が得られる等、 上記課題が解決されることを見い出し本発明 の完成に至った。
[0009] 即ち、 本発明の請求項 1は、 無機粒子からなり、 下記の式 (a) 〜 (d) を満足することを特徴とする多孔質樹脂フィルム用微孔形成剤を内容とする
(a) 0. 1 ≤ D 50 ≤ 1. 5 ( m)
(b) Da ≤ 20 ( m)
(c) 3 ≤ S w ≤ 60 (m2 /g )
(d) I r ≥ 1. 0 X 1 O5 (Ω ■ cm)
但し、
D50 : レーザー回折式 (マイクロトラック FR A) における粒度分布に おいて、 大きな粒子側から起算した重量累計 50%平均粒子径 ( m)
Da : レーザー回折式 (マイクロトラック FRA) における粒度分布に おいて、 最大粒子径 ( m)
Sw :窒素吸着法による BET比表面積 (m2Zg)
I r :塩酸不溶分の体積抵抗率 (Ω ■ cm)
[0010] 本発明の請求項 2は、 無機粒子が、 炭酸カルシウム、 リン酸カルシウム、 水酸化マグネシウム、 硫酸バリウムから選ばれることを特徴とする請求項 1 記載の多孔質樹脂フィルム用微孔形成剤を内容とする。
[0011] 本発明の請求項 3は、 無機粒子が、 炭酸カルシウムであることを特徴とす る請求項 1記載の多孔質樹脂フィルム用微孔形成剤を内容とする。 [0012] 本発明の請求項 4は、 無機粒子が、 界面活性剤 (A) とアルカリ土類金属 に対してキレート能を有する化合物 (B) とで表面処理されていることを特 徴とする請求項 1〜 3のいずれか 1項に記載の多孔質フィルム用微孔形成剤 を内容とする。
[0013] 本発明の請求項 5は、 下記の式 (e) を満足することを特徴とする請求項
1〜 4のいずれか 1項に記載の多孔質樹脂フィルム用微孔形成剤を内容とす る。
( e ) 1 ≤ As ≤ 4 (mgZm2)
但し、
As :次式により算出される単位比表面積当たりの熱減量
〔 ( 200°C〜 500°Cの表面処理された無機粒子 1 g当たリの熱減量 (m gZg) 〕 ZSw (m2Zg)
[0014] 本発明の請求項 6は、 下記の式 (f ) を満足することを特徴とする請求項
1〜 5のいずれか 1項に記載の多孔質樹脂フィルム用微孔形成剤を内容とす る。
( f ) H X ≤ 500 (p pm)
但し、
H x :微孔形成剤 5 OO g中に含有する塩酸不溶分量
[0015] 本発明の請求項 7は、 下記の式 (g) を満足することを特徴とする請求項
1〜 6のいずれか 1項に記載の多孔質樹脂フィルム用微孔形成剤を内容とす る。
( ) F c ^ 50 p p m)
但し、
F c :微孔形成剤 500 g中に含有する塩酸不溶性のフリーカーボン量
[0016] 本発明の請求項 8は、 請求項 1〜 7のいずれか 1項の微孔形成剤を多孔質 フィルム用樹脂に配合してなることを特徴とする多孔質樹脂フィルム用組成 物を内容とする。
[0017] 本発明の請求項 9は、 多孔質フィルム用樹脂が、 ォレフィン系樹脂である ことを特徴とする請求項 8記載の多孔質樹脂フィルム用組成物を内容とする
[0018] 本発明の請求項 1 0は、 電池セパレータ用であることを特徴する請求項 8 又は 9記載の多孔質樹脂フィルム用組成物を内容とする。
発明の効果
[0019] 本発明の多孔質フィルム用微孔形成剤を構成する無機粒子は、 粗大粒子を 殆ど有さないことから、 多孔質樹脂フィルムの強度劣化が起こりにくく、 多 孔質フィルムの空隙径の分布幅が均一で且つ空隙径を制御することができ、 さらには導電性を有する不純物が極めて少ないことから、 フィルム用樹脂に 配合された場合に、 例えばコンデンサーや電池セパレータ等の電気部材用途 に有用な多孔質樹脂フィルムを提供することができる。
発明を実施するための最良の形態
[0020] 以下、 本発明を詳細に説明する。
式 (a) 、 (b) は、 本発明の多孔質樹脂フィルム用微孔形成剤 (以下、 単に微孔形成剤と記す場合がある。 ) の分散状態を知る指標になるものであ る。
式 (a) は、 マイクロトラック FR Aで測定した平均粒径 (D50) で、 0. 1〜1. 5 mであることが必要である。 平均粒子径 (D50) を、 0 . 1 m未満にすることは技術上可能であるが、 コストの点で好ましくなく 、 また、 1. 5 mを超えると、 1次粒子の凝集体で構成する 2次粒子の凝 集力が強く、 樹脂中でも 2次粒子のままで存在するためため本発明の目的用 途に使用することはできない。 特に多孔質樹脂フィルム用途の中でも、 電池 セパレータ用は、 電池としての性能向上から、 薄膜化、 高空孔率、 高通気性 が求められているが、 絶縁性や、 突き刺し強度などの機械特性から、 より 1 次粒子に近い分散であることが必要であるため、 好ましくは 0. 1〜1. 0 m、 さらに好ましくは 0. 1〜0. 7 mである。
[0021] 式 (b) は、 マイクロトラック FRAで測定した時の最大粒径 (D a) で 、 20 m以下であることが必要である。 最大粒径 (D a) が、 20 mを 超えると、 目的以上の大きな空孔が形成される等の点で支障をきたすため本 発明の目的用途に使用することはできない。 特に多孔質樹脂フィルムの用途 の中でも、 電池セパレータ用は、 大きな空孔が存在すると、 短絡が起こり過 放電が起こりやすく危険を伴うため、 より好ましくは 1 5 m以下、 さらに 好ましくは 7 m以下である。
なお、 粒度分布の測定方法は、 下記に示す通りである。
ぐ測定方法 >
マイクロトラック FRA (レーザー回折式粒度分布計) での測定に用いる 媒体としてメタノールを用いる。 測定する前に、 本発明の微孔形成剤の懸濁 化を一定にするため、 前処理として超音波分散機 ( (株) 日本精機製作所製 U S-300T ) を使用し、 300 Aで 60秒間の一定条件で予備分散した。
[0022] 式 (c) は、 本発明の微孔形成剤の窒素吸着法による BET比表面積 (S w) であり、 3〜6 Om2Zgが必要である。 比表面積 (Sw) が 3m2Zg 未満の場合、 一次粒子が大き過ぎ、 電池セパレータフイルムに配合されたと き、 目的以上の大きな空孔を形成してしまい、 また、 60m2Zgを越えると 、 分散性の点で好ましくなく本発明の目的用途に使用することができない。 従って、 好ましくは 5〜3 Om2Zg、 より好ましくは 7〜2 Om2Zgであ る。 なお、 本発明の BET比表面積測定には、 ュアサアイォニクス社製 NO V A 2000型を使用した。
[0023] 式 (d) は、 本発明の微孔形成剤の塩酸不溶分における絶縁性を数値化し た体積抵抗率 ( I r) であり、 微孔形成剤の塩酸不溶分の体積抵抗率 ( I r ) が、 1. OX 1 05 (Ω ■ cm) 以上であることが必要である。 微孔形成剤 の塩酸不溶分の体積抵抗率が 1. OX 1 05 (Ω - cm) 未満の場合、 特に多 孔質樹脂フィルム用途の中でも、 電池セパレータ用は、 内部放電の原因にな るため、 本発明の目的用途に使用することができない。 従って好ましくは 1 . 0 X 1 06 (Ω ■ cm) 以上、 より好ましくは 1. 0 X 1 07 (Ω ■ cm) 以上である。
なお、 本発明の体積抵抗率の測定方法は、 下記に示す。 ぐ測定方法 >
微孔形成剤中に含有する塩酸不溶分を体積分率約 6 5 %になるよう密度調 整して得たセル (錠剤) を、 ハイレジスタンスメーター (Agi l ent Techno log i es社製 4 3 3 9 B) にて、 電圧 5 Vでの体積抵抗率を測定した。
なお、 塩酸不溶分の採取は、 微孔形成剤を適量のメタノール (試薬特級) でなじませた後、 3 7 %塩酸 (試薬特級) を添加し微孔形成剤を溶解させる 。 その溶液を、 ポアサイズ 1 0 mのォムニポアメンブレン (M I L L I P O R E社製) で濾過する。 微孔形成剤が表面処理剤で表面処理されている場 合は、 濾過後、 フィルター上に表面処理剤が残るためエーテルやメタノール で十分に洗浄する必要がある。 その後、 乾燥、 秤量させ、 塩酸不溶分を採取 した。
[0024] 本発明の微孔形成剤としては、 炭酸カルシウム、 硫酸バリウム、 水酸化マ グネシゥム、 リン酸カルシウム、 タルサイト化合物、 塩基性炭酸マグネシゥ ム、 シリカ、 酸化チタン、 水酸化アルミ、 ベーマイ卜、 アルミナ、 タルク、 クレー等が挙げられる。 特に電池セパレータに用いる場合、 絶縁性の観点か ら炭酸カルシウムやリン酸カルシウム、 水酸化マグネシウム、 硫酸バリウム 等の 2価金属系化合物が好適であり、 前記したように化学合成品が、 無機粒 子の粒度や純度の面で好ましい。 好ましい 2価金属系化合物の製造方法を下 記に示す。
[0025] 炭酸カルシウムの合成方法は、 炭酸ガス化合法が一般的で、 石灰石を焼成 して得た生石灰に水を加えて得た石灰乳と、 焼成時に出る炭酸ガスとを反応 させて得られる方法であり、 得られる粒子が微細で一次粒子の粒径■形状も 均一である。 また反応時の条件や反応後の工程によって粒度調整、 粗大粒子 除去も可能であり、 得られる粒子の物性に対する経済性や環境への負荷の点 でも優れておリ、 電池セパレータ用に用いるには好適である。
なお、 本発明の如く電池セパレータ用途に用いる場合、 原料である石灰石 は不純物に留意して選択することが好ましく、 焼成時の燃料は一般にコーク スゃ重油、 軽油、 灯油等が使用されているが、 コスト的に許される限り、 塩 酸不溶分や導電性の異物低減の観点から燃料は軽油や灯油で行うことがよリ 好ましい。
[0026] また、 石灰乳や反応で得られた炭酸カルシウム粒子は、 それが水スラリー 形態の時点で不純物および粗大粒子除去の目的から、 デカンテーシヨンとい つた重力や遠心力、 浮力選鉱等を利用した分級、 ならびに篩,フィルタ一等 での除去を施すことが好ましい。
さらに、 乾燥■解砕後に得られた炭酸カルシウムまたは表面処理炭酸カル シゥム粉体に対しても、 空気分級等の分級操作を行い、 乾燥によって生じた 凝集体を除去することが好ましい。
なお、 空気分級をはじめ、 乾燥工程で使用する空気や工程中での空気輸送 などにおいて、 大気中のホコリや塵 (カーボンや微細金属) も、 絶縁性無機 粒子を目的とした場合には、 影響を与える要因となるため、 各種フィルター 等の対策を施すことは効果的である。
[0027] リン酸カルシウムの合成方法は、 石灰乳とリン酸との反応が微細粒子作製 の面で好適である。 また粒度調整は、 オートクレープを用いた水熱熟成によ リ調整可能である。 それ以降の工程は、 前記した炭酸カルシウムと同様の方 法で乾粉化することができる。 また石灰乳の調整やそれ以降の不純物対策も 、 前記した炭酸カルシウムと同様の対策を行うことが好ましい。
[0028] 水酸化マグネシウムの合成方法は、 石灰乳や苛性ソーダと、 海水の苦汁と の反応が微細粒子作製の面で好適である。 また粒度調整は、 前記したリン酸 カルシウムと同様、 ォートクレーブを用いた水熱熟成によリ調整が可能であ る。 水酸化マグネシウム水スラーに含有した塩化カルシウム等の副塩を水洗 した後、 前記した方法で乾粉化及び不純物対策を行うことが好ましい。 硫酸バリウムの合成方法は、 重結晶を焼成して得た硫化バリウムと、 ボウ 硝水溶液とを反応させて得る方法が、 微細粒子作製の面で好適である。 反応 後以降は、 水酸化マグネシウムと同様、 水熱熟成、 硫化ナトリウム副塩の水 洗後、 前記した方法で乾粉化及び不純物対策を行うことが好ましい。
例示した二価金属系化合物中で、 特に炭酸カルシウムは、 乾粉化までのェ 程が安全かつ簡便で、 安価に製造することができ、 酸溶解性も高いことから 樹脂フィルムへの影響も少なく、 最も好ましい微孔形成剤である。
[0029] 本発明の更に好ましい態様として、 微孔形成剤の分散性だけでなく、 樹脂 との相溶性や分散性を付与する目的で、 各種表面処理剤を処理することは有 用である。 表面処理剤や処理方法に関しては特に限定することなく一般的な 処理剤を常法の方法で適宜処理することができる。 例えば樹脂との分散性や 樹脂フィルム中での凝集物が発生し難い処理方法として、 特開平 2000—31382 4号公報に記載の如く、 界面活性剤 (A ) と、 アルカリ土類金属に対してキレ 一ト能を有する化合物 (B ) とを併用する方法等が挙げられる。
[0030] 本発明に用いることができる界面活性剤 (A) としては、 飽和脂肪酸、 不 飽和脂肪酸、 脂環族カルボン酸、 樹脂酸やそれらの塩、 エステルや、 アルコ ール系界面活性剤、 ソルビタン脂肪酸エステル類、 アミド系ゃァミン系界面 活性剤、 ポリオキシアルキレンアルキルエーテル類、 ポリオキシエチレンノ ニルフエニルエーテル、 アルファオレフインスルフォン酸ナトリウム、 長鎖 アルキルアミノ酸、 ァミンオキサイド、 アルキルァミン、 第四級アンモニゥ ム塩等が例示され、 これらは単独で又は必要に応じ 2種以上組み合わせて用 いられる。
[0031 ] 飽和脂肪酸としては、 力プリン酸、 ラウリン酸、 ミリスチン酸、 パルミチ ン酸、 ステアリン酸等が挙げられ、 不飽和脂肪酸としては、 ォレイン酸、 リ ノール酸、 リノレン酸等が挙げられ、 脂環族カルボン酸としては、 シクロべ ンタン環ゃシクロへキサン環の末端にカルボキシル基を持つナフテン酸等が 挙げられ、 樹脂酸としてアビェチン酸、 ピマル酸、 ネオアビェチン酸等が挙 げられる。
[0032] アルコール系界面活性剤としては、 アルキル硫酸エステルナトリウム、 ァ ルキルエーテル硫酸エステルナ卜リゥム等が挙げられ、 ソルビタン脂肪酸ェ ステル類としては、 ソルビタンモノラウレー卜やポリオキシエチレンソルビ タンモノステアレート等が挙げられ、 アミド系ゃァミン系界面活性剤として は、 脂肪酸アル力ノールアミド、 アルキルアミンォキシド等が挙げられ、 ポ リオキシアルキレンアルキルエーテル類としては、 ポリオキシエチレンアル キルエーテル、 ポリオキシエチレンラウリルエーテル等が挙げられ、 長鎖ァ ルキルアミノ酸としては、 ラウリルべタイン、 ステアリルべタイン等が挙げ られる。
[0033] アミンォキサイドとしては、 ポリオキシエチレン脂肪酸アミド、 アルキル ァミンオキサイド等が挙げられ、 アルキルァミンとしては、 ステアリルアミ ンアセテート等が挙げられ、 第四級アンモニゥム塩としては、 ステアリル卜 リメチルアンモニゥムクロライドゃ第四級アンモニゥムサルフエ一卜等が挙 げられる。
[0034] 上記の各種酸の塩としては、 例えば、 力リゥム、 ナトリゥム等のアル力リ 金属塩が挙げられ、 具体的にはラウリン酸カリウム、 ミリスチン酸カリウム 、 パルミチン酸カリウム、 パルミチン酸ナトリウム、 ステアリン酸カリウム 、 ステアリン酸ナトリウム等の飽和脂肪酸塩、 ォレイン酸カリウム、 ォレイ ン酸ナトリウム等の不飽和脂肪酸塩、 ナフテン酸鉛、 シクロへキシル酪酸鉛 等の脂環族カルボン酸塩、 ァビエチン酸力リゥムゃナ卜リゥムが挙げられる
[0035] また、 上記の各種酸のエステルとしては、 例えば、 力プロン酸ェチル、 力 プロン酸ビニル、 アジピン酸ジイソプロピル、 カプリル酸ェチル、 力プリン 酸ァリル、 カプリン酸ェチル、 カプリン酸ビニル、 セバシン酸ジェチル、 セ バシン酸ジイソプロピル、 イソオクタン酸セチル、 ジメチルオクタン酸ォク チルドデシル、 ラウリン酸メチル、 ラウリン酸プチル、 ラウリン酸ラウリル 、 ミリスチン酸メチル、 ミリスチン酸イソプロピル、 ミリスチン酸セチル、 ミリスチン酸ミリスチル、 ミリスチン酸イソセチル、 ミリスチン酸ォクチル ドデシル、 ミリスチン酸イソトリデシル、 パルミチン酸メチル、 パルミチン 酸イソプロピル、 パルミチン酸ォクチル、 パルミチン酸セチル、 パルミチン 酸イソステアリル、 ステアリン酸メチル、 ステアリン酸プチル、 ステアリン 酸ォクチル、 ステアリン酸ステアリル、 ステアリン酸コレステリル、 イソス テアリン酸イソセチル、 ベへニン酸メチル、 ベへニン酸べへニル等の飽和脂 肪酸エステル、 ォレイン酸メチル、 リノール酸ェチル、 リノール酸イソプロ ピル、 オリーブォレイン酸ェチル、 エル力酸メチル等の不飽和脂肪酸エステ ルが挙げられ、 他に長鎖脂肪酸高級アルコールエステル、 ネオペンチルポリ オール(長鎖,中鎖を含む) 脂肪酸系エステルおよび部分エステル化合物、 ジペンタエリスリトール長鎖脂肪酸エステル、 コンプレックス中鎖脂肪酸ェ ステル、 12- ステアロイルステアリン酸イソセチル、 12- ステアロイルステ アリン酸イソステアリル、 12-ステアロイルステアリン酸ステアリル、 牛脂 脂肪酸ォクチルエステル、 多価アルコール脂肪酸アルキルグリセリルエーテ ルの脂肪酸エステル等の耐熱性特殊脂肪酸エステル、 安息香酸エステル系に 代表される芳香族エステルが挙げられる。
上記界面活性剤は単独で又は必要に応じ 2種以上組み合わせて用いられる 上述の界面活性剤の中でも飽和脂肪酸、 不飽和脂肪酸、 脂環族カルボン酸 、 樹脂酸の各塩で表面処理された微孔形成剤は、 樹脂に配合された際に樹脂 の絶縁性や耐熱性等を阻害することなく分散性も良好で好ましく、 とりわけ 脂肪酸のアル力リ金属塩の混合物が更に好ましい。
飽和脂肪酸のアルカリ金属塩については、 その組成がパルミチン酸、 ステ アリン酸、 ァラキジン酸、 ベヘン酸等の C数 16以上の直鎖脂肪酸のアルカリ 金属塩が 50〜98重量%、 力プリン酸、 ラウリン酸、 ミリスチン酸等の C数 10 〜14の直鎖脂肪酸のアル力リ金属塩が 2〜50重量%の割合で存在することが 好ましい。 C数 16以上の直鎖脂肪酸のアルカリ金属塩については、 ステアリ ン酸、 ォレイン酸等の C数 18以上の直鎖脂肪酸のアルカリ金属塩、 特にカリ ゥム塩が好ましい。 C数 10〜14の直鎖脂肪酸のアル力リ金属塩については、 分散性の点で C数 12のラウリン酸が好ましい。
直鎖脂肪酸のアルカリ金属塩の組成中の C数 16以上の直鎖脂肪酸の含有量 が 50重量%未満では、 50重量%以上のものに比べて、 理由は定かでないが無 機粒子の樹脂中での分散性が若干悪くなリ、 98重量%を越えると、 98重量% 以下のものに比べて、 樹脂と粒子の間で生成する空隙 (微孔) が小さすぎる 傾向があり好ましくない。 また、 脂肪酸組成中の C数 10〜14の直鎖脂肪酸の 含有量が 2重量%未満では、 2重量%以上のものに比べて添加効果が不十分 で好ましくなく、 反対に 50重量%を越えると 50重量%以下のものよリも樹脂 との親和性が損なわれ、 白化現象や成形後の樹脂表面へのブリード等の問題 を起こしゃすくなる傾向があるので好ましくない。
上述の直鎖脂肪酸のアルカリ金属塩を界面活性剤 (A) として用いる場合 、 各々の組成の脂肪酸を選択,混合して調整することが好ましいが、 本発明 の効能を阻害しない範囲で、 同等の組成の市販の石鹼等を使用してもよい。
[0037] 界面活性剤 (A) の使用量は、 無機粒子の比表面積に応じて変わり、 一般 的に比表面積が大なものほど使用量は大きくなる。
しかし、 多孔質フィルムの基材となる樹脂の M I値等の諸物性や、 コンパ ゥンド時に添加する滑剤をはじめとする諸条件によって変動するので一概に は規定しにくいが、 通常、 無機粒子に対して 0. 1 〜15重量%である。
使用量が 0. 1 重量%未満では充分な分散効果が得られ難く、 一方、 15重量 %を越えると、 多孔質フィルム表面へのブリード、 多孔質フィルムの強度の 低下等が起こり易い。
[0038] 本発明に用いることができる、 アルカリ土類金属に対してキレート能を有 する化合物 (B ) としては、 例えばエチレンジァミン四酢酸や二トリ口三酢 酸、 ヒドロキシェチルエチレンジァミン三酢酸、 ジエチレントリアミン五酢 酸、 トリエチレンテトラアミン六酢酸等に代表されるァミノカルボン酸系キ レート剤、 ヒドロキシェチリデンニ亜リン酸、 二トリロトリスメチレンホス ホン酸等のホスホン酸系キレー卜剤や、 ポリ塩化アルミ等のアルミニウム化 合物からなる水処理剤、 ポリアクリル酸、 クェン酸等の多価カルボン酸やそ の塩、 ポリアクリル酸のマレイン酸ゃィタコン酸の共重合物の塩、 あるいは 、 ポリリン酸、 縮合リン酸に代表されるリン酸類やその塩類が例示される。
[0039] 多価カルボン酸の塩としては、 ポリアクリル酸ナトリウム、 ポリアクリル 酸アンモニゥム等、 共重合物の塩としてはァクリル酸■マレイン酸の共重合 物 (重合比 100 : 80等) のアンモニゥム塩、 アクリル酸■メタクリル酸の共 重合物 (重合比 100 : 80等) のアンモニゥム塩等、 リン酸類の塩としてはへ キサメタリン酸ナ卜リゥム、 ポリリン酸ナ卜リゥム、 ピロリン酸ナ卜リゥム 等が挙げられる。
上記アルカリ土類金属に対してキレート能を有する化合物 (B ) は、 単独 で又は必要に応じ 2種以上組み合わせて用いられる。
本発明において、 これらアル力リ土類金属に対してキレート能を有する化 合物 (B ) については、 リチウム二次電池の如き高度な絶縁性が要求される 場合、 ポリリン酸、 縮合リン酸、 及び多価カルボン酸、 またはこれらの塩が 好ましく、 中でも縮合リン酸の環状縮合リン酸又はメタリン酸が好ましい。
[0040] アルカリ土類金属に対してキレート能を有する化合物 (B ) の使用量は、 界面活性剤 (A) で述べた如く無機粒子の比表面積や用いる樹脂、 コンパゥ ンド条件等に応じて変わるので一概には規定しにくいが、 通常、 無機粒子に 対して 0 . 0 5〜 5重量%以下が好ましい。 使用量が 0 . 0 5重量%未満で は充分な分散効果が得られ難く、 一方、 5重量%を越えて添加しても効果の 更なる向上が認められ難い。
[0041 ] また、 表面処理方法としては、 既述の界面活性剤 (A) およびアルカリ土 類金属に対してキレート能を有する化合物 (B ) を用いた表面処理において 、 例えばス一/《一ミキサーやへンシ Iルミキサーと言ったミキサーを用い、 粉体に直接表面処理剤を混合し、 必要に応じて加熱して表面処理する一般に 乾式処理と呼ばれる方法でも、 また例えば界面活性剤およびアル力リ土類金 属に対してキレート能を有する化合物 (B ) を水または湯に溶解し、 攪拌し ている炭酸カルシウムの水スラリーに添加して表面処理後、 脱水、 乾燥する 一般に湿式処理と呼ばれる方法でも、 その両者の複合でもよいが、 炭酸カル シゥム粒子表面への処理の度合いと経済的な観点から、 主として湿式法単独 が好ましく用いられる。
[0042] 本発明の更に好ましい態様として、 下記の式 (e ) を満足することが好ま しい。
( e ) 1 ≤ A s ≤ 4 (m g Zm2 ) 但し、
As :次式により算出される単位比表面積当たりの熱減量
〔 200°C〜 500°Cの表面処理された無機粒子 1 g当たリの熱減量 (m g Zg) 〕 ZSw (m2Zg)
Asは熱減量、 即ち、 表面処理剤量で、 前記した如く、 例示した本発明の 微孔形成剤に含有できる表面処理剤量は、 無機粒子の比表面積や表面処理の 種類、 用いる樹脂、 コンパウンド条件等に応じて異なるため一概に限定する ものでないが、 通常、 表面処理剤率 (As) として、 1〜4mgZm2である ことが好ましい。
Asが 1 mgZm2未満では十分な分散効果が得られにくく、 一方、 4mg Zm2未満を超えても、 更なる効果向上が得られにくいばかりか、 処理剤過多 による表面処理剤成分あるいは樹脂成分への遊離の原因になりやすい。 従つ て、 より好ましくは、 2〜3. 5mgZm2である。
なお、 表面処理率の測定方法は下記に示す。
ぐ測定方法 >
熱天秤 (リガク社製 TG— 81 10型) にて、 直径 1 Ommの試料パン ( 白金製) に約 1 Omg採取し、 昇温温度 15°CZ分で 200〜500°Cまで の熱減量を測定し、 表面処理した無機粒子 1 g当りの熱減量 (mgZg) を 求め、 この値を BET比表面積 (m2Zg) で除して求めた。
本発明の更に好ましい態様としては、 前記した微孔形成剤の不純物量の指 標として、 下記の (f ) 式を満足することが好ましい。
( f ) H X ≤ 500 (p pm)
但し、
H x :微孔形成剤 5 OO g中に含有する塩酸不溶分量
(f ) 式は、 微孔形成剤の不純物量を塩酸不溶分量として示したものであ リ、 特に電池セパレータ用多孔質フィルムの場合、 空孔だけでなく、 通電性 のある不純物としてカーボン量等も問題になることから、 塩酸不溶分量 (H X ) として、 500 p p m以下であることが好ましく、 より好ましくは 30 O p pm以下、 さらに好ましくは 1 50 p pm以下である。 500 p pmを 超えると、 前記した如く、 例えば電池セパレータ用途においては、 短絡や発 火の原因になりうる。
なお、 塩酸不溶分の測定方法は、 下記に示す。
ぐ測定方法 >
微孔形成剤 500 g中に含有する塩酸不溶分量を測定した。 塩酸不溶分の 測定方法は、 上記式 (d) における測定方法に準拠した。
[0044] 本発明の更に好ましい態様として、 下記の式 (g) を満足することが好ま しい。
) F c ^ 50 p p m)
但し、
F c :微孔形成剤 500 g中に含有する塩酸不溶性のフリーカーボン量 前記した如く、 特に電池セパレータ用途に使われる場合、 塩酸での溶解性 がなく、 電池セパレータとしての絶縁性を阻害しやすい物質として、 (フリ 一) カーボンが例示できる。 微孔形成剤中に含有するカーボン量が 30 p p mを超えると、 短絡の危険性が生じやすいため、 より好ましくは 1 O p pm 以下、 さらに好ましくは 3 p pm以下である。
なお、 カーボン量の測定方法は下記に示す。
ぐ測定方法 >
フィルターをォムニポアメンブレンから保留粒子径 0. 3 mのガラス繊 維濾紙に変更する以外は、 上記式 (d) における塩酸不溶分測定と同じ方法 でボイド濾過を行う。 濾過後、 乾燥した塩酸不溶分を含んだガラス繊維濾紙 を、 高周波誘導加熱炉方式 (堀場社製 EM I A— 320) にてフリーカーボ ン測定を行った。
[0045] また、 カーボンの含有に関しては、 前記した通り大気中からの混在が高く 、 特に微孔形成剤の製造工程におては、 乾燥工程〜梱包作業における大気吸 入工程での対策を行うことが好ましい。 具体的には、 各種フィルターによる 除去を一般的に使用することができる。 また、 フィルタ一径としては、 特に 限定するものではないが、 通常 0 . 1〜 1 0 0 Πのフィルタ一径を使用す ることができる。 フィルタ一径が 0 . 1 m未満の場合、 フィルターの目詰 まりで取り替え頻度が高くなるため実用性が低く、 また、 1 0 0 mを超え ると大気中の不純物が容易に通過する可能性が高くなる。 より好ましくは 0 . 3〜5 0 mである。
[0046] 以上の如くして得られた表面処理無機粒子からなる多孔質樹脂フィルム用 微孔形成剤は、 各種樹脂、 特に熱可塑性樹脂の中でもォレフイン系樹脂に配 合されて多孔質樹脂フィルム用組成物とされ、 各種用途の多孔質フィルム、 特に電池セパレータ用途への多孔質フィルムの製造に好適である。
本発明に用いられる樹脂としては特に制限されるものではないが、 例えば ポリエステル、 ポリカーボネート、 ポリエチレン、 ポリプロピレン、 ェチレ ン一プロピレン共重合体、 エチレン又はプロピレンと他のモノマーとの共重 合体等が挙げられる。
なお、 電池用セパレータ用多孔質フィルムとして用いる場合は、 前記した 如くシャットダウン機構の付与や、 電池製作時のハンドリング、 コストの面 からポリエチレン系、 ポリプロピレン系等のポリオレフィン系樹脂が好まし く、 なかでもポリエチレン系樹脂がより好ましい。
多孔質フィルム用填剤とこれらの樹脂との配合割合は特に限定されず、 樹 脂の種類や用途、 所望する物性やコストによって大きく異なり、 それらに応 じて適宜決定すればよいが、 電池用セパレータフイルムに使用される場合は 、 通常、 樹脂 100重量部に対して 60〜150重量部であり、 好ましくは 80〜120 重量部程度である。
[0047] また、 本発明の多孔質樹脂フィルム用微孔形成剤の効能を阻害しない範囲 で、 フィルムの耐熱性、 耐候性、 安定性の特性向上を目的に、 ァラミド繊維 、 脂肪酸、 脂肪酸アミド、 エチレンビスステアリン酸アミド、 ソルビタン脂 肪酸エステル等の滑剤、 可塑剤及び安定剤、 酸化防止剤等を添加してもよく 、 更に一般にフィルム用樹脂組成物に用いられる添加物、 例えば滑剤、 酸化 防止剤、 熱安定剤、 光安定剤、 紫外線吸収剤、 中和剤、 防曇剤、 アンチプロ ッキング剤、 帯電防止剤、 スリップ剤、 着色剤等を配合してもよい。
本発明の多孔質樹脂フィルム用微孔形成剤と上述の各種添加剤を樹脂に配 合する場合、 通常、 一軸あるいは二軸押出機、 ニーダー、 バンバリ一ミキサ 一等で加熱混練し、 Tダイ等でシートを作成後に一軸または二軸で延伸して 微細な孔を有する多孔質フィルム製品とされる。
また、 混練後に Tダイ押出、 あるいはインフレーション成形等の公知の成 形機を用いて製膜し、 それらを酸処理して本発明の多孔質樹脂フィルム用微 孔形成剤を溶解して微細な孔を有する多孔質フィルム製品としてもよい。 樹脂の形状にはペレツ卜状、 及び任意の粒径に調整されたパウダー (ダラ ニュー) 状があり、 粒子の分散においてはパウダー状の樹脂を用い、 ヘンシ エルミキサー、 タンブラ一型ミキサー、 リポンプレンダー等の公知のミキサ 一と称される混合機を用いて混合することが好ましい。
本発明の多孔質樹脂フィルム用微孔形成剤は、 ペレツ卜状樹脂と用いられ た場合でも、 本発明以外の粒子に比べて、 樹脂中での分散性等で良好な物性 を示すが、 パウダー状の樹脂と混合して使用すると特に良好であり、 加えて 、 例えばヘンシェルミキサーで混合した場合、 混合が速やかに行えるメリツ 卜の他に、 ミキサーの内壁面や攪拌■混合用の羽根への付着が少なく、 ミキ サー内部での付着が誘引する変質樹脂や凝集物の発生も少なくなリ、 混合の 作業性及び後工程での混練押出機でのストレーナ一の目詰まり等の発生も少 ない等の特徴を有している。
上記の加熱混練機も様々な機種や設定条件があり、 原料の投入方法も、 樹 脂中での粒子の分散の他にも樹脂自体の M I値等への影響ゃコス卜を鑑みて 適宜決定される。 本発明の多孔質樹脂フィルム用微孔形成剤を樹脂に配合す る場合も、 それらを考慮して選択されるが、 ヘンシェルミキサー等で適度な 粒度範囲の樹脂パウダーと混合した混合物を、 二軸混練機等の混練機のホッ パーに定量的に投入する方法が好ましい。
混合機と製膜の間において、 一旦、 マスターバッチと称される本発明の多 孔質樹脂フィルム用微孔形成剤を始めとする各種添加物を含有するペレット を作成し、 その後に無添加の樹脂と併せて溶融,製膜しても良い。 更に必要 に応じ、 上記工程中の Tダイ押出機を複数個重ねたり、 あるいは延伸時に張 リ合わせるような工程を導入して多層フィルムにしてもよく、 また上記フィ ルムに印刷適性を付与する目的で、 フィルム表面にプラズマ放電等の表面処 理を施しインク受理層をコートすることも可能である。
[0049] 以下、 本発明を更に実施例に基づいて具体的に説明するが、 本発明の範囲 はこれら実施例により何ら制限されるものではない。
尚、 以下の記載において、 特に断らないかぎリ%は重量%を意味する。
[0050] 実施例 1
灯油を熱源に灰色緻密質石灰石を流動槽式キルンで焼成して得られた生石 灰を溶解して消石灰スラリーとし、 炭酸ガスと反応させ炭酸カルシウムを合 成した。 該炭酸カルシウム水スラリーを篩 (4 0 0メッシュ) で異物、 並び に粗大粒子の除去を行った後に、 該炭酸カルシウムスラリーをォス卜ワルド 熟成によリ粒子成長を行わせ、 B E T比表面積 12m2 Z gの炭酸カルシウムを 10%含有する水スラリーを得た。
次に、 下記に示す界面活性剤( A) とキレート化合物 (B ) を、 炭酸カル シゥム固形分に対してそれぞれ 3. 5 %と 1. 2 %を用いて表面処理し、 表面処 理炭酸カルシウムスラリーを得た。
その後、 脱水,乾燥,解砕し、 更に得られた乾粉を空気分級機で分級を行 い、 表面処理炭酸カルシウム粉体を得た。
また、 乾燥、 空気分級等の大量の空気が必要とする箇所には、 空気中のホ コリゃ塵 (カーボンや微細金属) を除去する目的で、 HEPAフィルター (集塵 効率計数法: 0 . 3 mにおいて 9 9 . 9 9 %) で集塵したクリーンエアー を使用した。 得られた表面処理炭酸カルシウムの各物性値を表 1に示す。 ぐ界面活性剤 (A) =混合石鹼>
ステアリン酸カリウム 65%
パルミチン酸ナトリウム 20% ラウリン酸ナトリウム 15%
<キレート化合物 B>
へキサメタリン酸ナトリウム
[0051] 実施例 2
消石灰スラリーと炭酸ガスを反応させ炭酸カルシウムを合成するときに、 水酸化カルシウムに対して粒子成長抑制剤であるクェン酸を 1. 0%添加さ せることと、 界面活性剤 (A) とキレート剤 (B) の添加量を、 それぞれ 1 0%と 1. 5%に変更した以外は、 実施例 1と同様の操作を行い、 BET比 表面積 35m2 Zgの炭酸カルシウムスラリーを得、 表面処理炭酸カルシウム 粉体を得た。 得られた表面処理炭酸カルシウム粉体の各種物性を表 1に示す
[0052] 実施例 3
界面活性剤 (A) とキレート剤 (B) の添加量を、 それぞれ 6. 0%と 1 . 5%に変更する以外は、 実施例 1と同様に操作を行い、 表面処理炭酸カル シゥム粉体を得た。 得られた表面処理炭酸カルシウム粉体の各種物性を表 1 に示す。
[0053] 実施例 4
空気分級工程を行わない以外は、 実施例 1と同様に操作を行い、 表面処理 炭酸カルシウム粉体を得た。 得られた表面処理炭酸カルシウム粉体の各種物 性を表 1に示す。
[0054] 実施例 5
界面活性剤 (B) を添加しないことと、 集塵フィルターを H EPAから 1 0 m簡易フィルター (補修効率 90— 92%) に変更した以外は、 実施例 1と同様に操作を行い、 表面処理炭酸カルシウム粉体を得た。 得られた表面 処理炭酸カルシウム粉体の各種物性を表 1に示す。
[0055] 実施例 6
キレート剤 (B) を、 ポリアクリル酸アンモニゥムに変更し、 集塵フィル ター (HEPA) を使用しない工程以外は、 実施例 1と同様に操作を行い、 表面処理炭酸カルシウム粉体を得た。 得られた表面処理炭酸カルシウム粉体 の各種物性を表 1に示す。
[0056] 実施例 7
篩による異物、 粗大粒子除去工程と、 空気分級工程を行わなかった以外は 、 実施例 1と同様に操作を行い、 表面処理炭酸カルシウム粉体を得た。 得ら れた表面処理炭酸カルシウム粉体の各種物性を表 1に示す。
[0057] 実施例 8
篩による異物、 粗大粒子除去工程、 空気分級工程、 集塵フィルター (H E P A) 工程を行わなかった以外は、 実施例 1の同様な操作を行い、 表面処理 炭酸カルシウム粉体を得た。 得られた表面処理炭酸カルシウム粉体の各種物 性を表 1に示す。
[0058] 実施例 9
熱源を灯油ではなく、 コークスを用いたシャフ卜式キルンに変更した以外 は、 実施例 1と同様に操作を行い、 表面処理炭酸カルシウム粉体を得た。 得 られた表面処理炭酸カルシウム粉体の各種物性を表 1に示す。
[0059] 実施例 1 0
熱源をコークスを用いたシャフト式キルンに変更し、 篩による異物、 粗大 粒子除去工程と空気分級工程を行わなかった以外は、 実施例 1と同様に操作 を行い、 表面処理炭酸カルシウム粉体を得た。 得られた表面処理炭酸カルシ ゥム粉体の各種物性を表 1に示す。
[0060] 実施例 1 1
界面活性剤 (A) を添加しない以外は、 実施例 1と同様に操作を行い、 表 面処理炭酸カルシウム粉体を得た。 得られた表面処理炭酸カルシウム粉体の 各種物性を表 2に示す。
[0061 ] 実施例 1 2
灯油を熱源に灰色緻密質石灰石を流動槽式キルンで焼成して得られた生石 灰を溶解して消石灰スラリーとし、 リン酸水溶液とを反応させリン酸カルシ ゥム (水酸アパタイト) を合成した。 該リン酸カルシウム水スラリーを篩で 異物、 並びに粗大粒子の除去を行った後、 該リン酸カルシウムスラリーの粒 子を成長させる目的で、 オートクレープにて水熱反応を行い、 B E T比表面 積 58m2 Z gのリン酸カルシウムを 10%含有する水スラリーを得た。
その後、 脱水■乾燥,解砕した以後は、 界面活性剤 (A) とキレート化合 物 (B ) の処理量が、 1 5 %と 2 %である以外は、 実施例 1と同様の方法で を表面処理リン酸カルシウム粉体を得た。 得られた表面処理リン酸カルシゥ ム粉体の各物性値を表 2に示す。
[0062] 実施例 1 3
灯油を熱源に灰色緻密質石灰石を流動槽式キルンで焼成して得られた生石 灰を溶解して消石灰スラリーとし、 水酸化ナトリウム水溶液と反応させ水酸 化マグネシウムを合成した。 該水酸化マグネシウム水スラリーを篩で異物、 並びに粗大粒子の除去を行った後、 該水酸化マグネシウムスラリーの粒子を 成長させる目的で、 オートクレープにて水熱反応を行い、 B E T比表面積 15 m2 Z gの水酸化マグネシウムを 10%含有する水スラリーを得た。
その後、 脱水,水洗,乾燥,解砕した以後は、 界面活性剤 (A) とキレー 卜化合物 (B ) の処理量が、 4 %と 1 . 2 %である以外は、 実施例 1と同様 の方法でを表面処水酸化マグネシウム粉体を得た。 得られた表面処理水酸化 マグネシウム粉体の各物性値を表 2に示す。
[0063] 比較例 1
熱源をコークスを用いたシャフト式キルンに変更し、 篩による異物、 粗大 粒子除去工程、 空気分級工程、 集塵工程を行わず、 更に、 キレート剤 (B ) を使用しなかった以外は、 実施例 1と同様に操作を行い、 表面処理炭酸カル シゥム粉体を得た。 得られた表面処理炭酸カルシウム粉体の各種物性を表 2 に示す。
[0064] 比較例 2
消石灰スラリーと炭酸ガスを反応させ炭酸カルシウムを合成するときに、 水酸化カルシウムに対して粒子成長抑制剤であるクェン酸を 3 . 0 %添加さ せることと、 界面活性剤 (A) とキレート剤 (B ) の添加量を、 それぞれ 1 8. 5%と 2%に変更した以外は、 実施例 1と同様の操作を行い、 BET比 表面積 63m2Zgの炭酸カルシウムスラリーを得、 表面処理炭酸カルシウム 粉体を得た。 得られた表面処理炭酸カルシウム粉体の各種物性を表 2に示す
[0065] 比較例 3
比較例として、 特開 2002 _ 264208号公報の実施例で使用されて いる市販の合成炭酸カルシウムを用いた。 得られた粉体物性を表 2に示す。
[0066] 比較例 4
比較例として市販の合成炭酸カルシウム (丸尾カルシウム社製 CUBE— 1 8BHS) を用いた。 得られた粉体物性を表 2に示す。
[0067] 比較例 5
比較例として市販の天然重質炭酸カルシウム (中国破業社製 MCコート S -20) を用いた。 得られた粉体物性を表 2に示す。
[0068] 比較例 6
比較例として市販の天然ブルーサイ卜 (神島化学社製マダシーズ W_H 4 ) を用いた。 得られた粉体物性を表 2に示す。
[0069]
【〕0070
Figure imgf000025_0001
Figure imgf000025_0002
[表 2]
Figure imgf000026_0001
施例 1 4 26、 比較例 7 1 2
ポリエチレン樹脂 (三井化学 (株) 製ハイゼックスミリオン 340M) とポリ エチレンワックス (三井化学 (株) 製ハイワックス 110 P) を 7 : 3の割合 で混合した混合ポリエチレン樹脂を作成し、 実施例 1〜 1 3及び比較例 1〜 6で得られた微孔形成剤と混合樹脂の体積比が 3 : 7の割合でヘンシェルミ キサ一に仕込み、 5分間混合して微孔形成剤と樹脂との多孔質樹脂フィルム 用組成物を得た。
得られた組成物を、 T ダイを装着した東洋精機 (株) 製二軸混練機 2 D25W で溶融混練と製膜を行い、 膜厚 80 mのフィルムを得、 テンターオーブン中 で 110 °Cの温度下で長さ方向に約 5倍延伸し、 膜厚 2 0 mの多孔質樹脂フ イルムを得た。
得られた多孔質樹脂フィルムについて、 を下記の 1 ) 〜5 ) の評価を行つ た。 結果を表 3、 表 4に示す。
[0072] [評価方法]
1 ) イオン透過性
ィォンの透過性は、 溶液中を移動する L iィォンを電気伝導度で測定するこ とによって評価した。
測定方法は、 濾過試験等で使用されるフィルターホルダーと 250m l ファン ネル間に濾紙ゃフィルタ一の代リに本発明で得られた多孔質フィルム(予め 4 7mm径に切り取っておく) を挟んでクランプで固定し、 エチレンカーボネー 卜、 ェチルメチルカーボネー卜、 ジメチルカーボネートを体積比 30: 35: 35 の混合溶液で満たした 1 L吸引瓶に差し込んだ後に、 更に別の該混合溶液に 電解質として L i PF6を 1 mo l ZL となる様に溶解した電解液 200m l をフアンネ ルに注ぎ、 30分後に吸引瓶内の電解液の電気伝導度を測定することによって 求めた。 結果を表 3、 表 4に示す。 電気伝導度の値が大きい程、 イオンの透 過性が高くて良好といえる。
[0073] 2 ) 平均細孔径
J I S K 1 1 5 0に準拠し、 水銀圧入法によるポロシメーター (島津製 作所社製 9520型) にて平均細孔半径 ( m) を測定した。 平均細孔半径が 、 電解液保持の観点から 0. 1 m未満が好ましい。 [0074] 3 ) ガーレ通気度
J I S-P8117 に準じ、 多孔質フィルムのガーレ値を B型デンソ一 (東洋精機 社製) にて測定した。 結果を表 3、 表 4に示す。 ガーレ通気度は、 一般的に 多孔質フィルムの細孔径に比例しているが、 セパレータ表面に問題があると ガーレ値が高く、 またピンホール等が発生している場合、 ガーレ値が低いな ど、 多孔質フィルム状態を把握することができる。 従って、 ガーレ値の範囲 は、 通常 50〜500 (秒ハ 00m l ) であり、 好ましくは 100 〜300 (秒ハ 00m I ) であ る。 上記範囲外の場合、 何らかの問題がある可能性がある。
[0075] 4 ) リチウム 2次電池のサイクル特性
正極活物質 (L i Mn204 ) と導電剤 (アセチレンブラック) を混合したものを 正極とし、 金属 L iを N iメッシュに厚着したものを負極として、 正極と負極の 間に本実施例と比較例で作製した多孔質フィルムを挟み、 定電流充放電試験 機 (ナガノ社製 BTS2004H) にて測定を行った。 なお、 電解液は、 L i C I 04電解液 (PC/DMC有機溶媒) を用い、 定電流充放電の条件は、 0. 9mA 、 3. 5 〜4. 3Vの 間で行い、 測定サイクル数 1000とした。
測定サイクル数 1 と 1000の充電容量と放電容量を表 5〜表 8に示す。 サイ クルの容量減少が低い方、 即ち、 1サイクル目の容量に対して 1 0 0 0サイ クル目の容量の維持率 「 (1 0 0 0サイクル目の容量 Z 1サイクル目の容量 ) X 1 0 0 (%) 」 の大きい方が良好な電池セパレータとした。 下記に、 充 放電のサイクル特性評価を下記のようにランク付をし、 表 5〜表 8に示す。
5点 充放電量こや容』 減少において、 極めて安定である。
4点 充放電量こや容』 減少において、 安定である。
3点 充放電量こや容』 減少において、 許容範囲である。
2点 充放電量こや容』 減少において、 問題箇所がる。
1点 充放電量 :ゃ容』 減少において、 不良である。
5 ) 上記 1 ) 〜4 ) の結果より、 電池セパレータとしての総合評価を下記よ うにランク付けをし、 表 3、 表 4に示す。
A :極めて良好である。 B:良好である。
C:特に問題ないレベルである。
D:多少品質に問題があるが、 使用上差し支えないレベルである。
E:使用上問題が生じる可能性が高い。
F :不良である。
Figure imgf000030_0001
Figure imgf000030_0002
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000032_0001
Figure imgf000033_0001
§〕【〕80 【〕882
Figure imgf000034_0001
【〕【〕0081
[8肇]
ZtOOOO/LOOZdT/lDd £ .0.880/.00Z OAV
Figure imgf000036_0001
産業上の利用可能性
本発明の多孔質フィルム用微孔形成剤は、 これを構成する無機粒子が粗大 粒子を殆ど有さないことから、 多孔質樹脂フィルムの強度劣化が起こリにく <、 多孔質樹脂フィルムの空隙径の分布幅が均一で且つ空隙径を制御するこ とができ、 さらには、 導電性を有する不純物が極めて少ないという特徴を有 する。 従って、 樹脂に配合されて、 例えば、 コンデンサーや電池セパレータ 等の電気部材用途に好適な多孔質樹脂フィルムを与える樹脂組成物を提供す ることができる。

Claims

請求の範囲
[1] 無機粒子からなり、 下記の式 (a) 〜 (d) を満足することを特徴とする 多孔質樹脂フィルム用微孔形成剤。
(a) 0. 1 ≤ D 50 ≤ 1. 5 ( m)
(b) Da ≤ 20 ( m)
(c) 3 ≤ S w ≤ 60 (m2 /g )
(d) I r ≥ 1. 0 X 1 O5 (Ω ■ cm)
但し、
D50 : レーザー回折式 (マイクロトラック FR A) における粒度分布に おいて、 大きな粒子側から起算した重量累計 50%平均粒子径 ( m)
Da : レーザー回折式 (マイクロトラック FRA) における粒度分布に おいて、 最大粒子径 ( m)
Sw :窒素吸着法による BET比表面積 (m2Zg)
I r :塩酸不溶分の体積抵抗率 (Ω ■ cm)
[2] 無機粒子が、 炭酸カルシウム、 リン酸カルシウム、 水酸化マグネシウム、 硫酸バリゥムから選ばれることを特徴とする請求項 1記載の多孔質樹脂フィ ルム用微孔形成剤。
[3] 無機粒子が、 炭酸カルシウムであることを特徴とする請求項 1記載の多孔 質樹脂フィルム用微孔形成剤。
[4] 無機粒子が、 界面活性剤 (A) とアルカリ土類金属に対してキレート能を 有する化合物 (B) とで表面処理されていることを特徴とする請求項 1〜3 のいずれか 1項に記載の多孔質樹脂フィルム用微孔形成剤。
[5] 下記の式 (e) を満足することを特徴とする請求項 1〜4のいずれか 1項 に記載の多孔質樹脂フィルム用微孔形成剤。
( e ) 1 ≤ As ≤ 4 (mgZm2)
但し、
As :次式により算出される単位比表面積当たりの熱減量
〔 ( 200°C〜 500°Cの表面処理された無機粒子 1 g当たリの熱減量 (m gZg) 〕 ZSw (m2Zg)
[6] 下記の式 (f ) を満足することを特徴とする請求項 1〜 5のいずれか 1項 に記載の多孔質樹脂フィルム用微孔形成剤。
( f ) H X ≤ 500 (p pm)
但し、
H x :微孔形成剤 5 OO g中に含有する塩酸不溶分量
[7] 下記の式 (g) を満足することを特徴とする請求項 1〜 6のいずれか 1項 に記載の多孔質樹脂フィルム用微孔形成剤。
( ) F c ^ 50 p p m)
但し、
F c :微孔形成剤 500 g中に含有する塩酸不溶性のフリーカーボン量
[8] 請求項 1〜 7のいずれか 1項の微孔形成剤を多孔質フィルム用樹脂に配合 してなることを特徴とする多孔質樹脂フィルム用組成物。
[9] 多孔質フィルム用樹脂が、 ォレフィン系樹脂であることを特徴とする請求 項 8記載の多孔質樹脂フィルム用組成物。
[10] 電池セパレータ用であることを特徴する請求項 8又は 9記載の多孔質樹脂 フィルム用組成物。
PCT/JP2007/000043 2006-02-01 2007-01-31 多孔質樹脂フィルム用微孔形成剤及び、これを配合してなる多孔質樹脂フィルム用組成物 WO2007088707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07706292A EP1985650A4 (en) 2006-02-01 2007-01-31 MICROPORENBILDNER FOR POROUS RESIN FOIL AND THE MICROPORENBILDNER CONTAINING COMPOSITION FOR POROUS RESIN FOIL
US12/162,893 US7977410B2 (en) 2006-02-01 2007-01-31 Fine pore formation agent for porous resin film and composition containing the same for porous resin film
KR1020087018841A KR101380184B1 (ko) 2006-02-01 2007-01-31 다공질 수지 필름용 미공 형성제 및 이것을 배합하여 이루어지는 다공질 수지 필름용 조성물
JP2007556800A JP5305663B2 (ja) 2006-02-01 2007-01-31 多孔質樹脂フィルム用微孔形成剤及び、これを配合してなる多孔質樹脂フィルム用組成物
CN2007800043734A CN101379120B (zh) 2006-02-01 2007-01-31 多孔树脂膜用微孔形成剂及配合其的多孔树脂膜用组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006024447 2006-02-01
JP2006-024447 2006-02-01

Publications (1)

Publication Number Publication Date
WO2007088707A1 true WO2007088707A1 (ja) 2007-08-09

Family

ID=38327289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000043 WO2007088707A1 (ja) 2006-02-01 2007-01-31 多孔質樹脂フィルム用微孔形成剤及び、これを配合してなる多孔質樹脂フィルム用組成物

Country Status (7)

Country Link
US (1) US7977410B2 (ja)
EP (1) EP1985650A4 (ja)
JP (2) JP5305663B2 (ja)
KR (1) KR101380184B1 (ja)
CN (1) CN101379120B (ja)
MY (1) MY144291A (ja)
WO (1) WO2007088707A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234518A (ja) * 2006-03-03 2007-09-13 Sumitomo Chemical Co Ltd 電池用セパレータ
JP2010023017A (ja) * 2008-06-20 2010-02-04 Maruo Calcium Co Ltd 多孔質濾過膜用樹脂組成物及び多孔質濾過膜の製造方法
JP2010023019A (ja) * 2008-06-20 2010-02-04 Maruo Calcium Co Ltd 多孔質濾過膜用微孔形成剤、これを配合してなる多孔質濾過膜用樹脂組成物、及び多孔質濾過膜の製造方法
JP2010055942A (ja) * 2008-08-28 2010-03-11 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
JP2010195898A (ja) * 2009-02-24 2010-09-09 Sumitomo Chemical Co Ltd ポリオレフィン系樹脂組成物、該組成物を用いた多孔質フィルムの製造方法、多孔質フィルム、積層多孔質フィルムの製造方法、積層多孔質フィルムおよび電池用セパレータ
JP2013209455A (ja) * 2012-03-30 2013-10-10 Shiraishi Chuo Kenkyusho:Kk 多孔性フィルムの製造方法
JP2014038851A (ja) * 2007-08-21 2014-02-27 A123 Systems Inc 電気化学セル用セパレータおよびその製造方法
WO2014058057A2 (ja) * 2012-10-12 2014-04-17 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
JP2014067693A (ja) * 2012-09-07 2014-04-17 Asahi Kasei Corp 非水電解液二次電池用セパレータ及び非水電解液二次電池
JP2014509294A (ja) * 2011-01-27 2014-04-17 シリム バーハド 石灰石をリン酸三カルシウム及びリン酸テトラカルシウム粉末に同時に転化する方法
JP2014074143A (ja) * 2012-10-05 2014-04-24 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜
WO2014069410A1 (ja) * 2012-10-31 2014-05-08 旭化成イーマテリアルズ株式会社 多層多孔膜及びその製造方法、並びに非水電解液電池用セパレータ
JP2014116186A (ja) * 2012-12-10 2014-06-26 Mitsubishi Paper Mills Ltd リチウムイオン電池セパレータおよびリチウムイオン電池セパレータ用塗工液
JP2015015096A (ja) * 2013-07-03 2015-01-22 旭化成株式会社 電池用セパレータ及び非水系電解液電池
JP2017157398A (ja) * 2016-03-01 2017-09-07 株式会社日本触媒 アニオン伝導性膜
KR101789423B1 (ko) * 2015-11-30 2017-10-23 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터 및 그의 이용
JP7338929B1 (ja) 2023-05-30 2023-09-05 丸尾カルシウム株式会社 表面処理炭酸カルシウムフィラー、ならびにそれを用いた樹脂組成物および成形品

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110117413A1 (en) * 2009-11-19 2011-05-19 Yichun Wang Alkaline Battery Separators with Ion-Trapping Molecules
US9018278B2 (en) * 2010-01-29 2015-04-28 Maruo Calcium Co., Ltd. Surface treated calcium carbonate filler for resin and resin composition containing the filler
EP2410023B1 (en) * 2010-07-20 2012-10-17 Omya Development AG Process for the preparation of surface-treated calcium carbonate material and use of same in the control of organic material in an aqueous medium
EP2619817B1 (en) * 2010-09-22 2018-12-19 Daramic, LLC Batteries, separators, components, and compositions with heavy metal removal capability and related methods
WO2012040409A1 (en) 2010-09-22 2012-03-29 Daramic Llc Improved separators, batteries, systems, and methods for idle start stop vehicles
KR20180117225A (ko) * 2010-09-22 2018-10-26 다라믹 엘엘씨 개선된 납산 배터리 분리기, 배터리 및 그와 관련된 방법
KR102173880B1 (ko) * 2010-09-22 2020-11-04 다라믹 엘엘씨 아이들 스타트 스톱 차량을 위한 개선된 분리막, 배터리, 시스템 및 방법
CN103748516A (zh) * 2011-08-10 2014-04-23 日立化成株式会社 感光性树脂组合物、感光性薄膜、永久抗蚀剂以及永久抗蚀剂的制造方法
US10147923B2 (en) * 2011-11-18 2018-12-04 Sumitomo Chemical Company, Limited Laminated porous film, method for producing same, non-aqueous electrolyte secondary battery separator, laminated electrode sheet, and non-aqueous electrolyte secondary battery
KR101334888B1 (ko) * 2012-03-16 2013-11-29 강원대학교산학협력단 리튬 이차전지용 분리막 및 그 제조방법
US9711771B2 (en) 2013-09-18 2017-07-18 Celgard, Llc Porous membranes filled with nano-particles, separators, batteries, and related methods
JP2015090777A (ja) * 2013-11-05 2015-05-11 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2015068325A1 (ja) 2013-11-05 2015-05-14 ソニー株式会社 電池、セパレータ、電極、塗料、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN105874630B (zh) * 2014-01-02 2021-01-08 达拉米克有限责任公司 多层隔板及制造和使用方法
WO2015129560A1 (ja) * 2014-02-28 2015-09-03 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
GB2547156B (en) 2014-12-19 2021-07-21 Halliburton Energy Services Inc Purification of organically modified surface active minerals by air classification
WO2017123190A1 (en) * 2016-01-11 2017-07-20 Daramic, Llc Improved battery separators for e-rickshaw and similar vehicle lead acid batteries
WO2018078707A1 (ja) * 2016-10-24 2018-05-03 住友化学株式会社 セパレータ、およびセパレータを含む二次電池
JP6588170B2 (ja) * 2016-10-24 2019-10-09 住友化学株式会社 セパレータ、およびセパレータを含む二次電池
KR102073225B1 (ko) * 2016-10-24 2020-02-05 스미또모 가가꾸 가부시키가이샤 세퍼레이터 및 세퍼레이터를 포함하는 이차 전지
WO2018088008A1 (ja) * 2016-11-10 2018-05-17 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料、及びそれを含有してなる樹脂組成物
EP3550634B1 (en) 2016-12-02 2023-01-04 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these
EP3592799A4 (en) * 2017-03-06 2020-12-30 Council of Scientific and Industrial Research POROUS POLYBENZIMIDAZOLE USED AS A SEPARATOR FOR LITHIUM-ION BATTERIES
KR102144878B1 (ko) * 2017-08-25 2020-08-14 주식회사 엘지화학 이차전지 분리막 코팅용 슬러리 및 이를 이용한 이차전지 분리막
CN108110193B (zh) * 2017-12-22 2021-03-02 武汉惠强新能源材料科技有限公司 一种具备铁离子吸附功能的锂电池隔膜涂层及其制备方法
CN108963161B (zh) * 2018-07-10 2021-05-14 福建师范大学 含有二价磷酸盐和磷碳价键的涂覆膜制备方法
JP7320172B2 (ja) * 2019-03-20 2023-08-03 株式会社Aescジャパン 電極、電極の製造方法及び電池
CN110690391B (zh) * 2019-10-12 2022-04-22 福建师范大学 高安全隔膜的涂覆方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176352A (ja) 1995-12-26 1997-07-08 Tokuyama Corp 微多孔性膜の製造方法
JP2000313824A (ja) 1999-04-30 2000-11-14 Maruo Calcium Co Ltd 無機顔料及び該顔料を用いた水系塗料組成物
JP2001072890A (ja) * 1999-09-06 2001-03-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム、及び多孔性フィルム用樹脂組成物、並びに多孔性フィルムの製造方法
JP2001181423A (ja) * 1999-12-28 2001-07-03 Yupo Corp 多孔性樹脂フィルム
JP2002264208A (ja) 2001-03-15 2002-09-18 Sumitomo Chem Co Ltd 多孔性フィルムの製造方法
JP2006169421A (ja) * 2004-12-17 2006-06-29 Maruo Calcium Co Ltd 多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム
JP2006265472A (ja) * 2005-03-25 2006-10-05 Maruo Calcium Co Ltd 光反射多孔質フィルム用填剤及び該填剤を配合してなる光反射多孔質フィルム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844865A (en) * 1972-06-06 1974-10-29 Minnesota Mining & Mfg Method of making stretch-oriented porous films
JP2899903B2 (ja) * 1989-01-12 1999-06-02 旭化成工業株式会社 ポリフツ化ビニリデン多孔膜及びその製造方法
JPH02261837A (ja) * 1989-03-31 1990-10-24 Shiraishi Chuo Kenkyusho:Kk 多孔質膜の製造方法
US5286285A (en) * 1989-05-05 1994-02-15 Veitscher Magnesitwerke-Actien-Gesellschaft Finely powdery magnesium hydroxide and a process for preparing thereof
AT392774B (de) * 1989-05-05 1991-06-10 Veitscher Magnesitwerke Ag Feinpulveriges magnesiumhydroxid und verfahren zu dessen herstellung
IE921328A1 (en) * 1992-04-23 1993-11-03 Defped Ltd Particulate magnesium hydroxide
JP3897543B2 (ja) * 2001-06-01 2007-03-28 丸尾カルシウム株式会社 樹脂用表面処理無機フィラー及びこれを配合した樹脂組成物
GB0402627D0 (en) * 2004-02-06 2004-03-10 Imerys Minerals Ltd Ultrafine Ground Natural Brucite
US20080182933A1 (en) * 2004-12-17 2008-07-31 Seiya Shimizu Filler for Porous Film and Porous Film Containing the Same
JP4839882B2 (ja) * 2005-03-31 2011-12-21 住友化学株式会社 ポリオレフィン系樹脂組成物からなるシート、多孔性フィルムおよび電池用セパレータ
EP1764346A1 (en) * 2005-09-16 2007-03-21 Omya Development AG Process of preparing mineral material with particular ceria-containing zirconium oxide grinding beads, obtained products and their uses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176352A (ja) 1995-12-26 1997-07-08 Tokuyama Corp 微多孔性膜の製造方法
JP2000313824A (ja) 1999-04-30 2000-11-14 Maruo Calcium Co Ltd 無機顔料及び該顔料を用いた水系塗料組成物
JP2001072890A (ja) * 1999-09-06 2001-03-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム、及び多孔性フィルム用樹脂組成物、並びに多孔性フィルムの製造方法
JP2001181423A (ja) * 1999-12-28 2001-07-03 Yupo Corp 多孔性樹脂フィルム
JP2002264208A (ja) 2001-03-15 2002-09-18 Sumitomo Chem Co Ltd 多孔性フィルムの製造方法
JP2006169421A (ja) * 2004-12-17 2006-06-29 Maruo Calcium Co Ltd 多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム
JP2006265472A (ja) * 2005-03-25 2006-10-05 Maruo Calcium Co Ltd 光反射多孔質フィルム用填剤及び該填剤を配合してなる光反射多孔質フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1985650A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234518A (ja) * 2006-03-03 2007-09-13 Sumitomo Chemical Co Ltd 電池用セパレータ
JP2014038851A (ja) * 2007-08-21 2014-02-27 A123 Systems Inc 電気化学セル用セパレータおよびその製造方法
US9728759B2 (en) 2007-08-21 2017-08-08 A123 Systems Llc Separator for electrochemical cell and method for its manufacture
US10497916B2 (en) 2007-08-21 2019-12-03 A123 Systems Llc Separator for electrochemical cell and method for its manufacture
JP2010023017A (ja) * 2008-06-20 2010-02-04 Maruo Calcium Co Ltd 多孔質濾過膜用樹脂組成物及び多孔質濾過膜の製造方法
JP2010023019A (ja) * 2008-06-20 2010-02-04 Maruo Calcium Co Ltd 多孔質濾過膜用微孔形成剤、これを配合してなる多孔質濾過膜用樹脂組成物、及び多孔質濾過膜の製造方法
JP2010055942A (ja) * 2008-08-28 2010-03-11 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
JP2010195898A (ja) * 2009-02-24 2010-09-09 Sumitomo Chemical Co Ltd ポリオレフィン系樹脂組成物、該組成物を用いた多孔質フィルムの製造方法、多孔質フィルム、積層多孔質フィルムの製造方法、積層多孔質フィルムおよび電池用セパレータ
JP2014509294A (ja) * 2011-01-27 2014-04-17 シリム バーハド 石灰石をリン酸三カルシウム及びリン酸テトラカルシウム粉末に同時に転化する方法
JP2013209455A (ja) * 2012-03-30 2013-10-10 Shiraishi Chuo Kenkyusho:Kk 多孔性フィルムの製造方法
JP2014067693A (ja) * 2012-09-07 2014-04-17 Asahi Kasei Corp 非水電解液二次電池用セパレータ及び非水電解液二次電池
JP2018032649A (ja) * 2012-09-07 2018-03-01 旭化成株式会社 非水電解液二次電池用セパレータ及び非水電解液二次電池
JP2014074143A (ja) * 2012-10-05 2014-04-24 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜
WO2014058057A3 (ja) * 2012-10-12 2014-06-19 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
JPWO2014058057A1 (ja) * 2012-10-12 2016-09-05 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
US9815953B2 (en) 2012-10-12 2017-11-14 Maruo Calcium Co., Ltd. Calcium carbonate filler for resin, and resin composition containing said filler
WO2014058057A2 (ja) * 2012-10-12 2014-04-17 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
JPWO2014069410A1 (ja) * 2012-10-31 2016-09-08 旭化成株式会社 多層多孔膜及びその製造方法、並びに非水電解液電池用セパレータ
WO2014069410A1 (ja) * 2012-10-31 2014-05-08 旭化成イーマテリアルズ株式会社 多層多孔膜及びその製造方法、並びに非水電解液電池用セパレータ
JP2014116186A (ja) * 2012-12-10 2014-06-26 Mitsubishi Paper Mills Ltd リチウムイオン電池セパレータおよびリチウムイオン電池セパレータ用塗工液
JP2015015096A (ja) * 2013-07-03 2015-01-22 旭化成株式会社 電池用セパレータ及び非水系電解液電池
KR101789423B1 (ko) * 2015-11-30 2017-10-23 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터 및 그의 이용
JP2017157398A (ja) * 2016-03-01 2017-09-07 株式会社日本触媒 アニオン伝導性膜
JP7338929B1 (ja) 2023-05-30 2023-09-05 丸尾カルシウム株式会社 表面処理炭酸カルシウムフィラー、ならびにそれを用いた樹脂組成物および成形品

Also Published As

Publication number Publication date
US7977410B2 (en) 2011-07-12
MY144291A (en) 2011-08-29
CN101379120A (zh) 2009-03-04
JP5837529B2 (ja) 2015-12-24
KR20080098594A (ko) 2008-11-11
JPWO2007088707A1 (ja) 2009-06-25
EP1985650A1 (en) 2008-10-29
KR101380184B1 (ko) 2014-04-01
CN101379120B (zh) 2012-04-11
JP5305663B2 (ja) 2013-10-02
JP2013213212A (ja) 2013-10-17
EP1985650A4 (en) 2010-10-27
US20090030100A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2007088707A1 (ja) 多孔質樹脂フィルム用微孔形成剤及び、これを配合してなる多孔質樹脂フィルム用組成物
KR101208339B1 (ko) 다공질 필름용 충전제 및 이 충전제를 배합하여 이루어지는다공질 필름
KR101336091B1 (ko) 수지용 표면처리 탄산칼슘 필러 및 이 필러를 함유하여 이루어지는 수지 조성물
CN1898310A (zh) 由聚烯烃制得的微多孔膜
TWI632113B (zh) Calcium carbonate filler for resin and resin composition containing the same
KR102041284B1 (ko) 수지용 탄산 칼슘 충전료 및 이 충전료를 포함하는 수지 조성물
JP5027385B2 (ja) 多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム
KR102005601B1 (ko) 사삼산화망간 및 그 제조 방법
JP5506228B2 (ja) コロイド炭酸カルシウム填剤及びその製造方法、並びに該填剤を配合してなる樹脂組成物
JP6593942B2 (ja) 微粒子複合金属水酸化物、その焼成物、その製造方法及びその樹脂組成物
JP2011102368A (ja) ポリオレフィン微多孔膜、蓄電デバイス用セパレータ及び蓄電デバイス
TWI394783B (zh) A filler for a porous film, and a porous film having the filler
JP5894778B2 (ja) 紙の製造方法
JP5882029B2 (ja) 紙の製造方法
JP2012176892A (ja) 酸化銀粉末の製造方法
WO2008035538A1 (fr) Procédé de fabrication de particules de carbonate de métal alcalino-terreux et particules de carbonate de métal alcalino-terreux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556800

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2868/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087018841

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12162893

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780004373.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007706292

Country of ref document: EP