WO2007088583A1 - マルチキャリア通信装置及び同装置におけるピーク抑圧方法 - Google Patents

マルチキャリア通信装置及び同装置におけるピーク抑圧方法 Download PDF

Info

Publication number
WO2007088583A1
WO2007088583A1 PCT/JP2006/301534 JP2006301534W WO2007088583A1 WO 2007088583 A1 WO2007088583 A1 WO 2007088583A1 JP 2006301534 W JP2006301534 W JP 2006301534W WO 2007088583 A1 WO2007088583 A1 WO 2007088583A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
peak
multicarrier
information
signal
Prior art date
Application number
PCT/JP2006/301534
Other languages
English (en)
French (fr)
Inventor
Hitoshi Yokoyama
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/301534 priority Critical patent/WO2007088583A1/ja
Priority to JP2007556723A priority patent/JP5113533B2/ja
Priority to EP06712677.1A priority patent/EP1983669B1/en
Priority to EP14168691.5A priority patent/EP2793415A3/en
Publication of WO2007088583A1 publication Critical patent/WO2007088583A1/ja
Priority to US12/168,556 priority patent/US8582671B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70706Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria

Definitions

  • Multi-carrier communication apparatus and peak suppression method in the same apparatus
  • the present invention relates to a multicarrier communication apparatus and a peak suppression method in the apparatus, and, for example, to a technique suitable for use in a system in which a plurality of transmission data are allocated to a plurality of carriers (subcarriers) and transmitted.
  • the core network (remote center) power has data for multiple users.
  • the situation input to is represented by PZS conversion (conversion to time-series data) by parallel Z serial (PZS) conversion 101.
  • PZS parallel Z serial
  • the requested user's data selected by a scheduler not shown
  • SZP serial Z parallel
  • Fast Fourier transform ⁇ (IFFT: Inverse Fast Fourier Transformer) 103 performs IFFT processing to convert time domain signals to frequency domain signals and map user data to each subcarrier Furthermore, each subcarrier signal is PZS converted (time multiplexed) by the PZS conversion 104 and output.
  • IFFT Inverse Fast Fourier Transformer
  • the coding is devised (encoding is performed so that PAPR can be suppressed at the signal point mapped to the subcarrier. Peak suppression is performed on a certain subcarrier. Equivalent mapping), PTS (Partial Transmit Sequence) transmission, SLM (Selected Mapping) transmission, etc. are being studied.
  • PTS transmission is a technique for suppressing PAPR by appropriately performing phase rotation processing for each chunk of a subcarrier block.
  • an area for notifying the rotated phase amount is required.
  • SLM transmission is a technology that has a plurality of arithmetic circuits according to the number of subcarriers and selects a sequence that most suppresses PAPR by multiplying a different random code for each arithmetic circuit on the time axis.
  • this technology also requires an area for notifying the selected sequence.
  • Patent Document 1 aims to suppress the peak power while suppressing a decrease in transmission efficiency of multicarrier transmission.To that end, the peak power of the generated OFDM signal is detected and the peak power is reduced. When a threshold is exceeded, a signal for suppressing peak power (for example, one or both of the amplitude and phase is limited instead of transmission data (information signal) for a specific carrier of the multicarrier. Inserted signal) or puncture (delete) the information signal.
  • Patent Document 2 improves transmission efficiency by providing different transmission quality for each transmission data of multicarrier transmission, and further suppresses peak power in multicarrier transmission.
  • a codeword consisting of n signal points is identified, that is, a code with a different minimum code distance is used.
  • By sequentially changing the minimum code distance different transmission qualities are given within one data frame, and efficient transmission is performed.
  • by adopting a peak power suppression code as a code used for transmission, it is possible to simultaneously suppress peak power while giving different transmission quality.
  • Patent Document 3 aims to reduce the transmission peak power to average power ratio without significantly reducing the transmission efficiency. For this reason, a peak with an amplitude level equal to or greater than a threshold is detected. Then, the peak cut unit suppresses the detected peak to the threshold value (that is, the clipping process described above), the peak-suppressed signal is FFT processed, and then the input is assigned to the subcarrier of the high transmission rate. In order to protect the nonlinear distortion force caused by clipping, the data is replaced with the signal before clipping. There is a possibility of puncture with respect to this clipping.
  • Patent Document 1 JP 2001-339361 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-286818
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-101975
  • the clipping processing (including the technique of Patent Document 3) is a very simple technique that can obtain a certain degree of peak suppression effect (4) and (5) in FIG.
  • the subcarriers have non-continuous regions in time, out-of-band radiation is inevitable, and the orthogonal relationship between the subcarriers is broken. This will cause deterioration of characteristics.
  • better technology than the clipping process can be obtained for the technique for devising the above-mentioned code (including the technique of Patent Document 2), PTS transmission, and SLM transmission. A large load is applied to the scale.
  • Patent Document 1 in the technique of puncturing a part of an information signal and inserting a peak suppression signal (code), a bit error occurs in the punctured portion. A powerful error correction process is required to prevent the degradation. Furthermore, the said patent document 1 Discloses a technique for stopping the transmission of information signals by subcarriers that have also selected the medium power of all subcarriers for peak suppression, but the selection criteria and the subsequent subcarriers that stopped transmission of information signals are disclosed. It is unclear if it is handled.
  • the present invention has been devised in view of the above problems.
  • an unacceptable peak PAPR
  • an information signal to a user by at least some carriers according to a predetermined priority is provided.
  • the purpose is to stop the transmission (puncture) so that PAPR can be easily suppressed without affecting the reception error rate (without requiring strong error correction processing). It is also intended to maintain the uniformity of transmission opportunities by clarifying the handling of carriers (users) whose transmission has been stopped due to PAPR suppression.
  • the present invention is characterized by using the following multicarrier communication apparatus and a peak suppression method in the apparatus. That is,
  • a multicarrier communication apparatus is an apparatus that allocates a plurality of sequences of transmission data to a plurality of carriers and transmits them by a multicarrier signal, and transmits a transmission opportunity of the plurality of sequences of transmission data according to predetermined scheduling information.
  • a peak suppression means for performing transmission stop processing of transmission data of at least a part of the plurality of series of transmission data based on the scheduling information.
  • the peak suppression means based on priority order information as element information of the scheduling information, until the peak is determined to be less than or equal to the threshold value by the peak determination means.
  • the transmission priority is low, and the transmission stop processing is configured to be repeated in order of data power!
  • the peak suppression means is based on the used frequency band information as element information of the scheduling information, and the plurality of the peak suppression means until the peak is determined to be equal to or less than the threshold by the peak determination means.
  • Narrow frequency band used in transmission data of series! It may be configured to repeat the transmission stop process in order.
  • the multicarrier communication apparatus further includes a notification means for notifying the apparatus that receives the multicarrier signal of information specifying the transmission data subjected to the transmission stop processing. .
  • the multicarrier communication apparatus may further include peak suppression data insertion means for inserting peak suppression data in place of the transmission data subjected to the transmission stop processing.
  • the scheduling means may further comprise means for updating the scheduling information so as to preferentially set the transmission data subjected to the transmission stop processing as the next transmission opportunity.
  • the multicarrier communication apparatus of the present invention is an apparatus for allocating a plurality of sequences of transmission data to a plurality of carrier waves and transmitting them by a multicarrier signal, wherein a transmission opportunity of the plurality of sequences of transmission data is predetermined.
  • Scheduling means for scheduling according to the scheduling information, the multicarrier signal, and one or a plurality of multicarriers in which at least a part of the transmission data of the plurality of sequences is excluded in advance based on the scheduling information
  • Multi-carrier signal generating means for generating a signal, and peak determination for determining whether or not the peak of each of the multi-carrier signals generated by the multi-carrier signal generating means exceeds a predetermined threshold
  • a multicarrier signal determined by the peak determination unit to be equal to or less than the threshold value It is characterized in that a selection means for selecting as elephant, Ru.
  • the multicarrier signal generation means has a low priority based on the priority information as the element information of the scheduling information! , Signal power It is configured to generate one or more multi-carrier signals excluding transmission data in advance!
  • the multicarrier signal generation means includes one or a plurality of multicarrier signals in which transmission data is excluded in advance from a signal having a narrow use frequency band based on use frequency band information as element information of the scheduling information. It is configured to generate
  • the multicarrier communication apparatus may substitute for the previously excluded transmission data. Instead, further provide a peak suppression data insertion means for inserting peak suppression data.
  • the multicarrier communication apparatus may further include notification means for notifying an apparatus that receives the multicarrier signal of information related to the multicarrier signal selected by the selection means. .
  • the scheduling means sets the scheduling information to preferentially set the transmission data excluded in advance as the next transmission opportunity, the element data power of the multicarrier signal selected by the selection means. Have a way to update it.
  • the peak suppression method in the multicarrier communication apparatus of the present invention is a peak suppression method in a multicarrier communication apparatus that allocates a plurality of sequences of transmission data to a plurality of carriers and transmits using a multicarrier signal. It is determined whether or not the peak of the multicarrier signal exceeds a predetermined threshold, and when it is determined that the peak exceeds the threshold and is V, the transmission opportunity of the transmission data of the plurality of sequences is scheduled. Based on the scheduling information, transmission stop processing of transmission data of at least a part of the plurality of transmission data is performed.
  • the peak suppression method in the multicarrier communication apparatus of the present invention is a peak suppression method in a multicarrier communication apparatus in which a plurality of transmission data is allocated to a plurality of carriers and transmitted by a multicarrier signal.
  • the transmission data of at least a part of the multi-carrier signal and the transmission data of the plurality of sequences is preliminarily excluded based on scheduling information for scheduling transmission opportunities of the transmission data numbers of the plurality of sequences.
  • For each of the generated multicarrier signals it is determined whether or not the peak exceeds a predetermined threshold, and the multicarrier signal determined to be equal to or lower than the threshold is determined. It is characterized by selecting as a transmission target.
  • transmission stop processing is performed (for example, transmission stop processing is performed sequentially from transmission data with a low priority or a narrow frequency band used by the scheduling means until the peak falls within an allowable value). For example, it is possible to easily achieve peak suppression while maintaining communication of users with high schedule orders as much as possible without increasing the operation scale.
  • a multicarrier signal excluding at least a part of the transmission data is generated in advance according to the priority (or use frequency band), and a multicarrier signal whose peak is equal to or less than a threshold value is generated.
  • FIG. 1 is a block diagram showing an example of a multicarrier transmission system in order to explain the outline of the present invention.
  • FIG. 2 is a diagram showing a frequency allocation image in the transmission station shown in FIG.
  • FIG. 3 is a schematic diagram for explaining an outline of the operation of the present invention.
  • FIG. 4 is a block diagram showing a configuration focusing on a transmitter (multi-carrier communication apparatus) in the multi-carrier (OFDM) transmission system according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration focusing on a receiver in the multicarrier (OFDM) transmission system according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration focusing on the modulation means of the transmitter to explain the peak determination method according to the modulation method in the transmitter shown in FIG.
  • FIG. 7 is a block diagram showing a configuration focusing on the modulation means of the transmitter, explaining another peak determination method corresponding to the modulation method in the transmitter shown in FIG. 4.
  • FIG. 8 is a flowchart for explaining the overall operation (peak suppression method) of the transmitter shown in FIG. 4.
  • FIG. 9 is a flowchart for explaining a peak determination method in the transmitter shown in FIG. 4.
  • FIG. 10 is a flowchart for explaining another peak determination method in the transmitter shown in FIG. 4.
  • FIG. 11 is a flowchart showing a modification of the overall operation (peak suppression method) of the transmitter shown in FIG. 8.
  • FIG. 12 is a flowchart showing still another modification of the overall operation (peak suppression method) of the transmitter shown in FIG.
  • FIG. 13 is a block diagram showing a configuration focusing on a transmitter (multi-carrier communication apparatus) in a multi-carrier (OFDM) transmission system according to a second embodiment of the present invention.
  • FIG. 14 is a block diagram showing a configuration focusing on a transmitter (multi-carrier communication apparatus) in a multi-carrier (OFDM) transmission system according to a third embodiment of the present invention.
  • FIG. 15 is a block diagram showing a configuration of a transmission signal generation unit shown in FIG.
  • FIG. 16 is a block diagram showing another configuration of the transmission signal generation unit shown in FIG.
  • FIG. 17 is a block diagram showing a configuration focusing on a transmitter (multi-carrier communication apparatus) in a multi-carrier (OFDM) transmission system according to a fourth embodiment of the present invention.
  • FIG. 18 is a schematic diagram for explaining the prior art and its problems.
  • Peak suppression signal generator peak suppression data insertion means
  • DZA Digital Z analog
  • the present invention can be applied to a system that performs transmission by scheduling a plurality of users at a transmission station that employs a multi-carrier transmission scheme such as an OFDMA (Orthogonal Frequency Division Multiple Access) scheme.
  • a multi-carrier transmission scheme such as an OFDMA (Orthogonal Frequency Division Multiple Access) scheme.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • mobile terminals (receivers) of multiple users # 1 to #n (n is an integer of 2 or more) communicating with a certain transmitting station (transmitter) 1! ⁇ 4-n collects necessary information from the Internet.
  • the collected information is temporarily buffered in the memory (or memory area) 10—l to 10-n corresponding to the users #l to #n of the transmitting station 1, and data is transmitted in response to a transmission request from the multi-user scheduler 12.
  • Multi-user scheduler hereinafter also simply referred to as “scheduler”) 12 is read out, assigned to an OFDMA subcarrier, propagates from transmitting antenna 22 and is transmitted to receiver 4 i of desired user #i .
  • the mobile terminal device (receiver) 4 1 to 4 n is not distinguished, and in this case, the mobile terminal device (receiver) 4 or the terminal 4 is indicated.
  • # Information cannot be transmitted to i.
  • information is transmitted only to some users #i (in FIG. 1, users # 1, # 2, and # 3) indicated by solid arrows.
  • Figure 2 shows the user assignment on the frequency axis at this moment.
  • the data stream addressed to multiple users #i is parallel Z serial.
  • PZS conversion time multiplexing
  • (PZS) change ll PZS conversion (time multiplexing)
  • the scheduler 12 starts preparation for communication according to the communicable information amount notified simultaneously and the subcarrier area to be mapped.
  • Fig. 3 (1) shows a situation where mapping is performed as notified during SZP conversion.
  • Information mapped in the frequency domain is serial Z parallel (SZP) modified ⁇
  • the amplitude value of each of the I axis and Q axis is monitored, and if it is within the allowable range, as shown in (3) and (4) of FIG. DZA conversion by digital Z analog (DZA) conversion 211.
  • the DZA converted I-axis and Q-axis data are orthogonally modulated and radiated from the transmitting antenna 22.
  • the accuracy is further improved.
  • the amplitude value is not acceptable, as shown in (5) of FIG. 3, it is converted again into a frequency domain signal by the SZP converter 13 b and the FFT unit 13 c, and the scheduler 12 ranks in advance.
  • the data of user #i with the lowest priority is deleted (punctured) by the cut unit 13d according to the priority (for example, determined by the charge, provided service, current propagation environment, etc.)
  • the IFFT unit 16a and the PZS converter 17a reconvert the signal into a time domain signal, and determine the amplitude value again.
  • PAPR can be achieved by performing a part of all subcarriers (subcarriers for low-priority users) or all subcarriers in order of low priority until the data is within acceptable PAPR. It becomes possible to suppress.
  • FIG. 4 is a block diagram showing a configuration focusing on a transmitter (multi-carrier communication apparatus) in the multi-carrier (OFDM) transmission system according to the first embodiment of the present invention
  • FIG. 5 shows a receiver in the system.
  • FIG. 4 is a block diagram showing a focused configuration.
  • the transmitter 1 shown in FIG. 4 can be applied to a base station apparatus
  • the receiver 4 shown in FIG. 5 can be applied to a mobile terminal apparatus.
  • transmitter 1 may be referred to as base station 1 and receiver 4 as terminal 4.
  • the number of subcarriers is assumed to be k (k is an integer of 2 or more).
  • the wiring part marked with Z indicates that I and Q orthogonal multiplexed signals are transmitted in the complex plane.
  • the transmitter 1 of the present embodiment focuses on its main part, for example, to the multiple users #l to #n (terminals 4-1 to 4-n).
  • Supported memory (or memory 10) 1 to 10-n, scheduler 12, frequency allocation unit 13, sign key unit 14-1 to 14-k, modulation unit 15-l to 15-k, IFFT unit 16, PZS converter 17, peak Judgment unit 18, switch 19, PZS converter 20, transmission RF unit 21, transmission antenna 22, priority assignment ZAMC setting unit 23, scheduler management information generation unit 24, modulation unit 25, IFFT unit 26, pilot generation unit 2 7, modulation unit 28, IFFT unit 29, reception antenna 30, reception RF unit 31, demodulation unit 32, and feed knock information determination unit 33.
  • the scheduler (scheduling means) 12 is information about all users (terminal 4) (for example, information fed back from the terminal 4), the ACKZNACK information information indicates whether or not retransmission information needs to be transmitted, and CQI (Channel Based on the quality indicator information, downlink transmission path information can be obtained), transmission opportunities (timing) for each user (data stream), frequency (subcarrier) allocation, encoding and modulation (AMC: Adaptiv) e Modulation and Coding) is adaptively specified (scheduled).
  • the type of transmission information (real-time communication such as telephone and game, non-real-time communication such as Internet communication and file download), customer Information such as the amount of information stored in memory 10—j, average throughput, and whether or not to retransmit ( Based on the scheduling information), it is also possible to determine the priority for actually assigning transmission opportunities.
  • the code key unit 14-X codes the transmission user data (that is, subcarrier data) with the code key method and coding rate set by the priority assignment ZAMC setting unit 23.
  • “encoding” here refers to performing coding so that PAPR can be suppressed at signal points mapped to subcarriers, that is, transmitting user data of a certain subcarrier is deleted (punctured). This is a concept that includes mapping a signal that suppresses the peak (PAPR).
  • Modulation section 15 x modulates the encoded transmission user data with the modulation scheme set by the priority assignment ZAMC setting section 23. As modulation data, I and Q signals are orthogonally multiplexed. You can get a signal!
  • the IFFT unit 16 performs IFFT processing on the modulated data, which is an orthogonal multiplex signal for each subcarrier, and converts it into a time domain orthogonal multiplex signal, and the PZS converter 17 converts the time domain obtained by the IFFT processing.
  • the signal is PZS converted and a signal in a predetermined channel (transport channel) format is output.
  • the peak determination unit (peak determination means) 18 performs peak determination on the transport channel to determine whether or not an unacceptable PAPR has occurred, and it is determined that an unacceptable PAPR does not occur.
  • switch 19 is switched to the PZS variable side, and channel orthogonal multiplexing is performed with the pilot channel and scheduler management channel.
  • channel orthogonal multiplexing includes not only the above time multiplexing but also all methods if “orthogonal multiplexing” such as frequency multiplexing and code multiplexing. In other words, frequency multiplexing in which a specific subcarrier is assigned to each channel other than time multiplexing by PZS conversion for all channels, code multiplexing in which orthogonal codes are multiplied for each channel, and combinations thereof are also applicable.
  • switch 19 is switched to the priority assignment ZAMC setting unit 23 side, and the transport channel is not output to PZS change. This is output to the priority assignment ZAMC setting unit 23.
  • the peak determination may be performed by monitoring the amplitude values of the I-axis and the Q-axis and determining whether the monitoring result is within an allowable range (below a predetermined threshold value).
  • each of the I and Q signals is DZA converted by digital Z analog (DZA) converters 211A and 211B, and a mixer (multiplier) )
  • DZA digital Z analog
  • mixer multiplier
  • reference numeral 213 denotes an adder (multiplexing circuit) that adds (multiplexes) the I and Q signals
  • reference numeral 214 denotes an amplifier that amplifies the channel orthogonal multiplexed signal, which is a transmission signal, to a required transmission power.
  • the I and Q signals obtained by the IFFT section 16 and the PZS conversion 17 are processed at high speed by the mixers 34A and 34B and the adder 35.
  • amplitude information (I 2 + Q 2 ) 1/2 combining I and Q is used for peak judgment. Only one of these is required, and only one DZA modification ⁇ (DZA modification 211) can be handled.
  • a signal of (f + Q 2 ) 1/2 is directly input to the peak determination unit 18.
  • reference numeral 212 denotes an RF converter that performs frequency conversion (up-conversion) of an IF band analog channel orthogonal multiplexed signal from the DZA converter 211
  • reference numeral 214 denotes the RF band.
  • Each amplifier amplifies the channel orthogonal multiplexed signal to the required transmission power. Further, in FIG. 6 and FIG. 7, illustration of necessary filters and the like is omitted.
  • the priority allocation ZAMC setting unit 23 reads the user data stream from the memory 10-j to the frequency allocation unit 13 according to the priority and AMC setting determined by the scheduler 12, and the frequency Frequency allocation in allocator 13, AMC, that is, code scheme in code 14 section X, coding rate, modulation scheme in modulator 15 — j (eg Q PSK or 16QAM, etc.) It is something to control. As described above, since there is a limit to the frequency band that can be radiated into space, information cannot be transmitted to all receivers 4 at one time. This is possible (shown by the solid line arrow from memory 10-j to frequency allocation unit 13 in Fig. 4; the same applies hereinafter).
  • the priority assignment ZAMC setting unit 23 in this example has a function as a peak (PAPR) suppression means, that is, scheduling information in the scheduler 12 when the peak determination result 18 is the peak determination result power SNG.
  • PAPR peak
  • the priority (priority order) that is the element information Based on the information, stop transmission of user data streams in order from the user with the lowest priority until the peak judgment result power is OK (below the threshold), more specifically, at least a part of the plurality of series of transmission user data. It has a function of controlling the corresponding code unit 14x and modulation unit 15X that repeatedly perform processing.
  • the "transmission stop process” includes a process of deleting data (in other words, performing a puncture with an amplitude value of zero). included.
  • each time-domain signal sent from the IFFT units 26 and 29 to the transport channel input via the switch 19 (to the receiver 4) Notification information and pilot signal) are channel orthogonally multiplexed, and the transmission RF unit 21 frequency-converts (upconverts) the multiplexed signal into a radio frequency (RF) band signal and amplifies it to the required transmission power.
  • the transmission antenna 22 radiates the transmission signal of the RF band to the transmission path between the receiver 4 and the like.
  • the scheduler management information generation unit 24 generates, as scheduler management information, information related to the user assignment status specified by the scheduler 12 (priority assignment ZAMC setting unit 23), its encoding, and modulation scheme.
  • the modulation unit 25 modulates the management information in accordance with a predetermined channel (scheduler management channel) format, and the IFFT unit 26 modulates the modulation data (I and Q signals) obtained by the modulation.
  • the signal is converted into a time domain signal by IFFT processing, and the obtained signal is orthogonally multiplexed with the transport channel of the transmission user data by the PZS conversion 20 as described above.
  • the block including the scheduler management information generation unit 24, the modulation unit 25, and the IFFT unit 26 receives the information on the user allocation status as information for specifying the transmission signal subjected to the transmission stop process. It functions as a notification means that notifies the machine 4 via the scheduler management channel.
  • the pilot generator 27 generates a pilot signal (a known signal between the transmitter 1 and the receiver 4) that the receiver 4 should transmit in order to obtain path timing and propagation path information in a predetermined format.
  • the modulation unit 28 generates the signal from the signal pattern.
  • the IFFT unit 29 performs IFFT processing on the modulated data (I and Q signals) obtained by the modulation and converts it into a time domain signal.
  • the obtained signal is orthogonally multiplexed with the transport channel of the transmission user data by PZS modification as in the management information.
  • the receiving antenna 30 receives an RF band signal transmitted from four terminals, and the receiving RF unit 31 converts the frequency of the RF band signal received by the receiving antenna 30 to a baseband signal. (Down-conversion) processing, reception detection processing such as quadrature detection processing that separates received signals into I and Q orthogonal multiplexed signals, and AZD conversion processing that converts analog reception signals into digital reception signals. is there.
  • the demodulator 32 demodulates the received analog orthogonal multiplex signal obtained by the reception RF unit 31 by a demodulation method corresponding to the modulation method at the terminal 4, and the feedback information determination unit 33
  • the feedback information (ACKZNACK information, CQI information, etc.) from the terminal 4 is detected from the demodulated data obtained by the unit 32, for example, it is determined whether or not retransmission information needs to be transmitted based on the ACKZNACK information, and the CQI information Force can also acquire information on the downlink propagation path.
  • the obtained information is supplied to the scheduler 12 as a scheduling decision factor in the scheduler 12.
  • the receiver 4 of the present embodiment focuses on its main part.
  • the receiver antenna 41, the reception RF unit 42, the SZP conversion 43, the FFT unit 44, and the propagation Path estimation unit 4 5 SINR calculation unit 46, CQI conversion unit 47, feedback information conversion unit 48, FFT unit 49, demodulation unit 50, scheduler management information determination unit 51, demodulation determination unit 52, SZP converter 53, FFT unit 54, demodulation unit 55— 1 to 55 — k, decoding unit 56 — 1 to 56 — k, frequency alignment unit 57, retransmission determination unit 58, switch 59, feedback information conversion unit 60, feedback information multiplexing unit 61, modulation A unit 62, a transmission RF unit 63, and a transmission antenna 64 are provided.
  • the receiving antenna 41 receives an RF band signal transmitted from the transmitter 1, and the receiving RF unit 42 receives the RF band signal received by the receiving antenna 41 as a baseband signal.
  • Frequency conversion (down-conversion) to signal and I / Q orthogonal multiplexing of received signal It performs required reception radio processing such as quadrature detection processing that separates signals and AZD conversion processing that converts analog received signals into digital received signals.
  • the SZP conversion is performed by subjecting the digital reception channel orthogonal multiplex signal obtained by the reception RF unit 42 to SZP conversion, and pilot signals (pilot channel) and management information (scheduler), which are I and Q orthogonal multiplex signals, respectively.
  • Management channel) and user data (transport channel) are separated (that is, channel separation). Pilot signal is sent to FF ⁇ 44, management information is sent to FFT unit 49, and user data is sent to demodulation decision unit 52. It is designed to output.
  • the time-multiplexed channels are separated. However, if channel separation corresponding to the multiplexing method (frequency multiplexing, code multiplexing, etc.) on the transmitter 1 side is performed, it is possible.
  • the FFT unit 44 performs FFT processing on the received pilot signal to convert it into a frequency domain orthogonal multiplex signal, and the propagation path estimation unit 45 transmits the frequency domain signal and a known pilot signal (The channel (channel) estimation is performed by correlation processing with the pilot replica), and the estimation result (channel estimation value) is supplied to the SINR calculation unit 46 and each demodulation unit 50, 55—X.
  • the channel (channel) estimation is performed by correlation processing with the pilot replica), and the estimation result (channel estimation value) is supplied to the SINR calculation unit 46 and each demodulation unit 50, 55—X.
  • the SINR calculator 46 calculates SINR (Signal to Interference and (pulse) Noise Ratio), that is, a signal ratio to the total noise including interference and thermal noise, based on the channel estimation value.
  • the CQI converter 47 converts the SINR obtained by the SINR calculator 46 into CQI information that is obtained by quantizing the quality of the propagation path using specific rules according to various conditions.
  • the CQI information is orthogonally multiplexed with AC KZNACK information in a feedback information multiplexing unit 61 described later, and is fed back from the transmitting antenna 64 to the transmitter 1 via the propagation path.
  • the feedback information converting unit 48 converts the CQI information into a format that matches the transmission channel format of the feedback information.
  • the FFT unit 49 performs FFT processing on the management information (orthogonal multiplex signal) separated by the SZP converter 43 to convert it into a frequency domain orthogonal multiplex signal.
  • the demodulator 50 is a propagation path estimation unit 45. Is used to demodulate the orthogonal multiplexed signal in the frequency domain using a demodulation method corresponding to the modulation method on the transmitter 1 side. In addition, Demodulation by the demodulator 50 is performed prior to transport channel demodulation by each demodulator 55-k.
  • the scheduler management information determination unit 51 determines whether the transport channel user information data exists, and demodulates the transport channel. Necessary information (for example, information on allocated subcarriers, modulation scheme, coding scheme, coding rate, etc.) is determined.
  • the demodulation determination unit 52 demodulates the transport channel based on the management information obtained by the scheduler management information determination unit 51.
  • the SZP converter 53 performs decoding designation to the SZP converter 53.
  • the signal is subjected to SZP conversion into (orthogonal multiplex signal), and the FFT unit 54 performs FFT processing on each of the parallel signals to convert it into an orthogonal multiplex signal in the frequency domain. If the user information data is not included, the demodulation process can be suspended to reduce power consumption.
  • Each demodulator 55-X uses the channel estimation value obtained by the propagation path estimator 45 to convert the frequency domain signal after the FFT into the scheduler management information obtained by the scheduler management information judgment unit 51.
  • Each of the decoding units 56-X demodulates the demodulated data obtained by the corresponding demodulation unit 55-X by the scheduler management information determination unit 51. The decoding is performed according to the code method and the code rate specified by the information.
  • the frequency alignment unit 57 aligns the decoded data obtained by each decoding key unit 56—X into time-series data according to the subcarrier frequency fx.
  • the correctness of the data input from the wave number alignment unit 57 is determined using CRC (Cyclic Redundancy Check) bits, etc., and if there is no error, the data can be correctly extracted.
  • the NACK signal is output to the feedback information converter 60 via the switch 59 as information to be fed back to the transmitter 1.
  • the switch 59 is controlled so that the data is output to the subsequent stage as it is in the case of ACK, and the data is not output to the subsequent stage in the case of NACK.
  • retransmission combining processing based on HARQ is performed, necessary signals among received signals are stored in a not-shown memory or the like, and a retransmission signal is waited for.
  • the feedback information conversion unit 60 converts the ACKZNACK signal into a format that matches the transmission channel format of the feedback information.
  • the feedback information multiplexing unit 61 receives the ACKZNACK signal and the feedback information conversion unit 48 from the feedback information transmission channel format.
  • the modulator 62 multiplexes the CQI information and modulates the multiplexed feedback information by a predetermined modulation method. In this case as well, for example, I-channel signal and Q-channel signal can be used as modulation data. Orthogonal multiplexed signals can be obtained.
  • the transmission RF unit 63 performs radio transmission processing such as frequency conversion (up-conversion) of the modulation data into a radio frequency (RF) band signal and amplifying the signal to required transmission power.
  • the transmission antenna 64 radiates the transmission signal in the RF band to the propagation path between the transmitter 1 and the transmission antenna 64.
  • each user's transmission user data stream is stored in the memory 10-j.
  • the ACKZNACK information power also determines whether the retransmission information is necessary.
  • the CQI information power can also obtain propagation path information, and the information of each user is aggregated in the scheduler 12.
  • the type of transmission information (real-time communication such as phone calls and games, non-real-time communication such as Internet communication and file download), determination of customer's billing class, amount of information stored in memory, average throughput, Priority information such as whether or not to retransmit is also collected in the scheduler 12, and the scheduler 12 determines the priority for actually allocating the transmission opportunity based on the above various information (step Sl in FIG. 8). ).
  • the scheduler 12 reads the user data stream from the corresponding memory 10-j to the frequency allocation unit 13 according to the determined priority, and the frequency allocation unit 13 Each data stream is assigned to one of subcarriers fx. Each subcarrier signal is sent to the scheduler 12 (priority assignment ZAMC setting part) by the corresponding code part 14 X.
  • each user data stream may be adaptively modulated in units of groups including multiple subcarriers fx that are not in units of the smallest subcarriers fx.
  • the adaptive modulation signal thus obtained is input to the IFFT unit 16 and converted into a time domain signal by performing IFFT processing (step S3 in Fig. 8), and time-multiplexed by PZS conversion. Is input to the peak determination unit 18.
  • the peak determination unit 18 determines the peak of the PZS transformation 17 force signal (transport channel signal), and determines whether or not an unacceptable PAPR has occurred (step S4 in FIG. 8).
  • the amplitude values of the I axis and the Q axis are monitored (steps S41, S42, S43), and the monitoring results are all the same. If it is within the allowable range (below the specified threshold) (yes), it is judged that the peak judgment has passed (OK) (from the yes route of step S44 to step S45), otherwise it is judged that the peak judgment is disqualified (NG) (step) Step S46) from S44 no route.
  • the combined amplitude value (I 2 + Q 2 ) 1/2 for the I axis and the Q axis is monitored (step S41, S42a), if the monitor result is within the permissible range (below the predetermined threshold), it is judged that the peak judgment has passed (OK) (from step S43a yes route to step S45), otherwise the peak judgment disqualification (NG) (From the no route of step S43a to step S46).
  • the transport channel signal is input to the PZS converter 20 via the switch 19 to generate a signal of another channel, that is, a no-lot generation.
  • the channel information obtained through the scheduler 27, the modulation unit 28, and the IFFT unit 29, and the scheduler management channel signal obtained through the scheduler management information generation unit 24, the modulation unit 25, and the IFFT unit 26 After that (step S4 from yes route to step S8), the transmission RF unit 21 converts (up-converts) it into an RF signal (step S9) and transmits it from the transmission antenna 22 (step S10).
  • the priority assignment ZAMC setting unit 23 calculates the number of subcarrier signals (element signals of multi-carrier signals). Processing to reduce, for example, the scheduler 12, the code unit 14—x, the modulation unit 15—to detect the user with the lowest priority and stop (refrain from) transmission of the user data stream of the user with the lower priority. X is controlled (steps S5, S6, S7). As a means to stop transmission, it is conceivable to reduce (variable) the number of subcarriers. However, in order not to increase the control information for specifying adaptive modulation, the user data of the low priority user It is better to cancel the transmission of the stream, that is, delete the data (in other words, perform puncture to replace the amplitude value with zero).
  • step S4 adaptive modulation is performed again with the number of transmission user data streams reduced as described above, and finally, the peak determination result is OK in the peak determination unit 18 (in step S4).
  • Steps S2, S3, and S5 to S7 are repeatedly executed until the determination of yes), and the deletion of the low priority user power user data stream is repeated.
  • the peak judgment result is OK, as described above, after being orthogonally multiplexed with signals of other channels (signals of the pilot channel and scheduler management channel) (from the yes route of step S4 to step S8), the transmission RF unit It is converted into an RF signal (up-converted) at 21 (step S9) and transmitted from the transmitting antenna 22 (step S10).
  • the RF signal transmitted from transmitter 1 is received by reception antenna 41, converted into a baseband signal by reception RF unit 42 (down-converted), and then converted to SZP ⁇ ⁇
  • the signals are separated into pilot channel, scheduler management channel, transport channel, and other channel signals.
  • the pilot channel signal (pilot signal) is subjected to FFT processing by the FFT unit 44 and converted into a frequency domain signal, which is then input to the propagation path estimation unit 45, where the channel estimation unit 45 performs channel estimation. Processing, that is, a correlation calculation process between the received pilot signal and the pilot replica is performed to obtain a channel estimation value. Using this information, the scheduler management channel is first demodulated, and then the transport channel is demodulated. .
  • the signal of the scheduler management channel is subjected to FFT processing in the FFT unit 49 and converted into a frequency domain signal, and then the channel estimation obtained by the propagation path estimation unit 45 in the demodulation unit 50. Demodulated using a constant value.
  • the obtained demodulated data is input to the scheduler management information determination unit 51, and the presence / absence of information data of the user of the transport channel, information necessary for demodulation of the transport channel (for example, assigned subcarriers and modulation) Information such as a system, a coding system, a code rate, etc.) is determined and acquired, and notified to the demodulation determination unit 52, the demodulation unit 55—x, and the decoding unit 56—X.
  • the decoding determination unit 52 designates decoding of the transport channel.
  • the transport channel signal is converted into parallel signals for the number of subcarriers by the SZP converter 53, and then converted into frequency domain signals by the FFT unit 54, respectively.
  • Demodulator 55 Input to X.
  • the demodulator 55—X is a demodulation method corresponding to the modulation method notified from the scheduler management information determination unit 51.
  • the channel estimation value obtained by the propagation path estimation unit 45 is used to obtain information data addressed to the terminal 4 itself.
  • the subcarrier signal included is demodulated.
  • the obtained demodulated data is decoded by the corresponding decoding unit 56-X based on the code method and coding rate on the transmitter 1 side notified from the scheduler management information determining unit 51.
  • the obtained decoded data is arranged in time series data in accordance with subcarrier fx by frequency aligning unit 57 and then input to retransmission determining unit 58.
  • the retransmission determination unit 58 determines whether the data input from the frequency alignment unit 57 is correct or incorrect using CRC bits or the like, and generates and outputs an ACK signal if there is no error, and a NACK signal otherwise. At this time, if retransmission combining based on HARQ is performed, necessary signals are kept stored in a memory (not shown) and a retransmission signal is waited for.
  • the ACKZNACK signal is converted by the feedback information conversion unit 60 into a format that matches the transmission channel format of the feedback information to the transmitter 1, and then received by the feedback information multiplexing unit 61.
  • the pilot signal power is also multiplexed with the CQI information obtained through the FFT unit 44, the transmission path estimation unit 45, the SINR calculation unit 46, the CQI conversion unit 47, and the feedback information conversion unit 48.
  • the multiplexed signal (feedback information) is modulated by modulation section 62 using a predetermined modulation method. Then, after being converted into an RF signal by the transmission RF unit 63, it is transmitted from the transmission antenna 64 to the transmitter 1.
  • Sequential data deletion cuts some user data streams only when PAPR suppression is necessary and suppresses PAPR, thus increasing the scale of computation such as PTS transmission and SLM transmission
  • the presence or absence of data is notified to the terminal 4 through the scheduler management channel, so the terminal 4 side unnecessarily performs decoding and decoding processing circuits. This greatly contributes to the reduction of power consumption of terminal 4 that does not operate.
  • the priority of the scheduler 12 regarding the scheduling of PAPR suppression (type of transmission information (real-time communication such as telephone and game, non-real-time communication such as Internet communication and file DL), Scheduling specialized in power PAPR suppression, which is a technology that improves throughput while maintaining high quality of service (QoS) according to the customer's billing class and the amount of transmission data stored in memory) May be performed.
  • type of transmission information real-time communication such as telephone and game, non-real-time communication such as Internet communication and file DL
  • Scheduling specialized in power PAPR suppression which is a technology that improves throughput while maintaining high quality of service (QoS) according to the customer's billing class and the amount of transmission data stored in memory
  • FIG. 11 shows an operation flow in that case. That is, instead of the process of step S6 described above with reference to FIG. 8, the transmitter 1 detects the user with the narrowest frequency band in use when the peak determination result is NG and rescheduling is necessary, and The user is selected to delete data (step).
  • the effect of suppressing PAPR is that the frequency band of users who forgo transmission is wider. This can reduce the power contained in it and reduce the possibility that multiple subcarriers become phase coherent and exhibit an amplitude enhancement effect, but the frequency band used will be reduced and the throughput will be reduced. Therefore, as described above, it is possible to suppress a reduction in throughput by selecting a user power that has a narrow frequency band to be used as a data deletion target.
  • the transmission should be (priority) transmitted in the next slot (next transmission opportunity).
  • the scheduler 12 priority allocation ZAMC setting unit 23 sets the highest priority (updates scheduling information) (steps S11, S12, S13, S14).
  • FIG. 13 is a block diagram showing a second embodiment of the transmitter 1 described above.
  • the transmitter 1 shown in FIG. 13 includes an encoder 14 and a modulator 15 compared to the configuration described above with reference to FIG. The difference is that it is provided before the frequency allocation section 13.
  • the configuration of this example maps the user data stream to subcarriers after performing adaptive modulation for each user rather than performing adaptive modulation for each subcarrier (or subcarrier group) as shown in FIG. This is an example.
  • the adaptive modulation method can be specified for each user, so that the amount of control information is reduced. It is possible.
  • components having the same reference numerals as those described above are the same as or similar to the components having the reference numerals described above.
  • the encoding unit 14 and the modulation unit 15 are the same as or similar to the encoding unit 14-X and the modulation unit 15-X, respectively, and the maximum number of users (in the memory 10-j). Number) It is sufficient if the number is equal to or less than n, specifically the maximum number of simultaneous communication. Further, the configuration of the receiver 4 may be the same as in FIG.
  • FIG. 14 is a block diagram showing the third embodiment of the transmitter 1 described above.
  • the transmitter 1 shown in FIG. 14 has a blocking power before the P / S change compared to the configuration shown in FIG.
  • symbol is the same as that of the above-mentioned component, or the same thing.
  • the configuration of the receiver 4 may be the same as that of the first embodiment (FIG. 5).
  • the transmission signal generation unit 36-2 generates a channel orthogonal multiplexed signal in which the user data stream of the user with the lowest priority (or the narrower frequency band used!) Is deleted,
  • the transmission signal generation unit 36-3 generates a channel orthogonal multiplexed signal by deleting two user data streams of the user and the user with the second lowest priority (or the narrower frequency band to be used), and thereafter Similarly, channel orthogonal multiplex signals that have been deleted in order of user power with low priority (or narrow frequency band used)
  • the remaining transmission signal generators 36-4 to 36 to 36-M generate the signals.
  • both AMC setting information to be notified to scheduler management information generating unit 24 are output to the subsequent stage.
  • the priority in this example is set in the same manner as in the first embodiment.
  • Each peak determination unit (peak determination unit) 18-p is similar to the above-described peak determination unit 18, and the peak determination of the channel orthogonal multiplex signal from the corresponding transmission signal generation unit 36-p is already performed.
  • the optimal generation method determination unit (selection means) 37 confirms the peak determination result by each peak determination unit 18-p, and the peak determination result is OK ( Selects the channel orthogonal multiplex signal from the transmission signal generator 36-p (with the peak being below the threshold) (if there are multiple users, the one with the smallest number of deleted users) as the signal generated by the optimal generation method
  • the selection information including AMC setting information
  • the generation method notification unit is output to the generation method notification unit.
  • the generation method notification unit (notification unit) 38 Upon receiving the selection information from the optimum generation method determination unit 37, the generation method notification unit (notification unit) 38 receives information related to a transmission signal generation method (multicarrier signal selected as a transmission target), that is, The scheduler management information generating unit 24 is notified of information that can identify which user (subcarrier) has been deleted, and this information can be notified to the terminal 4 through the scheduler management channel. It is possible.
  • transmitter 1 of the present embodiment configured as described above, a transmission signal that does not perform data deletion (channel orthogonal multiplex signal), and a transmission signal that has been subjected to data deletion in order of user power with the lowest priority are received in advance.
  • the transmission signal generator 36-p generates the signal, and the peak determination unit 18-p performs peak determination for each transmission signal.
  • each determination result is confirmed by the optimum generation method determination unit 37, and the transmission signal from the transmission signal generation unit 36-p having the smallest number of users whose data has been deleted with the peak determination result force OK is selected.
  • the signal is output to the PZS converter, multiplexed with the pilot channel and scheduler management channel signals by the PZS converter, converted to an RF signal by the transmission RF unit 21, and transmitted from the transmission antenna 22.
  • the optimum generation method The determination unit 37 checks the determination results in ascending order of the numbers of the transmission signal generation unit 36-p, and selects the transmission signal from the transmission signal generation unit 36-p of the lowest number whose peak determination result is OK. It will be good. That is, the determination process in the optimum generation method determination unit 37 is simplified.
  • Information on the generation method selected by the optimum generation method determination unit 37 is notified to the scheduler management information generation unit 24 by the generation method notification unit 38, and a scheduler management channel including the information is generated. Will be.
  • the same operational effects as those of the first and second embodiments can be obtained, and after performing the peak determination as in the first and second embodiments, the transmission signal is again transmitted. Since it is possible to eliminate the need for rework, it is possible to prevent performance degradation due to latency.
  • FIG. 17 is a block diagram showing the fourth embodiment of the transmitter 1 described above.
  • the transmitter 1 shown in FIG. 17 is different from the configuration described above with reference to FIG.
  • a generation unit (peak suppression data insertion means) 39 is provided, and the peak suppression data (I and Q quadrature multiplexed signal) generated by the peak suppression signal generation unit 39 is input to the IFFT unit 16 for peak determination.
  • the difference is that, when the peak determination result is determined to be NG in the part 18, it can be inserted instead of the user data stream into the subcarrier band of the user who has disregarded the data transmission.
  • an unacceptable peak (exceeding a threshold) occurs in a multicarrier signal to be transmitted
  • at least a part of the peak is determined based on scheduling information.
  • the transmission stop processing of the transmission data of the sequence is performed (for example, the peak is permitted).
  • Sequential transmission stop processing is performed sequentially from transmission data with low priority in the scheduling means or narrow frequency band used until it falls within the threshold value), so it is not necessary to increase the operation scale as in the prior art. It is possible to easily achieve peak suppression while maintaining high-priority user communication as much as possible. Therefore, it is considered extremely useful in the field of wireless communication technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 マルチキャリア通信装置(1)において、複数系列の送信データの送信機会を所定のスケジューリング情報に従ってスケジュールするスケジューリング手段(12)と、マルチキャリア信号のピークが所定の閾値を超えているか否かを判定するピーク判定手段(18)と、ピーク判定手段(18)で前記ピークが前記閾値を超えていると判定された場合に、前記スケジューリング情報に基づいて前記複数系列の送信データの少なくとも一部の系列の送信データの送信停止処理を行なうピーク抑圧手段(23)とをそなえる。これにより、従来のように演算規模を増大させることなく、また、例えば、スケジュール順位の高いユーザの通信はできるだけ維持しつつ、簡易にピーク抑圧を達成することが可能になる。

Description

明 細 書
マルチキャリア通信装置及び同装置におけるピーク抑圧方法
技術分野
[0001] 本発明は、マルチキャリア通信装置及び同装置におけるピーク抑圧方法に関し、 例えば、複数系列の送信データを複数の搬送波(サブキャリア)に割り当てて伝送す るシステムに用いて好適な技術に関する。
背景技術
[0002] OFDM (Orthogonal Frequency Division Multiplexing)変調方式等のマルチキヤリ ァ伝送方式、即ち、複数系列の送信データを複数の搬送波 (サブキャリア)に割り当 ててマルチキャリア信号により伝送する方式では、平均電力に対するピーク電力(PA PR: Peak to Average Power Ratio)力 サブキャリア数に応じて大きくなるため、アン プ (電力増幅器)における非線形歪みの影響が問題になる。
[0003] 例えば、 OFDM変調方式において、ある瞬間に複数のサブキャリアが位相コヒーレ ント状態になると振幅合成されて電力ピークを生じる。この時、アンプの入力において 振幅増幅の線形 (リニア)領域を超えてしまうと非線形効果が発生し、帯域外放射が 発生する。
そこで、従来は、リニア特性を保証できないレベルの振幅値を発生する可能性があ る場合に、許容外のビットを切り捨てるクリッピングと呼ばれる処理により、アンプのリ ユア特性領域を守るようにして 、る。
[0004] 例えば、 OFDM変調方式を利用した送信機 (基地局など)では、図 18の(1)に模 式的に示すように、コアネットワーク(リモートセンタ)力も複数ユーザのデータがある 基地局に入力された状況をパラレル Zシリアル (PZS)変翻101による PZS変換 (時系列データに変換)にて表している。そこより、(図示しないスケジューラで選択さ れた)要求ユーザのデータが読み出され、シリアル Zパラレル (SZP)変 102に てサブキャリア数に応じた数の並列時間領域信号に SZP変換し、逆高速フーリエ変 ^^ (IFFT: Inverse Fast Fourier Transformer) 103にて、 IFFT処理を施して時間 領域信号を周波数領域信号に変換して各サブキャリアにユーザデータをマッピング し、さらに、各サブキャリア信号を PZS変翻104にて PZS変換 (時間多重)して出 力する。
[0005] ここで、上記 IFFT処理後の信号を PZS変 l04にて時間領域信号に戻した時 に、図 18の(2)に示すごとぐアンプのリニア特性を保証できないレベルの振幅値が 発生する場合がある。そこで、図 18の(2)及び (3)に示すごとぐ許容外のビットを切 り捨てるクリッピング処理により、アンプのリニア特性領域を保証するのである。
なお、このようなピーク抑圧に関する技術としては、他に、符号化に工夫を行なうも の(サブキャリアにマッピングする信号点で PAPRを抑圧できるように符号化を行なう 。あるサブキャリアにピークを抑圧するマッピングを行なうことと等価)や、 PTS (Partial Transmit Sequence)伝送、 SLM (Selected Mapping)伝送等の検討が行なわれてい る。
[0006] PTS伝送は、サブキャリアブロックのチャンク毎に適切に位相回転処理を行なうこと で PAPRを抑圧する技術である。ただし、回転した位相量を通知するための領域が 必要になる。
SLM伝送は、サブキャリア数に応じた複数の演算回路をもち、時間軸上で演算回 路ごとに異なるランダム符号を掛けて最も PAPRを抑圧する系列を選択する技術で ある。ただし、この技術においても、選択した系列を通知するための領域が必要にな る。
[0007] また、 PAPR抑圧技術としては、他に、下記特許文献 1〜3により提案されている技 術もある。
特許文献 1の技術は、マルチキャリア伝送の伝送効率の低下を抑えつつ、ピーク電 力を抑圧することを目的としており、そのために、生成された OFDM信号のピーク電 力を検出し、ピーク電力が閾値を超えた場合に、マルチキャリアのうちの特定のキヤリ ァについて、送信データ (情報信号)に代えて、ピーク電力を抑圧するための信号( 例えば、振幅及び位相のいずれか一方又は双方が制限された信号)を挿入する、あ るいは、情報信号をパンクチヤ(削除)するようになって 、る。
[0008] 特許文献 2の技術は、マルチキャリア伝送の伝送データ毎に異なる伝送品質を与 えて伝送効率を向上させ、さらに、マルチキャリア伝送におけるピーク電力の抑圧を も同時に可能とすることを目的としており、そのために、 1マルチキャリアシンボル時間 毎に、 n個の信号点で構成される符号語の識別能力、即ち、最小符号距離の異なる 符号ィ匕を行ない、最小符号距離を順次変化させることにより、 1データフレーム内に おいて異なる伝送品質を与え、効率の良い伝送を行なうようになっている。そして、上 記符号ィ匕において、伝送に使用する符号にピーク電力抑圧符号を採用することによ り、異なる伝送品質を与えながら、同時にピーク電力を抑圧することができる。
[0009] 特許文献 3の技術は、伝送効率をあまり低下させずに送信ピーク電力対平均電力 比を低減させることを目的としており、そのために、しきい値以上の振幅レベルのピー クが検出されると、ピークカット部により、検出されたピークをしきい値まで抑圧(つまり 、前述したクリッピング処理)し、ピーク抑圧後の信号を FFT処理した後、高伝送レー トのサブキャリアに割り当てられる入力データを、クリッピング処理による非線形歪み 力 保護するため、クリッピング処理前の信号に置換するようになっている。このクリツ ビングに関しては、パンクチヤする場合も考えられて 、る。
特許文献 1 :特開 2001— 339361号公報
特許文献 2 :特開 2000— 286818号公報
特許文献 3 :特開 2005— 101975号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、前記クリッピング処理 (前記特許文献 3の技術を含む)は、非常に簡 易な手法で、ある程度のピーク抑圧効果を得られる力 図 18の(4)及び(5)〖こ模式 的に示すように、サブキャリアに時間的に非連続な領域が生じてしまい、帯域外放射 の発生は避けられず、また、サブキャリア間の直交関係も崩れてしまうことになるため 、特性劣化を引き起こしてしまう。これに対して、前記の符号ィ匕に工夫を行なう技術( 前記特許文献 2の技術を含む)や、 PTS伝送、 SLM伝送については、クリッピング処 理よりも良い特性を得ることができるが、演算規模に大きな負荷が力かってしまう。
[0011] また、前記特許文献 1のように、情報信号の一部をパンクチヤしてピーク抑圧信号( 符号)を挿入する技術では、パンクチヤした部分でビット誤りを生じてしまうため、受信 誤り率の低下を防ぐには強力な誤り訂正処理が必要になる。さらに、前記特許文献 1 では、ピーク抑圧のために全サブキャリアの中力も選択したサブキャリアによる情報信 号の伝送を停止する手法について開示されているが、その選択基準や情報信号の 伝送を停止したサブキャリアのその後の扱いにっ 、ては不明となって 、る。
[0012] 本発明は、以上のような課題に鑑み創案されたもので、許容外のピーク (PAPR)が 発生した場合に、所定の優先度に従って少なくとも一部のキャリアによるユーザへの 情報信号の送信を停止 (パンクチヤ)させて、受信誤り率に影響を与えることなく(強 力な誤り訂正処理を必要とすることなく)、簡易に PAPRの抑圧を行なえるようにする ことを目的とする。また、 PAPRの抑圧のために伝送を停止したキャリア (ユーザ)に 関しての扱いを明確ィ匕して、送信機会の均等性を維持できるようにすることも目的と する。
課題を解決するための手段
[0013] 上記の目的を達成するために、本発明では、下記のマルチキャリア通信装置及び 同装置におけるピーク抑圧方法を用いることを特徴としている。即ち、
(1)本発明のマルチキャリア通信装置は、複数系列の送信データを複数の搬送波 に割り当ててマルチキャリア信号により伝送する装置であって、前記複数系列の送信 データの送信機会を所定のスケジューリング情報に従ってスケジュールするスケジュ 一リング手段と、前記マルチキャリア信号のピークが所定の閾値を超えている力否か を判定するピーク判定手段と、該ピーク判定手段で前記ピークが前記閾値を超えて いると判定された場合に、前記スケジューリング情報に基づいて前記複数系列の送 信データの少なくとも一部の系列の送信データの送信停止処理を行なうピーク抑圧 手段とをそなえたことを特徴として ヽる。
[0014] (2)ここで、該ピーク抑圧手段は、前記スケジューリング情報の要素情報としての優 先順位情報に基づ 、て、該ピーク判定手段で前記ピークが前記閾値以下と判定さ れるまで、前記複数系列の送信データの中で優先順位の低 、データ力 順番に前 記送信停止処理を繰り返し行なうべく構成されて!、てもよ ヽ。
(3)また、該ピーク抑圧手段は、前記スケジューリング情報の要素情報としての使用 周波数帯域情報に基づ!、て、該ピーク判定手段で前記ピークが前記閾値以下と判 定されるまで、前記複数系列の送信データの中で使用周波数帯域の狭!、信号から 順番に前記送信停止処理を繰り返し行なうべく構成されて ヽてもよ ヽ。
[0015] (4)さらに、上記マルチキャリア通信装置は、前記送信停止処理を行なった送信デ ータを特定する情報を、前記マルチキャリア信号を受信する装置に通知する通知手 段をさらにそなえて 、てもよ 、。
(5)また、上記マルチキャリア通信装置は、前記送信停止処理を行なった送信デー タの代わりにピーク抑圧データを挿入するピーク抑圧データ挿入手段をさらにそなえ ていてもよい。
[0016] (6)さらに、該スケジューリング手段は、前記送信停止処理を行なった送信データを 優先的に次の送信機会に設定すべく前記スケジューリング情報を更新する手段をそ なえていてもよい。
(7)また、本発明のマルチキャリア通信装置は、複数系列の送信データを複数の搬 送波に割り当ててマルチキャリア信号により伝送する装置であって、前記複数系列の 送信データの送信機会を所定のスケジューリング情報に従ってスケジュールするスケ ジユーリング手段と、前記マルチキャリア信号と、前記複数系列の送信データの少な くとも一部の系列の送信データを前記スケジューリング情報に基づいて予め除外した 1又は複数のマルチキャリア信号とを生成するマルチキャリア信号生成手段と、該マ ルチキャリア信号生成手段で生成された前記各マルチキャリア信号のそれぞれにつ いてピークが所定の閾値を超えている力否かを判定するピーク判定手段と、該ピーク 判定手段にて前記閾値以下と判定されたマルチキャリア信号を送信対象として選択 する選択手段とをそなえたことを特徴として 、る。
[0017] (8)さらに、該マルチキャリア信号生成手段は、前記スケジューリング情報の要素情 報としての優先順位情報に基づ 、て、優先順位の低!、信号力 送信データを予め 除外した 1又は複数のマルチキャリア信号を生成すべく構成されて 、てもよ!/、。
(9)また、該マルチキャリア信号生成手段は、前記スケジューリング情報の要素情 報としての使用周波数帯域情報に基づいて、使用周波数帯域の狭い信号から送信 データを予め除外した 1又は複数のマルチキャリア信号を生成すべく構成されていて ちょい。
[0018] (10)さらに、上記マルチキャリア通信装置は、前記予め除外した送信データの代 わりにピーク抑圧データを挿入するピーク抑圧データ挿入手段をさらにそなえて 、て ちょい。
(11)また、上記マルチキャリア通信装置は、該選択手段にて選択されたマルチキ ャリア信号に関する情報を、当該マルチキャリア信号を受信する装置に通知する通 知手段をさらにそなえて 、てもよ 、。
[0019] (12)さらに、該スケジューリング手段は、該選択手段にて選択されたマルチキャリア 信号の要素データ力 予め除外された送信データを優先的に次の送信機会に設定 すべく前記スケジューリング情報を更新する手段をそなえて 、てもよ 、。
(13)また、本発明のマルチキャリア通信装置におけるピーク抑圧方法は、複数系 列の送信データを複数の搬送波に割り当ててマルチキャリア信号により伝送するマ ルチキャリア通信装置におけるピーク抑圧方法であって、前記マルチキャリア信号の ピークが所定の閾値を超えている力否かを判定し、前記ピークが前記閾値を超えて V、ると判定された場合に、前記複数系列の送信データの送信機会をスケジュールす るスケジューリング情報に基づ 、て、前記複数系列の送信データの少なくとも一部の 系列の送信データの送信停止処理を行なうことを特徴としている。
[0020] (14)さらに、本発明のマルチキャリア通信装置におけるピーク抑圧方法は、複数系 列の送信データを複数の搬送波に割り当ててマルチキャリア信号により伝送するマ ルチキャリア通信装置におけるピーク抑圧方法であって、前記マルチキャリア信号と 、前記複数系列の送信データの少なくとも一部の系列の送信データを前記複数系列 の送信データ号の送信機会をスケジュールするスケジューリング情報に基づいて予 め除外した 1又は複数のマルチキャリア信号とを生成し、生成した前記各マルチキヤ リア信号のそれぞれにつ 、てピークが所定の閾値を超えて 、るか否かを判定し、前 記閾値以下と判定されたマルチキャリア信号を送信対象として選択することを特徴と している。
発明の効果
[0021] 本発明によれば、少なくとも下記の 、ずれかの効果な 、し利点が得られる。
(1)送信すべきマルチキャリア信号に許容できない(閾値を超える)ピークが発生し た場合に、スケジューリング情報に基づいて、少なくとも一部の系列の送信データの 送信停止処理を行なう(例えば、前記ピークが許容値に収まるまで、スケジューリング 手段での優先度の低い又は使用周波数帯域の狭い)送信データから、順次、送信 停止処理を行なう)ので、従来技術のように演算規模を増大させることなぐまた、例 えば、スケジュール順位の高いユーザの通信はできるだけ維持しつつ、簡易にピー ク抑圧を達成することが可能になる。
[0022] (2)また、ピーク抑圧をユーザ (受信機)毎の送信データの有 Z無で制御するため
、ビット誤りやパケット誤りには影響を及ぼさな 、。
(3)さらに、ピーク抑圧のために一時的に送信を止められた送信データに関して、 受信側に通知することにより、受信側で無駄に復調、復号処理回路を動作させること がなぐ受信側の低消費電力化にも大きく寄与する。
[0023] (4)さらに、少なくとも一部の送信データを除外したマルチキャリア信号を前記優先 度 (あるいは、使用周波数帯域)に応じて予め生成しておき、ピークが閾値以下となる マルチキャリア信号を送信対象として選択することで、ピーク判定を行なってから、再 度、送信マルチキャリア信号の作り直しを行なう必要を無くすことができるので、レイテ ンシによる性能劣化を防ぐことが可能となる
図面の簡単な説明
[0024] [図 1]本発明の概要を説明すべくマルチキャリア伝送システムの一例を示すブロック 図である。
[図 2]図 1に示す送信局における周波数割当イメージを示す図である。
[図 3]本発明の動作概要を説明するための模式図である。
[図 4]本発明の第 1実施形態に係るマルチキャリア(OFDM)伝送システムにおける 送信機 (マルチキャリア通信装置)に着目した構成を示すブロック図である。
[図 5]本発明の第 1実施形態に係るマルチキャリア(OFDM)伝送システムにおける 受信機に着目した構成を示すブロック図である。
[図 6]図 4に示す送信機における変調手法に応じたピーク判定手法を説明すべく前 記送信機の変調手段に着目した構成を示すブロック図である。
[図 7]図 4に示す送信機における変調手法に応じた他のピーク判定手法を説明すベ く前記送信機の変調手段に着目した構成を示すブロック図である。 [図 8]図 4に示す送信機の全体動作 (ピーク抑圧方法)を説明するためのフローチヤ ートである。
[図 9]図 4に示す送信機におけるピーク判定方法を説明するためのフローチャートで ある。
[図 10]図 4に示す送信機における他のピーク判定方法を説明するためのフローチヤ ートである。
[図 11]図 8に示す送信機の全体動作 (ピーク抑圧方法)の変形例を示すフローチヤ一 トである。
[図 12]図 8に示す送信機の全体動作 (ピーク抑圧方法)のさらに別の変形例を示すフ ローチャートである。
[図 13]本発明の第 2実施形態に係るマルチキャリア(OFDM)伝送システムにおける 送信機 (マルチキャリア通信装置)に着目した構成を示すブロック図である。
[図 14]本発明の第 3実施形態に係るマルチキャリア(OFDM)伝送システムにおける 送信機 (マルチキャリア通信装置)に着目した構成を示すブロック図である。
[図 15]図 14に示す送信信号生成部の構成を示すブロック図である。
[図 16]図 14に示す送信信号生成部の他の構成を示すブロック図である。
[図 17]本発明の第 4実施形態に係るマルチキャリア(OFDM)伝送システムにおける 送信機 (マルチキャリア通信装置)に着目した構成を示すブロック図である。
[図 18]従来技術及びその課題を説明するための模式図である。
符号の説明
1 送信機 (マルチキャリア通信装置)
10— 1〜: LO— n メモリ(メモリ領域)
11, 17, 17a, 20 ノ ラレル Zシリアル(PZS)変^^
12 マルチユーザスケジューラ(スケジューリング手段)
13a, 13b シリアル Zパラレル(SZP)変^^
13c 高速フーリエ変換 (FFT)部
13d カット部
14, 14—l〜14—k 符号化部 , 15— 1〜: 15— k, 25, 28 変調部
, 16a, 26, 29 逆高速フーリエ変換 (IFFT)部, 18— 1〜18— M ピーク判定部
スィッチ
送信 RF部
送信アンテナ
優先度割当 ZAMC設定部
スケジューラ管理情報発生部
受信アンテナ
受信 RF部
復調部
フィードバック情報判定部
A, 34B, 212A, 212B ミキサ(乗算器)
, 213 加算器 (多重化回路)
— 1〜36— M 送信信号生成部
最適生成法判定部
生成法通知部
ピーク抑圧信号生成部 (ピーク抑圧データ挿入手段) 1A, 211B ディジタル Zアナログ (DZA)変換器4 増幅器
5 ローカル発振器
6 π Ζ2位相シフタ
受信機
受信アンテナ
受信 RF部
シリアル Ζパラレル (SZP)変 « (チャネル分離部) , 49, 54 高速フーリエ変換 (FFT)部
伝搬路推定部 46 SINR計算部
47 CQI変換部
48, 60 フィードバック情報変換部
50, 55— 1〜55— k 復調部
51 スケジューラ管理情報判定部
52 復調判定部
53 シリアル Zパラレル (SZP)変^^
56- - 1〜56— k 復号化部
57 周波数整列部
58 再送判定部
59 スィッチ
61 フィードバック情報多重部
62 変調部
63 送信 RF部
64 送信アンテナ
発明を実施するための最良の形態
[0026] 以下、図面を参照して本発明の実施の形態を説明する。
〔A〕概要説明
本発明は、 OFDM A (Orthogonal Frequency Division Multiple Access)方式等の マルチキャリア伝送方式を採用する送信局にて、複数ユーザをスケジューリングして 送信を行なうシステムに適用され得る。システムの一例を挙げると、携帯電話システム ならば基地局力も複数ユーザへ送信する下りリンクを想定する。
[0027] まず、はじめに、図 1及び図 2を用いて概要的な説明を行なう。
図 1に示すように、ある送信局 (送信機) 1と通信して!/、る複数のユーザ # 1〜 # n (n は 2以上の整数)の移動端末装置 (受信機) 4— l〜4—nは、インターネット網などか ら各々必要な情報の収集を行なう。収集された情報は、送信局 1のユーザ # l〜# n 対応のメモリ(あるいはメモリ領域) 10— l〜10—nに一時的にバッファされ、マルチ ユーザスケジューラ 12からの送信要求に応じてデータがメモリ 10— i (i= l〜n)から マルチユーザスケジューラ(以下、単に「スケジューラ」ともいう) 12へ読み出されて O FDMAのサブキャリアに割り当てられ、送信アンテナ 22から電波伝搬して所望ユー ザ #iの受信機 4 iへ伝送される。なお、以下において、移動端末装置 (受信機) 4 1〜4 nを区別しな 、場合は移動端末装置 (受信機) 4あるいは端末 4と表記する
[0028] ここで、空間に放射し得る周波数帯域が規制されているため、一度に全てのユーザ
# iへ情報伝送できるわけではなく、ある瞬間では実線矢印で示す一部のユーザ # i (図 1ではユーザ # 1, # 2, # 3)のみに情報伝送されている状況となる。この瞬間の 周波数軸上でのユーザ割り当てを示したのが図 2である。
次に、本発明の本質的な部分の概要について、図 3を用いて説明する。
[0029] 図 3の(1)〖こ示すように、複数ユーザ #i宛のデータストリームはパラレル Zシリアル
(PZS)変 llにて PZS変換 (時間多重)される。ここで、スケジューラ 12により選 択されたユーザ #iのデータストリームのみが送信可能状態となり、スケジューラ 12は 、同時に通知される通信可能な情報量、マッピングするサブキャリア領域に従って通 信の準備に入る。
[0030] 図 3の(1)では、 SZP変換時に通知された通りにマッピングが行なわれる状況を示 している。周波数領域にマッピングされた情報は、シリアル Zパラレル (SZP)変^^
13aにて SZP変換され、 IFFT部 16にて IFFT処理を施されて時間領域信号に変換 されて、ある振幅と位相とをもつ信号へと変換され、さらに、ノラレル Zシリアル (PZ S)変翻17にて PZS変換 (時間多重)される。ここではディジタル信号を扱っている ため、表現を変えて I軸と Q軸の振幅をもつ信号 (直交多重信号)とも表すことができ、 図 3の(2)に示す振幅ビットは I軸、 Q軸それぞれの振幅値の大きさを意味している。
[0031] ここで、 I軸、 Q軸それぞれの振幅値をモニタし、それが許容範囲内ならば、図 3の( 3)及び (4)に示すように、余剰のビットを削減して、ディジタル Zアナログ (DZA)変 翻 211により DZA変換する。
DZA変換された I軸、 Q軸の各データは直交変調されて送信アンテナ 22から放射 される。なお、別の判定手段として、例えば、 I軸及び Q軸についての合成後の振幅 値 (f + Q2) 1/2をモニタして許容範囲内か否力の判断を行なうと、さらに精度が向上す る。
[0032] 一方、振幅値判定で許容外ならば、図 3の(5)に示すように、再度、 SZP変換器 1 3bと FFT部 13cにより周波数領域信号に変換し、予めスケジューラ 12にてランクされ ている優先度 (例えば、料金や、提供サービス、現在の伝搬環境等によって決定され る)に従い、最も低い優先度のユーザ # iのデータをカット部 13dにより削除 (パンクチ ャ)した上で、 IFFT部 16a及び PZS変換器 17aにて時間領域信号に再変換し、再 度、振幅値判定を行なう。
[0033] それでも判定結果が許容外ならば、上記と同様の処理を行な!/、、次に低優先度の ユーザ # i (サブキャリア)のデータを削除し、振幅判定条件を満たすまで、優先度の 低いユーザ # も同様のデータ削除を繰り返す。なお、削除したサブキャリア領域 には PAPRを抑圧するような制御信号を挿入することもできる。
このようにして、受信信号を IFFT処理後の時間領域信号に変換した時にアンプの リニア特性を保証できな ヽレベルの振幅値が発生した場合に、 FFT処理を行な 、周 波数領域にて、全サブキャリアの中で一部 (低優先度ユーザのサブキャリア)、もしく は、全サブキャリアのデータ削除を、許容できる PAPRに収まるまで、優先度の低い 順力 順次行なうことで、 PAPRを抑圧することが可能となる。
[0034] 以下、具体例について説明する。
〔B〕第 1実施形態の説明
図 4は本発明の第 1実施形態に係るマルチキャリア (OFDM)伝送システムにおけ る送信機 (マルチキャリア通信装置)に着目した構成を示すブロック図であり、図 5は 同システムにおける受信機に着目した構成を示すブロック図で、例えば、図 4に示す 送信機 1は基地局装置に、図 5に示す受信機 4は移動端末装置にそれぞれ適用する ことができる。なお、以下では、送信機 1を基地局 1、受信機 4を端末 4とそれぞれ表 記することがある。また、サブキャリア数は k (kは 2以上の整数)と仮定する。さらに、図 4において、 Zを付された配線部は複素平面における I, Qの直交多重信号が伝送さ れることを示している。
[0035] そして、図 4に示すように、本実施形態の送信機 1は、その要部に着目すると、例え ば、前記複数ユーザ # l〜# n (端末 4— 1〜4— n)に対応したメモリ(あるいはメモリ 領域) 10— 1〜10— n,スケジューラ 12,周波数割当部 13,符号ィ匕部 14— 1〜14— k,変調部 15— l〜15—k, IFFT部 16, PZS変換器 17,ピーク判定部 18,スイツ チ 19, PZS変換器 20,送信 RF部 21,送信アンテナ 22,優先度割当 ZAMC設定 部 23,スケジューラ管理情報発生部 24,変調部 25, IFFT部 26, ノ ィロット生成部 2 7,変調部 28, IFFT部 29,受信アンテナ 30,受信 RF部 31,復調部 32及びフィード ノック情報判定部 33をそなえて構成されている。
[0036] ここで、メモリ 10-j (j = l〜n)は、それぞれ、送信すべき信号 (ユーザデータストリ ーム。以下、送信ユーザデータともいう)を保持するものである。
スケジューラ (スケジューリング手段) 12は、全てのユーザ (端末 4)に関する情報( 例えば、端末 4カゝらフィードバックされる情報で、 ACKZNACK情報カゝら再送情報の 送信要否が分かり、また、 CQI (Channel Quality Indicator)情報からダウンリンクの伝 搬路の情報を得ることができる)に基づき、各ユーザ (データストリーム)に対する送信 機会(タイミング)や周波数 (サブキャリア)割り当て、符号化及び変調 (AMC: Adaptiv e Modulation and Coding)を適応的に指定 (スケジュール)するもので、本実施形態 では、送信情報の種別(電話、ゲーム等のリアルタイム通信、インターネット通信ゃフ アイルのダウンロード等の非リアルタイム通信)、顧客の課金クラスの判別、メモリ 10— j内に蓄積されている情報量、平均スループット、再送か否か、等の情報 (スケジユー リング情報)に基づき、実際に送信機会を割り当てる優先度をも決定できるようになつ ている。
[0037] 周波数割当部 13は、優先度割当 ZAMC設定部 23からの制御 (設定)に従って、 メモリ 10— jから読み出された複数系列の送信ユーザデータを所定の周波数 (サブキ ャリア) fx (ただし、 x= l〜k)に割り当てる(マッピングする)ものである。
符号ィ匕部 14— Xは、優先度割当 ZAMC設定部 23により設定された符号ィ匕方式及 び符号化率で送信ユーザデータ(つまり、サブキャリアデータ)を符号ィ匕するものであ る。なお、ここでいう「符号化」とは、サブキャリアにマッピングする信号点で PAPRを 抑圧できるように符号ィ匕を行なうこと、即ち、或るサブキャリアの送信ユーザデータを 削除 (パンクチヤ)したり、ピーク (PAPR)を抑圧する信号をマッピングしたりすること を含む概念である。 [0038] 変調部 15— xは、上記符号化後の送信ユーザデータを上記優先度割当 ZAMC 設定部 23により設定された変調方式で変調するもので、変調データとして I信号及び Q信号の直交多重信号が得られるようになって!/、る。
IFFT部 16は、サブキャリア毎の直交多重信号である上記変調データを IFFT処理 して時間領域の直交多重信号に変換するものであり、 PZS変換器 17は、上記 IFFT 処理により得られた時間領域信号を PZS変換して、所定のチャネル (トランスポート チャネル)フォーマットの信号を出力するものである。
[0039] ピーク判定部(ピーク判定手段) 18は、トランスポートチャネルにつ 、てピーク判定 を行ない、許容できない PAPRの発生の有無を判定するもので、許容できない PAP Rが発生しないと判定された場合にはスィッチ 19が PZS変 側へ切り替えられ てノ ィロットチャネルやスケジューラ管理チャネルとチャネル直交多重される。なお、 ここでいう「チャネル直交多重」には、前記時間多重のみならず、周波数多重、符号 多重等の「直交多重」ならば全ての方式が含まれる。つまり、全てのチャネルを PZS 変換による時間多重ではなぐチャネル毎に特定のサブキャリアを割り当てる周波数 多重、チャネル毎に直交する符号を乗じる符号多重、これらの組み合わせも適用可 能である。
[0040] 一方、許容できない PAPRが発生すると判定された場合にはスィッチ 19が優先度 割当 ZAMC設定部 23側へ切り替えられて PZS変 へはトランスポートチヤネ ルは出力されず、ピーク判定異常の旨が優先度割当 ZAMC設定部 23へ出力され るようになっている。
ここで、上記ピーク判定は、前述したように、 I軸、 Q軸それぞれの振幅値をモニタし 、そのモニタ結果が許容範囲内(所定閾値以下)か否かを判定することで行なっても よいし、 I軸及び Q軸についての合成後の振幅値 (f + Q2) 1/2をモニタし、そのモニタ 結果が許容範囲内(所定閾値以下)か否かを判定することで行なってもよい。
[0041] 前者の例としては、図 6に示すように、 I, Q信号のそれぞれについて、ディジタル Z アナログ (DZA)変換器 211 A, 211Bにより DZA変換し、アナログ部にて、ミキサ( 乗算器) 212A, 212Bによりローカル発振器 215及び π Z2位相シフタ 216で得ら れる位相が互いに π Ζ2だけ異なる周波数信号を乗じてアップコンバートする際に直 交位相面に I, Q信号をマッピングすることで位相変調する構成の場合に、 I, Qのそ れぞれの振幅値を用いてピーク判定を行なうことができる。なお、図 6において、符号 213は I, Q信号を加算 (多重)する加算器 (多重化回路)、符号 214は送信信号であ るチャネル直交多重信号を所要の送信電力にまで増幅する増幅器をそれぞれ示し ている。
[0042] 後者の例としては、図 7に示すように、ディジタル部にて、 IFFT部 16及び PZS変 翻 17により得られた I, Qの各信号をミキサ 34A, 34B及び加算器 35により高速サ ンプリングして中間周波数 (IF)帯にアップコンバートする際にピーク判定を行なう場 合で、この場合は、ピーク判定には I, Qを合成した振幅情報 (I2 + Q2) 1/2の 1つだけで 済み、 DZA変^^も 1つ(DZA変翻 211)のみで対応可能となる。なお、図 7に おいて、ピーク判定部 18には (f+Q2) 1/2の信号が直接入力されてくることになる。ま た、この図 7において、符号 212は DZA変換器 211からの IF帯のアナログチャネル 直交多重信号を RF帯の周波数変換 (アップコンバート)する RF変換器、符号 214は この場合も当該 RF帯のチャネル直交多重信号を所要の送信電力にまで増幅する増 幅器をそれぞれ示している。さらに、図 6及び図 7において、必要なフィルタ等の図示 は省略している。
[0043] 次に、図 4において、優先度割当 ZAMC設定部 23は、スケジューラ 12で決定した 優先度及び AMC設定に従って、メモリ 10— jからのユーザデータストリームの周波数 割当部 13への読み出し、周波数割当部 13での周波数割り当て、 AMC、つまりは符 号ィ匕部 14 Xでの符号ィ匕方式、符号化率、変調部 15— jでの変調方式 (例えば、 Q PSK又は 16QAM等)をそれぞれ制御するものである。なお、前述したように、空間 に放射し得る周波数帯域には限界があるため、一度に全ての受信機 4へ情報伝送で きるわけではなぐある瞬間では一部の受信機 4のみに情報伝送が可能である(図 4 中のメモリ 10— jから周波数割当部 13への実線矢印が力かる状況を示している。以 下、同じ)。
[0044] ただし、本例の優先度割当 ZAMC設定部 23は、ピーク(PAPR)抑圧手段として の機能、即ち、ピーク判定部 18でピーク判定結果力 SNGだった場合に、スケジューラ 12でのスケジューリング情報、具体的には、その要素情報である優先度 (優先順位) 情報に基づいて、前記複数系列の送信ユーザデータの少なくとも一部の系列、より 詳細には、ピーク判定結果力OK (閾値以下)となるまで、優先度の低いユーザから 順にユーザデータストリームの送信停止処理を繰り返し行なうベぐ対応する符号ィ匕 部 14 x、変調部 15 Xを制御する機能を具備して 、る。
[0045] なお、ここで 、う「送信停止処理」には、サブキャリア数を削減 (可変)する処理の他 、データ削除する(換言すれば、振幅値をゼロとするパンクチヤを行なう)処理が含ま れる。
PZS変 は、上記ピーク判定により問題無いと判断された場合にスィッチ 19 経由で入力されてくるトランスポートチャネルに、 IFFT部 26及び 29から送られてくる 時間領域の各信号 (受信機 4への通知情報及びパイロット信号)をチャネル直交多重 するものであり、送信 RF部 21は、当該多重信号を無線周波数 (RF)帯の信号に周 波数変換 (アップコンバート)して所要の送信電力に増幅する等の無線送信処理を 行なうものであり、送信アンテナ 22は、前記 RF帯の送信信号を受信機 4との間の伝 搬路へ放射するものである。
[0046] スケジューラ管理情報発生部 24は、スケジューラ 12 (優先度割当 ZAMC設定部 2 3)で指定するユーザの割り当て状況とその符号化、変調方式に関する情報をスケジ ユーラ管理情報として生成するものであり、変調部 25は、当該管理情報を予め決め られたチャネル (スケジューラ管理チャネル)フォーマットに合わせて変調するもので あり、 IFFT部 26は、前記変調により得られた変調データ (I, Q信号)を IFFT処理し て時間領域の信号に変換するもので、得られた信号は上述したごとく PZS変 2 0にて送信ユーザデータのトランスポートチャネルと直交多重される。
[0047] つまり、これらのスケジューラ管理情報発生部 24,変調部 25及び IFFT部 26から成 るブロックは、送信停止処理を行なった送信信号を特定する情報として前記ユーザ の割り当て状況に関する情報を、受信機 4にスケジューラ管理チャネルにより通知す る通知手段としての機能を果たすのである。
ノ ィロット生成部 27は、受信機 4がパスタイミングや伝搬路情報を得るために送信 すべきパイロット信号 (送信機 1と受信機 4との間で既知の信号)を予め決められたフ ォーマットの信号パターンで生成するものであり、変調部 28は、当該ノ ィロット信号を 予め決められたチャネル(パイロットチャネル)フォーマットに合わせて変調するもので あり、 IFFT部 29は、前記変調により得られた変調データ (I, Q信号)を IFFT処理し て時間領域の信号に変換するもので、得られた信号は前記管理情報と同様に PZS 変 にて送信ユーザデータのトランスポートチャネルと直交多重される。
[0048] なお、スケジューラ管理情報発生部 24及びパイロット生成部 27において初めから 時間領域信号を生成する場合には、 IFFT部 26及び 29は不要になる(以下、同じ)。 受信アンテナ 30は、端末 4カゝら送信されてくる RF帯の信号を受信するものであり、 受信 RF部 31は、受信アンテナ 30で受信された RF帯の信号をベースバンド信号に まで周波数変換 (ダウンコンバート)する処理や受信信号を I, Qの直交多重信号に分 離する直交検波処理、アナログ受信信号をディジタル受信信号に変換する AZD変 換処理などの所要の受信無線処理を行なうものである。
[0049] 復調部 32は、上記受信 RF部 31により得られた受信アナログ直交多重信号を端末 4での変調方式に対応した復調方式で復調するものであり、フィードバック情報判定 部 33は、この復調部 32により得られた復調データから端末 4からのフィードバック情 報 (ACKZNACK情報や CQI情報等)を検出して、例えば、 ACKZNACK情報を 基に再送情報の送信要否を判定し、また、 CQI情報力もダウンリンクの伝搬路の情報 を取得することができるものである。なお、得られた情報は、スケジューラ 12でのスケ ジユーリング決定要素としてスケジューラ 12に供給されるようになっている。
[0050] 一方、図 5に示すように、本実施形態の受信機 4は、その要部に着目すると、例え ば、受信アンテナ 41,受信 RF部 42, SZP変翻 43, FFT部 44,伝搬路推定部 4 5, SINR計算部 46, CQI変換部 47,フィードバック情報変換部 48, FFT部 49,復 調部 50,スケジューラ管理情報判定部 51,復調判定部 52, SZP変換器 53, FFT 部 54,復調部 55— 1〜55— k,復号ィ匕部 56— 1〜56— k,周波数整列部 57,再送 判定部 58,スィッチ 59,フィードバック情報変換部 60,フィードバック情報多重部 61 ,変調部 62,送信 RF部 63及び送信アンテナ 64をそなえて構成されている。
[0051] ここで、受信アンテナ 41は、送信機 1から送信されてくる RF帯の信号を受信するも のであり、受信 RF部 42は、受信アンテナ 41で受信された RF帯の信号をベースバン ド信号にまで周波数変換 (ダウンコンバート)する処理や受信信号を I, Qの直交多重 信号に分離する直交検波処理、アナログ受信信号をディジタル受信信号に変換する AZD変換処理などの所要の受信無線処理を行なうものである。
[0052] SZP変 は、上記受信 RF部 42により得られたディジタル受信チャネル直交 多重信号を SZP変換して、それぞれ I, Qの直交多重信号であるパイロット信号 (パイ ロットチャネル),管理情報 (スケジューラ管理チャネル)及びユーザデータ(トランスポ ートチャネル)を分離(つまり、チャネル分離)するためのもので、パイロット信号は FF Τ部 44へ、管理情報は FFT部 49へ、ユーザデータは復調判定部 52へそれぞれ出 力されるようになっている。なお、図 5では、時間多重されたチャネルを分離するよう になっているが、送信機 1側の多重方式 (周波数多重や符号多重など)に対応したチ ャネル分離を行なえばょ 、。
[0053] FFT部 44は、上記受信パイロット信号を FFT処理して周波数領域の直交多重信 号に変換するものであり、伝搬路推定部 45は、当該周波数領域の信号と既知のパイ ロット信号 (パイロットレプリカ)との相関処理により伝搬路 (チャネル)推定を行なうも ので、その推定結果 (チャネル推定値)は SINR計算部 46及び各復調部 50, 55— X に供給されるようになって 、る。
[0054] SINR計算部 46は、上記チャネル推定値に基づ 、て、 SINR (Signal to Interferenc e and(pulse) Noise Ratio)、即ち、干渉と熱雑音を合わせた総雑音に対する信号比率 を計算するものであり、 CQI変換部 47は、この SINR計算部 46により得られた SINR を諸条件に従って、伝搬路の品質を特定のルールで量子化して表した CQI情報へ 変換するもので、得られた CQI情報は、後述のフィードバック情報多重部 61にて AC KZNACK情報と直交多重されて送信アンテナ 64から伝搬路を介して送信機 1側 へフィードバックされるようになって 、る。
[0055] フィードバック情報変換部 48は、上記 CQI情報をフィードバック情報の送信チヤネ ルフォーマットに合わせたフォーマットに変換するものである。
FFT部 49は、上記 SZP変換器 43により分離された管理情報 (直交多重信号)を F FT処理して周波数領域の直交多重信号に変換するものであり、復調部 50は、伝搬 路推定部 45により得られたチャネル推定値を用いて、当該周波数領域の直交多重 信号を送信機 1側での変調方式に対応した復調方式で復調するものである。なお、 当該復調部 50による復調は、各復調部 55— kによるトランスポートチャネルの復調に 先立って行なわれる。
[0056] スケジューラ管理情報判定部 51は、上記復調部 50により復調されたスケジューラ 管理チャネルの情報 (スケジューラ管理情報)に基づいて、トランスポートチャネルの ユーザの情報データの有無、当該トランスポートチャネルの復調に必要な情報 (例え ば、割り当てられているサブキャリアや、変調方式、符号化方式、符号化率等の情報 )を判定するものである。
[0057] 復調判定部 52は、前記ユーザの情報データがトランスポートチャネルに含まれてい た場合に、上記スケジューラ管理情報判定部 51にて得られた管理情報を基に、当該 トランスポートチャネルの復調、復号指定を SZP変換器 53に対して行なうものであり 、 SZP変換器 53は、前記復調判定部 52からの指定に応じてトランスポートチャネル のデータをサブキャリア数( =k)分の並列信号 (直交多重信号)に SZP変換するも のであり、 FFT部 54は、前記各並列信号について FFT処理を施して周波数領域の 直交多重信号に変換するものである。なお、前記ユーザの情報データが含まれてい な 、場合は復調処理を休止して、電力消費を抑える事が可能である。
[0058] 復調部 55— Xは、それぞれ、伝搬路推定部 45で得られたチャネル推定値を用いて 、上記 FFT後の周波数領域信号をスケジューラ管理情報判定部 51で得られたスケ ジユーラ管理情報により指定される復調方式で復調するものであり、復号ィ匕部 56— X は、それぞれ、対応する復調部 55— Xにより得られた復調データをスケジューラ管理 情報判定部 51で得られたスケジューラ管理情報により特定される符号ィ匕方式及び符 号ィ匕率に従って復号するものである。
[0059] 周波数整列部 57は、各復号ィ匕部 56— Xにより得られた復号データをサブキャリア の周波数 fxに応じて時系列データに整列するものであり、再送判定部 58は、この周 波数整列部 57から入力されたデータの正誤について、 CRC (Cyclic Redundancy Ch eck)ビット等を用いて判定するもので、誤りが無ければ正しくデータを抽出できたこと になるので ACK信号が、そうでな ヽ場合は NACK信号がそれぞれ送信機 1へフィー ドバックすべき情報としてスィッチ 59経由でフィードバック情報変換部 60に出力され るようになっている。 [0060] なお、スィッチ 59は、 ACKの場合はデータをそのまま後段へ出力し、 NACKの場 合は後段へデータは出力しないように制御される。また、 NACKの場合、 HARQに 基づく再送合成処理を行なうならば、受信した信号のうち必要なものを図示しな ヽメ モリ等に蓄積したままにして、再送信号を待つことになる。
フィードバック情報変換部 60は、上記 ACKZNACK信号をフィードバック情報の 送信チャネルフォーマットに合わせたフォーマットに変換するものであり、フィードバッ ク情報多重部 61は、当該 ACKZNACK信号と前記フィードバック情報変換部 48か らの CQI情報とを多重するものであり、変調部 62は、当該多重後のフィードバック情 報を所定の変調方式で変調するもので、この場合も、変調データとして例えば Iチヤ ネル信号及び Qチャネル信号の直交多重信号が得られるようになって ヽる。
[0061] そして、送信 RF部 63は、当該変調データを無線周波数 (RF)帯の信号に周波数 変換 (アップコンバート)して所要の送信電力に増幅する等の無線送信処理を行なう ものであり、送信アンテナ 64は、前記 RF帯の送信信号を送信機 1との間の伝搬路へ 放射するものである。
以下、上述のごとく構成されたシステム (送信機 1及び受信機 4)の動作について説 明する。
[0062] まず、送信機 1では、メモリ 10— jにそれぞれ各ユーザの送信ユーザデータストリー ムが蓄えられている。端末 4力も報告されるフィードバック情報、即ち、受信アンテナ 3 0,受信 RF部 31,復調部 32及びフィードバック情報判定部 33を通じて得られるフィ ードバック情報の内で、 ACKZNACK情報力も再送情報の要否が分かり、また、 C QI情報力も伝搬路の情報を得ることができ、各ユーザのそれらの情報をスケジューラ 12に集約する。また、送信情報の種別 (電話、ゲーム等のリアルタイム通信、インター ネット通信やファイルのダウンロード等の非リアルタイム通信)、顧客の課金クラスの判 別、メモリ内に蓄積されている情報量、平均スループット、再送か否か、等のような優 先度情報もスケジューラ 12に集約され、スケジューラ 12は、以上の各種情報に基づ き、実際に送信機会を割り当てる優先度を決定する(図 8のステップ Sl)。
[0063] スケジューラ 12は、決定した優先度に従って該当メモリ 10— jからそれぞれユーザ データストリームを周波数割当部 13へ読み出し、周波数割当部 13は、入力ユーザ データストリームをそれぞれいずれかのサブキャリア fxに割り当てる。各サブキャリア 信号は、対応する符号ィ匕部 14 Xにてスケジューラ 12 (優先度割当 ZAMC設定部
23)から指定された符号化方式、符号化率で符号化されたのち、対応する変調部 15 Xにて同じく指定の変調方式で適応変調される(図 8のステップ S2)。なお、各ユー ザデータストリームは、最小のサブキャリア fx単位ではなぐ複数サブキャリア fxをまと めたグループ単位で適応変調してもよ 、。
[0064] これにより得られた適応変調信号は、 IFFT部 16に入力されて IFFT処理を施され ることによって時間領域信号に変換され(図 8のステップ S3)、 PZS変 にて時 間多重されてピーク判定部 18に入力される。ピーク判定部 18では、 PZS変翻17 力 の信号(トランスポートチャネル信号)のピーク判定を行な 、、許容できな ヽ PAP Rの発生の有無を判定する(図 8のステップ S4)。
[0065] 即ち、図 6により前述した構成において、例えば図 9に示すように、 I軸、 Q軸それぞ れの振幅値をモニタし (ステップ S41, S42, S43)、そのモニタ結果がいずれも許容 範囲内(所定閾値以下) (yes)であればピーク判定合格 (OK)と判定し (ステップ S44 の yesルートからステップ S45)、そうでなければピーク判定失格 (NG)と判定する(ス テツプ S44の noルートからステップ S46)。
[0066] あるいは、図 7により前述した構成において、例えば図 10に示すように、 I軸及び Q 軸についての合成後の振幅値 (I2 + Q2) 1/2をモニタし (ステップ S41, S42a)、そのモ ユタ結果が許容範囲内 (所定閾値以下)であればピーク判定合格 (OK)と判定し (ス テツプ S43aの yesルートからステップ S45)、そうでなければピーク判定失格 (NG)と 判定する(ステップ S43aの noルートからステップ S46)。
[0067] 上記ピーク判定の結果、 OKならば、図 8に示すように、上記トランスポートチャネル 信号は、スィッチ 19経由で PZS変換器 20に入力されて他のチャネルの信号、即ち 、 ノ ィロット生成部 27、変調部 28及び IFFT部 29を通じて得られたノ ィロットチヤネ ルの信号、並びに、スケジューラ管理情報発生部 24、変調部 25及び IFFT部 26を 通じて得られたスケジューラ管理チャネルの信号と直交多重された後 (ステップ S4の yesルートからステップ S8)、送信 RF部 21にて RF信号へ変換(アップコンバート)さ れて (ステップ S9)、送信アンテナ 22から送信される (ステップ S 10)。 [0068] 一方、ピーク判定結果が NGの場合は、その情報が優先度割当 ZAMC設定部 23 にフィードバックされ、優先度割当 ZAMC設定部 23は、サブキャリア信号 (マルチキ ャリア信号の要素信号)数を削減する処理、例えば、最も優先度の低いユーザを検 出し、当該低優先度ユーザのユーザデータストリームの送信を停止する(控える)よう にスケジューラ 12、符号ィ匕部 14— x、変調部 15— Xを制御する (ステップ S5, S6, S 7)。なお、送信を停止する手段としては、サブキャリア数を削減 (可変)することが考 えられるが、適応変調を指定するための制御情報を増やさないために、低優先度ュ 一ザのユーザデータストリームの送信を見合わせる、即ち、データ削除する (換言す れば、振幅値をゼロに置き換えるパンクチヤを行なう)方が好ま 、。
[0069] その後、上記のように送信ユーザデータストリーム数を削減した状態で、再度、適応 変調が行なわれ、最終的に、ピーク判定部 18にてピーク判定結果が OKとなるまで( ステップ S4で yesと判定されるまで)、上記ステップ S2, S3, S5〜S7の処理が繰り返 し実行されて、低優先度ユーザ力 ユーザデータストリームの削除が繰り返される。 そして、ピーク判定結果が OKとなれば、上述したごとく他のチャネルの信号 (パイ口 ットチャネル及びスケジューラ管理チャネルの信号)と直交多重された後 (ステップ S4 の yesルートからステップ S8)、送信 RF部 21にて RF信号へ変換(アップコンバート) されて (ステップ S9)、送信アンテナ 22から送信される(ステップ S 10)。
[0070] 一方、端末 4では、上記送信機 1から送信された RF信号が受信アンテナ 41で受信 され、受信 RF部 42にてベースバンド信号に変換 (ダウンコンバート)された後、 SZP 変^ ^43にて、パイロットチャネル、スケジューラ管理チャネル,トランスポートチヤネ ル、その他のチャネルの各信号にチャネル分離される。
そして、パイロットチャネルの信号 (パイロット信号)は、 FFT部 44にて FFT処理され て周波数領域信号に変換された上で伝搬路推定部 45に入力され、当該伝搬路推 定部 45にてチャネル推定処理、即ち、当該受信パイロット信号とパイロットレプリカと の相関演算処理が行なわれてチャネル推定値が求められ、その情報を用いて、まず スケジューラ管理チャネルが復調され、次にトランスポートチャネルが復調される。
[0071] スケジューラ管理チャネルの信号は、 FFT部 49にて FFT処理されて周波数領域 信号に変換された上で、復調部 50にて上記伝搬路推定部 45で得られたチャネル推 定値を用いて復調される。得られた復調データは、スケジューラ管理情報判定部 51 に入力されて、トランスポートチャネルのユーザの情報データの有無、当該トランスポ ートチャネルの復調に必要な情報 (例えば、割り当てられているサブキャリアや、変調 方式、符号化方式、符号ィ匕率等の情報)が判定、取得され、復調判定部 52、復調部 55— x、復号ィ匕部 56— Xに通知される。
[0072] これにより、トランスポートチャネルに復号すべき情報データが含まれていれば、復 調判定部 52によりトランスポートチャネルの復号指定が行なわれる。復号指定が行な われると、トランスポートチャネルの信号は、 SZP変換器 53にてサブキャリア数分の 並列信号に変換された上で、 FFT部 54にてそれぞれ周波数領域信号に変換されて 対応する復調部 55— Xに入力される。復調部 55— Xは、スケジューラ管理情報判定 部 51から通知された変調方式に対応する復調方式で、伝搬路推定部 45で得られた チャネル推定値を用いて、自端末 4宛の情報データが含まれて 、るサブキャリア信号 の復調を行なう。
[0073] 得られた復調データは、対応する復号化部 56— Xにて、スケジューラ管理情報判 定部 51から通知された送信機 1側の符号ィ匕方式、符号化率に基づいて復号され、 得られた復号データは、周波数整列部 57にて、サブキャリア fxに応じて時系列デー タに整列された上で再送判定部 58に入力される。
再送判定部 58では、上記周波数整列部 57から入力されたデータの正誤を、 CRC ビット等を用いて判定し、誤りが無ければ ACK信号を、そうでない場合は NACK信 号を生成、出力する。その際、 HARQに基づく再送合成を行なうなら、受信した信号 のうち必要なものを図示しないメモリに蓄積したままにしておき、再送信号を待つこと になる。
[0074] そして、上記 ACKZNACK信号は、フィードバック情報変換部 60にて、送信機 1 へのフィードバック情報の送信チャネルフォーマットに合わせたフォーマットに変換さ れた上で、フィードバック情報多重部 61にて、受信パイロット信号力も FFT部 44、伝 搬路推定部 45、 SINR計算部 46、 CQI変換部 47及びフィードバック情報変換部 48 を通じて得られた CQI情報と多重される。
[0075] 多重された信号 (フィードバック情報)は、変調部 62にて、所定の変調方式で変調 され、送信 RF部 63で RF信号に変換された上で、送信アンテナ 64から送信機 1へ向 けて送信される。
以上のように、本実施形態によれば、送信機 1において、許容できない PAPRが発 生した場合に、許容 PAPRに収まるまで、スケジューラ 12での優先度の低いユーザ データストリーム (サブキャリア)から、順次、データ削除 (パンクチヤ)を行なうことで、 PAPR抑圧が必要な時にのみ一部のユーザデータストリームをカットして、 PAPRを 抑圧するので、 PTS伝送や SLM伝送等のように演算規模を増大させることなぐまた 、優先度 (スケジュール順位)の高いユーザの通信はできるだけ維持しつつ、簡易に PAPRの抑圧を達成することが可能になる。
[0076] また、従来技術では、サブキャリアをパンクチヤするとビット誤りを生じ、パケット誤り を生じさせなくするには強力な誤り訂正が必要であつたが、本実施形態では、ユーザ 毎のデータで有 z無を制御して 、るため、ビット誤りやパケット誤りには影響を及ぼさ ない。
また、 PAPR抑圧のために一時的に送信を止められたユーザに関して、スケジユー ラ管理チャネルにてデータの有無を端末 4に通知して 、るので、端末 4側で無駄に復 調、復号処理回路を動作させることもなぐ端末 4の低消費電力化にも大きく寄与す る。
[0077] なお、上述した例は、 PAPR抑圧のスケジューリングに関して、スケジューラ 12の優 先度 (送信情報の種別 (電話、ゲーム等のリアルタイム通信、インターネット通信ゃフ アイルの DL等の非リアルタイム通信)、顧客の課金クラスの判別、メモリ内に蓄積され ている送信データ量)に従い、 QoS (Quality of Service)を高品質で維持しながらス ループットを向上させる技術である力 PAPR抑圧に特ィ匕したスケジューリングを行な つてもよい。
[0078] その場合の動作フローを図 11に示す。即ち、送信機 1は、図 8により前述したステツ プ S6の処理に代えて、ピーク判定結果が NGで再スケジューリングが必要な場合に、 利用している周波数帯域が最も狭いユーザを検出して当該ユーザをデータ削除対 象として選択する処理を行なうのである (ステップ )。
PAPRを抑圧する効果として、送信を見合わせるユーザの周波数帯域が広 、ほど そこに含まれる電力を削減し、また複数サブキャリアが位相コヒーレントになり振幅強 調効果を表す可能性を低減できるのだが、使用する周波数帯域が少なくなりスルー プットが低下してしまうことになる。そこで、上記のように、使用周波数帯域が狭いュ 一ザ力 順次データ削除対象として選択することで、スループット低減を抑えることが 可能となる。
[0079] ·送信を見合わせたユーザの再スケジューリングにつ!/、て
スケジューラ 12により、送信キューに設定されながら、 PAPR抑圧のために送信機 会を見合わされたユーザに関しては、例えば、次スロット(次の送信機会)には必ず( 優先的に)送信できるようにする。即ち、例えば図 12に示すように、ステップ S6 (ある いは、図 11のステップ )においてデータ削除された低優先度ユーザのユーザ データストリームは、次スロットの送信キューに格納し、所要の遅延処理を受けた後、 スケジューラ 12 (優先度割当 ZAMC設定部 23)において最優先設定 (スケジユーリ ング情報を更新)する(ステップ S 11, S12, S13, S14)。
[0080] これにより、各端末 4に対する送信機会の均等性を維持することが可能となる。これ は、送信機 1は、 CQIにより端末 4から通知された伝搬路状態に応じた適応変調を行 なって 、るため、その伝搬路状態が大きく変わらな 、時間内に送信した 、と 、う技術 的な背景と、送信遅延をなるベく起こさせたくないというサービス的な背景の両者の 面で有効な手段である。
[0081] 〔C〕第 2実施形態の説明
図 13は上述した送信機 1の第 2実施形態を示すブロック図で、この図 13に示す送 信機 1は、図 4により前述した構成に比して、符号化部 14及び変調部 15が周波数割 当部 13の前段に設けられている点が異なる。つまり、本例の構成は、図 4のようにサ ブキャリア (もしくは、サブキャリアグループ)毎に適応変調を行なうのではなぐユー ザ毎に適応変調を行なった後に、サブキャリアへユーザデータストリームをマッピング する例である。
[0082] 本例の場合、サブキャリア (もしくは、サブキャリアグループ)毎に最適な適応変調は 行なえないものの、適応変調法の指定をユーザ毎に行なうことができるので、制御情 報量を削減することが可能である。 なお、図 13において、既述の符号と同一符号を付した構成要素は、いずれも、既 述の符号を付した構成要素と同一若しくは同様のものである。また、符号化部 14及 び変調部 15は、それぞれ、既述の符号ィ匕部 14— X及び変調部 15— Xと同一若しく は同様のもので、最大ユーザ数 (メモリ 10— jの数) n以下の数、具体的には、最大同 時通信可能数だけそなえられていれば足りる。さらに、受信機 4の構成は図 5と同じ でよい。
[0083] 〔D〕第 3実施形態の説明
図 14は上述した送信機 1の第 3実施形態を示すブロック図で、この図 14に示す送 信機 1は、図 4に示した構成に比して、 P/S変 の前段のブロック力 複数の 送信信号生成部 36— 1〜36— Mと、これらの送信信号生成部 36— 1〜36— Mに 対応したピーク判定部 18— 1〜18— Mと、最適生成法判定部 37と、生成法通知部 38とを有するブロックに置き換えられている点が異なる。なお、その他の既述の符号 と同一符号を付した構成要素は、特に断らない限り、既述の構成要素と同一若しくは 同様のものである。また、受信機 4の構成は第 1実施形態(図 5)と同じでよい。
[0084] ここで、送信信号生成部(マルチキャリア信号生成手段) 36— p (p= 1〜M)は、そ れぞれ、図 15又は図 16に示すように、図 4又は図 13に示したピーク判定部 18の前 段のブロックに相当する構成を有し、いずれかの送信信号生成部 36— p (例えば、 p = 1)にお 、て、データ削除(除外)を行なわな ヽ(送信データのある全サブキャリアで 送信を行なう)場合のチャネル直交多重信号 (マルチキャリア信号)を生成し、残りの 送信信号生成部 36— q (ただし、 q≠p)で、優先度の低いユーザ力 順に送信を見 合わせた (ユーザデータストリームの除外を行なった)チャネル直交多重信号を予め 生成できるようになって 、る。
[0085] 即ち、例えば、送信信号生成部 36— 2では、最も優先度の低い(あるいは、使用周 波数帯域の狭!、)ユーザのユーザデータストリームを削除したチャネル直交多重信 号を生成し、送信信号生成部 36— 3では、当該ユーザとその次に優先度の低い(あ るいは、使用周波数帯域の狭い)ユーザの 2つのユーザデータストリームを削除した チャネル直交多重信号を生成し、以降、同様にして、優先度の低い(あるいは、使用 周波数帯域の狭い)ユーザ力 順にデータ削除を行なったチャネル直交多重信号を 残りの送信信号生成部 36— 4〜36〜36— Mで生成するようになっているのである。
[0086] なお、図 15及び図 16に示す構成では、スケジューラ管理情報発生部 24に通知す べき AMC設定情報も共に後段へ出力される。また、本例における優先度も第 1実施 形態と同様に設定される。
そして、ピーク判定部 (ピーク判定手段) 18— pは、それぞれ、既述のピーク判定部 18と同様のもので、対応する送信信号生成部 36— pからのチャネル直交多重信号 のピーク判定を既述の第 1実施形態と同様にして行なうものであり、最適生成法判定 部 (選択手段) 37は、各ピーク判定部 18— pによるピーク判定結果を確認して、ピー ク判定結果が OK (ピークが閾値以下)となった送信信号生成部 36— p (複数存在す る場合は、データ削除を行なったユーザ数が最小のもの)からのチャネル直交多重 信号を最適な生成法による信号として選択して PZS変 へ出力するとともに、 その選択情報 (AMC設定情報を含む)を生成法通知部へ出力するものである。
[0087] 生成法通知部(通知手段) 38は、上記最適生成法判定部 37からの選択情報を受 けて、送信信号の生成法 (送信対象として選択されたマルチキャリア信号)に関する 情報、即ち、どのユーザ (サブキャリア)についてデータ削除を行なつたかを特定可能 な情報をスケジューラ管理情報発生部 24に通知するもので、これにより、スケジユー ラ管理チャネルで当該情報を端末 4へ通知することが可能となっている。
[0088] 上述のごとく構成された本実施形態の送信機 1では、データ削除を行なわない送 信信号 (チャネル直交多重信号)、優先度の低いユーザ力 順にデータ削除を行な つた送信信号が予め送信信号生成部 36— pによって生成され、各送信信号につい てそれぞれピーク判定部 18— pにてピーク判定が行なわれる。
そして、それぞれの判定結果を最適生成法判定部 37にて確認し、ピーク判定結果 力 OKでデータ削除を行なったユーザ数が最小の送信信号生成部 36— pからの送 信信号が選択されて PZS変 に出力され、 PZS変 にて、パイロットチ ャネル及びスケジューラ管理チャネルの信号と多重された上で、送信 RF部 21にて R F信号に変換され、送信アンテナ 22から送信される。
[0089] なお、送信信号生成部 36— pの若い番号力 順にデータ削除を行なったユーザ数 が増えるように送信信号生成部 36— pの生成法を設定した場合には、最適生成法判 定部 37は、送信信号生成部 36— pの番号の若い順に判定結果を確認し、ピーク判 定結果が OKとなった最も若い番号の送信信号生成部 36— pからの送信信号を選択 すればよいことになる。つまり、最適生成法判定部 37での判定処理が簡易化される。
[0090] さて、最適生成法判定部 37にて選択された生成法に関する情報は、生成法通知 部 38により、スケジューラ管理情報発生部 24に通知され、当該情報を含むスケジュ ーラ管理チャネルが生成されることになる。
以上のような形態をとることによって、第 1及び第 2実施形態と同様の作用効果が得 られるほか、第 1及び第 2実施形態のように、ピーク判定を行なってから、再度、送信 信号の作り直しを行なう必要を無くすことができるので、レイテンシによる性能劣化を 防ぐことが可能となる。
[0091] 〔E〕第 4実施形態の説明
図 17は上述した送信機 1の第 4実施形態を示すブロック図で、この図 17に示す送 信機 1は、図 4により前述した構成に比して、 IFFT部 16の前段にピーク抑圧信号生 成部 (ピーク抑圧データ挿入手段) 39が設けられ、このピーク抑圧信号生成部 39で 生成されたピーク抑圧データ (I, Qの直交多重信号)が、 IFFT部 16に入力されて、 ピーク判定部 18でピーク判定結果が NGと判定された場合に、データ送信を見合わ せたユーザのサブキャリア帯域にユーザデータストリームの代わりに挿入できるように なっている点が異なる。
[0092] ここで、ピーク抑圧信号の生成法としては、サブキャリアの位相を変化させてピーク を抑圧するような従来力 既知の手法を用いれば良い。これにより、第 1〜第 3実施 形態に比して、より大きなピーク抑圧効果を得ることが可能となる。なお、かかるピーク 抑圧信号の挿入は、第 2及び第 3実施形態に適用することも、勿論、可能である。 その他、本発明は、上述した各実施形態に関わらず、本発明の趣旨を逸脱しない 範囲で種々変形して実施することができることは 、うまでもな!/、。
産業上の利用可能性
[0093] 以上詳述したように、本発明によれば、送信すべきマルチキャリア信号に許容でき ない(閾値を超える)ピークが発生した場合に、スケジューリング情報に基づいて、少 なくとも一部の系列の送信データの送信停止処理を行なう(例えば、前記ピークが許 容値に収まるまで、スケジューリング手段での優先度の低い又は使用周波数帯域の 狭い)送信データから、順次、送信停止処理を行なう)ので、従来技術のように演算 規模を増大させることなぐまた、スケジュール順位の高いユーザの通信はできるだけ 維持しつつ、簡易にピーク抑圧を達成することが可能になる。したがって、無線通信 技術分野に極めて有用と考えられる。

Claims

請求の範囲
[1] 複数系列の送信データを複数の搬送波に割り当ててマルチキャリア信号により伝 送するマルチキャリア通信装置であって、
前記複数系列の送信データの送信機会を所定のスケジューリング情報に従ってス ケジュールするスケジューリング手段と、
前記マルチキャリア信号のピークが所定の閾値を超えている力否かを判定するピー ク判定手段と、
該ピーク判定手段で前記ピークが前記閾値を超えて 1ヽると判定された場合に、前 記スケジューリング情報に基づいて前記複数系列の送信データの少なくとも一部の 系列の送信データの送信停止処理を行なうピーク抑圧手段とをそなえたことを特徴と する、マルチキャリア通信装置。
[2] 該ピーク抑圧手段が、
前記スケジューリング情報の要素情報としての優先順位情報に基づ!、て、該ピーク 判定手段で前記ピークが前記閾値以下と判定されるまで、前記複数系列の送信デ ータの中で優先順位の低 1ヽデータから順番に前記送信停止処理を繰り返し行なうベ く構成されたことを特徴とする、請求項 1記載のマルチキャリア通信装置。
[3] 該ピーク抑圧手段が、
前記スケジューリング情報の要素情報としての使用周波数帯域情報に基づいて、 該ピーク判定手段で前記ピークが前記閾値以下と判定されるまで、前記複数系列の 送信データの中で使用周波数帯域の狭い信号から順番に前記送信停止処理を繰り 返し行なうべく構成されたことを特徴とする、請求項 1記載のマルチキャリア通信装置
[4] 前記送信停止処理を行なった送信データを特定する情報を、前記マルチキャリア 信号を受信する装置に通知する通知手段をさらにそなえたことを特徴とする、請求項
1〜3のいずれか 1項に記載のマルチキャリア通信装置。
[5] 前記送信停止処理を行なった送信データの代わりにピーク抑圧データを挿入する ピーク抑圧データ挿入手段をさらにそなえたことを特徴とする、請求項 1〜4のいずれ 力 1項に記載のマルチキャリア通信装置。
[6] 該スケジューリング手段が、
前記送信停止処理を行なった送信データを優先的に次の送信機会に設定すべく 前記スケジューリング情報を更新する手段をそなえたことを特徴とする、請求項 1〜5 の!、ずれか 1項に記載のマルチキャリア通信装置。
[7] 複数系列の送信データを複数の搬送波に割り当ててマルチキャリア信号により伝 送するマルチキャリア通信装置であって、
前記複数系列の送信データの送信機会を所定のスケジューリング情報に従ってス ケジュールするスケジューリング手段と、
前記マルチキャリア信号と、前記複数系列の送信データの少なくとも一部の系列の 送信データを前記スケジューリング情報に基づいて予め除外した 1又は複数のマル チキャリア信号とを生成するマルチキャリア信号生成手段と、
該マルチキャリア信号生成手段で生成された前記各マルチキャリア信号のそれぞ れにつ 、てピークが所定の閾値を超えて 、るか否かを判定するピーク判定手段と、 該ピーク判定手段にて前記閾値以下と判定されたマルチキャリア信号を送信対象 として選択する選択手段とをそなえたことを特徴とする、マルチキャリア通信装置。
[8] 該マルチキャリア信号生成手段が、
前記スケジューリング情報の要素情報としての優先順位情報に基づ!、て、優先順 位の低い信号力 送信データを予め除外した 1又は複数のマルチキャリア信号を生 成すべく構成されたことを特徴とする、請求項 7記載のマルチキャリア通信装置。
[9] 該マルチキャリア信号生成手段が、
前記スケジューリング情報の要素情報としての使用周波数帯域情報に基づいて、 使用周波数帯域の狭い信号力 送信データを予め除外した 1又は複数のマルチキ ャリア信号を生成すべく構成されたことを特徴とする、請求項 7記載のマルチキャリア 通信装置。
[10] 前記予め除外した送信データの代わりにピーク抑圧データを挿入するピーク抑圧 データ挿入手段をさらにそなえたことを特徴とする、請求項 7〜9のいずれか 1項に記 載のマルチキャリア通信装置。
[11] 該選択手段にて選択されたマルチキャリア信号に関する情報を、当該マルチキヤリ ァ信号を受信する装置に通知する通知手段をさらにそなえたことを特徴とする、請求 項 7〜10のいずれ力 1項に記載のマルチキャリア通信装置。
[12] 該スケジューリング手段が、
該選択手段にて選択されたマルチキャリア信号の要素データ力 予め除外された 送信データを優先的に次の送信機会に設定すべく前記スケジューリング情報を更新 する手段をそなえたことを特徴とする、請求項 7〜: L 1のいずれか 1項に記載のマルチ キャリア通信装置。
[13] 複数系列の送信データを複数の搬送波に割り当ててマルチキャリア信号により伝 送するマルチキャリア通信装置におけるピーク抑圧方法であって、
前記マルチキャリア信号のピークが所定の閾値を超えている力否かを判定し、 前記ピークが前記閾値を超えて 、ると判定された場合に、前記複数系列の送信デ ータの送信機会をスケジュールするスケジューリング情報に基づ 、て、前記複数系 列の送信データの少なくとも一部の系列の送信データの送信停止処理を行なうこと を特徴とする、マルチキャリア通信装置におけるピーク抑圧方法。
[14] 複数系列の送信データを複数の搬送波に割り当ててマルチキャリア信号により伝 送するマルチキャリア通信装置におけるピーク抑圧方法であって、
前記マルチキャリア信号と、前記複数系列の送信データの少なくとも一部の系列の 送信データを前記複数系列の送信データ号の送信機会をスケジュールするスケジュ 一リング情報に基づいて予め除外した 1又は複数のマルチキャリア信号とを生成し、 生成した前記各マルチキャリア信号のそれぞれについてピークが所定の閾値を超 えているか否かを判定し、
前記閾値以下と判定されたマルチキャリア信号を送信対象として選択することを特 徴とする、マルチキャリア通信装置におけるピーク抑圧方法。
PCT/JP2006/301534 2006-01-31 2006-01-31 マルチキャリア通信装置及び同装置におけるピーク抑圧方法 WO2007088583A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2006/301534 WO2007088583A1 (ja) 2006-01-31 2006-01-31 マルチキャリア通信装置及び同装置におけるピーク抑圧方法
JP2007556723A JP5113533B2 (ja) 2006-01-31 2006-01-31 マルチキャリア通信装置及び同装置におけるピーク抑圧方法
EP06712677.1A EP1983669B1 (en) 2006-01-31 2006-01-31 Multicarrier communication apparatus and peak suppressing method therein
EP14168691.5A EP2793415A3 (en) 2006-01-31 2006-01-31 Multicarrier communication apparatus and peak suppressing method therein
US12/168,556 US8582671B2 (en) 2006-01-31 2008-07-07 Multicarrier communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/301534 WO2007088583A1 (ja) 2006-01-31 2006-01-31 マルチキャリア通信装置及び同装置におけるピーク抑圧方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/168,556 Continuation US8582671B2 (en) 2006-01-31 2008-07-07 Multicarrier communication apparatus

Publications (1)

Publication Number Publication Date
WO2007088583A1 true WO2007088583A1 (ja) 2007-08-09

Family

ID=38327170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301534 WO2007088583A1 (ja) 2006-01-31 2006-01-31 マルチキャリア通信装置及び同装置におけるピーク抑圧方法

Country Status (4)

Country Link
US (1) US8582671B2 (ja)
EP (2) EP2793415A3 (ja)
JP (1) JP5113533B2 (ja)
WO (1) WO2007088583A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053382A1 (ja) * 2010-10-18 2012-04-26 シャープ株式会社 無線送信装置、無線受信装置、無線通信システム、無線送信装置の制御プログラムおよび集積回路
JP2012531876A (ja) * 2009-06-26 2012-12-10 ハイプレス インク 組み合わせ無線信号を制御するシステムおよび方法
US11424897B2 (en) * 2020-04-15 2022-08-23 Qualcomm Incorporated Peak suppression information multiplexing on uplink shared channel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837114B1 (ko) * 2006-10-30 2008-06-11 지씨티 세미컨덕터 인코포레이티드 오버샘플링 아날로그-디지털 변환기를 이용한 다중 복조경로 ofdm 수신회로
KR100905503B1 (ko) * 2006-10-30 2009-07-01 지씨티 세미컨덕터 인코포레이티드 복수의 복조 경로를 가진 ofdm 수신회로
US8594590B2 (en) * 2010-12-31 2013-11-26 Motorola Solutions, Inc. Method for controlling peak-to-average power ratio of single carrier FDMA system
US8787873B1 (en) 2011-11-04 2014-07-22 Plusn Llc System and method for communicating using bandwidth on demand
US9401823B2 (en) 2013-11-26 2016-07-26 Plusn Llc System and method for radio frequency carrier aggregation
EP3476042B1 (en) * 2016-06-24 2020-08-05 Telefonaktiebolaget LM Ericsson (publ) Transmitter architecture for massive-mimo
US10524264B2 (en) 2017-03-20 2019-12-31 Samsung Electronics Co., Ltd. Wireless communication device including memory de-allocator for efficient memory usage and method of operating the same
US11190383B2 (en) * 2020-03-04 2021-11-30 Qualcomm Incorporated Reducing peak-to-average power ratio (PAPR) using peak suppression information messages
US11621794B1 (en) * 2022-02-01 2023-04-04 Huawei Technologies Co., Ltd. Systems and methods for processing a subcarrier-multiplexed signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107345A (ja) * 1995-10-12 1997-04-22 Victor Co Of Japan Ltd 周波数分割多重信号発生装置及び復号装置
JP2000286818A (ja) 1999-03-31 2000-10-13 Fujitsu Ltd マルチキャリア伝送における不均一誤り保護方法並びにその符号器及び復号器
JP2001339361A (ja) 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd マルチキャリア通信装置およびマルチキャリア通信方法
JP2005101975A (ja) 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd 無線通信装置及びピーク抑圧方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69632431T2 (de) 1995-03-31 2005-05-19 Victor Company of Japan, Ltd., Yokohama Mehrträgenmodulator- und -demodulator mit Einrichtungen zur Verringerung der Spitzenleistung
US6611231B2 (en) * 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
JP2003283460A (ja) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd マルチキャリア送信装置およびマルチキャリア送信方法
US6891902B2 (en) * 2002-07-02 2005-05-10 Intel Corporation System and method for adjusting a power level of a transmission signal
JP3657948B2 (ja) * 2002-09-12 2005-06-08 松下電器産業株式会社 無線送信装置、無線受信装置、および送信キャンセルサブキャリアの選択方法
CN1659817B (zh) * 2002-09-12 2010-06-09 松下电器产业株式会社 无线电发送设备、无线电接收设备和选择发送对消副载波的方法
US7652981B2 (en) * 2002-12-02 2010-01-26 Ntt Docomo, Inc. Orthogonal frequency multi-carrier transmission device and transmission method
JP3958270B2 (ja) * 2003-09-19 2007-08-15 株式会社東芝 マルチキャリア通信方法、マルチキャリア通信システムおよびこのシステムで用いられる通信装置
JP3962008B2 (ja) * 2003-11-28 2007-08-22 株式会社東芝 無線通信システム及び無線通信装置ならびに無線通信方法
JP3819389B2 (ja) * 2003-12-19 2006-09-06 株式会社日立国際電気 キャリア可変多重伝送装置
JP4418377B2 (ja) * 2004-01-29 2010-02-17 パナソニック株式会社 通信端末装置および基地局装置
KR100688118B1 (ko) * 2004-04-23 2007-02-28 삼성전자주식회사 직교 주파수 분할 다중 통신 시스템에서 피크 전력 대평균 전력비를 감소시키기 위한 장치 및 방법
US7808940B2 (en) * 2004-05-10 2010-10-05 Alcatel-Lucent Usa Inc. Peak-to-average power ratio control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107345A (ja) * 1995-10-12 1997-04-22 Victor Co Of Japan Ltd 周波数分割多重信号発生装置及び復号装置
JP2000286818A (ja) 1999-03-31 2000-10-13 Fujitsu Ltd マルチキャリア伝送における不均一誤り保護方法並びにその符号器及び復号器
JP2001339361A (ja) 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd マルチキャリア通信装置およびマルチキャリア通信方法
JP2005101975A (ja) 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd 無線通信装置及びピーク抑圧方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531876A (ja) * 2009-06-26 2012-12-10 ハイプレス インク 組み合わせ無線信号を制御するシステムおよび方法
WO2012053382A1 (ja) * 2010-10-18 2012-04-26 シャープ株式会社 無線送信装置、無線受信装置、無線通信システム、無線送信装置の制御プログラムおよび集積回路
JP2012090013A (ja) * 2010-10-18 2012-05-10 Sharp Corp 無線送信装置、無線受信装置、無線通信システム、無線送信装置の制御プログラムおよび集積回路
US9313775B2 (en) 2010-10-18 2016-04-12 Sharp Kabushiki Kaisha Wireless transmission apparatus, wireless reception apparatus, wireless communication system, and control program and integrated circuit of wireless transmission apparatus
US11424897B2 (en) * 2020-04-15 2022-08-23 Qualcomm Incorporated Peak suppression information multiplexing on uplink shared channel

Also Published As

Publication number Publication date
US8582671B2 (en) 2013-11-12
EP1983669B1 (en) 2017-09-06
EP1983669A1 (en) 2008-10-22
US20080267312A1 (en) 2008-10-30
JP5113533B2 (ja) 2013-01-09
EP2793415A2 (en) 2014-10-22
EP1983669A4 (en) 2012-01-11
JPWO2007088583A1 (ja) 2009-06-25
EP2793415A3 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5113533B2 (ja) マルチキャリア通信装置及び同装置におけるピーク抑圧方法
US11356225B2 (en) Method and apparatus for transmitting/receiving data and control information through an uplink in a wireless communication system
CN101636996B (zh) 无线发送装置和无线接收装置
JP5000725B2 (ja) 無線通信システムにおいてアップリンクを通じたデータ及び制御情報の送受信方法及び装置
US8792359B2 (en) Communication system, transmitting device, receiving device, transmission method, and communication method
KR101829740B1 (ko) 무선 기지국, 사용자 장비 및 그 방법들
US8306138B2 (en) Communication apparatus and communication method
RU2433555C2 (ru) Переменное кодирование и модулирование подканала мультиплексирования с ортогональным частотным разделением
KR101139170B1 (ko) 직교주파수분할다중접속 방식의 무선통신 시스템에서 패킷데이터 제어 채널의 송수신 장치 및 방법
US20140177572A1 (en) Transmitting uplink control information over a data channel or over a control channel
US20090103483A1 (en) Radio resource assignment method for physical channel in uplink, and transmitter for mobile apparatuses
KR101093331B1 (ko) 무선 통신 시스템에서의 신호 다중 방법 및 송신국
WO2003081821A1 (fr) Dispositif de transmission a porteuses multiples, et procede correspondant
EP1533926B1 (en) Radio transmission device, radio reception device, and method for selecting transmission cancel subcarriers
US20120063532A1 (en) Reception device, receiving method, communication system, and communication method
US20120140836A1 (en) Peak-to-average power ratio reduction in a multicarrier signal
JP4299854B2 (ja) 通信システム
US7281189B2 (en) Apparatus and method for separately modulating systematic bits and parity bits in accordance with communication quality
US7346041B2 (en) Processing of an OFDM signal
JP5445624B2 (ja) 送信局及び受信局
KR20080010069A (ko) 무선통신시스템에서 상향링크 데이터 통신 장치 및 방법
Ruberg Frequency Domain Link Adaptation for OFDM-based Cellular Packet Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007556723

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2006712677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006712677

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE