WO2007086124A1 - QoS制御システム - Google Patents

QoS制御システム Download PDF

Info

Publication number
WO2007086124A1
WO2007086124A1 PCT/JP2006/301236 JP2006301236W WO2007086124A1 WO 2007086124 A1 WO2007086124 A1 WO 2007086124A1 JP 2006301236 W JP2006301236 W JP 2006301236W WO 2007086124 A1 WO2007086124 A1 WO 2007086124A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
layer
control system
controller
communication service
Prior art date
Application number
PCT/JP2006/301236
Other languages
English (en)
French (fr)
Inventor
Masahiko Nanri
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2006/301236 priority Critical patent/WO2007086124A1/ja
Publication of WO2007086124A1 publication Critical patent/WO2007086124A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2475Traffic characterised by specific attributes, e.g. priority or QoS for supporting traffic characterised by the type of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection

Definitions

  • the present invention relates to a QoS (Quality of Service) control system that guarantees the quality of communication services, and in particular, to guarantee the quality of communication services including all layers from the physical layer to the application layer. It is related to the QoS control system.
  • QoS Quality of Service
  • QoS control technology has been widely used to guarantee the quality of communication services.
  • speeding up the data rate is an important factor.
  • Quality assurance technology for the various communication services provided that is, QoS control technology is an even more important factor.
  • a QoS control technique for example, a technique for assuring the quality of various communication services by appropriately performing retransmission control of a wireless line is disclosed (for example, refer to Patent Document 1).
  • real-time communication is performed by retransmitting the information of ATM (Asynchronous Transfer Mode) cells contained in abnormal wireless packets, excluding those with low priority for discarding, with wireless packets. Guarantee quality.
  • ATM Asynchronous Transfer Mode
  • Patent Document 1 Japanese Patent Laid-Open No. 9-214507
  • the scope of conventional QoS control is mainly limited to the transport layer power and the data link layer.
  • the lower physical layer and the upper application layer are not subject to QoS control. It has become.
  • 16QAM Higher level MCS (Modulation and Coding Scheme) such as 16 Quadrature Amplitude Modulation is selected.
  • fading valley that is, in an environment where the channel quality is momentarily poor, retransmission of the voice packet occurs, which causes delay and jitter.
  • QoS information varies depending on the type of service provided. For example, although in the case of a voice call required transmission rate is sufficient about several tens of kbps, also the required packet error one rate (PER) is also relatively mild conditions of about 10 2, against the delay and jitter The requirements are very strict. In other words, communication in voice calls must be guaranteed (Guarantee Type) communication that guarantees a certain delay and jitter! /,. In the case of data transmission such as FTP (File Transfer Protocol), the transmission rate is the best effort type, and the requirements for delay and jitter are moderate, but the packet error rate is low. However, error-free and strict conditions are required. These QoS conditions also have an impact on wired lines, but the impact on wireless lines is very large.
  • FTP File Transfer Protocol
  • An object of the present invention is to provide a QoS control system that can provide a communication service with high quality by performing QoS control including the physical layer power including multiple layers up to the application layer. is there.
  • the QoS control system of the present invention is a QoS control system that guarantees the quality of a communication service including all layers of the OSI layer, and includes a transmission device that provides the communication service and a reception that enjoys the communication service. Installed in at least one of the devices and the intermediate device that connects the transmitter and receiver, equipped with a QoS controller that realizes the quality assurance of the communication service. Accordingly, it adopts a configuration that defines user QoS for providing the communication service corresponding to the user.
  • a QoS controller for performing QoS control is installed in at least one of the reception device, the transmission device, and the intermediate node that constitutes the communication system, and the communication system is classified according to the type of communication service.
  • User QoS is defined in the QoS controller. This As a result, the QoS controller sets the required transmission rate, allowable delay, allowable packet error rate, allowable jitter, etc., which are the quality assurance conditions for the communication service to be provided, depending on the user QoS and hardware performance, type, and form. be able to.
  • the protocol stack and parameters required for providing the communication service can be changed for each OSI layer. Is defined. Therefore, the transmission device, reception device, and intermediate node equipped with the QoS controller can perform QoS control for each layer, so that the operation status of each layer can be periodically reported to the QoS controller. it can.
  • the QoS controller detects a deterioration in the quality of the communication service due to a bad state of a certain layer
  • the QoS controller updates the parameters of the corresponding layer or other layers as appropriate to improve the quality of the communication service. Recovery can be achieved. That is, according to the QoS control system of the present invention, a QoS controller for performing quality assurance of communication services is installed in each hardware, and user QoS for performing communication services for each layer is defined. The communication quality can be guaranteed by including all layers.
  • FIG. 1 is a network configuration diagram for realizing the QoS control system of the present invention.
  • FIG. 2 A diagram showing the layer structure of each element in the network shown in FIG.
  • FIG. 3 is a diagram showing the relationship between the QoS controller applied to the present invention and each layer.
  • FIG. 4 Diagram showing monitoring items and control items for each layer performed by the QoS controller shown in FIG. 3.
  • FIG. 5 Diagram showing QoS control items for each layer performed by the QoS controller shown in FIG.
  • FIG.7 Diagram showing the relationship between the user QoS executed by the QoS controller shown in Fig. 6 and the contents of the communication service
  • FIG. 8 is a conceptual diagram showing how VoIP is initially set for a mobile phone (user B) in the QoS control system according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing control items for each layer performed in the QoS control system according to the second embodiment of the present invention.
  • FIG. 10 Each layer force performed in the QoS control system of the second embodiment of the present invention A diagram showing the state of VoIP status reporting
  • FIG. 11 is a diagram showing a flow of physical layer QoS control performed in the QoS control system according to the second embodiment of the present invention.
  • FIG. 12 is a diagram showing a flow of QoS control in the data link layer performed in the QoS control system according to the second embodiment of the present invention.
  • FIG. 13 is a diagram showing a flow of QoS control in the presentation layer (application layer) performed in the QoS control system according to the second embodiment of the present invention.
  • the QoS control system of the present invention provides communication quality assurance to all or any one of a transmission device that provides communication services, a reception device that enjoys communication services, and intermediate nodes such as routers and access points. Install a QoS controller to do this.
  • a QoS controller For each QoS controller, user QoS is defined for each service type for providing communication services to users.
  • the QoS controller determines various conditions (for example, required transmission rate, permissible delay, permissible packet error rate, permissible jitter, etc.) that guarantee the quality of the communication service according to the performance, type, and form of user QoS and nodeware. Etc.) can be defined.
  • the QoS controller has a physical layer power in each of the hardware (that is, a transmission device, a reception device, and an intermediate node) for the OSI (Open System Interconnection: International Standardization Organization) layer up to the application layer.
  • OSI Open System Interconnection: International Standardization Organization
  • the QoS controller can perform QoS control individually for each layer. Therefore, each layer can periodically report its own status to the QoS controller. Therefore, when the quality of the communication service deteriorates due to the state of a certain layer being degraded, the QoS controller Alternatively, the quality of communication services can be restored by adaptively updating the parameters of other layers.
  • the parameters of the presentation layer can be updated to restore the quality of the communication service.
  • FIG. 1 is a configuration diagram of a network for realizing the QoS control system of the present invention.
  • a mobile node (MN) 1 such as a mobile phone and a correspondent node (CN) 2 such as a fixed phone communicate with each other via the Internet 3
  • MN1 is connected to an access point (AP) 4 through a wireless line
  • AP4 is connected to the Internet network 3 through a router 5.
  • CN 2 is also connected to the Internet network 3 through a router 6.
  • the network configuration is not limited to a wireless transmission line, and can be applied to, for example, power line conveyance by a power line transmission line.
  • FIG. 2 is a diagram showing a layer configuration of each element in the network shown in FIG.
  • FIG. 2 shows the layer configuration of MN1, CN2, AP4, and routers 5 and 6 shown in FIG. Figure 2 [As shown here, MN1, CN2, AP4, and Norator 5, 6 ⁇ , all based on the OSI reference model (i.e., application layer, transport layer, network layer, Data link layer and physical layer). However, since ⁇ 4 and routers 5 and 6 only serve as relay nodes, they actually have functions below the network layer.
  • OSI reference model i.e., application layer, transport layer, network layer, Data link layer and physical layer.
  • ⁇ 4 and routers 5 and 6 only serve as relay nodes, they actually have functions below the network layer.
  • FIG. 3 is a diagram showing the relationship between the QoS controller applied to the present invention and each layer.
  • the QoS controller 7 is connected to the application layer, transport layer, network layer, data link layer, and physical layer, and the status in each layer is regularly monitored. QoS controller 7 is notified.
  • the QoS controller 7 integrates the information provided by each layer, and the required QoS (that is, required rate, allowable delay) defined by this information and the communication service provided to the user (hereinafter referred to as user QoS). , Allowable packet error rate, and allowable jitter). If the conditions of user QoS are met and there are any items, appropriate instructions are given to each layer to establish a communication service. Adaptively guarantee the quality of the screw.
  • FIG. 4 is a diagram showing monitoring items and control items of each layer performed by the QoS controller 7 shown in FIG.
  • the application layer monitors and controls delay and jitter
  • the transport layer monitors and controls TCP (Transmission Control Protocol) retransmission, packet arrival interval, packet loss rate, delay, and jitter.
  • TCP Transmission Control Protocol
  • the network layer monitors and controls the queue state (Queue state) of the data structure in which the previously input data is output first.
  • the data link layer monitors and controls the number of data retransmissions.
  • the physical layer monitors and controls SIR (Signal to Interference Ratio), Delay Spread, Doppler Frequency (fd), and BER (Bit Error Rate) / PER (Packet Error Rate).
  • FIG. 5 is a diagram showing QoS control items for each layer performed by the QoS controller 7 shown in FIG. That is, in this figure, the contents of “required rate”, “delay”, “packet error”, and “jitter” are shown for each layer of each layer.
  • the “required rate” is the QoS control of the audio Z video codec rate in the application layer, the TCP window size QoS control in the transport layer, and the queue priority (Queuing) in the network layer. Priority) and bandwidth allocation QoS control.
  • the data link layer performs scheduler QoS control, and the physical layer performs MCS and SF QoS control. For “delay”, “packet error”, and “jitter”, QoS control as shown in the corresponding items in Fig. 5 is performed for each layer.
  • FIG. 6 is a configuration diagram of a QoS controller applied to the present invention.
  • QoS controller 7 consists of application layer interface 11, transport layer interface 12, network layer interface 13, data link layer interface 14, physical layer interface 15, protocol determinator 16, QoS calculator 17
  • the information determining unit 18, the control circuit 19, the communication quality holding circuit 20, and the hardware information holding circuit 21 are provided.
  • Each layer interface 11, 12, 13, 14, and 15 exchanges information with the control circuit 19 regarding the monitoring items and control items for each layer as shown in FIG. Has a function.
  • the application layer interface 11 uses user QoS information as a protocol. It also has a function of delivering to the determiner 16 and the QoS calculator 17.
  • the protocol determiner 16 has a function of determining a protocol and parameters necessary for service provision. Based on the user QoS information, the QoS calculator 17 calculates the required transmission rate R, allowable delay T, allowable
  • the information determiner 18 calculates the calculation result of the QoS calculator 17 (that is, the required transmission rate R, the allowable delay,
  • the communication quality maintaining circuit 20 includes transmission lines reported from the interfaces of each layer (that is, the application layer interface 11, the transport layer interface 12, the network layer interface 13, the data link layer interface 14, and the physical layer interface 15). It has a function to hold quality information.
  • the hardware information holding circuit 21 has a function of holding information such as a hardware buffer amount in the QoS controller 7.
  • the control circuit 19 has a function of controlling each component of the QoS controller 7 based on user QoS information and performing QoS control.
  • the user QoS information output from the application layer interface 11 is input to the protocol determiner 16 and the QoS calculator 17.
  • the protocol determiner 16 determines initial protocols and initial parameters necessary for service provision, and the interface of each layer (that is, the application layer interface 11, the transport layer interface 12, the network layer interface) through the control circuit 19. 13, The data link layer interface 14 and the physical layer interface 15) are notified of the protocols and parameters required to provide communication services.
  • the required transmission rate R, the allowable delay T, the allowable packet, etc. depending on the QoS of the QoS calculator 17 user QoS and the hardware performance (for example, the amount of notch) previously stored in the QoS calculator 17 in advance.
  • required QoS such as error rate P and allowable jitter T h dl err j
  • the error rate P and the allowable jitter T) are input to the information determiner 18, respectively.
  • the communication quality maintaining circuit 20 includes interfaces of each layer (that is, an application layer interface 11, a transport layer interface 12, a network layer interface). 1), data link layer interface 14, and physical layer interface 15) report transmission path quality information (for example, SIR, delay spread, Doppler frequency, etc.). Holds information such as hardware noise amount in controller 7. Information held in the communication quality holding circuit 20 and the nodeware information holding circuit 21 is used in the protocol determiner 16 as necessary.
  • FIG. 7 is a diagram showing the relationship between the user QoS executed by the QoS controller 7 shown in FIG. 6 and the contents of the communication service.
  • user QoS is classified into five types, and the contents of various communication services are determined for each item. That is, the service type of the user QoS “l” is a voice call, and a specific service example is VoIP (Voice over Internet Protocol).
  • the service type of user QoS “2” is interactive streaming, and a specific service example is a videophone.
  • the service type of user QoS “3” is unidirectional streaming, and a specific service example is Internet TV.
  • the service type of user QoS “4” is data communication, and a specific service example is file transfer.
  • the service type of the user QoS “5” is real-time data communication, and a specific service example is a communication battle game.
  • the second embodiment described below is based on the following four items.
  • the network configuration is as shown in Figure 1 above.
  • a QoS controller Assume that only mobile phones have a QoS controller, and fixed phones and intermediate nodes (for example, access point HAP) and routers do not have a QoS controller.
  • Q Only the physical layer, data link layer, and presentation layer are subject to oS control.
  • FIG. 8 is a conceptual diagram showing how VoIP is initially set for a mobile phone (user B) in the QoS control system according to the second embodiment of the present invention.
  • the configuration of the QoS control system in the second embodiment shown in FIG. 8 is the same as the configuration in FIG. 3 and FIG. 6 described above, and therefore the same reference numerals are given.
  • the application layer interface 11 in FIG. 6 is read as being synonymous with the application layer 11 in FIG.
  • the application layer 11 notifies the QoS controller 7 of “user QoS designation” that the VoIP service is started. Then, the QoS controller 7 determines the required QoS (that is, the required transmission rate R, the allowable delay T, the allowable packet error rate P, based on the contents of the communication service included in the notified “user QoS specification”.
  • the QoS controller 7 includes the required transmission rate R ⁇ 83 kbps, the allowable delay T ⁇ 300 msec, and the allowable packet error rate.
  • the protocol determiner 16 determines the protocol and parameters necessary for providing the service, and passes through the control circuit 19 to each layer (that is, the application layer 11, the transport). “Protocol designation” and “parameter designation” are instructed to the layer 12, the network layer 13, the data link layer 14, and the physical layer 15).
  • the audio codec of the presentation layer that is, application layer 11
  • SIP Session Initiation Protocol
  • RTP Real-time Transport Protocol
  • RTCP RTP Control Protocol
  • UDP User Datagram Protocol
  • IPv6 IP version 6
  • the parameters in the data link layer 14 are For both uplink and downlink, the maximum number of retransmissions of HARQ (High Availability Resolution Queue) is set to a low number (for example, 2 times) and the number of channels used is "1".
  • CDMA code division multiple access
  • FIG. 9 is a diagram showing control items for each layer performed in the QoS control system according to the second embodiment of the present invention.
  • the voice codec is controlled by G.711 or G.729 parameters.
  • the maximum number of radio frame retransmissions is controlled with a parameter 1 to L0, and the number of channels is controlled with parameters 1 to 3.
  • FIG. 10 is a diagram showing a state of VoIP status reporting from each layer performed in the QoS control system according to the second embodiment of the present invention.
  • the session layer that is, the application layer 11
  • it is reported to the QoS controller 7 as the average delay time and jitter information delay of the downlink voice packet observed by RTCP.
  • the network layer 13 reports a “Queuing Buffer status report” of the voice packet to the QoS controller 7.
  • the data link layer 14 reports the average throughput of the wireless channel and the average number of retransmissions based on HARQ to the QoS controller 7 as “retransmission number 'throughput report”. Further, the state of the radio transmission path (that is, PER, CQK Channel Quality Indicator) is reported from the physical layer 15 to the QoS controller 7 as “PER, CQI report”.
  • CQI refers to a parameter that indicates the line status in a radio link, such as SIR, delay spread, or Doppler frequency.
  • FIG. 11 is a diagram showing the flow of physical layer QoS control performed in the QoS control system of the second embodiment of the present invention.
  • FIG. 12 is a diagram showing a flow of QoS control in the data link layer performed in the QoS control system according to the second embodiment of the present invention.
  • FIG. 13 is a diagram showing a QoS control flow of the presentation layer (application layer) performed in the QoS control system of the second embodiment of the present invention.
  • the flow of QoS control in each layer will be described below with reference to the drawings of FIGS. 11, 12, and 13 with reference to the drawings of the QoS controller of FIG.
  • AP access point
  • the protocol determinator (parameter determinator) 16 determines the SF based on the CQI information.
  • the “SF change request” is transmitted from the QoS controller 7 to the physical layer 15.
  • the physical layer 15 establishes communication with the new SF by negotiation with the access point (AP). If it is determined that the SF cannot be changed, the QoS control of the physical layer 15 is stopped and the QoS control of the data link layer 14 is attempted.
  • the information determiner 18 in the S controller 7 notifies the protocol determiner 16 of a parameter change request.
  • the protocol judgment unit 16 confirms the usage state of the radio resource held in the communication quality holding circuit 20.
  • the QoS controller 7 sends a scheduling change to the data link layer 14 via the control circuit 19 so that a surplus channel is newly allocated in addition to the channel currently in use. "Request" is issued. This improves the throughput for the additional channels.
  • the data link layer 14 that has received the instruction to change the channel assignment newly establishes communication by channel assignment by negotiation with the access point (AP).
  • the QoS controller 7 tries the upper layer QoS control.
  • the network layer 13 and transport layer 12 protocols do not have QoS control means to reduce the transmission rate, so we try QoS control in the presentation layer (ie, application layer 11).
  • the information determination unit 18 in the QoS controller 7 notifies the protocol determination unit 16 of a parameter change request. Then, the control circuit 19 of the QoS controller 7 transmits an instruction of “voice codec change request” to the effect that the low-bit-rate voice codec is used to the application layer 11. At the same time, QoS controller 7 changes the definition of the required transmission rate R
  • a request to use G. 729 (codec rate 8 kbps, required transmission rate 27 kbps) is sent to the application layer 11.
  • the application layer 11 that has received the instruction to change the voice codec notifies the session to that effect.
  • Sessions in the application layer 11 use the SIP reinvite (Invite) function to negotiate media with the partner node and establish communication using the new voice codec.
  • the transmission rate of the wireless line remains at 40 kbps previously notified to the QoS controller 7 by the data link layer 14, but a stable voice call service can be provided by changing the voice codec itself.
  • the fixed phone (User A) does not implement a low-rate codec of 40kbps or less such as G.729
  • the fixed phone (User A) and the mobile phone Media negotiation can be achieved with the lowest rate audio codec that both (User B) can implement.
  • the codec rate is already lower than the lowest codec and the codec rate cannot be lowered, the QoS controller 7 does nothing.
  • the QoS control system of the present invention connects a transmission device that provides a communication service, a reception device that enjoys the communication service, and a connection between the transmission device and the reception device.
  • QoS controllers are installed for all or some of the intermediate node devices, and user QoS corresponding to the type of communication service to be provided is defined in each QoS controller.
  • the QoS controller enables required QoS (for example, required transmission rate, allowable delay, allowable packet error rate, and allowable jitter, which are the quality assurance conditions of the communication service to be provided, depending on the performance, type, and form of user QoS and nodeware. Etc.) can be defined.
  • the QoS controller can define protocol stacks and parameters necessary for providing communication services according to the performance, type, and form of user QoS and nodeware. Therefore, a transmission device, a reception device, and an intermediate node equipped with a QoS controller can define a protocol stack corresponding to the OSI 7 layer model and perform QoS control for each layer. As a result, the transmission device, the reception device, and the intermediate node can periodically report the operation state of each layer to the QoS controller.
  • the QoS controller detects a deterioration in the quality of a communication service due to a state of a certain layer, the QoS controller restores the parameter of the corresponding layer or another layer appropriately to restore the quality of the communication service. Can be achieved. For example, if the line condition deteriorates due to fading in the physical layer, the parameters of the application layer can be updated to restore the quality of the communication service. Note that the QoS controller is When updating a parameter, the parameter power of the physical layer is also prioritized, and if it is difficult to update the parameter of that layer, the parameter update of the higher layer is attempted.
  • the QoS control system has a QoS controller that performs quality assurance of communication services in each hardware, and user QoS that provides communication services is assigned to each layer. Because it is set, it is possible to guarantee the quality of communication services by including all layers. Therefore, it can be effectively used in the communication field with a high communication quality level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Abstract

 高品質な通信サービスの提供を行うQoS制御システム。このQoS制御システムでは、アプリケーション層インターフェース(11)から出力されたユーザQoS情報は、プロトコル決定器(16)及びQoS算出器(17)に入力される。プロトコル決定器(16)が、サービス提供に必要なプロトコル及びパラメータを決定し、制御回路(19)を通してアプリケーション層インターフェース(11)以下の各レイヤのインターフェースにサービス提供に必要なプロトコル及びパラメータを通知する。これにより、QoSコントローラ(7)は、各階層に対して個別にQoS制御を行うことができる。各階層は自己の状態を定期的にQoSコントローラ(7)へ報告し、QoSコントローラ(7)は、ある階層の状態が悪化して通信サービスの品質が劣化した場合、当該階層又は他の階層のパラメータを適応的に更新して通信サービスの品質回復を図る。  

Description

明 細 書
QoS制御システム 技術分野
[0001] 本発明は、通信サービスの品質保証を行う QoS (Quality of Service:通信品質サー ビス)制御システムに関し、特に、物理層からアプリケーション層までの全階層を包含 して通信サービスの品質保証を行う QoS制御システムに関する。
背景技術
[0002] 従来より、通信分野においては、通信サービスの品質を保証するために QoS制御 技術が広く用いられている。とりわけ、高品質な通信サービスを提供するためには、 データレートの高速化も重要な要素である力 提供される各種の通信サービスの品 質保証技術、すなわち、 QoS制御技術がさらに重要な要素となる。このような QoS制 御技術としては、例えば、無線回線の再送制御を適切に行うことによって各種通信サ 一ビスの品質を保証する技術などが開示されている (例えば、特許文献 1参照)。この 技術によれば、異常のある無線パケットに含まれる ATM (Asynchronous Transfer Mo de)セルの情報のうち、廃棄に関するプライオリティの低いものを除いた情報を無線 パケットで再送することにより、リアルタイム通信で通信品質を保証して 、る。
特許文献 1:特開平 9 - 214507号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、従来の QoS制御の対象範囲は、主にトランスポート層力もデータリン ク層までに限定されており、下位の物理層や上位のアプリケーション層は QoS制御 の対象外となっている。例えば、音声通話を例に挙げると、通話中に無線伝送路でフ エージングが発生していても、回線品質の時間的平均値が比較的良好な場合は、適 応変調のシーケンスにて 16QAM (16 Quadrature Amplitude Modulation)などの高 位 MCS (Modulation and Coding Scheme)が選択される。この場合、フェージングの 谷においては、すなわち回線品質が瞬間的に劣悪な環境下においては、音声パケ ットの再送が発生し、遅延やジッタが発生する原因となる。しかし、アプリケーション層 やプレゼンテーション層などの上位レイヤは物理層の状態を把握して ヽな 、ため、こ れら無線回線の状態を検出することができず、結果的に大量のパケットを送信し続け ることになる。その結果、輻輳状態に陥るなどして通話の瞬断や遅延が頻発し、最終 的にユーザが感じる通信サービスの品質は劣悪なものとなる。
[0004] また、 QoS情報は提供されるサービスの種類によっても異なる。例えば、音声通話 の場合では所要伝送レートは数十 kbps程度で充分であり、また所要のパケットエラ 一レート(PER)も 10— 2程度と比較的緩やかな条件である反面、遅延やジッタに対す る要求条件は非常に厳しいという特徴がある。すなわち、音声通話における通信は 一定の遅延やジッタを保証する保証型 (Guarantee Type)の通信でなければならな!/、 。また、 FTP (File Transfer Protocol)などに代表されるデータ伝送の場合、伝送レー トはベストエフオート型(Best Effort Type)であって、遅延やジッタに対する要求条件 は緩やかである反面、パケット誤り率に対してはエラーフリーの厳し 、条件が要求さ れる。また、これらの QoS条件については、有線回線への影響もあるが、無線回線に 及ぼす影響は非常に大きい。
[0005] 本発明の目的は、物理層力もアプリケーション層までのマルチレイヤを包含して Qo S制御を行うことにより、高品質に通信サービスの提供が行えるような QoS制御システ ムを提供することである。
課題を解決するための手段
[0006] 本発明の QoS制御システムは、 OSI階層の全階層を包含して通信サービスの品質 保証を行う QoS制御システムであって、通信サービスを提供する送信装置、通信サ 一ビスを享受する受信装置、及び送信装置と受信装置を接続する中間装置の少なく とも 1つの装置に設置されて、通信サービスの品質保証を実現する QoSコントローラ を備え、その QoSコントローラを備えた装置力 通信サービスの種別に応じてユーザ に該当する通信サービスを提供するためのユーザ QoSを定義する構成を採る。
発明の効果
[0007] 本発明の QoS制御システムによれば、通信システムを構成する受信装置、送信装 置、中間ノードの少なくとも 1つに QoS制御を行うための QoSコントローラを設置し、 通信サービスの種別に応じたユーザ QoSをその QoSコントローラに定義している。こ れによって、 QoSコントローラは、ユーザ QoSやハードウェアの性能や種類や形態に よって、提供する通信サービスの品質保証条件である所要伝送レート、許容遅延、許 容パケットエラー率、及び許容ジッタなど設定することができる。
[0008] また、本発明の QoS制御システムによれば、 QoSコントローラ力 ユーザ QoSゃノヽ 一ドウエアの性能や種類や形態によって、通信サービスの提供に必要なプロトコルス タック及びパラメータを OSI階層の階層ごとに定義している。したがって、 QoSコント口 ーラを備えた送信装置、受信装置、及び中間ノードは、階層ごとに QoS制御を行うこ とができるので、定期的に階層ごとの動作状態を QoSコントローラに報告することが できる。これによつて、 QoSコントローラは、ある階層の状態悪ィ匕に起因した通信サー ビスの品質劣化を検出した場合は、該当する階層又は他の階層のパラメータを適宜 に更新して通信サービスの品質回復を図ることができる。すなわち、本発明の QoS制 御システムによれば、通信サービスの品質保証を行うための QoSコントローラを各ハ 一ドウエアに設置して、レイヤごとに通信サービスを行うユーザ QoSを定義しているの で、全てのレイヤを包含して通信品質を保証することができる。
図面の簡単な説明
[0009] [図 1]本発明の QoS制御システムを実現するためのネットワークの構成図
[図 2]図 1に示すネットワークにおける各要素のレイヤ構成を示す図
[図 3]本発明に適用される QoSコントローラと各レイヤとの関係を示す図
[図 4]図 3に示す QoSコントローラが行う各レイヤの監視項目及び制御項目を示す図 [図 5]図 3に示す QoSコントローラが行うレイヤ毎の QoS制御項目を示す図
[図 6]本発明に適用される QoSコントローラの構成図
[図 7]図 6に示す QoSコントローラで実行されるユーザ QoSと通信サービスの内容と の関係を示す図
[図 8]本発明における実施の形態 2の QoS制御システムにお 、て、携帯電話 (ユーザ B)に VoIPの初期設定を行う様子を示す概念図
[図 9]本発明における実施の形態 2の QoS制御システムで行われるレイヤごとの制御 項目を示す図
[図 10]本発明における実施の形態 2の QoS制御システムで行われる各レイヤ力もの VoIPの状態報告の様子を示す図
[図 11]本発明における実施の形態 2の QoS制御システムで行われる物理層の QoS 制御の流れを示す図
[図 12]本発明における実施の形態 2の QoS制御システムで行われるデータリンク層 の QoS制御の流れを示す図
[図 13]本発明における実施の形態 2の QoS制御システムで行われるプレゼンテーシ ヨン層(アプリケーション層)の QoS制御の流れを示す図
発明を実施するための最良の形態
[0010] <発明の概要 >
本発明の QoS制御システムは、通信サービスを提供する送信装置、通信サービス を享受する受信装置、及びルータやアクセスポイントなどの中間ノードの、全て又は いずれかの装置に、それぞれ、通信の品質保証を行うための QoSコントローラを設置 する。そして、それぞれの QoSコントローラに対して、ユーザに通信サービスを提供 するためのサービス種別ごとのユーザ QoSを定義しておく。これによつて、 QoSコント ローラは、ユーザ QoS及びノヽードウエアの性能や種類や形態よつて、通信サービス の品質を保証する諸条件 (例えば、所要伝送レート、許容遅延、許容パケットエラー 率、許容ジッタなど)を定義することができる。
[0011] さらに、 QoSコントローラは、前記の各ハードウェア(つまり、送信装置、受信装置、 及び中間ノード)における物理層力もアプリケーション層までの OSI (Open System Int erconnection :国際標準化機構)階層に対して、個別に、通信サービスの提供に必要 なプロトコルとパラメータを指定しておく。これによつて、 QoSコントローラは、それぞ れの階層に対して個別に QoS制御を行うことができる。したがって、各階層は、 自己 の状態を定期的に QoSコントローラへ報告することができるので、 QoSコントローラは 、ある階層の状態が悪ィ匕して通信サービスの品質が劣化した場合は、該当する階層 又は他の階層のパラメータを適応的に更新して通信サービスの品質回復を図ること ができる。例えば、物理層において、フェージングの影響によって回線状態が劣化し た場合は、プレゼンテーション層(アプリケーション層)のパラメータを更新して通信サ 一ビスの品質回復を図ることができる。 [0012] 以下、図面を用いて、本発明における QoS制御システムの実施の形態の幾つかを 詳細に説明する。尚、各実施の形態に用いる図面において、同一の構成要素は同 一の符号を付し、かつ重複する説明は省略する。
[0013] <実施の形態 1 >
図 1は、本発明の QoS制御システムを実現するためのネットワークの構成図である。 図 1に示すネットワークの構成では、携帯電話機などのモパイル ·ノード(MN: Mobile Node) 1と固定電話機などのコレスポンド'ノード(CN : Corresponded Node) 2がイン ターネット網 3を介して通信を行う様子を例に挙げている。 MN1は無線回線を通して アクセスポイント(AP : Access Point) 4に接続されており、 AP4はルータ(Router) 5を 通してインターネット網 3に接続されている。また、 CN 2もルータ(Router) 6を通してィ ンターネット網 3に接続されている。なお、この実施の形態ではネットワーク構成は無 線伝送路に限定されるものではなく、例えば電灯線伝送路による電力線搬送などに ち適用することがでさる。
[0014] 図 2は、図 1に示すネットワークにおける各要素のレイヤ構成を示す図である。すな わち、図 2は、図 1に示す MN1、 CN2、 AP4、及びルータ 5、 6のレイヤ構成を示して ヽる。図 2【こ示すよう【こ、 MN1、 CN2、 AP4、及びノレータ 5、 6ίま、全て OSI参照モデ ルを基とした 5階層モデル (すなわち、上位より、アプリケーション層、トランスポート層 、ネットワーク層、データリンク層、及び物理層)によって構成されている。ただし、 ΑΡ 4及びルータ 5、 6は、あくまで中継ノードの役割を果たすものであるため、実際はネッ トワーク層以下の機能を具備するものとする。
[0015] 図 3は、本発明に適用される QoSコントローラと各レイヤとの関係を示す図である。
図 3に示すように、 QoSコントローラ 7は、アプリケーション層、トランスポート層、ネット ワーク層、データリンク層、及び物理層に接続されていて、各レイヤにおける状態が 定期的に監視され、その都度、 QoSコントローラ 7に通知される。 QoSコントローラ 7 は各階層より提供された情報を統合し、これらの情報と、ユーザに提供される通信サ 一ビス(以下、ユーザ QoSという)により定められた所要 QoS (すなわち、所要レート、 許容遅延、許容パケットエラー率、及び許容ジッタ)とを比較する。そして、ユーザ Qo Sの条件を満たして 、な 、項目がある場合は各階層に適宜指示を出して、通信サー ビスの品質を適応的に保証する。
[0016] 図 4は、図 3に示す QoSコントローラ 7が行う各レイヤの監視項目及び制御項目を示 す図である。図 4に示すように、アプリケーション層は遅延及びジッタの監視 ·制御を 行い、トランスポート層は TCP (Transmission Control Protocol)再送、パケット到着間 隔、パケットロス率、遅延、及びジッタの監視 ·制御を行う。ネットワーク層は先に入力 したデータを先に出力するデータ構造のキュー状態 (Queue状態)の監視 ·制御を行 う。データリンク層はデータの再送回数の監視'制御を行う。物理層は SIR (Signal to Interference Ratio)、遅延スプレッド(Delay Spread) ,ドップラー周波数(Doppler Freq uency:fd)、 BER (Bit Error Rate) /PER (Packet Error Rate)の監視 ·制御を行う。
[0017] 図 5は、図 3に示す QoSコントローラ 7が行うレイヤ毎の QoS制御項目を示す図であ る。つまり、この図では、それぞれのレイヤの階層ごとに「所要レート」、「遅延」、「パケ ットエラー」、及び「ジッタ」の内容が示されている。例えば、「所要レート」としては、ァ プリケーシヨン層では音声 Z動画のコーデックレートの QoS制御を行い、トランスポー ト層では TCPウィンドウサイズの QoS制御を行い、ネットワーク層ではキュ一'プライ オリティ(Queuing Priority)及び帯域割り当ての QoS制御を行う。また、データリンク 層ではスケジューラの QoS制御を行 、、物理層では MCS及び SFの QoS制御を行う 。「遅延」、「パケットエラー」、及び「ジッタ」についても、それぞれの階層ごとに図 5の 該当項目に示すような QoS制御を行う。
[0018] 図 6は、本発明に適用される QoSコントローラの構成図である。図 6に示すように、 Q oSコントローラ 7は、アプリケーション層インターフェース 11、トランスポート層インター フェース 12、ネットワーク層インターフェース 13、データリンク層インターフェース 14、 物理層インターフェース 15、プロトコル決定器 16、 QoS算出器 17、情報判定器 18、 制御回路 19、通信品質保持回路 20、及びハードウェア情報保持回路 21を備えた構 成となっている。
[0019] 次に、図 6に示す QoSコントローラ 7の各構成要素の機能について説明する。各レ ィャのインターフェース 11、 12、 13、 14、 15は、制御回路 19との間で、図 4で示した ような各層ごとの監視項目及び制御項目につ 、ての情報のやり取りを行う機能を有 する。なお、アプリケーション層インターフェース 11は、ユーザ QoS情報をプロトコル 決定器 16及び QoS算出器 17へ配信する機能も有している。プロトコル決定器 16は 、サービス提供に必要なプロトコル及びパラメータを決定する機能を有する。 QoS算 出器 17は、ユーザ QoS情報に基づいて、所要伝送レート R 、許容遅延 T、許容パ
th dl ケットエラー率 P 、及び許容ジッタ Tなどの所要 QoSを算出する機能を有する。
err j
[0020] 情報判定器 18は、 QoS算出器 17の算出結果 (つまり、所要伝送レート R 、許容遅
th 延 T、許容パケットエラー率 P 、及び許容ジッタ T )の内容をプロトコル決定器 16に dl err j
通知する機能を有する。また、通信品質保持回路 20は、各レイヤのインターフェース (つまり、アプリケーション層インターフェース 11、トランスポート層インターフェース 12 、ネットワーク層インターフェース 13、データリンク層インターフェース 14、及び物理 層インターフェース 15)から報告された伝送路品質情報を保持する機能を有する。さ らに、ハードウェア情報保持回路 21は、 QoSコントローラ 7におけるハードウェアのバ ッファ量等の情報を保持する機能を有する。制御回路 19は、ユーザ QoS情報に基 づ 、て QoSコントローラ 7の各構成要素を制御し、 QoS制御を行う機能を有する。
[0021] 次に、図 6に示す QoSコントローラ 7の動作の流れを説明する。アプリケーション層 インターフェース 11から出力されたユーザ QoS情報は、プロトコル決定器 16及び Qo S算出器 17に入力される。また、プロトコル決定器 16においてサービス提供に必要 な初期プロトコル及び初期パラメータが決定され、制御回路 19を通して各レイヤのィ ンターフェース(つまり、アプリケーション層インターフェース 11、トランスポート層イン ターフェース 12、ネットワーク層インターフェース 13、データリンク層インターフェース 14、及び物理層インターフェース 15)に、通信サービスの提供に必要なプロトコル及 びパラメータが通知される。
[0022] また、 QoS算出器 17力 ユーザ QoS及びあらかじめ QoS算出器 17の内部に保持 されているハードウェアの性能(例えば、ノ ッファ量など)によって、所要伝送レート R 、許容遅延 T、許容パケットエラー率 P 、及び許容ジッタ Tなどの所要 QoSを算出 h dl err j
する。そして、これらの算出結果 (つまり、所要伝送レート R 、許容遅延 T、許容パケ
th dl
ットエラー率 P 、及び許容ジッタ T)は、それぞれ情報判定器 18に入力される。
err j
[0023] また、通信品質保持回路 20は、各レイヤのインターフェース(つまり、アプリケーショ ン層インターフェース 11、トランスポート層インターフェース 12、ネットワーク層インタ 一フェース 13、データリンク層インターフェース 14、及び物理層インターフェース 15) から報告された伝送路品質情報 (例えば、 SIR,遅延スプレッド、ドップラー周波数な ど)を保持し、ハードウェア情報保持回路 21は、 QoSコントローラ 7におけるハードウ エアのノ ッファ量等の情報を保持する。そして、通信品質保持回路 20やノヽードウエア 情報保持回路 21に保持された情報は、必要に応じてプロトコル決定器 16において 使用される。
[0024] 図 7は、図 6に示す QoSコントローラ 7で実行されるユーザ QoSと通信サービスの内 容との関係を示す図である。図 7に示すようにユーザ QoSは 5種類に分類され、それ ぞれの項目ごとに種々の通信サービスの内容が決められている。すなわち、ユーザ QoS"l"のサービスタイプは音声通話であって、具体的なサービス例は VoIP (Voice over Internet Protocol)である。また、ユーザ QoS"2"のサービスタイプは双方向スト リーミングであって、具体的なサービス例はテレビ電話である。さらに、ユーザ QoS"3 "のサービスタイプは単方向ストリーミングであって、具体的なサービス例はインター ネット TVである。また、ユーザ QoS"4"のサービスタイプはデータ通信であって、具 体的なサービス例はファイル転送である。さらに、ユーザ QoS"5"のサービスタイプは リアルタイムデータ通信であって、具体的なサービス例は通信対戦ゲームである。
[0025] また、各ユーザ QoSの項目ごとの「所要伝送レート」、「許容遅延」、「パケットロス Z エラー」、及び「ジッタ」のサービス内容は、それぞれ対応する項目に示すような数値 となっている。但し、図 7に示す各 QoSの数値は一例であって、実際の数値は QoSコ ントローラのハードウェアの性能や提供されるサービスにより適宜に決定される。
[0026] <実施の形態 2 >
次に、本発明における QoS制御システムの具体的な例を実施の形態 2として説明 する。すなわち、実施の形態 2では、 VoIPを用いた音声通話による VoIPサービス提 供時の動作について説明する。なお、以下に述べる実施の形態 2は、次に挙げる 4 項目の内容を前提条件とする。 1.ネットワークの構成は前述の図 1に示す通りとする 。 2.固定電話 (ユーザ A)と携帯電話 (ユーザ B)との間の通話とする。 3.携帯電話 にのみ QoSコントローラを具備し、固定電話及びその中間ノード (例えば、アクセスポ イン HAP)やルータなど)には QoSコントローラは具備されていないものとする。 4. Q oS制御の対象は物理層、データリンク層及びプレゼンテーション層のみとする。
[0027] 図 8は、本発明における実施の形態 2の QoS制御システムにおいて、携帯電話 (ュ 一ザ B)に VoIPの初期設定を行う様子を示す概念図である。図 8に示す実施の形態 2における QoS制御システムの構成は、前述の図 3及び図 6の構成と同じであるので 同一の符号を付してあるが、図 8では各レイヤのインターフェース名は省略してある。 したがって、例えば、図 6のアプリケーション層インターフェース 11は図 8のアプリケー シヨン層 11と同義語であるものとして読み替える。以下、図 8のトランスポート層 12、 ネットワーク層 13、データリンク層 14、及び物理層 15についても同様である。
[0028] 次に、図 6を参照しながら、図 8に基づいて VoIPの初期設定の動作について説明 する。まず、通信サービスの開始時にアプリケーション層 11から QoSコントローラ 7に 対して、 VoIPサービスが開始される旨の「ユーザ QoS指定」が通知される。すると、 Q oSコントローラ 7は、通知された「ユーザ QoS指定」に含まれる通信サービスの内容よ り、所要 QoS (つまり、所要伝送レート R 、許容遅延 T 、許容パケットエラー率 P
th dl err、 及び許容ジッタ T )を決定する。なお、実施の形態 2の例では、 QoSコントローラ 7に は、所要伝送レート R ≥ 83kbps、許容遅延 T ≤ 300msec、許容パケットエラー率
th dl
P ≤0.05、及び許容ジッタ T≤ 100msecが、所要 QoSとして決定されている。
err j
[0029] さらに、上記の所要 QoSが決定されると同時に、プロトコル決定器 16においてサー ビス提供に必要なプロトコル及びパラメータが決定され、制御回路 19を経て各レイヤ (つまり、アプリケーション層 11、トランスポート層 12、ネットワーク層 13、データリンク 層 14、及び物理層 15)に「プロトコル指定」、「パラメータ指定」が指示される。
[0030] ここでは、一例として、プレゼンテーション層(つまり、アプリケーション層 11)の音声 コーディックに G.711 (コーデックレート = 64kbpsゝ所要伝送レート R = 83kbps)を
th
適用し、アプリケーション層 11のセッションプロトコルに SIP(Session Initiation Protoc ol)、 RTP(Real-time Transport Protocol)及び RTCP(RTP Control Protocol)を適用 する。
[0031] また、トランスポート層 12に UDP(User Datagram Protocol)を、ネットワーク層 13に I Pv6(IP version 6)を、それぞれ適用する。さらに、 VoIPにおいては低エラー率より低 レイテンシであることが重要であるため、データリンク層 14におけるパラメータとしては 、上り/下り共に、 HARQ (High Availability Resolution Queue)の最大再送回数は低 い回数 (例えば 2回)とし、使用チャネル数は" 1"とする。また、物理層 15の変調方式 には CDMA (Code Division Multiple Access)方式を適用し、 QPSK (Quadrature Ph ase Shift Keying:四位相偏移変調)の低い低レート MCS (例えば、 QPSK R= 1/ 2)を設定すると共に、高 SF (例えば、 SF= 128)を設定する。尚、これらのプロトコル やパラメータはあくまでも一例であって、必ずしもこのパラメータ値に限定する必要は ない。
[0032] 図 9は、本発明における実施の形態 2の QoS制御システムで行われるレイヤごとの 制御項目を示す図である。例えば、アプリケーション層 11では、 G. 711や G. 729の ノ ラメータで音声コーディックが制御される。また、データリンク層 14では、 1〜: L0の ノ ラメータで無線フレームの最大再送回数が制御され、 1〜3のパラメータでチヤネ ル数が制御される。さらに、物理層 15では、 QPSK R= l/2, QPSK R= 3/4, 16QAM R= l/2、 16QAM R= 3/4のパラメータで MCSが制御され、 4, 8, 1 6, 32, 64, 128ビットのノ ラメータで SF力制御される。
[0033] 次に、各レイヤから QoSコントローラ 7に対して行われる VoIPの状態報告について 説明する。図 10は、本発明における実施の形態 2の QoS制御システムで行われる各 レイヤからの VoIPの状態報告の様子を示す図である。セッション層(つまり、アプリケ ーシヨン層 11)においては、 RTCPによって観測された下り音声パケットの平均遅延 時間及びジッタ情報カ^遅延'ジッタ報告」として QoSコントローラ 7に報告される。ま た、ネットワーク層 13から、音声パケットの「キュ一.バッファ(Queuing Buffer)状態報 告」が QoSコントローラ 7に報告される。
[0034] さらに、データリンク層 14から、無線回線の平均スループット及び HARQによる平 均再送回数が「再送回数'スループット報告」として QoSコントローラ 7に報告される。 また、物理層 15から、無線伝送路の状態(つまり、 PER, CQKChannel Quality Indie ator))が「PER、 CQI報告」として QoSコントローラ 7に報告される。なお、 CQIは、 SI R、ディレイ 'スプレッド(Delay Spread)、あるいはドップラー周波数などのような、無線 リンクにおける回線状態を表すパラメータを指して 、る。
[0035] 次に、無線回線の平均スループットが 40kbpsに落ち込んだ例に基づいて、マルチ レイヤの QoS制御の動作の流れを説明する。なお、以下の説明では、物理層 15、デ ータリンク層 14、及びプレゼンテーション層(アプリケーション層 11)の QoS制御の動 作の流れについて述べる。図 11は、本発明における実施の形態 2の QoS制御システ ムで行われる物理層の QoS制御の流れを示す図である。また、図 12は、本発明にお ける実施の形態 2の QoS制御システムで行われるデータリンク層の QoS制御の流れ を示す図である。さらに、図 13は、本発明における実施の形態 2の QoS制御システム で行われるプレゼンテーション層(アプリケーション層)の QoS制御の流れを示す図 である。以下、図 6の QoSコントローラの図面を参照しながら、図 11、図 12、及び図 1 3のそれぞれの図面に基づいて各レイヤの QoS制御の流れを説明する。
[0036] まず、図 11に基づいて、物理層 15における QoS制御の流れを説明する。最初に、 データリンク層 14から無線回線のスループットが所要伝送レートを下回った旨(例え ば、 R =40kbps)の通知を受けた QoSコントローラ 7内の情報判定器 18は、パラメ th
ータ変更要求をプロトコル決定器 16 (パラメータ決定器とも云う)に通知する。すると、 プロトコル決定器 (パラメータ決定器) 16は、通信品質保持回路 20からの CQI情報 に基づいて上位 MCSへの変更(例えば、 16QAM R= lZ2等)が可能であるか否 かを検討し、変更可能と判断した場合は、制御回路 19を経て物理層 15に対して「M CS変更要求」を送信する。すると、「MCS変更要求」を受信した物理層 15は、ァクセ スポイント(AP)とのネゴシエーションによって新しい MCSによる通信を確立する。
[0037] また、プロトコル決定器 (パラメータ決定器) 16が上位 MCSへの変更は不可能であ ると判断した場合は、プロトコル決定器 (パラメータ決定器) 16は、 CQI情報に基づい て SFの変更 (例えば、 SF = 64)を検討し、その変更が可能であると判断した場合は 、 QoSコントローラ 7から物理層 15に対して「SF変更要求」を送信する。そして、「SF 変更要求」を受けた物理層 15は、アクセスポイント(AP)とのネゴシエーションによつ て新しい SFによる通信を確立する。なお、 SFの変更が不可能と判断した場合は、物 理層 15の QoS制御を中止し、データリンク層 14の QoS制御を試みる。
[0038] 次に、図 12に基づいて、データリンク層 14における QoS制御の流れを説明する。
データリンク層 14の QoS制御において、まず、データリンク層 14から無線回線のスル 一プットが所要伝送レートを下回った旨(例えば、 R = 40kbps)の通知を受けた Qo Sコントローラ 7内の情報判定器 18は、パラメータ変更要求をプロトコル決定器 16に 通知する。すると、プロトコル判定器 16は、通信品質保持回路 20に保持されている 無線リソースの使用状態を確認する。ここで、無線リソースに余剰チャネルがあった場 合は、 QoSコントローラ 7は、現在使用中のチャネルに加えて余剰チャネルを新たに 割り当てるように、制御回路 19を経てデータリンク層 14に「スケジューリング変更要求 」の指示を出す。これによつて追加チャネル分のスループットが向上する。ここで、チ ャネル割り当て変更の指示を受けたデータリンク層 14は、アクセスポイント (AP)との ネゴシエーションによって新し 、チャネルの割り当てによる通信を確立する。
[0039] 一方、プロトコル判定器 16がチャネル割り当て変更は不可能であると判断した場合 は、 QoSコントローラ 7は上位層の QoS制御を試みる。しかしながら、ネットワーク層 1 3とトランスポート層 12のプロトコルは伝送レートの低下に対する QoS制御の手段を 持たないため、プレゼンテーション層(つまり、アプリケーション層 11)の QoS制御を 試みる。
[0040] 次に、図 13に基づいて、アプリケーション層 11における QoS制御の流れを説明す る。アプリケーション層 11の QoS制御においては、まず、データリンク層 14力も無線 回線のスループットが所要伝送レートを下回った旨(例えば、 R = 40kbps)の通知
th
を受けた QoSコントローラ 7内の情報判定器 18は、パラメータ変更要求をプロトコル 決定器 16に通知する。すると、 QoSコントローラ 7の制御回路 19は、低ビットレートの 音声コーディックを使用する旨の「音声コーディック変更要求」の指示をアプリケーシ ヨン層 11に送信する。同時に、 QoSコントローラ 7は所要伝送レート R の定義を変更
th
する。ここでは、一例として G. 729 (コーデックレート 8kbps、所要伝送レート 27kbps )を使用する旨の要求をアプリケーション層 11へ出すものとする。
[0041] すると、音声コーディックの変更指示を受けたアプリケーション層 11は、その旨を自 己のセッションに通知する。アプリケーション層 11内のセッションは、 SIPの再インバ イト(Invite)機能を使い、相手側のノードとメディアネゴシエーションを図り、新しい音 声コーディックによる通信を確立する。このような制御の結果、無線回線の伝送レート は、先にデータリンク層 14が QoSコントローラ 7へ通知した 40kbpsのままであるが、 音声コーディック自体を変更することによって安定した音声通話サービスの提供が実 現される。
[0042] なお、固定電話(ユーザ A)が G. 729などの 40kbps以下の低レートコ一ディックを 実装していないために、メディアネゴシエーションに失敗した場合は、固定電話 (ユー ザ A)と携帯電話 (ユーザ B)の双方が実装し得る最低レートの音声コーディックによつ てメディアネゴシエーションを図ることができる。また、既に最低レートの音声コーディ ックであって、コーデックレートをそれ以下に下げられない場合は、 QoSコントローラ 7 は何も行わな 、ものとする。
[0043] く本発明のまとめ〉
上記の実施の形態 1及び実施の形態 2で述べたように、本発明の QoS制御システ ムは、通信サービスを提供する送信装置、通信サービスを享受する受信装置、及び 送信装置と受信装置を接続する中間ノードの全ての装置又は一部の装置に対して、 それぞれ、 QoSコントローラを設置し、提供する通信サービスの種別に応じたユーザ QoSをそれぞれの QoSコントローラに定義しておく。これにより、 QoSコントローラは、 ユーザ QoS及びノヽードウエアの性能や種類や形態によって、提供する通信サービス の品質保証条件である所要 QoS (例えば、所要伝送レート、許容遅延、許容パケット エラー率、及び許容ジッタなど)を定義することができる。
[0044] また、 QoSコントローラは、ユーザ QoS及びノヽードウエアの性能や種類や形態によ つて、通信サービスの提供に必要なプロトコルスタック及びパラメータを定義すること ができる。したがって、 QoSコントローラを備えた送信装置、受信装置、及び中間ノー ドは、 OSI7階層モデルに相当するプロトコルスタックを定義して、それぞれの階層ご とに QoS制御を行うことができる。これによつて、送信装置、受信装置、及び中間ノー ドは、定期的に、それぞれの階層ごとの動作状態を QoSコントローラに報告すること ができる。
[0045] したがって、 QoSコントローラは、ある階層の状態悪ィ匕に起因した通信サービスの 品質劣化を検出した場合は、該当する階層又は他の階層のパラメータを適宜に更新 して通信サービスの品質回復を図ることができる。例えば、物理層においてフェージ ングの影響によって回線状態が劣化した場合は、アプリケーション層のパラメータを 更新して通信サービスの品質回復を図ることができる。なお、 QoSコントローラは、パ ラメータを更新するときには物理層のパラメータ力も優先して更新し、その階層のパラ メータの更新が困難な場合には上位の階層のパラメータ更新を試みる。
[0046] 本明細書は、 2004年 11月 24日出願の特願 2004— 339654に基づく。この内容 はすべてここに含めておく。
産業上の利用可能性
[0047] 以上説明したように、本発明に係る QoS制御システムは、各ハードウェアに通信サ 一ビスの品質保証を行う QoSコントローラを設置して、通信サービスを提供するユー ザ QoSをレイヤごとに設定しているので、全てのレイヤを包含して通信サービスの品 質保証を行うことができる。したがって、通信品質レベルの高い通信分野に有効に利 用することができる。

Claims

請求の範囲
[1] OSI階層の各階層を包含して通信サービスの品質保証を行う QoS制御システムで あって、
前記通信サービスを提供する送信装置、前記通信サービスを享受する受信装置、 及び前記送信装置と前記受信装置を接続する中間装置の少なくとも 1つの装置に設 置されて、前記通信サービスの品質保証を実現する QoSコントローラを備え、 前記 QoSコントローラを備えた装置力 前記通信サービスの種別に応じてユーザに 該当する通信サービスを提供するためのユーザ QoSを定義する QoS制御システム。
[2] 前記 QoSコントローラは、前記ユーザ QoS、及び前記 QoSコントローラを備えた装 置のハードウェアの性能、種類、形態の少なくとも 1つによって、提供される前記通信 サービスの品質保証を実現するための所要 QoSを定義する請求項 1に記載の QoS 制御システム。
[3] 前記所要 QoSは、所要伝送レート、許容遅延、許容パケットエラー率、及び許容ジ ッタの少なくとも 1つである請求項 2に記載の QoS制御システム。
[4] 前記 QoSコントローラは、前記ユーザ QoS、及び前記 QoSコントローラを備えた装 置のハードウェアの性能、種類、形態の少なくとも 1つによって、提供される前記通信 サービスの品質保証を実現するために必要なプロトコルスタック及びパラメータを定 義する請求項 1に記載の QoS制御システム。
[5] 前記プロトコルスタックは、前記 QoSコントローラを備えた装置の OSI階層モデルの 階層ごとに QoS制御を行うように定義される請求項 4に記載の QoS制御システム。
[6] 前記 OSI階層モデルの各階層は、定期的に自己の状態を前記 QoSコントローラに 通知する請求項 5に記載の QoS制御システム。
[7] 前記 QoSコントローラは、任意の階層の状態悪ィ匕に起因した前記通信サービスの 品質劣化を検出したとき、当該階層又は他の階層のパラメータを更新して前記通信 サービスの品質回復を図る請求項 5に記載の QoS制御システム。
[8] 前記 QoSコントローラは、前記パラメータの更新を行う際に、最下位の物理層のパ ラメ一タカも優先的に更新を実行し、当該階層におけるパラメータの更新が困難なと きに上位の階層のパラメータの更新を試みる請求項 7に記載の QoS制御システム。
PCT/JP2006/301236 2006-01-26 2006-01-26 QoS制御システム WO2007086124A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/301236 WO2007086124A1 (ja) 2006-01-26 2006-01-26 QoS制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/301236 WO2007086124A1 (ja) 2006-01-26 2006-01-26 QoS制御システム

Publications (1)

Publication Number Publication Date
WO2007086124A1 true WO2007086124A1 (ja) 2007-08-02

Family

ID=38308935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301236 WO2007086124A1 (ja) 2006-01-26 2006-01-26 QoS制御システム

Country Status (1)

Country Link
WO (1) WO2007086124A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466808A1 (en) * 2009-08-12 2012-06-20 Mitsubishi Electric Corporation Data transfer device, data transfer method, and data transfer system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205038A (ja) * 1993-01-05 1994-07-22 Nec Corp マルチメディアパケット通信方式
JPH1198152A (ja) * 1997-09-24 1999-04-09 Fujitsu Ltd ストリーム帯域制御方法
JPH11215183A (ja) * 1998-01-21 1999-08-06 Nec Corp 通信ネットワークシステム
JP2955282B1 (ja) * 1998-08-26 1999-10-04 株式会社エイ・ティ・アール環境適応通信研究所 通信サービス品質制御方法及び装置
JP2000242623A (ja) * 1999-02-23 2000-09-08 Atr Adaptive Communications Res Lab 通信サービス品質制御方法及び装置
JP2000244560A (ja) * 1999-02-18 2000-09-08 Atr Adaptive Communications Res Lab 通信サービス品質制御方法及び装置
JP2001298481A (ja) * 2000-04-13 2001-10-26 Nec Corp 通信制御方法、通信制御装置および記録媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205038A (ja) * 1993-01-05 1994-07-22 Nec Corp マルチメディアパケット通信方式
JPH1198152A (ja) * 1997-09-24 1999-04-09 Fujitsu Ltd ストリーム帯域制御方法
JPH11215183A (ja) * 1998-01-21 1999-08-06 Nec Corp 通信ネットワークシステム
JP2955282B1 (ja) * 1998-08-26 1999-10-04 株式会社エイ・ティ・アール環境適応通信研究所 通信サービス品質制御方法及び装置
JP2000244560A (ja) * 1999-02-18 2000-09-08 Atr Adaptive Communications Res Lab 通信サービス品質制御方法及び装置
JP2000242623A (ja) * 1999-02-23 2000-09-08 Atr Adaptive Communications Res Lab 通信サービス品質制御方法及び装置
JP2001298481A (ja) * 2000-04-13 2001-10-26 Nec Corp 通信制御方法、通信制御装置および記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKUDA K. ET AL.: "The relationship between QoS parameters and required bandwidth in MPEG-2 video", TECHNICAL REPORT OF IEICE SSE97-66, 28 August 1997 (1997-08-28), XP002941453 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466808A1 (en) * 2009-08-12 2012-06-20 Mitsubishi Electric Corporation Data transfer device, data transfer method, and data transfer system
EP2466808A4 (en) * 2009-08-12 2014-05-21 Mitsubishi Electric Corp DATA TRANSMISSION DEVICE, DATA TRANSMISSION METHOD AND DATA TRANSMISSION SYSTEM
US8943166B2 (en) 2009-08-12 2015-01-27 Mitsubishi Electric Corporation Data transfer device, data transfer method, and data transfer system

Similar Documents

Publication Publication Date Title
Wu et al. Energy-efficient bandwidth aggregation for delay-constrained video over heterogeneous wireless networks
US8942243B2 (en) Adaptive rate control in a communications system
US9184897B2 (en) Method of transmitting data and communication device
US7346007B2 (en) Bandwidth adaptation
EP2545730B1 (en) Method for reporting qos control-related information in network and network entity therefor
US20070183323A1 (en) Selective redundancy for voice over internet transmissions
JP5147858B2 (ja) 複合および非複合rtcpパケット間のrtcp帯域幅の分割
US20060165126A1 (en) Bit rate controlling means in a telecommunication system
Wu et al. Leveraging the delay-friendliness of TCP with FEC coding in real-time video communication
Siomina et al. The impact of QoS support on the end user satisfaction in LTE networks with mixed traffic
US11632691B1 (en) Dynamic PDCP duplication with bearer modification, to help overcome reduced wireless quality
Chen et al. Enhancing QoS support for vertical handoffs using implicit/explicit handoff notifications
JP2006148823A (ja) QoS制御システム
Ko et al. A handover-aware seamless video streaming scheme in heterogeneous wireless networks
Gorius et al. Dynamic media streaming over wireless and mobile ip networks
WO2007086124A1 (ja) QoS制御システム
Musabe et al. Evaluation of a new scheduling scheme for VoIP with mobility in 3G LTE
Sen et al. A survey on cross-layer design frameworks for multimedia applications over wireless networks
Ruiz et al. Adaptive multimedia applications to improve user-perceived qos in multihop wireless ad-hoc networks
Papadimitriou et al. A rate control scheme for adaptive video streaming over the internet
Gomez et al. QoS modeling for end-to-end performance evaluation over networks with wireless access
Musabe et al. A new scheduling scheme for voice awareness in 3G LTE
Papadimitriou et al. QRP04-4: End-to-end Congestion Management for Real-Time Streaming Video over the Internet
Alcaraz et al. Using buffer management in 3G radio bearers to enhance end-to-end TCP performance
Khademi Reducing latency in internet access links with mechanisms in endpoints and within the network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP