WO2007083497A1 - 圧電アクチュエータおよび電子機器 - Google Patents

圧電アクチュエータおよび電子機器 Download PDF

Info

Publication number
WO2007083497A1
WO2007083497A1 PCT/JP2006/325912 JP2006325912W WO2007083497A1 WO 2007083497 A1 WO2007083497 A1 WO 2007083497A1 JP 2006325912 W JP2006325912 W JP 2006325912W WO 2007083497 A1 WO2007083497 A1 WO 2007083497A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric actuator
piezoelectric
pedestal
piezoelectric element
vibration
Prior art date
Application number
PCT/JP2006/325912
Other languages
English (en)
French (fr)
Inventor
Yasuharu Onishi
Yasuhiro Sasaki
Masatake Takahashi
Ukyo Mori
Yukio Murata
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to CN2006800518955A priority Critical patent/CN101336562B/zh
Priority to US12/159,427 priority patent/US8319396B2/en
Priority to JP2007554842A priority patent/JP5012512B2/ja
Publication of WO2007083497A1 publication Critical patent/WO2007083497A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0651Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of circular shape
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type

Definitions

  • the present invention relates to a piezoelectric actuator that generates vibration using a piezoelectric element, and an electronic device using the piezoelectric actuator.
  • electromagnetic actuators have been used as driving sources for acoustic elements such as speakers because of their ease of handling.
  • the electromagnetic actuator has a permanent magnet and a voice coil, and generates vibration by the action of a magnetic circuit of a stator using the magnet.
  • the electromagnetic speaker generates sound by vibration of a low-rigidity diaphragm such as an organic film, which is fixed to the vibration part of the electromagnetic actuator.
  • the electromagnetic actuator has a problem in power saving because it requires a large amount of current to flow through the voice coil during operation, and because of its structure, it is not suitable for miniaturization and thinning.
  • electromagnetic actuators in order to prevent harmful effects due to magnetic flux leakage from the voice coil, electromagnetic actuators must be shielded when applied to electronic equipment. Not suitable for use.
  • the voice coil becomes finer as the size is reduced, and as a result, the resistance value of the wire increases, which may cause the voice coil to burn out.
  • a piezoelectric element such as a piezoelectric ceramic having a small size, light weight, power saving, no-leakage magnetic flux and the like as a drive source is used.
  • An actuator has been developed. Piezoelectric actuators generate mechanical vibrations by the movement of piezoelectric elements. For example, a piezoelectric ceramic element (also simply called “piezoelectric element”) and a pedestal are joined together!
  • FIG. 1 is a perspective view showing the configuration of a conventional piezoelectric actuator
  • FIG. It is sectional drawing which shows typically the aspect of the vibration of a actuator.
  • the piezoelectric actuator 550 includes a piezoelectric element 510 made of piezoelectric ceramic, a base 524 to which the piezoelectric element 510 is fixed, and a frame-shaped support member 527 that supports the outer periphery of the base 524. Have. When an AC voltage is applied to the piezoelectric element 510, the piezoelectric element 510 expands and contracts. As shown in FIG. 2, the pedestal 524 is deformed into a convex mode (shown by a solid line) or into a concave mode (shown by a broken line) according to the expansion and contraction motion. In this way, the pedestal 524 vibrates downward in the figure with the joint 524a as the fixed end and the pedestal central portion as the belly.
  • the piezoelectric actuator is inferior in performance as an acoustic element as compared with a force electromagnetic actuator that is advantageous for downsizing and thinning.
  • This is due to the fact that the piezoelectric element itself is highly rigid, and a sufficient average vibration amplitude cannot be obtained as compared with the electromagnetic actuator. In other words, if the amplitude of the actuator is small, the sound pressure of the acoustic element is also reduced.
  • JP-A-61-168971 and JP-A-2000-140759 in order to increase the vibration amplitude of the actuator, the outer periphery of the pedestal is relatively easily deformed and supported by a beam. The configuration is disclosed.
  • Japanese Patent Laid-Open No. 2001-17917 also discloses a technique for obtaining a large vibration amplitude by inserting a slit along the circumference of the periphery of the pedestal to form a plate panel for the same purpose. It has been.
  • Japanese Patent Laid-Open No. 2001-339791 discloses a technique in which the pedestal outer periphery and the support member are joined via a curved support member to broaden the frequency characteristics. Disclosure of the invention
  • JP-A-61-168971, JP-A-2000-140759, and JP-A-2001-17917 are primarily used as noise vibrators mounted on cellular phones and the like. Therefore, no consideration is given to playing music as an acoustic element such as a speaker.
  • the vibrator when used, it is necessary to consider the frequency characteristics when the amplitude is enlarged only by using a specific frequency, and when it is used as a speaker. In other words, it is necessary to configure so that a sound pressure of a predetermined level or higher can be obtained in a desired frequency band of, for example, 1 kHz to 10 kHz.
  • 2001-339791 discloses a structure in which a pedestal for restraining piezoelectric ceramics is joined to a curved support member, and displacement is caused in both the thickness direction and the radial direction of the piezoelectric ceramics. It is intended to generate.
  • This curved support member can reduce the stress distribution and attenuation rate of the characteristic part, reduce the distortion and widen the frequency characteristic band, but it can be used in both the radial and thickness directions. Since vibration is generated, vibration in the acoustic radiation direction is attenuated. For this reason, it is necessary to configure so as to obtain a predetermined sound pressure level.
  • An object of the present invention is to provide a piezoelectric actuator and an electronic apparatus that can obtain a large vibration amplitude and that can reproduce a wide frequency band sound.
  • the piezoelectric actuator of the present invention includes a piezoelectric element that expands and contracts according to the state of an electric field, a pedestal on which the piezoelectric element is attached to at least one surface, the piezoelectric element, and A support member for supporting the pedestal, wherein the piezoelectric element and the pedestal vibrate in a thickness direction of the piezoelectric element in accordance with the expansion and contraction movement of the piezoelectric element. It is connected to the support member via a vibration membrane having a rigidity lower than that of the pedestal.
  • the pedestal is connected to the support member via a vibration film having a rigidity lower than that of the pedestal, and this connection portion (vibration) between the pedestal and the support member Since the membrane portion is more easily deformed than the pedestal portion, the vibration amplitude can be improved.
  • the connecting portion (vibrating membrane portion) is easily deformed in this way means that the vibration in this portion is increased, and as a result, the vibration mode is more piston-type than the conventional configuration. (Vibration mode similar to that of an electromagnetic actuator).
  • the vibration film interposed between the pedestal and the support member since the impact at the time of dropping is absorbed by the vibration film interposed between the pedestal and the support member, the dropping stability is good, and application to portable devices and the like is possible.
  • the piezoelectric actuator of the present invention includes the vibration film as described above, and the vibration film The sound can be generated by vibrating. That is, the piezoelectric actuator of the present invention can function as an acoustic element as it is without using an additional vibration film or the like.
  • the pedestal to which the piezoelectric element is attached and the support member are joined via the vibration film having a rigidity lower than that of the pedestal.
  • a wide vibration can be obtained, and when this is used as an acoustic element, a sound having a wide frequency band can be reproduced.
  • FIG. 1 is a perspective view showing a configuration of a conventional piezoelectric actuator in which an outer peripheral portion of a pedestal is directly connected to a support member.
  • FIG. 2 is a longitudinal sectional view schematically showing a vibration mode of the piezoelectric actuator shown in FIG.
  • FIG. 3 is an exploded perspective view showing the configuration of the piezoelectric actuator of the first embodiment.
  • FIG. 4 is a longitudinal sectional view of the piezoelectric actuator shown in FIG.
  • FIG. 5A is a diagram for explaining the operation principle of a piezoelectric actuator.
  • FIG. 5B is a diagram for explaining the operating principle of the piezoelectric actuator.
  • FIG. 6A is a schematic diagram for explaining a flexural vibration mode of a piezoelectric actuator.
  • FIG. 6B is a schematic diagram for explaining a vibration mode of a bent piston type of the piezoelectric actuator.
  • FIG. 7 is a schematic diagram showing a configuration of a piezoelectric actuator according to a second embodiment.
  • FIG. 8 is a schematic diagram showing a diaphragm interposing part having a cantilever structure.
  • FIG. 9 is a schematic diagram showing a diaphragm intervening portion having a cantilever structure.
  • FIG. 10 is a schematic diagram showing a piezoelectric actuator that calculates the amount of stagnation of the diaphragm intervening portion.
  • FIG. 11A is an exploded perspective view showing a configuration of a piezoelectric actuator of a third embodiment.
  • FIG. 11B is a longitudinal sectional view showing the configuration of the piezoelectric actuator of the third embodiment.
  • FIG. 12 is a plan view showing a configuration of a piezoelectric actuator according to a fourth embodiment.
  • FIG. 13 is a plan view showing a configuration of a piezoelectric actuator according to a fifth embodiment.
  • FIG. 14 is a plan view showing a single pedestal used in the piezoelectric actuator of FIG.
  • FIG. 15 is a plan view showing another configuration example of the piezoelectric actuator according to the fifth embodiment.
  • FIG. 16 is a plan view showing still another configuration example of the piezoelectric actuator according to the fifth embodiment.
  • FIG. 20 is an exploded perspective view for explaining a multilayered piezoelectric element that can be used in place of a single-layer piezoelectric element.
  • FIG. 22A is a plan view showing the configuration of the piezoelectric actuator of the first example.
  • FIG. 22B is a longitudinal sectional view showing the configuration of the piezoelectric actuator of the first example.
  • FIG. 23 is a longitudinal sectional view showing a configuration of a piezoelectric actuator of Comparative Example 1.
  • FIG. 24A is a plan view showing the configuration of the piezoelectric actuator of the second embodiment.
  • FIG. 24B is a longitudinal sectional view showing the structure of the piezoelectric actuator of the second embodiment.
  • FIG. 25A is a plan view showing a configuration of a piezoelectric actuator of Example 3.
  • FIG. 25B is a longitudinal sectional view showing the configuration of the piezoelectric actuator of Example 3.
  • FIG. 26A is a plan view showing a configuration of a piezoelectric actuator of Example 4.
  • FIG. 26B is a longitudinal sectional view showing the structure of the piezoelectric actuator of the fourth embodiment.
  • FIG. 27 is a longitudinal sectional view showing the structure of the piezoelectric actuator of the fifth embodiment.
  • FIG. 28 is a longitudinal sectional view showing a configuration of a piezoelectric actuator of Example 6.
  • FIG. 29 is a longitudinal sectional view showing the structure of a piezoelectric actuator of Example 7.
  • FIG. 30 is a longitudinal sectional view showing a configuration of a piezoelectric actuator according to an eighth embodiment.
  • FIG. 31 is a plan view showing the configuration of the piezoelectric actuator of Example 10.
  • FIG. 32 is a plan view showing the configuration of the piezoelectric actuator of Example 11.
  • FIG. 33 is a longitudinal sectional view showing a configuration of a piezoelectric actuator of Comparative Example 2.
  • FIG. 34 is a front view showing an example of a mobile phone equipped with the piezoelectric actuator according to the present invention.
  • FIG. 35 is a cross-sectional view showing a configuration of a conventional acoustic element prepared as Comparative Example 4.
  • FIG. 36 is a longitudinal sectional view for explaining the piezoelectric actuator of the nineteenth embodiment.
  • FIG. 3 is an exploded perspective view showing the configuration of the piezoelectric actuator according to the present embodiment
  • FIG. 4 is a longitudinal sectional view of the piezoelectric actuator shown in FIG.
  • the piezoelectric actuator 50 of this embodiment includes a piezoelectric element 10 that is a vibration drive source, a pedestal 20 that supports the piezoelectric element 10, and a support for the pedestal 20. It has a vibration film 30 and these are laminated in order.
  • the contour shapes of the piezoelectric element 10, the pedestal 20, and the diaphragm 30 are all circular, and these three members are arranged so as to have the same center (concentric circles).
  • the outer peripheral portion of the vibration film 30 is connected to and supported by a support member 45 formed in a circular frame shape.
  • the piezoelectric element 10 includes a piezoelectric plate (piezoelectric ceramics) having two main surfaces 10a and 10b facing each other in parallel, and each of the main surfaces 10a and 10b of the piezoelectric plate has An upper electrode layer and a lower electrode layer (both not shown) are formed.
  • the polarization direction of the piezoelectric plate is not particularly limited, in the present embodiment, it is upward in the illustrated vertical direction (thickness direction of the piezoelectric element).
  • the piezoelectric element 10 configured in this manner is such that, when an alternating voltage is applied to the upper electrode layer and the lower electrode layer and an alternating electric field is applied, both main surfaces 10a and 10b expand or contract simultaneously. Performs radial expansion and contraction (diameter expansion). In other words, the piezoelectric element 10 performs a motion that repeats a first deformation mode in which the main surface expands and a second deformation mode in which the main surface contracts.
  • the pedestal 20 has a function of converting the expansion / contraction motion of the piezoelectric element 10 into vibrations in the vertical direction shown in the figure.
  • the pedestal 20 is composed of an elastic body (stretchable material), and as a material thereof, a metal material (e.g., aluminum alloy, linseed copper, titanium, or titanium alloy) or a resin material (e.g., epoxy, acrylic, A material having lower rigidity than the ceramic material constituting the piezoelectric element, such as polyimide or polycarbonate, can be widely used.
  • the main surface 10b (lower electrode layer) of the piezoelectric element 10 is fixed on the upper surface of the pedestal 20, the main surface 10b (lower electrode layer) of the piezoelectric element 10 is fixed. As a result, the pedestal 20 restrains the piezoelectric element 10.
  • FIG. 3 a region of the pedestal 20 where the piezoelectric element 10 is pasted is shown as the restraining portion 20a, and the other region (a region surrounding the restraining portion 20a) is shown as the non-constraining portion 20b. .
  • the vibration film 30 is a film member for increasing the vibration amplitude of the piezoelectric actuator, and has a lower rigidity than the base 20.
  • the pedestal 20 may be a metal material and the vibrating membrane 30 may be a resin material (for example, urethane, PET, polyethylene, etc.).
  • the base film 20 and the vibration film 30 may be made of the same material, and the vibration film 30 may have a relatively low rigidity by making the film thickness of the vibration film 30 relatively thin.
  • the vibrating membrane 30 may be paper, polyethylene terephthalate, or the like.
  • the thickness of the vibration film 30 may be, for example, 5 ⁇ m or more and 500 ⁇ m or less in the case of a resin material.
  • the vibration film 30 in the case where the vibration film 30 is a flat sheet material, it may be preferably 30 m or more and 180 m or less.
  • the vibration film 30 provided to increase the amplitude functions as a vibration film as it is.
  • the vibrating membrane 30 also has a function of increasing the vibration amplitude of the actuator in addition to the function as a vibrating film in a conventional acoustic element.
  • the conventional configuration for example, JP-A-61-168971 which attempts to increase the amplitude by providing a beam is different from the configuration according to the present invention.
  • a common vibration film may be attached to a plurality of piezoelectric actuators having different resonance frequencies to form one acoustic element. As a result, it is possible to complement each other in a band where the sound pressure level is low, and an acoustic element capable of obtaining a large sound pressure over a wider range of frequencies is realized.
  • the pedestal 45 is, for example, a member constituting the housing of the piezoelectric actuator, and the material thereof is not particularly limited, and may be a resin material or a metal material.
  • the joining of the piezoelectric element 10 and the pedestal 20 and the joining of the pedestal 20 and the vibration film 30 are, for example, for example, an epoxy adhesive can be used.
  • the thickness of the adhesive layer is not particularly limited. However, if it is too thick, vibration energy absorbed by the adhesive layer may increase and a sufficient vibration amplitude may not be obtained. It is preferable that:
  • the piezoelectric actuator 50 is configured such that the piezoelectric element 10 is fixed to the upper surface of the pedestal 20 and the pedestal 20 is supported by the support member 45 via the vibration film 30. .
  • This is different from the conventional configuration (see Fig. 1) in which the pedestal is directly supported by the support member.
  • the pedestal 20 is supported via the vibrating membrane 30 in this way, a larger vibration amplitude can be obtained compared to the conventional configuration, and the force is also
  • the mode of vibration will approach a piston type (described later with reference to FIG. 6B).
  • FIGS. 5A and 5B together with the vibration generation mechanism of the piezoelectric actuator.
  • the piezoelectric actuator 50 according to the present embodiment alternately repeats the convex deformation mode and the concave deformation mode as described above, so that the piezoelectric element 10, the restraining member 20, and the vibration film 30 vibrate in the vertical direction. To do.
  • the actuator according to the present embodiment is compared with the conventional actuator (see FIG. 1), the movement of the piezoelectric element 10 is transmitted to the base 20, and the vertical vibration is excited. Both are common in that they are caused.
  • the actuator according to this embodiment is configured such that the base 20 (and the piezoelectric element 10) is supported via the vibration film 30, and the two are different in this respect. Due to this difference, the following effects can be obtained.
  • the vibrating membrane 30 is made of a member having relatively low rigidity as compared with the pedestal 20, and thus is more easily deformed. Therefore, according to the present embodiment, a larger vibration amplitude can be obtained as compared with the conventional configuration in which the outer peripheral portion of the base 20 is directly supported by the support member 45.
  • the vibration film 30 (see FIG. 4) is provided so as to extend in the horizontal direction (that is, parallel to the main surface of the piezoelectric element 10). Therefore, the problem of increasing the size of the entire actuator due to the addition of the vibrating membrane 30 hardly occurs.
  • the circular piezoelectric element 10 is used. Since the energy efficiency when the circular piezoelectric element 10 expands and moves is higher than that of the rectangular element, when the same voltage is applied, a greater driving force can be obtained with this configuration. Then, when such a large driving force propagates to the vibrating membrane, the amount of vibration of the piezoelectric actuator increases. In addition, in the case of a circular element, since the central force is uniform in distance to the peripheral portion, the stress generated when propagating vibration to the beam is evenly distributed, energy efficiency is increased, and amplitude is increased. is there. In addition, since the piezoelectric element 10, the pedestal 20, and the vibration film 30 are arranged concentrically, vibration undulations and the like hardly occur.
  • a piezoelectric actuator as an acoustic element itself is also disclosed in the above-mentioned Japanese Patent Application Laid-Open Nos. 61-168971, 2000-140759, 2001-17917, and the like.
  • the acoustic elements in these publications are intended to be buzzers and vibrators. If it is used only as a vibrator, it is only necessary to improve the sound pressure. However, when it is used as a speaker, it is necessary to consider the vibration characteristics of the piezoelectric actuator in consideration of its frequency characteristics.
  • FIG. 6A shows a vibration mode of the conventional piezoelectric actuator as shown in FIG. 1 and FIG. FIG. 6B shows a vibration mode of an electromagnetic actuator (see, for example, FIG. 35 described later).
  • the conventional piezoelectric actuator has a flexural vibration mode in which the amplitude at the center is maximized.
  • the electromagnetic actuator has a piston-type vibration mode in which the central region A20 reciprocates in the vertical direction in the figure while the central region indicated by reference numeral A20 is kept almost flat as an example. ing.
  • the bending mode of vibration generated by conventional piezoelectric actuators is a mountain shape where the central part of the piezoelectric ceramic is the maximum displacement bending point, and a large amplitude can be obtained at the central part, but the closer it is to the vicinity of the fixed end.
  • the displacement gradually attenuates.
  • the vibration state of the piston motion is a trapezoidal shape with a maximum inflection point 60 near the fixed end, and the vibration near the fixed end rises significantly.
  • the maximum amount of vibration in the acoustic radiation plane is superior to the piston type motion in the bending type motion, but the average amount of vibration in the acoustic radiation surface is The piston type motion with a large displacement at the fixed end is superior to the bending type motion.
  • Piston-type motion and flexion-type motion can be defined by the ratio of average displacement and maximum displacement, and (average vibration amount) Z (maximum vibration amount) (details are explained in Example evaluation 5) The closer to 1 in the formula shown, the more piston-style is promoted.
  • the region to which the pedestal 20 is attached is a region corresponding to A20, and the outer side is apparently more than the region A20.
  • the connection area is A30, which is low in rigidity (that is, more easily deformed).
  • region A30 shows a comparatively big deformation
  • the region A30 which is the periphery of the region where the pedestal is pasted, is configured with a low-rigidity member, this is compared to the conventional configuration in which the pedestal 20 is directly connected to the support member.
  • Resonance of diaphragm refer to a laminate of pedestal and diaphragm
  • an acoustic element it is relatively difficult for an acoustic element to produce a sound having a sufficient frequency with a resonance frequency fO or less.
  • a configuration is used in which only sound is used as reproducible sound.
  • the resonance frequency fO of the piezoelectric actuator is in a high frequency band (for example, 2 kHz)
  • the acoustic element cannot generate a sound force in a band of 2 kHz or higher.
  • the frequency band necessary for playing music on a mobile phone or the like is preferably lk ⁇ : LOkHz. Therefore, a piezoelectric actuator having a resonance frequency fO of 1 kHz or less is suitable for a mobile phone or the like.
  • the actuator is advantageous for downsizing as in this embodiment, its utility value is very high.
  • the piezoelectric actuator has the property that the resonance frequency of the vibrating part is high because of the use of a highly rigid ceramic as the piezoelectric element, making it difficult to produce low sounds. It is also conceivable to increase the element size to reduce the apparent rigidity of the piezoelectric element and lower the resonance frequency.
  • piezoelectric actuators are often mounted on small electronic devices such as mobile phones, so that low-frequency sound can be produced without changing the element size from the viewpoint of preventing the device from becoming large. I prefer to make it easier to get out.
  • the piezoelectric actuator according to the present embodiment can obtain a sufficient vibration amplitude in a wide frequency band, and when used as an acoustic element, can realize a good frequency characteristic.
  • the piezoelectric actuator of the present embodiment has the following advantages.
  • the vibration characteristics of the piezoelectric actuator are the material characteristics, shape, and vibration membrane of the pedestal 20. It can be easily adjusted by appropriately changing the material characteristics and shape.
  • the shape of the base and the thickness of the diaphragm can be adjusted without changing the size of the housing (the size of the support member), so the support member can be used as a common component, reducing manufacturing costs. Is also advantageous.
  • the force that may be reduced by reducing the thickness of the piezoelectric element in order to lower the resonance frequency of the piezoelectric actuator, the force that may be reduced by reducing the thickness of the piezoelectric element.
  • the resonance frequency can be lowered simply by adjusting the material and the distance between the support member and the restraining member.
  • manufacturing a thin piezoelectric element is relatively expensive due to cracking during firing.
  • it is not necessary to prepare such a thin piezoelectric element it is possible to reduce the manufacturing cost.
  • the piezoelectric actuator according to the present invention can be used as a sound source of an electronic device (for example, a mobile phone, a notebook personal computer, a small game device, etc.).
  • an electronic device for example, a mobile phone, a notebook personal computer, a small game device, etc.
  • piezoelectric actuators using ceramics as a piezoelectric element had one aspect that the piezoelectric element was easily damaged when dropped.
  • a portable electronic device as described above often causes the user to accidentally drop the device during use. Therefore, it has been considered that a piezoelectric actuator is not suitable for a portable device.
  • the pedestal 20 to which the piezoelectric element is fixed and the support member 45 are supported via the vibration film 30 having low rigidity.
  • the impact is absorbed by the damping effect of the vibration film 30, and the piezoelectric element is hardly damaged. Therefore, it can be suitably used for portable electronic devices.
  • the sag amount ⁇ (m) of the vibration film intervening portion A between the outer peripheral portion of the base and the inner peripheral portion of the support member can be calculated as follows. As shown in FIG. 7, the diaphragm intervening portion A between the outer peripheral portion of the pedestal and the inner diameter portion of the support member is as shown in FIG. The amount of stagnation ⁇ (m) of the diaphragm intervening portion A is calculated from the following formula (1).
  • the [0045] A method for calculating the sag amount ⁇ of the diaphragm intervening portion A in the present invention will be described below.
  • the following calculation formula (1) is a formula in which the diaphragm intervening portion ⁇ ⁇ ⁇ as shown in FIG.
  • the amount of sag ⁇ can be calculated by applying a prescribed load W to the tip of the free end 83.
  • L is the length of the diaphragm interposed portion ⁇ in the radial direction of the piezoelectric element 10
  • h is the thickness of the diaphragm
  • E is the longitudinal elastic modulus of the material of the diaphragm ( (See Figure 9).
  • the load W is assumed to be lN (N / m 2 )
  • the width b of the beam-like diaphragm intervening portion A is assumed to be 0.00 lm.
  • the calculation of the amount of sag ⁇ of the diaphragm intervening portion A in the shape of the piezoelectric actuator of the present invention is essentially a plane that forms a donut shape having openings as described later with reference to FIGS. 11A and 11B.
  • the change in thickness, longitudinal elastic coefficient of the diaphragm material, and length L of the diaphragm intervening part ⁇ is affected by the power. It is possible to approximate even a rectangular planar shape that is less influenced by the area.
  • the amount of sag ⁇ is calculated as a rectangular shape having a width b of 0.001 (m).
  • the amount of stagnation ⁇ of the diaphragm intervening portion A in the shape shown in FIG. 10 is calculated.
  • the length L of the diaphragm interposition part ⁇ is 0.OOlm (lmm)
  • the longitudinal elastic modulus (material: urethane) of the diaphragm is 4.0 X 10 8 (NZm 2 )
  • the thickness h of the diaphragm is 8 X 10 " 5 (m) (80 ⁇ m)
  • the specified width b is 0.001 m (lmm)
  • the specified load W is 1 (N).
  • the stagnation amount ⁇ is 0.0195 (m).
  • the piston type vibration state can be obtained by selecting the stagnation amount ⁇ (m) to be in the range of 0.001 to 5.
  • the vibration is generated by adjusting the sag amount ⁇ of the diaphragm intervening part A, which becomes a vibration node, within the specified range, the joint between the panel outer periphery and the diaphragm (20c) Alternatively, the stress concentrates on the panel base (20) and becomes the maximum inflection point position (see Fig. 6B).
  • the piston-type vibration state is promoted.
  • the amount of sag ⁇ is less than 0.001
  • the stress concentrates on the outer periphery of the support member 45 and the center of the piezoelectric ceramic, so the center of the ceramic becomes the maximum inflection point, and the flexural vibration mode Occurs.
  • the stagnation amount ⁇ is greater than 5
  • the stress is concentrated around the base 20 when the vibration is generated, but the vibration is transmitted to the diaphragm due to the low rigidity of the diaphragm.
  • the vibration mode is a free end bending motion that produces bending motion only in the vicinity of the piezoelectric ceramic.
  • the piston-type motion state is promoted, and the piezoelectric actuator having the conventional mountain-like motion state is promoted. Since the average vibration amount in the acoustic radiation plane is higher than that of the sensor, it can be realized as a piezoelectric element for acoustic elements with a high sound pressure level.
  • FIG. 11A is an exploded perspective view showing the configuration of the piezoelectric actuator according to the second embodiment
  • FIG. 11B is a longitudinal sectional view of the piezoelectric actuator.
  • a vibrating film 31 having an opening 31a formed at the center is used.
  • the opening 31a is circular and is formed so as to be concentric with the piezoelectric element 10 and the pedestal 20.
  • the vibration film 31 By forming the opening 31a, only the vicinity of the outer periphery of the back surface (the lower surface in the drawing) of the pedestal 20 is supported by the vibration film 31. In other words, the pedestal 20 On the back surface, a region corresponding to the opening 31a is exposed.
  • the piezoelectric actuator 51 of this embodiment performs a vibration operation in the same manner as in the above-described embodiment using the piezoelectric element 10 as a drive source.
  • the pedestal 20 is configured such that only the outer periphery thereof is supported, and the pedestal 20 is more easily bent and deformed at the opening 3 la, so that the pedestal 20 is more easily bent and deformed.
  • the vibration amplitude of the actuator will further increase.
  • the apparent rigidity of the diaphragm which indicates a laminated body of a pedestal and a diaphragm
  • U preferred in terms of improvement.
  • the opening 31a In view of the operational effects of the opening 31a as described above, it can be said that as the area of the opening 31a increases, the pedestal 20 is more easily bent and deformed, and hence the resonance frequency of the actuator is also reduced.
  • the shape of the opening 31a is not limited to a circle and may be a rectangle or a polygon. Further, as in the above-described embodiment, a plurality of openings connected by only one opening may be provided.
  • the piezoelectric actuator of the present invention is not limited to that shown in the above embodiment, and may have a configuration as shown in FIG.
  • a piezoelectric element 11 formed in a square shape is used.
  • Other configurations are the same as those in the first embodiment.
  • the piezoelectric element 11 is obtained by changing only the contour shape of the piezoelectric element 10 of the first embodiment, and the material and basic structure thereof are the same as those of the first embodiment.
  • an upper electrode layer and a lower electrode layer are formed on the upper and lower surfaces of the piezoelectric plate! The points to be discussed are the same as in the above embodiment.
  • the contour shape of the piezoelectric element is not particularly limited, and may be a circular shape (see FIG. 3) or a rectangular shape (see FIG. 12). Furthermore, it may be oval or polygonal.
  • a square element has a high symmetry similar to a circular piezoelectric element, so that a large driving force can be obtained compared to a rectangular element that has high energy efficiency during expansion and contraction (diameter expansion). With such a large driving force, sufficient vibration amplitude can be obtained.
  • a rectangular element is advantageous in terms of manufacturing cost because it has a higher yield than a circular element and is easy to manufacture.
  • FIG. 13 is a plan view showing a configuration of the piezoelectric actuator according to the fourth embodiment
  • FIG. 14 is a plan view showing a pedestal unit used in the piezoelectric actuator.
  • a plurality of beams 21a are formed on the outer peripheral side of the base 21A.
  • Other configurations are the same as those in the first embodiment.
  • a plurality of beams 21a are formed on the outer peripheral edge of the main body 21b having a circular outline. All of the beams 21a have the same shape and extend radially from the center of the main body 21b toward the outside in the radial direction.
  • the pedestal 21A is a single member in which the beam 21a and the main body 21b are integrated, and although not shown, the beam 21a extends straight in the same plane as the main body 21b. Yes.
  • the material of the base 21A is the same as that of the first embodiment, and the contour shape of the main body 21b is the same as the contour shape of the piezoelectric element 10.
  • the lower electrode layer of the piezoelectric element 10 is joined to the upper surface of the main body portion 21b, whereby the piezoelectric element 10 is restrained by the base 21A.
  • the number of beams 21a is not particularly limited. In the piezoelectric actuator 53B shown in FIG. 15, four beams 21a are formed, and in the actuator 53C shown in FIG. 16, twelve beams 21a are formed. In any of the piezoelectric actuators 53A to 53C, the beams 21a are formed at equal intervals (intended to have the same interval between the beams in the circumferential direction). Each beam 21a may have a constant beam width W21 as shown in FIG. 14 or the like, or may have a tapered shape such that the beam width W21 gradually narrows as it is directed to the tip of the beam. May be.
  • the operation principle of the piezoelectric actuators 53A to 53C including the beam 21a as described above is the same as that of the first embodiment. That is, when an AC electric field is applied to the upper electrode layer and the lower electrode layer of the piezoelectric element 10, the piezoelectric element 10 performs expansion / contraction motion. In the direction of the electric field Accordingly, the expansion and contraction motion by the piezoelectric element 10 is alternately repeated, and the vibration is excited by the restraining effect of the base 21A. At this time, the main body 21b vibrates in the vertical direction, and the movement is transmitted to the plurality of beams 21a. Since the end of the beam 21a is connected via the vibration film 30 that is not directly connected to the support member 45, the vibration amplification effect by the vibration film 30 is the same as in the first embodiment. Be expected.
  • the apparent rigidity of the pedestal 21A is lower than that of the pedestal where the beam is not formed, such as a circle indicated by a broken line 21b '. Yes. Therefore, the outer peripheral portion of the base is more easily deformed and the vibration of the vibrating membrane can be further induced, so that the vibration amplitude of the piezoelectric actuator is further increased.
  • the deformation of the piezoelectric support portion where the deformation of the beam is relatively large is relatively small. Therefore, the piston type as shown in FIG. 6B is not used in the vibration mode as shown in FIG. 6A. It is easy to obtain the vibration mode. For this reason, the piezoelectric element that does not give large deformation or distortion to the piezoelectric body can be reciprocated greatly upward and downward.
  • the beam 21a and the main body 21b can be provided as separate members. Further, the two members 21a and 21b may be made of the same material or different materials. There may be. In addition, when the pedestal 21A is formed from a single sheet-like member, punching may be performed by press working.
  • the piezoelectric actuator of the present invention is not limited to that shown in the above embodiment, and may be configured as shown in FIG. In FIG. 17, the illustration of the piezoelectric element 10 is omitted. In the piezoelectric actuator 54 shown in FIG. 17, a square support member 46 is used, and the contour shape of the vibrating membrane 32 is also rectangular according to this. Other configurations are the same as those in the first embodiment.
  • the vibration film 32 is rectangular as described above, the effect of the present invention by the pedestal 20 being connected to the support member 46 via the vibration film 32 can be obtained in the same manner as described above. Can do.
  • the rectangular diaphragm 32 the area can be used effectively for arranging the piezoelectric actuators for the following reasons. For example, consider a circular diaphragm 30 as shown by a broken line in FIG. 17 and a diaphragm 32 of this embodiment. Vibration membrane 30, 32 The size is such that the contour of the vibrating membrane 30 is inscribed in the contour of the vibrating membrane 32.
  • the piezoelectric actuator When the piezoelectric actuator is arranged in an electronic device or the like, a rectangular region is usually secured as an arrangement space on the electronic device side. In this case, use an actuator with a circular contour that has a vibrating membrane 30 or use an actuator with a rectangular contour that has a vibrating membrane 32.
  • the placement space required on the electronic device side is almost the same. is there.
  • the piezoelectric actuator 54 of the present embodiment capable of increasing the area of the diaphragm 32 has a higher sound pressure. This is advantageous in that the level can be realized. Note that when the rectangular diaphragm 32 and the circular diaphragm 30 are compared, the diaphragm 32 has a larger area than the area 32a shown as the shaded area. It is expected that the sound pressure level will be improved.
  • the piezoelectric actuator of the present invention is not limited to that shown in the above embodiment, and may have a configuration as shown in FIG. In the piezoelectric actuator 55 shown in FIG. 18, a vibrating membrane 33 having a curved portion 33b is used. Other configurations are the same as those in the first embodiment.
  • the vibration film 33 has a flat central portion 33a that supports the back surface of the pedestal 20, and a curved portion 33b formed on the outer side of the central portion 33a.
  • the contour shape of the central portion 33a viewed from the upper surface side is circular, and the contour shape of the curved portion 33b is a donut shape concentric with the central portion 33a.
  • the curved portion 33b is formed in this manner, the stalk of the vibration film in the connection portion region A30 is lengthened, whereby the vibration film has low rigidity. As a result, the vibration membrane is more easily deformed, the resonance frequency is reduced, and a larger vibration amplitude can be obtained.
  • the above-mentioned "curved portion” intends a structure portion in which a part of the vibrating membrane is curved three-dimensionally. Therefore, the “curved portion” includes, for example, a structural portion having a cross section in which the waveform shape continues, in addition to the curved portion 33b having a semicircular cross section as shown in FIG. [0074]
  • the force with which the vibrating membranes 30, 32, 33 having no opening are used is not limited to this.
  • the openings as described in the second embodiment may be formed in the vibration films 32 and 33 (see FIGS. 17 and 18). Needless to say, the configurations of the respective embodiments (including the seventh embodiment described below) may be appropriately combined.
  • the force that has been described by taking as an example the configuration in which the piezoelectric element 10 is fixed to one surface of the pedestal is not limited thereto. It is also possible to adopt a configuration in which a bimorph type piezoelectric element 11 is mounted as shown in FIG.
  • the bimorph type piezoelectric element 11 is obtained by attaching the piezoelectric element 11 A and the piezoelectric element 11 B to both surfaces of the pedestal 20 as in the first embodiment.
  • the piezoelectric element 11 configured in this manner alternately performs an operation such that when one piezoelectric element 11A extends, the other piezoelectric element 11B contracts, and when the other piezoelectric element 11B extends, one piezoelectric element contracts. It is. According to such a configuration, it is possible to obtain a large driving force as compared with the single piezoelectric element as described above.
  • each piezoelectric element 11 if the piezoelectric elements 11A and 1IB operate so that one of them expands and the other contracts (in short, they perform operations opposite to each other)
  • the polarization direction of each piezoelectric element is not particularly limited.
  • the polarization directions of both piezoelectric elements may be aligned in the same direction (for example, upward in the drawing).
  • a vibration film 31 ′ having an opening may be used.
  • the vibration film 30 having no opening may be used, and the piezoelectric element 11B may be attached to the opposite side of the piezoelectric element 11A with the vibration film interposed (this will be described later [ See Example 5]).
  • the piezoelectric element itself may have a laminated structure.
  • the piezoelectric element 12 shown in FIG. 20 has a multilayer structure in which piezoelectric plates 13a to 13e having piezoelectric material force are laminated in five layers. Electrode layers (conductor layers) 14a to 14d are formed between the piezoelectric plates. Each piezoelectric plate The polarization directions of 13a to 13e are reversed in each layer, and the electric field directions are alternately reversed.
  • the piezoelectric element 12 having such a laminated structure since the electric field strength generated between the electrode layers is high, the driving force of the piezoelectric element as a whole is improved by an amount corresponding to the number of laminated piezoelectric plates. .
  • the piezoelectric element 12 shown in FIG. 20 can be used as a substitute for the piezoelectric element 10 shown in FIG. 3, for example.
  • Example 1 Example 2 Example 3 Example 4
  • Thickness 50 16 m
  • Circular: 18mm Beam: Width 2mm Length 1
  • Thickness 80 w m
  • Example 1 As shown in FIGS. 22A and 22B, a piezoelectric actuator 50 of the first embodiment (see also FIGS. 3 and 4) in which the piezoelectric element 10 was attached to the upper surface of the base was manufactured. Although not an essential difference, in this embodiment, the vibrating membrane 30 is attached to the lower surface of the support member 45.
  • the piezoelectric element 10, the pedestal 20, the vibration film 30, and the support member 45 were arranged concentrically.
  • the piezoelectric plate was made of lead zirconate titanate ceramic, and the electrode layer was made of silver Zpalladium alloy (70% by weight: 30%).
  • the piezoelectric element was manufactured by the green sheet method, fired in air for 1100 ° C for 2 hours, and then the piezoelectric material layer was subjected to polarization treatment. Adhesion between the piezoelectric element 10 and the pedestal 20, adhesion between the pedestal 20 and the vibration film 30, and adhesion between the support member 45 and the vibration film 30 were performed using an epoxy adhesive.
  • Vibration mode Piston type
  • the piezoelectric actuator according to the present example has a piston-type vibration state in which the resonance frequency is low at 1 kHz or less and the vibration amplitude is large.
  • the thickness of the piezoelectric actuator (the thickness of the support member 45) was about 1.5 mm, and the thickness was sufficiently reduced.
  • the ratio t20ZtlO may be 0.2 or more and less than 2.0 (0.2 ⁇ t20 / tl0 ⁇ 2.0).
  • the pedestal thickness may be 100 m for a piezoelectric element having a thickness of 50 m.
  • a conventional piezoelectric actuator having a base outer peripheral portion directly joined to a support member as shown in FIG. 23 was produced.
  • This piezoelectric actuator 550 has a configuration similar to that shown in FIG.
  • the piezoelectric element 510, the pedestal 520, and the support member 545 are made of the same material as the piezoelectric element 10, the pedestal 20, and the support member 45 of the first embodiment.
  • Support member 545 same as support member 45 of Example 1
  • the piezoelectric element 510, the pedestal 520, and the support member 530 are arranged concentrically.
  • Example 2 a piezoelectric actuator 51 of the second embodiment type (see also FIGS. 11A and 11B) as shown in FIGS. 24A and 24B was produced.
  • an opening 3 la is formed in the vibration film 31.
  • the opening 31a was formed at the center of the vibration film 31. ⁇ result ⁇
  • Vibration mode Piston type
  • Example 3 a piezoelectric actuator of the fourth embodiment type (see also FIG. 13) as shown in FIGS. 25A and 25B was produced.
  • the piezoelectric actuator 53A of the present embodiment is obtained by providing eight beams 21a on a base 21A.
  • Pedestal 21A Thickness' material is the same as pedestal 20 of Example 1
  • Beams 21a Eight radial and equally spaced beams Z Each beam 21a has a beam width of 2mm (-constant width) and a length of lmm.
  • Vibration mode Piston type
  • the resonance frequency is It was proved that the vibration amplitude was further reduced as compared with Example 1 and the vibration amplitude was large.
  • Example 4 a piezoelectric actuator as shown in FIGS. 26A and 26B was produced.
  • the piezoelectric actuator 53D of the present embodiment is configured as a modification of the above-described third embodiment, and includes a vibration film 31 in which an opening 31a is formed instead of the vibration film 30.
  • Other configurations are the same as those of the third embodiment.
  • Piezoelectric element 10 Same as Example 1 (Same as Example 3)
  • the opening 31a was formed at the center of the vibration film 31.
  • Vibration mode Piston type
  • the piezoelectric actuator 56C of this embodiment is a bimorph type by disposing an additional piezoelectric element 10B on the back surface of the vibration film 30 of the piezoelectric actuator 50 of Embodiment 1 (see FIGS. 22A and 22B). That is, the piezoelectric element 10B is attached to the lower surface side of the pedestal 20 with the vibration film 30 interposed as shown.
  • the specific configuration of each unit is as follows.
  • Piezoelectric element 10A Same as piezoelectric element 10 of Example 1
  • Piezoelectric element 10B The basic configuration is the same as that of the piezoelectric element 10 (however, the piezoelectric element 10A is configured to operate in the reverse direction).
  • Vibration mode Piston type
  • the vibration amplitude at which the resonance frequency is low is larger than that of the first example.
  • Example 6 a piezoelectric effector of the seventh embodiment type (see also FIG. 19) as shown in FIG. 28 was produced.
  • the piezoelectric actuator 56A of the present embodiment openings are formed in the vibration film, and the piezoelectric elements 11A and 1IB are directly attached to both surfaces of the pedestal 20.
  • Piezoelectric element 11A Same as piezoelectric element 10 of Example 1
  • Piezoelectric element 11B The basic configuration is the same as that of the piezoelectric element 10 (however, the piezoelectric element 11A is configured to operate in the reverse direction).
  • Vibration mode Piston type
  • the vibration amplitude at which the resonance frequency is low is larger than that of the first example.
  • Example 7 a piezoelectric actuator 56B as shown in FIG. 29 was produced.
  • the piezoelectric actuator 56B of the present embodiment is obtained by changing the pedestal of the piezoelectric actuator 56A of the above-described embodiment 6 to one having a beam.
  • the additional piezoelectric element 11B is attached to the back surface of the base 21A to constitute the piezoelectric element 11 ′.
  • Piezoelectric element 11A Same as piezoelectric element 10 of Example 1
  • Piezoelectric element 11B The basic configuration is the same as that of the piezoelectric element 10 (however, the piezoelectric element 11A is configured to operate in the opposite direction).
  • Vibration mode Piston type motion
  • Example 8 a piezoelectric actuator of the sixth embodiment type (see also FIG. 18) as shown in FIG. 30 was produced.
  • the piezoelectric actuator 55 of the present embodiment is obtained by changing the shape of the vibration film of the piezoelectric actuator of the first embodiment. That is, the curved portion 33b is provided in the gap between the pedestal outer peripheral portion and the support member inner peripheral portion.
  • Other configurations are the same as those of the piezoelectric actuator according to the first embodiment.
  • Vibration mode Piston type
  • Example 9 the following piezoelectric actuator was manufactured (not shown).
  • the size of the pedestal 20 of the piezoelectric actuator 50 of the first embodiment is reduced (this is referred to as “pedestal 20 ′” for the purpose of distinguishing the force not shown).
  • Other configurations Is the same as the piezoelectric actuator of the first embodiment. Due to the downsizing of the pedestal, the gap distance between the support member and the restraining member is longer than that in the first embodiment.
  • Vibration mode Piston type
  • the resonance frequency can be adjusted by changing the clearance distance between the support member and the restraining member as in this embodiment, and the resonance frequency is higher than that in the first embodiment. It was further reduced and the vibration amplitude was demonstrated to be large.
  • Example 10 a piezoelectric actuator as shown in FIG.
  • the piezoelectric actuator 53B of this embodiment is obtained by changing the number of beams on the pedestal of Embodiment 3 (8 ⁇ 4).
  • Other configurations are the same as those of the piezoelectric actuator of the third embodiment.
  • Beam 21a Radial and equidistant 4 (The shape of the beam itself is the same as in Example 3)
  • Vibration mode Piston type
  • the piezoelectric actuator according to this example has a low resonance frequency and a large vibration amplitude.
  • Example 11 a piezoelectric actuator as shown in FIG.
  • the piezoelectric actuator 53C of this embodiment is obtained by changing the number of beams on the pedestal of Example 3 (8 ⁇ 12) as in the above example.
  • Other configurations are the same as those of the piezoelectric actuator of the third embodiment.
  • Vibration mode Piston type
  • the piezoelectric actuator according to this example has a low resonance frequency and a large vibration amplitude.
  • Example 12 the following piezoelectric actuator was manufactured (not shown).
  • the material of the vibration membrane of the piezoelectric actuator 50 of Example 1 is changed (urethane ⁇
  • Vibration mode Piston type motion
  • Example 13 the following piezoelectric actuator was manufactured (not shown). This piezoelectric actuator is obtained by changing the material of the base 20 of the piezoelectric actuator 50 of the first embodiment and using a PET film for the vibration film 30. Other configurations are the same as those of the piezoelectric actuator of the first embodiment.
  • Piezoelectric element 10 Same as Example 1 Pedestal 20: The shape is the same as in Example 1. A 42 alloy with a thickness of 40 m was used.
  • Vibration membrane 30 PET having a thickness of 50 m was used.
  • Vibration mode Piston type
  • a piezoelectric actuator 550 ′ as shown in FIG. 33 was produced.
  • a vibrating membrane 530 (same as the membrane 30 in Example 1) is attached to the back surface of the pedestal 520 of the actuator in Comparative Example 1 (see FIG. 23). Therefore, the configuration other than the vibrating membrane 530 is exactly the same as in Comparative Example 1.
  • Example 14 a cellular phone 70 as shown in FIG. 34 was prepared, and the piezoelectric actuator 50 of Example 1 (see FIGS. 22A and 22B) was mounted in this casing. Specifically, the piezoelectric actuator 50 is attached to the inner surface of the casing of the speaker unit 71 of the mobile phone. (Evaluation): The sound pressure level and frequency characteristics were measured with a microphone placed 10 cm away from the device. A drop impact test was also conducted. ⁇ result ⁇
  • Example 15 similarly to the above embodiment, the piezoelectric actuator 53A of Example 3 (see FIGS. 25A and 25B) was mounted in the mobile phone 70.
  • the evaluation is the same as in the above embodiment.
  • Comparative Example 3 the piezoelectric actuator 550 ′ of Comparative Example 2 (see FIG. 33) was mounted in the mobile phone 70 as in the above embodiment.
  • Drop impact test The piezoelectric element cracked after being dropped twice, and the sound pressure level measured at this point was 50 dB or less.
  • Comparative Example 4 Electromagnetic Actuator
  • the sound element shown in FIG. 35 has a permanent magnet 191, a voice coil 193, and a diaphragm 192, and a magnetic force is generated by passing a current through the voice coil through the electrical terminal 194, and the generated magnetic force causes vibration.
  • a sound is generated by causing the plate 192 to repeat suction and repulsion.
  • Example 16 a notebook personal computer (not shown) equipped with the piezoelectric actuator of Example 1 was produced. Specifically, as in the case of the mobile phone, the piezoelectric actuator 50 is attached to the inner side surface of the personal computer casing.
  • Example 17 a piezoelectric actuator as shown below was produced.
  • This piezoelectric actuator is a miniaturized version of the piezoelectric actuator 50 of the first embodiment.
  • Vibration mode Piston type
  • the acoustic elements using the piezoelectric actuators of Examples 1 to 13 exhibited frequency characteristics close to those of Comparative Example 4 (electromagnetic actuator).
  • the conventional piezoelectric actuator of Comparative Example 3 showed severe irregularities in the graph of frequency characteristics. Even from this point, it was proved that the frequency characteristics of the acoustic element were improved according to the present invention.
  • the resonance frequency f0 is lower than the resonance frequency f0 of the comparative example, which proves that the frequency band of the acoustic element according to the present invention has been expanded.
  • Examples 14 and 15 mounted on a mobile phone compared to Comparative Example 3, the sound pressure level was improved because the resonance frequency was low.
  • Example 18 As described above, the effects of the present invention have been verified by changing the shape and material of each member as Example 1 to Example 17, but from here on, the piezoelectric element 10, the pedestal 20, and the vibration film 30 will be clearly described. The results of changing only the shape of one of the members in stages will be explained.
  • Example 18 only the thickness of the vibrating membrane (film) 30 was variously changed while the thicknesses of the piezoelectric element 10 and the pedestal 20 were fixed.
  • the structure other than the vibrating membrane 30 is the same as in Example 1, and the evaluation conditions are the same as in Example 1.
  • Piezoelectric element 10 Same as Example 1 (the upper electrode layer and the lower electrode layer each having a thickness of 8 ⁇ m are formed on both sides of a piezoelectric plate having a thickness of 50 / zm)
  • Vibration film 30 Urethane was used in the same manner as in Example 1, and the thickness was variously changed from 30 m to 200 m.
  • Table 3 shows the results of the resonance frequency fO and the sound pressure level when the thickness of the diaphragm 30 is changed.
  • the film thickness t30 is 110 ⁇ m or less (30 m ⁇ : L 10 m) with respect to the pedestal thickness t20 fixed at 30 ⁇ m, in other words, the vibration film thickness
  • Example 19 the case where only the outer diameter of the circular pedestal 20 is variously changed while the contour shape of the vibrating membrane 30 is fixed will be verified.
  • only the contour shape of the base 20 is changed, and the structural parts other than the base 20 are the same as in the first embodiment, and the evaluation conditions are the same as in the first embodiment.
  • the distance between the outer periphery of the piezoelectric element 10 and the outer periphery of the pedestal 20 is X2
  • the outer periphery of the pedestal 20 and the outer periphery of the film 30 (the same as the inner periphery of the support member 45). Let XI be the distance between.
  • Pedestal 20 The outer diameter was changed so that the distance XI was 0.25 mm to 2.0 mm.
  • Table 4 shows the results of the resonance frequency fO and the sound pressure level when the contour shape of the base 20 is changed.
  • Resonance frequency is given priority to reproduction in the low frequency range so that the resultant force in Table 4 is also divided.
  • an actuator with a frequency of about lkHz (including 1001Hz) or less
  • the conditions shown in No. B-3 to B-8 in the table may be used.
  • the conditions shown in No. B-2 to B-7 in the table should be used.
  • Example 20 the relationship between the amount of stagnation of the diaphragm intervening portion A and the acoustic characteristics will be verified.
  • Example 20a to 20c only the vibration film material, the length of the vibration film interposition part A, and the vibration film thickness were changed, and the relationship between the amount of stagnation of the vibration film interposition part A and the motion state was verified.
  • Example 20a is the same as Example 2 except that only the diaphragm material is changed, and the evaluation conditions are the same as those of Example 2.
  • Vibrating film 31 The material was changed to a material having a Young's modulus in the range of 4.0xl0 8 to 13.0xl0 1G (NZm2).
  • the diaphragm shape is the same as in Example 2.
  • Table 5 shows the relationship between the amount of stagnation and vibration when the material for the diaphragm is changed, the results of the resonance frequency F0, and the sound pressure level.
  • Example 20b the outer diameter of the support member 45 and the circular pedestal 20 was changed, and the length L of the diaphragm intervening portion A was changed.
  • the length L of the vibration interposing portion A is changed, and the structural portions other than the base 20 and the vibration 30 are the same as those in the second embodiment, and the evaluation conditions are the same as those in the second embodiment.
  • the distance X2 between the outer periphery of the piezoelectric element 10 and the outer periphery of the pedestal 20 is Adjustment was made to change the length L of diaphragm intervening part A.
  • Vibration film interposition A is 0.05mn! ⁇ 2.
  • the outer diameter was changed to be Omm.
  • Vibrating membrane 31 The length of the vibrating membrane interposition A is 0.05m! ⁇ 2. Changed to Omm. Support member 45: Same as Example 2
  • Table 6 shows the results of the sag amount ⁇ , vibration state, resonance frequency fO, and sound pressure level when the length L of the diaphragm intervening portion A is changed.
  • Example 20c only the thickness of the vibrating membrane was changed. In this example, only the thickness of the vibrating membrane was changed, and the structure other than the vibrating membrane was the same as in Example 2, and the evaluation conditions were the same as in Example 2.
  • Table 7 shows the results of the amount of stagnation, vibration state, resonance frequency fO, and sound pressure level when the thickness of the diaphragm is changed.
  • the amount of sag ⁇ of the vibration film intervening portion A can be adjusted to 0.0016 or less.
  • the resonance frequency is approximately 1 kHz (including 1001 Hz) or less.
  • the conditions shown in No. C-1 to C-3 in the table may be used.
  • the conditions shown in No. C-1 to C-7 in the table should be used.
  • the motion state can be adjusted to the piston type by adjusting the sag amount ⁇ of the vibration film intervening portion A, thereby realizing good acoustic characteristics. It is possible. Further, the resonance frequency and the sound pressure level can be adjusted to desired values by adjusting the amount of stagnation ⁇ .
  • the vibration state can be changed to the piston type by adjusting the sag amount ⁇ of the diaphragm intervening portion A to a predetermined value in the range of 0.001 to 5.
  • the sound pressure level is high and good acoustic characteristics can be obtained.
  • the resonance frequency can be adjusted by adjusting the amount of sag ⁇ .
  • the resonance frequency and the sound pressure characteristics can be adjusted by controlling the amount of sag ⁇ according to the thickness of the diaphragm, the length L of the diaphragm intervening part L, and the material of the diaphragm. This means that acoustic design can be performed easily, and its utility value is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

 本発明の圧電アクチュエータ50は、電界の状態に応じて伸縮運動する圧電素子10と、一方の面に圧電素子10が貼り付けられる台座20と、圧電素子10および台座20を支持するための支持部材45とを有し、圧電素子10の伸縮運動に応じて、圧電素子10および台座20が上下に振動する。台座20は、この台座20よりも低剛性な振動膜30を介して支持部材45に接続されている。

Description

明 細 書
圧電ァクチユエータおよび電子機器
技術分野
[0001] 本発明は、圧電素子を用いて振動を発生させる圧電ァクチユエータおよびそれを 用いた電子機器に関する。
背景技術
[0002] 従来、スピーカなどの音響素子の駆動源として、その取扱いの容易さから電磁式ァ クチユエータが利用されている。電磁式ァクチユエータは、永久磁石とボイスコイルと を有しており、磁石を用いたステータの磁気回路の作用により振動を生じるものであ る。また電磁式スピーカは、電磁式ァクチユエータの振動部に固定された、有機フィ ルム等の低剛性な振動板が振動することにより音を発生するものである。
[0003] ところで近年、携帯電話機やパーソナルコンピュータの需要が増えており、これに 伴って、小型かつ省電力のァクチユエータの需要が高まりつつある。しかしながら、電 磁式ァクチユエータは、動作時にボイスコイルに多くの電流を流す必要があることから 、省電力性に問題があり、また、その構造上、小型薄型化にも不向きであった。加え て、電磁式ァクチユエータでは、ボイスコイルからの漏洩磁束による弊害を防止する ため、電子機器への適用に際しては電磁シールドを施す必要があり、この点からして も携帯電話機等の小型電子機器への使用には不向きである。さらに言えば、小型化 に伴ってボイスコイルが細線ィ匕し、その結果、線材の抵抗値が増すことから、ボイスコ ィルが焼損する可能性もあった。
[0004] 上述のような問題点に鑑み、電磁式ァクチユエータに代わる薄型振動部品として、 小型軽量、省電力、無漏洩磁束などの特徴を有する、圧電セラミックスなどの圧電素 子を駆動源とした圧電ァクチユエータが開発されている。圧電ァクチユエータは、圧 電素子の運動により機械的振動を発生させるものであり、例えば圧電セラミック素子( 単に「圧電素子」とも 、う)と台座とが接合された構造となって!/、る。
[0005] 圧電ァクチユエータの基本的な構成について、図 1、図 2を参照して説明する。図 1 は、従来の圧電ァクチユエータの構成を示す斜視図であり、図 2は、図 1の圧電ァク チユエータの振動の態様を模式的に示す断面図である。
[0006] 図 1に示すように、圧電ァクチユエータ 550は、圧電セラミックスからなる圧電素子 5 10と、それが固定される台座 524と、台座 524の外周部を支持する枠状の支持部材 527とを有している。圧電素子 510に交流電圧を印加すると、圧電素子 510は伸縮 運動を行う。図 2に示すように、台座 524はこの伸縮運動に応じて、凸型のモード (実 線にて示す)に変形したり、凹型のモード (破線にて示す)に変形したりする。このよう にして台座 524は、接合部 524aを固定端とし、台座中央部を腹として、図示上下方 向に振動することとなる。
[0007] ところで、圧電ァクチユエータは小型薄型化には有利である力 電磁式ァクチユエ ータと比較して音響素子としての性能に劣るという一面がある。これは、圧電素子自 体が高剛性であり、電磁式ァクチユエータと比較して十分な平均振動振幅が得られ ないことに起因する。つまり、ァクチユエータの振幅が小さければ、音響素子の音圧も 小さくなつてしまうためである。これに対して、特開昭 61— 168971号公報および特 開 2000— 140759号公報には、ァクチユエータの振動振幅を増大させるため、台座 の外周部を比較的変形し易 、梁で支持するようにした構成が開示されて 、る。
[0008] また、特開 2001— 17917号公報には、同様の趣旨で、台座の周辺部に円周に沿 つてスリットを入れ板パネを構成し、大きな振動振幅を得るようにした技術も開示され ている。また、特開 2001— 339791号公報には、湾曲型の支持部材を介して台座 外周部と支持部材とを接合し、周波数特性をブロードィ匕した技術が開示されている。 発明の開示
[0009] しかしながら、特開昭 61— 168971号公報、特開 2000— 140759号公報および 特開 2001— 17917号公報に記載の圧電ァクチユエータはそもそも、携帯電話機な どに搭載されるノイブレータとして主に用いられるものであり、スピーカといった音響 素子として音楽などを再生させることには一切考慮されていない。つまり、バイブレー タを用途とした場合、単に特定の周波数にぉ ヽてのみ振幅を拡大されれば ヽ ヽが、 スピーカとして使用する場合には、その周波数特性までを考える必要がある。すなわ ち、例えば lkHz〜10kHzといった所望の周波数帯域において、所定レベル以上の 音圧が得られるように構成する必要がある。 [0010] また、特開 2001— 339791号公報は、圧電セラミックスを拘束する台座を、湾曲型 の支持部材と接合させた構成で、圧電セラミックスの厚み方向と径方向の双方の方 向で変位を発生させることを目的したものである。この湾曲型の支持部材によって、 特性箇所の応力分散や減衰率の低減ができ、歪の低減や、周波数特性の帯域を広 げることは可能であるが、径方向、厚み方向の双方向に振動が発生するため、音響 放射方向への振動が減衰する。このため、所定レベルの音圧レベルを得られるように 構成する必要がある。
[0011] このように音響素子としての周波数特性までを考えた場合、ァクチユエータの振動 振幅を単に増大させるだけでは不十分であり、振動の態様を、図 6Bに示すようなピ ストン型に近づけることが望ましい(これについては後の説明で再度詳細に説明する
) o
[0012] 本発明の目的は、大きな振動振幅が得られ、かつ広い周波数帯域の音を再生する ことが可能な、圧電ァクチユエータおよび電子機器を提供することにある。
[0013] 以上の課題を解決するため、本発明の圧電ァクチユエータは、電界の状態に応じ て伸縮運動する圧電素子と、少なくとも一方の面に前記圧電素子が貼り付けられる 台座と、前記圧電素子および前記台座を支持するための支持部材とを有し、前記圧 電素子の前記伸縮運動に応じて、前記圧電素子および前記台座が前記圧電素子の 厚み方向に振動する圧電ァクチユエータにおいて、前記台座が、前記台座よりも低 剛性な振動膜を介して前記支持部材に接続されていることを特徴とする。
[0014] このように構成された本発明の圧電ァクチユエータでは、台座よりも低剛性な振動 膜を介して台座が支持部材に接続されており、この、台座と支持部材との接続部 (振 動膜部分)が、台座の部分と比較して変形し易くなつていることから、振動振幅の向 上が図られる。また、このように接続部 (振動膜部分)が変形しやすいということは、こ の部分での振動が大きくなることを意味し、ひいては、従来の構成と比較して振動の 態様をよりピストン型 (電磁式ァクチユエータと同様の振動態様)に近づけることが可 能となる。さらには、落下時の衝撃が、台座と支持部材との間に介在する振動膜で吸 収されるため、落下安定性が良好で、携帯機器などへの応用も可能となる。
[0015] なお、本発明の圧電ァクチユエータは上述の通り振動膜を備えており、この振動膜 を振動させることで音を発生させることができる。つまり、本発明の圧電ァクチユエ一 タは、追加の振動フィルム等を用いることなくそのまま音響素子として機能し得るもの である。
[0016] 上述したように、本発明の圧電ァクチユエータによれば、圧電素子が貼り付けられる 台座と支持部材とが、台座よりも低剛性な振動膜を介して接合していることから、大振 幅な振動が得られ、かつ、これを音響素子として用いた場合には広い周波数帯域の 音を再生することができるものとなる。
図面の簡単な説明
[0017] [図 1]台座の外周部が支持部材に直接接続された、従来の圧電ァクチユエ一タの構 成を示す斜視図である。
[図 2]図 1の圧電ァクチユエータの振動の態様を模式的に示す縦断面図である。
[図 3]第 1の実施形態の圧電ァクチユエータの構成を示す分解斜視図である。
[図 4]図 3の圧電ァクチユエ一タの縦断面図である。
[図 5A]圧電ァクチユエータの動作原理を説明するための図である。
[図 5B]圧電ァクチユエータの動作原理を説明するための図である。
[図 6A]圧電ァクチユエータの屈曲型の振動態様を説明するための模式図である。
[図 6B]圧電ァクチユエータの屈曲型のピストン型の振動態様を説明するための模式 図である。
[図 7]第 2の実施形態の圧電ァクチユエータの構成を示す模式図である。
[図 8]片持ち梁構造の振動膜介在部を示す模式図である。
[図 9]片持ち梁構造の振動膜介在部を示す模式図である。
[図 10]振動膜介在部の橈み量を算出する圧電ァクチユエータを示す模式図である。
[図 11A]第 3の実施形態の圧電ァクチユエータの構成を示す分解斜視図である。
[図 11B]第 3の実施形態の圧電ァクチユエータの構成を示す縦断面図である。
[図 12]第 4の実施形態の圧電ァクチユエータの構成を示す平面図である。
[図 13]第 5の実施形態の圧電ァクチユエータの構成を示す平面図である。
[図 14]図 13の圧電ァクチユエータに用いられる台座単体を示す平面図である。
[図 15]第 5の実施形態の圧電ァクチユエータの他の構成例を示す平面図である。 圆 16]第 5の実施形態の圧電ァクチユエータのさらに他の構成例を示す平面図であ る。
圆 17]第 6の実施形態の圧電ァクチユエータの構成を示す平面図である。
圆 18]第 7の実施形態の圧電ァクチユエータの構成を示す縦断面図である。
圆 19]第 8の実施形態の圧電ァクチユエータの構成を示す縦断面図である。
[図 20]単層の圧電素子に代えて利用可能な、多層構造の圧電素子について説明す るための分解斜視図である。
圆 21]平均振動速度振幅の測定点について説明するための図である。
[図 22A]実施例 1の圧電ァクチユエータの構成を示す平面図である。
[図 22B]実施例 1の圧電ァクチユエータの構成を示す縦断面図である。
[図 23]比較例 1の圧電ァクチユエータの構成を示す縦断面図である。
[図 24A]実施例 2の圧電ァクチユエータの構成を示す平面図である。
[図 24B]実施例 2の圧電ァクチユエータの構成を示す縦断面図である。
[図 25A]実施例 3の圧電ァクチユエータの構成を示す平面図である。
[図 25B]実施例 3の圧電ァクチユエータの構成を示す縦断面図である。
[図 26A]実施例 4の圧電ァクチユエータの構成を示す平面図である。
[図 26B]実施例 4の圧電ァクチユエータの構成を示す縦断面図である。
[図 27]実施例 5の圧電ァクチユエータの構成を示す縦断面図である。
[図 28]実施例 6の圧電ァクチユエータの構成を示す縦断面図である。
[図 29]実施例 7の圧電ァクチユエータの構成を示す縦断面図である。
[図 30]実施例 8の圧電ァクチユエータの構成を示す縦断面図である。
[図 31]実施例 10の圧電ァクチユエータの構成を示す平面図である。
[図 32]実施例 11の圧電ァクチユエータの構成を示す平面図である。
[図 33]比較例 2の圧電ァクチユエータの構成を示す縦断面図である。
圆 34]本発明に係る圧電ァクチユエータを搭載した携帯電話機の一例を示す正面図 である。
圆 35]比較例 4として用意された従来型の音響素子の構成を示す断面図である。
[図 36]実施例 19の圧電ァクチユエータを説明するための縦断面図である。 発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態について図面を参照して説明する。なお、以下に説明 する各実施形態の構成において、同一の構造部については同一の符号を付して示 し、重複する説明は省略する。
(第 1の実施形態)
図 3は、本実施形態の圧電ァクチユエータの構成を示す分解斜視図であり、図 4は 、図 3の圧電ァクチユエ一タの縦断面図である。
[0019] 図 3、図 4に示すように、本実施形態の圧電ァクチユエータ 50は、振動の駆動源と なる圧電素子 10と、該圧電素子 10を支持する台座 20と、該台座 20を支持する振動 膜 30とを有し、これらが順に積層された構成となっている。圧電素子 10、台座 20、お よび振動膜 30の輪郭形状はいずれも円形であり、これら 3つの部材は同一中心とな るように(同心円状に)配置されている。振動膜 30の外周部は、円形枠状に形成され た支持部材 45に接続され、支持されるようになって!/ヽる。
[0020] 圧電素子 10は、より詳細には、互いに平行に対向する 2つの主面 10a、 10bを有す る圧電板 (圧電セラミックス)からなり、圧電板の主面 10a、 10bのそれぞれに、上部電 極層および下部電極層(いずれも不図示)が形成されている。圧電板の分極方向は 特に限定されるものではないが、本実施形態では、図示上下方向(圧電素子の厚み 方向)上向きとなっている。このように構成された圧電素子 10は、上部電極層および 下部電極層に交流電圧が印加され交番的な電界が付与されると、その両主面 10a、 10bが同時に拡大または縮小するような、半径方向の伸縮運動 (径拡がり運動)を行 う。換言すれば、圧電素子 10は、主面が拡大するような第 1の変形モードと、主面が 縮小するような第 2の変形モードとを繰り返すような運動を行う。
[0021] 台座 20は、圧電素子 10の上記伸縮運動を図示上下方向の振動に変換する機能 を有する。台座 20は、弾性体 (伸縮性のある材料)で構成されその材質としては、金 属材料 (例えばアルミ合金、リンセィ銅、チタン、またはチタン合金)や、榭脂材料 (例 えばエポキシ、アクリル、ポリイミド、またはポリカーボネート)など、圧電素子を構成す るセラミック材料より低剛性の材料を広く用いることが可能である。
[0022] 台座 20の上面には、圧電素子 10の主面 10b (下部電極層)が固定されるようにな つており、これにより、台座 20が圧電素子 10を拘束することになる。図 3では、台座 2 0のうち圧電素子 10が貼り付けられる領域が拘束部 20aとして示され、それ以外の領 域 (拘束部 20aを包囲する領域)が非拘束部 20bとして示されて 、る。
[0023] 振動膜 30は、圧電ァクチユエータの振動振幅を増大させるための膜部材であり、台 座 20よりも低剛性となっている。台座 20と振動膜 30の材質の組合せとしては、例え ば、台座 20が金属材料で、振動膜 30が榭脂材料 (例えばウレタン、 PET、ポリェチ レンなど)であってもよい。あるいは、台座 20と振動膜 30とを同じ材質とし、振動膜 30 の膜厚を相対的に薄くすることにより、振動膜 30が相対的に低剛性化されていてもよ い。なお、振動膜 30は、上記の他にも紙やポリエチレンテレフタラート等であってもよ い。
[0024] 振動膜 30の厚みは、榭脂材料の場合で例えば 5 μ m以上 500 μ m以下であれば よい。特に、振動膜 30が平らなシート材の場合、好ましくは 30 m以上 180 m以 下であってもよい。
[0025] ところで、圧電ァクチユエータを音響素子として利用する場合、圧電ァクチユエータ の振動部(例えば台座 20等)に有機フィルム等を貼り付けて音が出るようにする構成 が採られることが多い。これに対し、本実施形態では、振幅を大きくするために設けた 振動膜 30が、そのまま振動フィルムとしても機能する。つまり、振動膜 30は、従来の 音響素子における振動フィルムとしての機能だけではなぐァクチユエータの振動振 幅を増大させる機能も併せ持つ。この点、梁を設けることで振幅の増大を図ろうとした 従来の構成 (例えば特開昭 61— 168971号公報)と本発明に係る構成とは相違して おり、本発明の構成によれば、振動膜が設けられていることからより大きな音圧が得ら れることとなる。もっとも、音響素子を構成するにあたっては、共振周波数が相互に異 なる複数個の圧電ァクチユエータに共通の振動フィルムを貼り付け、 1つの音響素子 としてもよい。これにより、音圧レベルが低力つた帯域を互いに補完することが可能と なり、より広範囲の周波数にわたり大きな音圧が得られる音響素子が実現される。
[0026] 台座 45は、例えば、圧電ァクチユエータの筐体を構成する部材であり、その材質は 特に限定されるものではなぐ榭脂材料であってもよいし金属材料であってもよい。な お、圧電素子 10と台座 20との接合、および、台座 20と振動膜 30との接合には、例え ば、エポキシ系接着剤を利用可能である。接着剤層の厚みは特に限定されるもので はな 、が、あまりに厚すぎると接着剤層に吸収される振動エネルギーが増大し十分 な振動振幅が得られなくなる可能性もあるため、例えば 20 m以下であることが好ま しい。
[0027] 圧電ァクチユエータ 50は、図 4に示すように、圧電素子 10が台座 20の上面に固定 されると共に、台座 20が振動膜 30を介して支持部材 45に支持される構成となってい る。この点で、台座が支持部材に直接支持される従来の構成(図 1参照)と相違して いる。本実施形態の構成によれば、このように振動膜 30を介して台座 20が支持され る構成となっていることから、従来の構成と比較してより大きな振動振幅が得られ、し 力も、振動の態様がピストン型(図 6Bを参照して後述する)に近づくこととなる。以下、 これについて、図 5A, 5Bを参照し、圧電ァクチユエータの振動の発生メカニズムと併 せて説明する。
[0028] まず、圧電素子 10に電圧が印加されていない中立の状態(図 4参照)から圧電素 子に所定の電圧 (電界)を印加すると、図 5Aの矢印 pに示すように、圧電素子 10はそ の面積が広がる方向に変形する。ここで、圧電素子 10の下面(主面 10b)は台座 20 に拘束されているため、この拘束効果により、圧電素子 10の上面と下面との間に変 形の量の差が生じ、その結果、図示するような凸型の変形モードとなる。この変形モ ードでは、圧電素子 10および台座 20、さらには台座 20を支持している振動膜 30が 、図示上方に向かって凸となるような湾曲状態となっている。
[0029] 続いて、圧電素子に上記とは逆の電界を印加すると、図 5Bの矢印 qに示すように、 今度は圧電素子 10がその面積が減少する方向に変形する。台座 20による拘束効果 により、圧電素子 10の上面と下面との間に変形量の差が生じ、その結果、図示する ような凹型の変形モードとなる。この変形モードでは、上述とは逆に、圧電素子、台座 、および振動膜が、図示下方に向かって凸となるような湾曲状態となっている。
[0030] 本実施形態の圧電ァクチユエータ 50は、上述のような凸型の変形モードと凹型の 変形モードを交互に繰り返すことで、圧電素子 10、拘束部材 20、および振動膜 30が 上下方向に振動する。本実施形態のァクチユエータと従来のァクチユエータ(図 1参 照)とを対比すると、圧電素子 10の運動が台座 20に伝達され、上下方向の振動が励 起させられている点で両者は共通している。し力しながら、構成について見ると、本実 施形態のァクチユエータは振動膜 30を介して台座 20 (及び圧電素子 10)が支持さ れるようになっており、この点で両者は相違しており、この相違により下記のような作 用効果が得られることとなる。
[0031] すなわち、振動膜 30は、台座 20に比べて相対的に低剛性な部材で構成されてい ることから、より変形しやすいものとなっている。したがって本実施形態によれば、台 座 20の外周部が支持部材 45に直接支持される従来の構成に比べて、より大きな振 動振幅が得られるようになる。また、本実施形態の構成において、振動膜 30 (図 4参 照)は、水平方向に延在するように(すなわち圧電素子 10の主面と平行となるように) 設けられている。したがって、振動膜 30を追加したことによるァクチユエータ全体の大 型化という問題も生じにくい。
[0032] また、本実施形態では、円形の圧電素子 10を使用している。円形の圧電素子 10が 径拡がり運動する際のエネルギー効率は、矩形素子と比較して高いため、同じ電圧 を印カロした場合、本構成の方がより大きな駆動力が得られることとなる。そして、この ような大きな駆動力が振動膜に伝搬することで、圧電ァクチユエータの振動量が増加 する。また、円形素子の場合、その中心力も周縁部までの距離が均一であることから 、梁に振動を伝搬する際に生じる応力が均等に分散され、エネルギー効率が高まり、 振幅が増大するという利点もある。また、圧電素子 10、台座 20、および振動膜 30が 同心円状の配置となって 、ることから、振動のうねり等も発生しにく 、ものとなって!/ヽ る。
[0033] 次に、圧電ァクチユエータの振動の態様と周波数特性との関係について説明する。
圧電ァクチユエータを音響素子として利用すること自体は、上述した特開昭 61— 16 8971号公報、特開 2000— 140759号公報および特開 2001— 17917号公報等に も開示されているところである。し力しながら、これらの公報における音響素子とは、ブ ザ一やバイブレータを意図している。バイブレータとしてのみ用いるのであれば、単 に音圧を向上させるだけでよいが、スピーカとして用いる場合には、その周波数特性 までを考慮して圧電ァクチユエータの振動の態様を考える必要がある。
[0034] 図 6Aは、図 1、図 2に示したような従来の圧電ァクチユエータの振動の態様を示し たものであり、図 6Bは、電磁式ァクチユエータ(例えば後述する図 35参照)の振動の 態様を示したものである。図 6Aに示すように、従来の圧電ァクチユエータでは、中央 の振幅が最大となるような屈曲型の振動態様となっている。これに対し、電磁式ァク チユエータでは、一例として符号 A20で示す中央領域がほぼ平坦な状態を保ったま ま、この中央領域 A20が図示上下方向に往復移動するようなピストン型の振動態様と なっている。音響素子としての周波数特性を良好にするためには、振動の態様を少 しでもピストン型に近づけることが望まし 、ことが知られて 、る。
[0035] 次に、屈曲型運動とピストン型運動の特徴につ!、て説明する。従来の圧電ァクチュ エータで発生する屈曲型運動の振動姿態は、圧電セラミックスの中心部が最大変位 屈曲点になる山形であり、中心部では大振幅を得られるものの、固定端部近傍に近 づくほど、変位は相対的に減衰していく。これに対して、図 6Bに示したようにピストン 運動の振動姿態は固定端部近傍に最大変曲点 60を有する台形型で、固定端部近 傍での振動が大きく立ち上がる特徴を持つ。これらの 2つの振動姿態における振動 変位量を比較すると、音響放射面内の最大振動量は屈曲型運動の方が、ピストン型 運動に比べ優位であるが、音響放射面内の平均振動量は、固定端部での変位量が 大きぐピストン型運動の方が屈曲型運動に比べ優位となる。
[0036] なお、通常、音圧は放射面への体積排除量で定義されることから、平均振動量が 大きい方が高ぐ音圧レベル向上には、ピストン型の振動姿態を促進させることが好 ましい。なお、ピストン型運動と屈曲型運動は、平均変位量と最大変位量との割合で 定義することができ、(平均振動量) Z (最大振動量)(詳細は実施例評価 5で説明) で示される式で 1に近づくほど、ピストン型姿態が促進されたことになる。
[0037] 本実施形態に構成によれば、図 4に示すように、台座 20が貼り付けられた領域が A 20に対応する領域となっており、その外側が、見かけ上、領域 A20よりも低剛性な (す なわちより変形しやすい)接続部領域 A30となっている。このため、この接続部領域 A 30が相対的に大きな変形を示すこととなるため、全体としての振動の態様をピストン 型により近づけることが可能となる。さらに、台座が貼り付けられる領域の周辺部であ る領域 A30が低剛性な部材で構成されて 、ると 、うことは、台座 20を直に支持部材 に接続した従来の構成と比較して、振動板 (台座と振動膜との積層体を指す)の共振 周波数が低くなることを意味する。そして、共振周波数が下がるということは、下記の 通り、音響素子の周波数特性の改善につながる。
[0038] 音響素子にぉ 、ては、通常、共振周波数 fO以下の周波数で、かつ十分な大きさの 音を出すのは比較的困難とされており、そのため、共振周波数 fO以降の周波数帯の みを再生可能な音として利用する構成が採られることが多い。具体的には、圧電ァク チユエータの共振周波数 fOが高周波数帯域 (例えば 2kHz)にあるような場合、極単 に言えば、音響素子は 2kHz以上の帯域の音し力発生できな 、こととなる。
[0039] 他方、携帯電話機等で音楽を再生する場合に必要な周波数帯域は lk〜: LOkHz であることが好ましい。よって、共振周波数 fOが 1kHz以下である圧電ァクチユエータ は携帯電話機等に好適であり、特に、本実施形態のような小型化にも有利なァクチュ エータであればその利用価値は非常に高いものとなる。ところが、圧電ァクチユエ一 タでは、圧電素子として剛性の高いセラミックを使用しているため振動部の共振周波 数高くなり、低音を出しにくいという性質があった。なお、素子サイズを大きくすること により、圧電素子の見かけ上の剛性を低減させ共振周波数を下げることも考えられる 。しかし、既述の通り、圧電ァクチユエータは例えば携帯電話機など小型の電子機器 に搭載されることも多いことから、機器の大型化を防止する観点からしても、素子サイ ズを変えることなく低音を出やすくするように構成することが好ま 、。
[0040] 以上をまとめると、携帯電話機等において、より広い周波数帯域で音楽を再生する ためには、圧電ァクチユエータの共振周波数 fOをより低いところに設定することが重 要であるといえる。そして、共振周波数 fOをより低くするためには、振動板の剛性を下 げることが有効である。
[0041] 本実施形態の構成によれば、台座 20と支持部材 45とを接続する部材力 台座より も低剛性な振動膜 30であることから、従来の構成と比較して共振周波数が低減する 。その結果、本実施形態の圧電ァクチユエータは、広い周波数帯域で十分な振動振 幅を得ることができるものとなり、音響素子として用いた場合、良好な周波数特性を実 現することが可能となる。
[0042] 本実施形態の圧電ァクチユエータは、上記の他にも、下記のような利点を持つ。ま ず、圧電ァクチユエータの振動特性は、台座 20の材料特性、形状、および振動膜 30 の材料特性、形状を適宜変化させることによって容易に調整可能である。特に、台座 の形状や、振動膜厚みの調整は、筐体のサイズ (支持部材のサイズ)を変えることなく 行うことができるため、支持部材を共通部品として用いることができ、製造コストの低 減にも有利である。
[0043] また、従来、圧電ァクチユエータの共振周波数を下げるためには、圧電素子を薄く して対応することもあった力 本発明によれば比較的厚 、圧電素子を用いたとしても 、振動膜の材質および、支持部材と拘束部材との間隔を調整するだけで共振周波数 を下げることが可能である。一般に、薄い圧電素子を製造するには焼成時に割れな ど生じて比較的コストがかかる。これに対して、本発明によればそのような薄い圧電素 子を用意する必要がないため、製造コストを抑えることが可能となる。
[0044] 本発明に係る圧電ァクチユエータは、電子機器 (例えば、携帯電話機、ノート型パ 一ソナルコンピュータ、小型ゲーム機器など)の音源としても利用可能である。ところ で従来、圧電素子としてセラミックスを用いる圧電ァクチユエータにおいては、落下さ せた際に圧電素子が破損しやすいという一面があった。他方、上述のような携帯型の 電子機器は、使用時にユーザが誤って機器を落下させてしまうことも多ぐこのことか ら、従来、圧電ァクチユエータは携帯型の機器には適していないと考えられてきた。し 力しながら、本発明の圧電ァクチユエータでは、圧電素子が固定された台座 20と支 持部材 45が、剛性の低い振動膜 30を介して支持されているため、仮に落下した場 合であっても、その衝撃が振動膜 30の減衰効により吸収され、圧電素子の破損が生 じにくいものとなっている。したがって、携帯型の電子機器に対しても好適に利用する ことが可能である。
(第 2実施形態)
本発明の圧電ァクチユエータは、台座の外周部と支持部材の内周部との間の振動 膜介在部 Aの橈み量 δ (m)は下記のように算出できる。なお、台座の外周部と支持 部材の内径部との間の振動膜介在部 Aは、図 7に示すように、振動膜介在部 A(30a) は、台座 20の外周部 20cと、支持部材 45の内周部 45aとの間に位置している振動膜 で構成される介在部位であり、この振動膜介在部 Aの橈み量 δ (m)は、下記算出式 (1)から算出される。 [0045] 本発明における振動膜介在部 Aの橈み量 δの算出方法について以下に説明する 。下記算出式(1)は、図 8に示すような振動膜介在部 Αを方持ち梁構造とした式であ り、ここでの方持ち構造は図 8に示すように、振動膜介在部 Aの一方の端は支持部材 45に連結することで固定端 82を形成し、他方の端は自由端 83である構造である。そ して、この自由端 83の先端部に、規定された荷重 Wを加えることで、橈み量 δを算出 することができる。
[0046] また、算出式(1)において、 Lは圧電素子 10の径方向に対する振動膜介在部 Αの 長さ、 hは振動膜の厚み、 Eは振動膜の材料の縦弾性係数である(図 9参照)。そして 、本実施形態では、荷重 Wを lN(N/m2)とし、梁状の振動膜介在部 Aの幅 bを 0. 00 lmとして計算した。
[0047] なお、本来、本発明の圧電ァクチユエータの形状における振動膜介在部 Aの橈み 量 δの算出は、図 11A, 11Bを参照して後述するような開口部を有するドーナツ状を なす平面形状を考慮して行うが、算出式 (1)では、厚み、振動膜の材料の縦弾性係 数、振動膜介在部 Αの長さ Lの変化が累乗で影響を与えるのに対して、平面面積に よる影響が小さぐ平面形状が矩形形状でも近似が可能であり、本実施形態では幅 b が 0. 001 (m)の長方形形状として、橈み量 δを算出した。
[0048] δ = (W-L3) / (3 -E-l) · · · (式 1)
L :台座の外周部と支持部材の内周部との間の振動膜介在部の長さ (m) E:振動膜の材料の縦弾性係数 (NZm2)
W:荷重(N)
I:慣性モーメント (m4)
I = (b -h3) /12 · · · (式 2)
b :振動膜介在部の幅 (m) =0. 001
h:振動膜の厚み (m)
以下に例として、図 10に示す形状における振動膜介在部 Aの橈み量 δを算出する 。振動膜介在部 Αの長さ Lが 0. OOlm(lmm)、振動膜の縦弾性係数 (材質:ウレタ ン)が 4. 0 X 108 (NZm2)、振動膜の厚み hが 8 X 10"5 (m) (80 μ m)、規定値であ る幅 bが 0. 001m (lmm)、規定値である荷重 Wが 1 (N)をそれぞれ代入して算出す れば、橈み量 δは 0. 0195 (m)となる。
[0049] 本実施形態の圧電ァクチユエータでは、橈み量 δ (m)を 0. 001〜5の範囲になる ように選択することで、ピストン型の振動姿態を得ることができる。振動の節になる振 動膜介在部 Aの橈み量 δが所定の範囲内になるように調整することで、振動を発生 する際に、パネ外周部と振動膜との接合部(20c)、もしくはパネ台座部(20)に応力 が集中し、最大変曲点位置となる(図 6B参照)。
[0050] このように最大変曲点が固定端部近傍に形成されることで、ピストン型の振動姿態 が促進される。一方、橈み量 δが 0. 001よりも小さい場合は、応力が支持部材 45の 外周部、圧電セラミックス中心部に集中するため、セラミックス中心部が最大変曲点 になり、屈曲型の振動姿態が発生する。また、橈み量 δが 5よりも大きい場合は、振 動が発生の際に、台座 20周辺部に応力が集中するものの、振動膜の剛性が低いた めに、振動膜に伝播された発生量が減衰し、充分な振動変位量が得られなぐその 振動姿態は圧電セラミック近傍部のみで屈曲運動を生じる自由端型屈曲運動となる
[0051] 上述のように、振動膜介在部 Αの橈み量 δを所定の範囲に調整することとで、ピスト ン型の運動姿態が促進され、従来にある山形の運動姿態を有する圧電ァクチユエ一 タと比較して、音響放射面内の平均振動量が高いため、音圧レベルが高ぐ音響素 子用圧電ァクチユエータとして実現することが可能となる。
[0052] (第 3の実施形態)
本発明の圧電ァクチユエータは、上記実施形態に示したものに限らず、図 11A, 1 1Bに示すような構成であってもよい。図 11Aは第 2の実施形態の圧電ァクチユエ一 タの構成を示す分解斜視図であり、図 11Bは圧電ァクチユエ一タの縦断面図である
[0053] 図 11A, 11Bの圧電ァクチユエータ 51では、中央に開口部 31aが形成された振動 膜 31が使用されている。その他の構成については第 1の実施形態と同様である。開 口部 31aは円形であり、圧電素子 10や台座 20と同一中心となるように形成されてい る。開口部 31aが形成されていることにより、台座 20は、その裏面(図示下面)の外周 付近のみが振動膜 31により支持されることとなる。別な言い方をすれば、台座 20の 裏面は、開口部 31aに対応する領域が露出した状態となっている。
[0054] 上述のように構成された本実施形態の圧電ァクチユエータ 51であっても、圧電素子 10を駆動源として上記実施形態と同様に振動動作を行う。ここで、台座 20はその外 周部のみが支持される構成となっており、開口部 3 laのところでは振動膜 31による拘 束を受けないため、台座 20が更に屈曲変形し易くなり、ひいてはァクチユエ一タの振 動振幅が更に増大することとなる。また、このように振動板 (台座と振動膜との積層体 を指す)の見かけ上の剛性が低下すると 、うことは、ァクチユエータの共振周波数が 低下することを意味し、音響素子の周波数特性が改善される点で好ま U、。
[0055] 上述のような、開口部 31aによる作用効果に鑑みれば、開口部 31aの面積が大きく なるにしたがって、台座 20がより屈曲変形し易くなり、ひいてはァクチユエータの共振 周波数も低減すると言える。なお、開口部 31aの形状は、円形に限らず矩形または多 角形であってもよい。また、上記実施形態のように 1つの開口部だけでなぐ複数の 開口部が設けられて 、てもよ 、。
[0056] (第 4の実施形態)
本発明の圧電ァクチユエータは、上記実施形態に示したものに限らず図 12に示す ような構成であってもよい。図 12に示す圧電ァクチユエータ 52では、正方形に形成さ れた圧電素子 11が使用されている。その他の構成については第 1の実施形態と同 様である。圧電素子 11は、第 1の実施形態の圧電素子 10の輪郭形状のみを変更し たものであり、その材質や基本的構造については第 1の実施形態と同様である。例え ば、圧電板の上下面にそれぞれ上部電極層と下部電極層とが形成されて!ヽる点に ついては、上記実施形態と同様である。
[0057] このように、本発明では圧電素子の輪郭形状は特に限定されるものではなぐ円形 であってもよいし(図 3参照)、矩形であってもよい (図 12参照)。さらには、楕円形や多 角形であってもよい。特に、正方形の素子は、円形の圧電素子と同様に対称性が高 いため、伸縮運動 (径拡がり運動)する際のエネルギー効率が高ぐ長方形の素子に 比べ大きな駆動力が得られることとなる。そしてこのような大きな駆動力により、十分な 振動振幅が得られることとなる。また、矩形素子の場合、円形素子と比較して歩留まり 力 ぐまた、作製するのも容易であることから製造コストの点で有利である。 [0058] (第 5の実施形態)
本発明の圧電ァクチユエータは、さらに、上記実施形態に示したものに限らず図 13 、図 14に示すような構成であってもよい。図 13は、第 4の実施形態の圧電ァクチユエ ータの構成を示す平面図であり、図 14は、圧電ァクチユエータに用いられる台座単 体を示す平面図である。
[0059] 図 13、図 14に示すように、圧電ァクチユエータ 53Aでは、台座 21Aの外周側に複 数の梁 21aが形成されている。その他の構成については第 1の実施形態と同様であ る。梁 21aは、円形の輪郭を有する本体部 21bの外周縁に複数本形成されている。 梁 21aはいずれも同形状であり、本体部 21bの中心から半径方向外側に向力つて放 射状に延在している。
[0060] 台座 21Aは、梁 21aと本体部 21bとが一体となった単一部材であり、また、図示は 省略するが、梁 21aは本体部 21bと同一面内にまっすぐに延在している。台座 21A の材質は第 1の実施形態のものと同一であり、また、本体部 21bの輪郭形状は圧電 素子 10の輪郭形状と同じである。本体部 21bの上面には、圧電素子 10の下部電極 層が接合され、これにより、圧電素子 10が台座 21Aにより拘束されることとなる。
[0061] 梁 21aの本数は特に限定されるものではない。図 15に示す圧電ァクチユエータ 53 Bでは 4本の梁 21aが形成され、図 16に示すァクチユエータ 53Cでは 12本の梁 21a が形成されている。いずれの圧電ァクチユエータ 53A〜53Cにおいても、梁 21aは 等間隔 (周方向に関して梁同士の間隔が同じであることを意図する)で形成されてい る。また、各梁 21aは、図 14等に示すように梁幅 W21が一定であってもよいし、あるい は、梁の先端に向力つて梁幅 W21が徐々に狭まるような先細り形であってもよい。
[0062] 再び図 13、図 14を参照する。上述のように梁 21aが形成された台座 21Aは、振動 膜 30の表面に、第 1の実施形態と同様に接着剤を介して接合される。この状態では 、梁 21aの先端が支持部材 45の内周面に接しないようになつている(つまり、梁 21a の先端と支持部材の内周面との間には所定の間隔があけられている)。
[0063] 上述したような、梁 21aを備えた圧電ァクチユエータ 53A〜53Cであっても、その動 作原理は第 1の実施形態と同様である。すなわち、圧電素子 10の上部電極層および 下部電極層に交流電界を印加すると圧電素子 10は伸縮運動を行う。電界の向きに 応じて圧電素子 10による伸縮運動が交番的に繰り返され、台座 21Aの拘束効果に より、振動が励起される。この際、本体部 21bが上下方向に振動し、その動きが複数 の梁 21aに伝達される。梁 21aは、その先端が支持部材 45に直接接続されるのでは なぐ振動膜 30を介した状態で接続されているため、第 1の実施形態と同じように振 動膜 30による振動増幅効果が期待される。
[0064] 特に、梁 21a付近の領域では、破線 21b'に示す円を外径とするような、梁が形成さ れていない台座と比較して、台座 21Aの見かけ上の剛性が低下している。よって、台 座外周部がより変形し易くなると共に、振動膜の振動をより誘起することができるため 、圧電ァクチユエータの振動振幅がより増大することとなる。本実施形態のァクチユエ ータでは、梁の変形が相対的に大きぐ圧電体支持部の変形は相対的に小さいため 、図 6Aに示したような振動態様ではなぐ図 6Bに示すようなピストン型の振動態様を 得やすい。このため、圧電体に大きな変形や歪を与えることなぐ圧電素子を上下方 向に大きく往復運動させることができる。
[0065] なお、上記構成において、梁 21aと本体部 21bとを別部材として設けることも可能で あり、さらには、これら 2つの部材 21a、 21bは同じ材質であってもよいし、異なる材質 であってもよい。また、 1枚のシート状部材から台座 21Aを形成する場合、プレス加工 による打抜きを行ってもよ ヽ。
[0066] (第 6の実施形態)
本発明の圧電ァクチユエータは、さらに、上記実施形態に示したものに限らず図 17 に示すような構成であってもよい。なお、図 17では、圧電素子 10の図示は省略され ている。図 17に示す圧電ァクチユエータ 54では、正方形の支持部材 46が使用され 、また、これに合わせて振動膜 32もの輪郭形状も矩形とされている。その他の構成に ついては第 1の実施形態と同様である。
[0067] このように振動膜 32が矩形であったとしても、台座 20が振動膜 32を介して支持部 材 46に接続されていることによる本発明による作用効果は上記と同様にして得ること ができる。矩形の振動膜 32を用いることにより、次のような理由から、圧電ァクチユエ ータを配置するため面積を有効に利用できるようになる。例えば、図 17の破線で示 すような円形の振動膜 30と、本実施形態の振動膜 32とを考える。振動膜 30、 32の サイズは、振動膜 30の輪郭が振動膜 32の輪郭に内接するような関係にある。
[0068] 圧電ァクチユエータを電子機器等に配置する場合、通常、電子機器側の配置スぺ ースとしては矩形領域が確保されていることが多い。この場合、振動膜 30を有するよ うな輪郭が円形のァクチユエータを利用しようが、あるいは、振動膜 32を有するような 輪郭が矩形のァクチユエータを利用しょう力 電子機器側に必要な配置スペースは ほぼ同じである。
[0069] この点に鑑みれば、同じ配置スペースを使用する 2つの圧電ァクチユエータのうち、 振動膜 32の面積をより広くすることが可能な本実施形態の圧電ァクチユエータ 54の 方が、より高い音圧レベルを実現し得る点で有利である。なお、矩形の振動膜 32と円 形の振動膜 30とを比較すると、振動膜 32の方が、網掛け部として示す領域 32aの 4 つ分、振動膜の面積が広くなつており、この増分に対応した音圧レベルの向上が期 待される。
[0070] (第 7の実施形態)
本発明の圧電ァクチユエータは、上記実施形態に示したものに限らず図 18に示す ような構成であってもよい。図 18に示す圧電ァクチユエータ 55では、湾曲部 33bを備 えた振動膜 33が使用されている。その他の構成については第 1の実施形態と同様で ある。
[0071] 振動膜 33は、台座 20の裏面を支持する平坦な中央部 33aと、該中央部 33aの外 側に形成された湾曲部 33bとを有している。図示は省略するが、上面側から見た中 央部 33aの輪郭形状は円形であり、湾曲部 33bの輪郭形状は、該中央部 33aと同心 のドーナツ状となっている。
[0072] このように湾曲部 33bが形成されていることにより、接続部領域 A30における振動 膜のストークが長尺化し、これにより振動膜が低剛性ィ匕する。その結果、振動膜が更 に変形し易くなり、共振周波数が低減すると共に、更に大きな振動振幅が得られるよ うになる。
[0073] 上述した「湾曲部」とは、振動膜の一部を立体的に湾曲させた構造部を意図するも のである。したがって、「湾曲部」には、図 18に示すような断面半円状の湾曲部 33b の他にも、例えば、波形形状が連続するような断面の構造部も含まれる。 [0074] なお、第 3〜第 6の実施形態では、開口部が形成されていない振動膜 30、 32、 33 が使用されていた力 これに限定されるものではない。例えば、振動膜 32、 33 (図 17 、 18参照)に、第 2の実施形態で説明したような開口部が形成されていてもよい。また 、当然ながら、各実施形態(下記第 7の実施形態も含み)の構成同士を適宜組み合 わせることも可會である。
[0075] (第 8の実施形態)
以上、圧電素子 10が台座の一方の面に固定された構成を例に挙げて説明してき た力 本発明の圧電ァクチユエータはそれに限定されるものではない。図 19に示す ような、バイモルフ型の圧電素子 11を搭載した構成とすることも可能である。
[0076] バイモルフ型圧電素子 11は、第 1の実施形態同様の台座 20の両面に、圧電素子 11 Aおよび圧電素子 11Bがそれぞれ貼り付けられたものである。このように構成され た圧電素子 11は、一方の圧電素子 11Aが伸びると他方の圧電素子 11Bが縮み、他 方の圧電素子 11Bが伸びると一方の圧電素子が縮むといった動作を交番的に行うも のである。このような構成によれば、上述したような 1枚型の圧電素子と比較して大き な駆動力を得ることが可能となる。
[0077] バイモルフ型の圧電素子 11にお!/、ては、圧電素子 11A、 1 IBが、一方が伸び他 方が縮むような動作を行うものであれば (要するに、互いに逆の動作を行うような 2枚 の素子力 なるものであれば)、各圧電素子の分極方向は特に限定されるものではな い。例えば、両方の圧電素子の分極方向がいずれも同一方向(例えば図示上向き) に揃っていてもよい。
[0078] なお、バイモルフ型の素子を利用する場合、図 19に示すように、開口部が形成され た振動膜 31 'を用いるようにしてもよい。あるいは、開口部がない振動膜 30を用い、 振動膜を介在させた状態で、圧電素子 11Bを圧電素子 11Aの反対側に貼り付ける ようにしてもょ 、(これにつ 、ては後述する〔実施例 5〕参照)。
[0079] 圧電素子にっ 、てさらに言えば、圧電素子はそれ自体が積層構造になって 、るも のであってもよい。これについて図 20を参照して説明する。図 20に示す圧電素子 12 は、圧電材料力 なる圧電板 13a〜13eが 5層に積層された多層構造である。圧電 板同士の間には電極層(導体層) 14a〜14dがー層ずつ形成されている。各圧電板 13a〜13eの分極方向は一層ごとに逆向きとなっており、また、電界の向きも交互に 逆向きとなるように構成されている。このような積層構造の圧電素子 12によれば、電 極層間に生じる電界強度が高いため、圧電板の積層数に応じた分だけ、圧電素子 全体としての駆動力が向上したものとなっている。図 20に示す圧電素子 12は、例え ば図 3に示した圧電素子 10の代わりとして利用することができる。
実施例
[0080] 本発明の圧電ァクチユエータの特性評価を下記実施例、比較例 1〜4によって行い 、本発明の効果を評価した。以下に評価項目を示す。
(評価 1)共振周波数の測定:交流電圧 IV入力時の共振周波数を測定した。
(評価 2)最大振動速度振幅:交流電圧 IV印加、共振時の最大振動速度振幅 Vmax (図 6A, 6Bを参照)を測定した。
(評価 3)平均振動速度振幅:図 21に示すように、圧電素子の長手方向に均一に分 割された測定点 20点において振動速度振幅を測定し、これらの平均値を算出した。 (評価 4)振動膜介在部の橈み量 δの算出。下記式より、橈み量 δを算出した。なお 、下記の式中、荷重は lN(N/m2)、幅 bを 0. 001m (式 2)に規定して計算する(計算 方法の詳細は第 2の実施形態を参照)。
[0081] δ = (W-L3) / (3 -E-l) · · · (式 1)
L :台座の外周部と支持部材の内周部との間の振動膜介在部の長さ (m)
E:振動膜の材料の縦弾性係数 (NZm2)
W:荷重(N)
I:慣性モーメント (m4)
慣性モーメント (I)
I = (b-h3) /12 · · · (式 2)
b :振動膜介在部の幅 (m) =0. 001
h:振動膜の厚み (m)
(評価 5)振動形態:図 6A, 6Bに示すように、「振動速度比」を平均振動速度振幅 V mZ最大速度振幅 Vmaxと定義し、この振動速度比の値に基!、て振動の形態を判 別した。すなわち、振動速度比が小さいときには図 6Aに示すような屈曲運動(山型 運動)となり、振動速度比が大きいときには図 6Bに示すような往復運動 (ピストン型運 動)となることから、本実施例では、そのしきい値を振動速度比 =0. 8として、振動速 度比が 0. 8未満のときには屈曲運動、 0. 8以上のときにはピストン型運動であると判 別した。
(評価 6)音圧レベルの測定:交流電圧 IV入力時の音圧レベルを、素子から所定距 離だけ離れた位置に配置したマイクロホンにより測定した。なお、この所定距離は、 特に明記しない限り 10cmである。
(評価 7)落下衝撃試験:圧電ァクチユエータを搭載した携帯電話を 50cm直上から、 5回自然落下させ、落下衝撃安定性試験を行った。具体的には、落下衝撃試験後の 割れ等の破壊を目視で確認し、さらに、試験後の音圧特性を測定した。その結果、 音圧レベル差
(試験前の音圧レベルと試験後の音圧レベルとの差のことを指す)が 3dB以内を〇と し、 3dB以上を Xとした。
[0082] なお、以下に説明する各実施例に係る圧電ァクチユエータの構造 (形状'材質等)
、および評価結果については表 1〜表 2に示す。
[0083] [表 1]
実施例 1 実施例 2 実施例 3 実施例 4
[基本形〕 [穴空き〕 〔梁 穴ナシ〕 〔梁 穴ァリ〕
H形: =16
厚み: 50 16 m
①ジルコン酸チタン酸^系
圧電素子 セラミック②銀 ラジウム 実施例 1と同じ 実施例 1と同じ 実施例 1と同じ 合金 (70: 30)
円形: =18mm 梁:幅 2 mm 長さ 1
台座 厚み: 30 ,z m 実施例 1と同じ 梁数 実施例 3と同じ 材質: リン青銅
円形: φ = 22mm 円开さ: φ = 22 mm 円形: =22 mm 厚み: 80 // m 厚み: 80 m 厚み: 80 /i m 振動膜 材質: ウレタン 穴径: =1 7mm 実施例 1と同じ ノ、径: φ = 1 5 mm 支持部材 内径: = 2 1 mm 実施例 1と同じ 実施例 1と同じ 実施例 1と同じ 共振周波数 8 9 8 84 7 8 1 2 8 0 9 最大振動速度振幅 2 7 5 2 9 5 348 3 6 7 振動速度比 0. 8 1 0. 8 4 0. 8 2 0. 8 1 振動姿態 ビストン型 ビス トン型 ビス卜ン型 ビス トン型 音圧レベル 8 2 84 8 5 8 6 落下衝擎安定 〇 〇 〇 〇 実施例 5 実施例 6 実施例 7
〔パイモルフ穴ナシ〕 〔パイモルフ穴ァリ〕 〔パイモルフ +梁〕 実施例 1と同じ 実施例 1と同じ 実施例 1と同じ 圧罨素子
(2個使用) (2個使用) (2個使用) 台座 実施例 1と同じ 実施例 1と同じ 実施例 3と同じ 振動膜 実施例 1と同じ 実施例 2と同じ 実施例 1と同じ
支持部材 実施例 1と同じ 実施例 1と同じ 実施例 1と同じ
共振周波数 9 2 7 9 0 1 9 0 5
最大振動速度振幅 46 8 4 8 7 5 0 2
振動速度比 0. 8 7 0. 8 6 0. 8 3
振動姿態 ビス トン型 ビス トン型 ビス トン型
音圧レベル 8 8 8 9
落下衝擎安定 〇 o 〇 ] 実施例 8 実施例 9 実施例 10 実施例 11
〔湾曲部〕 〔実施例 の変更〕 〔粱 例 3の変更〕 〔梁 例 3の変更〕 圧電素子 実施例 1と同じ 実施例 1と同じ 実施例 1と同じ 実施例 1 と同じ 円形: φ 梁:幅 長さ 粱:幅 長さ 1 台座 実施例 1 と同じ 厚み: 30 梁数 =4
材質: リン青銅
円形 : φ = 2 1mm
厚み: 80 w m
振動膜 径: φ = 1 7 mm 実施例 1と同じ 実施例 1と同じ 実施例 1 と同じ 湾曲部ァリ
支持部材 実施例 1と同じ 実施例 1と同じ 実施例 1と同じ 実施例 1と同じ 共振周波数 8 8 6 8 5 2 7 84 8 5 3 最大振動速度振幅 5 1 7 2 9 1 3 5 2 3 2 1 振動速度比 0. 8 1 0. 8 4 0. 8 2 0. 8 1 振動姿態 ピス トン型 ピス トン型 ビストン型 ビス トン型 音圧レベル 9 0 8 8 5 84 落下衝撃安定 〇 〇 〇 〇
Figure imgf000025_0001
(実施例 1)
実施例 1として、図 22A, 22Bに示すような、台座上面に圧電素子 10が貼り付けら れた第 1の実施形態(図 3、図 4も参照)の圧電ァクチユエータ 50を作製した。本質的 な相違ではないが、本実施例では、振動膜 30が支持部材 45の下面に貼付けられた 構成となっている。
各部の具体的な構成は以下の通りである。
圧電素子 10 :外径 = φ 16mm、厚み = 50 πι(0.05mm)の圧電板の両面に、 それぞれ厚み 8 μ mの上部電極層および下部電極層を形成した。
台座 20 :外径 = φ 18πιπι、厚み = 30 /ζ πι (0. 03mm)のリン青銅を使用した 振動膜 30 :外径 = φ 22mm,厚み =80 mのウレタン製の膜を使用した。 支持部材 45 :外径 = φ 22mm,枠抜き取り部内径 = φ 21mm,厚み = 1. 5mm の SUS 304を使用した。
[0086] 圧電素子 10、台座 20、振動膜 30、および支持部材 45は同心円状の配置とした。
圧電板には、ジルコン酸チタン酸鉛系セラミックを用い、電極層には銀 Zパラジウム 合金 (重量比 70%: 30%)を使用した。この圧電素子の製造はグリーンシート法で行 い、大気中で 1100°C— 2時間にわたって焼成し、その後、圧電材料層に分極処理 を施した。圧電素子 10と台座 20の接着、台座 20と振動膜 30との接着、および支持 部材 45と振動膜 30との接着は、 ヽずれもエポキシ系接着剤を用いて行った。
〔結果〕
共振周波数 : 898Hz
最大振動速度振幅 :275mmZs
振動速度比 :0. 81
振動姿態 :ピストン型
音圧レべノレ : 82dB
落下衝撃安定 :〇
上述の結果から明らかなように、本実施例の圧電ァクチユエータによれば、共振周 波数が 1kHz以下と低ぐさらに、振動振幅が大きぐピストン型の振動姿態をとること が実証された。また、圧電ァクチユエータの厚み (支持部材 45の厚み)は 1. 5mm程 度であり、十分な薄型化がなされていた。
[0087] なお、本実施例では、圧電素子の厚み tlO = 50 μ mであり、台座の厚み t20 = 3O
/z mであり、その比率は t20Ztl0 = O. 6となっている。ただし、これに限定されるもの ではなぐ本発明の圧電ァクチユエータにおいて、この比率 t20ZtlOは 0. 2以上 2. 0未満(0. 2≤t20/tl0< 2. 0)であってもよい。一例として、厚み 50 mの圧電素 子に対して、台座厚みが 100 mであってもよい。 [0088] (比較例 1)
比較例 1として、図 23に示すような、台座外周部が支持部材に直接接合された従 来の圧電ァクチユエータを作製した。この圧電ァクチユエータ 550は図 1に示したもの と同様の構成を有する。なお、圧電素子 510、台座 520、および支持部材 545は、上 記実施例 1の圧電素子 10、台座 20、および支持部材 45と同一の材質で構成されて いる。
[0089] 各部の具体的な構成は下記の通りである。圧電素子 510 :実施例 1の圧電素子 1 0と同じ
台座 520 :外径 = φ 21mm (厚み ·材質は、実施例 1の台座 20と同じ) 支持部材 545 :実施例 1の支持部材 45と同じ
圧電素子 510、台座 520、および支持部材 530は同心円状の配置とした。 〔結果〕
共振周波数 : 1418Hz
最大振動速度振幅 :47mmZs
振動速度比 :0. 31
振動姿態 :屈曲型
落下衝撃安定 : X
(実施例 2)
実施例 2として、図 24A, 24Bに示すような、第 2の実施形態型(図 11A, 11Bも参 照)の圧電ァクチユエータ 51を作製した。本実施例の圧電ァクチユエータ 51は、振動 膜 31に開口部 3 laが形成されている。
[0090] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 1と同じ
台座 20 :実施例 1と同じ
振動膜 31 :外径 = φ 21πιπι、内径(開口部径) = φ 17mm (厚み,材質は、実 施例 1の振動膜 30と同じ)
支持部材 45 :実施例 1と同じ
開口部 31aは、振動膜 31の中心に形成した。 〔結果〕
共振周波数 : 847Hz
最大振動速度振幅 :295mmZs
振動速度比 :0. 84
振動姿態 :ピストン型
音圧レベル : 84dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 実施例 1よりもさらに低減し、また、振動振幅も大きいことが実証された。
[0091] (実施例 3)
実施例 3として、図 25A, 25Bに示すような、第 4の実施形態型(図 13も参照)の圧 電ァクチユエータを作製した。本実施例の圧電ァクチユエータ 53Aは、台座 21Aに 8 本の梁 21aを設けたものである。
[0092] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 1と同じ
台座 21A :厚み'材質は、実施例 1の台座 20と同じ
梁 21a :放射状かつ等間隔で 8本 Z各梁 21aは梁幅 2mm (—定幅)、長さ lmm 本体部 21b :外径 = φ 18mm
振動膜 30 :実施例 1と同じ
支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 812Hz
最大振動速度振幅 :348mmZs
振動速度比 :0. 82
振動姿態 :ピストン型
音圧レべノレ : 85dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 実施例 1よりもさらに低減し、また、振動振幅も大きいことが実証された。
[0093] (実施例 4)
実施例 4として、図 26A, 26Bに示すような圧電ァクチユエータを作製した。本実施 例の圧電ァクチユエータ 53Dは、上記実施例 3の変形例として構成したものであり、 振動膜 30に代えて、開口部 31aが形成された振動膜 31を備えている。その他の構 成は第 3の実施例と同じである。
[0094] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 1と同じ (実施例 3と同じ)
台座 21A :実施例 3と同じ
振動膜 31 :外径 = φ 22mm,内径(開口部径) = φ 15mm, (厚み ·材質は、実 施例 1の振動膜 30と同じ)
支持部材 45 :実施例 1と同じ
開口部 31aは、振動膜 31の中心に形成した。
〔結果〕
共振周波数 : 809Hz
最大振動速度振幅 :367mmZs
振動速度比 :0. 81
振動姿態 :ピストン型
音圧レベル : 86dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 実施例 3よりもさらに低減し、また、振動振幅も大きいことが実証された。
[0095] (実施例 5)
実施例 5として、図 27に示すようなバイモルフ型の圧電ァクチユエータ 56Cを作製 した。本実施例の圧電ァクチユエータ 56Cは、実施例 1の圧電ァクチユエータ 50 (図 22A, 22B参照)の振動膜 30の裏面に、追加の圧電素子 10Bを配すことでバイモル フ型としたものである。つまり、圧電素子 10Bは、図示するように振動膜 30を介在させ た状態で台座 20の下面側に取り付けられている。 [0096] 各部の具体的な構成は下記の通りである。
圧電素子 10A :実施例 1の圧電素子 10と同じ
圧電素子 10B :基本的な構成は圧電素子 10と同じ (ただし、圧電素子 10Aとは逆 の動作をするように構成されている。 )
台座 20 :実施例 1と同じ
振動膜 30 :実施例 1と同じ
支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 927Hz
最大振動速度振幅 :468mmZs
振動速度比 :0. 87
振動姿態 :ピストン型
音圧レベル : 88dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 低ぐ振動振幅が実施例 1よりも大きいことが実証された。
[0097] (実施例 6)
実施例 6として、図 28に示すような、第 7の実施形態型(図 19も参照)の圧電ァクチ ユエータを作製した。本実施例の圧電ァクチユエータ 56Aでは、振動膜に開口部が 形成されており、台座 20の両面に圧電素子 11A、 1 IBが直接貼り付けられている。
[0098] 各部の具体的な構成は下記の通りである。
圧電素子 11A :実施例 1の圧電素子 10と同じ
圧電素子 11B :基本的な構成は圧電素子 10と同じ (ただし、圧電素子 11Aとは逆 の動作をするように構成されている。 )
台座 20 :実施例 1と同じ
振動膜 31 :実施例 2と同じ (開口部が形成されて!、る)
支持部材 45 :実施例 1と同じ
〔結果〕 共振周波数 : 901Hz
最大振動速度振幅 :487mmZs
振動速度比 :0. 86
振動姿態 :ピストン型
音圧レベル : 88dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 低ぐ振動振幅が実施例 1より大きいことが実証された。
[0099] (実施例 7)
実施例 7として、図 29に示すような圧電ァクチユエータ 56Bを作製した。本実施例 の圧電ァクチユエータ 56Bは、上記実施例 6の圧電ァクチユエータ 56Aの台座を、梁 を備えたものに変更したものである。詳細には、実施例 4 (図 26A, 26B参照)に示し たァクチユエータ 53Dの、台座 21A裏面に追カ卩の圧電素子 11Bを貼り付けて圧電素 子 11 'を構成したものである。
[0100] 各部の具体的な構成は下記の通りである。
圧電素子 11A :実施例 1の圧電素子 10と同じ
圧電素子 11B :基本的な構成は圧電素子 10と同じ (ただし、圧電素子 11Aとは逆 の動作をするように構成されている。 )
台座 21A :実施例 4と同じ
振動膜 31 :実施例 4と同じ
支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 905Hz
最大振動速度振幅 :502mmZs
振動速度比 :0. 83
振動姿態 :ピストン型運動
音圧レべノレ : 89dB
落下衝撃安定 :〇 上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 低ぐ振動振幅が実施例 1より大きいことが実証された。
[0101] (実施例 8)
実施例 8として、図 30に示すような第 6の実施形態型(図 18も参照)の圧電ァクチュ エータを作製した。本実施形態の圧電ァクチユエータ 55は、実施例 1の圧電ァクチュ エータの振動膜形状を変更したものである。すなわち、台座外周部と支持部材内周 部との隙間に湾曲部 33bを設けたものである。その他の構成は実施例 1の圧電ァク チユエータと同一である。
[0102] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 1と同じ
台座 20 :実施例 1と同じ
振動膜 33 :外径 = φ 21mm,枠内抜き取り部内径 = φ 17mm (厚み ·材質は、 実施例 1の膜 30と同じ)
湾曲部 33b :曲率半径 r= 6mm
支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 886Hz
最大振動速度振幅 :517mmZs
振動速度比 :0. 81
振動姿態 :ピストン型
音圧レベル : 90dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 実施例 1よりもさらに低減し、また、振動振幅も大きいことが実証された。
[0103] (実施例 9)
実施例 9として、次のような圧電ァクチユエータを作製した (不図示)。この圧電ァク チユエータは、実施例 1の圧電ァクチユエータ 50の台座 20のサイズを小型化したも のである(図示は省略する力 区別のためこれを「台座 20'」と呼ぶ)。その他の構成 は実施 1の圧電ァクチユエータと同一である。台座が小型化したことにより、支持部材 と拘束部材との間の隙間距離は実施例 1と比較して長くなつている。
[0104] 各部の具体的な構成は下記の通りである。なお、構成については図 22A, 22Bを 参照。
圧電素子 10 :実施例 1と同じ
台座 20' :外径 = φ 16mm (2mm減少)、(厚み ·材質は実施例 1と同じ) 振動膜 30 :実施例 1と同じ
支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 852Hz
最大振動速度振幅 :291mmZs
振動速度比 :0. 84
振動姿態 :ピストン型
音圧レべノレ : 83dB
落下衝撃安定 :〇
上述力も明らかなように、本実施例のように、支持部材と拘束部材との間の隙間距 離を変化させることで共振周波数の調整が可能であり、また、共振周波数が実施例 1 よりもさらに低減し、振動振幅も大きいことが実証された。
[0105] (実施例 10)
実施例 10として、図 31に示すような圧電ァクチユエータを作製した。本実施例の圧 電ァクチユエータ 53Bは、実施例 3の台座における梁数を変更(8本→4本)したもの である。その他の構成は実施例 3の圧電ァクチユエータと同一である。
[0106] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 3と同じ
台座 :厚み,材質は、実施例 3の台座と同じ
梁 21a :放射状かつ等間隔で 4本 (梁自体の形状は実施例 3と同じ)
本体部 21b :実施例 3と同じ
振動膜 30 :実施例 1と同じ 支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 784Hz
最大振動速度振幅 :352mmZs
振動速度比 :0. 82
振動姿態 :ピストン型
音圧レべノレ : 85dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 低ぐまた、振動振幅も大きいことが実証された。
(実施例 11)
実施例 11として、図 32に示すような圧電ァクチユエータを作製した。本実施形態の 圧電ァクチユエータ 53Cは、上記実施例同様、実施例 3の台座における梁数を変更 (8本→12本)したものである。その他の構成は実施例 3の圧電ァクチユエータと同一 である。
各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 3と同じ
台座 :厚み,材質は、実施例 3の台座と同じ
梁 21a :放射状かつ等間隔で 12本 (梁自体の形状は実施例 3と同じ) 本体部 21b :実施例 3と同じ
振動膜 30 :実施例 1と同じ
支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 853Hz
最大振動速度振幅 :321mmZs
振動速度比 :0. 81
振動姿態 :ピストン型
音圧レベル : 84dB 落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、共振周波数が 低ぐまた、振動振幅も大きいことが実証された。
[0108] (実施例 12)
実施例 12として、次のような圧電ァクチユエータを作製した (不図示)。この圧電ァク チユエータは、実施例 1の圧電ァクチユエータ 50の振動膜の材質を変更(ウレタン→
PET)したものである。その他の構成は実施例 1の圧電ァクチユエータと同一である。
[0109] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 1と同じ
台座 20 :実施例 1と同じ
振動膜 31 :形状は実施例 1と同じ。厚み = 50 /z mの PETを使用。
支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 912Hz
最大振動速度振幅 :341mmZs
振動速度比 :0. 80
振動姿態 :ピストン型運動
音圧レべノレ : 83dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、実施例 1と同様 に共振周波数が低ぐまた、振動振幅も大きいことが実証された。
[0110] (実施例 13)
実施例 13として、次のような圧電ァクチユエータを作製した (不図示)。この圧電ァク チユエータは、実施例 1の圧電ァクチユエータ 50の台座 20の材質を変更し、かつ、 振動膜 30に PET膜を使用したものである。その他の構成は実施例 1の圧電ァクチュ エータと同一である。
[0111] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 1と同じ 台座 20 :形状は実施例 1と同じ。厚み =40 mの 42ァロイを使用した。
振動膜 30 :厚み = 50 mの PETを使用した。
支持部材 45 :実施例 1と同じ
〔結果〕
共振周波数 : 871Hz
最大振動速度振幅 :281mmZs
振動速度比 :0. 82
振動姿態 :ピストン型
音圧レべノレ : 82dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、実施例 1と同様 に共振周波数が低ぐまた、振動振幅も大きいことが実証された。
[0112] (比較例 2)
比較例 2として、図 33に示されるような圧電ァクチユエータ 550'を作製した。この圧 電ァクチユエータは、比較例 1 (図 23参照)のァクチユエータの台座 520裏面に振動 膜 530 (実施例 1の膜 30と同じ)を貼り付けたものである。よって、振動膜 530以外の 構成は比較例 1と全く同じである。
〔結果〕
共振周波数 : 1498Hz
音圧レべノレ : 65dB
次に、音響素子を携帯電話機に搭載した例について、実施例 14〜16および比較 例 3を参照して説明する。
[0113] (実施例 14 :携帯電話 1)
実施例 14として、図 34に示すような携帯電話機 70を用意し、この筐体内に実施例 1 (図 22A, 22B参照)の圧電ァクチユエータ 50を搭載した。具体的には、携帯電話 機のスピーカ部 71の筐体内側面に、圧電ァクチユエータ 50を貼り付ける構成とした。 (評価):素子から 10cm離れた位置に配置したマイクロホンにより、音圧レベルと周波 数特性とを測定した。また、落下衝撃試験も行なった。 〔結果〕
共振周波数 : 795Hz
音圧レベル : 82dB
周波数特性 :平潤な特性を示した
落下衝撃試験 : 5回落下後においても圧電素子の割れは見られず、試験後、音 圧レベルを測定したところ 84dBであった。
[0114] (実施例 15 :携帯電話 2)
実施例 15として、上記実施形態同様、携帯電話機 70内に実施例 3 (図 25A, 25B 参照)の圧電ァクチユエータ 53Aを搭載した。評価については上記実施形態と同様 である。
〔結果〕
共振周波数 : 855Hz
音圧レベル : 84dB
周波数特性 :平潤な特性を示した
落下衝撃試験 : 5回落下後においても圧電素子の割れは見られず、試験後、音 圧レベルを測定したところ 84dBであった。
[0115] (比較例 3 :携帯電話 3)
比較例 3として、上記実施形態と同様に、携帯電話機 70内に比較例 2 (図 33参照) の圧電ァクチユエータ 550'を搭載した。
(評価):素子から 10cm離れた位置に配置したマイクロホンにより、音圧レベルと周波 数特性とを測定した。また、落下衝撃試験も行なった。
〔結果〕
共振周波数 : 1520Hz
音圧レベル : 66dB
周波数特性 :凹凸の激しい特性を示した
落下衝撃試験 : 2回落下後において圧電素子の割れが見られ、この時点で音圧 レベルを測定したところ 50dB以下であった。
[0116] (比較例 4:電磁式ァクチユエータ) 比較例 4として、図 35に示すような電磁式の音響素子を作製した。図 35に示す音 響素子は、永久磁石 191と、ボイスコイル 193と、振動板 192とを有し、電気端子 194 を通じてボイスコイルに電流を流すことで磁力が発生し、発生した磁力により、振動板 192に吸引と反発とを繰り返させて音を発生するものである。なお、この音響素子の 外形形状は、外形 = Φ 20mmの円形であり、厚み =4. Ommである。
(評価):このように構成された音響素子に対し、素子力 30cm離れた位置に配置し たマイクロホンにより、音圧レベルと周波数特性とを測定した。
〔結果〕
共振周波数 = 810Hz
音圧レベル =83dB
(実施例 16 : PC)
実施例 16として、実施例 1の圧電ァクチユエータを搭載したノート型パーソナルコン ピュータ (不図示)を作製した。具体的には、携帯電話の場合と同じように、パーソナ ルコンピュータの筐体内側面に、圧電ァクチユエータ 50を貼り付ける構成とした。
(評価):素子から 30cm離れた位置に配置したマイクロホンにより、音圧レベルと周波 数特性とを測定した。また、落下衝撃試験も行なった。
〔結果〕
共振周波数 : 816Hz
音圧レべノレ : 81dB
落下衝撃試験 :5回落下後においても圧電素子の割れは見られず、試験後、音 圧レベルを測定したところ 89dBであった。
[0117] (実施例 17)
実施例 17として、次に示すような圧電ァクチユエータを作製した。この圧電ァクチュ エータは、実施例 1の圧電ァクチユエータ 50を小型したものである。
[0118] 各部の具体的な構成は下記の通りである。
圧電素子 10 :外径 = φ 12mm (4mm減少)、厚み ·材質は実施例 1と同じ。
台座 20 :外径 = φ 14mm (4mm減少)、厚み'材質は実施例 1と同じ。
振動膜 30 :外径 = φ 18mm (4mm減少)、厚み ·材質は実施例 1と同じ。 支持部材 45 :外径 = φ 18mm (4mm減少)、内径 φ 16mm,厚み ·材質は実施 例 1と同じ。
〔結果〕
共振周波数 : 841Hz
最大振動速度振幅 :312mmZs
振動速度比 :0. 82
振動姿態 :ピストン型
音圧レべノレ : 83dB
落下衝撃安定 :〇
上述から明らかなように、本実施例の圧電ァクチユエータによれば、実施例 1と同様 に共振周波数が低ぐまた、振動振幅も大きいことが実証された。
[0119] (まとめ)
実施例 1〜 13の圧電ァクチユエ一タを用 、た音響素子は、比較例 4 (電磁式ァクチ ユエータ)の周波数特性に近い周波数特性を示していた。一方、比較例 3の従来型 の圧電ァクチユエータでは、周波数特性のグラフに激しい凹凸が見られた。この点か らしても、本発明によれば音響素子の周波数特性が改善されることが実証された。特 に、本実施例では、いずれもその共振周波数 f0が比較例の共振周波数 f0よりも低く なっており、このことから、本発明に係る音響素子の周波数帯域が拡大したことが実 証された。また、携帯電話に実装した実施例 14、 15では、比較例 3と比べて、共振周 波数が低ぐその音圧レベルの向上も図られていた。
[0120] (実施例 18 :フィルム膜厚依存性の検証)
以上、実施例 1〜実施例 17として各部材の形状および材質を変更するなどして、 本発明による作用効果を検証してきたが、ここからは、圧電素子 10、台座 20、及び 振動膜 30にっき、そのうちの 1つ部材の形状のみを段階的に変更していった際の結 果について説明する。まず、実施例 18として、圧電素子 10および台座 20の厚みを 固定したまま、振動膜 (フィルム) 30の厚みのみを種々変更した。なお、振動膜 30以 外の構造部については実施例 1と同じであり、また評価条件も実施例 1と同じである。
[0121] 各部の具体的な構成は下記の通りである。 圧電素子 10 :実施例 1と同じ (厚み = 50 /z mの圧電板の両面に、それぞれ厚み 8 μ mの上部電極層および下部電極層を形成)
台座 20 :実施例 1と同じ (厚み = 30 m)
振動膜 30 :実施例 1と同様にウレタンを使用し、厚みを 30 m〜200 mまで 種々変更した。
支持部材 45 :実施例 1と同じ
振動膜 30の厚みを変更したときの、共振周波数 fOおよび音圧レベルの結果を表 3 に示す。
[0122] [表 3]
Figure imgf000040_0001
表 3の結果力も分力るように、例えば、(a)低音域での再生を優先して、共振周波数 が約 1kHz (1015Hzを含む)以下のァクチユエータを構成する場合には、表中の No . Α-1〜Α-4に示すような条件を利用すればよい。振動膜厚み t30と台座厚み t20と の比率を基準として示すと下記のようになる。
[0123] すなわち、 30 μ mに固定された台座厚み t20に対してフィルムの厚み t30が 110 μ m以下(30 m〜: L 10 m)であればよぐこれを言い換えれば、(振動膜厚み t30Z (台座厚み t20)の値力 110 mZ30 m= 3. 67以下であればよいということにな る。
[0124] あるいは、(b)音圧を優先して、音圧レベルが 80dB以上のァクチユエータを構成す る場合、 No. A-2〜A-5に示すような条件を利用すればよい。振動膜厚み t30と台 座厚み t20との比率を基準として示すならば、(振動膜厚み t30) / (台座厚み t20)の 値が、 2. 0〜5. 33の範囲内であればよい。 [0125] 更には、(c)上記 a、 bの組合せとして、共振周波数が約 1kHz以下で、かつ、音圧 レベルが音圧レベルが 80dB以上のァクチユエータを構成する場合、 No. A-2〜A- 4に示すような条件を利用すればよい。すなわち、(振動膜厚み t30)Z (台座厚み t20 )の値が、 2. 0〜3. 67の範囲内であればよい。
[0126] (実施例 19 :輪郭形状依存性の検証)
次に、実施例 19として、振動膜 30の輪郭形状を固定したまま、円形の台座 20の外 径のみを種々変更した場合について検証する。本実施例では、台座 20の輪郭形状 のみを変更し、台座 20以外の構造部については実施例 1と同じであり、また評価条 件も実施例 1と同じである。図 36に示すように、圧電素子 10の外周部と台座 20の外 周部との間の距離を X2、台座 20の外周部とフィルム 30の外周部(支持部材 45の内 周部に同じ)との間の距離を XIとする。
[0127] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 1と同じ (外径 = φ 16mm)
台座 20 :距離 XIが 0. 25mm〜2. 0mmとなるように、外径を変更した。
振動膜 30 :実施例 1と同じ (外径 = φ 21mm)
支持部材 45 :実施例 1と同じ
台座 20の輪郭形状を変更して 、つたときの、共振周波数 fOおよび音圧レベルの結 果を表 4に示す。
[0128] [表 4]
Figure imgf000041_0001
表 4の結果力も分力るように、例えば、(a)低音域での再生を優先して、共振周波数 が約 lkHz (1001Hzを含む)以下のァクチユエータを構成する場合には、表中の No . B— 3〜B— 8に示すような条件を利用すればよい。(b)また、音圧レベルを優先し、 80dB以上のァクチユエータを構成したい場合には、表中の No. B— 2〜B— 7に示 すような条件を利用すればよい。
[0129] (実施例 20:振動膜部橈み量の検証実験)
実施例 20として、振動膜介在部 Aの橈み量と音響特性との関係について検証する 。下記実施例 20a〜20cにおいて、振動膜材質、振動膜介在部 Aの長さ、振動膜厚 みを変更し、振動膜介在部 Aの橈み量と運動姿態との関係を検証した。
[0130] (実施例 20a)
実施例 20aは、振動膜材質のみを変更し、振動膜材質以外については実施例 2と 同じであり、評価条件も実施例 2と同じである。
[0131] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 2と同じ (外径 = φ 16mm)
台座 20 :実施例 2と同じ
振動膜 31 :4. 0xl08〜13. 0xl01G (NZm2)の範囲あるヤング率を有する材 質に変更した。
振動膜形状は実施例 2と同じ
支持部材 45 :実施例 2と同じ
振動膜時材質を変更したときの橈み量と振動姿態と関係、共振周波数 F0および音 圧レベルの結果を表 5に示す。
[0132] [表 5]
Figure imgf000043_0001
(実施例 20b)
実施例 20bは、支持部材 45、円形の台座 20の外径を変更し、振動膜介在部 Aの 長さ Lを変更した。本実施例では、振動介在部 Aの長さ Lを変更し、台座 20、振動 30 以外の構造部については実施例 2と同じであり、また評価条件も実施例 2と同じであ る。図 36に示すように、圧電素子 10の外周部と台座 20の外周部との間の距離 X2を 調整し、振動膜介在部 Aの長さ Lを変更した。
[0133] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 2と同じ (外径 = φ 16mm)
台座 20 :振動膜介在部 Aが 0. 05mn!〜 2. Ommとなるように、外径を変更し た。
振動膜 31 :振動膜介在部 Aの長さがが 0. 05mn!〜 2. Ommに変更した。 支持部材 45 :実施例 2と同じ
振動膜介在部 Aの長さ Lを変更したときの橈み量 δと振動姿態、共振周波数 fOおよ び音圧レベルの結果を表 6に示す。
[0134] [表 6]
Figure imgf000045_0001
(実施例 20c)
本実施例 20cでは、振動膜の厚みのみを変更した。本実施例では、振動膜の厚み だけを変更し、振動膜以外の構造部については実施例 2と同じであり、また評価条件 も実施例 2と同じである。
[0135] 各部の具体的な構成は下記の通りである。
圧電素子 10 :実施例 2と同じ (外径 = φ 16mm)
台座 20 :実施例 2と同じ (外径 = φ 18mm)
振動膜 31 :厚み 5 μ m〜 lmmとなるように振動膜の厚みを変更した。実施例 2と 同じ(外径 = φ 21mm)
支持部材 45 :実施例 2と同じ
振動膜の厚みを変更したときの橈み量と振動姿態、共振周波数 fOおよび音圧レべ ルの結果を表 7に示す。
[0136] [表 7]
Figure imgf000047_0001
表 5の結果力 分力るように、圧電ァクチユエータの振動姿態をピストン運動型にす るには、振動膜介在部 Aの橈み量 δを 0. 0016以下に調整すればよぐ例えば、(a) 低音域での再生を優先して、共振周波数が約 lkHz (1001Hzを含む)以下のァクチ ユエータを構成する場合には、表中の No. C—l〜C— 3に示すような条件を利用す ればよい。(b)また、音圧レベルを優先し、 80dB以上のァクチユエータを構成したい 場合には、表中の No. C—1〜C— 7に示すような条件にすればよい。
[0137] 上述のように本発明に係る圧電ァクチユエータでは、振動膜介在部 Aの橈み量 δ を調整することで、運動姿態をピストン型に調整することができ、良好な音響特性を 実現することが可能である。さらに、橈み量 δの調整によって、共振周波数および音 圧レベルを所望の値に調整することが可能である。
[0138] 表 6の結果力 分力るように、圧電ァクチユエータの振動姿態をピストン運動型にす るには、振動膜介在部 Αの橈み量 δを 0. 0025以下に調整すればよぐ例えば、(a) 低音域での再生を優先して、共振周波数が約 lkHz (1001Hzを含む)以下のァクチ ユエータを構成する場合には、表中の No. D— 5〜D—6に示すような条件を利用す ればよい。(b)また、音圧レベルを優先し、 80dB以上のァクチユエータを構成したい 場合には、表中の No. D— 3〜D— 6に示すような条件にすればよい。
[0139] 表 7の結果力も分力るように、例えば、(a)低音域での再生を優先して、共振周波数 が約 lkHz (1001Hzを含む)以下のァクチユエータを構成する場合には、表中の No . E— 3〜E— 7に示すような条件を利用すればよい。(b)また、音圧レベルを優先し、 80dB以上のァクチユエータを構成したい場合には、表中の No. E— 3〜B— 9に示 すような条件を利用すればよい。
[0140] 上記表 5〜7の結果をまとめると、振動膜介在部 Aの橈み量 δを所定の値 0. 001 〜5の範囲に調整することで振動姿態をピストン型にすることができ、音圧レベルが 高く良好な音響特性を得ることができる。また、橈み量 δの調整によって、共振周波 数を調整することができる。このように、振動膜の厚み、振動膜介在部 Αの長さ L、振 動膜の材質によって、橈み量 δを制御することで、共振周波数、音圧特性を調整で きるということは、音響設計を容易に行うことが可能であることを意味し、利用価値は 高い。

Claims

請求の範囲
[1] 電界の状態に応じて伸縮運動する圧電素子と、少なくとも一方の面に前記圧電素 子が貼り付けられる台座と、前記圧電素子および前記台座を支持するための支持部 材とを有し、前記圧電素子の前記伸縮運動に応じて、前記圧電素子および前記台 座が前記圧電素子の厚み方向に振動する圧電ァクチユエータにお 、て、
前記台座が、前記台座よりも低剛性な振動膜を介して前記支持部材に接続されて
V、ることを特徴とする圧電ァクチユエータ。
[2] 前記台座は、前記圧電素子が貼り付けられる領域である拘束部と、該拘束部を包 囲する領域である非拘束部とを備える、請求の範囲 1に記載の圧電ァクチユエータ。
[3] 前記振動膜のうち、前記台座が配置される領域の少なくとも一部に開口部が形成さ れている、請求の範囲 1に記載の圧電ァクチユエータ。
[4] 前記支持部材の内周部と前記台座外周部との間に振動膜介在部が形成され、 前記振動膜介在部 Aの、下記式 1で算出される橈み量 δが 0. 001から 5の範囲に ある、請求の範囲 1に記載の圧電ァクチユエータ。
δ = (W-L3) / (3 -E-l) …(式 1)
但し、 L:前記振動膜介在部の長さ (m)、 E:前記振動膜の材料の縦弾性係数 (N Zm2)、 W:荷重 (N)、 I:慣性モーメント (m4)。
前記慣性モーメント Iは下記式 2で算出される。
I= (b-h3) /12 · · · (式 2)
但し、 b :前記振動膜介在部の幅 =0. 001 (m)、 h:前記振動膜の厚み (m)。
[5] 前記台座の外周部には、前記圧電素子が貼り付けられる面と平行な面内で外側に 向力つて延びる梁が複数形成されている、請求の範囲 1に記載の圧電ァクチユエ一 タ。
[6] 前記複数の梁が互いに等間隔に配置されている、請求の範囲 4に記載の圧電ァク チユエータ。
[7] 前記振動膜の、前記台座が配置される領域の周辺部に、該振動膜を前記厚み方 向に立体的に湾曲させた湾曲部が形成されて 、る、請求の範囲 1に記載の圧電ァク チユエータ。
[8] 前記振動膜は榭脂材料であって、ウレタン、 PET、およびポリエチレンフィルムのう ちの!/、ずれかである、請求の範囲 1に記載の圧電ァクチユエータ。
[9] 前記振動膜は、前記台座よりも弾性率が小さい材質力もなる、請求の範囲 1に記載 の圧電ァクチユエータ。
[10] バイモルフ型素子を構成するため、前記圧電素子とは別の圧電素子をさらに有す る、請求の範囲 1に記載の圧電ァクチユエータ。
[11] 前記圧電素子は、圧電材料層と電極層とが交互に積層された積層型構造である、 請求の範囲 1に記載の圧電ァクチユエータ。
[12] 前記圧電素子および前記台座の輪郭形状がいずれも円形である、請求の範囲 1に 記載の圧電ァクチユエータ。
[13] 前記圧電素子の輪郭形状が正方形である、請求の範囲 1に記載の圧電ァクチユエ ータ。
[14] 前記振動膜の輪郭形状が矩形である、請求の範囲 1に記載の圧電ァクチユエータ
[15] 前記振動膜の輪郭形状も円形であり、前記圧電素子、前記台座、および前記振動 膜が同心円状に配置されて!、る、請求の範囲 12に記載の圧電ァクチユエータ。
[16] 請求の範囲 1から 15のいずれか 1項に記載の圧電ァクチユエータを音響素子として 備えた電子機器。
PCT/JP2006/325912 2005-12-27 2006-12-26 圧電アクチュエータおよび電子機器 WO2007083497A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800518955A CN101336562B (zh) 2005-12-27 2006-12-26 压电致动器及电子装置
US12/159,427 US8319396B2 (en) 2005-12-27 2006-12-26 Piezo-electric actuator and electronic device
JP2007554842A JP5012512B2 (ja) 2005-12-27 2006-12-26 圧電アクチュエータおよび電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005374558 2005-12-27
JP2005-374558 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007083497A1 true WO2007083497A1 (ja) 2007-07-26

Family

ID=38287452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325912 WO2007083497A1 (ja) 2005-12-27 2006-12-26 圧電アクチュエータおよび電子機器

Country Status (4)

Country Link
US (1) US8319396B2 (ja)
JP (1) JP5012512B2 (ja)
CN (1) CN101336562B (ja)
WO (1) WO2007083497A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084806A1 (ja) * 2007-01-12 2008-07-17 Nec Corporation 圧電アクチュエータおよび電子機器
WO2008147325A1 (en) * 2007-06-01 2008-12-04 Axsensor Ab Piezoelectric transducer device
WO2009063905A1 (ja) * 2007-11-12 2009-05-22 Nec Corporation 圧電音響素子及び電子機器
WO2009093291A1 (ja) * 2008-01-21 2009-07-30 Fujihiko Kobayashi 圧電振動板
JP2010148102A (ja) * 2008-12-19 2010-07-01 Samsung Electronics Co Ltd 圧電型音響変換器及びその製造方法
JP2010171360A (ja) * 2008-12-24 2010-08-05 Kyocera Corp 積層型圧電素子およびその製法ならびに振動体
JP2011114597A (ja) * 2009-11-27 2011-06-09 Nec Corp 圧電アクチュエータ及び電子機器
WO2011074579A1 (ja) * 2009-12-15 2011-06-23 日本電気株式会社 アクチュエータ、圧電アクチュエータ、電子機器、並びに振動減衰及び振動方向変換方法
WO2012001901A1 (ja) 2010-06-30 2012-01-05 日本電気株式会社 発振装置
WO2012011256A1 (ja) 2010-07-23 2012-01-26 日本電気株式会社 発振装置および電子機器
WO2012011255A1 (ja) 2010-07-23 2012-01-26 Necカシオモバイルコミュニケーションズ株式会社 音響機器および発振ユニット
WO2012011257A1 (ja) 2010-07-23 2012-01-26 日本電気株式会社 発振装置および電子機器
JP2012029110A (ja) * 2010-07-23 2012-02-09 Nec Corp 発振装置
JP2012029088A (ja) * 2010-07-23 2012-02-09 Nec Corp 発振装置
WO2012096048A1 (ja) * 2011-01-14 2012-07-19 株式会社村田製作所 圧電振動部品
WO2012132262A1 (ja) 2011-03-31 2012-10-04 Necカシオモバイルコミュニケーションズ株式会社 発振装置
WO2013145739A1 (ja) * 2012-03-29 2013-10-03 京セラ株式会社 電子機器、パネルユニット
WO2013150731A1 (ja) * 2012-04-03 2013-10-10 日本電気株式会社 圧電振動センサ
CN103872240A (zh) * 2012-12-12 2014-06-18 三星电机株式会社 压电致动器以及包括该压电致动器的用于产生振动的装置
US8818014B2 (en) 2010-06-07 2014-08-26 Murata Manufacturing Co., Ltd. Sound production component
US9185495B2 (en) 2010-06-30 2015-11-10 Nec Corporation Oscillation device and electronic apparatus
JP2016103688A (ja) * 2014-11-27 2016-06-02 京セラ株式会社 音響発生器
US9571615B2 (en) 2012-03-29 2017-02-14 Kyocera Corporation Electronic apparatus, panel unit, and unit for electronic apparatus
CN114008910A (zh) * 2019-06-19 2022-02-01 弗莱堡大学 压电致动器和微流体设备

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569930B2 (en) * 2009-05-11 2013-10-29 Nec Corporation Piezoelectric actuator and audio components
KR101561663B1 (ko) * 2009-08-31 2015-10-21 삼성전자주식회사 피스톤 다이어프램을 가진 압전형 마이크로 스피커 및 그 제조 방법
KR101080361B1 (ko) * 2009-11-27 2011-11-04 삼성전기주식회사 진동 엑츄에이터 모듈
WO2012086124A1 (ja) * 2010-12-20 2012-06-28 Necカシオモバイルコミュニケーションズ株式会社 発振装置および電子機器
JP5708799B2 (ja) * 2011-05-17 2015-04-30 株式会社村田製作所 平面型スピーカおよびav機器
DE102012201884A1 (de) * 2012-02-09 2013-08-14 Robert Bosch Gmbh Schallwandler
TWI442692B (zh) 2012-03-05 2014-06-21 Academia Sinica 壓電致動裝置
JP6286119B2 (ja) * 2012-10-01 2018-02-28 京セラ株式会社 音発生器、音発生器用圧電振動部及び音発生システム
CN102946581B (zh) * 2012-11-19 2015-06-03 歌尔声学股份有限公司 扬声器装置
US9484521B2 (en) * 2013-04-10 2016-11-01 Mplus Co., Ltd. Vibration generating apparatus
KR20150023086A (ko) 2013-08-22 2015-03-05 (주)와이솔 압전 소자 기반 진동 모듈
KR20150089475A (ko) * 2014-01-28 2015-08-05 삼성전기주식회사 휴대 단말용 진동 발생 장치
DE102014106753B4 (de) * 2014-05-14 2022-08-11 USound GmbH MEMS-Lautsprecher mit Aktuatorstruktur und davon beabstandeter Membran
US9882115B2 (en) * 2015-04-02 2018-01-30 The Boeing Company Integrated compliant boundary for piezoelectric bimorph actuator
JP5985006B1 (ja) * 2015-05-30 2016-09-06 オーツェイド株式会社 スピーカ
US20180035200A1 (en) * 2015-08-20 2018-02-01 Tokin Corporation Vibration transfer structure and piezoelectric speaker
US10609489B2 (en) * 2015-09-10 2020-03-31 Bose Corporation Fabricating an integrated loudspeaker piston and suspension
US10405101B2 (en) 2016-11-14 2019-09-03 USound GmbH MEMS loudspeaker having an actuator structure and a diaphragm spaced apart therefrom
US20180190897A1 (en) * 2017-01-04 2018-07-05 Broadsens Corp. Mechanically strengthened piezoelectric sensor for structural health monitoring
CN107359826B (zh) * 2017-08-28 2019-02-26 北京工业大学 一种四边同步摆动双模式宽频发电装置
JP6420442B1 (ja) * 2017-10-16 2018-11-07 株式会社ワコー 発電素子
TWI684367B (zh) * 2018-09-14 2020-02-01 美律實業股份有限公司 揚聲器以及其微機電致動器
KR102633884B1 (ko) * 2019-03-07 2024-02-05 후지필름 가부시키가이샤 전기 음향 변환기
TWI695934B (zh) * 2019-03-29 2020-06-11 研能科技股份有限公司 微機電泵浦
CN113891845B (zh) * 2019-05-28 2023-10-20 B和R工业自动化有限公司 运输装置
CN112147774B (zh) * 2019-06-28 2022-07-19 成都理想境界科技有限公司 一种扫描致动器及光纤扫描器
CN110830893A (zh) * 2019-09-30 2020-02-21 成都泰声科技有限公司 一种透明式屏幕定向超声波扬声器
US11395073B2 (en) 2020-04-18 2022-07-19 xMEMS Labs, Inc. Sound producing package structure and method for packaging sound producing package structure
US11252511B2 (en) 2019-12-27 2022-02-15 xMEMS Labs, Inc. Package structure and methods of manufacturing sound producing chip, forming package structure and forming sound producing apparatus
US11057716B1 (en) * 2019-12-27 2021-07-06 xMEMS Labs, Inc. Sound producing device
CN113055794B (zh) * 2019-12-28 2022-12-02 华为技术有限公司 扬声器内核、扬声器模组和电子设备
CN111885467B (zh) * 2020-07-09 2021-09-21 诺思(天津)微***有限责任公司 Mems压电扬声器
CN214154839U (zh) * 2020-12-01 2021-09-07 瑞声科技(南京)有限公司 压电麦克风
KR20230004190A (ko) * 2021-06-30 2023-01-06 엘지디스플레이 주식회사 진동 장치와 이를 포함하는 장치 및 운송 장치
CN113727239A (zh) * 2021-09-28 2021-11-30 瑞声开泰科技(武汉)有限公司 扬声器
CN113794967A (zh) * 2021-10-28 2021-12-14 业成科技(成都)有限公司 扬声器及电子装置
CN114339552A (zh) * 2021-12-31 2022-04-12 瑞声开泰科技(武汉)有限公司 一种发声装置
CN115106275A (zh) * 2022-07-10 2022-09-27 复旦大学 一种基于支撑柱的微机械超声换能器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4731072U (ja) * 1971-04-21 1972-12-08
JPS5772497A (en) * 1980-10-23 1982-05-06 Murata Mfg Co Ltd Piezoelectric speaker
JPS5779799A (en) * 1980-11-04 1982-05-19 Murata Mfg Co Ltd Piezoelectric type speaker
JPS5781799A (en) * 1980-11-10 1982-05-21 Murata Mfg Co Ltd Piezo-electric speaker

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3206558A (en) * 1961-09-22 1965-09-14 Erie Technological Prod Inc Microphone
US3721844A (en) * 1971-05-27 1973-03-20 Nat Res Dev Reluctance motors
US4047060A (en) * 1971-09-07 1977-09-06 Motorola, Inc. Acoustic transducer with elastomeric coupling
US4190783A (en) * 1978-07-25 1980-02-26 The Stoneleigh Trust, Fred M. Dellorfano, Jr. & Donald P. Massa, Trustees Electroacoustic transducers of the bi-laminar flexural vibrating type with an acoustic delay line
JPS61168971A (ja) 1985-01-22 1986-07-30 Matsushita Electric Works Ltd 圧電アクチエ−タ
CN85108268A (zh) * 1985-11-12 1987-06-24 泰成电机有限公司 压电式扬声器
DE4120681A1 (de) * 1990-08-04 1992-02-06 Bosch Gmbh Robert Ultraschallwandler
JPH07213997A (ja) 1994-02-09 1995-08-15 Hokuriku Electric Ind Co Ltd 圧電振動装置
JP3501860B2 (ja) * 1994-12-21 2004-03-02 日本碍子株式会社 圧電/電歪膜型素子及びその製造方法
JP2000140759A (ja) 1998-11-09 2000-05-23 Matsushita Electric Ind Co Ltd 圧電アクチュエータ及び圧電バイブレータ
JP2000233157A (ja) 1999-02-15 2000-08-29 Murata Mfg Co Ltd 振動発生装置
JP2001017917A (ja) 1999-07-07 2001-01-23 Matsushita Electric Ind Co Ltd 圧電アクチュエータ、圧電バイブレータおよび携帯端末
JP4630425B2 (ja) 2000-06-26 2011-02-09 キヤノン株式会社 現像装置と該装置に使用する現像剤担持体の製造方法
US7009328B2 (en) * 2003-06-20 2006-03-07 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device made of piezoelectric/electrostrictive film and manufacturing method
CN2671277Y (zh) * 2003-10-27 2005-01-12 音赐股份有限公司 一体封装成型压电激发器的导电嵌座
JP2006005800A (ja) 2004-06-18 2006-01-05 Taiyo Yuden Co Ltd 圧電スピーカ
US20060028097A1 (en) * 2004-06-18 2006-02-09 Norikazu Sashida Piezoelectric loudspeaker
JP4231879B2 (ja) * 2006-07-20 2009-03-04 ホシデン株式会社 圧電型電気音響変換器
JP4185946B2 (ja) * 2006-07-20 2008-11-26 ホシデン株式会社 圧電型電気音響変換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4731072U (ja) * 1971-04-21 1972-12-08
JPS5772497A (en) * 1980-10-23 1982-05-06 Murata Mfg Co Ltd Piezoelectric speaker
JPS5779799A (en) * 1980-11-04 1982-05-19 Murata Mfg Co Ltd Piezoelectric type speaker
JPS5781799A (en) * 1980-11-10 1982-05-21 Murata Mfg Co Ltd Piezo-electric speaker

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148876B2 (en) 2007-01-12 2012-04-03 Nec Corporation Piezoelectric actuator and electronic apparatus
WO2008084806A1 (ja) * 2007-01-12 2008-07-17 Nec Corporation 圧電アクチュエータおよび電子機器
WO2008147325A1 (en) * 2007-06-01 2008-12-04 Axsensor Ab Piezoelectric transducer device
US8179024B2 (en) 2007-06-01 2012-05-15 Axsensor Ab Piezoelectric transducer device
US8385578B2 (en) 2007-11-12 2013-02-26 Nec Corporation Piezoelectric acoustic device and electronic apparatus
WO2009063905A1 (ja) * 2007-11-12 2009-05-22 Nec Corporation 圧電音響素子及び電子機器
JP5428861B2 (ja) * 2007-11-12 2014-02-26 日本電気株式会社 圧電音響素子及び電子機器
WO2009093291A1 (ja) * 2008-01-21 2009-07-30 Fujihiko Kobayashi 圧電振動板
JP2010148102A (ja) * 2008-12-19 2010-07-01 Samsung Electronics Co Ltd 圧電型音響変換器及びその製造方法
JP2010171360A (ja) * 2008-12-24 2010-08-05 Kyocera Corp 積層型圧電素子およびその製法ならびに振動体
JP2011114597A (ja) * 2009-11-27 2011-06-09 Nec Corp 圧電アクチュエータ及び電子機器
WO2011074579A1 (ja) * 2009-12-15 2011-06-23 日本電気株式会社 アクチュエータ、圧電アクチュエータ、電子機器、並びに振動減衰及び振動方向変換方法
JPWO2011074579A1 (ja) * 2009-12-15 2013-04-25 日本電気株式会社 アクチュエータ、圧電アクチュエータ、電子機器、並びに振動減衰及び振動方向変換方法
US9137608B2 (en) 2009-12-15 2015-09-15 Nec Corporation Actuator, piezoelectric actuator, electronic device, and method for attenuating vibration and converting vibration direction
US8818014B2 (en) 2010-06-07 2014-08-26 Murata Manufacturing Co., Ltd. Sound production component
WO2012001901A1 (ja) 2010-06-30 2012-01-05 日本電気株式会社 発振装置
US9095880B2 (en) 2010-06-30 2015-08-04 Nec Corporation Oscillator
US9185495B2 (en) 2010-06-30 2015-11-10 Nec Corporation Oscillation device and electronic apparatus
WO2012011256A1 (ja) 2010-07-23 2012-01-26 日本電気株式会社 発振装置および電子機器
JP2012029110A (ja) * 2010-07-23 2012-02-09 Nec Corp 発振装置
WO2012011255A1 (ja) 2010-07-23 2012-01-26 Necカシオモバイルコミュニケーションズ株式会社 音響機器および発振ユニット
US9179214B2 (en) 2010-07-23 2015-11-03 Nec Corporation Audio equipment and oscillation unit
WO2012011257A1 (ja) 2010-07-23 2012-01-26 日本電気株式会社 発振装置および電子機器
JP2012029088A (ja) * 2010-07-23 2012-02-09 Nec Corp 発振装置
US8891333B2 (en) 2010-07-23 2014-11-18 Nec Corporation Oscillator and electronic device
WO2012096048A1 (ja) * 2011-01-14 2012-07-19 株式会社村田製作所 圧電振動部品
JP5534040B2 (ja) * 2011-01-14 2014-06-25 株式会社村田製作所 圧電振動部品
US9093953B2 (en) 2011-03-31 2015-07-28 Nec Casio Mobile Communications, Ltd. Oscillator
WO2012132262A1 (ja) 2011-03-31 2012-10-04 Necカシオモバイルコミュニケーションズ株式会社 発振装置
WO2013145739A1 (ja) * 2012-03-29 2013-10-03 京セラ株式会社 電子機器、パネルユニット
JPWO2013145739A1 (ja) * 2012-03-29 2015-12-10 京セラ株式会社 電子機器、パネルユニット
US9571615B2 (en) 2012-03-29 2017-02-14 Kyocera Corporation Electronic apparatus, panel unit, and unit for electronic apparatus
US9619028B2 (en) 2012-03-29 2017-04-11 Kyocera Corporation Electronic apparatus and panel unit
WO2013150731A1 (ja) * 2012-04-03 2013-10-10 日本電気株式会社 圧電振動センサ
CN103872240A (zh) * 2012-12-12 2014-06-18 三星电机株式会社 压电致动器以及包括该压电致动器的用于产生振动的装置
JP2016103688A (ja) * 2014-11-27 2016-06-02 京セラ株式会社 音響発生器
CN114008910A (zh) * 2019-06-19 2022-02-01 弗莱堡大学 压电致动器和微流体设备
CN114008910B (zh) * 2019-06-19 2024-04-02 弗莱堡大学 压电致动器和微流体设备

Also Published As

Publication number Publication date
JPWO2007083497A1 (ja) 2009-06-11
JP5012512B2 (ja) 2012-08-29
CN101336562A (zh) 2008-12-31
US20100219722A1 (en) 2010-09-02
CN101336562B (zh) 2012-11-28
US8319396B2 (en) 2012-11-27

Similar Documents

Publication Publication Date Title
WO2007083497A1 (ja) 圧電アクチュエータおよび電子機器
JP5304252B2 (ja) 圧電アクチュエータおよび電子機器
JP5428861B2 (ja) 圧電音響素子及び電子機器
JP5245409B2 (ja) 圧電アクチュエータ、音響素子、及び電子機器
US9386378B2 (en) Acoustic generator
US7701119B2 (en) Piezoelectric actuator
US8670578B2 (en) Piezoelectric actuator and electronic device
US9137608B2 (en) Actuator, piezoelectric actuator, electronic device, and method for attenuating vibration and converting vibration direction
CN102460938B (zh) 压电致动器和音频部件
WO2010106736A1 (ja) 圧電音響素子、電子機器及び圧電音響素子の製造方法
JP5652813B2 (ja) 電気音響変換器及びそれを用いた電子機器
JP2006229647A (ja) 骨伝導用音響用振動子
JP5734874B2 (ja) 電気音響変換器、電子機器、電気音響変換方法および電子機器の音波出力方法
KR20130127342A (ko) 질량체를 가진 압전 스피커 및 그 제조 방법
JP5359818B2 (ja) 圧電アクチュエータ及び電子機器
JP2011228794A (ja) 電気音響変換器
JP2014086941A (ja) 電気音響変換器及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007554842

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12159427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200680051895.5

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 06843296

Country of ref document: EP

Kind code of ref document: A1