WO2007083450A1 - Process for producing metallic iron - Google Patents

Process for producing metallic iron Download PDF

Info

Publication number
WO2007083450A1
WO2007083450A1 PCT/JP2006/323928 JP2006323928W WO2007083450A1 WO 2007083450 A1 WO2007083450 A1 WO 2007083450A1 JP 2006323928 W JP2006323928 W JP 2006323928W WO 2007083450 A1 WO2007083450 A1 WO 2007083450A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
slag
raw material
molten slag
iron oxide
Prior art date
Application number
PCT/JP2006/323928
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsutaka Hino
Akira Uragami
Isao Kobayashi
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US12/094,607 priority Critical patent/US20090282950A1/en
Priority to AU2006335814A priority patent/AU2006335814B2/en
Priority to CA2630236A priority patent/CA2630236C/en
Priority to CN2006800473579A priority patent/CN101331239B/en
Publication of WO2007083450A1 publication Critical patent/WO2007083450A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/008Use of special additives or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention relates to an improvement in technology for producing metallic iron by heating and reducing an iron source such as iron ore with a carbonaceous reducing agent such as Cortus, and more specifically, reducing iron oxide and carburizing.
  • the present invention relates to a method for efficiently producing metallic iron having a predetermined carbon concentration by efficiently separating the produced metallic iron and the slag forming component mixed as raw material ore as a gangue component. .
  • Patent Document 1 One of the inventors of the present invention previously proposed the method described in Patent Document 1 as a new type of direct iron manufacturing method, and will continue to improve the direct iron manufacturing method.
  • metallic iron is produced by heating and reducing a raw material mixture containing a carbonaceous reducing agent and iron oxide, and iron oxide is reduced to a reducing gas derived from the carbonaceous reducing agent.
  • the metal iron skin is generated and grown by reduction at a low temperature, and the reduction proceeds in a solid state until iron oxide is substantially absent inside the metal iron skin. It is characterized by the fact that it flows out of the outer skin and separates metallic iron and slag.
  • the molten iron slag generated by heat reduction may be melted so that the molten slag inside the metallic iron shell flows out of the outer skin.
  • the melting point of the metallic iron shell is obtained by dissolving carbon derived from the carbonaceous reducing agent present in the metallic iron shell in metallic iron (this phenomenon is sometimes called “carburizing”). Let ’s descend.
  • Patent Document 2 iron dust is used as an acid pig iron source, and this is mixed with a carbonaceous reducing agent (hereinafter sometimes referred to as carbonaceous material) and an auxiliary material (slag forming agent),
  • carbonaceous material hereinafter sometimes referred to as carbonaceous material
  • auxiliary material slag forming agent
  • a method of producing metallic iron by heat reduction and separating granular metallic iron from a low melting point slag containing FeO is disclosed.
  • This method is a method in which iron-making dust is used as a source of iron oxide.
  • the basicity adjustment of the slag-forming components adopted in this method is performed at the time of mixing the raw materials, so slag produced during heat reduction is sufficient research on the behavior of acid iron in the slag. It was made ⁇ ⁇ .
  • Patent Document 3 the basicity of the slag forming component in the raw material is controlled in the range of 0.4 to 1.3, and 1Z3 or more of the time required for heat reduction on the hearth is 1200 to 1200
  • the basic idea of the present invention is that when a raw material mixture containing a carbonaceous reducing agent and iron oxide is heated and reduced to produce metallic iron, the raw material mixture is produced during the reduction and melting of the raw material mixture and contains a gangue component.
  • the liquid phase ratio in the solid-liquid coexisting phase of the component slag By controlling the liquid phase ratio in the solid-liquid coexisting phase of the component slag, the carburization and melting of the generated solid metallic iron is promoted. Specifically, the melting temperature of the metallic iron is controlled.
  • it is characterized by controlling the carbon content (carbon concentration, the same shall apply hereinafter) of the obtained metallic iron.
  • the operation is as follows. That is, the relationship between the composition and temperature of the slag forming component contained in the raw material mixture and the liquid phase ratio is determined in advance, the amount of ash in the raw iron oxide component and the carbonaceous reducing agent is adjusted, and the amount of mixture into the molten slag is adjusted. It is also necessary to adjust the amount of slag forming component added if necessary. Therefore, further development of this method is desired, and the development of a method capable of efficiently producing metallic iron having the target carbon concentration by simpler operation is desired.
  • This non-patent document 1 relates to the reduction of acid pig iron in the blast furnace and the carburizing behavior of the produced reduced iron (metallic iron), and the acid pig iron as shown in the conceptual diagram of FIG. (FeO) is reduced in the molten slag (S) by a carbonaceous material (G: graphite), and the behavior of the produced metallic iron (Fe) when carburized is clarified.
  • iron oxide (FeO) in molten slag (S) is reduced and carburized by carbon (C) derived from a carbonaceous reducing agent (ie, carbonaceous material, G), and carburized molten iron (Fe— C) is generated.
  • the FeO concentration in the slag in contact with the charcoal decreases, resulting in a difference in concentration from the FeO concentration in the slag in contact with the reduced iron.
  • the carburized molten iron (Fe—C) tries to move away from the charcoal force, moves quickly in the direction of the solid reduced iron (S—Fe), and adheres to the solid reduced iron (S—Fe).
  • the solid reduced iron is carburized.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-256017
  • Patent Document 2 Japanese Patent Laid-Open No. 10-147806
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-45008
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-48197
  • Non-Patent Document 1 ISU International, Vol. 44 (2004), No. 12, pp. 2033--2039 Disclosure of Invention
  • the present invention has been made in view of the above situation, and the features developed by the present inventors.
  • the purpose is to provide an iron manufacturing method that further improves operability and efficiency compared to the direct iron manufacturing method disclosed in Permitted Document 4.
  • the present invention is a method for producing metallic iron from a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance, wherein the above-mentioned predetermined carbon concentration in metallic iron is determined according to Determining the target production temperature of the initial molten slag that is initially produced in the raw material mixture by heating the raw material mixture, including the gangue component, unreduced iron oxide, and ash in the carbonaceous reducing agent A step of preparing the raw material mixture for generating the composition of the initial molten slag according to the target generation temperature, and heating the raw material mixture to reduce and melt the raw material mixture, and And a step for producing molten slag.
  • FIG. 1 conceptually shows the movement of molten iron salt in molten slag in which carbon exists and one of the inventors of the present invention and the carbon carrier action of molten iron. It is the shown schematic diagram.
  • Figure 2 shows the composition of CaO, SiO 2, Al 2 O 3 and FeO, which are the main components of molten slag.
  • FIG. 1 A first figure.
  • FIG. 3 is a graph showing an example of the relationship between the metallization rate during heat reduction and the remaining unreduced FeO.
  • FIG. 4 is a graph showing the change of the reduction rate (in this specification, metalization rate and V) in relation to the heat reduction treatment time.
  • FIG. 5 is a graph showing the effect of the content of iron oxide (FeO) in the slag on the initial molten slag formation temperature and the CO gas generation start temperature.
  • FIG. 6 is a graph showing the effect of the content of iron oxide (FeO) in the slag on the initial molten slag formation temperature and the CO gas generation start temperature.
  • FIG. 7 is a graph showing the relationship between the initial molten slag formation temperature and the carbon concentration in the molten metal iron (product metal iron) obtained at that temperature.
  • an iron oxide-containing substance such as iron ore, iron oxide, or a partially reduced product thereof, and a carbonaceous reducing agent such as coatas and coal are used.
  • a “target formation temperature of initial molten slag” is determined according to a predetermined target carbon concentration in metallic iron, Prepare a raw material mixture that generates the composition of the initial molten slag according to the target generation temperature, and further heat the raw material mixture to reduce and melt the raw material mixture and generate the initial molten slag.
  • the initial molten slag is slag that is first generated in the raw material mixture, and contains a gangue component, unreduced iron oxide, and ash in the carbonaceous reducing agent.
  • Patent Document 4 As a result of further research aimed at further improving the technique described in Patent Document 4, the present inventors have discovered the phenomenon disclosed in Non-Patent Document 1, that is, oxidation in molten slag in a blast furnace. We thought that the iron production technology of Patent Document 4 could be further improved by making good use of iron reduction and carburization behavior.
  • molten slag that melts solid reduced iron at a lower temperature and by-produces it during the heating reduction process. It is important how to separate them efficiently (hereinafter referred to as by-product slag). For that purpose, how quickly the carburization of the solid reduced iron proceeds to melt the solid reduced iron (in this specification, the phenomenon that the solid reduced iron undergoes carburization and melts is referred to as "reduced iron melted down" Is important).
  • Non-Patent Document 1 the molten reduced iron produced by carburizing and carburizing in the molten slag is obtained as described above. We thought that it could be used as a carrier for transporting carbon in the direction of solid metal iron when moving in the direction of solid metal iron due to the phenomenon, and further research was conducted along that line.
  • Patent Document 4 the method previously developed by one of the present inventors is that the liquid phase ratio of by-product slag is closely related to the melting of metallic iron. At that time, based on new knowledge, control was introduced by introducing a new concept of the liquid phase ratio in the solid-liquid coexisting phase of by-product slag rather than melting all the by-product slag. To do.
  • the solid metallic iron produced by the heat reduction can be carburized at a lower operating temperature, and the melting point thereof can be quickly lowered. And this The method enables metallic iron to melt at a lower temperature, thereby allowing efficient separation of by-product slag at low temperatures and, in addition, metal iron, which has a significant effect on the quality of product metallic iron.
  • the carbon concentration can also be controlled.
  • An important technical feature of the prior invention is that when the raw material mixture is heated, reduced, and melted to produce metallic iron, the state of by-product slag in the system in which a carbonaceous reducing agent is present.
  • the carburization promoting action by the coexistence of carbonaceous reducing agent and molten slag is not effective only when the total amount of slag is in the molten state. If properly controlled, the carburization of solid reduced iron is promoted and the melting temperature can be lowered.
  • the liquid phase ratio is located between a solid phase line and a liquid phase line at a certain temperature on an equilibrium diagram, and is in a solid and a liquid (that is, two phases of a solid phase and a liquid phase).
  • the liquid phase ratio of slag is mainly derived from the gangue components contained in the raw material.
  • thermodynamic equilibrium relationship of multicomponent system consisting mainly of 0, MgO and FeO derived from iron source.
  • the liquid phase ratio can be quantitatively determined by image analysis by observing the behavior of the raw material mixture when heated, reduced, and melted with a high-temperature laser microscope.
  • image analysis by observing the behavior of the raw material mixture when heated, reduced, and melted with a high-temperature laser microscope.
  • the inventors of the present invention have found that the liquid phase ratio of slag can be controlled during the reduction / melting process of the raw material mixture without any control and relatively difficult control, and Ash content in gangue components, unreduced iron oxide and carbonaceous reductant If the temperature of the initial molten slag required is controlled well, not only can iron metal be produced efficiently, but also the carbon concentration of metal iron. As a result, the present invention has been completed.
  • Non-Patent Document 1 Similar to Non-Patent Document 1 described above, even in the direct iron manufacturing method, the carburized molten iron is quickly moved toward the solid reduced iron in the molten slag phase to be combined with the solid reduced iron. Just do it. Then, the high concentration of carbon that has entered the molten iron by carburizing will diffuse into the solid reduced iron as soon as it is combined with the solid reduced iron, increasing the carbon concentration of the entire solid reduced iron. . That is, even in the direct iron manufacturing method, if molten slag is generated at an early stage, the metallic iron produced by the reduction of the molten iron oxide in the molten slag is converted into solid reduced iron by the carbon content of the metallic iron in the molten slag. It becomes a carrier for moving in the direction and accelerates the carburization of solid reduced iron.
  • the carbon concentration of the molten iron is 1147 ° C, which is an eutectic point in terms of equilibrium, as is apparent from the thermodynamic phase diagram of the Fe-C system, that is, 4. It can be increased to 3% by mass, and as is clear from the phase diagram, the carbon concentration increases as the temperature of the system decreases to the eutectic point.
  • a slag forming component containing unreduced iron oxide derived from an iron source is used. It is possible to generate the melt at as low a temperature as possible, promote the reduction of iron oxide (generation of reduced iron), promote the movement toward solid metal iron, and further accelerate the generation of molten iron by carburization. desirable. That is, it is desirable to lower the temperature at which the melt derived from the slag forming components including iron oxide that is initially formed in the raw material mixture in the heat reduction process (that is, the initial molten slag). In other words, when the raw material mixture is heated, as the reduction proceeds from the outside of the raw material mixture, slag is generated inside the raw material mixture. In this reduction process, the initial molten slag may be produced even if the outside is partially reduced.
  • the melting temperature (melting-off temperature) of the solid reduced iron also decreases, so it is possible to lower the operating temperature for producing metallic iron after all. It becomes.
  • the components in the molten slag that is, It is fundamental to set the unreduced iron oxide derived from the iron source, the gangue component, and the ash content in the carbonaceous material, which is the slag component).
  • the formation temperature of such multicomponent initial molten slag is determined by the thermodynamic equilibrium diagram of multicomponent systems including Si 2 O 3, Al 2 O 3, CaO, MgO, and FeO.
  • Fig. 2 shows the equilibrium of SiO-AlO-CaO and SiO-AlO-FeO systems.
  • compositional power of molten slag is SiO-AlO-CaO system.
  • the composition of Al O is about 20% and the CaOZSiO ratio is about 5Z5.
  • Al O is about 15% and the CaOZSiO ratio is about 3
  • O content is about 35-50% (more preferably about 40%) and SiO / Al 2 O ratio is about 45Z
  • the melting temperature of the four-component slag is the lowest and shows the value.
  • each component composition of the slag forming component is adjusted within a changeable range so that the slag composition generated in the heat reduction process becomes the minimum temperature as described above.
  • the initial melting slag can be generated at the lowest temperature.
  • Specific means for adjusting the components of the slag-forming component include slag-forming components in the raw material components (including gangue components in the iron source, ash in the carbonaceous material, inorganic binder components, etc.) Depending on the method, supplementary addition of deficient CaO, SiO or Al 2 O, etc.
  • the ratio of iron oxide in the raw material that can be recovered as metallic iron is expressed as a metallization rate, and the metallization rate is high! Productivity is good! /. Therefore, conventionally, energetic efforts have been paid to how to increase the metallization rate. However, it is extremely difficult to reduce all of the iron oxide source to increase the metallization rate to 100%, and the metallization rate obtained under normal conditions is at most about 90 to 95%, and the rest A few percent of this remains as unreduced iron oxide.
  • unreduced iron oxide remaining in the heat reduction process is actively used. That is, by mixing unreduced iron oxide into the slag, the temperature of the initial molten slag is lowered, and the molten unreduced iron oxide mixed in the slag is reduced and carburized. The resulting carburized iron acts as a carrier for carbon in the direction of solid reduced iron. As a result, the total production efficiency of metallic iron can be increased.
  • the residual amount of unreduced iron oxide that provides the optimum FeO content is obtained according to the type and amount of the additive for adjusting the slag forming component and the slag component in the raw material mixture.
  • the metalization rate of the iron oxide source (the reduction rate of the iron oxide-containing substance) may be controlled. Specifically, adjust the heating temperature pattern or reduction potential and heat the raw material mixture until the target metallization rate is reached! Examples of the adjustment of the heating temperature pattern include control of the temperature, time, or temperature rising rate during heating reduction. Examples of adjustment of the reduction potential include control of the amount of carbonaceous reducing agent, the amount of reducing agent used as a flooring, or the atmosphere gas in the furnace.
  • Figure 3 shows a case where heat reduction at 1250 to 1350 ° C was performed using MBR from South America as the iron oxide source (iron ore) and Oak Grove coal from North America as the charcoal.
  • the metallization rate of the raw material mixture can be controlled by The amount of residual FeO can be adjusted, and as a result, the content of FeO in the generated slag can be obtained appropriately.
  • FIG. 4 shows that the target temperature in the heating and reduction furnace is set to 1400 ° C, the same raw material mixture as above is supplied to this, and the temperature and metal with respect to the elapsed time when the heating reduction is performed.
  • 5 is a graph showing the relationship of conversion rate (that is, reduction rate).
  • the metallization rate slightly varies depending on the specific characteristics of the heating reduction furnace.
  • the metallization rate increases with the elapse of the heating time.
  • the conversion rate rises rapidly, and after about 9 minutes, the rate of increase in the metalization rate decreases rapidly.
  • the metallization rate reaches approximately 90% by mass when the heating start force is around 8 minutes, and at this point, the amount of acid iron iron remaining in the unreduced state becomes approximately 10% by mass.
  • the amount of residual iron oxide is the target content described above (ie, the slag composition corresponding to the target carbon concentration).
  • Figure 5 shows that the mass ratio of CaOZSiO in the slag is kept constant at 0.38, and the iron oxide in the slag (
  • the initial molten slag generation temperature slag burn-off temperature
  • the CO gas generation start temperature accompanying the reduction of molten acid pig iron (FeO) also decreases.
  • Figure 6 shows the result of a similar experiment with the CaOZSiO mass ratio in the slag changed to 0.92.
  • Fig. 7 is a graph showing the results of investigating the effect of the initial molten slag generation temperature (slag burn-off temperature) on the carbon concentration (C concentration) in the molten metal iron produced (melt-off metal iron) This graph force confirms that the carbon content in the metallic iron as the reduction product increases as the initial molten slag formation temperature (slag melt-off temperature) decreases.
  • the initial molten slag generation temperature depends on the slag forming component in the raw material (the gangue component in the iron source and the ash contained in the carbonaceous material) that is first combined with the raw material mixture.
  • the slag forming component in the raw material the gangue component in the iron source and the ash contained in the carbonaceous material
  • the melting point of the slag of these mixed compositions is reduced in the iron source.
  • Add slag-forming components other than gangue components to the appropriate amount at the stage of preparing the raw material mixture, adding the raw material mixture, or heating the raw material mixture (hereinafter sometimes referred to as the addition of a third slag-forming component) ) Do it!
  • the iron oxide content in the slag is secured by the iron oxide remaining in the unreduced state during the metallic iron production process. If possible, control the metalization rate of the iron source in the raw material mixture and the heating temperature pattern properly.
  • the composition of the slag forming component and the unreduced iron oxide component may be adjusted so that the optimum initial molten slag generation temperature is obtained.
  • the initial molten slag composition should be adjusted by adding a third slag-forming component, the metalization rate of the iron source in the raw material, and the heating temperature pattern.
  • the control of the initial molten slag generation temperature in carrying out the present invention is performed according to the composition of the appropriate slag forming component according to the composition of the gangue component contained in the iron ore used as the acid iron source. It is possible to adjust by using several iron ores in combination, but it is possible to change the initial molten slag generation temperature according to the gangue component composition contained in the raw ore. Is preferably added.
  • the auxiliary materials include quick lime (CaO), limestone (CaCO 3), silica (SiO 2), serpentine (MgO + SiO;), Mn ore (MnO + FeO),
  • Bauxite Al 2 O 3
  • Al 2 O 3 Al 2 O 3
  • a raw material mixture is prepared by blending an acid iron source, a carbonaceous reducing agent, and if necessary, one binder component
  • a multi-component phase diagram is obtained from the composition of the gangue component contained in the raw materials.
  • the melting temperature is determined on the basis, and an appropriate amount of the above-mentioned acid soot is added to the raw material mixture as an auxiliary raw material so that the target initial molten slag formation temperature can be obtained.
  • the molten iron oxide is reduced and carburized as described above, and further, the high-speed movement of the molten iron in the direction of the solid reduced iron and the accompanying carburization by the carbon carrier action, and the burn-off temperature. Therefore, it is necessary for solid metallic iron to cause a sufficient melting point drop due to carburization.
  • the carbon concentration of the metallic iron after carburizing is controlled within the range of 0.5 to 4.3 mass%, and the initial molten slag generation temperature is controlled within the range of 1147 to 1500 ° C. preferable.
  • the carbon concentration of the metallic iron after the carburization is more preferably controlled within the range of 1.5 to 3.5% by mass, and the initial molten slag generation temperature is preferably 1200 to 1450 ° C. It is more preferable to control within the range.
  • the carbon concentration of metallic iron after carburizing should be adjusted according to the amount of carbonaceous reductant added at the raw material preparation stage. What is necessary is just to mix
  • the amount of carbonaceous reducing agent is adjusted as described above at the time of mixing the raw materials, the amount of carburizing into metallic iron at the time of carburizing and melting can be adjusted, and finally obtained.
  • metal The carbon content of iron can be arbitrarily adjusted as necessary.
  • the raw material mixture used in the present invention is a powdered mixed state of both the iron oxide source and the carbonaceous reducing agent so that heating and reduction of the iron oxide with the gas derived from the carbonaceous reducing agent proceed efficiently. It is desirable to use in.
  • This raw material mixture can be supplied in a state of being lightly pressed on the hearth.
  • the mixture is formed into an arbitrary shape such as a substantially spherical shape, a pricket shape, or a pellet shape.
  • a solid reduced iron shell is formed on the outer periphery of the molded body, and the inside can be maintained at a high reduction potential, and the metallization rate is increased. I like it because it can be improved more efficiently.
  • the specific apparatus and basic operating conditions for implementing the present invention are basically the same as the apparatus and operating conditions disclosed in Patent Document 1 and the like. Specifically, it is equipped with a circular or donut-shaped rotary hearth, and the raw material mixture supply zone, preheating zone, heating reduction zone, metallic iron melting zone, cooling zone (metallic iron solidification zone), discharge zone in the direction of rotation. It is only necessary to use a heating and reduction furnace equipped with an apparatus capable of continuously carrying out a series of operations from supplying raw materials to heating and reducing, cooling and solidifying and removing the produced metallic iron.
  • the composition and carbon content of the slag forming material in the raw material corresponding to the target carbon concentration are set in preliminary experiments, and the optimum initial molten slag during heating reduction is set. Adjust the metalization rate so that the formation temperature is obtained, and ensure the unreduced iron oxide content in the initial molten slag.
  • the metallic iron which has been heated and reduced and then carburized and melted and aggregated in a granular form is cooled, the metallic iron which has been aggregated and solidified in a granular form can be obtained.
  • the metallic iron can be easily separated by cooling or solidifying the generated slag and sieve, separating, or magnetic separation, etc.
  • the initial stage consisting of the gangue component and unreduced iron oxide generated during the reduction and melting process of the raw material mixture.
  • the carbon concentration in the obtained metallic iron can be arbitrarily controlled.
  • the following secondary effects can be obtained. That is, the carbon content of metallic iron obtained by the method of the present invention increases as the initial molten slag formation temperature decreases. In other words, the lower the operating temperature, the higher the carbon content of metallic iron. Therefore, the amount of heat consumed for heat reduction can be suppressed.
  • the molten iron oxide contained in the initial molten slag acts as a carbon carrier for the solid metal iron produced by gas reduction, and the carburization of the solid reduced iron (solid metal iron) proceeds rapidly to dissolve it. Since the fall is promoted, the melting of the solid reduced iron is also significantly accelerated, and the overall production efficiency can be significantly increased.
  • the initial molten slag contains unreduced iron oxide as described above.
  • the iron oxide is reduced to become metallic iron, and the metallic iron acting as a carbon carrier moves to the solid reduced iron side in the molten slag.
  • the composition of the molten slag changes with time. For this reason, in order to produce metal iron more efficiently, it is necessary for metal iron to move smoothly even in a state where the amount of acid iron in the molten slag is reduced. In this respect, it is also preferable to control the melting point of the slag after the metallic iron is generated instead of the generation temperature of the initial molten slag.
  • the melting point of the final slag to be controlled (that is, the slag melting temperature) may be determined from the phase diagram based on the average yarn composition of the slag that is finally produced. As a result, even when the reduction reaction proceeds, the final molten slag is produced at a low temperature, so that metallic iron can be produced efficiently.
  • the metallization rate during the heat reduction is adjusted in consideration of the initial molten slag generation temperature generated during the heat reduction so that the finally obtained metal iron having the above carbon content is obtained.
  • each was set to an appropriate initial molten slag generation temperature (or slag melting temperature, which is the temperature at which the slag is all in one phase of the liquid phase).
  • the initial molten slag formation temperature is determined by the slag forming component contained in the raw material and the remaining amount of unreduced iron oxide during heating reduction, but the slag forming component is appropriate! By adding a substance containing, the initial molten slag generation temperature can be lowered.
  • Table 3 includes a slag forming component separately in order to secure the initial molten slag generation temperature corresponding to the target carbon concentration of metallic iron obtained in Experimental Example 1 set to about 3%.
  • the results of examining the influence of the added amount of CaO on the initial molten slag formation temperature when limestone (CaO) is added as a material to be prepared in the stage of preparing the raw material mixture are shown.
  • Two brands used in Experiment 1 were used as charcoal materials, but it can be seen that the initial molten slag generation temperature can be lowered by adding an appropriate amount of CaO in either case.
  • the carbon content of the metallic iron obtained in each case is 1.8% when the CaO addition amount in Table 3 is 0.3%, and 1 when the CaO addition amount is 0.4%. It was 2.9% when 7% and CaO content was 2.0%, and 3.5% when CaO content was 4.0%.
  • the operation temperature pattern and the residence time of each zone such as heating and reduction are determined, and the initial molten slag generation temperature is further reduced! / ⁇ In this case, it is also effective to appropriately control the initial molten slag generation temperature by adding a separate slag forming component such as CaO as an additive at the stage of charging the raw material mixture or as a slagging agent at the stage of heating the raw material mixture. It becomes.
  • a separate slag forming component such as CaO
  • the present invention by changing the properties of the carbonaceous reducing agent (carbon material) used as the reducing agent, it is possible to control the initial molten slag generation temperature or to control the remaining amount of unreduced iron oxide during heating reduction. Is also possible.
  • the CaO content is added to the charcoal material to increase the CaO content and change the initial molten slag generation temperature.
  • Table 4 examined changes in the initial molten slag generation temperature for the above-mentioned three brands of charcoal with the addition of CaO of the amount shown in Table 4 to change the ash content. The results are shown. As is clear from this table, when an appropriate amount of CaO is added to the carbonaceous material, the initial molten slag formation temperature clearly decreases.
  • Ca ions in CaO are known to have a catalytic action that increases the reducing ability of the carbonaceous material as an alkali and contributes to improving the reactivity of the carbonaceous material. It can be used to adjust the remaining amount of iron.
  • the present invention is a method for producing metallic iron from a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance, and has a predetermined target carbon concentration in metallic iron.
  • the initial molten slag that is first produced in the raw material mixture by heating the raw material mixture according to the method, including a gangue component, unreduced iron oxide, and ash in the carbonaceous reducing agent Determining a target generation temperature; preparing the raw material mixture for generating a composition of the initial molten slag according to the target generation temperature; and heating the raw material mixture to Reduction 'Melting and initial melting And a step of producing a lug.
  • the target generation temperature of the initial molten slag may be a specific temperature or a temperature range having a specific upper limit value and lower limit value.
  • the above-mentioned “specific temperature” is a “temperature higher than the minimum temperature” within the range of each component composition of the slag-forming component that can be changed according to the operational restrictions caused by the equipment and process.
  • a slag-forming component may be added to the iron oxide-containing substance in the preparing step.
  • a slag forming component may be added to the carbonaceous reducing agent.
  • the raw material mixture may further contain an auxiliary material, and in the preparing step, a slag forming component may be blended with the auxiliary material.
  • a step of adding an additive containing a slag forming component may be further included before the heating step. Further, in the heating step, a molding agent containing a slag forming component may be added.
  • a flux containing a slag-forming component may be added instead of a slag-forming agent, and a flux containing a slag-forming component and a slag-forming component may be added.
  • the target generation temperature may be controlled by adding a third slag forming component.
  • the necessary slag forming components in the initial molten slag are appropriately replenished in the raw material mixture blending stage, raw material mixture charging stage, or raw material mixture heating stage. As a result, the initial molten slag is generated at the target temperature.
  • the target generation temperature can be determined from a multi-component equilibrium state diagram composed of a gangue component, unreduced iron oxide remaining during reduction, and ash in a carbonaceous reducing agent. As a result, if each component composition of the slag forming component is adjusted within a changeable range, the target generation temperature that is the lowest initial molten slag generation temperature in the changeable composition range can be easily determined. .
  • the target generation temperature can be determined from the target carbon concentration according to this correspondence relationship by checking in advance the relationship between the generation temperature of the initial molten slag and the carbon concentration in the metallic iron. This allows the metal with the target carbon concentration Iron can be manufactured stably.
  • a target content of the unreduced iron oxide in the initial molten slag is determined, and a target reduction rate of the iron oxide-containing substance according to the target content is calculated.
  • the heating temperature pattern or the reduction potential may be adjusted and heated until the reduction rate of the iron oxide-containing substance reaches the target reduction rate.
  • heating may be performed based on the melting point of slag containing unreduced iron oxide during reduction.
  • the gangue component in the raw material mixture, the ash in the carbonaceous reducing agent, and the heat reduction By controlling the amount of unreduced iron oxide remaining, the temperature at which the initial molten slag is formed is controlled. As a result, the carbon concentration in the obtained metallic iron can be adjusted, and metallic iron having a carbon concentration as desired can be obtained efficiently. Further, in the present invention, as described in detail above, molten iron derived from iron oxide (iron oxide-containing substance) mixed from raw ore into molten slag is used as a carbon carrier for carburizing solid reduced iron. As a result, the carburization of the solid reduced iron can be rapidly advanced to allow the solid reduced iron to be melted at a low temperature, and as a result, the productivity can be increased while reducing the heat energy consumed for the production of metallic iron.
  • iron oxide iron oxide-containing substance

Abstract

A process for producing metallic iron from a charge stock mixture containing a carbonaceous reducing agent and an iron-oxide-containing substance, characterized by including the steps of determining, corresponding to a preselected target carbon concentration in metallic iron, a target formation temperature of an initial molten slag first formed in the charge stock mixture by heating the charge stock mixture, the initial molten slag containing gangue components, unreduced iron oxide and ash of the reducing agent; preparing the charge stock mixture for forming of the composition of the initial molten slag corresponding to the target formation temperature; and heating the charge stock mixture to thereby accomplish not only reduction/melting of the charge stock mixture but also forming of the initial molten slag. The metallic iron having the target carbon concentration can be efficiently produced by this process.

Description

明 細 書  Specification
金属鉄の製法  Manufacturing method of metallic iron
技術分野  Technical field
[0001] 本発明は、鉄鉱石等の鉄源をコータス等の炭素質還元剤により加熱還元して金属 鉄を製造する技術の改良に関し、詳細には、酸ィ匕鉄を還元すると共に浸炭を進め、 生成する金属鉄と、原料鉱石などに脈石成分などとして混入して ヽるスラグ形成成分 とを効率よく分離することで、所定の炭素濃度を有する金属鉄を効率的に製造する 方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an improvement in technology for producing metallic iron by heating and reducing an iron source such as iron ore with a carbonaceous reducing agent such as Cortus, and more specifically, reducing iron oxide and carburizing. The present invention relates to a method for efficiently producing metallic iron having a predetermined carbon concentration by efficiently separating the produced metallic iron and the slag forming component mixed as raw material ore as a gangue component. .
背景技術  Background art
[0002] 本発明者らの一人は、新しいタイプの直接製鉄法として先に特許文献 1に記載の 方法を提案し、その後も該直接製鉄法の改良研究を進めて ヽる。  [0002] One of the inventors of the present invention previously proposed the method described in Patent Document 1 as a new type of direct iron manufacturing method, and will continue to improve the direct iron manufacturing method.
[0003] この方法は、炭素質還元剤と酸化鉄とを含む原料混合物を加熱還元することで金 属鉄を製造するものであって、酸ィ匕鉄を炭素質還元剤由来の還元性ガスで還元する ことにより金属鉄外皮を生成且つ成長させ、金属鉄外皮内部に酸化鉄が実質的に存 在しなくなるまで固体状態で還元を進め、更に加熱を続けて内部に生成するスラグを 金属鉄外皮の外側へ流出させ、そして金属鉄とスラグとを分離するところに特徴を有 している。  [0003] In this method, metallic iron is produced by heating and reducing a raw material mixture containing a carbonaceous reducing agent and iron oxide, and iron oxide is reduced to a reducing gas derived from the carbonaceous reducing agent. The metal iron skin is generated and grown by reduction at a low temperature, and the reduction proceeds in a solid state until iron oxide is substantially absent inside the metal iron skin. It is characterized by the fact that it flows out of the outer skin and separates metallic iron and slag.
[0004] 上記方法を実施する際には、加熱還元により生成した金属鉄外皮を溶融させること によって、金属鉄外皮の内側にある溶融スラグをこの外皮の外側へ流出させればよ い。金属鉄外皮を溶融させるには、金属鉄外皮内に存在する炭素質還元剤由来の 炭素を金属鉄に溶解させること (この現象を"浸炭"ということがある)によって当該金 属鉄外皮の融点を降下させればょ 、。  [0004] When the above method is performed, the molten iron slag generated by heat reduction may be melted so that the molten slag inside the metallic iron shell flows out of the outer skin. In order to melt a metallic iron shell, the melting point of the metallic iron shell is obtained by dissolving carbon derived from the carbonaceous reducing agent present in the metallic iron shell in metallic iron (this phenomenon is sometimes called “carburizing”). Let ’s descend.
[0005] この方法では、スラグが金属鉄外皮の外側へ流出した後の金属鉄と生成スラグとを 冷却固化した後、スラグを破砕すると共に粒状に固まった金属鉄を磁選ゃ篩によつ て分別するか、あるいは固化した金属鉄と生成スラグとを加熱溶融して比重差により 分離することで、金属鉄として 95質量%以上、更には 98質量%以上の高純度物を 得ることができる。 [0006] 他方、上記の様な直接製鉄法を実施する際に、生成スラグの組成を制御することに より金属鉄の分離を促進する方法については、幾つかの提案がなされている。 [0005] In this method, after cooling and solidifying the metallic iron and the generated slag after the slag has flowed outside the metallic iron shell, the slag is crushed and the solidified metallic iron is magnetically selected by a sieve. Separation or solidified metallic iron and produced slag are heated and melted and separated by specific gravity difference to obtain a high purity product of 95 mass% or more, further 98 mass% or more as metallic iron. [0006] On the other hand, several proposals have been made for a method of promoting the separation of metallic iron by controlling the composition of the produced slag when performing the direct iron making method as described above.
[0007] 例えば特許文献 2には、酸ィ匕鉄源として製鉄ダストを使用し、これを炭素質還元剤 ( 以下、炭材ということがある)および副原料 (スラグ形成剤)と混合し、生成スラグ組成 を CaOZSiO質量比(塩基度)で 1. 4〜1. 6の範囲に調整して 1250〜1350°Cで  [0007] For example, in Patent Document 2, iron dust is used as an acid pig iron source, and this is mixed with a carbonaceous reducing agent (hereinafter sometimes referred to as carbonaceous material) and an auxiliary material (slag forming agent), The generated slag composition is adjusted to the range of 1.4 to 1.6 by mass ratio (basicity) of CaOZSiO at 1250 to 1350 ° C.
2  2
加熱還元することにより金属鉄を生成させ、粒状の金属鉄を FeOを含む低融点スラ グから分離する方法が開示されている。  A method of producing metallic iron by heat reduction and separating granular metallic iron from a low melting point slag containing FeO is disclosed.
[0008] し力しこの方法は、酸ィ匕鉄源として製鉄ダストを使用する方法である。また、この方 法で採用されるスラグ形成成分の塩基度調整は原料配合時点に行われるのであつ て、加熱還元時に生成するスラグゃ該スラグ中に含まれる酸ィ匕鉄の挙動については 十分な研究がなされて ヽな ヽ。 [0008] This method is a method in which iron-making dust is used as a source of iron oxide. In addition, the basicity adjustment of the slag-forming components adopted in this method is performed at the time of mixing the raw materials, so slag produced during heat reduction is sufficient research on the behavior of acid iron in the slag. It was made ヽ て.
[0009] また特許文献 3には、原料中のスラグ形成成分の塩基度を 0. 4〜1. 3の範囲に制 御すると共に、炉床上での加熱還元に要する時間の 1Z3以上を 1200〜1350°Cの 温度範囲に制御して鉄の還元率を 40〜80%とし、次いで還元生成物を溶融させる 方法を提案している。 In Patent Document 3, the basicity of the slag forming component in the raw material is controlled in the range of 0.4 to 1.3, and 1Z3 or more of the time required for heat reduction on the hearth is 1200 to 1200 We have proposed a method in which the iron reduction rate is controlled to 40-80% by controlling the temperature range to 1350 ° C, and then the reduction product is melted.
[0010] この方法で採用される上記塩基度の調整は、原料配合時に計算によって行なわれ るものである。しかしながら、この方法では、原料中に含まれる未還元酸化鉄が溶融 スラグの生成に与える影響や、溶融スラグ中に含まれる酸ィ匕鉄の動的挙動、更には 該酸化鉄が還元により生成する金属鉄の溶け落ち状況にどの様な影響を及ぼすか と言ったことまでは追求されて ヽな 、。  [0010] The adjustment of the basicity employed in this method is performed by calculation at the time of blending the raw materials. However, in this method, the effect of unreduced iron oxide contained in the raw material on the production of molten slag, the dynamic behavior of acid iron iron contained in the molten slag, and further, the iron oxide is produced by reduction. I have been pursuing the question of what kind of effect it will have on the molten state of metallic iron.
[0011] また、本発明者らはその後も更に研究を重ね、特許文献 4に記載の技術を提供して いる。この発明の基本思想は、炭素質還元剤と酸化鉄とを含む原料混合物を加熱還 元して金属鉄を製造する際に、上記原料混合物の還元 ·溶融時に生成し且つ脈石 成分を含む多成分系スラグの固液共存相中の液相率を制御することにより、生成す る固体金属鉄の浸炭と溶融を促進させる点にあり、具体的には、金属鉄の溶け落ち 温度を制御すると共に、得られる金属鉄の炭素含有量 (炭素濃度、以下同じ)を制御 する点に特徴を有している。  [0011] Further, the present inventors have further studied and provided the technique described in Patent Document 4. The basic idea of the present invention is that when a raw material mixture containing a carbonaceous reducing agent and iron oxide is heated and reduced to produce metallic iron, the raw material mixture is produced during the reduction and melting of the raw material mixture and contains a gangue component. By controlling the liquid phase ratio in the solid-liquid coexisting phase of the component slag, the carburization and melting of the generated solid metallic iron is promoted. Specifically, the melting temperature of the metallic iron is controlled. At the same time, it is characterized by controlling the carbon content (carbon concentration, the same shall apply hereinafter) of the obtained metallic iron.
[0012] しかし、この方法で固液共存状態のスラグの液相率を制御するには、次の通り、操 作が煩雑となる。即ち、原料混合物中に含まれるスラグ形成成分の組成や温度と液 相率の関係を予め求め、原料酸化鉄成分や炭素質還元剤中の灰分から溶融スラグ への混入量を調整し、更には、必要により追加されるスラグ形成成分の添加量なども 調整する必要がある。従って、この方法を更に発展させ、より簡便な操作で目標炭素 濃度を有する金属鉄を効率よく製造し得る様な方法の開発が望まれる。 However, in order to control the liquid phase ratio of the slag in the solid-liquid coexistence state by this method, the operation is as follows. The work becomes complicated. That is, the relationship between the composition and temperature of the slag forming component contained in the raw material mixture and the liquid phase ratio is determined in advance, the amount of ash in the raw iron oxide component and the carbonaceous reducing agent is adjusted, and the amount of mixture into the molten slag is adjusted. It is also necessary to adjust the amount of slag forming component added if necessary. Therefore, further development of this method is desired, and the development of a method capable of efficiently producing metallic iron having the target carbon concentration by simpler operation is desired.
[0013] 他方、本発明者らの一人は、高炉内での鉄の炭化現象を解明するために、溶融ス ラグの共存下における酸ィヒ鉄の還元と、還元により生成し且つ浸炭により炭素を溶解 した銑鉄 (Fe— C)の動的挙動とについて基礎的な研究を重ねた結果、次の様な現 象を確認し、先に非特許文献 1として開示した。  [0013] On the other hand, one of the present inventors, in order to elucidate the phenomenon of iron carbonization in the blast furnace, reduced the iron slag iron in the presence of molten slag, and produced by reduction and carbonization by carburization. As a result of repeated basic research on the dynamic behavior of pig iron (Fe—C) in which iron was dissolved, the following phenomenon was confirmed and disclosed as Non-Patent Document 1 earlier.
[0014] この非特許文献 1は、高炉内における酸ィ匕鉄の還元と生成した還元鉄 (金属鉄)の 浸炭挙動に関するものであって、図 1の概念図に示す如ぐ酸ィ匕鉄 (FeO)が溶融ス ラグ (S)中で炭材 (G:グラフアイト)により還元され、生成した金属鉄 (Fe)が浸炭を受 ける際の挙動を明らかにしている。具体的には、溶融スラグ (S)中の酸化鉄 (FeO) は、炭素質還元剤 (即ち炭材、 G)由来の炭素 (C)により還元され且つ浸炭されて、 浸炭溶融鉄 (Fe— C)を生成する。これにより、炭材と接するスラグ中の FeO濃度は 減少し、還元鉄と接しているスラグ中の FeO濃度と濃度差が生じる。そして、浸炭溶 融鉄 (Fe— C)は炭材力 離れる方向へ移動しようとし、固形還元鉄(S— Fe)方向へ 速やかに移動して当該固形還元鉄 (S— Fe)に付着 '合体し、固形還元鉄が浸炭し ていくのである。  [0014] This non-patent document 1 relates to the reduction of acid pig iron in the blast furnace and the carburizing behavior of the produced reduced iron (metallic iron), and the acid pig iron as shown in the conceptual diagram of FIG. (FeO) is reduced in the molten slag (S) by a carbonaceous material (G: graphite), and the behavior of the produced metallic iron (Fe) when carburized is clarified. Specifically, iron oxide (FeO) in molten slag (S) is reduced and carburized by carbon (C) derived from a carbonaceous reducing agent (ie, carbonaceous material, G), and carburized molten iron (Fe— C) is generated. As a result, the FeO concentration in the slag in contact with the charcoal decreases, resulting in a difference in concentration from the FeO concentration in the slag in contact with the reduced iron. Then, the carburized molten iron (Fe—C) tries to move away from the charcoal force, moves quickly in the direction of the solid reduced iron (S—Fe), and adheres to the solid reduced iron (S—Fe). The solid reduced iron is carburized.
[0015] し力 こうした高炉内の現象が、本発明者らの開発した上記直接製鉄技術の改善 にどの様に活用できるかは未解明である。  [0015] Shishi force It is unclear how this phenomenon in the blast furnace can be used to improve the direct iron-making technology developed by the present inventors.
特許文献 1:特開平 9 - 256017号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-256017
特許文献 2:特開平 10— 147806号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-147806
特許文献 3 :特開 2000— 45008号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2000-45008
特許文献 4:特開 2005— 48197号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-48197
非特許文献 1 :ISU International, Vol. 44 (2004) , No. 12, pp. 2033- 2039 発明の開示  Non-Patent Document 1: ISU International, Vol. 44 (2004), No. 12, pp. 2033--2039 Disclosure of Invention
[0016] 本発明は以上の状況を鑑みてなされたものであり、本発明者らが開発した前記特 許文献 4に開示した直接製鉄法と比べて、操業性や操業効率が一段と高められた製 鉄法を提供することを目的とするものである。 [0016] The present invention has been made in view of the above situation, and the features developed by the present inventors. The purpose is to provide an iron manufacturing method that further improves operability and efficiency compared to the direct iron manufacturing method disclosed in Permitted Document 4.
[0017] 即ち、本発明は、炭素質還元剤と酸化鉄含有物質とを含む原料混合物から金属鉄 を製造する方法であって、予め決められた金属鉄中の目標炭素濃度に応じた、前記 原料混合物を加熱することで該原料混合物内に最初に生成する初期溶融スラグで あって、脈石成分と、未還元酸化鉄と、炭素質還元剤中の灰分とを含むものの目標 生成温度を決定するステップと、前記目標生成温度に応じた前記初期溶融スラグの 組成を生成する前記原料混合物を調製するステップと、前記原料混合物を加熱する ことで、当該原料混合物を還元'溶融するとともに、前記初期溶融スラグを生成するス テツプとを有することを特徴とする金属鉄の製法である。 [0017] That is, the present invention is a method for producing metallic iron from a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance, wherein the above-mentioned predetermined carbon concentration in metallic iron is determined according to Determining the target production temperature of the initial molten slag that is initially produced in the raw material mixture by heating the raw material mixture, including the gangue component, unreduced iron oxide, and ash in the carbonaceous reducing agent A step of preparing the raw material mixture for generating the composition of the initial molten slag according to the target generation temperature, and heating the raw material mixture to reduce and melt the raw material mixture, and And a step for producing molten slag.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]図 1は、本発明者らの一人が先に見出した炭素が存在する溶融スラグ中での溶 融酸ィ匕鉄の動きと溶融鉄の炭素キャリア作用を概念的に示した模式図である。  [0018] [FIG. 1] FIG. 1 conceptually shows the movement of molten iron salt in molten slag in which carbon exists and one of the inventors of the present invention and the carbon carrier action of molten iron. It is the shown schematic diagram.
[図 2]図 2は、溶融スラグの主成分である CaO、 SiO 、 Al O 、 FeOについての多成  [Figure 2] Figure 2 shows the composition of CaO, SiO 2, Al 2 O 3 and FeO, which are the main components of molten slag.
2 2 3  2 2 3
分系状態図である。  FIG.
[図 3]図 3は、加熱還元時における金属化率と未還元 FeO残存量との関係の一例を 示すグラフである。  [FIG. 3] FIG. 3 is a graph showing an example of the relationship between the metallization rate during heat reduction and the remaining unreduced FeO.
[図 4]図 4は、加熱還元処理時間の経過に対する還元率 (本明細書では、金属化率と V、うことがある)の変化を示すグラフである。  [FIG. 4] FIG. 4 is a graph showing the change of the reduction rate (in this specification, metalization rate and V) in relation to the heat reduction treatment time.
[図 5]図 5は、初期溶融スラグ生成温度と COガス発生開始温度に及ぼすスラグ中の 酸ィ匕鉄 (FeO)含有量の影響を示すグラフである。  [FIG. 5] FIG. 5 is a graph showing the effect of the content of iron oxide (FeO) in the slag on the initial molten slag formation temperature and the CO gas generation start temperature.
[図 6]図 6は、初期溶融スラグ生成温度と COガス発生開始温度に及ぼすスラグ中の 酸ィ匕鉄 (FeO)含有量の影響を示すグラフである。  [FIG. 6] FIG. 6 is a graph showing the effect of the content of iron oxide (FeO) in the slag on the initial molten slag formation temperature and the CO gas generation start temperature.
[図 7]図 7は、初期溶融スラグ生成温度とその温度下で得られる溶け落ち金属鉄 (製 品金属鉄)中の炭素濃度との関係を示すグラフである。  [FIG. 7] FIG. 7 is a graph showing the relationship between the initial molten slag formation temperature and the carbon concentration in the molten metal iron (product metal iron) obtained at that temperature.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明を具体的に説明する。上記の様に本発明では、鉄鉱石、酸化鉄また はその部分還元物などの酸化鉄含有物質と、コータスや石炭などの炭素質還元剤と を含む原料混合物を加熱し、還元'溶融して金属鉄を製造する際に、予め決められ た金属鉄中の目標炭素濃度に応じた「初期溶融スラグの目標生成温度」を決定し、 次に目標生成温度に応じた初期溶融スラグの組成を生成する原料混合物を調製し、 更に原料混合物を加熱することで、原料混合物を還元'溶融するとともに、初期溶融 スラグを生成する点、言い換えれば、初期溶融スラグの生成温度を制御することによ つて、得られる金属鉄の炭素濃度を制御する点に最大の特徴を有している。ここで、 初期溶融スラグとは、原料混合物内に最初に生成するスラグであって、脈石成分と、 未還元酸化鉄と、炭素質還元剤中の灰分とを含有しているものである。 Hereinafter, the present invention will be specifically described. As described above, in the present invention, an iron oxide-containing substance such as iron ore, iron oxide, or a partially reduced product thereof, and a carbonaceous reducing agent such as coatas and coal are used. When the raw material mixture containing is heated, reduced and melted to produce metallic iron, a “target formation temperature of initial molten slag” is determined according to a predetermined target carbon concentration in metallic iron, Prepare a raw material mixture that generates the composition of the initial molten slag according to the target generation temperature, and further heat the raw material mixture to reduce and melt the raw material mixture and generate the initial molten slag. By controlling the temperature at which molten slag is produced, it has the greatest feature in controlling the carbon concentration of the resulting metallic iron. Here, the initial molten slag is slag that is first generated in the raw material mixture, and contains a gangue component, unreduced iron oxide, and ash in the carbonaceous reducing agent.
[0020] 本発明者らは、前記特許文献 4に記載の技術を更に改善すべく研究を進めたとこ ろ、前記非特許文献 1に開示した現象、即ち高炉内での溶融スラグ中での酸化鉄の 還元と浸炭挙動とをうまく活用すれば、特許文献 4の製鉄技術を更に改善できるので はないかと考えた。前記特許文献 4で採用する直接製鉄法では、高純度の金属鉄を より低い温度で効率よく分離回収するには、固形還元鉄をより低い温度で溶融させる と共に加熱還元過程で副生する溶融スラグ (以下、副生スラグということがある)と如 何に効率よく分離させるかが重要である。そのためには、固形還元鉄の浸炭を如何 に速やかに進めて固形還元鉄を溶融させる力 (本明細書では、固形還元鉄が浸炭を 受けて溶融する現象を"還元鉄の溶け落ち"と 、うことがある)が重要である。  [0020] As a result of further research aimed at further improving the technique described in Patent Document 4, the present inventors have discovered the phenomenon disclosed in Non-Patent Document 1, that is, oxidation in molten slag in a blast furnace. We thought that the iron production technology of Patent Document 4 could be further improved by making good use of iron reduction and carburization behavior. In the direct iron making method adopted in Patent Document 4, in order to efficiently separate and recover high-purity metallic iron at a lower temperature, molten slag that melts solid reduced iron at a lower temperature and by-produces it during the heating reduction process. It is important how to separate them efficiently (hereinafter referred to as by-product slag). For that purpose, how quickly the carburization of the solid reduced iron proceeds to melt the solid reduced iron (in this specification, the phenomenon that the solid reduced iron undergoes carburization and melts is referred to as "reduced iron melted down" Is important).
[0021] そこで、本発明者らは、上記非特許文献 1の開示内容を直接製鉄に応用すれば、 溶融スラグ中で炭材により還元され且つ浸炭を受けて生成する溶融還元鉄は、前掲 の現象で固形金属鉄方向へ移行して合体する際に、炭素を該固形金属鉄方向へ搬 送するためのキャリアとして活用できるのではないかと考え、その線に沿って更に研 究を重ねた。  [0021] Therefore, if the present inventors apply the disclosed contents of Non-Patent Document 1 directly to iron making, the molten reduced iron produced by carburizing and carburizing in the molten slag is obtained as described above. We thought that it could be used as a carrier for transporting carbon in the direction of solid metal iron when moving in the direction of solid metal iron due to the phenomenon, and further research was conducted along that line.
[0022] 既に説明した様に、本発明者らの一人が先に開発した方法 (特許文献 4)は、副生 スラグの液相率が金属鉄の溶け落ちと密接に関係して 、ると 、う、当時にお!、ては新 たな知見を基に、副生スラグを全量溶融させるのではなぐ副生スラグの固液共存相 中の液相率という新規概念を導入して制御を行なうものである。この方法では、上記 液相率を適正に制御することにより、加熱還元により生成した固体金属鉄をより低い 操業温度で浸炭を進めてその融点を速やかに降下させることができる。そして、この 方法は、金属鉄をより低い温度で溶け落ち可能にすることにより、副生スラグとの分 離を低温で効率よく進行させ、更には、製品金属鉄の品質に大きな影響を及ぼす金 属鉄の炭素濃度の制御も可能にした。 [0022] As already described, the method previously developed by one of the present inventors (Patent Document 4) is that the liquid phase ratio of by-product slag is closely related to the melting of metallic iron. At that time, based on new knowledge, control was introduced by introducing a new concept of the liquid phase ratio in the solid-liquid coexisting phase of by-product slag rather than melting all the by-product slag. To do. In this method, by appropriately controlling the liquid phase ratio, the solid metallic iron produced by the heat reduction can be carburized at a lower operating temperature, and the melting point thereof can be quickly lowered. And this The method enables metallic iron to melt at a lower temperature, thereby allowing efficient separation of by-product slag at low temperatures and, in addition, metal iron, which has a significant effect on the quality of product metallic iron. The carbon concentration can also be controlled.
[0023] この先願発明における重要な技術的特徴は、前記原料混合物を加熱、還元、溶融 して金属鉄を製造する際に、炭素質還元剤が存在する系内における副生スラグの状 況と生成金属鉄の浸炭、溶融状況から確認された事実、即ち、炭素質還元剤が溶融 状態のスラグと共存して 、る時には、流動性を有する溶融スラグ力 生成した溶融金 属鉄がキャリア的作用を発揮し、炭素を随伴して固体金属鉄の周りに速やかに接触 することにより、固体金属鉄の浸炭が効率よく進行する現象を活用する点にある。そ して、こうした炭素質還元剤と溶融スラグの共存による浸炭促進作用は、スラグの全 量が溶融状態の時に限って有効に発揮される訳ではなぐ固液共存状態のスラグの 液相率を適正に制御してやれば、固形還元鉄の浸炭が促進され溶け落ち温度を低 下できるのである。  [0023] An important technical feature of the prior invention is that when the raw material mixture is heated, reduced, and melted to produce metallic iron, the state of by-product slag in the system in which a carbonaceous reducing agent is present. The fact confirmed from the carburization and melting conditions of the produced metallic iron, that is, when the carbonaceous reducing agent coexists with the molten slag, the molten molten slag force has fluidity. It is a point to utilize the phenomenon that carburization of solid metal iron proceeds efficiently by bringing carbon into contact with solid metal iron promptly. In addition, the carburization promoting action by the coexistence of carbonaceous reducing agent and molten slag is not effective only when the total amount of slag is in the molten state. If properly controlled, the carburization of solid reduced iron is promoted and the melting temperature can be lowered.
[0024] なお、液相率とは、平衡状態図上ではある温度下での固相線と液相線の間に位置 し、固体および液体 (即ち、固相と液相の二相)中に占める液体の質量比率をいい、 スラグの液相率は原料中に含まれる主として脈石成分に由来する SiO、 Al O、 Ca  [0024] Note that the liquid phase ratio is located between a solid phase line and a liquid phase line at a certain temperature on an equilibrium diagram, and is in a solid and a liquid (that is, two phases of a solid phase and a liquid phase). The liquid phase ratio of slag is mainly derived from the gangue components contained in the raw material. SiO, Al O, Ca
2 2 3 2 2 3
0、 MgOおよび鉄源由来の FeOを主成分とする多成分系の熱力学的平衡関係によ り決まってくる。 It is determined by the thermodynamic equilibrium relationship of multicomponent system consisting mainly of 0, MgO and FeO derived from iron source.
[0025] この液相率は、原料混合物を加熱、還元、溶融させる時の挙動を高温レーザー顕 微鏡で観察し、画像解析によって定量的に求めることができる。しかし、該液相率を 精度よく制御することは意外に難しぐ操業性の観点力 更なる改善が求められてい る。  [0025] The liquid phase ratio can be quantitatively determined by image analysis by observing the behavior of the raw material mixture when heated, reduced, and melted with a high-temperature laser microscope. However, there is a demand for further improvement in view of operability, which is unexpectedly difficult to control the liquid phase ratio with high accuracy.
[0026] 研究を重ねた結果、本発明者らは、スラグの液相率制御と!/、つた比較的難 、制 御をせずとも、原料混合物の還元 ·溶融過程で生成し、且つ、脈石成分、未還元酸 化鉄および炭素質還元剤中の灰分力 求められる初期溶融スラグの生成温度をうま く制御してやれば、金属鉄を効率よく製造できるばかりか、金属鉄の炭素濃度までも 制御できることを突き止め、本発明を完成させた。  [0026] As a result of repeated research, the inventors of the present invention have found that the liquid phase ratio of slag can be controlled during the reduction / melting process of the raw material mixture without any control and relatively difficult control, and Ash content in gangue components, unreduced iron oxide and carbonaceous reductant If the temperature of the initial molten slag required is controlled well, not only can iron metal be produced efficiently, but also the carbon concentration of metal iron. As a result, the present invention has been completed.
[0027] 原料混合物の加熱還元工程で生成する溶融スラグ中に含まれる原料酸化鉄由来 の未還元溶融酸化鉄 (FeO)は、還元剤である炭素(或 、は一酸ィ匕炭素)と接触して 溶融還元反応を起こし、生成した溶融鉄は更に浸炭を受けて炭素濃度を高め、それ に伴って溶融鉄の融点は更に降下する。この反応により、炭材と接するスラグ中の Fe O濃度は減少し、還元鉄と接しているスラグ中の FeO濃度と濃度差を生じ、炭材から 離れる方向へ移動しょうする。そして、前掲の非特許文献 1と同様に、直接製鉄法に おいても、浸炭を受けた溶融鉄を溶融スラグ相中で速やかに固形還元鉄方向へ移 動させて該固形還元鉄と合体させればよい。そうすれば、浸炭により該溶融鉄内へ 浸入した高濃度の炭素分は、固形還元鉄との合体後すみやかに該固形還元鉄内へ 拡散し、固形還元鉄全体の炭素濃度を高めることになる。即ち、直接製鉄法におい ても、早期に溶融スラグを生成させれば、溶融スラグ中で溶融酸化鉄の還元により生 成した金属鉄は、溶融スラグ内で金属鉄中の炭素分を固形還元鉄方向へ移動させ るためのキャリアとなって、固形還元鉄の浸炭を加速することになる。 [0027] Derived from raw iron oxide contained in molten slag produced in heat reduction process of raw material mixture Unreduced molten iron oxide (FeO) contacts with the reducing agent carbon (or carbon monoxide) to cause a smelting reduction reaction, and the resulting molten iron is further carburized to increase the carbon concentration. Along with this, the melting point of molten iron further decreases. As a result of this reaction, the Fe 2 O concentration in the slag in contact with the charcoal decreases, creating a difference in the concentration of FeO in the slag in contact with the reduced iron, and moves away from the charcoal. Similarly to Non-Patent Document 1 described above, even in the direct iron manufacturing method, the carburized molten iron is quickly moved toward the solid reduced iron in the molten slag phase to be combined with the solid reduced iron. Just do it. Then, the high concentration of carbon that has entered the molten iron by carburizing will diffuse into the solid reduced iron as soon as it is combined with the solid reduced iron, increasing the carbon concentration of the entire solid reduced iron. . That is, even in the direct iron manufacturing method, if molten slag is generated at an early stage, the metallic iron produced by the reduction of the molten iron oxide in the molten slag is converted into solid reduced iron by the carbon content of the metallic iron in the molten slag. It becomes a carrier for moving in the direction and accelerates the carburization of solid reduced iron.
[0028] ここで、溶融鉄の炭素濃度は、 Fe— C系の熱力学的状態図からも明らかな如ぐ平 衡論的には共晶点である 1147°Cの炭素濃度、即ち 4. 3質量%まで高めることが可 能であり、同状態図からも明らかな様に、共晶点までは系の温度が低くなるほど炭素 濃度は高まる。 [0028] Here, the carbon concentration of the molten iron is 1147 ° C, which is an eutectic point in terms of equilibrium, as is apparent from the thermodynamic phase diagram of the Fe-C system, that is, 4. It can be increased to 3% by mass, and as is clear from the phase diagram, the carbon concentration increases as the temperature of the system decreases to the eutectic point.
[0029] そのため、原料混合物を加熱'還元して溶融状態の金属鉄を製造する際に、生成 する溶融鉄の炭素濃度を高めるには、鉄源由来の未還元酸化鉄を含むスラグ形成 成分の融液をできるだけ低 、温度で生成させ、酸化鉄の還元 (還元鉄の生成)を進 めると共に固形金属鉄方向への移動を促進させ、更には浸炭による溶融鉄の生成を 加速させることが望ましい。即ち、加熱還元工程で原料混合物内に最初に生成する 酸化鉄を含めたスラグ形成成分に由来する融液 (即ち、初期溶融スラグ)の生成温度 を低くすることが望ましい。言い換えれば、原料混合物を加熱すると、還元がこの原 料混合物の外側から進行するにつれて、その内側にスラグを生成するので、このスラ グ生成温度を低くすることが望ましい。この還元過程では、外側が部分的に還元され ても上記初期溶融スラグを生じることがある。  [0029] For this reason, in order to increase the carbon concentration of the molten iron produced when heating and reducing the raw material mixture to produce molten metallic iron, a slag forming component containing unreduced iron oxide derived from an iron source is used. It is possible to generate the melt at as low a temperature as possible, promote the reduction of iron oxide (generation of reduced iron), promote the movement toward solid metal iron, and further accelerate the generation of molten iron by carburization. desirable. That is, it is desirable to lower the temperature at which the melt derived from the slag forming components including iron oxide that is initially formed in the raw material mixture in the heat reduction process (that is, the initial molten slag). In other words, when the raw material mixture is heated, as the reduction proceeds from the outside of the raw material mixture, slag is generated inside the raw material mixture. In this reduction process, the initial molten slag may be produced even if the outside is partially reduced.
[0030] そして、原料混合物の加熱還元工程で生成する初期溶融スラグの生成温度が低く なるほど、固形還元鉄に対する浸炭速度が加速され、炭素濃度の高い溶融鉄を得る ことができる。従って、この現象を活かせば、初期溶融スラグの生成温度を制御する ことで、得られる金属鉄の炭素濃度を制御できる。しかも、上記の様に固形還元鉄の 浸炭を促進することで、当該固形還元鉄の溶融温度 (溶け落ち温度)も低下するので 、結局のところ金属鉄製造のための操業温度を下げることが可能となる。 [0030] Then, the lower the generation temperature of the initial molten slag generated in the heat reduction process of the raw material mixture, the faster the carburization rate for the solid reduced iron, and obtain molten iron with a high carbon concentration. be able to. Therefore, if this phenomenon is utilized, the carbon concentration of the obtained metallic iron can be controlled by controlling the generation temperature of the initial molten slag. In addition, by promoting the carburization of solid reduced iron as described above, the melting temperature (melting-off temperature) of the solid reduced iron also decreases, so it is possible to lower the operating temperature for producing metallic iron after all. It becomes.
[0031] ところで、前記原料混合物の還元末期における固形還元鉄の浸炭溶融 (溶け落ち) の弓 Iき金となる初期溶融スラグの生成温度を決定するには、溶融スラグ中の成分 (即 ち、スラグ成分)である、鉄源由来の未還元酸化鉄と、脈石成分と、炭材中の灰分と を設定することが基本となる。こうした多成分系の初期溶融スラグの生成温度は、 Si O、 Al O、 CaO、 MgO、 FeOなどを含む多成分系の熱力学的平衡状態図によつ [0031] By the way, in order to determine the formation temperature of the initial molten slag that becomes the bow I of carburizing and melting (melting off) of the solid reduced iron in the final reduction stage of the raw material mixture, the components in the molten slag (that is, It is fundamental to set the unreduced iron oxide derived from the iron source, the gangue component, and the ash content in the carbonaceous material, which is the slag component). The formation temperature of such multicomponent initial molten slag is determined by the thermodynamic equilibrium diagram of multicomponent systems including Si 2 O 3, Al 2 O 3, CaO, MgO, and FeO.
2 2 3 2 2 3
て求めることができる。最近ではコンピュータプログラム化された多成分系スラグの状 態図から求めることができる。  Can be obtained. Recently, it can be obtained from a computer-programmed multi-component slag phase diagram.
[0032] 例えば図 2は、 SiO— Al O— CaO系と SiO— Al O—FeO系とを合成した平衡  [0032] For example, Fig. 2 shows the equilibrium of SiO-AlO-CaO and SiO-AlO-FeO systems.
2 2 3 2 2 3  2 2 3 2 2 3
状態図である。この図において、溶融スラグの組成力 SiO— Al O—CaO系では  It is a state diagram. In this figure, the compositional power of molten slag is SiO-AlO-CaO system.
2 2 3  2 2 3
、破線丸印で示す A点の如く Al Oが約 20%で CaOZSiO比が約 5Z5の組成で  As indicated by the dotted line A, the composition of Al O is about 20% and the CaOZSiO ratio is about 5Z5.
2 3 2  2 3 2
あるとき、または破線丸印で示す B点の如く Al Oが約 15%で CaOZSiO比が約 3  In some cases, or as indicated by the dotted circle B, Al O is about 15% and the CaOZSiO ratio is about 3
2 3 2  2 3 2
0Z70の組成であるとき、一方、 SiO— Al O—FeO系では、太線 Cで示す如く Fe  On the other hand, when the composition is 0Z70, in the SiO-AlO-FeO system, as shown by the thick line C, Fe
2 2 3  2 2 3
O含有量が約 35〜50% (より好ましくは約 40%)で、且つ SiO /Al O比が約 45Z  O content is about 35-50% (more preferably about 40%) and SiO / Al 2 O ratio is about 45Z
2 2 3  2 2 3
55または 40Z60の組成であるとき、該 4成分系スラグの溶融温度は最も低 、値を示 す。  When the composition is 55 or 40Z60, the melting temperature of the four-component slag is the lowest and shows the value.
[0033] 従って、これらの状態図を参照し、加熱還元工程で生成するスラグ組成が上記の様 な最低温度となる様にスラグ形成成分の各成分組成を変更可能な範囲内で調整す れば、初期溶融スラグの生成温度を最も低い温度にすることができる。  [0033] Therefore, referring to these phase diagrams, if each component composition of the slag forming component is adjusted within a changeable range so that the slag composition generated in the heat reduction process becomes the minimum temperature as described above. In addition, the initial melting slag can be generated at the lowest temperature.
[0034] なお、上記スラグ形成成分の成分調整を行う具体的な手段としては、原料成分中 のスラグ形成成分 (鉄源中の脈石成分、炭材中の灰分、無機質バインダー成分など を含む)に応じて、不足分の CaO、 SiOまたは Al Oなどを補充的に添加する方法  [0034] Specific means for adjusting the components of the slag-forming component include slag-forming components in the raw material components (including gangue components in the iron source, ash in the carbonaceous material, inorganic binder components, etc.) Depending on the method, supplementary addition of deficient CaO, SiO or Al 2 O, etc.
2 2 3  2 2 3
を採用すればよい。この場合、その添加時期は原料混合物の調製段階に行うのが最 も一般的であるが、加熱還元の初期段階で追加供給することで成分調整することも 可能である。またスラグ中の酸ィ匕鉄 (FeO)分については、原料混合物中に含まれる 酸化鉄源のうち、金属化率によって制御することのできる未還元状態で残存する酸 化鉄の量で調整すればょ 、。 Should be adopted. In this case, it is most common to add it during the preparation stage of the raw material mixture, but it is also possible to adjust the components by additional supply at the initial stage of heating reduction. In addition, acid pig iron (FeO) content in slag is included in the raw material mixture. If the iron oxide source is adjusted by the amount of iron oxide remaining in an unreduced state, which can be controlled by the metallization rate.
[0035] なお、本発明の如き直接製鉄法を実施する際に、原料中の酸化鉄のうち金属鉄と して回収できる比率は金属化率として表され、該金属化率が高!、ほど生産性はよ!/、 と判断されている。そのため、従来は該金属化率を如何にして高める力、という点に 精力が払われてきた。しかし、酸化鉄源の全てを還元して該金属化率を 100%にま で高めることは極めて困難であり、通常の条件で得られる金属化率はせいぜい 90〜 95%程度であって、残りの数%は未還元酸化鉄として残存する。  [0035] It should be noted that when the direct iron manufacturing method of the present invention is performed, the ratio of iron oxide in the raw material that can be recovered as metallic iron is expressed as a metallization rate, and the metallization rate is high! Productivity is good! /. Therefore, conventionally, energetic efforts have been paid to how to increase the metallization rate. However, it is extremely difficult to reduce all of the iron oxide source to increase the metallization rate to 100%, and the metallization rate obtained under normal conditions is at most about 90 to 95%, and the rest A few percent of this remains as unreduced iron oxide.
[0036] これに対して本発明では、上記の様に、加熱還元工程で残存する未還元酸化鉄を 積極的に活用している。即ち、未還元酸化鉄をスラグ中に混入させることで初期溶融 スラグの生成温度を低下させると共に、該スラグ中に混入した溶融状態の未還元酸 化鉄を還元し且つ浸炭させ、更にはこれによって生じた浸炭鉄を固形還元鉄方向へ 炭素を運ぶキャリアとして作用させている。その結果、トータルとしての金属鉄の生産 効率を高めることができるのである。  On the other hand, in the present invention, as described above, unreduced iron oxide remaining in the heat reduction process is actively used. That is, by mixing unreduced iron oxide into the slag, the temperature of the initial molten slag is lowered, and the molten unreduced iron oxide mixed in the slag is reduced and carburized. The resulting carburized iron acts as a carrier for carbon in the direction of solid reduced iron. As a result, the total production efficiency of metallic iron can be increased.
[0037] 従って本発明では、原料混合物中のスラグ形成成分ゃスラグ成分調整のための添 加剤の種類や量に応じて、最適の FeO含有量となる未還元酸化鉄の残存量が得ら れる様に、酸化鉄源の金属化率 (酸化鉄含有物質の還元率)を制御すればよい。具 体的には、目標となる金属化率に到達するまで、加熱温度パターンまたは還元ポテ ンシャルを調整するとともに原料混合物を加熱すればよ!ヽ。加熱温度パターンの調 整として、例えば、加熱還元時の温度、時間または昇温速度の制御などが挙げられ る。また、還元ポテンシャルの調整として、例えば、炭素質還元剤の配合量、床敷きと して用いる還元剤の量または炉内雰囲気ガスの制御などが挙げられる。  [0037] Therefore, in the present invention, the residual amount of unreduced iron oxide that provides the optimum FeO content is obtained according to the type and amount of the additive for adjusting the slag forming component and the slag component in the raw material mixture. As described above, the metalization rate of the iron oxide source (the reduction rate of the iron oxide-containing substance) may be controlled. Specifically, adjust the heating temperature pattern or reduction potential and heat the raw material mixture until the target metallization rate is reached! Examples of the adjustment of the heating temperature pattern include control of the temperature, time, or temperature rising rate during heating reduction. Examples of adjustment of the reduction potential include control of the amount of carbonaceous reducing agent, the amount of reducing agent used as a flooring, or the atmosphere gas in the furnace.
[0038] なお図 3は、酸化鉄源 (鉄鉱石)として南米産の MBR社のものを、炭材として北米 産のオークグローブ炭を使用し、 1250〜1350°Cで加熱還元を行った時の、金属化 率と酸化鉄源中の残存 FeO量との関係を調べた結果を示したグラフ (但し、スラグ形 成成分の含有比率は質量比で CaOZSiO ZA1 O =4/68/28,炭材の配合量  [0038] Figure 3 shows a case where heat reduction at 1250 to 1350 ° C was performed using MBR from South America as the iron oxide source (iron ore) and Oak Grove coal from North America as the charcoal. The graph shows the results of investigating the relationship between the metallization rate and the amount of residual FeO in the iron oxide source (however, the content ratio of slag-forming components is CaOZSiO ZA1 O = 4/68/28, carbon Mixing amount of wood
2 2 3  2 2 3
は酸ィ匕鉄の全てを炭材のみで還元するのに必要な理論炭素量の 0. 95倍に設定) であり、金属化率と残存 FeOの間には一定の関係が存在する。こうした関係は、用い る酸化鉄源や炭材の種類や配合比率、加熱還元条件などにより若干変わってくるが 、予備実験でそれらの関係を予め求めておけば、原料混合物の金属化率を制御す ることで、残存 FeO量を調整することができ、延いては生成スラグ中の FeO含有量を 適正に得ることができる。 Is set to 0.95 times the theoretical amount of carbon required to reduce all of the iron and iron iron with only carbonaceous material), and there is a certain relationship between the metallization rate and the residual FeO. These relationships are used Depending on the iron oxide source and the type of carbonaceous material, the mixing ratio, the heat reduction conditions, etc., if the relationship between them is determined in advance in a preliminary experiment, the metallization rate of the raw material mixture can be controlled by The amount of residual FeO can be adjusted, and as a result, the content of FeO in the generated slag can be obtained appropriately.
[0039] また図 4は、加熱還元炉内の目標温度を 1400°Cに設定し、これに上記と同様の原 料混合物を供給して加熱還元を行った時の経過時間に対する、温度および金属化 率 (即ち、還元率)の関係を示したグラフである。このグラフからも分力る様に、加熱還 元炉に固有の特性などによっても若干異なる力 金属化率は加熱時間の経過と共に 上昇し、採用した加熱温度では加熱開始後 4〜5分で金属化率は急激に立ち上がり 、約 9分を経過すると金属化率の上昇度合いは急激に低下してくる。しかし何れにし ても、加熱開始力も 8分前後で金属化率はほぼ 90質量%に達し、この時点で、未還 元状態で残存する酸ィ匕鉄はほぼ 10質量%となる。 [0039] FIG. 4 shows that the target temperature in the heating and reduction furnace is set to 1400 ° C, the same raw material mixture as above is supplied to this, and the temperature and metal with respect to the elapsed time when the heating reduction is performed. 5 is a graph showing the relationship of conversion rate (that is, reduction rate). As can be seen from this graph, the metallization rate slightly varies depending on the specific characteristics of the heating reduction furnace. The metallization rate increases with the elapse of the heating time. The conversion rate rises rapidly, and after about 9 minutes, the rate of increase in the metalization rate decreases rapidly. However, in any case, the metallization rate reaches approximately 90% by mass when the heating start force is around 8 minutes, and at this point, the amount of acid iron iron remaining in the unreduced state becomes approximately 10% by mass.
[0040] よって、この操業工程で用いる原料中のスラグ形成成分の成分組成と含有量に応 じて、上記残存酸化鉄量が前述した目標含有率 (即ち、目標炭素濃度に対応するス ラグ組成となる含有率)になる様に、酸化鉄源の金属化率、即ち残存酸化鉄量が得 られる様に還元の進行状態を制御すれば、初期溶融スラグ生成温度を最も低!、温 度に制御することが可能となる。  [0040] Therefore, depending on the component composition and content of the slag forming component in the raw material used in this operation process, the amount of residual iron oxide is the target content described above (ie, the slag composition corresponding to the target carbon concentration). By controlling the progress of the reduction so that the amount of iron oxide source metallized, that is, the amount of residual iron oxide is obtained, the initial molten slag formation temperature is the lowest! It becomes possible to control.
[0041] 図 5は、スラグ中の CaOZSiO質量比を 0. 38で一定に保ち、スラグ中の酸化鉄(  [0041] Figure 5 shows that the mass ratio of CaOZSiO in the slag is kept constant at 0.38, and the iron oxide in the slag (
2  2
FeO)濃度と初期溶融スラグ生成温度 (および COガス発生開始温度)の関係を示し たグラフであり、スラグ中の FeO含有量が高まるにつれて初期溶融スラグ生成温度( スラグの溶け落ち温度)は低下し、併せて、溶融酸ィ匕鉄 (FeO)の還元に伴う COガス 発生開始温度も低下して 、る。  This is a graph showing the relationship between the concentration of FeO) and the initial molten slag formation temperature (and CO gas generation start temperature). As the FeO content in the slag increases, the initial molten slag generation temperature (slag burn-off temperature) decreases. In addition, the CO gas generation start temperature accompanying the reduction of molten acid pig iron (FeO) also decreases.
[0042] 図 6は、スラグ中の CaOZSiO質量比を 0. 92に変えて同様の実験を行った結果 [0042] Figure 6 shows the result of a similar experiment with the CaOZSiO mass ratio in the slag changed to 0.92.
2  2
を示したグラフであり、スラグ組成が変わっても FeO含有量の増大によって初期溶融 スラグ生成温度および COガス発生開始温度が低下する傾向は、前記図 5の場合と 同じである。  The tendency for the initial molten slag generation temperature and the CO gas generation start temperature to decrease due to the increase in FeO content even when the slag composition changes is the same as in FIG.
[0043] 図 7は、初期溶融スラグ生成温度 (スラグ溶け落ち温度)が、生成する溶融金属鉄( 溶け落ち金属鉄)中の炭素濃度 (C濃度)に与える影響を調べた結果を示したグラフ であり、このグラフ力 は、初期溶融スラグ生成温度 (スラグ溶け落ち温度)が下がると 、それにつれて、還元生成物である金属鉄中の炭素含有量は増大する傾向を確認 できる。 [0043] Fig. 7 is a graph showing the results of investigating the effect of the initial molten slag generation temperature (slag burn-off temperature) on the carbon concentration (C concentration) in the molten metal iron produced (melt-off metal iron) This graph force confirms that the carbon content in the metallic iron as the reduction product increases as the initial molten slag formation temperature (slag melt-off temperature) decreases.
[0044] これらの結果から、原料混合物の還元 ·溶融工程で生成するスラグ形成成分 (CaO 、 SiO )と未還元酸化鉄 (FeO)の混合物からなる初期溶融スラグの生成温度と、生 [0044] From these results, the production temperature of the initial molten slag composed of a mixture of slag-forming components (CaO, SiO) and unreduced iron oxide (FeO) produced in the reduction / melting process of the raw material mixture,
2 2
成する溶融金属鉄中の炭素含有量の間には一定の相関関係があり、初期溶融スラ グの生成温度を制御することで、得られる金属鉄の炭素含有量を制御できることが分 かる。しかも、初期溶融スラグの生成温度を下げると、溶け落ち金属鉄の炭素含有量 が増大するという傾向は、金属鉄製造のための操業温度を積極的に下げることで炭 素含有量の高い金属鉄がより効率よく得られることを意味しており、こうした傾向は、 熱消費量低減の観点からも極めて有効となる。  It can be seen that there is a certain correlation between the carbon content in the molten metal iron formed, and that the carbon content of the obtained metal iron can be controlled by controlling the temperature at which the initial molten slag is generated. Moreover, the tendency of increasing the carbon content of melted metallic iron as the initial molten slag generation temperature is lowered is that metal iron with a high carbon content is reduced by actively lowering the operating temperature for producing metallic iron. This trend is extremely effective from the viewpoint of reducing heat consumption.
[0045] そして、初期溶融スラグの生成温度は、先に説明した如く最初に原料混合物に配 合する原料 (鉄源中の脈石成分ゃ炭材中に含まれる灰分)中のスラグ形成成分に、 還元途中で残存する未還元酸化鉄を合わせた多成分系の平衡状態図(例えば前記 図 2など)を基に、それら混合組成のスラグの溶融温度がより低くなる様に前記鉄源 中の脈石成分以外のスラグ形成成分を原料混合物を調製する段階、原料混合物を 投入する段階または原料混合物を加熱する段階で適量に追加(以下、第 3のスラグ 形成成分の追加と 、うことがある)すればよ!、。またスラグ中の酸化鉄含有量につ!ヽ ては、先にも説明した様に、金属鉄製造過程で、未還元状態で残存する酸化鉄によ りスラグ中の必要酸化鉄含有量を確保できるよう、原料混合物中の鉄源の金属化率 と加熱温度パターンを適正に制御すればょ 、。  [0045] Then, as described above, the initial molten slag generation temperature depends on the slag forming component in the raw material (the gangue component in the iron source and the ash contained in the carbonaceous material) that is first combined with the raw material mixture. Based on the equilibrium diagram of the multi-component system that combines the unreduced iron oxide remaining during the reduction (for example, Fig. 2), the melting point of the slag of these mixed compositions is reduced in the iron source. Add slag-forming components other than gangue components to the appropriate amount at the stage of preparing the raw material mixture, adding the raw material mixture, or heating the raw material mixture (hereinafter sometimes referred to as the addition of a third slag-forming component) ) Do it! In addition, as described above, the iron oxide content in the slag is secured by the iron oxide remaining in the unreduced state during the metallic iron production process. If possible, control the metalization rate of the iron source in the raw material mixture and the heating temperature pattern properly.
[0046] また、製品金属鉄の目標炭素濃度が予め決められて!/、る場合には、該目標炭素濃 度に応じて、前掲の図 7に示した関係から最適の初期溶融スラグ生成温度を求め、 図 2に示した様な多成分形状態図を基に、当該最適の初期溶融スラグ生成温度とな る様に、スラグ形成成分および未還元酸化鉄成分の組成を調整すればよい。この場 合の初期溶融スラグ組成の調整も、第 3のスラグ形成成分の追加や、原料中の鉄源 の金属化率、並びに加熱温度パターンによって行えばょ 、。  [0046] If the target carbon concentration of the product metallic iron is determined in advance! /, Depending on the target carbon concentration, the optimum initial molten slag generation temperature from the relationship shown in FIG. Based on the multi-component phase diagram as shown in FIG. 2, the composition of the slag forming component and the unreduced iron oxide component may be adjusted so that the optimum initial molten slag generation temperature is obtained. In this case, the initial molten slag composition should be adjusted by adding a third slag-forming component, the metalization rate of the iron source in the raw material, and the heating temperature pattern.
[0047] なお、原料混合物を調製する段階における第 3のスラグ形成成分の追加について 詳述すると、本発明を実施する際における初期溶融スラグ生成温度の制御は、酸ィ匕 鉄源として使用する鉄鉱石などに含まれる脈石成分の組成に応じて、適正なスラグ 形成成分組成となる様に複数の鉄鉱石を併用して調整することも可能であるが、原 料鉱石中に含まれる脈石成分組成に応じて、その初期溶融スラグ生成温度を変化さ せることのできる副原料を添加することが好ましい。該副原料として、生石灰 (CaO)、 石灰石(CaCO )、珪石(SiO )、蛇紋岩(MgO + SiO;)、 Mn鉱石(MnO+FeO)、 [0047] Regarding the addition of the third slag forming component in the stage of preparing the raw material mixture More specifically, the control of the initial molten slag generation temperature in carrying out the present invention is performed according to the composition of the appropriate slag forming component according to the composition of the gangue component contained in the iron ore used as the acid iron source. It is possible to adjust by using several iron ores in combination, but it is possible to change the initial molten slag generation temperature according to the gangue component composition contained in the raw ore. Is preferably added. The auxiliary materials include quick lime (CaO), limestone (CaCO 3), silica (SiO 2), serpentine (MgO + SiO;), Mn ore (MnO + FeO),
3 2 2  3 2 2
ボーキサイト (Al O )などが挙げられ、これらは単独で添加してもよいし 2種以上を複  Bauxite (Al 2 O 3), etc., may be added alone or in combination of two or more.
2 3  twenty three
合添加してもよい。具体的には、酸ィ匕鉄源と炭素質還元剤および必要によりバインダ 一成分を配合して原料混合物を調製する際に、それら原料中に含まれる脈石成分 組成から多成分系状態図を基に溶融温度を求め、該原料混合物に副原料として前 述した様な酸ィ匕物を適量配合することによって、目標とする初期溶融スラグ生成温度 が得られる様に調整すればょ 、。  You may add together. Specifically, when a raw material mixture is prepared by blending an acid iron source, a carbonaceous reducing agent, and if necessary, one binder component, a multi-component phase diagram is obtained from the composition of the gangue component contained in the raw materials. The melting temperature is determined on the basis, and an appropriate amount of the above-mentioned acid soot is added to the raw material mixture as an auxiliary raw material so that the target initial molten slag formation temperature can be obtained.
[0048] そして、上述した様な溶融酸化鉄の還元および浸炭と、更には該溶融酸化鉄の固 形還元鉄方向への高速移動およびこれに伴う炭素キャリア作用による浸炭の促進と 、溶け落ち温度の降下とを実用規模で有効に発揮させるには、固体金属鉄が浸炭に よって十分な融点降下を起こすことが必要である。そのためには、浸炭後の金属鉄の 炭素濃度を 0. 5〜4. 3質量%の範囲内に制御し、且つ初期溶融スラグ生成温度を 1 147〜1500°Cの範囲内に制御するのが好ましい。また、該浸炭後の金属鉄の炭素 濃度については、 1. 5〜3. 5質量%の範囲内に制御することがより好ましぐ該初期 溶融スラグ生成温度については、 1200〜1450°Cの範囲内に制御することがより好 ましい。なお、浸炭後の金属鉄の炭素濃度は、原料調製段階で配合する炭素質還 元剤量によって調整すればよぐ具体的には、酸化鉄源の還元に要する必要理論量 に、上記浸炭必要量をプラスした量の炭素質還元剤を配合すればよい。但し、通常 の操業条件下では、加熱、還元時のバーナー加熱などによって生成する酸ィヒ性ガス によって一部の炭素質還元剤が消費されるので、実際の炭材配合量の決定に当つ ては、それらの消費量も加味して配合量を調整すべきである。 [0048] Then, the molten iron oxide is reduced and carburized as described above, and further, the high-speed movement of the molten iron in the direction of the solid reduced iron and the accompanying carburization by the carbon carrier action, and the burn-off temperature. Therefore, it is necessary for solid metallic iron to cause a sufficient melting point drop due to carburization. For this purpose, the carbon concentration of the metallic iron after carburizing is controlled within the range of 0.5 to 4.3 mass%, and the initial molten slag generation temperature is controlled within the range of 1147 to 1500 ° C. preferable. Further, the carbon concentration of the metallic iron after the carburization is more preferably controlled within the range of 1.5 to 3.5% by mass, and the initial molten slag generation temperature is preferably 1200 to 1450 ° C. It is more preferable to control within the range. The carbon concentration of metallic iron after carburizing should be adjusted according to the amount of carbonaceous reductant added at the raw material preparation stage. What is necessary is just to mix | blend the quantity of carbonaceous reducing agent which added the quantity. However, under normal operating conditions, part of the carbonaceous reducing agent is consumed by the acid gas produced by heating, burner heating during reduction, etc. Therefore, the blending amount should be adjusted in consideration of their consumption.
[0049] また、原料配合時点で上記の様に炭素質還元剤の配合量を調整すれば、浸炭溶 融時の金属鉄への浸炭量を調整することができ、それにより最終的に得られる金属 鉄の炭素含有量も必要に応じて任意に調整することが可能となる。 [0049] Further, if the amount of carbonaceous reducing agent is adjusted as described above at the time of mixing the raw materials, the amount of carburizing into metallic iron at the time of carburizing and melting can be adjusted, and finally obtained. metal The carbon content of iron can be arbitrarily adjusted as necessary.
[0050] なお本発明で使用する原料混合物は、加熱と炭素質還元剤由来のガスによる酸化 鉄の還元が効率よく進行する様、酸化鉄源と炭素質還元剤を共に粉末状の混合状 態で使用することが望ましい。この原料混合物は、炉床上に軽く押し固めた状態で供 給することも可能であるが、前記特許文献 1に開示されている如く該混合物を略球状 、プリケット状またはペレット状の如き任意の形状に成形した成形物として供給するこ とが、加熱による固体還元時に該成形体の外周部に固形還元鉄のシェルが形成さ れ、その内部を高い還元ポテンシャルに保つことができ、金属化率を一段と効率よく 高めることができる点で好ま 、。  [0050] It should be noted that the raw material mixture used in the present invention is a powdered mixed state of both the iron oxide source and the carbonaceous reducing agent so that heating and reduction of the iron oxide with the gas derived from the carbonaceous reducing agent proceed efficiently. It is desirable to use in. This raw material mixture can be supplied in a state of being lightly pressed on the hearth. However, as disclosed in Patent Document 1, the mixture is formed into an arbitrary shape such as a substantially spherical shape, a pricket shape, or a pellet shape. When the solid is reduced by heating, a solid reduced iron shell is formed on the outer periphery of the molded body, and the inside can be maintained at a high reduction potential, and the metallization rate is increased. I like it because it can be improved more efficiently.
[0051] なお、本発明を実施する際の具体的な装置や基本的な操業条件などは、前記特 許文献 1などに開示した様な装置や操業条件などと基本的に同じである。具体的に は、円形状もしくはドーナツ状の回転炉床を備え、回転方向に原料混合物供給ゾー ン、余熱ゾーン、加熱還元ゾーン、金属鉄溶融ゾーン、冷却ゾーン (金属鉄固化ゾー ン)、排出ゾーンを備えた加熱還元炉を使用し、原料の供給から加熱'還元、生成し た金属鉄の冷却固化と取り出しの一連の操作を連続的に実施できる様にした装置を 使用すればよい。そして、この様な装置を用いて連続操業する際に、予備実験で目 標炭素濃度に応じた原料中のスラグ形成材の組成や炭素含有量を設定すると共に、 加熱還元時に最適の初期溶融スラグ生成温度が得られる様に金属化率を調整して 、初期溶融スラグ中の未還元酸化鉄含有量を確保すればょ ヽ。  [0051] It should be noted that the specific apparatus and basic operating conditions for implementing the present invention are basically the same as the apparatus and operating conditions disclosed in Patent Document 1 and the like. Specifically, it is equipped with a circular or donut-shaped rotary hearth, and the raw material mixture supply zone, preheating zone, heating reduction zone, metallic iron melting zone, cooling zone (metallic iron solidification zone), discharge zone in the direction of rotation. It is only necessary to use a heating and reduction furnace equipped with an apparatus capable of continuously carrying out a series of operations from supplying raw materials to heating and reducing, cooling and solidifying and removing the produced metallic iron. Then, during continuous operation using such an apparatus, the composition and carbon content of the slag forming material in the raw material corresponding to the target carbon concentration are set in preliminary experiments, and the optimum initial molten slag during heating reduction is set. Adjust the metalization rate so that the formation temperature is obtained, and ensure the unreduced iron oxide content in the initial molten slag.
[0052] カゝくして加熱、還元されてから浸炭溶融し粒状に凝集した金属鉄を冷却すれば、粒 状に凝集して固化した金属鉄を得ることができる。そして、該金属鉄は、同時に冷却 凝固した生成スラグと篩 、分け或 、は磁選などによって容易に分離することができる  [0052] If the metallic iron which has been heated and reduced and then carburized and melted and aggregated in a granular form is cooled, the metallic iron which has been aggregated and solidified in a granular form can be obtained. The metallic iron can be easily separated by cooling or solidifying the generated slag and sieve, separating, or magnetic separation, etc.
[0053] この様に本発明では、原料混合物を加熱し、還元'溶融して金属鉄を製造する際に 、原料混合物の還元'溶融過程で生成する脈石成分と未還元酸化鉄からなる初期溶 融スラグの生成温度を多成分系状態図を基に適正に制御することで、得られる金属 鉄中の炭素濃度を任意に制御できる。また、それに伴って、以下に示す様な副次的 効果ち得ることができる。 [0054] 即ち、本発明法によって得られる金属鉄の炭素含有量は、初期溶融スラグ生成温 度が低くなるほど高くなり、言い換えると、操業温度を低くするほど炭素含有量の多い 金属鉄を得ることができるので、加熱還元のための消費熱量を抑えることができる。ま た、初期溶融スラグ中に含まれる溶融酸ィ匕鉄は、ガス還元により生成した固形金属 鉄への炭素キャリアとして作用し、固形還元鉄(固形金属鉄)の浸炭を速やかに進め てその溶け落ちを促進するので、固形還元鉄の溶融も著しく加速され、全体としての 生産効率を著しく高めることができる。 As described above, in the present invention, when the raw material mixture is heated and reduced and melted to produce metallic iron, the initial stage consisting of the gangue component and unreduced iron oxide generated during the reduction and melting process of the raw material mixture. By appropriately controlling the melting slag generation temperature based on the multi-component phase diagram, the carbon concentration in the obtained metallic iron can be arbitrarily controlled. Along with this, the following secondary effects can be obtained. That is, the carbon content of metallic iron obtained by the method of the present invention increases as the initial molten slag formation temperature decreases. In other words, the lower the operating temperature, the higher the carbon content of metallic iron. Therefore, the amount of heat consumed for heat reduction can be suppressed. In addition, the molten iron oxide contained in the initial molten slag acts as a carbon carrier for the solid metal iron produced by gas reduction, and the carburization of the solid reduced iron (solid metal iron) proceeds rapidly to dissolve it. Since the fall is promoted, the melting of the solid reduced iron is also significantly accelerated, and the overall production efficiency can be significantly increased.
[0055] なお、初期溶融スラグには、上述の通り、未還元酸化鉄が含まれている。本発明で は、この酸化鉄が還元されて金属鉄となり、炭素キャリアとして作用する金属鉄は溶 融スラグ内を固形還元鉄側へ移動する。この過程において、溶融スラグ中の酸化鉄 が減少するため、溶融スラグの組成は経時的に変化する。そのため、より効率的に金 属鉄を製造するには、溶融スラグ中の酸ィ匕鉄が減少した状態においても、金属鉄が 円滑に移動する必要がある。この点で、初期溶融スラグの生成温度に代えて、金属 鉄が生成した後のスラグの融点を制御することも好ましい。こうすれば、金属鉄生成 後もスラグは液体状態にあり、金属鉄の移動が阻害されないからである。その一例と して、最終的に生成するスラグの平均糸且成に基づいて、状態図から制御すべき最終 スラグの融点(即ち、スラグ溶け落ち温度)を決定してもよい。これによつて、還元反応 が進んだ段階でも、低温で溶融状態の最終スラグが生成するので、効率的に金属鉄 を製造することができる。  [0055] The initial molten slag contains unreduced iron oxide as described above. In the present invention, the iron oxide is reduced to become metallic iron, and the metallic iron acting as a carbon carrier moves to the solid reduced iron side in the molten slag. In this process, since the iron oxide in the molten slag decreases, the composition of the molten slag changes with time. For this reason, in order to produce metal iron more efficiently, it is necessary for metal iron to move smoothly even in a state where the amount of acid iron in the molten slag is reduced. In this respect, it is also preferable to control the melting point of the slag after the metallic iron is generated instead of the generation temperature of the initial molten slag. This is because the slag remains in a liquid state even after the production of metallic iron, and the movement of metallic iron is not hindered. As an example, the melting point of the final slag to be controlled (that is, the slag melting temperature) may be determined from the phase diagram based on the average yarn composition of the slag that is finally produced. As a result, even when the reduction reaction proceeds, the final molten slag is produced at a low temperature, so that metallic iron can be produced efficiently.
実施例  Example
[0056] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例によって制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に 変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含ま れる。なお下記実施例において、「%」および「部」とあるのはそれぞれ「質量%」およ び「質量部」を意味する。  [0056] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as well as the present invention. It is also possible to implement by adding any of these, and they are all included in the technical scope of the present invention. In the following examples, “%” and “part” mean “% by mass” and “part by mass”, respectively.
[0057] 実験例 1  [0057] Experimental Example 1
鉄源として南米産の鉄鉱石(鉄分含有量: 67. 74%、CaO : 0. 05%、 SiO : 0. 99  South American iron ore as iron source (iron content: 67.74%, CaO: 0.05%, SiO: 0.9.99)
2 2
%、A1 0 : 0. 56%、その他成分: 1. 55%)を、炭材として下記表 1に示すものを使 用し、これらを、加熱還元により得られる金属鉄の炭素含有量が約 1%、 2%、 3%ま たは 4%となる様にそれぞれ配合して作製した各原料ペレットを用いて、下記の条件 で加熱還元実験を行った。 %, A1 0: 0.56%, other components: 1. 55%) Using the respective raw material pellets prepared by mixing them so that the carbon content of metallic iron obtained by heat reduction is about 1%, 2%, 3%, or 4%, The heat reduction experiment was conducted under the conditions of
[0058] [表 1] [0058] [Table 1]
fe用炭材  Carbon for fe
Figure imgf000017_0001
Figure imgf000017_0001
[0059] 実験には、赤外線加熱炉とレーザー顕微鏡を組み合せた装置を使用し、各原料べ レットを昇温速度 200°CZ分で 1450°Cまで連続加熱し、昇温過程における還元から 溶融に至る挙動と気泡発生の挙動を直接観察し、ガス発生温度及び初期溶融スラグ 生成温度を求めた。  [0059] In the experiment, an apparatus combining an infrared heating furnace and a laser microscope was used, and each raw material pellet was continuously heated to 1450 ° C at a heating rate of 200 ° CZ, from reduction to melting in the heating process. The gas generation temperature and the initial molten slag generation temperature were determined by directly observing the behavior and the bubble generation behavior.
[0060] この際、最終的に得られる金属鉄として上記炭素含有量となるものが得られる様に 、加熱還元時に生成する初期溶融スラグ生成温度を踏まえて加熱還元時の金属化 率を調整し、多成分系状態図を基に各々適正な初期溶融スラグ生成温度 (またはス ラグが全て液相の 1相の状態となる温度である、スラグ溶け落ち温度)となる様にした  [0060] At this time, the metallization rate during the heat reduction is adjusted in consideration of the initial molten slag generation temperature generated during the heat reduction so that the finally obtained metal iron having the above carbon content is obtained. Based on the multi-component phase diagram, each was set to an appropriate initial molten slag generation temperature (or slag melting temperature, which is the temperature at which the slag is all in one phase of the liquid phase).
[0061] 結果は表 2に示す通りである。使用する炭材によって各炭素含有量に応じた初期 溶融スラグ生成温度は若干変わってくるが、各初期溶融スラグ生成温度を近似した 温度に制御することで、ほぼ目標通りの炭素含有量の金属鉄が得られている。 [0061] The results are shown in Table 2. The initial molten slag generation temperature corresponding to each carbon content varies slightly depending on the carbon material used, but by controlling the initial molten slag generation temperature to an approximate temperature, metallic iron with a carbon content that is almost as targeted. Is obtained.
[0062] [表 2] 元 の c と ス の [0062] [Table 2] Ex c and su
Figure imgf000018_0001
Figure imgf000018_0001
[0063] 実験例 2  [0063] Experimental Example 2
初期溶融スラグ生成温度は、原料中に含まれるスラグ形成成分と加熱還元時にお ける未還元酸化鉄残存量によって決まってくるが、スラグ形成成分が適切でな!ヽ場 合は、別途スラグ形成成分を含有する物質を追加することで、初期溶融スラグ生成温 度を低下させることができる。  The initial molten slag formation temperature is determined by the slag forming component contained in the raw material and the remaining amount of unreduced iron oxide during heating reduction, but the slag forming component is appropriate! By adding a substance containing, the initial molten slag generation temperature can be lowered.
[0064] 例えば表 3は、前記実験例 1において、得られる金属鉄の目標炭素濃度を約 3%に 設定し、これに応じた初期溶融スラグ生成温度を確保するため、別途スラグ形成成分 を含有する物質として石灰石 (CaO)を原料混合物を調製する段階で追加したときの 、CaO添加量が初期溶融スラグ形成温度に及ぼす影響を調べた結果を示したもの である。炭材としては実験例 1で用いたもののうち 2銘柄を使用したが、いずれの場合 も適量の CaOを追加することで、初期溶融スラグ生成温度を低下できることが分かる 。なお、それぞれの場合において得られた金属鉄の炭素含有量は、表 3中の CaO添 加量が 0. 3%のときは 1. 8%、 CaO添加量が 0. 4%のときは 1. 7%、 CaO添カ卩量が 2. 0%のときは 2. 9%、 CaO添カ卩量が 4. 0%のときは 3. 5%であった。  [0064] For example, Table 3 includes a slag forming component separately in order to secure the initial molten slag generation temperature corresponding to the target carbon concentration of metallic iron obtained in Experimental Example 1 set to about 3%. The results of examining the influence of the added amount of CaO on the initial molten slag formation temperature when limestone (CaO) is added as a material to be prepared in the stage of preparing the raw material mixture are shown. Two brands used in Experiment 1 were used as charcoal materials, but it can be seen that the initial molten slag generation temperature can be lowered by adding an appropriate amount of CaO in either case. The carbon content of the metallic iron obtained in each case is 1.8% when the CaO addition amount in Table 3 is 0.3%, and 1 when the CaO addition amount is 0.4%. It was 2.9% when 7% and CaO content was 2.0%, and 3.5% when CaO content was 4.0%.
[0065] 即ち、加熱還元操業のプロセス生産性確保の観点から、例えば操業温度パターン や加熱 ·還元など各ゾーンの滞留時間が定められていて、初期溶融スラグ生成温度 を更に低下させた!/ヽ場合は、 CaOなどの別途スラグ形成成分を原料混合物を投入 する段階で添加剤としてまたは原料混合物を加熱する段階で造滓剤として追加する ことで初期溶融スラグ生成温度を適切に制御することも有効となる。  [0065] That is, from the viewpoint of ensuring the process productivity of the heat reduction operation, for example, the operation temperature pattern and the residence time of each zone such as heating and reduction are determined, and the initial molten slag generation temperature is further reduced! / ヽIn this case, it is also effective to appropriately control the initial molten slag generation temperature by adding a separate slag forming component such as CaO as an additive at the stage of charging the raw material mixture or as a slagging agent at the stage of heating the raw material mixture. It becomes.
[0066] [表 3] CaOを追加し fc場合の初期溶融スラグ生成温度 [0066] [Table 3] Initial melting slag generation temperature when adding fc and CaO
添加量 (mass¾》 0.3 0,4 2,0 4,0  Amount added (mass¾) 0.3 0,4 2,0 4,0
カナダ産 1 1318 - 1224 1262 カナダ産 2 - 1206 1226 初期溶融 カナタ産 3· 一 - - 1206 ス- 生.  Canadian 1 1318-1224 1262 Canadian 2-1206 1226 Early Melting Kanata 3--1206 Raw.
寧均 131 & - 1215 1231 成溫度 南アフリカ産 1 - - 1282 1194  Ninghom 131 &-1215 1231 Growth South Africa 1--1282 1194
南アフリカ魔 2 , 1350 1244 Ί 188 南アフリカ産 3 ― 1320 1232 1178  South African Demon 2, 1350 1244 244 188 South African 3 ― 1320 1232 1178
平均 - 133S 1253 1187  Average-133S 1253 1187
[0067] 実験例 3 [0067] Experimental Example 3
本発明では、還元剤として使用する炭素質還元剤 (炭材)の性状を変えることで、 初期溶融スラグ生成温度を制御したり、加熱還元時における未還元酸化鉄残存量を 制御したりすることも可能である。本例では、炭材中に CaOを添加することで CaO含 有量を作為的に増大させ、初期溶融スラグ生成温度を変化させた場合を示している  In the present invention, by changing the properties of the carbonaceous reducing agent (carbon material) used as the reducing agent, it is possible to control the initial molten slag generation temperature or to control the remaining amount of unreduced iron oxide during heating reduction. Is also possible. In this example, the CaO content is added to the charcoal material to increase the CaO content and change the initial molten slag generation temperature.
[0068] 即ち下記表 4は、前述した 3銘柄の炭材に、それぞれ表 4に示す量の CaOを添カロし て灰分含有量を変えたものについて、初期溶融スラグ生成温度の変化を調べた結果 を示している。この表からも明らかな様に、炭材に適量の CaOを添加すると、初期溶 融スラグ生成温度は明らかに低下してくる。また、 CaO中の Caイオンは、アルカリとし て炭材の還元能力を高める触媒作用を有することも知られており、炭材の反応性向 上にも寄与することから、加熱還元時における未還元酸化鉄残量の調整にも活用で きると考えられる。 [0068] That is, Table 4 below examined changes in the initial molten slag generation temperature for the above-mentioned three brands of charcoal with the addition of CaO of the amount shown in Table 4 to change the ash content. The results are shown. As is clear from this table, when an appropriate amount of CaO is added to the carbonaceous material, the initial molten slag formation temperature clearly decreases. In addition, Ca ions in CaO are known to have a catalytic action that increases the reducing ability of the carbonaceous material as an alkali and contributes to improving the reactivity of the carbonaceous material. It can be used to adjust the remaining amount of iron.
[0069] [表 4] [0069] [Table 4]
Figure imgf000020_0001
Figure imgf000020_0001
以上、説明したように、本発明は、炭素質還元剤と酸化鉄含有物質とを含む原料混 合物から金属鉄を製造する方法であって、予め決められた金属鉄中の目標炭素濃 度に応じた、前記原料混合物を加熱することで該原料混合物内に最初に生成する 初期溶融スラグであって、脈石成分と、未還元酸化鉄と、炭素質還元剤中の灰分とを 含むものの目標生成温度を決定するステップと、前記目標生成温度に応じた前記初 期溶融スラグの組成を生成する前記原料混合物を調製するステップと、前記原料混 合物を加熱することで、当該原料混合物を還元 '溶融するとともに、前記初期溶融ス ラグを生成するステップとを有することを特徴とする金属鉄の製法である。上記初期 溶融スラグの目標生成温度は、特定の温度でもよいし、特定の上限値および下限値 を有する温度域であってもよい。更に言えば、上記「特定の温度」は、装置や工程に 起因する操業上の制約に応じて、変更可能なスラグ形成成分の各成分組成の範囲 内における「最低温度より高 、温度」であってもよ 、。上記温度域の「上限値」および 「下限値」も同様である。これにより、所定の炭素濃度を有する金属鉄を効率的に製 造することができる。 As described above, the present invention is a method for producing metallic iron from a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance, and has a predetermined target carbon concentration in metallic iron. The initial molten slag that is first produced in the raw material mixture by heating the raw material mixture according to the method, including a gangue component, unreduced iron oxide, and ash in the carbonaceous reducing agent Determining a target generation temperature; preparing the raw material mixture for generating a composition of the initial molten slag according to the target generation temperature; and heating the raw material mixture to Reduction 'Melting and initial melting And a step of producing a lug. The target generation temperature of the initial molten slag may be a specific temperature or a temperature range having a specific upper limit value and lower limit value. Furthermore, the above-mentioned “specific temperature” is a “temperature higher than the minimum temperature” within the range of each component composition of the slag-forming component that can be changed according to the operational restrictions caused by the equipment and process. Anyway. The same applies to the “upper limit value” and “lower limit value” of the above temperature range. Thereby, metallic iron having a predetermined carbon concentration can be produced efficiently.
[0071] この方法を実施するに当っては、前記調製するステップにおいて、前記酸化鉄含 有物質にスラグ形成成分を配合してもよい。前記調製するステップにおいて、前記炭 素質還元剤にスラグ形成成分を配合してもよい。前記原料混合物は更に副原料を含 み、前記調製するステップにおいて、前記副原料にスラグ形成成分を配合してもよい 。前記加熱するステップの前に、スラグ形成成分を含む添加剤を投入するステップを 更に有してもよい。また、前記加熱するステップにおいて、スラグ形成成分を含む造 滓剤を添加してもよい。また、造滓剤に代えてスラグ形成成分を含むフラックスを添カロ してもょ ヽし、スラグ形成成分を含む造滓剤とスラグ形成成分を含むフラックスを添加 してもよい。言い換えれば、これらのいずれかのステップにおいて、前記目標生成温 度を、第 3のスラグ形成成分を添加することによって制御してもよい。  [0071] In carrying out this method, a slag-forming component may be added to the iron oxide-containing substance in the preparing step. In the preparing step, a slag forming component may be added to the carbonaceous reducing agent. The raw material mixture may further contain an auxiliary material, and in the preparing step, a slag forming component may be blended with the auxiliary material. A step of adding an additive containing a slag forming component may be further included before the heating step. Further, in the heating step, a molding agent containing a slag forming component may be added. In addition, a flux containing a slag-forming component may be added instead of a slag-forming agent, and a flux containing a slag-forming component and a slag-forming component may be added. In other words, in any of these steps, the target generation temperature may be controlled by adding a third slag forming component.
[0072] これら操作のいずれか 1つまたは 2つ以上を行うことで初期溶融スラグ中に必要なス ラグ形成成分を原料混合物の配合段階、原料混合物の投入段階または原料混合物 の加熱段階で適宜補充することができ、その結果、初期溶融スラグは目標温度で生 成される。  [0072] By performing one or more of these operations, the necessary slag forming components in the initial molten slag are appropriately replenished in the raw material mixture blending stage, raw material mixture charging stage, or raw material mixture heating stage. As a result, the initial molten slag is generated at the target temperature.
[0073] 前記目標生成温度は、脈石成分と、還元途中で残存する未還元酸化鉄と、炭素質 還元剤中の灰分とからなる多成分系平衡状態図から決定することができる。これによ り、スラグ形成成分の各成分組成を変更可能な範囲内で調整すれば、変更可能な 組成範囲における最も低い初期溶融スラグの生成温度となる目標生成温度を容易 に決定することができる。あるいは、前記目標生成温度は、前記初期溶融スラグの生 成温度と前記金属鉄中の炭素濃度の関係を予め調べて、この対応関係に従って前 記目標炭素濃度から決定することもできる。これにより、目標炭素濃度を有する金属 鉄を安定して製造することができる。 [0073] The target generation temperature can be determined from a multi-component equilibrium state diagram composed of a gangue component, unreduced iron oxide remaining during reduction, and ash in a carbonaceous reducing agent. As a result, if each component composition of the slag forming component is adjusted within a changeable range, the target generation temperature that is the lowest initial molten slag generation temperature in the changeable composition range can be easily determined. . Alternatively, the target generation temperature can be determined from the target carbon concentration according to this correspondence relationship by checking in advance the relationship between the generation temperature of the initial molten slag and the carbon concentration in the metallic iron. This allows the metal with the target carbon concentration Iron can be manufactured stably.
[0074] また、前記加熱するステップより前に、前記初期溶融スラグ中の前記未還元酸化鉄 の目標含有量を定め、該目標含有量に応じた前記酸化鉄含有物質の目標還元率を 算出するステップを更に有し、前記加熱するステップにおいて、前記酸化鉄含有物 質の還元率が前記目標還元率に到達するまで、加熱温度パターンまたは還元ポテ ンシャルを調整するとともに加熱してもよい。これにより、加熱還元工程で残存する未 還元酸化鉄を浸炭鉄を固形還元鉄方向へ炭素を運ぶキャリアとして積極的に活用 でき、その結果、トータルとしての金属鉄の生産効率を高めることができる。  [0074] Further, before the heating step, a target content of the unreduced iron oxide in the initial molten slag is determined, and a target reduction rate of the iron oxide-containing substance according to the target content is calculated. In the heating step, the heating temperature pattern or the reduction potential may be adjusted and heated until the reduction rate of the iron oxide-containing substance reaches the target reduction rate. As a result, the unreduced iron oxide remaining in the heat reduction process can be actively used as a carrier for transporting carbon in the direction of solid reduced iron using carburized iron, and as a result, the overall production efficiency of metallic iron can be improved.
[0075] また、前記加熱するステップにお 、て、還元途中の未還元酸化鉄を含有するスラグ の融点に基づいて加熱してもよい。これにより、溶融スラグ中の未還元酸化鉄が減少 しても、溶融スラグ内の金属鉄の円滑な移動が確保できるので、還元反応が進んだ 段階でも、効率的に金属鉄を製造することができる。  [0075] In the heating step, heating may be performed based on the melting point of slag containing unreduced iron oxide during reduction. As a result, even if the amount of unreduced iron oxide in the molten slag decreases, smooth movement of the metallic iron in the molten slag can be ensured, so that even when the reduction reaction has advanced, metallic iron can be produced efficiently. it can.
[0076] 本発明によれば、本発明者が先に開発した特許文献 4の方法に比べて、原料混合 物中の脈石成分、炭素質還元剤中の灰分、および、加熱還元の際に少なからず残 存する未還元酸化鉄の量を制御することで、初期溶融スラグの生成温度が制御され る。これにより、得られる金属鉄中の炭素濃度を調整することができ、所望に応じた炭 素濃度の金属鉄を効率よく得ることができる。また本発明では、以上に詳述する如く 、原料鉱石から溶融スラグ中に混入してくる鉄酸化物 (酸化鉄含有物質)由来の溶融 鉄を、固形還元鉄の浸炭用炭素のキャリアとして利用することで、該固形還元鉄の浸 炭を迅速に進めて低温での溶け落ちを可能とし、延いては、金属鉄製造のための消 費熱エネルギーを低減しつつ生産性を高めることができる。  [0076] According to the present invention, compared to the method of Patent Document 4 previously developed by the present inventor, the gangue component in the raw material mixture, the ash in the carbonaceous reducing agent, and the heat reduction By controlling the amount of unreduced iron oxide remaining, the temperature at which the initial molten slag is formed is controlled. As a result, the carbon concentration in the obtained metallic iron can be adjusted, and metallic iron having a carbon concentration as desired can be obtained efficiently. Further, in the present invention, as described in detail above, molten iron derived from iron oxide (iron oxide-containing substance) mixed from raw ore into molten slag is used as a carbon carrier for carburizing solid reduced iron. As a result, the carburization of the solid reduced iron can be rapidly advanced to allow the solid reduced iron to be melted at a low temperature, and as a result, the productivity can be increased while reducing the heat energy consumed for the production of metallic iron.
[0077] 本発明は 2006年 1月 17日に受理された日本特許出願第特願 2006— 008743号 はこの参照により開示に含まれる。  [0077] The present invention is incorporated in this disclosure by Japanese Patent Application No. 2006-008743, which was accepted on January 17, 2006.

Claims

請求の範囲 The scope of the claims
[1] 炭素質還元剤と酸化鉄含有物質とを含む原料混合物から金属鉄を製造する方法 であって、  [1] A method for producing metallic iron from a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance,
予め決められた金属鉄中の目標炭素濃度に応じた、前記原料混合物を加熱するこ とで該原料混合物内に最初に生成する初期溶融スラグであって、脈石成分と、未還 元酸化鉄と、炭素質還元剤中の灰分とを含むものの目標生成温度を決定するステツ プと、  An initial molten slag that is first formed in the raw material mixture by heating the raw material mixture according to a predetermined target carbon concentration in the metallic iron, and comprising a gangue component and unreduced iron oxide And a step of determining a target generation temperature of the ash content in the carbonaceous reducing agent,
前記目標生成温度に応じた前記初期溶融スラグの組成を生成する前記原料混合 物を調製するステップと、  Preparing the raw material mixture to produce a composition of the initial molten slag according to the target production temperature;
前記原料混合物を加熱することで、当該原料混合物を還元 ·溶融するとともに、前 記初期溶融スラグを生成するステップと  Heating the raw material mixture, reducing and melting the raw material mixture, and generating the initial molten slag;
を有することを特徴とする金属鉄の製法。  A process for producing metallic iron, characterized by comprising:
[2] 前記調製するステップにお!、て、前記酸化鉄含有物質にスラグ形成成分を配合す る  [2] In the preparation step, slag forming components are added to the iron oxide-containing substance.
請求項 1に記載の製法。  The process according to claim 1.
[3] 前記調製するステップにおいて、前記炭素質還元剤にスラグ形成成分を配合する 請求項 1または 2に記載の製法。 [3] The process according to claim 1 or 2, wherein in the preparing step, a slag forming component is blended with the carbonaceous reducing agent.
[4] 前記原料混合物は更に副原料を含み、 [4] The raw material mixture further includes an auxiliary raw material,
前記調製するステップにお 、て、前記副原料にスラグ形成成分を配合する 請求項 1〜3のいずれかに記載の製法。  The method according to any one of claims 1 to 3, wherein in the preparing step, a slag forming component is blended with the auxiliary material.
[5] 前記加熱するステップの前に、スラグ形成成分を含む添加剤を投入するステップを 更に有する [5] The method further includes the step of adding an additive containing a slag forming component before the heating step.
請求項 1〜4のいずれかに記載の製法。  The manufacturing method in any one of Claims 1-4.
[6] 前記加熱するステップにおいて、スラグ形成成分を含む造滓剤を添加する [6] In the heating step, a slag-forming agent containing a slag forming component is added.
請求項 1〜5のいずれかに記載の製法。  The manufacturing method in any one of Claims 1-5.
[7] 前記目標生成温度は、脈石成分と、還元途中で残存する未還元酸化鉄と、炭素質 還元剤中の灰分とからなる多成分系平衡状態図から決定される [7] The target generation temperature is determined from a multi-component equilibrium diagram consisting of a gangue component, unreduced iron oxide remaining during reduction, and ash in a carbonaceous reducing agent.
請求項 1〜6のいずれかに記載の製法。 The manufacturing method in any one of Claims 1-6.
[8] 前記目標生成温度は、前記初期溶融スラグの生成温度と前記金属鉄中の炭素濃 度の関係を予め調べて、この対応関係に従って前記目標炭素濃度から決定される 請求項 1〜7のいずれかに記載の製法。 [8] The target generation temperature is determined from the target carbon concentration according to the correspondence relationship by previously examining a relationship between the generation temperature of the initial molten slag and the carbon concentration in the metallic iron. The manufacturing method in any one.
[9] 前記加熱するステップより前に、前記初期溶融スラグ中の前記未還元酸化鉄の目 標含有量を定め、該目標含有量に応じた前記酸化鉄含有物質の目標還元率を算出 するステップを更に有し、 [9] Before the step of heating, a step of determining a target content of the unreduced iron oxide in the initial molten slag and calculating a target reduction rate of the iron oxide-containing substance according to the target content Further comprising
前記加熱するステップにおいて、前記酸化鉄含有物質の還元率が前記目標還元 率に到達するまで、加熱温度パターンまたは還元ポテンシャルを調整するとともにカロ 熱する  In the heating step, the heating temperature pattern or the reduction potential is adjusted and the heat is heated until the reduction rate of the iron oxide-containing substance reaches the target reduction rate.
請求項 1〜8のいずれかに記載の製法。  The manufacturing method in any one of Claims 1-8.
[10] 前記加熱するステップにおいて、還元途中の未還元酸化鉄を含有するスラグの融 点に基づいて加熱する [10] In the heating step, heating is performed based on a melting point of slag containing unreduced iron oxide during reduction.
請求項 1〜9のいずれかに記載の製法。  The manufacturing method in any one of Claims 1-9.
PCT/JP2006/323928 2006-01-17 2006-11-30 Process for producing metallic iron WO2007083450A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/094,607 US20090282950A1 (en) 2006-01-17 2006-11-30 Process for producing metallic iron
AU2006335814A AU2006335814B2 (en) 2006-01-17 2006-11-30 Method for manufacturing metallic iron
CA2630236A CA2630236C (en) 2006-01-17 2006-11-30 Method for manufacturing metallic iron
CN2006800473579A CN101331239B (en) 2006-01-17 2006-11-30 Process for producing metallic iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-008743 2006-01-17
JP2006008743A JP4981320B2 (en) 2006-01-17 2006-01-17 Metal iron manufacturing method

Publications (1)

Publication Number Publication Date
WO2007083450A1 true WO2007083450A1 (en) 2007-07-26

Family

ID=38287408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323928 WO2007083450A1 (en) 2006-01-17 2006-11-30 Process for producing metallic iron

Country Status (8)

Country Link
US (1) US20090282950A1 (en)
JP (1) JP4981320B2 (en)
CN (1) CN101331239B (en)
AU (1) AU2006335814B2 (en)
CA (1) CA2630236C (en)
RU (1) RU2388830C1 (en)
TW (1) TWI307365B (en)
WO (1) WO2007083450A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261101A (en) 2009-04-07 2010-11-18 Mitsutaka Hino Method for producing metallic iron
CN102803523A (en) * 2010-03-25 2012-11-28 株式会社神户制钢所 Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
CN102959093B (en) * 2010-08-30 2014-06-04 株式会社神户制钢所 Granular metal iron production method
KR101293625B1 (en) 2011-08-26 2013-08-13 우진 일렉트로나이트(주) Determination System for FeO Sensing in Molten Slag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251724A (en) * 1997-03-13 1998-09-22 Kobe Steel Ltd Production of metallic iron and producing equipment therefor
JP2005048197A (en) * 2000-08-09 2005-02-24 Kobe Steel Ltd Method for producing metallic iron

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506231B2 (en) * 1996-03-15 2003-01-14 Kabushiki Kaisha Kobe Seiko Sho Method and apparatus for making metallic iron
CN1080315C (en) * 1996-03-15 2002-03-06 株式会社神户制钢所 Method and apparatus for making metallic iron
JPH10195513A (en) * 1996-12-27 1998-07-28 Kobe Steel Ltd Production of metallic iron
US6149709A (en) * 1997-09-01 2000-11-21 Kabushiki Kaisha Kobe Seiko Sho Method of making iron and steel
JP4159634B2 (en) * 1997-10-23 2008-10-01 株式会社神戸製鋼所 Metallic iron manufacturing method and equipment
JP3848453B2 (en) * 1998-01-09 2006-11-22 株式会社神戸製鋼所 Manufacturing method of metallic iron
US6413295B2 (en) * 1998-11-12 2002-07-02 Midrex International B.V. Rotterdam, Zurich Branch Iron production method of operation in a rotary hearth furnace and improved furnace apparatus
US6063744A (en) * 1999-07-22 2000-05-16 Mcquillen; Edwin F. Cleaning and lubricant formulation for spindles
JP2001279313A (en) * 2000-03-30 2001-10-10 Midrex Internatl Bv Method for producing molten metallic iron
JP2001342509A (en) * 2000-06-02 2001-12-14 Kobe Steel Ltd Method and apparatus for producing metallic iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251724A (en) * 1997-03-13 1998-09-22 Kobe Steel Ltd Production of metallic iron and producing equipment therefor
JP2005048197A (en) * 2000-08-09 2005-02-24 Kobe Steel Ltd Method for producing metallic iron

Also Published As

Publication number Publication date
CA2630236A1 (en) 2007-07-26
AU2006335814A1 (en) 2007-07-26
TWI307365B (en) 2009-03-11
RU2008133606A (en) 2010-02-27
JP2007191736A (en) 2007-08-02
CA2630236C (en) 2012-07-31
AU2006335814B2 (en) 2011-04-14
JP4981320B2 (en) 2012-07-18
CN101331239B (en) 2012-03-28
RU2388830C1 (en) 2010-05-10
CN101331239A (en) 2008-12-24
TW200730630A (en) 2007-08-16
US20090282950A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4330257B2 (en) Metal iron manufacturing method
KR100710943B1 (en) Process for producing particulate iron metal
WO2010117008A1 (en) Method for producing metallic iron
JP4691827B2 (en) Granular metal iron
AU2009234752B2 (en) Titanium oxide-containing agglomerate for producing granular metallic iron
JP5297077B2 (en) Method for producing ferromolybdenum
JP2010229525A (en) Method for producing ferronickel and ferrovanadium
WO2007083450A1 (en) Process for producing metallic iron
JP4540172B2 (en) Production of granular metallic iron
JP5000593B2 (en) Manufacturing method of granular metallic iron and manufacturing method of molten steel using the metallic iron
JP3845893B2 (en) Metal iron manufacturing method
JP5210555B2 (en) Manufacturing method of granular metallic iron
JP2000045007A (en) Production of metallic iron and device therefor
JP2001515138A (en) Iron and steel making
JP3848453B2 (en) Manufacturing method of metallic iron
JP3844873B2 (en) Metal iron manufacturing method
JP3750928B2 (en) Carburized material and steel making method using the same
JP4415690B2 (en) Method for producing sintered ore
JPH10102117A (en) Production of metallic iron and production equipment thereof
KR101448607B1 (en) Method for manufacturing iron
JP2007246970A (en) Method for operating movable hearth furnace
JPH10251725A (en) Production of metallic iron and producing equipment thereof
JPH10102114A (en) Production of metallic iron and production equipment thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047357.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006335814

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2630236

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12094607

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2006335814

Country of ref document: AU

Date of ref document: 20061130

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008133606

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 06833731

Country of ref document: EP

Kind code of ref document: A1