WO2007082802A1 - Agrochemische formulierungen auf basis molekular geprägter acrylate - Google Patents

Agrochemische formulierungen auf basis molekular geprägter acrylate Download PDF

Info

Publication number
WO2007082802A1
WO2007082802A1 PCT/EP2007/050112 EP2007050112W WO2007082802A1 WO 2007082802 A1 WO2007082802 A1 WO 2007082802A1 EP 2007050112 W EP2007050112 W EP 2007050112W WO 2007082802 A1 WO2007082802 A1 WO 2007082802A1
Authority
WO
WIPO (PCT)
Prior art keywords
pesticide
spp
meth
acid
acrylates
Prior art date
Application number
PCT/EP2007/050112
Other languages
English (en)
French (fr)
Inventor
Oliver BRÜGGEMANN
Volker Braig
Thomas Pfeiffer
Matthias Bratz
Aleksandra Volkmann
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP07712005A priority Critical patent/EP1976376A1/de
Priority to BRPI0706626-0A priority patent/BRPI0706626A2/pt
Priority to CA002640305A priority patent/CA2640305A1/en
Priority to US12/160,548 priority patent/US20100227761A1/en
Priority to JP2008549866A priority patent/JP2009523152A/ja
Publication of WO2007082802A1 publication Critical patent/WO2007082802A1/de
Priority to IL192422A priority patent/IL192422A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/18Vapour or smoke emitting compositions with delayed or sustained release
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds

Definitions

  • the present invention encompasses the use of acrylate polymers which are molecularly imprinted in the presence of at least one pesticide for the production of an agrochemical controlled release formulation comprising the above-mentioned in the presence of at least one pesticide molecularly imprinted acrylate polymers and at least one pesticide, process for the preparation of said standing formulations and the use of the above-mentioned formulations in crop protection.
  • Delayed release formulations circumvent this problem by releasing certain amounts of drug over a period of time. However, it is also desirable in some cases to control the pests or weeds by the direct release of a portion of the total amount of active ingredient used.
  • the object of the present invention was therefore to provide formulations in which one part of the active ingredient is released directly and another of the active ingredient is not released immediately, but over a longer period of time.
  • the present invention thus comprises an agrochemical formulation comprising acrylate polymers which are molecularly imprinted in the presence of at least one pesticide.
  • the abovementioned formulations can be prepared by a process which is characterized in that
  • the acrylate polymer is produced by precipitation polymerization in the presence of the pesticide
  • the molecularly imprinted acrylate polymers are composed of at least one functional monomer and at least one crosslinker.
  • acrylate polymer refers to polymers as well as copolymers made at least on the basis of a monomer selected from the group consisting of acrylic acid, methacrylic acid and monomers derived from acrylic acid or methacrylic acid.
  • At least one functional monomer means that one, two or more of the functional monomers can be used to prepare the molecularly imprinted acrylate in the presence of a pesticide, preferably one or two, more preferably one.
  • crosslinker means that one, two or more crosslinkers can be used to prepare the molecularly imprinted acrylate in the presence of a pesticide, preferably one or two, more preferably one.
  • At least one pesticide means that one, two or more pesticides can be used to prepare the molecularly imprinted acrylate, preferably one or two, more preferably one.
  • the pesticide used here for embossing and the pesticide contained in the formulation are either identical or structurally very similar, preferably identical.
  • the functional monomer may hereby preferably be selected from the group consisting of
  • Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate (Meth) acrylamides such as, for example, dimethyl (meth) acrylamide, diethyl (meth) acrylamide, isopropyl (meth) acrylamide, (meth) acryloylmorpholine, dimethylamino-methyl (meth) acrylamide, dimethylaminoethyl (meth) acrylamide, dimethylaminopropylphenyl (meth) acrylamide, diethylaminomethyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide and derivatives of (meth) acrylamide such as N-methyl acrylamide, N-methylol acrylamide, N-methylol methacrylamide;
  • Alkyl (meth) acrylates such as, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate,
  • Cyano (alkyl) acrylates such as, for example, cyanoalkyl (meth) acrylates (such as cyanoethyl (meth) acrylates, cyanopropyl (meth) acrylates);
  • Acrylic acid and methacrylic acid with methacrylic acid being particularly preferred.
  • more than one functional monomer can be used.
  • the second or third functional monomer vinylbenzoic acid, vinylpyrrolidone; 4-vinylpyridine, 2-vinylpyridine, 1-vinylimidazole, 4 (5) -vinylimidazole, itaconic acid, trifluoromethacrylic acid, 4-vinylbenzamidine, 4-vinylbenzyl-imino-diacetic acid and N-vinylamines such as vinylformamide, 4-vinylpyridine, 2
  • the crosslinker may here preferably be selected from the group consisting of ethylenically unsaturated compounds having at least two (ie two, three or four) vinylic or allylic double bonds which are free-radically polymerizable, for example divinyl esters of aliphatic and aromatic dicarboxylic acids (eg the divinyl esters of Succinic acid or diallyl phthalate), oligoallyl esters (such as, for example, triallyl phosphate or triallyl isocyanurate), divinyl ethers of aliphatic and aromatic diols (for example butanediol-1,4-divinyl ether or diallyl bisphenol A), the reaction products of OH-terminated, oligomeric polybutadienes with maleic acid or (meth ) Acrylic acid, ie oligomeric polybutadienes with activated, photopolymerizable olefinic double bonds, di (meth) acrylates of alkylene glycols or al
  • crosslinked alkoxylated di- or polyols can be, which can then be reacted with correspondingly with the functional monomer, for example E- thoxytrimethylolpropane triacrylate.
  • the functional monomer for example E- thoxytrimethylolpropane triacrylate.
  • Particularly preferred tri- or higher functional crosslinkers are used, z.Bsp. Oligoallylesternmit three or more allyl groups such.
  • Triallylphosphate or triallyl-socyanurate, triallyl ether or tri (meth) acrylates of triols such as trimethyloethane, trimethylolpropane or triethanolamine
  • tri- and tetraallyl ethers or tri- and tetra (meth) acrylates of tetraols such as pentaerythritol
  • Oligo (meth) acrylates of polyfunctional phenols having 3 to 4 OH groups such as pyrocatechol
  • ON goacrylates oligo (meth) acrylates, oligoallyl monomers and oligovinyl monomers containing at least three functional groups.
  • the molar ratio of functional monomer to crosslinker is usually 1/2 to 1/10, preferably 1/2 to 1/4.
  • MIA pesticide molecularly imprinted acrylates
  • the mass ratio of polymer to drug is 1:10 to 100: 1
  • the acrylate polymer is preferably composed of at least one of the abovementioned functional monomers and at least one of the abovementioned crosslinkers.
  • agrochemical active ingredient / pesticide here refers to at least one active ingredient selected from the group of insecticides, fungicides, herbicides and / or safeners, growth regulators (see Pesticide Manual, 13th Ed. (2003)). It is also possible to use combinations of two or more of the active ingredients mentioned below.
  • A.4. Growth regulators a) chitin synthesis inhibitors: benzoylureas: chlorofluorotron, cyromazine, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozides, methoxyfenozide, tebufenozide, azadirachtin; c) juvenoids: pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spiromesifen,
  • Nicotinic receptor agonists / antagonists clothianidin, dinotefuran, imidacloprid, thiamethoxam, nitenpyram, acetamiprid, thiacloprid, a thiazole compound of the formula ⁇ 1
  • GABA antagonists acetoprole, endosulfan, ethiprole, fipronil, vaniliprole, a phenylpyrazole compound of the formula ⁇ 2
  • Macrolide insecticides abamectin, emamectin, milbemectin, lepimectin, spinosad, a compound of formula ⁇ 3 (CAS No. 187166-40-1)
  • METI I acaricides fenazaquin, pyridaben, tebufenpyrad, tolfenpyrad;
  • METI II and IM compounds acequinocyl, fluacyprim, hydramethylnone
  • A.1 Inhibitors of oxidative phosphorylation cyhexatin, diafenthiuron, fenbutatin oxide, propargite;
  • a 1 is CH 3 , Cl, Br, I, X is CH, C-Cl, CF or N, Y 'is F, Cl, or Br, Y "is F, Cl or CF 3
  • B 1 is hydrogen, Cl, Br, I, CN
  • B 2 is Cl, Br, CF 3 , OCH 2 CF 3 or OCF 2 H
  • R B is hydrogen, CH 3 or CH (CH 3 ) 2 and malononitrile compounds as in JP 2002 284608, WO 02/89579, WO 02/90320, WO 02/90321, WO 04/06677, WO 04/20399, or JP 2004 99597.
  • Azoxystrobin dimoxystrobin, enestroburine, fluoxastrobin, kresoxim-methyl, metominostrobin, picoxystrobin, pyraclostrobin, trifloxystrobin, orysastrobin, (2-chloro-5- [1- (3-methyl-benzyloxyimino) -ethyl] -benzyl) -carbamic acid methyl ester, (2-Chloro-5- [1- (6-methylpyridin-2-ylmethoxyimino) ethyl] benzyl) -carbamic acid methyl ester, 2- (ortho ((2,5-dimethylphenyl-oxymethylene) phenyl) -3 methoxy-methyl acrylate;
  • Carboxylic acid anilides Benalaxyl, Benodanil, Boscalid, Carboxin, Mepronil, Fenfuram, Fenhexamid, Flutolanil, Furametpyr, Metalaxyl, Ofurace, Oxadixyl, Oxycarboxin, Penthiopyrad, Thifluzamide, Tiadinil, 4-Difluoromethyl-2-methyl-thiazole-5-carboxylic acid - (4'-Bromo-biphenyl-2-yl) -amide, 4-difluoromethyl-2-methyl-thiazole-5-carboxylic acid (4'-trifluoromethyl-biphenyl-2-yl) -amide, 4-difluoromethyl -2-methyl-thiazole-5-carboxylic acid (4'-chloro-3'-fluorobiphenyl-2-yl) -amide, 3-difluoromethyl-1-methyl-pyrazole-4-carboxylic acid (3
  • Benzoic acid amides flumetover, fluopicolide (picobenzamide), zoxamide;
  • Other carboxamides carpropamide, diclocymet, mandipropamide, N- (2- (4- [3- (4-chloro-phenyl) -prop-2-ynyloxy] -3-methoxyphenyl) -ethyl) -2-methylsulfonylamino 3-methyl-butyramide, N- (2- (4- [3- (4-chloro-phenyl) -prop-2-ynyloxy] -3-methoxy-phenyl) -ethyl) -2-ethylsulfonyl-amino-3-methyl- butyramide;
  • Triazoles Bitertanol, Bromuconazole, Cyproconazole, Difenoconazole, Diniconazole, Enilconazole, Epoxiconazole, Fenbuconazole, Flusilazole, Fluquinconazole, Flutriafol, Hexaconazole, Imibenconazole, Ipconazole, Metconazole, Myclobutanil, Penconazole, Propiconazole, Prothioconazole, Simeconazole, Tebuconazole, Tetraconazole, Triadimenol, Triadimefon , Triticonazole;
  • - imidazoles cyazofamide, imazalil, pefurazoate, prochloraz, triflumizole;
  • Benzimidazoles benomyl, carbendazim, fuberidazole, thiabendazole;
  • Pyridines fluazinam, pyrifenox, 3- [5- (4-chlorophenyl) -2,3-dimethylisoxazolidin-3-yl] pyridine;
  • Pyrimidines bupirimate, cyprodinil, ferimzone, fenarimol, mepanipyrim, nuarimol, pyrimethanil; - piperazines: triforins;
  • Dicarboximides iprodione, procymidone, vinclozolin;
  • acibenzolar-S-methyl anilazine, captan, captafol, dazomet, diclomezine, fenoxanil, folpet, fenpropidin, famoxadone, fenamidone, octhilinone, probenazole,
  • guanidines dodine, iminoctadine, guazatine
  • Sulfur-containing heterocyclyl compounds isoprothiolanes, dithianone;
  • Organophosphorus compounds edifenphos, fosetyl, fosetyl-aluminum, Iprobenfos, pyrazophos, tolclofos-methyl, phosphorous acid and their salts;
  • Organochlorine compounds thiophanates methyl, chlorothalonil, dichlofluanid, toluylfluanid, flusulfamides, phthalides, hexachlorobenzene, pencycuron, quintozene;
  • Nitrophenyl derivatives binapacryl, dinocap, dinobuton;
  • ALS inhibitors such as amidosulfuron, azimsulfuron, bensulfuron, chlorimuron, chlorosulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron, ethoxysulfuron, flazasulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, lodosulfuron, mesosulfuron, metsulfuron, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, Pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, imazamethabenz, imazamox, imazapic, imazapyr
  • Herbicides such as metflurazon, norflurazon, flufenican, diflufenican, picolinafen, beflubutamide, fluridone, flurochloridone, flurtamone, mesotrione, sulcotrione, isoxachlorotole, isoxaflutole, benzofenap, pyrazolynate, pyrazoxyfen, benzobicyclone, amitrole, cloma- zone, aclonifen, 4- (3 -trifluoromethylphenoxy) - 2- (4-trifluoromethylphenyl) pyrimidine, and 3-heterocyclyl-substituted benzoyl derivatives of the formula (see WO-A-96/26202, WO-A-97/41 116, WO-A-97/411 17 and WO-A-97/41 1 18)
  • R 8 is hydrogen, halogen, Ci-C 6 alkyl, Ci-C 6 haloalkyl, Ci-C 6 alkoxy, -C 6 - haloalkoxy, Ci -C 6 alkylthio -alkyl, C 1 -C 6 -alkyl ky I su If i ny I or Ci-C 6 alkylsulfonyl;
  • R 9 represents a heterocyclic radical selected from the group consisting of thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, 4,5 - Dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl and 4,5-dihydroisoxazol-5-yl, wherein said radicals may carry one or more substituents, for example, mono-, di-, tri- or tetrasubstituiert by halogen, Ci-C 4 -alkyl, Ci-C 4 -alkoxy, CrC 4 - haloalkyl, Ci-C4-haloalkoxy or Ci-C 4 alkylthio;
  • R 11 hydrogen, halogen or C 1 -C 6 -alkyl
  • R 12 d-Ce-alkyl
  • R 13 hydrogen or C 1 -C 6 -alkyl.
  • EPSP synthase inhibitors such as glyphosate
  • Glutamine synthase inhibitors such as glufosinate and bilanaphos
  • DHP synthase inhibitors such as asulam
  • Mitosis inhibitors such as Benfluralin, Butraline, Dinitramine, Ethalfluralin, Fluchloralin, i-Sopropalin, Methalpropalin, Nitralin, Oryzalin, Pendimethalin, Prodiamine, Profluralin, Trifluralin, Amiprofos-methyl, Butamifos, Dithiopyr, Thiazopyr, Propyzamide, Tebutam, Chlorthal, Carbetamide, Chlorobufam, Chlorpropham and Propham;
  • VLCFA inhibitors such as acetochlor, alachlor, butachlor, butenachlor, delachlor, diethyl, dimethachlor, dimethenamid, dimethenamid-P, metazachlor, metolachlor, S-metolachlor, pretilachlor, propachlor, propisochlor, prynachlor, terbuchlor, thenylchloride, xylachlor, Allidochlor, CDEA, epronaz, diphenamid, napropamide, naproanilide, pethoxamide, flufenacet, mefenacet, fentrazamide, anilofos, piperophos, cafenstrole, indanofan, and tridiphan; Cellulose biosynthesis inhibitors such as dichlobenil, chlorthiamide, isoxaben and flupoxam;
  • Herbicides such as dinofenate, dinoprop, dinosam, dinoseb, dinoterb, DNOC, etinofen and
  • Auxin herbicides such as Clomeprop, 2,4-D, 2,4,5-T, MCPA, MCPA thioethyl, dichlorprop,
  • Auxin transport inhibitors such as Naptalam, Diflufenzopyr;
  • safener has the following meaning: It is known that in some cases better herbicidal compatibility can be achieved by the combined application of specifically acting herbicides with organic active compounds, which themselves can have a herbicidal action. In these cases, these compounds act as an antidote or antagonist and are referred to as “safeners” due to the fact that they reduce or prevent crop damage.
  • Preferred insecticides are metaflumizones, pyrethroids such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alpha-cypermethrin, beta- cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin , prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, flucythrinates, preferably alpha-cypermethrin, c
  • Preferred fungicides are azole fungicides such as triazole fungicides such as bitertanol, bromoconazole, cyproconazole, difenoconazole, diniconazole, enilconazole, epoxiconazole, fenbuconazole, flusilazole, fluquinconazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, simeconazole , Tebuconazole, Tetraconazole, Triadimenol, Triadimefon, Triticonazole; Imidazole fungicides such as cyazofamide, imazalil, pefurazoate, prochloraz, triflumizole; Benzimidazoles Fungicides such as benomyl, carbend
  • the acrylate polymer is produced by precipitation polymerization in the presence of the pesticide
  • step (1) of the process is well known to those skilled in the art and is described, for example, in Guyot, A. (1989), Comprehensive Polymer Science, Vol. 4: Eastmond, G. C, Ledwith, A., Russo , S., Sigwalt, P. (Eds.). Oxford: Pergamon, pp. 261-273.
  • the molecularly imprinted acrylate polymer according to the invention can be prepared by reacting
  • Solvent was dissolved, which corresponds in a most preferred embodiment, the solvent in which the monomer is dissolved, or
  • a protective colloid may also be added in step a).
  • Suitable protective colloids are surface-active substances.
  • surfactant is defined below.
  • the polymerization can be carried out in a radical, anionic, cationic or coordinative mechanism or according to the principle of a polycondensation or polyaddition. Preferably, it is polymerized via a free-radical mechanism.
  • Various initiators and / or catalysts can be used, if appropriate also in combination with heat supply.
  • cationic polymerizations for example, the following initiators can be used:
  • Protic acids Lewis acids with and without coinitiators, carbonium ions, iodonium ions and / or ionizing radiation
  • the following initiators can be used: bases, Lewis bases, organometallic compounds and / or electron transfer agents, e.g. Alkali metals, alkali metal-aromatic complexes, metal ketyls
  • the following initiators / catalysts can be used:
  • Zeroegler-Natta catalysts Zeroegler-Natta catalysts
  • transition metals e.g. Metallocenes and / or Activated Transition Metal Oxides
  • Initiators suitable for free-radical polymerization include, for example, peroxides or azo compounds, substituted ethanes (e.g., benzopinacols), redox systems with inorganic and organic components, heat, UV light and other high-energy radiation, hydroperoxides, peresters, and persulfates, e.g. the potassium peroxodisulfate, preferably azo compounds
  • Suitable azo compounds are 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4 dimethylvaleronitrile), 1,1'-azobis (1-cyclohexanecarbonitrile), 2,2'-azobis (isobutyramide) dihydrate, 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, dimethyl 2,2'-azobisisobutyrate, 2- (carbamoylazo) isobutyronitrile, 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane), 2,2'-azobis (N, N'-dimethyleneisobutyramidine), as free base or as hydrochloride, 2,2'-azobis (2-amidinopropane), as free base or as hydrochloride,
  • Suitable peroxides are, for example, acetylcyclohexanesulphonic peroxide, diisopropyl peroxydicarbonate, t-amylperneodecanoate, t-butylperneodecanoate, t-butyl perpivalate, t-amyl perpivalate, bis (2,4-dichlorobenzoic acid) peroxide, diisononanoic acid peroxide, di-decanoic acid peroxide and dioctanoic acid peroxide , Dilaurylic acid roxide, bis (2-methylbenzoic acid) peroxide, disuccinic acid peroxide, diacetyl peroxide, dibenzoic acid peroxide, t-butylper-2-ethylhexanoate, bis (4-chlorobenzoic acid) peroxide, t-butylperisobutyrate, t-butylpermaleinate, 1,1
  • Suitable initiators are also redox systems such as e.g. Fe - H2O2, ascorbic acid - H2O2, which are sulfinic acid derivatives such as Brüggemann, z. Disodium 2-dihydroxy-2-sulfinato acetate (e.g., BRUGGOLIT from Brüggemann) and H2O2.
  • the crosslinker can be added in solid, liquid form to the reaction mixture or dissolved or dispersed in a solvent (i.e., emulsified or suspended), preferably added dissolved.
  • a liquid crosslinker or a crosslinker dissolved (or dispersed / mixed) in a solvent is added to the reaction mixture, more preferably a crosslinker dissolved (or dispersed / mixed) in a solvent.
  • the crosslinker is dissolved in the same solvent as the functional monomer or pesticide.
  • solvents which are soluble in the monomers required for the preparation of the particles prepared in step 1 can be used as the solvent.
  • organic solvents are used such as dimethylformamide, ethanol, methanol, isopropanol, chloroform, dichloromethane, toluene, dimethyl sulfoxide, hexane and acetonitrile, preferably toluene and acetonitrile.
  • water may be added to the solvent or solvent mixtures up to a level of 50% (w / w).
  • step (2) can be carried out by methods known to the person skilled in the art (eg as Soxlett extraction, or by redispersion of the particles obtained from step (1) in organic solvents with subsequent removal, eg by filtration methods or filtration techniques in which the residue remaining in the filter is drizzled with solvent).
  • Soxlett extraction or by redispersion of the particles obtained from step (1) in organic solvents with subsequent removal, eg by filtration methods or filtration techniques in which the residue remaining in the filter is drizzled with solvent.
  • organic solvent any organic solvent in which the monomers of the particles prepared in the step (1) are soluble can be used.
  • organic solvents are used, such as dimethylformamide, ethanol, methanol, isopropanol, chloroform, dichloromethane, toluene, dimethyl sulfoxide, hexane and acetonitrile, preferably toluene and acetonitrile. It is also possible to use mixtures of the abovementioned solvents.
  • acetic acid or water or mixtures of acetic acid and water can be added to the solvent or the solvent mixtures, up to a proportion of 50% (w / w).
  • the particles can optionally be dried (eg, at temperatures of 10-130 ° C, preferably at temperatures of 20- 100 0 C).
  • step (3) the loading is carried out by active ingredient.
  • the particles prepared in step (1) and washed in step (2) are incubated with a drug solution.
  • the incubation time depends on polymer and active ingredient. For example, it may be incubated for 30 minutes to 24 hours at temperatures of 5 ° C to 30 ° C.
  • the active ingredient may in this case be dissolved in an organic solvent or a mixture of organic solvent or water.
  • the choice of solvent depends on the nature of the active ingredient. It is important that in this case the active ingredient completely, i. molecular disperse dissolved.
  • the active substance solution is removed by methods customary to the person skilled in the art (for example filtration).
  • the drug solution may be different concentrations depending on the active ingredient.
  • drug solutions of 0.01 molar concentrations of active ingredient can be used up to saturated solutions.
  • MIA All embodiments of the above-mentioned particles are hereinafter referred to as "MIA”.
  • the particles obtained during the polymerization can either be used directly or mixed with formulation auxiliaries and formulated accordingly.
  • formulation types which can be prepared on the basis of the MIA are here suspensions (SC, OD, FS), pastes, pastilles, wettable powders, dusts (WP, SP, SS, WS, DP, DS) or granules (GR, FG, GG, MG), which may either be soluble (soluble) or dispersible (wettable) in water, as well as gel formulations for seed treatment (GF).
  • the above formulations may e.g. by stretching the MIA with solvents and / or carriers, if desired using excipients.
  • auxiliaries describes surface-active substances (such as wetting agents, adhesives or dispersants, protective colloids or adjuvants), anti-foaming agents, thickeners, antifreeze agents, bactericides and, if they are seed dressing formulations, if appropriate adhesives and / or if appropriate dyes.
  • solvents eg Solvesso products, xylene
  • paraffins eg petroleum fractions
  • alcohols eg methanol, butanol, pentanol, benzyl alcohol
  • ketones eg cyclohexanone, gamma-butyrolactone
  • pyrrolidone NMP, NOP
  • acetates Glycol diacetate
  • glycols Dimethylfettklaamide
  • fatty acids and fatty acid esters into consideration.
  • solvent mixtures can also be used.
  • Suitable carriers are z.Bsp. ground natural minerals (eg kaolins, clays, talc, chalk, bolus, loess, clay, dolomite, diatomaceous earth) and ground synthetic minerals (eg fumed silica, silicates calcium and magnesium sulphate, magnesium oxide) ground plastics, fertilizers such as ammonium sulphate, ammonium phosphate , Ammonium nitrate, ureas and vegetable products, such as cereals, demehl, bark, wood and nutshell flour, cellulose powder and other solid carriers.
  • ground natural minerals eg kaolins, clays, talc, chalk, bolus, loess, clay, dolomite, diatomaceous earth
  • ground synthetic minerals eg fumed silica, silicates calcium and magnesium sulphate, magnesium oxide
  • ground plastics eg fumed silica, silicates calcium and magnesium sulphate, magnesium oxide
  • fertilizers such as ammonium
  • the surface-active substances used are alkali metal, alkaline earth metal, ammonium salts of lignin sulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalenesulfonic acid, alkylarylsulfonates, alkyl sulfates, alkyl sulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, and condensation products of sulfonated naphthalene and naphthalene derivatives with formaldehyde , Condensation products of naphthalene or naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ethers, tributylphenyl
  • Suitable protective colloids are all protective colloids customary for the formulation of agrochemical active compounds, i. in the present case, all water-soluble polymers of amphiphilic character known to the person skilled in the art, such as, for example, proteins, denatured proteins, polysaccharides, hydrophobically modified starches, and synthetic polymers.
  • Suitable thickeners which may be present in the formulations according to the invention are all thickeners customary for the formulation of agrochemical active compounds.
  • thickeners ie compounds which impart a pseudoplastic flow behavior to the formulation, ie high viscosity at rest and low viscosity in the agitated state
  • thickeners are, for example, polysaccharides or organic and inorganic layer minerals such as xanthan gum (Kelzan® from Kelco), Rhodopol® 23 (Rhone Poulenc) or Veegum® (RT Vanderbilt) or Attaclay® (Engelhardt).
  • Suitable antifoams which may be present in the formulations according to the invention are all antifoams customary for the formulation of agrochemical active compounds.
  • antifoam agents are silicone emulsions (such as, for example, Silikon® SRE, Wacker or Rhodorsil® from Rhodia), long-chain alcohols, fatty acids, organofluorine compounds and mixtures thereof.
  • Bactericides can be added to stabilize aqueous formulation types.
  • Suitable bactericides which may be present in the formulations according to the invention are all conventional bactericides for formulating agrochemical active compounds, for example bactericides based on diclorophene and benzyl alcohol hemiformal. Examples of bactericides are Proxel® from the company ICI or Acticide® RS from Thor Chemie and Kathon® MK from Rohm & Haas.
  • Suitable antifreeze agents which may be present in the formulations according to the invention are all antifreeze agents customary for the formulation of agrochemical active compounds. Suitable antifreeze agents are, for example, ethylene glycol, propylene glycol or glycerol, preferably propylene glycol and glycerol.
  • Suitable colorants are all customary for such purposes dyes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, Cl. Pigment Red 1 12 and Cl. Solvent Red 1 known dyes, as well as pigment blue 15: 4, pigment blue 15: 3, pigment blue 15: 2, pigment blue 15: 1, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 1 12, pigment red 48: 2, pigment red 48: 1, pigment red 57: 1, pigment red 53: 1, pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108
  • Suitable adhesives which may be present in the formulations according to the invention are all customary binders which can be used in pickling agents.
  • Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • mineral oil fractions of medium to high boiling point such as kerosine or diesel oil, coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, strong polar solvents, e.g. Dimethylsulfoxide, N-methylpyrrolidone or water into consideration.
  • mineral oil fractions of medium to high boiling point such as kerosine or diesel oil, coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivative
  • the MIA can be ground to a fine suspension of active substance with the addition of dispersing and wetting agents and water or an organic solvent (or solvent / water mixtures).
  • a gelling agent is added to gel formulations (fe. Carrageen (Satiagel ®) Dilution with water gives a stable suspension of the MIA.
  • Powders, dispersants and dusts may be prepared by mixing or co-grinding the active substances with a solid carrier.
  • Granules for example coated, impregnated and homogeneous granules, can be prepared by binding the MIA to solid carriers.
  • the formulations generally contain between 0.01 and 95% by weight, preferably between 0.1 and 90% by weight of the pesticide.
  • Formulation types for example SC, OD, FS, WG, SG, WP, SP, SS, WS, GF
  • Formulation types such as DP, DS, GR, FG, GG, MG are generally used undiluted
  • the formulation types suitable for seed treatment can be diluted or undiluted as needed 2 to 10 times, so that 0.01 to 60% by weight, preferably 0.1 to 40% by weight of the pesticide are present in the formulations to be used for the stain.
  • MIA and all MIA-based formulations are referred to as MIA formulations.
  • the present invention claims methods for controlling phytopathogenic fungi and / or undesired plant growth and / or undesired insect or mite infestation and / or for regulating the growth of plants, characterized in that an MIA formulation is applied to the respective pests (ie phytopathogenic fungi and / or unwanted insects or mites) whose habitat or plants to be protected from the respective pest, the soil and / or undesirable plants and / or the crops and / or their habitat act.
  • an MIA formulation is applied to the respective pests (ie phytopathogenic fungi and / or unwanted insects or mites) whose habitat or plants to be protected from the respective pest, the soil and / or undesirable plants and / or the crops and / or their habitat act.
  • the present invention also relates to methods for controlling undesirable insect or mite infestation on plants and / or for controlling phytopathogenic fungi and / or for controlling undesired plant growth, characterized in that seed of crops having a seed treatment suitable for seed treatment is used. Wording treated.
  • seed treated with a MIA formulation suitable for seed treatment is also used.
  • the amounts of pesticide are 0.1 g to 10 kg per 100 kg of seed, preferably 1 g to 5 kg per 100 kg of seed, more preferably 1 g to 2.5 kg per 100 kg of seed.
  • seed includes seeds of all kinds, such as grains, seeds, fruits, tubers, cuttings and similar forms.
  • seed preferably describes grains and seeds here.
  • Suitable seeds are cereal crops, strawberry crops, root crops, oilseeds, vegetable seeds, spice seed, ornamental plant seed, e.g. Seeds of durum wheat, wheat, barley, oats, rye, maize (fodder corn and sweetcorn), soya, oilseed, cruciferous vegetables, cotton, sunflowers, bananas, rice, oilseed rape, beet ,, sugarbeet, fodder beetroot, potato, grass, ( Ornamental) lawn, fodder grass, tomato, leek, pumpkin, cabbage, iceberg lettuce, pepper, greens, melons, Brassica spp, melons, beans, peas, garlic, onions, carrots, tubers such as sugar cane, tabbak, grapes, petunia and geranium , Pansy, balsam, prefers wheat, corn, soy and rice.
  • Seed may also be seed of transgenic or plant obtained by conventional breeding methods.
  • seed can be used which is tolerant of herbicides, fungicides or insecticides, e.g. to sulfonylureas, imidazolinones or gluconate or glyphosate (see, for example, EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat No. 5,013,659) or transgenic plant seeds, e.g. Cotton that produces Bacillus thuringiensis toxin (Bt toxins) and thereby resistant to certain pests (E P-A-0142924, EP-A-0193259).
  • seed of plants can be used which have modified properties in comparison with conventional plants.
  • modified starch synthesis for example WO 92/1 1376, WO 92/14827, WO 91/19806) or fatty acid compositions (WO 91/13972).
  • phytopathogenic fungi describes but is not limited to the following species: Alternaria spp. on rice, vegetables, soya beans, oilseed rape, sugarbeet and fruits, Aphanomyces spp. on sugar beet and vegetables, Bipolaris and Drechslera spp. on corn, cereals, rice and ornamental grass, Blumeria graminis (powdery mildew) on cereals, Botrytis cinerea (gray mold) on strawberries, vegetables, ornamental flowers, grapes, Bremia lactucae on lettuce, Cercospora spp. on corn, soybean, and sugarbeet, Cochliobolus spp.
  • cereals and rice eg Gibberella fujikuroi to rice, Gibberella zeae to cereals
  • Grainstaining complex to rice Microdochium nivale to cereals, Mycosphaerella spp. cereals, bananas and peanuts, Phakopsora pachyrhizi and Phakopsora meibomiae on soybeans, Phomopsis spp. sunflower, Sunflower, Phytophthora infestans on potatoes and Tomante, Plasmopara viticola on grapes, Podosphaera leucotricha on apples, Pseudocercosporella herpotrichoid on wheat and barley, Pseudoperonospora spp.
  • Millipedes e.g. Blaniulus spp
  • Ants for example Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Pogonomyrmex spp and Pheidole megacephala,
  • Flies e.g. Agromyza oryzea, Chrysomia bezziana, Chrysomya hominivorax, Chrysomia macellaria, Contarina sorghicola, Cordylobia anthropophaga, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia platura, Delia radicum, Fannia canicularis, Gasterophilus intestinalis, Geomyza tri punctata, Glossina morsitans, Haematobia irritants, Haplodiplosis equestris, Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mayetiola destructor, Muscina stabulans, Oestrus ovis, Opomyza flo
  • Heteroptera e.g. Acrosternum hilare, Blissus leucopterus, Cicadellidae e.g. Empoasca fabae, Chrysomelidae, Cyrtopeltis notatus, Delpahcidae, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Eushistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nephotettix spp, Nezara viridula, Pentatomidae, Piesma quadrata, Solubea insularis and Thyanta perditor,
  • Orthoptera e.g. Acrididae, Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melonoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus and Tachycines asynamorus;
  • Termites e.g. Calotermes flavicollis, Coptotermes spp, Dalbulus maidis, Leucotermes flavipes, Macrotermes gilvus, Reticulitermes lucifugus, and Termes natalensis;
  • Thrips e.g. Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici and other Frankliniella spp, Scirtothrips citri, Thrips oryzae, Thrips palmi, Thrips simplex and Thrips tabaci,
  • Arachnids for example eg of the families Argasidae, Ixodidae and Sarcoptidae, eg Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp eg Aculus badendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp eg Phytone
  • Nematodes especially plant parasitic nematodes e.g. "root-knot” nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, and other melodiogynous spp; cyst-forming nematodes, Globodera rostochiensis and other Globodera spp; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera spp; Seed gall nematodes, Anguina spp; Star and foliar nematodes, Aphelenchoides spp; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus spp; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus spp
  • Paratrichodorus spp Stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus spp; Citrus nematodes, Tylenchulus spp; Dagger nematodes, Xiphinema spp; and other plants parasitic nematodes.
  • Controlling undesired plant growth means controlling / destroying plants that grow in places where they are undesirable, e.g. from
  • Example a A 2-liter HWS reactor was equipped with a condenser, a stirrer motor, an anchor stirrer, a nitrogen inlet tube with glass frit, a laboratory controller Julabo LC 3 with 2-PT-100 thermosensors, an oil bath with immersion heater and magnetic stirrer, and 2 HPLC pumps (Bischoff) each equipped with a pump head (0-1 mL / min) for dosing initiator and monomers.
  • the apparatus was purged with nitrogen before the start of the experiment. During the entire experiment, nitrogen was passed through the solution at a flow rate of about 10 L / h. 800 ml of solvent acetonitrile (AcN) were introduced into the reaction vessel and dissolved in this 17.51 g of fipropane (template).
  • AcN solvent acetonitrile
  • solution 2 Another solution (solution 2) was prepared by dissolving the remaining 3/4 of the initiator, corresponding to 1.594 g, in 250 ml of acetonitrile. The second half of solution 1 and solution 2 were added by means of the two HPLC pumps in the reactor over a period of 18 h. Dosage rates for solution were 1: 0.153 ml / min, and for solution 2: 0.232 ml / min. The subsequent post-reaction time was 6 hours, so the total reaction time thus 24 h. After each full hour, a 1 mL sample was taken from the reaction mixture and, after filtration, subjected to HPLC analysis.
  • Example b A 2-liter HWS reactor was equipped with a condenser, a stirrer motor, an anchor stirrer, a glass fritted nitrogen inlet tube, a Julabo LC 3 laboratory controller with 2 PT-100 thermosensors, an oil bath with immersion heater and magnetic stirrer. The apparatus was purged with nitrogen before the start of the experiment. During the entire experiment, nitrogen was passed through the solution at a flow rate of about 10 L / h. 1000 ml of solvent acetonitrile (AcN) were introduced into the reaction vessel and in this 18 g of fipronil (template), 6.12 g of methacrylic acid (functional monomer) and 76.32 g of trimethylolpropane trimethacrylate dissolved.
  • AcN solvent acetonitrile
  • Example 1 a The mixture obtained from Example 1 a) was filtered, and the residue remaining in the filter was subsequently washed with 100 ml of acetonitrile and then with 100 ml of methanol over a period of 10 min.
  • Example 3 Loading the polymer with a pesticide
  • a Millipore ultrafiltration cell (model 8400) was connected to a 5 liter plastic canister as a storage vessel (contents: water). The cell was filled with a dispersion of 100 mg of polymer in 100 ml of water and stirred for 15 minutes until homogenized with the magnetic stirrer incorporated into the ultrafiltration cell. The extrak tion medium (water) was passed via the inlet without overpressure from the storage vessel into the cell. The extract exiting the cell was passed to a bottom of the cell in a receiver. Finally, the volume, mass and time of the individual fractions were determined and a 2 ml sample was taken from each fraction. Several fractions were collected over the experimental period. These samples were filtered through a 0.45 ⁇ l filter and stored in the refrigerator at 4 ° C for HPLC to determine fipronil concentration. The dispersion was removed from the ultrafiltration vessel and bottled after the end of the experiment.
  • Example 3 The release behavior of a post-polymerization molecular imprinted polymer (MIP1, prepared according to Example 3) was measured at the rate of release of a post-polymerization loaded non-imprinted control polymer (CP1), the data being collected according to the procedure outlined in Example 4 A).
  • CP1 was synthesized in analogy to the preparation described in Example 1 a, but in the absence of the active ingredient fipronil.
  • the washed polymer was washed with 100 ml each of acetonitrile and methanol in the same way as in Example 2B, the subsequent loading with active ingredient was carried out analogously to Example 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die vorliegende Erfindung umfasst die Verwendung von in Gegenwart mindestens eines Pestizids molekular geprägten Acrylat Polymeren zur Herstellung einer agrochemischen Formulierung mit kontrollierter Wirkstoffabgabe, Formulierungen umfassend die vorstehend genannten in Gegenwart mindestens eines Pestizids molekular geprägtes Acrylat Polymere und mindestens einem Pestizid, Verfahren zur Herstellung der vorstehend genannten Formulierungen sowie die Verwendung der vorstehend genannten Formulierungen im Pflanzenschutz.

Description

Agrochemische Formulierungen auf Basis molekular geprägter Acrylate
Beschreibung
Die vorliegende Erfindung umfasst die Verwendung von in Gegenwart mindestens eines Pestizids molekular geprägten Acrylat Polymeren zur Herstellung einer agrochemischen Formulierung mit kontrollierter Wirkstoffabgabe, Formulierungen umfassend die vorstehend genannten in Gegenwart mindestens eines Pestizids molekular geprägtes Acrylat Polymere und mindestens einem Pestizid, Verfahren zur Herstellung der vor- stehend genannten Formulierungen sowie die Verwendung der vorstehend genannten Formulierungen im Pflanzenschutz.
Umwelteinflüsse wie Wind, Sonne, Regen aber auch Grundwasser können eine unerwünschte Verteilung von Pflanzenschutzwirkstoffen bewirken. Hierdurch kann die Menge an Wirkstoff so reduziert werden, dass später auftretender Befall an Schadorganismen oder späteres Wachstum unerwünschter Pflanzen nicht verhindert werden kann.
Formulierungen mit verzögert Wirkstoffabgabe umgehen diese Problematik dadurch, dass über einen gewissen Zeitraum bestimmte Wirkstoffmengen verzögert abgegeben werden. Allerdings ist es auch in einigen Fällen wünschenswert, die Schädlinge bzw. Unkräuter durch die direkte Abgabe eines Teils der gesamt eingesetzten Wirkstoffmenge zu bekämpfen.
Aufgabe der vorliegenden Erfindung war somit, Formulierungen bereitzustellen, in welchen ein Teil des Wirkstoffes direkt und ein weiterer des Wirkstoffes nicht sofort, sondern über einen längeren Zeitraum verlangsamt freigegeben wird.
Die Aufgabe wurde durch die Verwendung von in Gegenwart eines Pestizids molekular geprägten Acrylat Polymeren zur Herstellung einer agrochemischen Formulierung mit verzögerter Wirkstoffabgabe gelöst, wobei die genauere Spezifikation der erfindungsgemäßen Formulierung weiter unten angegeben wird
Molekulares Prägen von Acrylat-Polymeren mit Agrowirkstoffen in Gegenwart difunkti- oneller Vernetzer ist bislang nur aus dem Bereich der Analytik bekannt, z.Bsp. J. Agric. Food Chem. 1995, 43, 1424-1427, Journal of Physics: Confernece Series 10(2005) 281-284, J. Agric. Food Chem. 1996, 44, 141-145, Chemistry Letters 7 (1995), 491- 612, aber nicht zur Herstellung von agrochemischen Formulierungen.
Die vorliegende Erfindung umfasst somit eine agrochemische Formulierung umfassend von in Gegenwart mindestens eines Pestizids molekular geprägten Acrylat Polymeren. Die vorstehend genannten Formulierungen sind über ein Verfahren herstellbar, welches dadurch gekennzeichnet ist, dass man
(1 ) das Acrylat Polymer durch Fällungspolymerisation in Gegenwart des Pestizids herstellt;
(2) die hergestellten Partikel anschliessend mit organischen Lösungsmittel wäscht; und
(3) mit einer Lösung des Wirkstoffes inkubiert, wodurch eine Beladung der Partikel mit Wirkstoff erfolgt.
Die molekular geprägten Acrylat Polymer sind aus mindestens einem funktionellem Monomeren und mindestens einem Vernetzer aufgebaut.
Der Ausdruck „Acrylat Polymer" bezeichnet Polymere sowie Copolymere, welche mindestens auf Basis eines Monmers hergestellt wurden, welches aus der Gruppe bestehend aus Acrylsäure, Methacrylsäure und von Acrylsäure oder Methacrylsäure abgeleitete Monmeren ausgewählt wurde.
Der Ausdruck "mindestens ein funktionelles Monomere" bedeutet, dass ein, zwei oder mehrere der funktionelle Monomere für die Herstellung des in Gegenwart eines Pestizides molekular geprägten Acrylates verwendet werden können, vorzugsweise eines oder zwei, besonders bevorzugt eins.
Der Ausdruck " mindestens einem Vernetzer" bedeutet, dass ein, zwei oder mehrere Vernetzer für die Herstellung des in Gegenwart eines Pestizides molekular geprägten Acrylates verwendet werden können, vorzugsweise eines oder zwei, besonders bevorzugt eins.
Der Ausdruck " mindestens ein Pestizid" bedeutet, dass ein, zwei oder mehrere Pestizide für die Herstellung des molekular geprägten Acrylates verwendet werden können, vorzugsweise eines oder zwei, besonders bevorzugt eins. Das hier zum Prägen verwendete Pestizid und das in der Formulierung enthaltende Pestizid sind entwe- der identisch oder strukturell sehr ähnlich, vorzugsweise identisch.
Das funktionelle Monomer kann hierbei vorzugsweise aus der Gruppe bestehend aus
Hydroxyalkyl(meth)acrylaten wie zum Beispiel 2-Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat (Meth)acrylamiden wie zum Beispieldimethyl(meth)acrylamid, Diethyl(meth)acrylamid, lsopropyl(meth)acrylamid,(meth)acryloyl morpholin, Dimethylamino- methyl(meth)acrylamid, Dimethylaminoethyl(meth)acrylamid, Dimethylaminopro- pyl(meth)acrylamid, Diethylaminomethyl(meth)acrylamid, Diethylami- noethyl(meth)acrylamid, Diethylaminopropyl(meth)acrylamid und Derivate des (meth)acrylamides wie zum Beispiel N-methyl acrylamid, N-methylol acrylamid, N-methylol methacrylamid;
Alkyl (meth)acrylaten wie zum Beispiel Methyl (meth)acrylat, Ethyl (meth)acrylat, n- Propyl (meth)acrylat, n-Butyl (meth)acrylat, t-Butyl (meth)acrylat,
2-Ethylhexyl (meth)acrylat, Stearyl (meth)acrylat, Lauryl (meth)acrylat, Cyclohexyl (meth)acrylat, Stearyl (meth)acrylat, Dodecyl (meth)acrylat, 2-Hydroxyethyl (meth)acrylat, 2-Hydroxypropyl (meth)acrylat,
Cyano(alky)acrylaten wie zum Beispiel cyanoalkyl(meth)acrylate (wie cya- noethyl(meth)acrylate, cyanopropyl(meth)acrylate);
Acrylsäure und Methacrylsäure, ausgewählt werden, wobei Methacrylsäure besonders bevorzugt ist.
Des weiteren kann mehr als ein funktionelles Monomer eingesetzt werden. Als zweites oder drittes funktionelles Monomer können Vinylbenzoesäure, Vinylpyrrolidon; 4- Vinylpyridin, 2-Vinylpyridin, 1-Vinylimidazol, 4(5)-Vinylimidazol, Itaconsäure, Trifluor- methacrylsäure, 4-Vinylbenzamidin, 4-Vinylbenzyl-imino-diessigsäure sowie N- Vinylaminde wie Vinylformamid ausgewählt werden;wobei 4-Vinylpyridin, 2-
Vinylpyridin, 1-Vinylimidazol, 4(5)-Vinylimidazol, Itaconsäure, Trifluormethacrylsäure , 4-Vinylbenzamidin, 4-Vinylbenzyl-imino-diessigsäure bevorzugt sind..
Der Vernetzer kann hier vorzugsweise aus der Gruppe bestehend aus ethylenisch un- gesättigten Verbindungen mit mindestens zwei (d.h. zwei, drei oder vier) vinylischen oder allylischen Doppelbindungen, die radikalisch polymerisierbar sind, so z.B. Diviny- lestern aliphatischer und aromatischer Dicarbonsäuren (z.B. der Divinylester von Bernsteinsäure, oder Phthalsäurediallylester), Oligoallylestern (wie z.B. Triallylphosphat oder Triallylisocyanurat), Divinylethern aliphatischer und aromatischer Diole (z.B. Bu- tandiol-1 ,4-divinylether oder Diallylbisphenol A), den Umsetzungsprodukten aus OH- terminierten, oligomeren Polybutadienen mit Maleinsäure oder (Meth)Acrylsäure, d.h. oligomere Polybutadiene mit aktivierten, photopolymerisierbaren olefinischen Doppelbindungen, Di-(meth)acrylaten von Alkylenglycolen bzw. Alkyldiolen (wie z.B. Ethy- lenglycoldimethacrylat) Divinylaromaten (wie z.B. Divinylbenzol oder Diallylbenzol), Bisacrylamiden (wie z.B. N,N'-Methylenbisacrylamid, N,N'-Phenylenbisacrylamid oder 2,6-Bisacrylamidopyridin), Bisacryloylpiperazin, , Di- und Triallylether oder Di- und Tri(meth)acrylate von Triolen (wie z.B. von Trimethylolethan, Trimethylolpropan oder Triethanolamin) , Di-, Tri- und Tetraallylethern oder Di-, Tri- und Tetra(meth)acrylaten von Tetraolen (wie z.B. von Pentaerythrit), Oligo(meth)acrylaten polyfunktioneller Phenole mit 2 bis 4 OH-Gruppen (wie z.B. von Brenzkatechin, Hydrochinon, Bisphenol-A oder Bisphenol-F), sowie allen weiteren Oligo(meth)acrylaten, Oligoallylmonomeren und Oligovinylmonomeren ausgewählt werden.
Als Vernetzter können auch Alkoxylierte di- oder polyole werden, die dann entsprechend mit dem funktionellem Monomer umgesetzt werden könnnen, zum Beispiel E- thoxytrimethylolpropantriacrylat. Besonders bevorzugt werden tri- oder höher funktionelle Vernetzer eingesetzt, z.Bsp. Oligoallylesternmit drei oder mehr Allylgruppen wie z.B. Triallylphosphat oder Triallyli- socyanurat, Triallylether oder Tri(meth)acrylate von Triolen (wie z.B. von Trimethylo- lethan, Trimethylolpropan oder Triethanolamin), Tri- und Tetraallylether oder Tri- und Tetra(meth)acrylate von Tetraolen (wie z.B. von Pentaerythrit), Oligo(meth)acrylaten polyfunktioneller Phenole mit 3 bis 4 OH-Gruppen (wie z.B. Brenzkatechin) sowie ON- goacrylate, Oligo(meth)acrylate, Oligoallylmonomerenund Oligovinylmonomere, die mindestens drei funktionelle Gruppen enthalten.
Das molare Verhältnis von funktionellem Monomer zu Vernetzer beträgt in der Regel 1/2 bis 1/10, vorzugsweise 1/2 bis 1/4.
Alle Ausführungsformen der oben genannten mit Pestizid molekular geprägten Acrylate werden im folgenden als "MIA" bezeichnet.
In den MIA beträgt das Massenverhältnis von Polymer zu Wirkstoff 1 :10 bis 100:1
(w/w) beträgt, vorzugsweise 1 :1 bis 10:1 (w/w), besonders bevorzugt: 4:1 bis 5:1 (w/w).
Hierbei ist das Acrylat Polymer vorzugsweise aus mindestens einem der oben genannten funktionellen Monomeren und mindestens einem der oben genannten Vernetzer aufgebaut.
Der Begriff agrochemischer Wirkstoff / Pestizid bezeichnet hier mindestens einen Wirkstoff ausgewählt aus der Gruppe der Insektizide, Fungizide, Herbizide und/oder Safener, Wachstumsregulatoren (s. Pesticide Manual, 13th Ed. (2003)). Hierbei können auch Kombinationen aus zwei oder mehreren der unten genannten Wirkstoffe verwendet werden.
Die folgende Liste von Insektiziden zeigt mögliche Wirkstoffe auf, soll aber nicht auf diese beschränkt sein:
A.1. Organo(thio)phosphate: acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidophos, methi- dathion, methyl-parathion, mevinphos, monocrotophos, oxydemeton-methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, piri- miphos-methyl, profenofos, prothiofos, sulprophos, tetrachlorvinphos, terbufos, tria- zophos, trichlorfon;
A.2. Carbamate: alanycarb, aldicarb, bendiocarb, benfuracarb, carbaryl, carbofuran, carbosulfan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb, pro- poxur, thiodicarb, triazamate;
A.3. Pyrethroide: allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cyper- methrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, es- fenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin und flucythrinate;
A.4. Wachstumsregulatoren: a) chitin synthesis inhibitors: benzoylureas: chlorfluazu- ron, cyromazin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide, azadirachtin; c) juvenoids: pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spiromesifen,
A.5. Nicotin Rezeptor Agonisten/ Antagonisten: clothianidin, dinotefuran, imidacloprid, thiamethoxam, nitenpyram, acetamiprid, thiacloprid, eine Thiazolverbindung der Formel Δ1
Figure imgf000006_0001
A.6. GABA Antagonisten: acetoprole, endosulfan, ethiprole, fipronil, vaniliprole, eine Phenylpyrazol Verbindung der Formel Δ2
Figure imgf000007_0001
A.7. Macrolid-Insektizide: abamectin, emamectin, milbemectin, lepimectin, spinosad, eine Verbindung der Formel Δ3(CAS No. 187166-40-1 )
Figure imgf000007_0002
A.8. METI I Acarizide: fenazaquin, pyridaben, tebufenpyrad, tolfenpyrad;
A.9. METI Il and IM Verbindungen: acequinocyl, fluacyprim, hydramethylnon;
A.10. Entkoppler-Verbindungen: chlorfenapyr;
A.1 1. Hemmer der oxidativen Phosphorylierung: cyhexatin, diafenthiuron, fenbutatin oxide, propargite;
A.12. Häutungsstörende Verbindungen: cryomazine;
A.13. Hemmer der Mixed-Function-Oxidase: piperonyl butoxide;
A.14. Natriumkanalblocker: indoxacarb, metaflumizone;
A.15. Verschiedene: benclothiaz, bifenazate, cartap, flonicamid, pyridalyl, pymetrozine, sulfur, thiocyclam, flubendiamide, cyenopyrafen, flupyrazofos, cyflumetofen, amidoflumet, Verbindungen der Formel Δ4
Figure imgf000008_0001
N-R'-2,2-dihalo-1 -R"cyclo-propanecarboxamide-2-(2,6-dichloro- α,α,α -tri-fluoro-p- tolyl)hydrazone oder N-R'-2,2-di(R'")propionamide-2-(2,6-dichloro- α,α,α -trifluoro-p- tolyl)-hydrazone, wobei R' für methyl oder ethyl, halo für chlor oder brom, R" für Wasserstoff oder methyl und R'"für methyl oder ethyl stehen, Anthranilamide der Formel Δ5
Figure imgf000008_0002
worin A1 für CH3, Cl, Br, I, X für C-H, C-Cl, C-F oder N, Y' für F, Cl, oder Br, Y" für F, Cl oder CF3, B1 für Wasserstoff, Cl, Br, I, CN, B2 is Cl, Br, CF3, OCH2CF3 oder OCF2H, und RB für Wasserstoff, CH3 oder CH(CH3)2 stehen und Malononitril Verbindungen wie in JP 2002 284608, WO 02/89579, WO 02/90320, WO 02/90321 , WO 04/06677, WO 04/20399, oder JP 2004 99597 beschrieben.
Die folgende Liste von Fungiziden zeigt mögliche Wirkstoffe auf, soll aber nicht auf diese beschränkt sein:
1. Strobilurine
Azoxystrobin, Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim-methyl, Metomi- nostrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin, Orysastrobin, (2-Chlor-5-[1-(3- methyl-benzyloxyimino)-ethyl]-benzyl)-carbaminsäuremethylester, (2-Chlor-5-[1-(6- methyl-pyridin-2-ylmethoxyimino)-ethyl]-benzyl)-carbaminsäuremethyl ester, 2-(ortho- ((2,5-Dimethylphenyl-oxymethylen)phenyl)-3-methoxy-acrylsäuremethylester;
2. Carbonsäureamide
- Carbonsäureanilide: Benalaxyl, Benodanil, Boscalid, Carboxin, Mepronil, Fenfuram, Fenhexamid, Flutolanil, Furametpyr, Metalaxyl, Ofurace, Oxadixyl, Oxycarboxin, Pen- thiopyrad, Thifluzamide, Tiadinil, 4-Difluormethyl-2-methyl-thiazol-5-carbonsäure-(4'- brom-biphenyl-2-yl)-amid, 4-Difluormethyl-2-methyl-thiazol-5-carbonsäure-(4'-trifluor- methyl-biphenyl-2-yl)-amid, 4-Difluormethyl-2-methyl-thiazol-5-carbonsäure-(4'-chlor-3'- fluor-biphenyl-2-yl)-amid, 3-Difluormethyl-1-methyl-pyrazol-4-carbonsäure-(3',4'-di- (3',4'-dichlor-4-fluor-biphenyl-2-yl)-amid, 3,4-Dichlor-isothiazol-5-carbonsäure (2-cyano- phenyl) amid;
- Carbonsäuremorpholide: Dimethomorph, Flumorph;
- Benzoesäureamide: Flumetover, Fluopicolide (Picobenzamid), Zoxamide; - Sonstige Carbonsäureamide: Carpropamid, Diclocymet, Mandipropamid, N-(2-(4-[3- (4-Chlor-phenyl)-prop-2-inyloxy]-3-methoxy-phenyl)-ethyl)-2-methylsulfonylamino-3- methyl-butyramid, N-(2-(4-[3-(4-Chlor-phenyl)-prop-2-inyloxy]-3-methoxy-phenyl)- ethyl)-2-ethylsulfonylamino-3-methyl-butyramid;
3. Azole
- Triazole: Bitertanol, Bromuconazole, Cyproconazole, Difenoconazole, Diniconazole, Enilconazole, Epoxiconazole, Fenbuconazole, Flusilazole, Fluquinconazole, Flutriafol, Hexaconazol, Imibenconazole, Ipconazole, Metconazol, Myclobutanil, Penconazole, Propiconazole, Prothioconazole, Simeconazole, Tebuconazole, Tetraconazole, Triadimenol, Triadimefon, Triticonazole;
- Imidazole: Cyazofamid, Imazalil, Pefurazoate, Prochloraz, Triflumizole;
- Benzimidazole: Benomyl, Carbendazim, Fuberidazole, Thiabendazole;
- Sonstige: Ethaboxam, Etridiazole, Hymexazole;
4. Stickstoffhaltige Heterocyclylverbindungen:
- Pyridine: Fluazinam, Pyrifenox, 3-[5-(4-Chlor-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]- pyridin;
- Pyrimidine: Bupirimate, Cyprodinil, Ferimzone, Fenarimol, Mepanipyrim, Nuarimol, Pyrimethanil; - Piperazine: Triforine;
- Pyrrole: Fludioxonil, Fenpiclonil;
- Morpholine: Aldimorph, Dodemorph, Fenpropimorph, Tridemorph;
- Dicarboximide: Iprodione, Procymidone, Vinclozolin;
- sonstige: Acibenzolar-S-methyl, Anilazin, Captan, Captafol, Dazomet, Diclomezine, Fenoxanil, Folpet, Fenpropidin, Famoxadone, Fenamidone, Octhilinone, Probenazole,
Proquinazid, Pyroquilon, Quinoxyfen, Tricyclazole, 5-Chlor-7-(4-methyl-piperidin-1-yl)- 6-(2,4,6-tιϊfluor-phenyl)-[1 ,2,4]triazolo[1 ,5-a]pyτimidin, 2-Butoxy-6-iodo-3-propyl- chromen-4-on, 3-(3-Brom-6-fluoro-2-methyl-indol-1 -sulfonyl)-[1 ,2,4]triazol-1 -sulfon- säuredimethylamid;
5. Carbamate und Dithiocarbamate
- Dithiocarbamate: Ferbam, Mancozeb, Maneb, Metiram, Metam, Propineb, Thiram, Zineb, Ziram;
- Carbamate: Diethofencarb, Flubenthiavalicarb, Iprovalicarb, Propamocarb, 3-(4- Chlor-phenyl)-3-(2-isopropoxycarbonylamino-3-methyl-butyrylamino)-propionsäure- methylester, N-(1 -(1 -(4-cyanophenyl)ethylsulfonyl)-but-2-yl) carbaminsäure-(4-fluor- phenyl)ester; 6. Sonstige Fungizide
- Guanidine: Dodine, Iminoctadine, Guazatine;
- Antibiotika: Kasugamycin, Polyoxine, Streptomycin, Validamycin A; - Organometallverbindungen: Fentin Salze;
- Schwefelhaltige Heterocyclylverbindungen: Isoprothiolane, Dithianon;
- Organophosphorverbindungen: Edifenphos, Fosetyl, Fosetyl-aluminium, Iprobenfos, Pyrazophos, Tolclofos-methyl, Phosphorige Säure und ihre Salze;
- Organochlorverbindungen: Thiophanate Methyl, Chlorothalonil, Dichlofluanid, To- lylfluanid, Flusulfamide, Phthalide, Hexachlorbenzene, Pencycuron, Quintozene;
- Nitrophenylderivate: Binapacryl, Dinocap, Dinobuton;
- Anorganische Wirkstoffe: Bordeaux Brühe, Kupferacetat, Kupferhydroxid, Kupfer- oxychlorid, basisches Kupfersulfat, Schwefel;
- Sonstige: Spiroxamine, Cyflufenamid, Cymoxanil, Metrafenone.
Die folgende Liste von Herbizden zeigt mögliche Wirkstoffe auf, soll aber nicht auf diese beschränkt sein:
Verbindungen, die die Biosynthese von Lipiden inhibieren, z.B. Chlorazifop, Clodina- fop, Clofop, Cyhalofop, Ciclofop, Fenoxaprop, Fenoxaprop-p, Fenthiaprop, Fluazifop, Fluazifop-P, Haloxyfop, Haloxyfop-P, Isoxapyrifop, Metamifop, Propaquizafop, Quizalo- fop, Quizalofop-P, Trifop, Alloxydim, Butroxydim, Clethodim, Cloproxydim, Cycloxydim, Profoxydim, Sethoxydim, Tepraloxydim, Tralkoxydim, Butylate, Cycloat, Diallat, Dime- piperat, EPTC, Esprocarb, Ethiolate, Isopolinate, Methiobencarb, Molinate, Orbencarb, Pebulate, Prosulfocarb, Sulfallat, Thiobencarb, Thiocarbazil, Triallat, Vernolat, Benfu- resat, Ethofumesat und Bensulid;
ALS-Inhibitoren wie Amidosulfuron, Azimsulfuron, Bensulfuron, Chlorimuron, Chlorsul- furon, Cinosulfuron, Cyclosulfamuron, Ethametsulfuron, Ethoxysulfuron, Flazasulfuron, Flupyrsulfuron, Foramsulfuron, Halosulfuron, Imazosulfuron, lodosulfuron, Mesosulfu- ron, Metsulfuron, Nicosulfuron, Oxasulfuron, Primisulfuron, Prosulfuron, Pyrazosulfu- ron, Rimsulfuron, Sulfometuron, Sulfosulfuron, Thifensulfuron, Triasulfuron, Tribenuron, Trifloxysulfuron, Triflusulfuron, Tritosulfuron, Imazamethabenz, Imazamox, Imazapic, Imazapyr, Imazaquin, Imazethapyr, Cloransulam, Diclosulam, Florasulam, Flumetsu- lam, Metosulam, Penoxsulam, Bispyribac, Pyriminobac, Propoxycarbazone, Flucarba- zone, Pyribenzoxim, Pyriftalid und Pyrithiobac;
Verbindungen, die die Photosynthese inhibieren wie Atraton, Atrazine, Ametryne, A- ziprotryne, Cyanazine, Cyanatryn, Chlorazine, Cyprazine, Desmetryne, Dimethametry- ne, Dipropetryn, Eglinazine, Ipazine, Mesoprazine, Methometon, Methoprotryne, Pro- cyazine, Proglinazine, Prometon, Prometryne, Propazine, Sebuthylazine, Secbumeton, Simazine, Simeton, Simetryne, Terbumeton, Terbuthylazine und Terbutryne; Protoporphyrinogen-IX Oxidase-Inhibitoren wie Acifluorfen, Bifenox, Cchlomethoxyfen, Chlornitrofen, Ethoxyfen, Fluorodifen, Fluoroglycofen, Fluoronitrofen, Fomesafen, Fury- loxyfen, Halosafen, Lactofen, Nitrofen, Nitrofluorfen, Oxyfluorfen, Fluazolate, Pyraflu- fen, Cinidon-ethyl, Flumiclorac, Flumioxazin, Flumipropyn, Fluthiacet, Thidiazimin, O- xadiazon, Oxadiargyl, Azafenidin, Carfentrazone, Sulfentrazone, Pentoxazone, Benz- fendizone, Butafenacil, Pyraclonil, Profluazol, Flufenpyr, Flupropacil, Nipyraclofen und Etnipromid;
Herbizide wie Metflurazon, Norflurazon, Flufenican, Diflufenican, Picolinafen, Beflubu- tamid, Fluridone, Flurochloridone, Flurtamone, Mesotrione, Sulcotrione, Isoxachlortole, Isoxaflutole, Benzofenap, Pyrazolynate, Pyrazoxyfen, Benzobicyclon, amitrole, cloma- zone, Aclonifen, 4-(3-trifluormethylphenoxy)- 2-(4-trifluoromethylphenyl)pyrimidin, und 3-heterocyclyl-substituierte Benzoylderivate der Formel (vgl. WO-A-96/26202, WO-A- 97/41 116, WO-A-97/41 1 17 und WO-A-97/41 1 18)
Figure imgf000011_0001
worin die Substituenten R8 to R13 folgende Bedeutung haben:
R8, R10 Wasserstoff, Halogen, Ci-C6-Alkyl, Ci-C6-Haloalkyl, Ci-C6-Alkoxy, CrC6- Haloalkoxy, Ci -C6-Al kylthio, C 1 -C6-Al ky I s u If i ny I oder Ci-C6-Alkylsulfonyl;
R9 bedeutet ein heterocyclisches Radikal aus der Gruppe bestehend aus Thiazol-2- yl, thiazol-4-yl, Thiazol-5-yl, lsoxazol-3-yl, lsoxazol-4-yl, lsoxazol-5-yl, 4,5- dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl und 4,5-dihydroisoxazol-5-yl, worin die genannten Radikale einen oder mehrere Substituenten tragen können z.B. mono-, di-, tri- or tetrasubstituiert sein können durch Halogen, Ci-C4-AIkVl, Ci-C4-AIkOXy, CrC4- Haloalkyl, Ci-C4-Haloalkoxy oder Ci-C4-Alkylthio;
R11 = Wasserstoff, Halogen oder Ci-C6-Alkyl;
R12 = d-Ce-Alkyl;
R13 = Wasserstoff oder Ci-C6-Alkyl.
Weitere geeignete Herbizide sind EPSP-Synthase-lnhibitoren wie Glyphosat;
Glutamin-Synthase-Inhibitoren wie Glufosinate und Bilanaphos; DHP-Synthase-Inhibitoren wie Asulam;
Mitose-Inhibitoren wie Benfluralin, Butralin, Dinitramine, Ethalfluralin, Fluchloralin, i- Sopropalin, Methalpropalin, Nitralin, Oryzalin, Pendimethalin, Prodiamine, Profluralin, Trifluralin, Amiprofos-methyl, Butamifos, Dithiopyr, Thiazopyr, Propyzamide, Tebutam, Chlorthal, Carbetamide, Chlorbufam, Chlorpropham and Propham;
VLCFA-Inhibitoren wie Acetochlor, Alachlor, Butachlor, Butenachlor, Delachlor, Dietha- tyl, Dimethachlor, Dimethenamid, Dimethenamid-P, Metazachlor, Metolachlor, S- Metolachlor, Pretilachlor, Propachlor, Propisochlor, Prynachlor, Terbuchlor, Thenylch- lor, Xylachlor, Allidochlor, CDEA, Epronaz, Diphenamid, Napropamide, Naproanilide, Pethoxamid, Flufenacet, Mefenacet, Fentrazamide, Anilofos, Piperophos, Cafenstrole, Indanofan und Tridiphan; Inhibitoren für die Biosynthese von Cellulose wie Dichlobenil, Chlorthiamid, Isoxaben und Flupoxam;
Herbizide wie Dinofenat, Dinoprop, Dinosam, Dinoseb, Dinoterb, DNOC, Etinofen und
Medinoterb;
Auxin-Herbizide wie Clomeprop, 2,4-D, 2,4, 5-T, MCPA, MCPA Thioethyl, Dichlorprop,
Dichlorprop-P, Mecoprop, Mecoprop-P, 2,4-DB, MCPB, Chloramben, Dicamba, 2,3,6-
TBA, Tricamba, Quinclorac, Quinmerac, Clopyralid, Fluroxypyr, Picloram, Triclopyr und
Benazolin;
Auxin-Transport-Inhibitoren wie Naptalam, Diflufenzopyr;
außerdem: Benzoylprop, Flamprop, Flamprop-M, Bromobutide, Chlorflurenol, Cin- methylin, Methyldymron, Etobenzanid, Fosamine, Metam, Pyributicarb, Oxaziclomefo- ne, Dazomet, Triaziflam und Methyl bromide.
Der Begriff "Safener" hat die folgende Bedeutung: Es ist bekannt, dass in einigen Fällen bessere Herbizidverträglichkeit durch die gemeinsame Applikation spezifisch wirkender Herbizide mit organischen aktiven Verbindungen erreicht werden kann, welche selber herbizid wirken können. In diesen Fällen wirken diese Verbindungen als Antidot oder Antagonist und werden aufgrund der Tatsache, dass sie Schaden von Nutzpflanzen reduzieren bzw. verhindern als "Safener" bezeichnet.
Die folgende Liste zeigt mögliche Safener auf, soll aber nicht auf diese beschränkt sein:
benoxacor, cloquintocet, cyometrinil, dichlormid, dicyclonon, dietholate, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, mephenate, naphthalic anhydride, 2,2,5-trimethyl-3-(dichloroacetyl)-1 ,3-oxazolidine (R-29148), 4- (dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (AD-67; MON 4660) und oxabetrinil.
Die folgende Liste von Verbindungen mit wachstumsregulatorischer Wirkung zeigt mögliche Wirkstoffe auf, soll aber nicht auf diese beschränkt sein:
1-Naphthylacetamid, 1-Naphthylessigsäure, 2-Naphthyloxyessigsäure, 3-CPA, 4-CPA, Ancymidol, Anthrachinon, BAP, Butifos; Tribufos, Butralin, Chlorflurenol, Chlormequat, Clofencet, Cyclanilide, Daminozide, Dicamba, Dikegulac sodium, Dimethipin, Chlorfe- nethol, Etacelasil, Ethephon, Ethychlozate, Fenoprop, 2,4,5-TP, Fluoridamid, Flurprimidol, Flutriafol, Gibberellic acid, Gibberillin, Guazatin, Imazalil, Indolylbuttersäure, Indo- lylessigsäure, Karetazan, Kinetin, Lactidichlor-ethyl, Maleic hydrazide, Mefluidide, Me- piquat-chlorid, Naptalam, Paclobutrazole, Prohexadione calcium, Quinmerac, Sintofen, Tetcyclacis, Thidiazuron, Triiodobezoicacid, Triapenthenol, Triazethan, Tribufos, Trine- xapacethyl.Uniconazole.
Bevorzugte Insektizide sind Metaflumizone, Pyrethroide wie allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alpha-cypermethrin, beta- cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpro- pathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, flucythrinate vorzugsweise alpha-cypermethrin, cypermethrin, permethrin, und flucythrinate sowie GABA Antagonisten (z.Bps. acetoprole, endosulfan, ethiprole, fipronil, vaniliprole), wobei Fipronil besonders bevorzugt ist.
Bevorzugte Fungizide sind Azol Fungizide wie Triazol Fungizide wie Bitertanol, Bromu- conazole, Cyproconazole, Difenoconazole, Diniconazole, Enilconazole, Epoxiconazole, Fenbuconazole, Flusilazole, Fluquinconazole, Flutriafol, Hexaconazol, Imibenconazole, Ipconazole, Metconazol, Myclobutanil, Penconazole, Propiconazole, Prothioconazole, Simeconazole, Tebuconazole, Tetraconazole, Triadimenol, Triadimefon, Triticonazole; Imidazol Fungizide wie Cyazofamid, Imazalil, Pefurazoate, Prochloraz, Triflumizole; Benzimidazole Fungizide wie Benomyl, Carbendazim, Fuberidazole, Thiabendazole; sowie sonstige Azol-Fungizide wie thaboxam, Etridiazole, Hymexazole; und Strobilurin Fungizide wie Azoxystrobin, Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim- methyl, Metominostrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin, Orysastrobin, (2-Chlor-5-[1-(3-methyl-benzyloxyimino)-ethyl]-benzyl)-carbaminsäuremethylester, (2- Chlor-5-[1-(6-methyl-pyridin-2-ylmethoxyimino)-ethyl]-benzyl)-carbaminsäuremethyl ester, 2-(ortho-((2,5-Dimethylphenyl-oxymethylen)phenyl)-3-methoxy- acrylsäuremethylester; wobei Triazol Fungzide wie Bitertanol, Bromuconazole, Cypro- conazole, Difenoconazole, Diniconazole, Enilconazole, Epoxiconazole, Fenbuconazole, Flusilazole, Fluquinconazole, Flutriafol, Hexaconazol, Imibenconazole, Ipconazole, Metconazol, Myclobutanil, Penconazole, Propiconazole, Prothioconazole, Simeconazo- Ie, Tebuconazole, Tetraconazole, Triadimenol, Triadimefon, Triticonazole, Imidazol Fungizide wie Cyazofamid, Imazalil, Pefurazoate, Prochloraz, Triflumizole; sowie die vorstehend genannten Strobilurin Fungzide besonders bevorzgut sind, und Epoxiconazol, Fluquinconazol, Triticonazol, Prochloraz, Kresoxim-methyl, Pyraclostro- bin und Orysastrobin ganz besonders bevorzugt sind.
Das vorstehend genannte Verfahren zur Herstellung der erfindungsgemäßen molekular geprägten Acrylat Polymere, ist wie bereits ausgeführt dadurch gekennzeichnet, dass man
(1 ) das Acrylat Polymer durch Fällungspolymerisation in Gegenwart des Pestizids herstellt;
(2) die hergestellten Partikel anschliessend mit organischen Lösungsmittel wäscht; und
(3) mit einer Lösung des Wirkstoffes inkubiert, wodurch eine Beladung der Partikel mit Wirkstoff erfolgt.
Das für Schritt (1) des Verfahrens benötigte grundlegende Prinzip der Fällungspolymerisation ist dem Fachmann geläufig und beispielsweise in Guyot, A. (1989), in: Comprehensive Polymer Science, Vol. 4: Eastmond, G. C, Ledwith, A., Russo, S., Sigwalt, P. (Eds.). Oxford: Pergamon, pp. 261-273 beschrieben.
In einer bevorzugten Ausführungsform kann das erfindungsgemäße molekular geprägte Acrylat Polymer dadurch hergestellt werden, dass man
(a) mindestens ein funktionelles Monomer mit mindestens einem Pestizid in einem geeigneten Lösungsmittel vermischt, mindestens einen Vernetzer hinzufügt und die Polymerisation startet ; wobei der Vernetzer vorzugsweise vorher in einem
Lösungsmittel gelöst wurde, welches in einer ganz besonders bevorzugten Ausführungsform dem Lösungsmittel, in welchem das Monomer gelöst ist, entspricht oder
(b) mindestens ein funktionelles Monomer mit mindestens einem Pestizid und mindestens einem Vernetzer in einem geeigneten Lösungsmittel vermischt und anschließend die Polymerisation startet.
Optional kann in Schritt a) auch ein Schutzkolloid zugesetzt werden. Als Schutzkolloide eigenen sich oberflächenaktive Stoffe. Der Begriff des oberflächenaktiven Stoffes ist weiter unten definiert. Die Polymerisation kann in einem radikalischen, anionischen, kationischen oder koor- dinativen Mechanismus oder nach dem Prinzip einer Polykondensation oder Polyaddi- tion erfolgen. Vorzugsweise wird über einen radikalischen Mechanismus polymerisiert. Dabei können verschiedene Initiatoren und/oder Katalysatoren zum Einsatz kommen, ggf. auch in Kombination mit Wärmezufuhr.
Für kationische Polymerisationen können beispielsweise folgende Initiatoren verwendet werden:
Protonensäuren, Lewis-Säuren mit und ohne Coinitiatoren, Carboniumionen, lodoniu- mionen und/oder ionisierende Strahlung
Für anionische Polymerisationen können folgende Initiatoren verwendet werden: Basen, Lewis-Basen, Metallorganische Verbindungen und/oder Elektronenüberträger, z.B. Alkalimetalle, Alkalimetall-Aromaten-Komplexe, Metallketyle
Für koordinative Polymerisationen können folgende Initiatoren/Katalysatoren eingesetzt werden:
Metallorganische Mischkatalysatoren (Ziegler-Natta-Katalysatoren), π-Komplexe mit Übergangsmetallen, z.B. Metallocene und/oder Aktivierte Übergangsmetalloxide
Für die radikalische Polymerisation geeignete Initiatoren sind beispielsweise Peroxide oder Azoverbindungen, substituierte Ethane (z.B. Benzpinakole), Redox-Systeme mit anorganischen und organischen Komponenten, Wärme, UV-Licht und andere energiereiche Strahlung , Hydroperoxide, Perester und Persulfate, wie z.B. das Kaliumperoxo- disulfat, vorzugsweise Azoverbindungen
Geeignete Azoverbindungen sind 2,2'-Azobisisobutyronitril, 2,2'-Azobis(2- methylbutyronitril), 2,2'-Azobis(2,4-dimethylvaleronitril), 2,2'-Azobis(4-methoxy-2,4- dimethylvaleronitril), 1 ,1 '-Azobis(1 -cyclohexancarbonitril), 2,2'-Azobis(isobutyramid) dihydrat, 2-Phenylazo-2,4-dimethyl-4-methoxyvaleronitril, Dimethyl-2,2'- azobisisobutyrat, 2-(Carbamoylazo)isobutyronitril, 2,2'-Azobis(2,4,4-trimethylpentan), 2,2'-Azobis(2-methylpropan), 2,2'-Azobis(N,N'-dimethylenisobutyramidin), als freie Ba- se oder als Hydrochlorid, 2,2'-Azobis(2-amidinopropan), als freie Base oder als Hydro- chlorid, 2,2'-Azobis(2-methyl-N-[1 ,1 bis(hydroxymethyl)ethyl]propionamid oder 2,2'- Azobis(2-methyl-N-[1 ,1 -bis(hydroxymethyl)-2- hydroxyethyl]propionamid;
Geeignete Peroxide sind zum Beispiel Acetylcyclohexansulphonsäureperoxid, Dii- sopropylperoxydicarbonat, t-Amylperneodecanoat, t-Butylperneodecanoat, t- Butylperpivalat, t-Amylperpivalat , Bis(2,4-dichlorbenzoesäure)peroxid, Di- isononansäure-peroxid, Di-decansäureperoxid, Dioctansäure-peroxid, Dilaurylsäurepe- roxid, Bis(2-methylbenzoesäure)-peroxid, Dibernsteinsäureperoxid , Diacetylperoxid, Dibenzoesäureperoxid, t-Butylper-2-ethylhexanoat, Bis-(4-chlorbenzoesäure)-peroxid, t-Butylperisobutyrat, t-Butylpermaleinat, 1 ,1-Bis(t-butylperoxy)-3,5,5- trimethylcyclohexan, 1 ,1-Bis(t-butylperoxy)cyclohexan, t-Butylperoxyisopropylcarbonat, t-Butylperisononanoat,, t-Butylperacetat, t-Amylperbenzoat, t-Butylperbenzoat, 2,2- Bis(t-butylperoxy) butan, 2,2 bis-10-(t-butylperoxy)propan, Dicumylperoxid, t 2,5- Dimethyl-2,5-bis-(t-butylperoxy)hexan? , 3-t-Butylperoxy-3-phenylphthalid, Di-t- amylperoxid, α, α'-Bis(t-butylperoxyisopropyl)-benzol , 3,5-Bis(t-butylperoxy)3,5- dimethyl-1 ,2-dioxolan, di-t-Butylperoxid, 2,5-Dimethyl-2,5-bis-(t-butylperoxy)hexain, 3,3,6,6,9,9-Hexamethyl-1 ,2,4,5-tetraoxacyclononan, p-Menthanhydroperoxid, Pinan- hydroperoxid, Diisopropylbenzol,mono-a-hydroperoxid, Cumen -hydroperoxid oder t- Butylhydroperoxid.
Geeignete Initiatoren sind weiterhin Redoxsysteme wie z.B. Fe - H2O2, Ascorbin-säure - H2O2, das sind Sulfinsäurederivate wie der Firma Brüggemann, z. B. Dinatrium-2- dihydroxy-2-sulfinato acetat (z.B. BRÜGGOLIT der Firma Brüggemann) sowie H2O2.
Es können auch Mischungen aus verschiedenen Startern eingesetzt werden.
Der Vernetzer kann je nach Aggregatzustand in fester, flüssiger Form der Reaktionsmischung hinzugefügt werden oder in einem Lösungsmittel gelöst oder dispergiert (d.h. emulgiert oder suspendiert), vorzugsweise gelöst hinzugefügt werden. Vorzugsweise wird ein flüssiger Vernetzer oder ein in einem Lösungsmittel gelöster (oder dispergier- ter / vermischter) Vernetzer der Reaktionsmischung beigefügt, besonders bevorzugt ein in einem Lösungsmittel gelöster (oder dispergierter/vermischter) Vernetzer. In einer ganz besonders bevorzguten Ausführungsform ist der Vernetzer in dem gleichen Lösungsmittel wie das funktionelle Monomer oder das Pestizid gelöst.
Als Lösungsmittel können alle Lösungsmittel verwendet werden, in welchen die für die Herstellung der in Schritt 1 hergestellten Partikel benötigten Monmere löslich sind. So können z.B. organische Lösungsmittel verwendet werden wie Dimethylformamid, Etha- nol, Methanol, Isopropanol, Chloroform, Dichlormethan, Toluol, Dimethylsulfoxid, Hexan und Acetonitril, bevorzugt Toluol und Acetonitril.
Es können auch Gemische der vorstehend genannten Lösungsmittel verwendet werden.
In einer weiteren Ausführungsform kann dem Lösungsmittel oder den Lösungsmittelgemischen Wasser zugesetzt werden, bis zu einem Anteil von 50% (w/w).
In der Regel wird, abhängig von dem verwendeten Lösungsmittel im Temperaturbereich von 40-120°C polymerisiert. Die im Schritt (2) beschriebene Waschvorgang mit organischen Lösungsmittel kann nach dem Fachmann bekannten Methoden erfolgen (z.B. als Soxlett Extraktion, oder durch Redispergierung der aus Schritt (1) erhaltenen Partikel in organischen Lösungs- mittel mit anschliessenden Entfernen, z.B. über Filtrationsmethoden oder über Filtrationstechniken, bei denen der im Filter verbliebende Rückstand mit Lösungsmittel beträufelt wird).
Als organisches Lösungsmittel kann jedes organische Lösungsmittel eingesetzt wer- den, in welchem die Monomere der in Schritt (1) hergestellten Partikel löslich sind. Beispielsweise organische Lösungsmittel verwendet werden wie Dimethylformamid, Etha- nol, Methanol, Isopropanol, Chloroform, Dichlormethan, Toluol, Dimethylsulfoxid, Hexan und Acetonitril, bevorzugt Toluol und Acetonitril. Es können auch Gemische der vorstehend genannten Lösungsmittel verwendet werden. In einer weiteren Ausfüh- rungsform kann dem Lösungsmittel oder den Lösungsmittelgemischen Essigsäure oder Wasser oder Gemische aus Essigsäure und Wasser zugesetzt werden, bis zu einem Anteil von 50% (w/w).
Nach dem in Schritt (2) erfolgten Waschschritt können die Partikel optional getrocknet werden (z.B. bei Temperaturen von 10-130°C, vorzugsweise bei Temperaturen von 20- 1000C).
In Schritt (3) erfolgt die Beladung durch Wirkstoff. In diesem Schritt werden die in Schritt (1) hergstellten, und in Schritt (2) gewaschenen Partikel mit einer Wirkstofflö- sung inkubiert. Die Inkubationszeit richtet sich nach Polymer und Wirkstoff. Beispielsweise kann 30 min bis 24 h inkubiert werden bei Temperaturen von 5°C bis 30°C.
Der Wirkstoff kann hierbei in einem organischen Lösungsmittel oder einen Gemisch aus organischen Lösungsmittel oder Wasser gelöst sein. Die Wahl des Lösungsmittels richtet sich nach der Natur Wirkstoff. Wichtig ist, dass hierbei der Wirkstoff vollständig, d.h. molekular dispers gelöst ist.
Anschliessend wird die Wirkstofflösung über dem Fachmann gängige Methoden (z.B. Filtration) entfernt.
Die Wirkstofflösung kann je nach Wirkstoff unterschiedliche Konzentrationen betragen. So sind Wirkstofflösungen von 0,01 molaren Konzentrationen an Wirkstoff bis hin zu gesättigen Lösungen einsetzbar.
Sämtliche Ausführungsformen der oben genannten Partikel werden nachfolgend als "MIA" bezeichnet. Die während der Polymerisation anfallenden Partikel können entweder direkt eingesetzt oder mit Formulierungshilfsmitteln versetzt werden und entsprechend formuliert werden.
Beispiele für Formulierungstypen, die sich auf Basis der MIA herstellen lassen, sind hier Suspensionen (SC, OD, FS), Pasten , Pastillen, benetzbare Pulver, Stäube (WP, SP, SS, WS, DP, DS) oder Granulate (GR, FG, GG, MG), die entweder in Wasser löslich (soluble) oder dispergierbar (wettable) sein können sowie Gelformulierungen für die Saatgutbehandlung (GF). Die Herstellung dieser Formulierungen sowie die dafür benötigte Technologie ist dem Fachmann bekannt, da sich die MIA enthaltenden Präparate analog wie agrochemische Wirkstoffe oder Wirkstoffbeladene Trägerstoffe einsetzten lassen (s. US 3,060,084, EP-A 707 445 (für flüssige Konzentrate), Browning, "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engi- neer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, S. 8-57 und ff. WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US 5,232,701 , US
5,208,030, GB 2,095,558, US 3,299,566, Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961 , Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989 und Mollet, H., Grubemann, A., Formu- lation technology, Wiley VCH Verlag GmbH, Weinheim (Federal Republic of Germany), 2001).
So können die oben genannten Formulierungen z.B. durch Verstrecken der MIA mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Hilfs- stoffen hergestellt werden.
Der Begriff Hilfsmittel beschreibt oberflächenaktive Stoffe (wie Netzmittel, Haftmittel oder Dispergiermittel, Schutzkolloide oder Adjuvantien), Antischäumungsmittel, Verdicker, Frostschutzmittel, Bakterizide sowie, wenn es sich um Saatgutbeizformulierungen handelt, ggf. Kleber und/oder ggf. Farbstoffe.
Als Lösungsmittel kommen z.Bsp. Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, XyIoI), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butryolacton), Pyrroli- done (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäu- ren und Fettsäureester in Betracht. Grundsätzlich können auch Lösungsmittelgemische verwendet werden.
Geeignete Trägerstoffe sind z.Bsp. natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde) und synthetische Ge- steinsmehle (z.B. hochdisperse Kieselsäure, Silikate Calcium- und Magnesiumsulfat, Magnesiumoxid) gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getrei- demehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.
Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsul- fonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfa- tierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfonier- tem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethy- lenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphe- nolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkyl- arylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpoly- glykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.
Als Schutzkolloide kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Schutzkolloide in Betracht, d.h. im vorliegenden Falle alle, dem Fachmann bekannten wasserlöslichen Polymere mit amphiphilem Charakter wie zum Beispiel Proteine, denaturierte Proteine, Polysaccharide, hydrophob modifizierte Stärken, und synthetische Polymere.
Als Verdicker, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Verdicker in Betracht. Beispiele für Verdicker (d.h. Verbindungen, die der Formulierung ein pseudo- plastisches Fließverhalten verleihen, d.h. hohe Viskosität im Ruhezustand und niedrige Viskosität im bewegten Zustand) sind beispielsweise Polysaccharide bzw. organische und anorganische Schichtmineralien wie Xanthan Gum (Kelzan® der Fa. Kelco), Rho- dopol® 23 (Rhone Poulenc) oder Veegum® (Firma R. T. Vanderbilt) oder Attaclay® (Firma Engelhardt).
Als Antischaummittel, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Antischaummittel in Betracht. Beispiele für Antischaummittel sind Silikonemulsionen (wie z.Bsp. Silikon® SRE, Firma Wacker oder Rhodorsil® der Firma Rhodia), langkettige Alkohole, Fettsäuren, fluororganische Verbindungen und deren Gemische.
Bakterizide können zur Stabilisierung wässrigen Formulierungstypen zugesetzt werden. Als Bakterizide, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Bak- terizide in Betracht wie zum Beispiel Bakterizide basierend auf Diclorophen und Benzy- lalkoholhemiformal. Beispiele für Bakterizide sind Proxel® der Fa. ICI oder Acticide® RS der Fa. Thor Chemie und Kathon® MK der Firma Rohm & Haas. Als Frostschutzmittel, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Frostschutzmittel in Betracht. Geeignete Frostschutzmittel sind z.B. Ethylenglycol, Pro- pylenglycol oder Glycerin, vorzgusweise Propylenglycol und Glycerin.
Als Farbmittel kommen alle für derartige Zwecke übliche Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, Cl. Pigment Red 1 12 und Cl. Solvent Red 1 bekannten Farbstoffe, sowie pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 1 12, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108
Als Kleber, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose.
Die Bedeutung und entsprechende Verwendung der oben genannten Mittel richten sich nach der Natur des Wirkstoffes.
Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldis- persionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kero- sin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xy- lol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Metha- nol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.
Zur Herstellung von Suspensionskonzentraten oder Gelformulierungen können die MIA unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel (oder Lösungsmittel/Wasser Gemischen) zu einer feinen Wirkstoffsuspension vermählen werden. Bei Gelformulierungen wird noch ein Gelierungsagens hinzugefügt (z.Bsp. carrageen (Satiagel®)Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension der MIA.
Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden. Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der MIA an feste Trägerstoffe hergestellt werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugs- weise zwischen 0,1 und 90 Gew.-% des Pestizides.
Formulierungstypen (z.Bsp. SC, OD, FS, WG, SG, WP, SP, SS, WS, GF)) werden in der Regel verdünnt eingesetzt. Formulierungstpyen wie DP, DS, GR, FG, GG, MG werden in der Regel unverdünnt eingesetzt
Die für die Saatgutbehandlung geeigneten Formulierungstypen (z.Bsp. SC, OD, FS, WG, SG, WP, SP, SS, WS, GF1DP, DS, können je nach Bedarf verdünnt oder unverdünnt eingesetzt werden. Hierbei kann die entsprechende Formulierung 2 bis 10 fach verdünnt werden, so dass in den für die Beize zu verwendeten Formulierungen 0,01 to 60% Gew.-%, vorzugsweise 0,1 to 40% Gew.-% des Pestizides vorhanden sind.
Im folgenden werden die MIA sowie sämtliche auf Basis der MIA hergestellten Formulierungen als MIA-Formulierungen bezeichnet.
Die vorliegende Erfindung beansprucht Verfahren zur Bekämpfung von phytopathoge- nen Pilzen und/oder unerwünschtem Pflanzenwuchs und/oder unerwünschtem Insekten- oder Milbenbefall und/oder zur Regulation des Wachstums von Pflanzen, dadurch gekennzeichnet, daß man eine MIA-Formulierung auf die jeweiligen Schädlinge (d.h. phytopathogenen Pilze und/oder unerwünschte Insekten oder Milben), deren Lebens- räum oder die vor dem jeweiligen Schädling zu schützenden Pflanzen, den Boden und/oder auf unerwünschte Pflanzen und/oder die Nutzpflanzen und/oder deren Lebensraum einwirken lässt.
Die vorliegende Erfindung beansprucht auch Verfahren zur Bekämpfung von uner- wünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen und/oder zur Bekämpfung unerwünschten Pflanzenwuchs, dadurch gekennzeichnet, dass man Saatgüter von Nutzpflanzen mit einer für die Saatgutbehandlung geeigneten MIA-Formulierung behandelt.
Im Rahmen der vorligenden Erfindung wird auch Saatgut, behandelt mit einer für die Saatgutbehandlung geeigneten MIA-Formulierung.
Hierbei betragen die Megen an Pestizid 0,1 g bis 10 kg pro 100 kg Saatgut, vorzugsweise 1 g bis 5 kg pro 100 kg Saatgut, besonders bevorzugt 1 g bis 2,5 kg pro 100 kg Saatgut. Für spezielle Saatgutsorten wie z.Bsp. Salatsaatugt können die Mengen jedoch auch höher sein. Der Begriff Saatgut umfasst Saatgut aller Arten, wie z.B. Körner, Samen, Früchte, Knollen, Stecklinge und ähnliche Formen. Bevorzugt beschreibt der Begriff Saatgut hier Körner und Samen.
Geeignetes Saatgut sind Getreidesaaten, Halmfruchtsaaten, Hackfruchtsaaten, Ölsaa- ten, Gemüsesaaten, Gewürzsaatgut, Zierpflanzensaatgut, z.B. Saatgut von Hartweizen, Weizen, Gerste, Hafer, Roggen, Mais (Futtermais und Zuckermais), Soja, Ölsaa- ten, Kreuzblütler, Baumwolle, Sonnenblumen, Bananen, Reis, Raps, Rüben,, Zuckerrüben, Futterrüben Eierpflanzen, Kartoffeln, Gras, (Zier-)Rasen, Futtergras, Tomaten, Lauch, Kürbis, Kohl, Eisberg Salat, Pfeffer, Gruken, Melonen, Brassica spp, Melonen, Bohnen, Erbsen, Knoblauch, Zwiebeln, Karotten, Knollengewächse wie Zuckerrohr, Tabbak, Weintrauben, Petunien und Geranien, Stiefmütterchen, Springkraut, bevorzugt Weizen, Mais, Soja und Reis.
Als Saatgut kann auch das Saatgut transgener oder durch herkömmliche Züchtungsmethoden erhaltener Pflanzen eingesetzt werden.
So kann Saatgut eingesetzt werden, das gegenüber Herbiziden, Fungiziden oder Insektiziden tolerant ist, z.B. gegenüber Sulfonylharnstoffen, Imidazolinonen oder GIu- fonsinat oder Glyphosate (s. z.B. EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A- 0257993, U.S. Pat. No. 5,013,659) oder Saatgut transgenerPflanzen, z.B. Baumwolle, die Bacillus thuringiensis toxin (Bt toxins) produziert und dadurch gegenüber bestimmten Schadorganismen resistent sind (E P-A-0142924, EP-A-0193259).
Weiterhin kann auch Saatgut von Pflanzen eingesetzt werden, die im Vergleich mit herkömmlichen Pflanzen modifizierte Eigenschaften aufweisen. Beispiele hierfür sind geänderte Stärkesynthese (e.g. WO 92/1 1376, WO 92/14827, WO 91/19806) oder Fettsäurezusammensetzungen (WO 91/13972).
Der Begriff phytopathogene Pilze beschreibt ist aber nicht beschränkt auf folgende Spezies: Alternaria spp. an Reis, Gemüse, Sojabohnen, Raps, Zuckerrübe und Frü- chen, Aphanomyces spp. an Zuckerrübe und Gemüse, Bipolaris and Drechslera spp. an Mais, Getreide, Reis und Zierrasen, Blumeria graminis (powdery mildew) an Getreide, Botrytis cinerea (gray mold) an Erdbeeren, Gemüse, Zierblumen, Weintrauben, Bremia lactucae an Salat, Cercospora spp. an Mais, Soja, und Zuckerrübe, Cochliobo- lus spp. an Mais, Getreide, Reis (e.g. Cochliobolus sativus an Getreide, Cochliobolus miyabeanus an Reis), Colletotrichum spp. an Soja und Baumwolle, Drechslera spp. an Getreide und Korn / Mais, Exserohilum spp. an Mais, Erysiphe cichoracearum und Sphaerotheca fuliginea an Gurken, Erysiphe necator an Weintrauben, Fusarium and Verticillium spp. an unterschiedlichen Pflanzen, Gaeumannomyces graminis an Getreide, Gibberella spp. an Getreide und Reis (e.g. Gibberella fujikuroi an Reis, Gibberella zeae an Getreide), Grainstaining complex an Reis, Microdochium nivale an Getreide, Mycosphaerella spp. an Getreide, bananas and peanuts, Phakopsora pachyrhizi und Phakopsora meibomiae on soybeans, Phomopsis spp. an Soja und Sonnenblumen sunflower, Phytophthora infestans an Kartoffeln und Tomante, Plasmopara viticola an Weintrauben, Podosphaera leucotricha an Äpfeln, Pseudocercosporella herpotrichoi- des an Weizen und Gerste, Pseudoperonospora spp. an Hofpen und Gurke, Puccinia spp. an Getreide und Mais, Pyrenophora spp. an Getreide, Pyricularia oryzae an Reis,, Cochliobolus miyabeanus and Corticium sasakii (Rhizoctonia solani), Fusarium semi- tectum (and/or moniliforme), Cercospora oryzae, Sarocladium oryzae, S attenuatum, Entyloma oryzae, Gibberella fujikuroi (bakanae), Grainstaining complex (various pa- thogens), Bipolaris spp., Drechslera spp. und Pythium and Rhizoctonia spp. an Reis, Mais, Baumwolle, Sonnenblume, Raps, Raps (canola, oilseed rape), Gemüse, Zierrasen, Nüsse und weitere Pflanzen, Rhizoctonia solani an Kartoffel, Sclerotinia spp. an Rapsarten (canola/oilseed rape) und Sonnenblume, Septoria tritici and Stagonospora nodorum an Weizen, Uncinula necator an Weintrauben, Sphacelotheca reiliana an Mais, Thievaliopsis spp. an Soja und Baumwolle, Tilletia spp. an Getreiden, Ustilago spp. an Getreide, Mais, Zuckerrohr und, Venturia spp. (scab) an Äpfeln und Birnen;
Der Begriff unerwünschte Insekten- oder Milben beschreibt ist aber nicht beschränkt auf folgende Gattungen:
Millipeden (Diplopoda) z.B. Blaniulus spp
Ameisen (Hymenoptera), z.B.. Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Pogonomyrmex spp und Pheidole megacephala,
Käfer (Coleoptera), z.B. Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus und andere Agriotes spp, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aracanthus morei, Atomaria linearis, Blapstinus spp, Blastophagus piniperda, Blitophaga undata, Bothynoderes punciventris, Bruchus rufi- manus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cero- toma trifurcata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibia- Ns, Conoderus vespertinus und andere Conoderus spp, Conorhynchus mendicus, Crio- ceris asparagi, Cylindrocopturus adspersus, Diabrotica (longicornis) barberi, Diabrotica semi-punctata, Diabrotica speciosa, Diabrotica undecimpunctata, Diabrotica virgifera und andere Diabrotica spp, Eleodes spp, Epilachna varivestis, Epitrix hirtipennis, Euti- nobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californicus und andere Limonius spp, Lissorhoptrus oryzophilus, Listronotus bonarien- sis, Melanotus communis und andere Melanotus spp, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Ortiorrhynchus sulcatus, Ory- zophagus oryzae, Otiorrhynchus ovatus, Oulema oryzae, Phaedon cochleariae, Phyl- lotreta chrysocephala, Phyllophaga cuyabana und andere Phyllophaga spp, Phyllo- pertha horticola, Phyllotreta nemorum, Phyllotreta striolata, und andere Phyllotreta spp, Popillia japonica, Promecops carinicollis, Premnotrypes voraz, Psylliodes spp, Sitona lineatus, Sitophilus granaria, Sternechus pinguis, Sternechus subsignatus, und Tany- mechus palliatus und andere Tanymechus spp,
Fliegen (Diptera) z.B. Agromyza oryzea, Chrysomya bezziana, Chrysomya hominivo- rax, Chrysomya macellaria, Contarinia sorghicola, Cordylobia anthropophaga, Dacus Cucurbitae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia platura, Delia radicum, Fannia canicularis, Gasterophilus intestinalis, Geomyza Tri- punctata, Glossina morsitans, Haematobia irritans, Haplodiplosis equestris, Hypoder- ma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mayetiola destructor, Muscina stabulans, Oestrus ovis, Opomyza florum, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassi- cae, Phorbia coarctata, Progonya leyoscianii, Psila rosae, Rhagoletis cerasi, Rhagole- tis pomonella, Tabanus bovinus, Tetanops myopaeformis, Tipula oleracea und Tipula paludosa,
Heteroptera (Heteroptera), z.B. Acrosternum hilare, Blissus leucopterus, Cicadellidae z.B. Empoasca fabae, Chrysomelidae, Cyrtopeltis notatus, Delpahcidae, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nephotettix spp, Nezara viridula, Pentatomidae, Piesma quadrata, Solubea insularis und Thyanta perditor,
Blattläuse und andere Homoptera, e.g. Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis glycines, Aphis gossypii, Aphis grossulariae, Aphis pomi, Aphis schneiden, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomy- zus lactucae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Melanaphis pyrarius, Metopolophium dirhodum, Myzodes (Myzus) persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, NiIa- parvata lugens, Pemphigus bursarius, Pemphigus populivenae, und andere Pemphigus spp, Perkinsiella saccharicida, Phorodon humuli, Psyllidae z.B. Psylla mali, Psylla piri und andere Psylla spp, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalo- siphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes vaporariorum, To- xoptera aurantiiand, und Viteus vitifolii; Lepidoptera, for example Agrotis ypsilon, Agrotis segetum und andere Agrotis spp, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Chilo suppresalis und andere Chilo spp.Choristoneura fumiferana, Choristoneura occi- dentalis, Cirphis unipuncta, Cnaphlocrocis medinalis, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosel- lus, Eupoecilia ambiguella, Euxoa spp, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, HeIIuIa undalis, Hibernia defoliaria, Hyphantria cunea, Hypo- nomeuta malinellus, Keiferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Lerodea eufala, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Momphidae, Orgyia pseudotsu- gata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobipalpula absoluta.Sesamia nonagrioides und andere Sesamia spp, Sitotroga ce- realella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodop- tera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni und Zeiraphera canadensis,
Orthoptera, z.B. Acrididae, Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, MeIa- noplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca a- mericana, Schistocerca peregrina, Stauronotus maroccanus und Tachycines asynamo- rus ;
Termiten (Isoptera), z.B. Calotermes flavicollis, Coptotermes spp, Dalbulus maidis, Leucotermes flavipes, Macrotermes gilvus, Reticulitermes lucifugus und Termes nata- lensis;
Thripse (Thysanoptera) z.B. Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici und andere Frankliniella spp, Scirtothrips citri, Thrips oryzae, Thrips palmi, Thrips simplex und Thrips tabaci,
Spinnentiere, z.B. Arachniden (Acarina), for example e.g. of the families Argasidae, Ixodidae und Sarcoptidae, z.B. Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Orni- thodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipi- cephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, und Eriophyidae spp z.B. Aculus schlechtendali, Phyllocoptrata oleivora und Eriophyes sheldoni; Tarso- nemidae spp z.B. Phytonemus pallidus und Polyphagotarsonemus latus; Tenuipalpidae spp z.B. Brevipalpus phoenicis; Tetranychidae spp z.B. Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius und Tetranychus urticae, Panonychus ulmi, Panonychus citri, und Oligonychus pratensis;
Nematoden, insbesondere Pflanzenparasitäre Nematoden z.B. "root knot" Nematoden, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, und andere Meloi- dogyne spp; cyst-forming nematodes, Globodera rostochiensis und andere Globodera spp; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, und andere Heterodera spp; Seed gall nematodes, Anguina spp; Stern und foliar nematodes, Aphelenchoides spp; Sting nematodes, Belonolaimus longicaudatus und andere Belonolaimus spp; Pine nematodes, Bursaphelenchus xylophilus und andere Bursaphelenchus spp; Ring nematodes, Criconema spp, Criconemella spp, Criconemoides spp, Mesocriconema spp; Stern und bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci und andere Ditylenchus spp; AwI nematodes, Dolichodorus spp; Spiral nematodes, Heliocotylenchus multicinctus und andere Helicotylenchus spp; Sheath and sheathoid nematodes, Hemicycliophora spp and Hemicriconemoides spp; Hirshmanniella spp; Lance nematodes, Hoploaimus spp; false rootknot nematodes, Nacobbus spp; Needle nematodes, Longidorus elongatus und andere Longidorus spp; Lesion nematodes, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi und andere Pratylenchus spp; Burrowing nematodes, Radopholus similis und andere Radopholus spp; Reniform nematodes, Rotylenchus robustus und andere Rotylenchus spp; Scutellonema spp; Stubby root nematodes, Trichodorus primitivus und andere Trichodorus spp,
Paratrichodorus spp; Stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius und andere Tylenchorhynchus spp; Citrus nematodes, Tylenchulus spp; Dagger nematodes, Xiphinema spp; und andere Pflanzen parasitäte Nematoden.
Bekämpfung unerwünschten Pflanzenwuchses bedeutet die Bekämpfung/Zerstörung von Planzen, welche an Orten wachsen, an welchen sie unerwünscht sind, z.B. von
Dicotyledonen Pflanzen der Arten: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xan- thium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.
Monocotyledonen Pflanzen der Arten: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristyslis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera Beispiele
Beispiel 1 - Synthese von molekular geprägten Polymeren mit Pestiziden als Templat- molekülen
Beispiel a) Ein 2-Liter-HWS-Reaktor wurde mit einem Kühler, einem Rührmotor, einem Ankerrührer, einem Stickstoffeinleitungsrohr mit Glasfritte, einem Laborregler Julabo LC 3 mit 2-PT-100-Thermosensoren, einem Ölbad mit Tauchsieder und Magnetrührer, sowie 2 HPLC-Pumpen (Fa. Bischoff) mit je einem Pumpenkopf (0-1 mL/min) zum Dosieren von Initiator und Monomeren ausgestattet. Die Apparatur wurde vor Versuchsbeginn mit Stickstoff gespült. Während des gesamten Versuchs wurde Stickstoff mit einem Volumenstrom von ca. 10 L/h durch die Lösung geleitet. 800 mL Lösungsmittel Acetonitril (AcN) wurden in das Reaktionsgefäß vorgelegt und in diesem 17,51 g Fipro- nil (Templat) gelöst.
Es wurde eine zusätzliche Lösung (Lösung 1 ) von 6,12 g Methacrylsäure (funktionelles Monomer) und 73,51 g Trimethylolpropantrimethacrylat (Vernetzer) in 250 mL Acetonitril hergestellt. 1 mL wurde aus der Lösung 1 für die spätere HPLC-Analyse entnommen. Eine Hälfte der restlichen Lösung 1 wurde zur Vorlage in den Reaktor gegeben und mit dieser unter Rühren (100 min-1) vermischt. Anschließend wurde aus dem Reaktor eine Probe von 1 mL für die HPLC-Analyse entnommen.
Ein Viertel der Initiatormenge, d.h. 0,532 g, wurden in den Reaktor gegeben und nach dem, durch starkes Rühren beschleunigten Auflösen des Initiators eine Probe von 1 mL für die spätere HPLC-Analyse entnommen. Die Vorlage im Reaktor wurde unter Rühren auf 75 °C erwärmt und erneut eine Probe 1 mL genommen.
Es wurde eine weitere Lösung (Lösung 2) hergestellt, und zwar durch Auflösen der restlichen 3/4 des Initiators, entsprechend 1 ,594 g, in 250 ml Acetonitril. Die zweite Hälfte der Lösung 1 sowie Lösung 2 wurden mittels der beiden HPLC- Pumpen in den Reaktor über einen Zeitraum von 18 h zudosiert. Die Dosierraten betrugen für Lösung 1 : 0,153 ml/min, und für Lösung 2 : 0,232 ml/min. Die anschließende Nachreaktionszeit betrug 6 Stunden, die Gesamtreaktionszeit somit also 24 h. Nach jeder vollen Stunde wurde eine Probe von 1 mL dem Reaktionsgemisch entnommen und nach Filtration einer HPLC-Analyse unterzogen.
Beispiel b) Ein 2-Liter-HWS-Reaktor wurde mit einem Kühler, einem Rührmotor, einem Ankerrührer, einem Stickstoffeinleitungsrohr mit Glasfritte, einem Laborregler Julabo LC 3 mit 2-PT-100-Thermosensoren, einem Ölbad mit Tauchsieder und Magnetrührer ausgestattet. Die Apparatur wurde vor Versuchsbeginn mit Stickstoff gespült. Während des gesamten Versuchs wurde Stickstoff mit einem Volumenstrom von ca. 10 L/h durch die Lösung geleitet. 1000 mL Lösungsmittel Acetonitril (AcN) wurden in das Reaktionsgefäß vorgelegt und in diesem 18 g Fipronil (Templat), 6,12 g Methacrylsäure (funktionelles Monomer) und 76,32 g Trimethylolpropantrimethacrylat gelöst. Unter Rühren (100 min-1) wurde die Mischung auf 65 °C erwärmt und eine Probe für die HPLC-Analyse entnommen. 0,564 g 2,2'-Azobis(2-methylbutyronitril) (Initiator) wurden schließlich in 5 ml Acetonitril gelöst. Diese Lösung wurde langsam in den Reaktorhinhalt eingespritzt. Nach jeder vollen Stunde wurde eine Probe von 10 ml_ dem Reaktionsgemisch entnommen und nach Filtration einer HPLC-Analyse unterzogen. Die Gesamtreaktionszeit betrug 5 Stunden.
Beispiel 2: Extraktion des Templates aus dem Polymer
A)
Ein 500 mL Rundkolben wurde mit einer Soxhlet-Apparatur, einem Kühler, einem
Magnetrührer und einem Laborregler (Julabo LC 3 mit 2 PT 100) bestückt und in ein Ölbad eingetaucht. 8 g Polymer (hergestellt gemäß Beispiel 1 a) wurden mit 400 ml Methanol/Eisessig (7:1 , v/v) (EXTRAKT 1) 6-8 Stunden und danach 6 Stunden mit 400 ml Methanol (EXTRAKT 2) in der Soxhlet-Apparatur extrahiert. Die Extrakte wurden aufgefangen, deren Volumen bestimmt und jeweils eine 2 ml Probe für die Fipronil- Konzentrationsbestimmung mittels HPLC im Kühlschrank bei 4 °C aufbewahrt.
B)
Die aus Beispiel 1 a) erhaltenen Mischung wurde filtriert, und der im Filter verbleibende Rückstand im Anschluss mit 100ml Acetonitril und danach mit 100ml Methanol über einen Zeitraum von 10min gewaschen.
Beispiel 3: Beladen des Polymers mit einem Pestizid
Nach dem Trocknen des aus der Soxhlet-Extraktion stammenden Polymers wurde 1 g Polymer aus Beispiel 2 B mit 10 ml einer 0,14 mol/L Fipronil-Lösung vermischt. (Herstellung der 0,14 mol/L Fipronil-Lösung: 3,3 g techn. Fipronil (91 %) in 50 ml Acetonitril auflösen). Nach einer Einwirkzeit von 3 Stunden wurde die Flüssigkeit durch Zentrifu- gieren (15 Minuten bei 3800 U/min) und Abdekantieren vom Polymer getrennt. Das Polymer wurde bei 50 °C im Vakuum getrocknet.
Beispiel 4: Controlled Release von Pestiziden aus molekular geprägten Polymeren
A) Messung des Controlled Release
Eine Millipore Ultrafiltrationszelle (Modell 8400) wurde mit einem 5 Liter Kunststoffka- nister als Vorratsgefäß (Inhalt: Wasser) verbunden. Die Zelle wurde mit einer Dispersion von 100 mg Polymer in 100 ml Wasser gefüllt und 15 Minuten bis zur Homogenisierung mit dem in die Ultrafiltrationszelle eingebauten Magnetrührer gerührt. Das Extrak- tionsmittel (Wasser) wurde über den Zulauf ohne Überdruck aus dem Vorratsgefäß in die Zelle geleitet. Der aus der Zelle austretende Extrakt wurde an der Unterseite der Zelle in ein Auffanggefäß geleitet. Zum Schluss wurde das Volumen, die Masse und die Zeit der einzelnen Fraktionen bestimmt und jeder Fraktion eine Probe von 2 ml ent- nommen. Mehrere Fraktionen wurden über die Versuchszeit gesammelt. Diese Proben wurden über einen 0,45 μl Filter filtriert und für die Fipronil-Konzentrationsbestimmung mittels HPLC im Kühlschrank bei 4 °C aufbewahrt. Die Dispersion wurde nach Versuchsende dem Ultrafiltrationsgefäß entnommen und abgefüllt.
B) Vergleich eines beladenen molekular geprägten Polymers mit einem beladenen nicht molekular geprägten Polymer
Das Freisetzungsverhalten eines nach der Polymerisation beladenen molekular geprägten Polymers (MIP1 , hergestellt gemäß Beispiel 3) wurde mit der Freisetzungsrate eines nach der Polymerisation beladenen nicht-geprägten Kontrollpolymers (CP1 ), wobei die Daten gemäß der in Beispiel 4 A) aufgeführten Vorschrift erhoben wurden. CP1 wurde in Analogie zu der in Beispiel 1 a offenbarten Herstellvorschrift synthetisiert, allerdings in Abwesenheit des Wirkstoffes Fipronil. Das Waschen des erahltenen Poylmers mit je 100ml Acetonitril und Methanol erfolgte analog Beispiel 2B, die an- schliessende Beladung mit Wirkstoff erfolgte analog wie in Beispiel 3.
Die Ergebnisse sind in Abb.1 dargestellt (MIP1 , obere Kurve, schwarze Quadrate; (CP1 , untere Kurve, graue Rauten). Die Menge freigesetzten Fipronils ist in mg angegeben. Sie zeigen, dass die Freisetzungsraten des molekular geprägten Polymers ge- genüber dem nicht molekular geprägten Polymers besser sind.
C) Vergleich eines beladenen molekular geprägten Polymers mit einem nicht beladenen molekular geprägten Polymer
Das Freisetzungsverhalten eines nach der Polymerisation beladenen molekular geprägten Polymers (MIP2 gemäß Beispiel 3) und eines nach der Polymerisation nicht anschliessend beladenen molekular geprägten Polymers gemäß Beispiel 2B (MIP 2, nicht beladen) wurde verglichen, wobei die Daten gemäß der in Beispiel 4 A) aufgeführten Vorschrift erhoben wurden.
Die Ergebnisse sind in Abb.2 dargestellt (MIP2, beladen, obere Kurve, schwarze Quadrate); (MIP2, nicht beladen, untere Kurve, helle Dreiecke). Die Menge freigesetzten Fipronils ist in mg angegeben. Sie zeigen, dass die durch anschliessende Beladung gute Freisetzungsraten erzielbar sind.

Claims

Patentansprüche
1. Formulierung mit kontrollierter Wirkstoffabgabe umfassend ein in Gegenwart mindestens eines Pestizids molekular geprägtes Acrylat Polymer und mindestens ein Pestizid herstellbar über ein Verfahren, , welches dadurch gekennzeichnet ist, dass man
(1 ) das Acrylat Polymer durch Fällungspolymerisation in Gegenwart des Pestizids herstellt;
(2) die hergestellten Partikel anschließend wäscht; und
(3) mit einer Lösung des Wirkstoffes inkubiert.
2. Formulierung nach Anspruch 1 , dadurch gekennzeichnet, dass die Fällungspolymerisation in Schritt (1 ) folgende Schritte umfasst:
(a) Vermischen von mindestens einem funktionellen Monomer mit mindestens einem Pestizid in einem geeigneten Lösungsmittel, Hinzufügen mindestens eines Vernetzer und Starten der Polymerisation; oder
(b) Vermischen von mindestens einem funktionellen Monomer mit mindestens einem Pestizid sowie einem Vernetzer in einem geeigneten Lösungsmittel gefolgt von Starten der Polymerisation.
3. Formulierung nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass das Massenverhältnis von Polymer zu Wirkstoff 1 :10 bis 100:1 beträgt.
4. Formulierung nach einem der Ansrüche 1 bis 3, dadurch gekennzeichnet, dass das Acrylat Polymer aus
(a) mindestens einem funktionellem Monomeren 1 ausgewählt aus der Gruppe bestehend aus Hydroxyalkyl(meth)acrylaten, (Meth)acrylamiden, Alkyl (meth)acrylaten Cyano(alky)acrylaten, Acrylsäure, und Methacrylsäure;
(b) mindestens einem Vernetzer ausgewählt aus der Gruppe bestehend aus ethylenisch ungesättigten Verbindungen mit mindestens zwei vinylischen oder allylischen Doppelbindungen, die radikalisch polymerisierbar sind,
aufgebaut ist.
5. Formulierung nach einem der Ansrüche 1 bis 4, dadurch gekennzeichnet, dass das molare Verhältnis von funktionellem Monomer zu Vernetzer 1/2 bis 1/10 beträgt.
6. Formulierung nach einem der Ansrüche 1 bis 5, dadurch gekennzeichnet, dass als Vernetzer tri- oder höher funktionelle Vernetzer eingesetzt werden.
7. Verfahren zur Bekämpfung von phytopathogenen Pilzen und/oder unerwünsch- tem Pflanzenwuchs und/oder unerwünschtem Insekten- oder M üben befall und/oder zur Regulation des Wachstums von Pflanzen, dadurch gekennzeichnet, daß man eine Formulierung nach Anspruch 3 oder 4 auf die jeweiligen Schädlinge (d.h. phytopathogenen Pilze und/oder unerwünschte Insekten oder Milben), deren Lebensraum oder die vor dem jeweiligen Schädling zu schützenden Pflan- zen, den Boden und/oder auf unerwünschte Pflanzen und/oder die Nutzpflanzen und/oder deren Lebensraum einwirken lässt.
8. Verfahren zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen und/oder zur Bekämpfung unerwünschten Pflanzenwuchs, dadurch gekennzeichnet, dass man auf Saatgüter von Nutzpflanzen mit einer Formulierung nach einem der Ansprüche 1 bis 6 behandelt.
9. Saatgut, behandelt mit einer Formulierung umfassend ein in Gegenwart eines Pestizids molekular geprägtes Acrylat Polymer sowie mindestens ein Pestizid.
PCT/EP2007/050112 2006-01-12 2007-01-05 Agrochemische formulierungen auf basis molekular geprägter acrylate WO2007082802A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07712005A EP1976376A1 (de) 2006-01-12 2007-01-05 Agrochemische formulierungen auf basis molekular geprägter acrylate
BRPI0706626-0A BRPI0706626A2 (pt) 2006-01-12 2007-01-05 formulação com liberação controlada de agente ativo, processos para combater fungos fitopatogênicos e/ ou o crescimento de plantas indesejáveis e/ ou a infestação de insetos ou acarìdeos indesejável e/ ou para a regulação do crescimento das plantas, e para combater infestação de insetos ou acarìdeos sobre plantas e/ ou para combater fungos fitopatogênicos e/ou combater crescimento de plantas indesejáveis, e, semente
CA002640305A CA2640305A1 (en) 2006-01-12 2007-01-05 Agrochemical formulations based on molecularly imprinted acrylates
US12/160,548 US20100227761A1 (en) 2006-01-12 2007-01-05 Agrochemical Formulations Based on Molecularly Imprinted Acrylates
JP2008549866A JP2009523152A (ja) 2006-01-12 2007-01-05 分子インプリントされたアクリレートをベースとした農薬製剤
IL192422A IL192422A0 (en) 2006-01-12 2008-06-24 Agrochemical formulations based on molecularly imprinted acrylates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06100263 2006-01-12
EP06100263.0 2006-01-12

Publications (1)

Publication Number Publication Date
WO2007082802A1 true WO2007082802A1 (de) 2007-07-26

Family

ID=36579994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050112 WO2007082802A1 (de) 2006-01-12 2007-01-05 Agrochemische formulierungen auf basis molekular geprägter acrylate

Country Status (8)

Country Link
US (1) US20100227761A1 (de)
EP (1) EP1976376A1 (de)
JP (1) JP2009523152A (de)
CN (1) CN101374411A (de)
BR (1) BRPI0706626A2 (de)
CA (1) CA2640305A1 (de)
IL (1) IL192422A0 (de)
WO (1) WO2007082802A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503642A (ja) * 2008-09-25 2012-02-09 バイブ ナノ, インコーポレイテッド ポリマーナノ粒子を製造する方法および活性成分の処方
US10455830B2 (en) 2011-08-23 2019-10-29 Vive Crop Protection Inc. Pyrethroid formulations
US11344028B2 (en) 2011-12-22 2022-05-31 Vive Crop Protection Inc. Strobilurin formulations
US11517013B2 (en) 2017-08-25 2022-12-06 Vive Crop Protection Inc. Multi-component, soil-applied, pesticidal compositions

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG185063A1 (en) * 2010-04-28 2012-12-28 Syngenta Participations Ag Stabilized agrochemical composition
CN102507820B (zh) * 2011-10-18 2013-10-16 山东农业大学 一种同时检测敌百虫和久效磷的方法
CA2914556C (en) 2012-06-11 2020-08-18 Vive Crop Protection Inc. Herbicide formulations
EP2864417B1 (de) * 2012-06-21 2019-01-09 Ligar Limited Partnership Polymer und verfahren zur verwendung
US9392786B2 (en) 2013-02-05 2016-07-19 Vive Crop Protection, Inc. Mectin and milbemycin polyelectrolyte nanoparticle formulations
CN104927862B (zh) * 2015-05-20 2017-02-22 合肥工业大学 一种用于测定杀菌剂福美双的上转换发光纳米探针及其制备方法和应用
CN113817100A (zh) * 2021-10-28 2021-12-21 昆明理工大学 一种***醇分子印迹聚合物微球的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936601A (ja) * 1982-08-23 1984-02-28 Kyoritsu Yuki Kogyo Kenkyusho:Kk 園芸用持続性薬剤の製造方法
EP0201214A2 (de) * 1985-04-10 1986-11-12 Nippon Paint Co., Ltd. Verfahren zur Herstellung Polymere Mikroteilchen mit pestizider Wirksamkeit
EP0252463A2 (de) * 1986-07-07 1988-01-13 Dow Corning Corporation In ein Gitter eingeschlossene Zusammensetzung
WO1999041982A1 (de) * 1998-02-20 1999-08-26 Bayer Aktiengesellschaft Perlpolymerisat-formulierungen
WO2001055235A1 (en) * 2000-01-25 2001-08-02 Cranfield University Molecularly imprinted polymer
WO2005077170A1 (en) * 2004-02-16 2005-08-25 Basf Aktiengesellschaft Formulation for seed treatment comprising polymeric stickers
GB2418428A (en) * 2004-08-27 2006-03-29 Univ Cranfield Design and use of imprinted polymers, with specific affinity affecting controlled release of chemicals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060032120A1 (en) * 2004-07-15 2006-02-16 Grain Processing Corporation Seed coating composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936601A (ja) * 1982-08-23 1984-02-28 Kyoritsu Yuki Kogyo Kenkyusho:Kk 園芸用持続性薬剤の製造方法
EP0201214A2 (de) * 1985-04-10 1986-11-12 Nippon Paint Co., Ltd. Verfahren zur Herstellung Polymere Mikroteilchen mit pestizider Wirksamkeit
EP0252463A2 (de) * 1986-07-07 1988-01-13 Dow Corning Corporation In ein Gitter eingeschlossene Zusammensetzung
WO1999041982A1 (de) * 1998-02-20 1999-08-26 Bayer Aktiengesellschaft Perlpolymerisat-formulierungen
WO2001055235A1 (en) * 2000-01-25 2001-08-02 Cranfield University Molecularly imprinted polymer
WO2005077170A1 (en) * 2004-02-16 2005-08-25 Basf Aktiengesellschaft Formulation for seed treatment comprising polymeric stickers
GB2418428A (en) * 2004-08-27 2006-03-29 Univ Cranfield Design and use of imprinted polymers, with specific affinity affecting controlled release of chemicals

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198414, Derwent World Patents Index; Class A97, AN 1984-086049, XP002386631 *
M. SIEMANN, L. I. ANDERSSON & K. MOSBACH: "Selective recognition of the herbicide Atrazine by noncovalent molecularly imprinted polymers", J. AGRIC.FOOD CHEM., vol. 44, 1996, pages 141 - 145, XP002386614 *
M. T. MULDOON & L. H. STANKER: "Poylmer synthesis and characerization of a molecularly imprinted sorbent assay for atrazine", J. AGRIC. FOOD CHEM., vol. 43, 1995, pages 1424 - 1427, XP002436304 *
PILETSKA ET AL: "Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 108, no. 1, 2 November 2005 (2005-11-02), pages 132 - 139, XP005123759, ISSN: 0168-3659 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503642A (ja) * 2008-09-25 2012-02-09 バイブ ナノ, インコーポレイテッド ポリマーナノ粒子を製造する方法および活性成分の処方
US9363994B2 (en) 2008-09-25 2016-06-14 Vive Crop Protection Inc. Nanoparticle formulations of active ingredients
JP2016210790A (ja) * 2008-09-25 2016-12-15 バイブ クロップ プロテクション, インコーポレイテッド ポリマーナノ粒子を製造する方法および活性成分の処方
US9648871B2 (en) 2008-09-25 2017-05-16 Vive Crop Protection Inc. Methods to produce polymer nanoparticles and formulations of active ingredients
US10070650B2 (en) 2008-09-25 2018-09-11 Vive Crop Protection Inc. Methods to produce polymer nanoparticles and formulations of active ingredients
US10455830B2 (en) 2011-08-23 2019-10-29 Vive Crop Protection Inc. Pyrethroid formulations
US10966422B2 (en) 2011-08-23 2021-04-06 Vive Crop Protection Inc. Pyrethroid formulations
US11503825B2 (en) 2011-08-23 2022-11-22 Vive Crop Protection Inc. Pyrethroid formulations
US11344028B2 (en) 2011-12-22 2022-05-31 Vive Crop Protection Inc. Strobilurin formulations
US11517013B2 (en) 2017-08-25 2022-12-06 Vive Crop Protection Inc. Multi-component, soil-applied, pesticidal compositions

Also Published As

Publication number Publication date
IL192422A0 (en) 2009-09-22
JP2009523152A (ja) 2009-06-18
EP1976376A1 (de) 2008-10-08
CN101374411A (zh) 2009-02-25
BRPI0706626A2 (pt) 2011-04-05
CA2640305A1 (en) 2007-07-26
US20100227761A1 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
EP1858320B1 (de) Verfahren zur herstellung von agrochemischen wässrigen polymerdispersionen und ihre verwendung
EP1928593B1 (de) Neue agrochemische formulierungen
RU2406301C2 (ru) Наночастичные композиции действующего вещества
RU2407288C2 (ru) Водная дисперсия для защиты растений, наночастичная композиция для защиты растений, агрохимическая композиция и способ ее получения, способ борьбы с нежелательным ростом растений, и/или борьбы с нежелательным поражением насекомыми или клещами растений, и/или борьбы с фитопатогенными грибами (варианты)
EP1763300B1 (de) Verwendung von ethergruppen enthaltenden polymeren als lösungsvermittler
WO2007082802A1 (de) Agrochemische formulierungen auf basis molekular geprägter acrylate
US20080207445A1 (en) Fast-Release Microcapsule Products
EP1858936A1 (de) Effektstoffe enthaltende wässrige polymerdispersionen, verfahren zu ihrer herstellung und ihre verwendung
EP2094080B1 (de) Verwendung von blockcopolymeren auf basis von vinyllactamen und vinylacetat als solubilisatoren
EP2120553B1 (de) Herstellung von festen lösungen von pestiziden durch kurzzeitüberhitzung und schnelle trocknung
WO2007036494A2 (de) Agrochemische formulierung umfassend wirkstoffhaltige polymerteilchen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007712005

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12160548

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008549866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780003136.6

Country of ref document: CN

Ref document number: 2640305

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0706626

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080710