WO2007077655A1 - Solar battery - Google Patents

Solar battery Download PDF

Info

Publication number
WO2007077655A1
WO2007077655A1 PCT/JP2006/319009 JP2006319009W WO2007077655A1 WO 2007077655 A1 WO2007077655 A1 WO 2007077655A1 JP 2006319009 W JP2006319009 W JP 2006319009W WO 2007077655 A1 WO2007077655 A1 WO 2007077655A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
aluminum
concentration
conductive paste
weight
Prior art date
Application number
PCT/JP2006/319009
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Akatsuka
Shunichi Igarashi
Original Assignee
Naoetsu Electronics Co., Ltd.
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naoetsu Electronics Co., Ltd., Shin-Etsu Chemical Co., Ltd. filed Critical Naoetsu Electronics Co., Ltd.
Publication of WO2007077655A1 publication Critical patent/WO2007077655A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a powerful solar cell such as single crystal silicon or polycrystalline silicon having a pn junction, and more particularly to a conductive paste used for forming an electrode.
  • the present invention relates to a solar cell in which an electrode is contact-formed by applying a heat-treating conductive paste of at least one of silver and copper as a main material to a surface side diffusion layer of a semiconductor substrate that also has silicon power.
  • a conductive paste such as a silver paste is screen-printed on the dopant diffusion layer, and then heat-treated (fired) at a high temperature to pass through the dopant diffusion layer.
  • a method for forming an electrode (fire-through) see, for example, Patent Document 1).
  • the electrode on the light-receiving surface side as a conductive paste by printing and baking silver paste contact with the silicon substrate is achieved by adding about 2% aluminum powder to the silver paste. A method of reducing the resistance is generally performed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-193337 (page 2-3, FIG. 3)
  • a first aspect of the present invention is intended to suppress the occurrence of spikes.
  • the second invention is intended to further improve the cell conversion efficiency in addition to the object of the first invention.
  • the first invention of the present invention is characterized in that an aluminum-silicon alloy is added to the main material of the conductive paste.
  • the second invention the configuration of the first invention, Al Miniumu to the main material of the conductive paste - the concentration of the silicon alloy and from 0.1 to 20 weight 0/0, the Anoremi - of silicon for ⁇ arm It is characterized by adding a composition having a concentration of 0.1 to 20% by weight.
  • the first invention of the present invention is that a new paste of aluminum and silicon is obtained by heat treatment by using a conductive paste in which an aluminum silicon alloy is previously added to silicon of a semiconductor substrate. As a result, it is difficult to form the eutectic mixture, and a deeply penetrating portion is not locally formed under the electrode.
  • the second invention is characterized in that the concentration of the aluminum-silicon alloy with respect to the main material of the conductive paste is 0.1 to 20% by weight, and the silicon with respect to the aluminum By making the concentration of 0.1 to 20% by weight, the PN junction failure caused by spikes is remarkably suppressed, and the thickness dimension of the surface-side diffusion layer can be reduced accordingly, so that the quantum efficiency of short wavelength light Does not drop.
  • the semiconductor substrate 1 as shown in FIG. 1 (a) has a p + or n + surface on the light-receiving surface of an n- type or p-type silicon substrate that is also monocrystalline silicon or polycrystalline silicon.
  • the side diffusion layer 2 is formed, and the main material silver paste is formed on the surface side diffusion layer 2 with aluminum-silicon.
  • the conductive paste 3 to which the alloy is added is applied by screen printing or the like, and then the electrode 4 is contacted on the surface-side diffusion layer 2 by heat treatment as shown in FIG. 1 (b). Is.
  • the concentration of the aluminum-silicon alloy is changed with respect to the main material silver, and the concentration of silicon with respect to aluminum in the aluminum-silicon alloy is changed. It can be changed.
  • test products in which the electrodes 4 were actually formed by contact using the conductive pastes 3 having different blending examples were prepared.
  • Table 1 shows the results of experiments on whether or not spikes are generated in these test products, and Table 2 shows the results of experiments on whether or not the force is good for contact formation.
  • test article concentration 0.05 wt 0/0 or less of aluminum silicon alloy for silver and 0.1 wt% to 20 wt%, and more than 21 wt%, the aluminum-silicon down Alloy concentration 0.05 wt 0/0 or less, and 0.1 by weight% to 20 weight% of silicon to aluminum in, were prepared more than 21 wt%.
  • a silver paste to which about 2% aluminum powder was added was prepared.
  • the thickness of the surface side diffusion layer 2 was set to 0.5 / zm, and the conductive base 3
  • the firing temperature of was set at 800 ° C.
  • the concentration is from 0.1 to 20 weight 0/0 of an aluminum silicon alloy to silver is the main material of the conductive paste 3
  • the tooth forces is also the concentration of silicon to aluminum that put in the aluminum silicon alloy there the specimens of 0.1 to 20 weight 0/0, showed no Sno I click occurs, and contact formation was good.
  • the concentration of the aluminum-silicon alloy with 21 weight 0/0 to silver also the occurrence of the spike was observed in secondary aluminum ⁇ concentration of silicon to beam is 0.05 wt% of the test products, aluminum silicon to silver Contact formation was poor in the test sample with an alloy concentration of 0.05% by weight and a silicon concentration with respect to aluminum of 21% by weight.
  • the test sample showed no occurrence of spikes (the concentration of the aluminum silicon alloy with respect to silver was 0.1 to 20 weight). %, The concentration of silicon with respect to aluminum is 0.1 to 20% by weight), but the desired conversion efficiency was obtained, but other spikes were observed (the concentration of aluminum silicon alloy with respect to silver was 0. The desired conversion efficiency could not be obtained in the case where the concentration of silicon relative to aluminum was 0.05 wt% or less and 21 wt% or more and 0.05 wt% or less and 21 wt% or more.
  • the concentration of the aluminum-silicon alloy with respect to silver is about 0.1 to 20% by weight and the concentration of silicon with respect to the aluminum is about 0.1 to 20% by weight, the occurrence of snokes It was proved that the ability to obtain a cell with high conversion efficiency by suppressing the above was appropriate.
  • aluminum for silver - the concentration of the silicon alloy of about 1 to 3 wt%, its ⁇ Lumi - In ⁇ about 3 to 13 weight concentration of silicon to beam 0/0 and the test article Sunoiku attributable
  • the PN junction failure is significantly suppressed and the cell conversion efficiency is further improved compared to other test products.
  • the present invention is not limited to this, and the main material of the conductive paste 2 may use copper or the like. .
  • the present invention is not limited thereto. Even if it is used when the back electrode is contact-formed by applying a conductive paste on the diffusion layer formed on the back surface of the silicon substrate and heat-treating it, the same effect as the above-mentioned embodiment Is obtained.
  • FIG. 1 is a longitudinal sectional view of a solar cell showing an embodiment of the present invention, in which (a) shows a state before electrode formation, and (b) shows a state after electrode formation. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This invention provides a solar battery that can prevent the occurrence of spikes. When an electrically conductive paste (3) to which an aluminum-silicon alloy has previously been added is used in silicon in a semiconductor substrate (1), a eutectic mixture of aluminum with silicon is not newly formed in the heat treatment and, consequently, a local deeply penetrated part is not formed under an electrode (4).

Description

明 細 書  Specification
太陽電池  Solar cell
技術分野  Technical field
[0001] 本発明は、 pn接合部を有する単結晶シリコンや多結晶シリコンなど力 なる太陽電 池、詳しくは電極の形成に用いられる導電性ペースト〖こ関する。  The present invention relates to a powerful solar cell such as single crystal silicon or polycrystalline silicon having a pn junction, and more particularly to a conductive paste used for forming an electrode.
更に詳しくは、シリコン力もなる半導体基板の表面側拡散層に、主材料が銀、銅の うち少なくとも 1種力 なる導電性ペーストを塗布し熱処理することで、電極をコンタク ト形成した太陽電池に関する。  More specifically, the present invention relates to a solar cell in which an electrode is contact-formed by applying a heat-treating conductive paste of at least one of silver and copper as a main material to a surface side diffusion layer of a semiconductor substrate that also has silicon power.
背景技術  Background art
[0002] 従来、この種の太陽電池の電極形成として、ドーパント拡散層の上に銀ペーストな どの導電性ペーストをスクリーン印刷した後、高温で熱処理 (焼成)することにより、ド 一パント拡散層を通して電極を形成する(ファイアスルー)方法がある(例えば、特許 文献 1参照。)。  Conventionally, as an electrode for this type of solar cell, a conductive paste such as a silver paste is screen-printed on the dopant diffusion layer, and then heat-treated (fired) at a high temperature to pass through the dopant diffusion layer. There is a method for forming an electrode (fire-through) (see, for example, Patent Document 1).
また、受光面側の電極形成を導電性ペーストとして銀ペーストの印刷 ·焼き付けで 形成する場合に、銀ペーストに対して約 2%前後のアルミニウムの粉末を添加するこ とで、シリコン基板との接触抵抗を低減する方法が一般的に行われている。  In addition, when forming the electrode on the light-receiving surface side as a conductive paste by printing and baking silver paste, contact with the silicon substrate is achieved by adding about 2% aluminum powder to the silver paste. A method of reducing the resistance is generally performed.
[0003] 特許文献 1 :特開 2004— 193337号公報(第 2— 3頁、図 3) Patent Document 1: Japanese Patent Application Laid-Open No. 2004-193337 (page 2-3, FIG. 3)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし乍ら、このような従来の太陽電池では、銀ペーストにアルミニウム粉末を添カロ したものを高温で熱処理すると、アルミニウムと基板のシリコンとが共融混合物を作り 易いため、スパイクと呼ばれる局所的に深い浸透部分を形成し、電極下の再結合が 増大して、開放電圧の低下を引き起こすという問題があった。 [0004] However, in such a conventional solar cell, when heat treatment is performed at a high temperature on a silver paste added with aluminum powder, aluminum and the silicon of the substrate easily form a eutectic mixture, so called spikes. There was a problem that a deep penetration portion was locally formed, and recombination under the electrode was increased, resulting in a decrease in open-circuit voltage.
そこで、この問題を解決するため、現状では受光面側拡散層の厚さ寸法を厚くする 方策が採られているが、それに伴い短波長光の量子効率が低下して変換効率向上 の妨げになっている。  Therefore, in order to solve this problem, measures are currently being taken to increase the thickness of the light-receiving surface side diffusion layer, but the quantum efficiency of short-wavelength light is reduced accordingly, which hinders improvement in conversion efficiency. ing.
[0005] 本発明のうち第一の発明は、スパイクの発生を抑えることを目的としたものである。 第二の発明は、第一の発明の目的に加えて、セルの変換効率を更に向上させるこ とを目的としたものである。 [0005] A first aspect of the present invention is intended to suppress the occurrence of spikes. The second invention is intended to further improve the cell conversion efficiency in addition to the object of the first invention.
課題を解決するための手段  Means for solving the problem
[0006] 前述した目的を達成するために、本発明のうち第一の発明は、導電性ペーストの主 材料にアルミニウム一シリコン合金を添加したことを特徴とするものである。  [0006] In order to achieve the above-mentioned object, the first invention of the present invention is characterized in that an aluminum-silicon alloy is added to the main material of the conductive paste.
第二の発明は、第一の発明の構成に、前記導電性ペーストの主材料に対するアル ミニゥム—シリコン合金の濃度を 0. 1〜20重量0 /0とし、そのァノレミ-ゥムに対するシリ コンの濃度を 0. 1〜 20重量%とした構成を加えたことを特徴とする。 The second invention, the configuration of the first invention, Al Miniumu to the main material of the conductive paste - the concentration of the silicon alloy and from 0.1 to 20 weight 0/0, the Anoremi - of silicon for © arm It is characterized by adding a composition having a concentration of 0.1 to 20% by weight.
発明の効果  The invention's effect
[0007] 本発明のうち第一の発明は、半導体基板のシリコンに対して、予めアルミニウム シリコン合金が添加された導電性ペーストを使用することにより、熱処理で新たにァ ルミ-ゥムとシリコンとの共融混合物が作られ難くなつて、電極下に局所的に深い浸 透部分が形成されない。  [0007] The first invention of the present invention is that a new paste of aluminum and silicon is obtained by heat treatment by using a conductive paste in which an aluminum silicon alloy is previously added to silicon of a semiconductor substrate. As a result, it is difficult to form the eutectic mixture, and a deeply penetrating portion is not locally formed under the electrode.
従って、スパイクの発生を抑えることができる。  Therefore, the occurrence of spikes can be suppressed.
その結果、高温で熱処理するとスパイクが発生し易い従来のものに比べ、高温で熱 処理しても電極下の再結合が増大せず、開放電圧の低下をも防止でき、それに伴つ て表面側拡散層の厚さ寸法を厚くする必要がないから、短波長光の量子効率も低下 せず、セルの変換効率の向上が図れる。  As a result, recombination under the electrode does not increase even when heat treatment is performed at a high temperature compared to the conventional one, which is prone to spikes when heat-treated at a high temperature, and the open circuit voltage can be prevented from decreasing. Since it is not necessary to increase the thickness of the diffusion layer, the quantum efficiency of short-wavelength light is not lowered, and the cell conversion efficiency can be improved.
[0008] 第二の発明は、第一の発明の効果に加えて、導電性ペーストの主材料に対するァ ルミ-ゥム—シリコン合金の濃度を 0. 1〜20重量%とし、そのアルミニウムに対する シリコンの濃度を 0. 1〜20重量%とすることにより、スパイク起因の PN接合不良が顕 著に抑制され、それに伴って表面側拡散層の厚さ寸法を低減できるから、短波長光 の量子効率が低下しない。 [0008] In addition to the effects of the first invention, the second invention is characterized in that the concentration of the aluminum-silicon alloy with respect to the main material of the conductive paste is 0.1 to 20% by weight, and the silicon with respect to the aluminum By making the concentration of 0.1 to 20% by weight, the PN junction failure caused by spikes is remarkably suppressed, and the thickness dimension of the surface-side diffusion layer can be reduced accordingly, so that the quantum efficiency of short wavelength light Does not drop.
従って、セルの変換効率を更に向上させることができる。  Therefore, the cell conversion efficiency can be further improved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] この実施例は、図 1 (a)に示す如ぐ半導体基板 1として単結晶シリコンや多結晶シ リコンカもなる n型又は p型のシリコン基板の受光面に、 p+又は n+の表面側拡散層 2 を形成し、この表面側拡散層 2の上に、主材料の銀ペーストにアルミニウム—シリコン 合金が添加された導電性ペースト 3をスクリーン印刷などで塗布し、その後、図 1 (b) に示す如く、加熱処理することにより表面側拡散層 2上に電極 4がコンタクト形成され る場合を示すものである。 In this embodiment, the semiconductor substrate 1 as shown in FIG. 1 (a) has a p + or n + surface on the light-receiving surface of an n- type or p-type silicon substrate that is also monocrystalline silicon or polycrystalline silicon. The side diffusion layer 2 is formed, and the main material silver paste is formed on the surface side diffusion layer 2 with aluminum-silicon. The conductive paste 3 to which the alloy is added is applied by screen printing or the like, and then the electrode 4 is contacted on the surface-side diffusion layer 2 by heat treatment as shown in FIG. 1 (b). Is.
[0010] 上記導電性ペースト 3の配合例としては、主材料である銀に対してアルミニウムーシ リコン合金の濃度を変えると共に、このアルミニウム一シリコン合金におけるアルミ-ゥ ムに対してシリコンの濃度を変えることが考えられる。 [0010] As an example of blending the conductive paste 3, the concentration of the aluminum-silicon alloy is changed with respect to the main material silver, and the concentration of silicon with respect to aluminum in the aluminum-silicon alloy is changed. It can be changed.
[0011] そして、上述した配合例が異なる導電性ペースト 3を用いて実際に電極 4をコンタク ト形成した試験品を夫々作成した。 [0011] Then, test products in which the electrodes 4 were actually formed by contact using the conductive pastes 3 having different blending examples were prepared.
これら試験品においてスパイクが発生する力否かの実験を行った結果を下記の表 1 に示し、コンタクト形成が良好である力否かの実験を行った結果を下記の表 2に示す  Table 1 below shows the results of experiments on whether or not spikes are generated in these test products, and Table 2 shows the results of experiments on whether or not the force is good for contact formation.
[0012] 試験品としては、銀に対するアルミニウム シリコン合金の濃度が 0. 05重量0 /0以 下及び 0. 1重量%〜20重量%、 21重量%以上のものと、このアルミニウムーシリコ ン合金におけるアルミニウムに対するシリコンの濃度が 0. 05重量0 /0以下及び 0. 1重 量%〜20重量%、 21重量%以上のものを用意した。 [0012] The test article concentration 0.05 wt 0/0 or less of aluminum silicon alloy for silver and 0.1 wt% to 20 wt%, and more than 21 wt%, the aluminum-silicon down Alloy concentration 0.05 wt 0/0 or less, and 0.1 by weight% to 20 weight% of silicon to aluminum in, were prepared more than 21 wt%.
比較例としては、銀ペースト中に約 2%のアルミニウム粉を添加したものを用意した なお、その他の実験条件として、表面側拡散層 2の厚さを 0.5 /z mとし、導電性べ一 スト 3の焼成温度を 800oCとした。 As a comparative example, a silver paste to which about 2% aluminum powder was added was prepared. As another experimental condition, the thickness of the surface side diffusion layer 2 was set to 0.5 / zm, and the conductive base 3 The firing temperature of was set at 800 ° C.
[0013] [表 1] [0013] [Table 1]
Figure imgf000005_0001
[0014] [表 2]
Figure imgf000005_0001
[0014] [Table 2]
Figure imgf000006_0001
Figure imgf000006_0001
[0015] その結果、上記導電性ペースト 3の主材料である銀に対するアルミニウム シリコン 合金の濃度が 0. 1〜20重量0 /0であり、し力もこのアルミニウム シリコン合金におけ るアルミニウムに対するシリコンの濃度が 0. 1〜20重量0 /0の試験品において、スノ ィ ク発生が見られず、かつコンタクト形成が良好であった。 [0015] As a result, the concentration is from 0.1 to 20 weight 0/0 of an aluminum silicon alloy to silver is the main material of the conductive paste 3, the tooth forces is also the concentration of silicon to aluminum that put in the aluminum silicon alloy there the specimens of 0.1 to 20 weight 0/0, showed no Sno I click occurs, and contact formation was good.
これに対し、銀に対するアルミニウム シリコン合金の濃度が 21重量0 /0と、アルミ二 ゥムに対するシリコンの濃度が 0. 05重量%の試験品ではスパイクの発生が見られた また、銀に対するアルミニウム シリコン合金の濃度が 0. 05重量%と、アルミニウム に対するシリコンの濃度が 21重量%の試験品ではコンタクト形成が不良であった。 In contrast, the concentration of the aluminum-silicon alloy with 21 weight 0/0 to silver, also the occurrence of the spike was observed in secondary aluminum © concentration of silicon to beam is 0.05 wt% of the test products, aluminum silicon to silver Contact formation was poor in the test sample with an alloy concentration of 0.05% by weight and a silicon concentration with respect to aluminum of 21% by weight.
[0016] 更に、これら試験品及び比較例にっ 、てセルの変換効率を算出したところ、スパイ ク発生が見られな力 た試験品 (銀に対するアルミニウム シリコン合金の濃度が 0. 1〜20重量%でアルミニウムに対するシリコンの濃度が 0. 1〜20重量%)は、所望の 変換効率が得られたものの、それ以外のスパイク発生が見られた試験品(銀に対する アルミニウム シリコン合金の濃度が 0. 05重量%以下及び 21重量%以上でアルミ ニゥムに対するシリコンの濃度が 0. 05重量%以下及び 21重量%以上)及び比較例 では、所望の変換効率が得られなかった。  [0016] Further, when the conversion efficiency of the cell was calculated using these test samples and comparative examples, the test sample showed no occurrence of spikes (the concentration of the aluminum silicon alloy with respect to silver was 0.1 to 20 weight). %, The concentration of silicon with respect to aluminum is 0.1 to 20% by weight), but the desired conversion efficiency was obtained, but other spikes were observed (the concentration of aluminum silicon alloy with respect to silver was 0. The desired conversion efficiency could not be obtained in the case where the concentration of silicon relative to aluminum was 0.05 wt% or less and 21 wt% or more and 0.05 wt% or less and 21 wt% or more.
[0017] このような理由から、銀に対するアルミニウム—シリコン合金の濃度は約 0. 1〜20 重量%とし、そのアルミニウムに対するシリコンの濃度は約 0. 1〜20重量%とすれば 、スノイクの発生が抑えられて変換効率の高いセルが得られること力 適当であると 実証された。 [0018] 特に、銀に対するアルミニウム—シリコン合金の濃度を約 1〜3重量%とし、そのァ ルミ-ゥムに対するシリコンの濃度を約 3〜13重量0 /0とした試験品では、スノイク起 因の PN接合不良が顕著に抑制されて、セルの変換効率が他の試験品に比べて更 に向上することも今回の実験で解った。 For this reason, if the concentration of the aluminum-silicon alloy with respect to silver is about 0.1 to 20% by weight and the concentration of silicon with respect to the aluminum is about 0.1 to 20% by weight, the occurrence of snokes It was proved that the ability to obtain a cell with high conversion efficiency by suppressing the above was appropriate. [0018] In particular, aluminum for silver - the concentration of the silicon alloy of about 1 to 3 wt%, its § Lumi - In © about 3 to 13 weight concentration of silicon to beam 0/0 and the test article Sunoiku attributable In this experiment, it was also found that the PN junction failure is significantly suppressed and the cell conversion efficiency is further improved compared to other test products.
[0019] 尚、前示実施例では、導電性ペースト 2の主材料が銀である場合を示したが、これ に限定されず、導電性ペースト 2の主材料が銅などを使用しても良い。  [0019] Although the example shown above shows the case where the main material of the conductive paste 2 is silver, the present invention is not limited to this, and the main material of the conductive paste 2 may use copper or the like. .
銅などであっても、予めアルミニウム シリコン合金を適量添加すれば、上述した実 施例と同様な作用効果が得られることも解った。  It has also been found that even if copper or the like is used, the same effects as the above-described examples can be obtained by adding an appropriate amount of an aluminum silicon alloy in advance.
[0020] また、シリコン基板の受光面に形成された表面側拡散層 2の上に導電性ペースト 3 を塗布し加熱処理することで電極 4がコンタクト形成される場合を示したが、これに限 定されず、シリコン基板の裏面に形成された拡散層の上に導電性ペーストを塗布し 加熱処理することで裏面電極がコンタクト形成される場合に使用しても上述した実施 例と同様な作用効果が得られる。  [0020] Although the case where the electrode 4 is contact-formed by applying the conductive paste 3 on the surface-side diffusion layer 2 formed on the light-receiving surface of the silicon substrate and performing the heat treatment has been shown, the present invention is not limited thereto. Even if it is used when the back electrode is contact-formed by applying a conductive paste on the diffusion layer formed on the back surface of the silicon substrate and heat-treating it, the same effect as the above-mentioned embodiment Is obtained.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の一実施例を示す太陽電池の縦断面図であり、(a)が電極形成前の状 態を示し、(b)が電極形成後の状態を示している。  FIG. 1 is a longitudinal sectional view of a solar cell showing an embodiment of the present invention, in which (a) shows a state before electrode formation, and (b) shows a state after electrode formation. .
符号の説明  Explanation of symbols
[0022] 1 半導体基板 (シリコン基板) 2 表面側拡散層  [0022] 1 Semiconductor substrate (silicon substrate) 2 Surface side diffusion layer
3 導電性ペースト 4 電極  3 Conductive paste 4 Electrode

Claims

請求の範囲 The scope of the claims
[1] シリコン力もなる半導体基板(1)の表面側拡散層(2)に、主材料が銀、銅のうち少な くとも 1種カゝらなる導電性ペースト(3)を塗布し熱処理することで、電極 (4)をコンタクト 形成した太陽電池において、  [1] A conductive paste (3) of at least one of silver and copper as the main material is applied to the surface side diffusion layer (2) of the semiconductor substrate (1) that also has silicon power and heat-treated. In the solar cell in which the electrode (4) is formed as a contact,
前記導電性ペースト (3)の主材料にアルミニウム—シリコン合金を添加したことを特 徴とする太陽電池。  A solar cell characterized in that an aluminum-silicon alloy is added to the main material of the conductive paste (3).
[2] 前記導電性ペースト(3)の主材料に対するアルミニウム—シリコン合金の濃度を 0. 1 〜20重量0 /0とし、そのアルミニウムに対するシリコンの濃度を 0. 1〜20重量0 /0とした 請求項 1記載の太陽電池。 [2] aluminum to the main material of the conductive paste (3) - the concentration of the silicon alloy and from 0.1 to 20 weight 0/0, and the concentration of silicon to the aluminum and 0.1 to 20 weight 0/0 The solar cell according to claim 1.
PCT/JP2006/319009 2005-12-28 2006-09-26 Solar battery WO2007077655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-378053 2005-12-28
JP2005378053A JP2009087957A (en) 2005-12-28 2005-12-28 Solar battery

Publications (1)

Publication Number Publication Date
WO2007077655A1 true WO2007077655A1 (en) 2007-07-12

Family

ID=38228015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319009 WO2007077655A1 (en) 2005-12-28 2006-09-26 Solar battery

Country Status (3)

Country Link
JP (1) JP2009087957A (en)
TW (1) TW200725922A (en)
WO (1) WO2007077655A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124161A1 (en) * 2009-04-23 2010-10-28 E. I. Du Pont De Nemours And Company Metal pastes and use thereof in the production of positive electrodes on p-type silicon surfaces
JP2012502503A (en) * 2008-09-10 2012-01-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Solar cell electrode

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225978B1 (en) * 2009-06-25 2013-01-24 엘지전자 주식회사 Sollar Cell And Fabrication Method Thereof
KR101814014B1 (en) 2011-03-25 2018-01-03 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
KR102100291B1 (en) 2011-11-11 2020-04-13 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
KR101985929B1 (en) 2011-12-09 2019-06-05 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
AT512041B1 (en) * 2012-05-04 2013-05-15 Mikroelektronik Ges Mit Beschraenkter Haftung Ab Method for producing a metallized substrate
US20140158192A1 (en) * 2012-12-06 2014-06-12 Michael Cudzinovic Seed layer for solar cell conductive contact
ES2684721T3 (en) * 2013-04-02 2018-10-04 Heraeus Deutschland GmbH & Co. KG Particles comprising AI, Si and Mg in electroconductive pastes and preparation of photovoltaic cells
WO2014162818A1 (en) 2013-04-04 2014-10-09 ナミックス株式会社 Conductive paste for forming electrode, method for manufacturing solar cell, and solar cell
US11222878B2 (en) 2019-04-30 2022-01-11 Ab Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Electronic power module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555563A (en) * 1978-10-19 1980-04-23 Matsushita Electric Ind Co Ltd Electrode material for semiconductor device
US4293451A (en) * 1978-06-08 1981-10-06 Bernd Ross Screenable contact structure and method for semiconductor devices
JPH09283781A (en) * 1996-04-09 1997-10-31 Sanyo Electric Co Ltd Photovoltaic device
JP2005135942A (en) * 2003-10-28 2005-05-26 Canon Inc Method of wiring electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293451A (en) * 1978-06-08 1981-10-06 Bernd Ross Screenable contact structure and method for semiconductor devices
JPS5555563A (en) * 1978-10-19 1980-04-23 Matsushita Electric Ind Co Ltd Electrode material for semiconductor device
JPH09283781A (en) * 1996-04-09 1997-10-31 Sanyo Electric Co Ltd Photovoltaic device
JP2005135942A (en) * 2003-10-28 2005-05-26 Canon Inc Method of wiring electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROSS B.: "The Use of Eutectic Alloys in Screened Contacts", CONFERENCE RECORD OF THE IEEE PHOTOVOLTAIC SPECIALITS CONFERENCE, vol. 14, 1980, pages 1406 - 1407, XP003015068 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502503A (en) * 2008-09-10 2012-01-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Solar cell electrode
WO2010124161A1 (en) * 2009-04-23 2010-10-28 E. I. Du Pont De Nemours And Company Metal pastes and use thereof in the production of positive electrodes on p-type silicon surfaces

Also Published As

Publication number Publication date
TW200725922A (en) 2007-07-01
JP2009087957A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2007077655A1 (en) Solar battery
KR101388200B1 (en) Method for forming semiconductor substrate and electrode, and method for manufacturing solar battery
CN105122462B (en) The seed layer that adhesion strength for solar cell conductive contact enhances
TWI673726B (en) Conductive composition, semiconductor element and solar cell element
Rauer et al. Investigation of aluminum-alloyed local contacts for rear surface-passivated silicon solar cells
JP2002511190A (en) Method and apparatus for self-doping cathode and anode for silicon solar cells and other devices
TW201131799A (en) Process for the formation of a silver back electrode of a passivated emitter and rear contact silicon solar cell
TW201924073A (en) Interdigitated back-contacted solar cell with p-type conductivity
EP2905812B1 (en) Solar cell manufacturing method
JP4255460B2 (en) Conductive paste, electrode, solar cell, and method for manufacturing solar cell
JP2010262979A (en) Solar cell and method for manufacturing the same
AU2013355406B2 (en) Seed layer for solar cell conductive contact
TW201737502A (en) Conductive paste and solar cell
US10483412B2 (en) High efficiency local back electrode aluminum paste for crystalline silicon solar cells and its application in PERC cells
EP2474983A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
Kerp et al. Development of screen printable contacts for p+ emitters in bifacial solar cells
Lauermann et al. The influence of contact geometry and sub-contact passivation on the performance of screen-printed Al 2 O 3 passivated solar cells
TW201644062A (en) Back-junction solar cell
US20120160314A1 (en) Process for the formation of a silver back anode of a silicon solar cell
JP2014057028A (en) Solar battery and manufacturing method therefor
JP4272405B2 (en) Method for manufacturing solar cell element
JP2002198547A (en) Method for manufacturing solar cell
WO2017091068A1 (en) Enhanced metallization of silicon solar cells
JPH11329070A (en) Conductive paste
Urrejola et al. Al-Si alloy formation in narrow p-Si contact areas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP