WO2007069558A1 - Process and apparatus for modifying separation membrane and separation membranes modified by the process - Google Patents

Process and apparatus for modifying separation membrane and separation membranes modified by the process Download PDF

Info

Publication number
WO2007069558A1
WO2007069558A1 PCT/JP2006/324648 JP2006324648W WO2007069558A1 WO 2007069558 A1 WO2007069558 A1 WO 2007069558A1 JP 2006324648 W JP2006324648 W JP 2006324648W WO 2007069558 A1 WO2007069558 A1 WO 2007069558A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
membrane
reforming
water
organic substance
Prior art date
Application number
PCT/JP2006/324648
Other languages
French (fr)
Japanese (ja)
Inventor
Yuya Sato
Makio Tamura
Original Assignee
Organo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005357692A external-priority patent/JP2007160173A/en
Priority claimed from JP2005366099A external-priority patent/JP2007167725A/en
Application filed by Organo Corporation filed Critical Organo Corporation
Publication of WO2007069558A1 publication Critical patent/WO2007069558A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/28Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling by soaking or impregnating

Definitions

  • the present invention relates to a separation membrane, in particular, a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane) that is modified to reliably improve specific performance such as bactericidal performance.
  • the present invention relates to a reforming method and apparatus, and a separation membrane modified by the method.
  • a module using a RO membrane or NF membrane as a separation membrane is used to separate ionic components and low molecular components from raw water. How to do is known. Compared to before, the performance of RO membranes and NF membranes has been greatly improved, and membranes with high blocking performance and low pressure operation are also used.
  • a permanent problem is the occurrence of biological contamination including microorganisms in the separation membrane module.
  • a force that is a phenomenon known as the generation of slime for example, when a slime occurs in a spiral membrane element, the pressure difference between the raw water and the concentrated water, that is, the water flow differential pressure, increases, especially when multiple elements are connected in series.
  • the water flow differential pressure rises excessively, the element itself may even be damaged.
  • contamination of the elements in the element may progress and odor may be generated.
  • Patent Document 1 proposes a method for producing a membrane having high desalting property and high water permeability by immersing a semipermeable membrane in an organic acid at a high temperature. In this method, since the treatment is performed at a high temperature, the treatment in the form of a module is difficult, and depending on the conditions, the permeate flow rate may be significantly reduced.
  • Patent Document 2 proposes a method of reducing salt permeability by adding tannic acid to seawater at a pH of less than 5.
  • this method is limited to the treatment of seawater.
  • Patent Document 3 and Patent Document 4 show a method of coordinating an antibacterial metal to a polymer material, and it is known that metal ions coordinate to polyphenols such as tannic acid. .
  • the present inventors provide a method for improving the blocking performance of a separation membrane in Patent Document 5, which has already been disclosed, by pressurizing water containing polyphenols into the separation membrane.
  • Patent Document 6 discloses a method of sterilizing a membrane by supplying silver electrolyzed water to the RO membrane.
  • this method requires a large amount of silver electrolyzed water in a large-scale apparatus, making the apparatus large and expensive, and fixing silver ions to the separation membrane. Therefore, there is concern about fungal growth while silver electrolyzed water is not supplied.
  • Patent Document 7 discloses a method of disposing and sterilizing activated carbon carrying silver ions in the subsequent stage of the RO membrane. However, this method cannot sterilize the RO membrane itself, and there is a concern about fungal growth on the RO membrane.
  • Patent Document 8 discloses a method of supplying water supplied to a separation membrane having a pore diameter of 0.1 m or less through a pipe into which a silver-based inorganic antibacterial agent has been introduced to the separation membrane. .
  • this method can sterilize the water supplied to the separation membrane, but silver ions are not immobilized on the separation membrane. The question remains as to whether or not to have a job.
  • Patent Document 9 discloses a technique for reforming water in a water purifier by supporting tan-phosphoric acid or the like on ceramic. This method is a technique for removing residual chlorine in tap water and making it delicious. Especially when it is installed in the latter stage of a filter, it cannot be a technique for preventing membrane deterioration. When installed in the front stage of the filter, residual chlorine that has a sterilizing effect is removed, so the viewpoint of membrane sterilization is rather counterproductive.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-117360
  • Patent Document 2 JP-A-58-109182
  • Patent Document 3 JP 2000-73277 A
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-204182
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-223963
  • Patent Document 6 JP-A-8-294689
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2000-288539
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2005-313151
  • Patent Document 9 Japanese Patent Laid-Open No. 2001-79567
  • the object of the present invention is to enable the separation membrane to improve specific performance such as sterilization performance and antibacterial performance more reliably and stably, and to modify the separation membrane.
  • separation membranes particularly RO membranes and NF membranes
  • the present inventors have found that separation membranes, particularly RO membranes and NF membranes, can be obtained by using certain organic substances before sterilization with an oxidizing agent. Has been found to be resistant to bactericides, and the present invention has been completed. Further, as a result of intensive studies, the present inventors have supplied polyphenol and silver ions to the separation membrane. Thus, it was found that the antibacterial performance of the separation membrane can be enhanced and the generation of fungi and slime can be remarkably suppressed, and the present invention has been completed.
  • the present inventors have (1) combined use of a certain organic substance and a reducing agent to oxidize raw water supplied to the separation membrane and water that dissolves the organic substance. Even in an atmosphere, it is possible to reliably improve and recover the blocking performance of existing separation membranes, especially RO membranes and NF membranes.
  • organic substances and reducing agents are mixed or reduced. The present inventors have found that a great effect can be obtained by adopting any one of the methods in which line injection is performed in the order of the agent and the organic substance, and the present invention has been completed.
  • the present invention first provides a separation membrane reforming technique for improving sterilization performance (first embodiment). That is, in the method for modifying a separation membrane according to the present invention, water containing an organic substance containing polyphenol is subjected to a bactericide resistance treatment by pressurizing water, and then water containing the bactericide is applied to the separation membrane.
  • the method comprises supplying and sterilizing the separation membrane. By using this method, sterilization can be performed without degrading the performance of the separation membrane, and stable operation can be achieved over a long period of time.
  • a reverse osmosis membrane or a nanofiltration membrane can be used as the separation membrane.
  • a particularly high bactericide resistance treatment effect can be obtained.
  • a spiral membrane element can be used as the separation membrane.
  • Spiral type membrane elements have great merit of using membranes with this structure because they are inexpensive and versatile. Further, since there are many troubles due to biological contamination, the advantages of the method according to the present invention are particularly utilized.
  • a membrane containing at least an aromatic polyamide material as the separation membrane.
  • preferred materials include wholly aromatic polyamides, and more preferably crosslinked wholly aromatic polyamides.
  • Polyamides are particularly prone to biological contamination because they are degraded by oxidants and cannot be sterilized by oxidants.
  • the method according to the present invention is an epoch-making technology that makes it possible to sterilize polyamide-based RO membranes and NF membranes, which was impossible in the past.
  • the separation membrane a 500 mg / L sodium chloride aqueous solution before the bactericide resistance treatment is blocked. It is preferable to use a separation membrane having a performance of 99% or less. A more preferable range of the blocking rate is 10% or more and 99% or less, more preferably 20% or more and 98.5% or less, more preferably 98% or less, and further preferably 30% or more and 98% or less.
  • the effect of treating the disinfectant with a high separation membrane can be obtained.
  • the effectiveness of the bactericide resistance treatment is low.
  • the manufacturer applies standard conditions for measuring the performance of the membrane, or in the case of spiral membrane elements, 25 ° C, l. It is better to measure with Om / day permeation flux as a guide.
  • the blocking rate in the present invention refers to that measured by this method unless otherwise specified.
  • the film includes a film that has deteriorated as a result of use and has the above-mentioned performance, and a film that has been brought into contact with an oxidizing agent such as sodium hypochlorite to forcibly deteriorate the acid and have the above-mentioned performance.
  • a chlorine-based disinfectant can be used as the disinfectant.
  • Various chlorinated fungicides such as sodium hypochlorite, chloramine, chloramine-T, and diacid chloride, are widely used and have low cost and high sterilization effects.
  • Bactericides other than chlorine such as hydrogen peroxide, peracetic acid, peracetic acid salt, persulfuric acid, persulfate, etc. can be used, but it is particularly possible to prevent deterioration of membranes that have been treated with bactericide resistance. It is a chlorine-based disinfectant.
  • the average molecular weight of the organic substance is preferably 200 to 5,000. A more preferable average molecular weight is 200 to 3000, and more preferably 200 to 2000. If the average molecular weight is less than 200, the organic substance may permeate through the membrane, so the antibacterial effect is low. If it exceeds 5 000, membrane fouling will be caused and the permeation flux will be lowered.
  • tannic acid is particularly effective, and it is good to use this substance!
  • hydrolyzable tannin can be used as the tannic acid.
  • tannic acid hydrolyzable tannin
  • water decomposition type water decomposition type
  • condensation type condensation type
  • tannic acid a tannic acid made from a pentaploid can be used.
  • Ploidy force Extracted tannic acid generally has an average molecular weight of about 1700. It is estimated that it is suitable for the bactericide resistance treatment.
  • the present invention provides a separation membrane treated by the separation membrane resistance treatment method as described above.
  • the apparatus for reforming a separation membrane according to the present invention includes a means for subjecting the separation membrane to a bactericidal resistance treatment by passing water containing an organic substance containing polyphenol under pressure, and a bactericidal treatment after the bactericidal resistance treatment. And a means for sterilizing the separation membrane by supplying water containing the agent to the separation membrane.
  • the separation membrane is composed of, for example, a reverse osmosis membrane or a nanofiltration membrane.
  • a spiral membrane element can be used as the separation membrane.
  • a membrane containing at least an aromatic polyamide material can be used as the separation membrane.
  • the separation membrane it is preferable to use a separation membrane having a performance of 99% or less of the inhibition rate of the 500 mg / L sodium chloride aqueous solution before the bactericide resistance treatment.
  • the average molecular weight of the organic substance is preferably 200 to 5,000.
  • tannic acid As the organic substance, it is particularly preferable to use tannic acid.
  • tannic acid hydrolyzable tannin can be used.
  • tannic acid a tannic acid made from a pentaploid can be used.
  • Such a separation membrane reforming apparatus according to the present invention can be incorporated into a water treatment system, for example.
  • An example of the water treatment system is a pure water production facility.
  • the present invention also provides a separation membrane modification technique for improving antibacterial performance (second embodiment). That is, in the method for reforming a separation membrane according to the present invention, an organic substance containing polyphenol and water containing silver ions are passed through the separation membrane under pressure, and silver ions are passed through the organic substance to the separation membrane. It is also possible to improve the antibacterial performance of the separation membrane. Polyphenol and silver ions both have antibacterial action, and combining them makes it possible to give the separation membrane a very strong antibacterial action. Polyphenol single In Germany, the antibacterial action is insufficient, and silver ions alone are not immobilized on the separation membrane. Therefore, it is an important factor to treat both in combination.
  • the organic material containing polyphenol is supplied to the separation membrane, and then water containing silver ions is supplied to the separation membrane. It is also possible to adopt a method to do this. By this method, it is possible to securely fix polyphenol and silver ions to the separation membrane.
  • the separation membrane it is preferable to use a separation membrane having a performance of a 99% or less rejection rate of a 500 mg / L sodium chloride aqueous solution before the modification treatment.
  • the range of the blocking rate is more preferably 98% or less, further preferably 10% or more and 99% or less, further preferably 20% or more and 98.5% or less, and further preferably 30% or more and 98% or less.
  • a membrane containing at least an aromatic polyamide material as the separation membrane. More preferred are wholly aromatic polyamides, and more preferred are crosslinked wholly aromatic polyamides. Polyamide-based materials are particularly prone to biological contamination because they are degraded by an oxidizing agent and cannot be sterilized by an oxidizing agent immediately. According to the method of the present invention, it is possible to sterilize polyamide-based RO membranes and NF membranes, which has been impossible in the past. [0040]
  • the average molecular weight of the organic substance is preferably 200 to 5,000. A more preferable average molecular weight is 200 to 3000, and more preferably 200 to 2000. When the average molecular weight is less than 200, the organic substance may permeate the membrane, so the antibacterial effect is weak. If it exceeds 5000, membrane fouling will be caused and the permeation flux will be lowered.
  • tannic acid is preferably used.
  • polyphenols it is recommended to use this substance, which has a particularly high effect of tannic acid.
  • Tannic acid has a hydrolysis type and a condensation type, and the former is particularly effective.
  • tannic acid it is preferable to use tannic acid made from a pentup.
  • Peptide power Extracted tannic acid generally has an average molecular weight of about 1700, and is estimated to be suitable for antibacterial treatment.
  • the silver ion source a substance containing at least one of silver nitrate and silver sulfate can be used. Although it does not specifically limit as a silver ion source, Silver nitrate, silver sulfate, etc. are mentioned as what is generally available easily, It is desirable also from the surface of versatility and cost to use these.
  • the present invention also provides a separation membrane modified by the method for modifying a separation membrane as described above.
  • an organic substance containing polyphenol and water containing silver ions are supplied to the separation membrane continuously or intermittently during the operation to stabilize the blocking performance. can do.
  • This method makes it possible to carry out antibacterial treatment by inline treatment even for separation membranes used in water treatment systems.
  • the separation membrane is modified by continuously or intermittently supplying an organic substance containing polyphenol and water containing silver ions to the separation membrane. It consists of a method of sending it as pure water (especially as ultrapure water) through an ultraviolet acid bath and an ion exchange system installed in the stage. Conventionally, the method disclosed in Patent Document 5 In this case, a part of the supplied polyphenol permeates the separation membrane, and the quality of the permeated water of the separation membrane during the reforming treatment sometimes deteriorates.
  • the present inventor passed the separation membrane permeated during the reforming treatment as pure water (especially, by passing it through an ultraviolet oxidation device and an ion-exchange resin device provided later). I found out that it can be sent out (as ultrapure water) and came to make this operation method ⁇
  • the permeated water of the separation membrane during the reforming treatment is not discarded, but supplied to the subsequent UV acidification apparatus and ion exchange resin apparatus, and the separation membrane is being reformed. Even if it exists, pure water can be continuously manufactured without stopping the operation.
  • This method makes it possible to continue stable operation for systems where the separation performance of conventional separation membranes deteriorates over time, and to prevent leakage of polyphenol into ultrapure water. In addition, a continuous supply of ultrapure water becomes possible. Therefore, even in a system that uses ultrapure water continuously and cannot be stopped, the reforming process can be performed. Furthermore, the water recovery rate is improved because the amount of drainage of the separation membrane permeated water is reduced.
  • the fluctuation range of the TOC concentration of the pure water is set to 2% even when the organic material containing polyphenol and water containing silver ions are not added. It is preferable to suppress to less than twice.
  • the fluctuation range is preferably 1.5 times or less, more preferably 1.3 times or less. If it is out of this range, the fluctuation is too large and the water quality becomes unstable.
  • fluctuations in the TOC concentration contained in ultrapure water can be suppressed within a certain range, and ultrapure water with stable water quality can be supplied.
  • a mixed bed ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed can be used.
  • the ion-exchanged resin used in so-called subsystems (secondary pure water equipment) that finishes pure water as ultrapure water is often mixed-bed resin. Is excellent.
  • the mixing ratio of the cation exchange resin and the anion exchange resin is not particularly limited. However, the volume ratio may be in the range of 5: 1 to L: 5, preferably 3: 1 to L: 3. If it is out of this range, the removal performance of various components in water is deteriorated and the life of the ion exchange resin is shortened, which is not preferable.
  • an anion exchange resin may be used as the ion exchange resin filled in the ion exchange resin device. It is the anion exchange resin that is involved in the removal of polyphenols, and this method enables efficient removal.
  • an organic substance containing polyphenol and water containing silver ions are passed through the separation membrane under pressure, and the organic substance is supplied to the separation membrane. It is characterized by having means for fixing silver ions through the separator and improving the antibacterial performance of the separation membrane.
  • the means for supplying the organic substance containing polyphenol and water containing silver ions to the separation membrane is a means for supplying a mixed liquid in which the organic substance containing polyphenol and silver ions are mixed to the separation membrane. be able to.
  • the organic material containing polyphenol is supplied to the separation membrane, and then water containing silver ions is supplied to the separation membrane. It can also be a means to do.
  • the rejection rate power of the 500 mg / L sodium chloride aqueous solution before the modification treatment is 99.
  • a separation membrane having a performance of not more than%.
  • a reverse osmosis membrane or a nanofiltration membrane is preferably used as the separation membrane.
  • a membrane containing at least an aromatic polyamide material is used as the separation membrane.
  • the average molecular weight of the organic substance is preferably 200 to 5,000.
  • tannic acid is preferably used as the organic substance.
  • hydrolyzable tannin is preferably used! /.
  • tannic acid that is made from a pentaploid as a raw material.
  • Examples of the silver ion source include a substance containing at least one of silver nitrate and silver sulfate. It is preferable to be used.
  • Examples of the operation device for the separation membrane according to the present invention in the second embodiment include, for example, an organic substance containing polyphenols and silver continuously or intermittently after the reforming device for the separation membrane as described above.
  • an ultraviolet acid oxidizer and an ion-exchange resin device that send permeate from the separation membrane during the reforming process as pure water are provided.
  • the permeated water of the separation membrane during the reforming treatment is supplied to the subsequent ultraviolet oxidation device and ion exchange resin device without being discarded, and the separation membrane reforming treatment is performed. Even during the operation, pure water can be produced continuously without stopping the operation.
  • the separation membrane operating device preferably has a water quality meter capable of measuring the TOC concentration of the pure water.
  • the ion exchange resin filled in the ion exchange resin apparatus it is preferable to use a mixed bed ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed. .
  • an anion exchange resin is preferably used as the ion exchange resin filled in the ion exchange resin device.
  • the present invention provides a technique capable of effectively modifying a separation membrane even when raw water or the like is in an acidic atmosphere (third embodiment). That is, the method for modifying a separation membrane according to the present invention is to improve the pressure blocking performance of the separation membrane by recovering the separation membrane by pressurizing water containing an organic substance containing polyphenol and a reducing agent.
  • the characteristic method power also becomes. If the raw water supplied to the separation membrane or the water that dissolves organic substances is in an oxidizing atmosphere, the organic substance decomposes before reaching the separation membrane, and the reforming effect cannot be obtained. was there .
  • the blocking performance of the separation membrane can be reliably improved and recovered.
  • a mixed liquid obtained by mixing the organic substance containing polyphenol and the reducing agent is used as a separation membrane. Can be supplied to.
  • the work is not complicated compared to the case where the organic substance is used alone. It is possible to reliably improve and recover the blocking performance of the separation membrane.
  • water containing a reducing agent and an organic substance containing polyphenol are added to a line for supplying raw water to the separation membrane. It can inject
  • the existing reducing agent injection line can be used to easily improve the separation membrane blocking performance. Can be recovered.
  • the separation membrane it is preferable to use a separation membrane having a performance of 99% or less of the rejection rate power of the 500 mg / L sodium chloride aqueous solution before the modification treatment.
  • a more preferable range of the blocking rate is 10% or more and 99% or less, more preferably 20% or more and 98.5% or less, further preferably 98% or less, and further preferably 30% or more and 98% or less.
  • a membrane containing at least an aromatic polyamide material is preferable to use as the separation membrane. More preferred materials are wholly aromatic polyamides, more preferably crosslinked wholly aromatic polyamides. By including a polyamide-based material in the separation membrane, the effect of modification is further increased.
  • the average molecular weight of the organic substance is preferably 200 to 5,000. A more preferable average molecular weight is 200 to 3000, and more preferably 200 to 2000. If the average molecular weight is less than 200, the organic substance may permeate the membrane, so the effect is weak. Average molecular weight If it exceeds 5000, membrane fouling will be caused and the permeation flux will be lowered, but it will not contribute to the improvement of the blocking performance.
  • tannic acid is preferably used.
  • polyphenols it is recommended to use this substance, which has a particularly high effect of tannic acid.
  • Tannic acid it is preferable to use hydrolyzable tannin. Tannic acid has a hydrolysis type and a condensation type, and the former is particularly effective.
  • tannic acid it is preferable to use a pentonic acid as a raw material.
  • Peptide power Extracted tannic acid is generally estimated to have an average molecular weight of about 1700 and is suitable for reforming.
  • the reducing agent a substance containing at least one of sodium sulfite and sodium hydrogen sulfite can be used.
  • the reducing agent to be used is not particularly limited, sodium sulfite and sodium hydrogen sulfite are general reducing agents that have been used conventionally, and the cost is low. Therefore, it is preferable to use these.
  • the present invention also provides a separation membrane modified by the above-described method for modifying a separation membrane.
  • the separation membrane reforming apparatus according to the present invention in the third embodiment is configured to pressurize water containing an organic substance containing polyphenol and a reducing agent through the separation membrane, thereby preventing the separation membrane from being blocked. It also has the power of being characterized by having means to improve and recover.
  • means for supplying the organic substance containing polyphenol and water containing the reducing agent to the separation membrane means for supplying a mixed liquid in which the organic substance containing polyphenol and the reducing agent are mixed to the separation membrane; can do.
  • water containing the organic substance containing polyphenol and the reducing agent to the separation membrane water containing the reducing agent and organic substance containing polyphenol are introduced into a line for supplying raw water to the separation membrane. It is also possible to inject in the order of the contained water and supply it to the separation membrane.
  • the rejection rate power of the 500 mg / L sodium chloride aqueous solution before the modification treatment is 99.
  • a separation membrane having a performance of not more than%.
  • a reverse osmosis membrane or a nanofiltration membrane is preferably used.
  • a spiral membrane element is preferable to use as the separation membrane.
  • a membrane containing at least an aromatic polyamide material is used as the separation membrane.
  • the average molecular weight of the organic substance is preferably 200 to 5,000.
  • tannic acid is preferably used as the organic substance.
  • hydrolyzable tannin is preferably used! /.
  • tannic acid made from a pentup.
  • a substance containing at least one of sodium sulfite and sodium hydrogen sulfite is preferably used.
  • the present invention relating to the first embodiment, it becomes possible to sterilize commercially available separation membranes, particularly RO membranes and NF membranes, which have been unable to use conventional sterilizing agents. It will be possible to deal with biological contamination problems that have been a concern. Therefore, the present invention can be applied to fields in which fungal growth must be surely avoided, such as the pharmaceutical and pharmaceutical industries and the food industry, which have high utility value in a wide range of industries, and the industrial utility value is extremely high. .
  • Separation membrane can be effectively modified, and by modifying the separation membrane on the market, the blocking performance can be improved significantly and surely, and further lower pressure can be achieved while maintaining high blocking performance.
  • a membrane can be provided.
  • FIG. 1 is an equipment system diagram of a separation membrane reformer according to an embodiment of the present invention.
  • FIG. 2 is an equipment system diagram of a separation membrane reformer according to another embodiment of the present invention.
  • FIG. 3 is a system diagram showing another embodiment of the separation membrane reforming apparatus of the present invention.
  • FIG. 4 is an equipment system diagram showing still another embodiment of the separation membrane reformer according to the present invention.
  • FIG. 5 is an equipment system diagram showing an example of a post-stage apparatus when the post-stage apparatus is incorporated in the separation membrane reforming apparatus of the present invention in the second embodiment.
  • FIG. 2 shows a water treatment system incorporating a separation membrane reformer for improving the sterilization performance.
  • the operation method of the separation membrane module according to the present invention will be described with reference to FIG. Fig. 2 shows a flow chart of a water treatment system incorporating a separation membrane device.
  • pressure gauges, flow meters, valves, etc. are omitted as appropriate.
  • the separation membrane module 3 includes a membrane element 31 that is the separation membrane itself and a vessel 32 that is a pressure-resistant container for storing the membrane element 31.
  • the feed water tank 1 receives water from the previous stage, for example, raw water subjected to turbidity treatment.
  • Valves 5 and 7 are opened, valve 4 is opened to a predetermined pressure, valves 6, 8, and 9 are closed, and the raw water pressurized by pressurizing pump 2 is concentrated by separation membrane module 3.
  • the concentrated water is blown and the permeated water is sent to the downstream device.
  • ball valves 6 and 7 may be adjusted appropriately to partially circulate the concentrated water.
  • the sterilization process is performed, for example, at a predetermined interval set in advance. Prior to sterilization, a bactericide resistance treatment process is performed, followed by a bactericide addition process.
  • the tank 10 stores an aqueous solution of the aforementioned organic substance having a predetermined concentration
  • the tank 20 stores an aqueous solution of an oxidizing agent (bactericide) having a predetermined concentration.
  • the chemical injection pump 11 is activated to supply the organic substance to the separation membrane module 3. After a predetermined time has elapsed, the chemical injection pump 11 is stopped, and then the chemical injection pump 21 is started to supply the disinfectant to the separation membrane module 3. After the specified time has elapsed, stop the dosing pump 21.
  • the permeated water can be blown with valve 5 closed and valve 9 opened during the addition.
  • the permeate can be circulated with the valve 5 closed and the valve 8 open.
  • the concentrated water may be circulated with the valve 7 closed and the valve 6 opened.
  • the chemical injection pump 11 is stopped when the chemical concentration reaches a certain concentration.
  • the duration of the bactericide-resistant treatment step is 5 minutes to 2 hours, preferably 5 minutes to 1 hour. If the time is less than 5 minutes, the effect of the treatment is small. If the time exceeds 2 hours, the effect of the treatment is high, and the chemical is wasted.
  • the bactericide resistance treatment step may or may not be performed every time before sterilization. If it is not performed every time, it may be set such that the organic material coated on the surface of the separation membrane in the disinfectant-resistant treatment process remains, for example, once for 2 to 10 sterilizations.
  • the bactericide resistance treatment step does not necessarily have to be performed immediately before the bactericide addition step! For example, it may be performed immediately after the disinfectant addition step, and this may be regarded as a pretreatment step for the next disinfection.
  • a reducing agent may be added simultaneously with the bactericide resistance treatment step. If the water to which the organic substance is added contains an oxidizing substance, the antibacterial resistance effect may be lost before the organic substance reaches the separation membrane surface. In order to prevent this, it is preferable to provide a reducing agent injection point before the organic material injection point to reduce the amount in advance.
  • the reducing agent is not particularly limited, and sodium sulfite, sodium hydrogen sulfite and the like can be used, and the concentration is preferably set to about 0.1 to 100 mg / L at the injection point. Further, an organic substance and a reducing agent may be mixed and added. By using this method, even when the raw water supplied to the separation membrane or the water that dissolves the organic substance is in an oxidizing atmosphere, the work is complicated compared to the case of using the organic substance alone. A fungicide resistant effect can be obtained.
  • the embodiment described above can also be applied to a separation membrane device constituted by a plurality of modules including a plurality of elements such as a force Christmas tree arrangement exemplifying the form of one module and a two-stage RO.
  • the separation membrane modules 3a to 3c are arranged in a multi-stage (two stages in the illustrated example) in a Christmas tree shape, and each module 3a to 3c is a membrane element 31a to 31c which is the separation membrane itself.
  • vessels 32a to 32c which are pressure vessels for storing the membrane elements.
  • both of the forces shown in the example of using two chemical tanks may be mixed and added as one liquid.
  • the two liquids may be mixed at the site, or they may be mixed at the manufacturing factory before the production site, that is, the chemical liquid manufacturing process, and the mixed liquid may be used on site.
  • one chemical tank 10 and one chemical injection pump 11 may be provided.
  • the concentration of the organic substance used in the bactericide-resistant treatment step is not particularly limited, but it is 0.1 to 200 mg / L, preferably 0.5 to 100 mg / L at the separation membrane module inlet for efficient treatment. This is preferable. If it is less than 0.5 mg / L, the effect is weak. If it exceeds 200 mg / L, fouling may occur, which is not preferable.
  • the permeation flux at the time of pressurized water flow in the bactericide-resistant treatment step is in the range of 0.3 to 5.0 m / day.
  • a more preferable permeation flux range is 0.5 to 3.0 m / day, and even more preferably 0.7 to 2.0 m / day. If it is less than 0.3 m / day, it is not possible to expect a fungicide resistance effect with a low organic substance adsorption effect. And when it is more than 5.0m / da y, there is a case to cause Fauringu, undesirable.
  • An acid may be added to water containing the organic substance to adjust the pH to 1 to 5. By controlling the pH within the above range, it is possible to prevent the precipitation of organic substances and appropriately carry out the bactericide resistance treatment.
  • the acid is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citrate, oxalic acid, carboxylic acid, and the like can be used. In particular, citrate is easily available and has low toxicity. Easy to operate.
  • the polyphenol referred to in the present invention refers to general polyphenols generically referring to aromatic compounds in which a plurality of hydroxyl groups are bonded.
  • polyphenols include anthocyanins, catechins, tannins, rutin, quercetin, isoflavones, flavonoids, humins, and fulvic acids, but are not particularly limited.
  • Tannins are also called tannic acid and tannins, and are used in confusing terms.
  • pentaploid tannin is sometimes called gallotannin.
  • a quintuplet is an insect cob of the genus Nurde.
  • Tannic acid includes a hydrolysis type and a condensation type.
  • the former ingredients are pentaploid, gallic, chestnut, oak wood, eucalyptus, divi-divi, tara, sumac, myrabolam , Algarobilla, Valonea, walnuts, chestnuts, mallet, gummy, pomegranate, akamegashi mochi, Examples include urushiaceae, sanshu, gennoshouko, and the like.
  • Examples of the latter ingredients include Quebracho, Burma Cutch, Wattle, Mimos a, Spruse, Hemlock, Mangrove, Power Examples include oak bark, abalam, Gambier, tea, astringent shibu, yukinoshita, grape, apple, lotus root, coffee, shiso, bokeh, persimmon, rosemary, parsley, salvia flower, and sunflower.
  • the hydrolysis type is also called pyrogallol type (Hydrolyzable Tannin), and the condensation type is also called catechol type (Condensel Tannin).
  • propyl gallate etc. can also be used as the former hydrolysis product.
  • FIG. 1 is an apparatus system diagram of a membrane reforming apparatus for carrying out the treatment method of this example (pressure gauge, flow meter, valve, etc. are omitted as appropriate).
  • 1 is a separation membrane supply water tank (raw water tank)
  • 2 is a pressure pump
  • 3 is a separation membrane module
  • 4 is a pressure control valve
  • 5 to 9 are valves that also have ball valve force.
  • the separation membrane module 3 includes a membrane element 31 that is the separation membrane itself and a vessel 32 that is a pressure-resistant container for storing the membrane element.
  • valves 6, 8, 9 were closed, valves 5, 7 were opened, and valve 4 was Open pump 2 as appropriate and start pump 2. Pass water for a while under no pressure, and wash the separation membrane module 3 with water while supplying water to the tank 1 if necessary.
  • the state where no pressure is applied refers to a state where the permeated water is not low enough to obtain permeated water! Uh.
  • valve 5 is closed, a predetermined amount of water is put into the tank 1, and a predetermined amount of organic substances and silver ions, which are reforming chemicals, are added and sufficiently dissolved.
  • Valves 7 and 9 are closed, valves 5, 6, and 8 are opened, valve 4 is opened to a predetermined pressure, and pump 2 is started.
  • valve 9 is opened, and the chemical liquid in the tank 1 is discharged. After washing tank 1 with water, valve 9 is closed and water is stored. Start pump 2 with valves 6, 8, 9 closed, valves 5, 7 open, and valve 4 open as appropriate. Water is passed for a while without pressure, and the separation membrane module 3 is washed with water while supplying water to the tank 1 if necessary. Valve 6 is also opened and the circulation line is rinsed appropriately.
  • an organic substance and silver ions are mixed and processed is shown, but they can also be used separately. In that case, use organic substances in the order of silver ions, and provide a water washing step between each treatment.
  • valves 6, 8, and 9 are closed, valves 5 and 7 are opened, valve 4 is opened as appropriate, and pump 2 is started To do. Water is passed for a while without pressure, and the separation membrane module 3 is washed with water while supplying water to the tank 1 if necessary.
  • the separation membrane after the reforming treatment can be used in the system of the entire water treatment apparatus.
  • the raw water can be deturbed by a method such as coagulation sedimentation, sand filtration, membrane filtration, etc., and then a reformed separation membrane can be used, or EDI can be used downstream.
  • the water supplied to tank 1 is preferably pure water. If pure water is not available, turbid water with an SDI value of 5 or less may be used.
  • the treatment time is not particularly limited, but is 5 minutes to 24 hours, preferably 30 minutes for each treatment with a mixture of an organic substance and silver ions, or a treatment with an organic substance, and a treatment with an aqueous solution containing silver ions. ⁇ 6 hours power is preferred for efficient processing. If it is less than 5 minutes, the effect of the treatment will be weak. If it exceeds 24 hours, it may cause fouling or may cause further improvement in the antibacterial treatment effect, which is not preferable.
  • the feed water tank 1 receives water from the previous stage, for example, raw water subjected to turbidity treatment.
  • Valves 5 and 7 are opened, valve 4 is opened to a predetermined pressure, valves 6, 8, and 9 are closed, and the raw water pressurized by the pressure pump 2 is converted into concentrated water by the separation membrane module 3. Separated into permeated water, concentrated water is blown, and permeated water is sent to the downstream device.
  • the ball valves 6 and 7 may be adjusted appropriately to partially circulate the concentrated water.
  • the chemical solution tank 10 stores an organic substance aqueous solution with a predetermined concentration
  • the chemical solution tank 20 stores a silver ion aqueous solution with a predetermined concentration in advance.
  • intermittent addition when the addition is made at regular intervals, the chemical injection pump 11 is started automatically or manually at regular intervals, stopped after a predetermined time, and then the chemical injection pump 21 is turned on. Start up and stop after a lapse of a predetermined time.
  • intermittent addition from the water quality meter 12
  • an electrical signal when the water quality meter 12 falls below a certain reference value, an electrical signal is sent to the dosing pump 11 and the pump is started.
  • the drug injection time is not particularly limited, but preferably 5 minutes to 24 hours for a drug injection of a mixture of an organic substance and silver ions, or an organic substance and an aqueous solution containing silver ions. Is preferably 30 minutes to 6 hours for efficient treatment. If it is less than 5 minutes, the effect of the treatment is weak, and if it exceeds 24 hours, it may cause fouling or may cause further improvement in the antibacterial treatment effect.
  • the dosing interval for intermittent dosing is not particularly limited, but is a mixture of an organic substance and silver ion, or an organic substance, and an aqueous solution containing silver ions.
  • the concentration of the organic substance as the modifying chemical is not particularly limited, but is preferably 0.1 to 200 mg / L, preferably 0.5 to 100 mg / L at the inlet of the separation membrane module, which is preferable for efficient processing. . Less than 0.1 mg / L is less effective. Over 200 mg / L may cause fouling, which is not preferable.
  • the concentration of silver ions is not particularly limited, but is 0.01 to 2 at the inlet of the separation membrane module. 00 mg / L, preferably 0.02 to 100 mg / L is preferable for efficient treatment. The effect is less than 0.01 mg / L. If it exceeds 200 mg / L, the chemical cost is increased, which is not preferable.
  • the permeation flux during pressurized water flow is preferably in the range of 0.3 to 5.0 m / day in order to obtain a suitable reforming effect.
  • a suitable permeation flux range is 0.3 to 5.0 m / day, preferably 0.5 to 3. Om / day, more preferably 0.7 to 2.0 m / day. If it is less than 0.3 m / day, an antibacterial treatment effect with low organic substance adsorption effect cannot be expected. If it exceeds 5.0m / day, fouling may occur, which is not preferable.
  • An acid may be added to water containing the organic substance to adjust the pH to 1 to 5. By controlling the pH within the above range, precipitation of organic substances can be prevented and treatment can be performed appropriately.
  • the acid is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citrate, oxalic acid, carboxylic acid, and the like can be used. In particular, citrate is easily available and has low toxicity. The operability is good immediately.
  • the separation membrane Before the reforming treatment is performed, the separation membrane may be chemically cleaned. In particular, when the separation membrane is contaminated, the reforming effect may be reduced, and it is desirable to perform appropriate chemical cleaning.
  • the chemical cleaning method is not particularly limited, and a cleaning method using acid or alkali can be used. Depending on the state of contamination, cleaning using only one of them may be performed, or cleaning may be performed using both in order.
  • the acid is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citrate, oxalic acid, carboxylic acid, and the like can be used. In particular, oxalic acid and citrate are desirable because they have a high cleaning effect.
  • the strength of the alkali sodium hydroxide, potassium hydroxide, sodium carbonate, calcium hydroxide, sodium sulfite, and the like can be used. View power is also desirable.
  • FIG. 5 shows an ultraviolet acid oxidizer 41 and an ion exchange resin rig 42 installed downstream of the separation membrane device. Other devices included in the subsystem are omitted.
  • the feed water tank 1 receives water from the previous stage, for example, raw water subjected to turbidity treatment. Valves 5 and 7 are opened, valve 4 is opened to a predetermined pressure, valves 6, 8, and 9 are closed, and the raw water pressurized by pressurizing pump 2 is concentrated by separation membrane module 3. The concentrated water is blown and the permeated water is sent to the downstream device. In some cases, ball valves 6 and 7 may be adjusted as appropriate to partially circulate the concentrated water.
  • an aqueous solution containing an organic substance having a predetermined concentration (in this embodiment, an organic substance containing polyphenol and an aqueous solution containing silver ions) is stored.
  • an electric signal is sent to the dosing pump 11 and the pump is activated.
  • the medicinal pump 11 is set so as to give a predetermined injection amount.
  • the electrical signal from the water quality meter should be started automatically or manually at regular intervals as needed. That's fine.
  • the medicine injection pump 11 is always started. According to the present invention, it is not necessary to stop normal operation even during addition of an organic substance regardless of intermittent addition or continuous addition, or in the case of intermittent addition, even if it is stopped. It takes time.
  • the water sent from the separation membrane device is processed by the subsystem including each device shown in Fig. 5, and the TOC concentration is set to a predetermined concentration or less, and then supplied to the use point as ultrapure water.
  • a predetermined concentration is exceeded during the addition of the organic substance, water is drained only during that period. In the method of the present invention, this drainage time is much shorter than in the past.
  • an aqueous solution containing metal ions may be passed through!
  • the aqueous solution containing metal ions may or may not be pressurized to obtain permeated water if it is supplied in contact with the membrane surface. It is presumed that the effect is greater when pressurized water is passed. Further, even if water is not passed through and the film is still in contact with the aqueous solution, it is effective even in the immersed state.
  • the metal ion is not particularly limited, but examples include ions of antimony, iron, manganese, copper, nickel, zinc, aluminum, tin, molybdenum, chromium, titanium, and the like.
  • a reducing agent may be used in combination. If the raw water supplied to the separation membrane or the water that dissolves organic substances and silver ions is in an acidic environment, the organic substance decomposes before reaching the separation membrane, and the effect of reforming is reduced. In some cases, it could not be obtained. By using this method, even when the raw water supplied to the separation membrane or the water for dissolving the organic substance is in an oxidizing atmosphere, a satisfactory treatment can be performed.
  • the method of using the reducing agent in combination is not particularly limited, and it may be mixed with water containing an organic substance or water containing silver, or may be added separately.
  • the reducing agent to be used is not particularly limited, but sodium sulfite and sodium hydrogen sulfite are general-purpose reducing agents that have been used in the past and are inexpensive, and therefore, it is preferable to use them.
  • valve 5 is closed, a predetermined amount of water is put into the tank 1, and a predetermined amount of organic substance and reducing agent as reforming chemicals are added to sufficiently dissolve.
  • Valves 7 and 9 are closed, valves 5, 6, and 8 are opened, valve 4 is opened to a predetermined pressure, and pump 2 is started.
  • valve 9 is opened, and the chemical liquid in the tank 1 is discharged. After washing tank 1 with water, valve 9 is closed and water is stored. Start pump 2 with valves 6, 8, 9 closed, valves 5, 7 open, and valve 4 open as appropriate. Water is passed for a while without pressure, and the separation membrane module 3 is washed with water while supplying water to the tank 1 if necessary. Valve 6 is also opened and the circulation line is rinsed appropriately.
  • the separation membrane after the reforming treatment can be used in the system of the entire water treatment apparatus.
  • the raw water can be deturbed by a method such as coagulation sedimentation, sand filtration, membrane filtration, etc., and then a modified separation membrane can be used, or EDI can be used in the subsequent stage.
  • the water supplied to the tank 1 is preferably pure water, but when pure water cannot be used, turbidity water having an SDI value of 5 or less may be used.
  • turbidity water having an SDI value of 5 or less may be used.
  • a reducing agent is added, even water in an oxidizing atmosphere can be used other than pure water as long as it is turbid water that does not affect the separation membrane.
  • oxygen in the air dissolves in the solution in the long term, an oxidizing atmosphere is created and the effect of the organic substance may be reduced. It is more preferable to add.
  • the treatment time is not particularly limited, but is preferably 5 minutes to 24 hours, preferably 10 minutes to 6 hours, in order to perform a power efficient treatment. If the treatment time is less than 5 minutes, the effect of the treatment is weak, and if it exceeds 24 hours, fouling may occur or the treatment effect may be further improved.
  • an aqueous electrolyte solution such as sodium chloride sodium, calcium chloride, magnesium sulfate, etc. is used to evaluate the salt blocking performance, as well as silica ( It is preferable to evaluate the blocking performance of TOC components such as sodium silicate and alcohols.
  • TOC components such as sodium silicate and alcohols.
  • RO and NF performance evaluations often use an aqueous electrolyte solution, but silica and TOC should be used as indicators because the modification process improves the blocking performance of non-electrolyte components.
  • a separation membrane reforming method according to another embodiment (on-line processing) of the present invention in the third embodiment will be described with reference to FIG.
  • the feed water tank 1 receives water from the previous stage, for example, raw water subjected to turbidity treatment.
  • Valves 5 and 7 are opened, valve 4 is opened to a predetermined pressure, valves 6, 8, and 9 are closed, and the raw water pressurized by the pressure pump 2 is converted into concentrated water by the separation membrane module 3. Separated into permeated water, the concentrated water is blown, and the permeated water is sent to the downstream device.
  • ball valves 6 and 7 may be adjusted as appropriate to partially circulate the concentrated water.
  • the chemical solution tank 10 stores a reducing agent aqueous solution having a predetermined concentration
  • the chemical solution tank 20 stores an organic substance aqueous solution having a predetermined concentration in advance.
  • an electric signal is sent to the dosing pumps 11 and 21, and the pump is started.
  • Pumps 11 and 21 are set in advance to achieve a predetermined injection volume.
  • the dosing pump 11, 21 can be activated.
  • the dosing pumps 11 and 21 are always started. Note that when the reducing agent is added for the purpose of reducing the oxidizing agent contained in the raw water, the chemical injection pump 11 is used regardless of whether the organic substance is added intermittently or continuously. Always start and add the reducing agent continuously.
  • the concentration of the organic substance that is the modifying chemical is not particularly limited, but is preferably 0.1 to 200 mg / L, preferably 0.5 to 100 mg / L at the inlet of the separation membrane module, which is desirable for efficient processing. . Less than 0.1 mg / L is less effective. Over 200 mg / L may cause fouling, which is not preferable.
  • the concentration of the reducing agent is not particularly limited, but is preferably 0.1 to 200 mg / L, preferably 0.2 to 100 mg / L at the inlet of the separation membrane module, in order to perform efficient treatment. If it is less than 0.1 mg / L, the effect is not good.
  • the permeation flux at the time of pressurized water flow is preferably in the range of 0.3 to 5.0 m / day.
  • a more preferable permeation flux range is 0.5 to 3.0 m / day, and even more preferably 0.7 to 2.0 m / day. If it is less than 0.3 m / day, the organic substance adsorption effect is low, and improvement of the blocking performance cannot be expected. If it exceeds 5.0m / day, fouling may occur, which is not preferable. Conventionally, there are cases where tannic acid treatment is performed with hollow fiber RO membranes for seawater. However, the effect of very low permeation flux during processing was insufficient. In the method of the present invention, a high reforming effect can be realized by processing at a high permeation flux of 0.3 to 5.0 m / day.
  • An acid may be added to water containing the organic substance to adjust the pH to 1 to 5. By controlling the pH within the above range, precipitation of organic substances can be prevented and reforming can be carried out appropriately.
  • the acid is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citrate, oxalic acid, carboxylic acid, and the like can be used. In particular, citrate is easily available and has low toxicity. The operability is good immediately.
  • Example 1 the treatment was performed in the same manner as in Example 1 except that chloramine was used as a bactericide.
  • Example 3 the treatment was performed in the same manner as in Example 3 except that chloramine was used as a bactericide.
  • Example 1 the bactericide resistance treatment step was not performed, only the bactericide addition step was performed, that is, the treatment was performed in the same manner as in Example 1 except that only normal sterilization was performed.
  • Example 2 the bactericide resistance treatment step was not performed, only the bactericide addition step was performed, that is, the treatment was performed in the same manner as in Example 2 except that only normal sterilization was performed.
  • Example 1 the treatment was performed in the same manner as in Example 1 except that the bactericide resistance treatment step and the bactericide addition step were not performed, that is, the operation was performed without performing any sterilization.
  • Example 3 the bactericide resistance treatment step was not performed, only the bactericide addition step was performed, that is, the treatment was performed in the same manner as in Example 3 except that only normal sterilization was performed.
  • Example 4 the bactericide resistance treatment step was not carried out, only the bactericide addition step was carried out, that is, the treatment was carried out in the same manner as in Example 4 except that only normal bactericidal treatment was carried out.
  • Example 3 the treatment was performed in the same manner as in Example 3 except that the bactericide resistance treatment step and the bactericide addition step were not performed, that is, the operation was performed without performing any sterilization.
  • Continuous operation was performed under the above conditions, and performance evaluation was performed at the initial stage of operation, after 1 month, after 2 months, and after 3 months. The rejection rate was calculated based on the conductivity. The amount of permeated water was shown as a relative value with the initial operation as 100. The results are shown in Table 1.
  • membranes A to D four types of membranes (membranes A to D) shown in Table 2 were prepared by the following procedure.
  • the membrane was Nitto Denko LES90, the silver ion was an aqueous silver nitrate solution, and the organic substance was pentaploid tannin.
  • Example 6 Continuous operation and antibacterial treatment were performed with the apparatus shown in Fig. 2 using pentaploid tannin as the organic substance and silver nitrate aqueous solution as the silver ion.
  • the raw water received in Tank 1 is groundwater that has been turbidized by the membrane turbidizer in the previous stage, and the conductivity during the operation period is about 20 mS / m on average, and the TOC is stable at an average of about 2 mg / L. It was.
  • As the membrane ES-10-D8 manufactured by Nitto Denko Corporation was used.
  • the organic substance and silver ion concentrations were adjusted to 10 mg / L at the inlet of the separation membrane module, the addition interval was once every two weeks, and the addition time was 1 hour each.
  • Example 6 continuous operation was performed in the same manner as in Example 6 without using an organic substance or silver ions, that is, without performing antibacterial treatment.
  • Example 6 continuous operation and antibacterial treatment were performed in the same manner as in Example 6 except that only an organic substance was used without using silver ions.
  • Example 6 continuous operation and antibacterial treatment were performed in the same manner as in Example 6 except that only silver ions were used without using an organic substance.
  • Example 6 in which periodic antibacterial treatment with organic substances and silver ions was performed, stable operation with no change in performance was possible.
  • Comparative Example 8-1 where antibacterial treatment was not performed, the rejection rate over time 'decreased permeated water volume and the increased water flow differential pressure occurred, and it was assumed that the separation membrane was slime contaminated.
  • Comparative Examples 8-2 and 8-3 where only the treatment with either an organic substance or silver ions was performed, although improved over Comparative Example 8-1, where no treatment was performed, it was insufficient.
  • an organic substance containing polyphenol and water containing silver ions were passed under pressure.
  • continuous operation was performed by the above method using pentaploid tannin as the organic substance.
  • the effect of the post-processing by the equipment shown in Fig. 5 was confirmed.
  • the raw water received in Tank 1 was groundwater that had been turbidized by the membrane turbidizer in the previous stage, and the conductivity during the operation period was stable at an average of around 20 mS / m.
  • the ORP averaged +600 mV, and it was water with an oxidation tendency.
  • As the membrane ES-10-D8 manufactured by Nitto Denko Corporation was used.
  • the chemical concentration was adjusted to 10 mg / L at the inlet of the separation membrane module.
  • the conductivity of the separation membrane permeated water was monitored with a water quality meter, and it was set so that organic substances were added under the conditions shown in Table 5 below. [0192] [Table 5]
  • Example 7 the treatment was performed in the same manner as in Example 7 except that no organic substance was added.
  • Example 7 the treatment was performed in the same manner as in Example 7 except that the ultraviolet acid oxidizer was not used.
  • Example 7 In the same manner as in Example 7, using pentaploid tannin as an organic substance, continuous operation was performed by the above method in the apparatus shown in FIGS.
  • the raw water received in Tank 1 was groundwater that was turbidized by the membrane turbidizer in the previous stage, and the conductivity during the operation period was stable at an average of around 15 mS / m.
  • the ORP averaged +500 mV, and it was water with an oxidation tendency.
  • the membrane used was Nitto Denko's ES-20-D8.
  • the chemical concentration was adjusted to 1 Omg / L at the inlet of the separation membrane module.
  • the conductivity of the separation membrane permeated water was monitored with a water quality meter, and it was set so that organic substances were added under the conditions shown in Table 7 below.
  • Example 8 the treatment was performed in the same manner as in Example 8 except that no organic substance was added.
  • Example 8 the treatment was performed in the same manner as in Example 8 except that the ultraviolet acid oxidizer was not used.
  • the reforming process was performed in the apparatus shown in Fig. 1 using pentaploid tannin as the organic substance and sodium hydrogen sulfite as the reducing agent.
  • a new LES90-D8 manufactured by Nitto Denko Corporation was used as the membrane.
  • the chemical concentration was 50 mg / L at the inlet of the separation membrane, and the dissolved water used was turbid water with an acid tendency, with an ORP of +600 mV. Processing time is 1 hour, and permeation flux during processing is 1 each. .Om / day.
  • Example 9 the treatment was performed in the same manner as in Example 9 except that the reducing agent was not used and only the reforming treatment with pentaploid tannin was performed.
  • Example 9 the treatment was performed in the same manner as in Example 9 except that no organic substance was used and only sodium bisulfite was added.
  • Comparative Example 11 1 where only the reforming treatment with pentaploid tannin was performed without using a reducing agent, although there was a slight reforming effect, the effect was insufficient compared with Example 9. . It is presumed that the organic material was decomposed before the organic material reached the separation membrane. In Comparative Example 11-2, in which no organic substance was used and only sodium bisulfite was added, the performance was not improved at all. On the other hand, mixing organic substances and reducing agents In Example 9 using the liquid, a significant performance improvement was observed, and the effect of reforming was significant.
  • the treatment was performed in the apparatus shown in Fig. 2 using pentaploid tannin as the organic substance and sodium sulfite as the reducing agent.
  • the raw water received in Tank 1 was groundwater that was turbidized by the membrane turbidizer in the previous stage, and the conductivity during the operation period was stable at an average of around 20 mS / m.
  • the ORP averaged +600 mV, and it was water with an oxidation tendency.
  • As the membrane ES-10-D8 manufactured by Nitto Denko Corporation was used.
  • the organic substance and reducing agent concentrations were adjusted to 10 mg / L at the inlet of the separation membrane module.
  • the conductivity of the permeated water was monitored with a water quality meter, and it was set to add organic substances under the following conditions.
  • Example 10 the treatment was performed in the same manner as in Example 10, except that the reducing agent was not used and only the treatment with pentaploid tannin was performed.
  • Example 10 treatment was performed in the same manner as in Example 10 except that no organic substance was used and only sodium sulfite was added.
  • Comparative Example 12-1 which did not use a reducing agent and was only treated with pentaploid tannin, although a slight treatment effect was observed, the effect was less than in Example 10. It was sufficient, and performance deteriorated over time. It is presumed that the organic material was decomposed before it reached the separation membrane. In Comparative Example 12-2, in which no organic substance was used and only sodium sulfite was added, performance was not recovered at all, and significant performance degradation occurred. On the other hand, in Example 10 using both an organic substance and a reducing agent, stable operation was possible and the effect of the treatment was significant. Industrial applicability
  • the separation membrane sterilization method and apparatus according to the present invention and the separation membrane treated by the method can be applied to any application that requires improvement of the sterilization performance, antibacterial performance, and inhibition performance of the separation membrane, and particularly reverse osmosis. It is suitable for sterilizing membranes and nanofiltration membranes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Nanotechnology (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A process for modifying a separation membrane, characterized by making water which contains a polyphenol-containing organic substance permeate a separation membrane under pressure to impart bactericide resistance to the membrane and then feeding bactericide-containing water to the membrane to sterilize the membrane, by making water which contains both a polyphenol -containing organic substance and silver ions permeate a separation membrane under pressure to immobilize the silver ions on the membrane through the organic substance and thereby enhance the antibacterial performance of the membrane, or by making water which contains both a polyphenol-containing organic substance and a reducing agent permeate a separation membrane under pressure to enhance or recover the rejection performance of the membrane; an apparatus for the process; and separation membranes modified by the process. The modified separation membranes of the invention are effectively improved in bactericidal or antibacterial performance or in rejection performance.

Description

明 細 書  Specification
分離膜の改質方法および装置並びにその方法により改質された分離膜 技術分野  Separation membrane modification method and apparatus, and separation membrane modified by the method
[0001] 本発明は、分離膜、特に逆浸透膜 (RO膜)またはナノろ過膜 (NF膜)を改質し、殺 菌性能等の特定の性能を確実に向上させるようにした分離膜の改質方法および装 置、並びにその方法により改質された分離膜に関する。  [0001] The present invention relates to a separation membrane, in particular, a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane) that is modified to reliably improve specific performance such as bactericidal performance. The present invention relates to a reforming method and apparatus, and a separation membrane modified by the method.
背景技術  Background art
[0002] 従来、海水の淡水化や超純水、各種製造プロセス用水を得る方法として、例えば R O膜や NF膜を分離膜とするモジュールを用い、原水中からイオン成分や低分子成 分を分離する方法が知られている。以前と比較すると、 RO膜や NF膜の性能は格段 に向上し、高阻止性能'低圧力運転が可能な膜も使われている。  Conventionally, as a method for obtaining seawater desalination, ultrapure water, and water for various manufacturing processes, for example, a module using a RO membrane or NF membrane as a separation membrane is used to separate ionic components and low molecular components from raw water. How to do is known. Compared to before, the performance of RO membranes and NF membranes has been greatly improved, and membranes with high blocking performance and low pressure operation are also used.
[0003] しかし、恒常的な問題として、分離膜モジュールにおいて、微生物をはじめとする生 物汚染の発生がある。特にスライムの発生として知られている現象である力 例えば スパイラル型膜エレメントにおいてスライムが発生すると、原水と濃縮水の圧力差、す なわち通水差圧が上昇し、特に複数のエレメントを直列に配置した装置の場合、後 方のエレメントに行けば行くほど、圧力が低くなつてしまい、所定の透過水量が得られ なくなってしまう。さらに極端に通水差圧が上昇すると、エレメントそのものが破損する 恐れすらある。また、スライムの発生までに至らなくても、エレメント内の汚染物質の腐 敗が進行し、臭気が発生する場合もある。  [0003] However, a permanent problem is the occurrence of biological contamination including microorganisms in the separation membrane module. A force that is a phenomenon known as the generation of slime, for example, when a slime occurs in a spiral membrane element, the pressure difference between the raw water and the concentrated water, that is, the water flow differential pressure, increases, especially when multiple elements are connected in series. In the case of the installed device, the further the element goes to the rear, the lower the pressure, and the predetermined permeated water volume cannot be obtained. Furthermore, if the water flow differential pressure rises excessively, the element itself may even be damaged. In addition, even if slime does not occur, contamination of the elements in the element may progress and odor may be generated.
[0004] 生物汚染の発生を抑止するために、酸化剤による殺菌をすることが考えられるが、 現在主流のポリアミド系素材をスキン層に持つ RO膜や NF膜は、酸化劣化しやすぐ 特に、原水中に次亜塩素酸ナトリウムをはじめとする酸化性の物質が含まれる場合や 、原水の ORP (酸化還元電位)が高い場合、膜の劣化が早まり、寿命を短くする原因 となっている。そのため、 RO膜や NF膜を酸化剤によって殺菌をすることは事実上不 可能である。酸ィ匕作用が比較的緩やかなクロラミンを用いる例もあるが、酸化剤であ ることには変わりなぐ膜の劣化は避けられない。酸化劣化に比較的強い、ピぺラジ ンアミド系の膜もあるが、性能が十分ではない。 [0005] また、近年要求される処理水(例えば、超純水)のレベルは非常に高ぐ RO膜単独 では不十分であることはもちろん、後段に電気再生式脱塩装置 (EDI)を設置する場合 にお 、ても、 RO膜を 2段として用いなければならな 、ケースがあった。 [0004] In order to suppress the occurrence of biological contamination, it is conceivable to sterilize with an oxidant, but RO membranes and NF membranes that currently have a mainstream polyamide-based material in the skin layer are subject to oxidation degradation. If the raw water contains oxidizing substances such as sodium hypochlorite or if the ORP (oxidation-reduction potential) of the raw water is high, the deterioration of the membrane will be accelerated and the life will be shortened. For this reason, it is virtually impossible to sterilize RO membranes and NF membranes with oxidizing agents. In some cases, chloramine, which has a relatively slow acidity, is used, but the deterioration of the membrane is unavoidable as it is an oxidizing agent. Some piperazinamide-based membranes are relatively resistant to oxidative degradation, but their performance is not sufficient. [0005] In addition, the level of treated water (for example, ultrapure water) required in recent years is extremely high. The RO membrane alone is not sufficient, and an electric regenerative demineralizer (EDI) is installed in the subsequent stage. Even in this case, there was a case where the RO membrane had to be used in two stages.
[0006] 特許文献 1には、半透性膜を高温で有機酸に浸漬し、高脱塩性'高透水性をあわ せ持つ膜の製造方法が提案されている。この方法では、高温で処理するため、モジ ユール形態での処理は困難であるし、条件によっては透過水量の大幅な低下を招く ケースがあった。  [0006] Patent Document 1 proposes a method for producing a membrane having high desalting property and high water permeability by immersing a semipermeable membrane in an organic acid at a high temperature. In this method, since the treatment is performed at a high temperature, the treatment in the form of a module is difficult, and depending on the conditions, the permeate flow rate may be significantly reduced.
[0007] 特許文献 2には、海水に pH=5未満でタン-ン酸を添加して、透塩率を低下させる 方法が提案されている。しかし、この方法は海水の処理に限定されたものであり、本 発明で想定している、地下水 ·井戸水 ·河川水 ·湖水 ·雨水 ·工業用水 ·水道水 ·ゴミ 浸出水 ·下排水処理水 ·農業排水 ·各種工程回収水などの!、わゆる原水を、必要に 応じて除濁した原水の脱塩は含まれて 、な!/、。  [0007] Patent Document 2 proposes a method of reducing salt permeability by adding tannic acid to seawater at a pH of less than 5. However, this method is limited to the treatment of seawater. Groundwater, well water, river water, lake water, rainwater, industrial water, tap water, waste leachate, sewage treatment water Agricultural effluent · Water recovered from various processes, including raw water desalination that has been clarified as necessary.
[0008] また、銀イオンは昔より抗菌作用を持つ物質として良く知られている物質であり、幅 広い分野で利用されている。例えば、特許文献 3や特許文献 4には、高分子素材へ 抗菌性金属を配位させる方法が示されており、タンニン酸などのポリフエノール類に 金属イオンが配位することが知られている。一方本発明者らは、既に公開されている 特許文献 5において、分離膜にポリフエノール類を含む水を加圧通水し、分離膜の 阻止性能を向上させる方法を提供して 、る。  [0008] Silver ions are well known as antibacterial substances and have been used in a wide range of fields. For example, Patent Document 3 and Patent Document 4 show a method of coordinating an antibacterial metal to a polymer material, and it is known that metal ions coordinate to polyphenols such as tannic acid. . On the other hand, the present inventors provide a method for improving the blocking performance of a separation membrane in Patent Document 5, which has already been disclosed, by pressurizing water containing polyphenols into the separation membrane.
[0009] 特許文献 6には、 RO膜へ銀電解水を供給することで、膜を殺菌する方法が示され ている。し力しこの方法では、規模の大きい装置では必要とされる銀電解水量も多量 となってしまい、装置が大掛力りかつ高コストなものとなるし、銀イオンが分離膜に固 定化されないため、銀電解水を供給していない間は菌類繁殖の懸念が残る。また、 特許文献 7には、 RO膜の後段へ銀イオンを担持した活性炭を設置し殺菌する方法 が示されている。しかしこの方法では、 RO膜そのものを殺菌することはできず、 RO膜 における菌類繁殖の懸念がある。さらに、特許文献 8には、 0.1 m以下の細孔径を 持つ分離膜に供給する水を、銀系無機抗菌剤を導入した配管を通した上で、分離膜 へ供給する方法が示されている。し力しこの方法では、分離膜への供給水の殺菌は できるものの、銀イオンが分離膜に固定化されないため、分離膜そのものが抗菌作 用を持つかどうかに疑問が残る。 [0009] Patent Document 6 discloses a method of sterilizing a membrane by supplying silver electrolyzed water to the RO membrane. However, this method requires a large amount of silver electrolyzed water in a large-scale apparatus, making the apparatus large and expensive, and fixing silver ions to the separation membrane. Therefore, there is concern about fungal growth while silver electrolyzed water is not supplied. Patent Document 7 discloses a method of disposing and sterilizing activated carbon carrying silver ions in the subsequent stage of the RO membrane. However, this method cannot sterilize the RO membrane itself, and there is a concern about fungal growth on the RO membrane. Furthermore, Patent Document 8 discloses a method of supplying water supplied to a separation membrane having a pore diameter of 0.1 m or less through a pipe into which a silver-based inorganic antibacterial agent has been introduced to the separation membrane. . However, this method can sterilize the water supplied to the separation membrane, but silver ions are not immobilized on the separation membrane. The question remains as to whether or not to have a job.
[0010] さらに、特許文献 9には、浄水器において、セラミックにタン-ン酸ゃ力テキン等を 担持させ、水を改質する技術が開示されている。し力しこの方法は、水道水中の残留 塩素を除去し、水をおいしくするための技術であり、特にフィルター後段に設置される 場合には、膜の劣化を防止する技術とはなり得ないし、フィルター前段に設置される 場合には、殺菌効果のある残留塩素を除去しているため、膜の殺菌という観点力もは むしろ逆効果である。  [0010] Further, Patent Document 9 discloses a technique for reforming water in a water purifier by supporting tan-phosphoric acid or the like on ceramic. This method is a technique for removing residual chlorine in tap water and making it delicious. Especially when it is installed in the latter stage of a filter, it cannot be a technique for preventing membrane deterioration. When installed in the front stage of the filter, residual chlorine that has a sterilizing effect is removed, so the viewpoint of membrane sterilization is rather counterproductive.
特許文献 1:特開 2003 - 117360号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-117360
特許文献 2:特開昭 58 - 109182号公報  Patent Document 2: JP-A-58-109182
特許文献 3:特開 2000 - 73277号公報  Patent Document 3: JP 2000-73277 A
特許文献 4:特開 2000 - 204182号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-204182
特許文献 5:特開 2006 - 223963号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2006-223963
特許文献 6:特開平 8 - 294689号公報  Patent Document 6: JP-A-8-294689
特許文献 7:特開 2000— 288539号公報  Patent Document 7: Japanese Unexamined Patent Publication No. 2000-288539
特許文献 8:特開 2005— 313151号公報  Patent Document 8: Japanese Unexamined Patent Publication No. 2005-313151
特許文献 9:特開 2001— 79567号公報  Patent Document 9: Japanese Patent Laid-Open No. 2001-79567
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] そこで本発明の課題は、このような実情に鑑み、より確実にかつ安定して分離膜に 殺菌性能や抗菌性能等の特定の性能を向上できるようにし、また、分離膜を改質し、 阻止性能向上を実現するに際し、原水等が酸ィ匕性雰囲気である場合にあっても、効 果的に分離膜を改質可能な、分離膜の改質方法および装置、および、その方法によ り改質された分離膜を提供することにある。 [0011] Therefore, in view of such circumstances, the object of the present invention is to enable the separation membrane to improve specific performance such as sterilization performance and antibacterial performance more reliably and stably, and to modify the separation membrane. In order to improve the blocking performance, the separation membrane reforming method and apparatus capable of effectively reforming the separation membrane even when the raw water is in an acidic atmosphere, and its An object of the present invention is to provide a separation membrane modified by the method.
課題を解決するための手段  Means for solving the problem
[0012] 前述のような実情に対し、本発明者らは鋭意検討を行った結果、酸化剤により殺菌 する前に、ある種の有機物質を用いることで、分離膜、特に RO膜や NF膜に殺菌剤 耐性を持たせることができることを見出し、本発明を完成するに至った。また、本発明 者らは鋭意検討を行った結果、分離膜にポリフ ノールおよび銀イオンを供給するこ とによって分離膜の抗菌性能を高めることができ、菌類やスライムの発生を著しく抑 制できることを見出し、本発明を完成するに至った。さらに、本発明者らは鋭意検討 を行った結果、(1)ある種の有機物質と還元剤を併せて用いることで、分離膜に供給 している原水や、有機物質を溶解させる水が酸化性雰囲気である場合でも、既存の 分離膜、特に RO膜や NF膜の阻止性能を確実に向上'回復させることができること、 (2)注入方法として、有機物質と還元剤を混合する、または還元剤、有機物質の順 番でライン注入をする、の 、ずれかの方法を採用することで大きな効果が得られるこ とを見出し、本発明を完成するに至った。 [0012] As a result of intensive studies on the actual situation as described above, the present inventors have found that separation membranes, particularly RO membranes and NF membranes, can be obtained by using certain organic substances before sterilization with an oxidizing agent. Has been found to be resistant to bactericides, and the present invention has been completed. Further, as a result of intensive studies, the present inventors have supplied polyphenol and silver ions to the separation membrane. Thus, it was found that the antibacterial performance of the separation membrane can be enhanced and the generation of fungi and slime can be remarkably suppressed, and the present invention has been completed. Furthermore, as a result of intensive studies, the present inventors have (1) combined use of a certain organic substance and a reducing agent to oxidize raw water supplied to the separation membrane and water that dissolves the organic substance. Even in an atmosphere, it is possible to reliably improve and recover the blocking performance of existing separation membranes, especially RO membranes and NF membranes. (2) As an injection method, organic substances and reducing agents are mixed or reduced. The present inventors have found that a great effect can be obtained by adopting any one of the methods in which line injection is performed in the order of the agent and the organic substance, and the present invention has been completed.
[0013] 本発明はまず、殺菌性能向上のための分離膜の改質技術を提供する (第 1の形態 )。すなわち、本発明に係る分離膜の改質方法は、ポリフエノールを含む有機物質を 含む水を加圧通水することにより分離膜を殺菌剤耐性処理した後、殺菌剤を含む水 を分離膜へ供給して分離膜を殺菌することを特徴とする方法からなる。この方法を用 いることで、分離膜の性能を低下させずに殺菌処理を行うことが可能になり、長期に わたって安定した運用が可能となる。  The present invention first provides a separation membrane reforming technique for improving sterilization performance (first embodiment). That is, in the method for modifying a separation membrane according to the present invention, water containing an organic substance containing polyphenol is subjected to a bactericide resistance treatment by pressurizing water, and then water containing the bactericide is applied to the separation membrane. The method comprises supplying and sterilizing the separation membrane. By using this method, sterilization can be performed without degrading the performance of the separation membrane, and stable operation can be achieved over a long period of time.
[0014] この分離膜の殺菌方法にぉ 、ては、上記分離膜として、逆浸透膜またはナノろ過 膜を使用することができる。この方法を用いることによって、特に高い殺菌剤耐性処 理効果が得られる。  [0014] For this separation membrane sterilization method, a reverse osmosis membrane or a nanofiltration membrane can be used as the separation membrane. By using this method, a particularly high bactericide resistance treatment effect can be obtained.
[0015] また、上記分離膜として、スパイラル型膜エレメントを使用することができる。スパイラ ル型膜エレメントは、コストも安ぐ汎用性も高いため、この構造の膜を用いるメリットは 大きい。また、生物汚染によるトラブルが多いため、本発明に係る方法の利点が特に 活かされる。  [0015] A spiral membrane element can be used as the separation membrane. Spiral type membrane elements have great merit of using membranes with this structure because they are inexpensive and versatile. Further, since there are many troubles due to biological contamination, the advantages of the method according to the present invention are particularly utilized.
[0016] また、上記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜を使用すること が好ましい。中でも、好ましい素材として、全芳香族ポリアミド、さらに好ましくは架橋 全芳香族ポリアミドが挙げられる。ポリアミド系は、酸化剤による劣化が起こりやすぐ 通常は酸化剤による殺菌を行うことができないため、特に生物汚染のトラブルが多い 。本発明に係る方法は、従来不可能であった、ポリアミド系素材の RO膜や NF膜の 殺菌が可能となる画期的な技術である。  [0016] Further, it is preferable to use a membrane containing at least an aromatic polyamide material as the separation membrane. Among these, preferred materials include wholly aromatic polyamides, and more preferably crosslinked wholly aromatic polyamides. Polyamides are particularly prone to biological contamination because they are degraded by oxidants and cannot be sterilized by oxidants. The method according to the present invention is an epoch-making technology that makes it possible to sterilize polyamide-based RO membranes and NF membranes, which was impossible in the past.
[0017] また、上記分離膜として、殺菌剤耐性処理前の 500mg/L塩化ナトリウム水溶液の阻 止率が、 99%以下の性能を持つ分離膜を使用することが好ましい。より好ましい阻止 率の範囲は、 10%以上 99%以下、さらに好ましくは 20%以上 98.5%以下、さらに好ま しくは 98%以下、さらに好ましくは 30%以上 98%以下である。この方法を用いることで 、分離膜の高い殺菌剤耐性処理効果が得られる。阻止率 99%を超える膜では、殺菌 剤耐性処理の効果が低い。阻止率は、測定時の温度や透過流束によって異なるの で、メーカーがその膜の性能を測定する標準的な条件を適用するか、スパイラル型 膜エレメントの場合には、 25°C、 l.Om/dayの透過流束を目安に測定を行なうのが良 い。本発明中で言う阻止率とは、特に断りのない限り、この方法で測定されたものを 指している。なお、ここで言う「殺菌剤耐性処理前」に阻止率 99%以下の性能を持つ 分離膜とは、新品時に上記性能を持つ膜の他、もともとは 99%以上の阻止率を有し ていたが、使用した結果劣化して上記性能となった膜や、次亜塩素酸ナトリウム等の 酸化剤を接触させて、強制的に酸ィ匕劣化させて上記性能とした膜なども含まれる。 [0017] Further, as the separation membrane, a 500 mg / L sodium chloride aqueous solution before the bactericide resistance treatment is blocked. It is preferable to use a separation membrane having a performance of 99% or less. A more preferable range of the blocking rate is 10% or more and 99% or less, more preferably 20% or more and 98.5% or less, more preferably 98% or less, and further preferably 30% or more and 98% or less. By using this method, the effect of treating the disinfectant with a high separation membrane can be obtained. For membranes with a rejection rate of 99%, the effectiveness of the bactericide resistance treatment is low. Since the rejection depends on the temperature and permeation flux at the time of measurement, the manufacturer applies standard conditions for measuring the performance of the membrane, or in the case of spiral membrane elements, 25 ° C, l. It is better to measure with Om / day permeation flux as a guide. The blocking rate in the present invention refers to that measured by this method unless otherwise specified. In addition, the separation membrane having a performance of 99% or less before the “bactericidal resistance treatment” mentioned here originally had a performance of 99% or more in addition to the membrane having the above performance when new. However, it includes a film that has deteriorated as a result of use and has the above-mentioned performance, and a film that has been brought into contact with an oxidizing agent such as sodium hypochlorite to forcibly deteriorate the acid and have the above-mentioned performance.
[0018] 上記殺菌剤としては、塩素系殺菌剤を用いることができる。次亜塩素酸ナトリウム、 クロラミン、クロラミン- T、二酸ィ匕塩素など、各種塩素系殺菌剤は、汎用的に用いられ るものであり、コストも安ぐ殺菌の効果も高い。塩素系以外の殺菌剤、例えば過酸化 水素、過酢酸、過酢酸塩、過硫酸、過硫酸塩などを用いることもできるが、殺菌剤耐 性処理を施した膜の劣化を特に防止できるのは、塩素系殺菌剤である。  [0018] A chlorine-based disinfectant can be used as the disinfectant. Various chlorinated fungicides, such as sodium hypochlorite, chloramine, chloramine-T, and diacid chloride, are widely used and have low cost and high sterilization effects. Bactericides other than chlorine, such as hydrogen peroxide, peracetic acid, peracetic acid salt, persulfuric acid, persulfate, etc. can be used, but it is particularly possible to prevent deterioration of membranes that have been treated with bactericide resistance. It is a chlorine-based disinfectant.
[0019] 上記有機物質の平均分子量としては、 200〜5000であることが好ましい。より好まし い平均分子量は、 200〜3000、さらに好ましくは 200〜2000である。平均分子量が 200 未満だと、有機物質が膜を透過してしまう場合があるため殺菌剤耐性効果が薄い。 5 000を超えると、膜のファゥリングを引き起こして、透過流束の低下を招くため、好まし くない。  [0019] The average molecular weight of the organic substance is preferably 200 to 5,000. A more preferable average molecular weight is 200 to 3000, and more preferably 200 to 2000. If the average molecular weight is less than 200, the organic substance may permeate through the membrane, so the antibacterial effect is low. If it exceeds 5 000, membrane fouling will be caused and the permeation flux will be lowered.
[0020] 上記有機物質としては、特に、タン-ン酸を用いることが好ま 、。ポリフエノール類 の中でもとりわけタンニン酸の効果が高く、この物質を用いるのが良!、。  [0020] It is particularly preferable to use tannic acid as the organic substance. Among polyphenols, tannic acid is particularly effective, and it is good to use this substance!
[0021] タンニン酸としては、加水分解型タンニンを用いることができる。タンニン酸にはカロ 水分解型と縮合型があり、とりわけ前者の方が効果が高い。  As the tannic acid, hydrolyzable tannin can be used. There are two types of tannic acid, the water decomposition type and the condensation type. The former is particularly effective.
[0022] また、タンニン酸として、五倍子を原料として作られたものを用いることができる。五 倍子力 抽出されたタンニン酸は、一般に平均分子量が約 1700程度のものが多ぐ 殺菌剤耐性処理に好適であるものと推定される。 [0022] As the tannic acid, a tannic acid made from a pentaploid can be used. Ploidy force Extracted tannic acid generally has an average molecular weight of about 1700. It is estimated that it is suitable for the bactericide resistance treatment.
[0023] 本発明は、上記のような分離膜の耐性処理方法により処理された分離膜について ち提供するちのである。  [0023] The present invention provides a separation membrane treated by the separation membrane resistance treatment method as described above.
[0024] 本発明に係る分離膜の改質装置は、ポリフエノールを含む有機物質を含む水をカロ 圧通水することにより分離膜を殺菌剤耐性処理する手段と、該殺菌剤耐性処理後に 殺菌剤を含む水を分離膜へ供給して分離膜を殺菌する手段とを有することを特徴と するもの力らなる。この装置を用いることにより、上記本発明に係る分離膜の殺菌性 能向上のための改質方法を円滑に実施することができる。  [0024] The apparatus for reforming a separation membrane according to the present invention includes a means for subjecting the separation membrane to a bactericidal resistance treatment by passing water containing an organic substance containing polyphenol under pressure, and a bactericidal treatment after the bactericidal resistance treatment. And a means for sterilizing the separation membrane by supplying water containing the agent to the separation membrane. By using this apparatus, the reforming method for improving the sterilization performance of the separation membrane according to the present invention can be smoothly carried out.
[0025] この本発明に係る分離膜の改質装置においては、上記分離膜は、例えば、逆浸透 膜またはナノろ過膜からなる。  In the separation membrane reforming apparatus according to the present invention, the separation membrane is composed of, for example, a reverse osmosis membrane or a nanofiltration membrane.
[0026] また、上記分離膜として、スパイラル型膜エレメントを使用することができる。  [0026] In addition, a spiral membrane element can be used as the separation membrane.
[0027] また、上記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜を使用すること ができる。  [0027] Further, as the separation membrane, a membrane containing at least an aromatic polyamide material can be used.
[0028] また、上記分離膜として、殺菌剤耐性処理前の 500mg/L塩化ナトリウム水溶液の阻 止率が、 99%以下の性能を持つ分離膜を使用することが好ましい。  [0028] Further, as the separation membrane, it is preferable to use a separation membrane having a performance of 99% or less of the inhibition rate of the 500 mg / L sodium chloride aqueous solution before the bactericide resistance treatment.
[0029] 上記殺菌剤としては、塩素系殺菌剤を用いることが好ま 、。 [0029] It is preferable to use a chlorine-based disinfectant as the disinfectant.
[0030] 上記有機物質の平均分子量は、 200〜5000であることが好ましい。 [0030] The average molecular weight of the organic substance is preferably 200 to 5,000.
[0031] また、上記有機物質としては、特に、タン-ン酸を用いることが好ましい。タンニン酸 としては、加水分解型タンニンを用いることができる。また、タンニン酸として、五倍子 を原料として作られたものを用いることができる。 [0031] Further, as the organic substance, it is particularly preferable to use tannic acid. As the tannic acid, hydrolyzable tannin can be used. In addition, as tannic acid, a tannic acid made from a pentaploid can be used.
[0032] このような本発明に係る分離膜の改質装置は、例えば、水処理システムに^ aみ込む ことができる。水処理システムとしては、純水製造設備を例示できる。  Such a separation membrane reforming apparatus according to the present invention can be incorporated into a water treatment system, for example. An example of the water treatment system is a pure water production facility.
[0033] また本発明は、抗菌性能向上のための分離膜の改質技術を提供する (第 2の形態) 。すなわち、本発明に係る分離膜の改質方法は、分離膜に、ポリフエノールを含む有 機物質および銀イオンを含む水を加圧通水し、分離膜に前記有機物質を介して銀ィ オンを固定ィ匕し、分離膜の抗菌性能を向上させることを特徴とする方法力もなる。ポリ フエノールおよび銀イオンは双方が抗菌作用を持ち、両者を組み合わせることによつ て、分離膜に非常に強力な抗菌作用を持たせることが可能となる。ポリフエノール単 独では抗菌作用が不十分であるし、銀イオン単独では分離膜に固定化されないため 、この両者を組み合わせて処理することが重要な要素である。 The present invention also provides a separation membrane modification technique for improving antibacterial performance (second embodiment). That is, in the method for reforming a separation membrane according to the present invention, an organic substance containing polyphenol and water containing silver ions are passed through the separation membrane under pressure, and silver ions are passed through the organic substance to the separation membrane. It is also possible to improve the antibacterial performance of the separation membrane. Polyphenol and silver ions both have antibacterial action, and combining them makes it possible to give the separation membrane a very strong antibacterial action. Polyphenol single In Germany, the antibacterial action is insufficient, and silver ions alone are not immobilized on the separation membrane. Therefore, it is an important factor to treat both in combination.
[0034] 上記ポリフエノールを含む有機物質および銀イオンを含む水を分離膜へ供給する 方法としては、ポリフエノールを含む有機物質および銀イオンを混合した混合液を、 分離膜へ供給する方法を採用することができる。本方法により、 1液で抗菌処理が可 能となり、簡便な処理ができる。  [0034] As a method of supplying the organic material containing polyphenol and water containing silver ions to the separation membrane, a method of supplying a mixed liquid in which the organic material containing polyphenol and silver ions is supplied to the separation membrane is adopted. can do. By this method, antibacterial treatment is possible with one solution, and simple treatment is possible.
[0035] あるいは、上記ポリフエノールを含む有機物質および銀イオンを含む水を分離膜へ 供給する方法として、ポリフエノールを含む有機物質を分離膜へ供給後、銀イオンを 含む水を分離膜へ供給する方法を採用することもできる。本方法により、分離膜に対 して、ポリフエノールおよび銀イオンの確実な固定ィ匕ができる。  [0035] Alternatively, as a method of supplying the organic material containing polyphenol and water containing silver ions to the separation membrane, the organic material containing polyphenol is supplied to the separation membrane, and then water containing silver ions is supplied to the separation membrane. It is also possible to adopt a method to do this. By this method, it is possible to securely fix polyphenol and silver ions to the separation membrane.
[0036] 上記分離膜としては、改質処理前の 500mg/L塩ィ匕ナトリウム水溶液の阻止率力 99 %以下の性能を持つ分離膜を使用することが好ましい。より好ましい阻止率の範囲は 98%以下、さらに好ましくは 10%以上 99%以下、さらに好ましくは 20%以上 98.5%以下、さ らに好ましくは 30%以上 98%以下である。この方法を用いることで、分離膜の高い抗菌 処理効果が得られる。阻止率 99%を超える膜には、抗菌処理の効果が不十分となる 恐れがある。  [0036] As the separation membrane, it is preferable to use a separation membrane having a performance of a 99% or less rejection rate of a 500 mg / L sodium chloride aqueous solution before the modification treatment. The range of the blocking rate is more preferably 98% or less, further preferably 10% or more and 99% or less, further preferably 20% or more and 98.5% or less, and further preferably 30% or more and 98% or less. By using this method, a high antibacterial treatment effect of the separation membrane can be obtained. Antibacterial effects may be insufficient for membranes with a rejection rate exceeding 99%.
[0037] また、上記分離膜として、逆浸透膜またはナノろ過膜を使用することが好ま 、。こ の方法を用いることによって、特に高 、抗菌処理効果が得られる。  [0037] In addition, it is preferable to use a reverse osmosis membrane or a nanofiltration membrane as the separation membrane. By using this method, a particularly high antibacterial treatment effect can be obtained.
[0038] また、上記分離膜として、スパイラル型膜エレメントを使用することが好ま 、。スパ イラル型膜エレメントは、コストも安ぐ汎用性も高いため、この構造の膜を用いるメリツ トは大きい。また、生物汚染によるトラブルが多いため、本発明方法の利点が特に活 かされる。  [0038] It is preferable to use a spiral membrane element as the separation membrane. Spiral membrane elements have great advantages for using membranes with this structure because of their low cost and high versatility. Further, since there are many troubles due to biological contamination, the advantages of the method of the present invention are particularly utilized.
[0039] また、上記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜を使用すること が好ましい。より好ましくは全芳香族ポリアミド、さらに好ましくは架橋全芳香族ポリアミ ドである。ポリアミド系素材は、酸化剤による劣化が起こりやすぐ通常は酸化剤によ る殺菌を行なうことができないため、特に生物汚染のトラブルが多い。本発明方法に よると、従来不可能であった、ポリアミド系素材の RO膜や NF膜の殺菌が可能となる ため、画期的な技術を提供できる。 [0040] 上記有機物質の平均分子量としては、 200〜5000であることが好ましい。より好まし い平均分子量は 200〜3000、さらに好ましくは 200〜2000である。平均分子量 200未 満だと、有機物質が膜を透過してしまう場合があるため、抗菌処理効果が薄い。 5000 を超えると、膜のファゥリングを引き起こして、透過流束の低下を招くため、好ましくな い。 [0039] Further, it is preferable to use a membrane containing at least an aromatic polyamide material as the separation membrane. More preferred are wholly aromatic polyamides, and more preferred are crosslinked wholly aromatic polyamides. Polyamide-based materials are particularly prone to biological contamination because they are degraded by an oxidizing agent and cannot be sterilized by an oxidizing agent immediately. According to the method of the present invention, it is possible to sterilize polyamide-based RO membranes and NF membranes, which has been impossible in the past. [0040] The average molecular weight of the organic substance is preferably 200 to 5,000. A more preferable average molecular weight is 200 to 3000, and more preferably 200 to 2000. When the average molecular weight is less than 200, the organic substance may permeate the membrane, so the antibacterial effect is weak. If it exceeds 5000, membrane fouling will be caused and the permeation flux will be lowered.
[0041] 上記有機物質としては、タン-ン酸を用いることが好ましい。ポリフエノール類の中 でもとりわけタンニン酸の効果が高ぐこの物質を用いるのが良い。  [0041] As the organic substance, tannic acid is preferably used. Among the polyphenols, it is recommended to use this substance, which has a particularly high effect of tannic acid.
[0042] タンニン酸としては、加水分解型タンニンを用いることが好まし 、。タンニン酸には 加水分解型と縮合型があり、とりわけ前者の方が効果が高い。 [0042] It is preferable to use hydrolyzed tannin as the tannic acid. Tannic acid has a hydrolysis type and a condensation type, and the former is particularly effective.
[0043] また、上記タンニン酸として、五倍子を原料として作られたものを用いることが好まし い。五倍子力 抽出されたタンニン酸は、一般に平均分子量が約 1700程度のものが 多ぐ抗菌処理に好適であるものと推定される。 [0043] Further, as the tannic acid, it is preferable to use tannic acid made from a pentup. Peptide power Extracted tannic acid generally has an average molecular weight of about 1700, and is estimated to be suitable for antibacterial treatment.
[0044] 銀イオン源としては、硝酸銀、硫酸銀のうち、少なくともいずれか一つを含む物質を 用いることができる。銀イオン源としては特に限定されないが、一般的に入手しやす いものとして、硝酸銀、硫酸銀などが挙げられ、これらを用いることが汎用性、コストの 面でも望ましい。 [0044] As the silver ion source, a substance containing at least one of silver nitrate and silver sulfate can be used. Although it does not specifically limit as a silver ion source, Silver nitrate, silver sulfate, etc. are mentioned as what is generally available easily, It is desirable also from the surface of versatility and cost to use these.
[0045] 本発明は、上記のような分離膜の改質方法により改質された分離膜についても提 供する。  [0045] The present invention also provides a separation membrane modified by the method for modifying a separation membrane as described above.
[0046] 本発明では、分離膜の運転に際し、その運転中に連続的または断続的に、ポリフエ ノールを含む有機物質および銀イオンを含む水を分離膜へ供給し、阻止性能を安定 させて運転することができる。本方法により、水処理システム中にて使用されている分 離膜であっても、インライン処理にて抗菌処理を実施することが可能となる。  [0046] In the present invention, when the separation membrane is operated, an organic substance containing polyphenol and water containing silver ions are supplied to the separation membrane continuously or intermittently during the operation to stabilize the blocking performance. can do. This method makes it possible to carry out antibacterial treatment by inline treatment even for separation membranes used in water treatment systems.
[0047] また、本発明における分離膜の運転方法としては、例えば、分離膜に原水を供給し 原水を透過水と濃縮水とに分離する運転中に、上記のような分離膜の改質方法によ り、連続的または断続的にポリフエノールを含む有機物質および銀イオンを含む水を 分離膜へ供給することにより分離膜を改質し、改質処理中の分離膜の透過水を、後 段に設けた紫外線酸ィ匕装置およびイオン交換榭脂装置を通し純水として (とくに、超 純水として)送出する方法からなる。従来、特許文献 5において公開されている方法 では、供給したポリフエノールの一部が分離膜を透過し、改質処理中の分離膜の透 過水の水質が低下することがあった。本発明者は、このような場合であっても、改質 処理中の分離膜の透過水を、後段に設けた紫外線酸化装置およびイオン交換榭脂 装置を通すことで、純水として(とくに、超純水として)送出することができることを見出 し、本運転方法^ |ij作するに至った。すなわち、本方法により、従来分離膜の阻止性 能が経時的に低下してしまうシステムに対し、安定した運転を継続することが可能と なる上、超純水中へのポリフエノールの漏えいを防止もしくは抑制し、超純水製造シ ステムを停止することなく超純水の連続的な供給ができる、もしくは停止を最低限に 留めることができる。 [0047] In addition, as an operation method of the separation membrane in the present invention, for example, during the operation of supplying raw water to the separation membrane and separating the raw water into permeated water and concentrated water, the above-described separation membrane reforming method Thus, the separation membrane is modified by continuously or intermittently supplying an organic substance containing polyphenol and water containing silver ions to the separation membrane. It consists of a method of sending it as pure water (especially as ultrapure water) through an ultraviolet acid bath and an ion exchange system installed in the stage. Conventionally, the method disclosed in Patent Document 5 In this case, a part of the supplied polyphenol permeates the separation membrane, and the quality of the permeated water of the separation membrane during the reforming treatment sometimes deteriorates. Even in such a case, the present inventor passed the separation membrane permeated during the reforming treatment as pure water (especially, by passing it through an ultraviolet oxidation device and an ion-exchange resin device provided later). I found out that it can be sent out (as ultrapure water) and came to make this operation method ^ | ij. In other words, this method makes it possible to continue stable operation for systems where the blocking performance of conventional separation membranes declines over time, and prevents leakage of polyphenol into ultrapure water. Alternatively, it can be suppressed and the ultrapure water can be continuously supplied without stopping the ultrapure water production system, or the stoppage can be minimized.
[0048] この運転方法においては、上記改質処理中の分離膜の透過水を捨てることなぐ後 段の紫外線酸ィ匕装置およびイオン交換榭脂装置に供給し、分離膜の改質処理中で あっても運転を停止することなぐ連続的に純水を製造することができる。本方法によ り、従来分離膜の阻止性能が経時的に低下してしまうシステムに対し、安定した運転 を継続することが可能となる上、超純水中へのポリフエノールの漏えいを防止し、超 純水の連続的な供給が可能となる。したがって、超純水を連続的に使用し、停止する ことができないシステムにおいても、改質処理の実施が可能となる。さらに、分離膜透 過水の排水量が減少するため、水回収率が向上する。  [0048] In this operation method, the permeated water of the separation membrane during the reforming treatment is not discarded, but supplied to the subsequent UV acidification apparatus and ion exchange resin apparatus, and the separation membrane is being reformed. Even if it exists, pure water can be continuously manufactured without stopping the operation. This method makes it possible to continue stable operation for systems where the separation performance of conventional separation membranes deteriorates over time, and to prevent leakage of polyphenol into ultrapure water. In addition, a continuous supply of ultrapure water becomes possible. Therefore, even in a system that uses ultrapure water continuously and cannot be stopped, the reforming process can be performed. Furthermore, the water recovery rate is improved because the amount of drainage of the separation membrane permeated water is reduced.
[0049] このとき、上記純水の TOC濃度の変動幅を、ポリフエノールを含む有機物質および 銀イオンを含む水を添加していない時の濃度に対して、添カ卩中であっても 2倍以下に 抑制することが好ましい。変動幅は好ましくは 1.5倍以下、さらに好ましくは 1.3倍以下 が良い。この範囲を外れてしまうと、変動が大きすぎ、水質が不安定となる。本方法に より、超純水中に含まれる TOC濃度の変動を一定範囲に抑制することができ、安定し た水質の超純水を供給することが可能となる。  [0049] At this time, the fluctuation range of the TOC concentration of the pure water is set to 2% even when the organic material containing polyphenol and water containing silver ions are not added. It is preferable to suppress to less than twice. The fluctuation range is preferably 1.5 times or less, more preferably 1.3 times or less. If it is out of this range, the fluctuation is too large and the water quality becomes unstable. By this method, fluctuations in the TOC concentration contained in ultrapure water can be suppressed within a certain range, and ultrapure water with stable water quality can be supplied.
[0050] 上記イオン交換榭脂装置に充填されるイオン交換榭脂としては、陽イオン交換榭脂 と陰イオン交換榭脂を混合した、混床イオン交換榭脂を用いることができる。純水を 超純水として仕上げる、いわゆるサブシステム(2次純水設備)において用いられるィ オン交換榭脂は混床榭脂であることが多ぐこの榭脂を用いることが汎用性の観点か ら優れている。陽イオン交換樹脂と陰イオン交換樹脂の混合比は、特に限定されな 、が、体積比で 5: 1〜: L: 5の範囲、好ましくは 3: 1〜: L: 3の範囲とすることが良 、。こ の範囲を外れてしまうと、水中の各種成分の除去性能が悪くなつたり、イオン交換榭 脂の寿命が短くなつたりするため、好ましくない。 [0050] As the ion exchange resin filled in the ion exchange resin apparatus, a mixed bed ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed can be used. The ion-exchanged resin used in so-called subsystems (secondary pure water equipment) that finishes pure water as ultrapure water is often mixed-bed resin. Is excellent. The mixing ratio of the cation exchange resin and the anion exchange resin is not particularly limited. However, the volume ratio may be in the range of 5: 1 to L: 5, preferably 3: 1 to L: 3. If it is out of this range, the removal performance of various components in water is deteriorated and the life of the ion exchange resin is shortened, which is not preferable.
[0051] また、上記イオン交換榭脂装置に充填されるイオン交換榭脂として、陰イオン交換 榭脂を用いることもできる。ポリフエノール類の除去に関与するのは陰イオン交換榭 脂であり、本方法により、効率的な除去が可能となる。 [0051] Further, an anion exchange resin may be used as the ion exchange resin filled in the ion exchange resin device. It is the anion exchange resin that is involved in the removal of polyphenols, and this method enables efficient removal.
[0052] 第 2の形態における本発明に係る分離膜の改質装置は、分離膜に、ポリフエノール を含む有機物質および銀イオンを含む水を加圧通水し、分離膜に前記有機物質を 介して銀イオンを固定ィ匕し、分離膜の抗菌性能を向上させる手段を有することを特徴 とするもの力 なる。 [0052] In the separation membrane reforming apparatus according to the present invention in the second embodiment, an organic substance containing polyphenol and water containing silver ions are passed through the separation membrane under pressure, and the organic substance is supplied to the separation membrane. It is characterized by having means for fixing silver ions through the separator and improving the antibacterial performance of the separation membrane.
[0053] 上記ポリフエノールを含む有機物質および銀イオンを含む水を分離膜へ供給する 手段としては、ポリフエノールを含む有機物質および銀イオンを混合した混合液を、 分離膜へ供給する手段とすることができる。  [0053] The means for supplying the organic substance containing polyphenol and water containing silver ions to the separation membrane is a means for supplying a mixed liquid in which the organic substance containing polyphenol and silver ions are mixed to the separation membrane. be able to.
[0054] また、上記ポリフエノールを含む有機物質および銀イオンを含む水を分離膜へ供給 する手段として、ポリフエノールを含む有機物質を分離膜へ供給後、銀イオンを含む 水を分離膜へ供給する手段とすることもできる。 [0054] Further, as means for supplying the organic material containing polyphenol and water containing silver ions to the separation membrane, the organic material containing polyphenol is supplied to the separation membrane, and then water containing silver ions is supplied to the separation membrane. It can also be a means to do.
[0055] 上記分離膜としては、改質処理前の 500mg/L塩ィ匕ナトリウム水溶液の阻止率力 99[0055] As the separation membrane, the rejection rate power of the 500 mg / L sodium chloride aqueous solution before the modification treatment is 99.
%以下の性能を持つ分離膜が使用されることが好ましい。 It is preferable to use a separation membrane having a performance of not more than%.
[0056] また、上記分離膜として、逆浸透膜またはナノろ過膜が使用されることが好ましい。 [0056] In addition, a reverse osmosis membrane or a nanofiltration membrane is preferably used as the separation membrane.
[0057] また、上記分離膜として、スパイラル型膜エレメントが使用されることが好ましい。 [0057] It is preferable that a spiral membrane element is used as the separation membrane.
[0058] また、上記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜が使用されるこ とが好ましい。 [0058] Further, it is preferable that a membrane containing at least an aromatic polyamide material is used as the separation membrane.
[0059] 上記有機物質の平均分子量としては、 200〜5000であることが好ましい。  [0059] The average molecular weight of the organic substance is preferably 200 to 5,000.
[0060] また、上記有機物質として、タンニン酸が用いられることが好ま U、。 [0060] Further, tannic acid is preferably used as the organic substance.
[0061] タンニン酸としては、加水分解型タンニンが用いられることが好まし!/、。 [0061] As tannic acid, hydrolyzable tannin is preferably used! /.
[0062] また、タンニン酸として、五倍子を原料として作られたものが用いられることが好まし い。 [0062] In addition, it is preferable to use tannic acid that is made from a pentaploid as a raw material.
[0063] 銀イオン源としては、硝酸銀、硫酸銀のうち、少なくともいずれか一つを含む物質が 用いられることが好ましい。 [0063] Examples of the silver ion source include a substance containing at least one of silver nitrate and silver sulfate. It is preferable to be used.
[0064] 第 2の形態における本発明に係る分離膜の運転装置としては、例えば、上記のよう な分離膜の改質装置の後段に、連続的または断続的にポリフエノールを含む有機物 質および銀イオンを含む水を分離膜へ供給することにより改質処理中の分離膜から の透過水を、純水として送出する紫外線酸ィ匕装置およびイオン交換榭脂装置が設け られているもの力 なる。  [0064] Examples of the operation device for the separation membrane according to the present invention in the second embodiment include, for example, an organic substance containing polyphenols and silver continuously or intermittently after the reforming device for the separation membrane as described above. By supplying ion-containing water to the separation membrane, an ultraviolet acid oxidizer and an ion-exchange resin device that send permeate from the separation membrane during the reforming process as pure water are provided.
[0065] この分離膜の運転装置においては、上記改質処理中の分離膜の透過水が捨てら れることなぐ後段の紫外線酸化装置およびイオン交換榭脂装置に供給され、分離 膜の改質処理中であっても運転が停止されることなぐ連続的に純水が製造されるよ うにすることができる。  In this separation membrane operating device, the permeated water of the separation membrane during the reforming treatment is supplied to the subsequent ultraviolet oxidation device and ion exchange resin device without being discarded, and the separation membrane reforming treatment is performed. Even during the operation, pure water can be produced continuously without stopping the operation.
[0066] また、この分離膜の運転装置は、上記純水の TOC濃度を測定可能な水質計を有 することが好ましい。  [0066] In addition, the separation membrane operating device preferably has a water quality meter capable of measuring the TOC concentration of the pure water.
[0067] また、上記イオン交換榭脂装置に充填されるイオン交換榭脂としては、陽イオン交 換榭脂と陰イオン交換榭脂を混合した、混床イオン交換樹脂が用いられることが好ま しい。  [0067] Further, as the ion exchange resin filled in the ion exchange resin apparatus, it is preferable to use a mixed bed ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed. .
[0068] あるいは、上記イオン交換榭脂装置に充填されるイオン交換榭脂として、陰イオン 交換樹脂が用いられることも好まし 、。  [0068] Alternatively, an anion exchange resin is preferably used as the ion exchange resin filled in the ion exchange resin device.
[0069] また本発明は、原水等が酸ィ匕性雰囲気である場合にあっても、効果的に分離膜の 改質できる技術を提供する (第 3の形態)。すなわち、本発明に係る分離膜の改質方 法は、分離膜に、ポリフエノールを含む有機物質および還元剤を含む水を加圧通水 し、分離膜の阻止性能を向上、回復させることを特徴とする方法力もなる。分離膜に 供給している原水や、有機物質を溶解させる水が酸化性雰囲気である場合、有機物 質が分離膜に到達する前に分解してしま ヽ、改質の効果が得られな ヽ場合があった 。この方法を用いることで、分離膜に供給している原水や、有機物質を溶解させる水 が酸ィ匕性雰囲気である場合でも、分離膜の阻止性能を確実に向上、回復させること ができる。  [0069] Further, the present invention provides a technique capable of effectively modifying a separation membrane even when raw water or the like is in an acidic atmosphere (third embodiment). That is, the method for modifying a separation membrane according to the present invention is to improve the pressure blocking performance of the separation membrane by recovering the separation membrane by pressurizing water containing an organic substance containing polyphenol and a reducing agent. The characteristic method power also becomes. If the raw water supplied to the separation membrane or the water that dissolves organic substances is in an oxidizing atmosphere, the organic substance decomposes before reaching the separation membrane, and the reforming effect cannot be obtained. was there . By using this method, even when the raw water supplied to the separation membrane or the water for dissolving the organic substance is in an acidic environment, the blocking performance of the separation membrane can be reliably improved and recovered.
[0070] 上記ポリフエノールを含む有機物質および還元剤を含む水を分離膜へ供給する方 法として、ポリフエノールを含む有機物質および還元剤を混合した混合液を、分離膜 へ供給することができる。この方法を用いることにより、分離膜に供給している原水や 、有機物質を溶解させる水が酸化性雰囲気である場合でも、有機物質単独で用いる 場合と比較して、作業を煩雑とすることなぐ分離膜の阻止性能を確実に向上、回復 させることがでさる。 [0070] As a method for supplying the organic substance containing polyphenol and water containing a reducing agent to the separation membrane, a mixed liquid obtained by mixing the organic substance containing polyphenol and the reducing agent is used as a separation membrane. Can be supplied to. By using this method, even when the raw water supplied to the separation membrane or the water that dissolves the organic substance is in an oxidizing atmosphere, the work is not complicated compared to the case where the organic substance is used alone. It is possible to reliably improve and recover the blocking performance of the separation membrane.
[0071] また、上記ポリフエノールを含む有機物質および還元剤を含む水を分離膜へ供給 する方法として、分離膜へ原水を供給するラインに、還元剤を含む水、ポリフエノール を含む有機物質を含む水の順番で注入し、分離膜へ供給することができる。この方 法を用いることにより、分離膜に供給している原水が酸ィ匕性雰囲気である場合でも、 例えば既存の還元剤注入ラインを活用することで、簡易に分離膜の阻止性能を確実 に向上、回復させることができる。  [0071] Further, as a method of supplying the organic substance containing polyphenol and water containing a reducing agent to a separation membrane, water containing a reducing agent and an organic substance containing polyphenol are added to a line for supplying raw water to the separation membrane. It can inject | pour in the order of the containing water, and can supply to a separation membrane. By using this method, even when the raw water supplied to the separation membrane is in an acidic environment, for example, the existing reducing agent injection line can be used to easily improve the separation membrane blocking performance. Can be recovered.
[0072] 上記分離膜としては、改質処理前の 500mg/L塩ィ匕ナトリウム水溶液の阻止率力 99 %以下の性能を持つ分離膜を使用することが好ましい。より好ましい阻止率の範囲は 、 10%以上 99%以下、さらに好ましくは 20%以上 98.5%以下、さらに好ましくは 98% 以下、さらに好ましくは 30%以上 98%以下である。この方法を用いることで、分離膜の 確実な性能向上が実現する。阻止率が 99%を超える膜には、改質の効果が低い。  [0072] As the separation membrane, it is preferable to use a separation membrane having a performance of 99% or less of the rejection rate power of the 500 mg / L sodium chloride aqueous solution before the modification treatment. A more preferable range of the blocking rate is 10% or more and 99% or less, more preferably 20% or more and 98.5% or less, further preferably 98% or less, and further preferably 30% or more and 98% or less. By using this method, reliable performance improvement of the separation membrane is realized. For membranes with a rejection rate exceeding 99%, the effect of modification is low.
[0073] また、上記分離膜として、逆浸透膜またはナノろ過膜を使用することが好ま 、。こ の方法を用いることによって、膜の塩類阻止性能、シリカやホウ素等の非解離成分阻 止性能、有機成分阻止性能の向上が可能となる。  [0073] It is preferable to use a reverse osmosis membrane or a nanofiltration membrane as the separation membrane. By using this method, it is possible to improve the salt blocking performance of the membrane, the non-dissociation component blocking performance such as silica and boron, and the organic component blocking performance.
[0074] また、上記分離膜として、スパイラル型膜エレメントを使用することが好ま 、。スパ イラル型膜エレメントは、コストも安ぐ汎用性も高いため、この構造の膜を用いるメリツ トは大きい。  [0074] In addition, it is preferable to use a spiral membrane element as the separation membrane. Spiral membrane elements have great advantages for using membranes with this structure because of their low cost and high versatility.
[0075] また、上記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜を使用すること が好ましい。より好ましい素材は、全芳香族ポリアミド、さらに好ましくは架橋全芳香族 ポリアミドである。分離膜にポリアミド系素材を含むことで、改質の効果がより大きくな る。  [0075] Further, it is preferable to use a membrane containing at least an aromatic polyamide material as the separation membrane. More preferred materials are wholly aromatic polyamides, more preferably crosslinked wholly aromatic polyamides. By including a polyamide-based material in the separation membrane, the effect of modification is further increased.
[0076] 上記有機物質の平均分子量としては、 200〜5000であることが好ましい。より好まし い平均分子量は、 200〜3000、さらに好ましくは 200〜2000である。平均分子量が 200 未満だと、有機物質が膜を透過してしまう場合があるため効果が薄い。平均分子量 が 5000を超えると、膜のファゥリングを引き起こして、透過流束の低下を招くのみで、 阻止性能向上には寄与しない。 [0076] The average molecular weight of the organic substance is preferably 200 to 5,000. A more preferable average molecular weight is 200 to 3000, and more preferably 200 to 2000. If the average molecular weight is less than 200, the organic substance may permeate the membrane, so the effect is weak. Average molecular weight If it exceeds 5000, membrane fouling will be caused and the permeation flux will be lowered, but it will not contribute to the improvement of the blocking performance.
[0077] 上記有機物質としては、タン-ン酸を用いることが好ましい。ポリフエノール類の中 でもとりわけタンニン酸の効果が高ぐこの物質を用いるのが良い。 [0077] As the organic substance, tannic acid is preferably used. Among the polyphenols, it is recommended to use this substance, which has a particularly high effect of tannic acid.
[0078] タンニン酸としては、加水分解型タンニンを用いることが好まし 、。タンニン酸には 加水分解型と縮合型があり、とりわけ前者の方が効果が高い。 [0078] As the tannic acid, it is preferable to use hydrolyzable tannin. Tannic acid has a hydrolysis type and a condensation type, and the former is particularly effective.
[0079] また、上記タンニン酸として、五倍子を原料として作られたものを用いることが好まし い。五倍子力 抽出されたタンニン酸は、一般に平均分子量が約 1700程度のものが 多ぐ改質に好適であるものと推定される。 [0079] Further, as the tannic acid, it is preferable to use a pentonic acid as a raw material. Peptide power Extracted tannic acid is generally estimated to have an average molecular weight of about 1700 and is suitable for reforming.
[0080] 上記還元剤としては、亜硫酸ナトリウム、亜硫酸水素ナトリウムのうち、少なくともい ずれ力 1つを含む物質を用いることができる。使用する還元剤としては、特に限定さ れないものの、亜硫酸ナトリウム、亜硫酸水素ナトリウムは、従来より用いられている汎 用的な還元剤であり、コストも安いので、これらを用いるのが好ましい。 [0080] As the reducing agent, a substance containing at least one of sodium sulfite and sodium hydrogen sulfite can be used. Although the reducing agent to be used is not particularly limited, sodium sulfite and sodium hydrogen sulfite are general reducing agents that have been used conventionally, and the cost is low. Therefore, it is preferable to use these.
[0081] 本発明は、上記のような分離膜の改質方法により改質された分離膜についても提 供するものである。  [0081] The present invention also provides a separation membrane modified by the above-described method for modifying a separation membrane.
[0082] この第 3の形態における本発明に係る分離膜の改質装置は、分離膜に、ポリフエノ ールを含む有機物質および還元剤を含む水を加圧通水し、分離膜の阻止性能を向 上、回復させる手段を有することを特徴とするもの力もなる。  [0082] The separation membrane reforming apparatus according to the present invention in the third embodiment is configured to pressurize water containing an organic substance containing polyphenol and a reducing agent through the separation membrane, thereby preventing the separation membrane from being blocked. It also has the power of being characterized by having means to improve and recover.
[0083] 上記ポリフエノールを含む有機物質および還元剤を含む水を分離膜へ供給する手 段としては、ポリフエノールを含む有機物質および還元剤を混合した混合液を、分離 膜へ供給する手段とすることができる。 [0083] As a means for supplying the organic substance containing polyphenol and water containing the reducing agent to the separation membrane, means for supplying a mixed liquid in which the organic substance containing polyphenol and the reducing agent are mixed to the separation membrane; can do.
[0084] また、上記ポリフエノールを含む有機物質および還元剤を含む水を分離膜へ供給 する手段として、分離膜へ原水を供給するラインに、還元剤を含む水、ポリフエノール を含む有機物質を含む水の順番で注入し、分離膜へ供給する手段とすることもでき る。 [0084] Further, as means for supplying water containing the organic substance containing polyphenol and the reducing agent to the separation membrane, water containing the reducing agent and organic substance containing polyphenol are introduced into a line for supplying raw water to the separation membrane. It is also possible to inject in the order of the contained water and supply it to the separation membrane.
[0085] 上記分離膜としては、改質処理前の 500mg/L塩ィ匕ナトリウム水溶液の阻止率力 99 [0085] As the separation membrane, the rejection rate power of the 500 mg / L sodium chloride aqueous solution before the modification treatment is 99.
%以下の性能を持つ分離膜が使用されることが好ましい。 It is preferable to use a separation membrane having a performance of not more than%.
[0086] また、上記分離膜として、逆浸透膜またはナノろ過膜が使用されることが好ましい。 [0087] また、上記分離膜として、スパイラル型膜エレメントが使用されることが好ましい。 [0086] Further, as the separation membrane, a reverse osmosis membrane or a nanofiltration membrane is preferably used. [0087] Further, it is preferable to use a spiral membrane element as the separation membrane.
[0088] また、上記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜が使用されるこ とが好ましい。 [0088] It is preferable that a membrane containing at least an aromatic polyamide material is used as the separation membrane.
[0089] 上記有機物質の平均分子量としては、 200〜5000であることが好ましい。  [0089] The average molecular weight of the organic substance is preferably 200 to 5,000.
[0090] また、上記有機物質として、タンニン酸が用いられることが好ま U、。 [0090] In addition, tannic acid is preferably used as the organic substance.
[0091] タンニン酸としては、加水分解型タンニンが用いられることが好まし!/、。 [0091] As tannic acid, hydrolyzable tannin is preferably used! /.
[0092] また、タンニン酸として、五倍子を原料として作られたものが用いられることが好まし い。 [0092] In addition, it is preferable to use tannic acid made from a pentup.
[0093] 上記還元剤としては、亜硫酸ナトリウム、亜硫酸水素ナトリウムのうち、少なくともい ずれ力 1つを含む物質が用いられることが好まし 、。  [0093] As the reducing agent, a substance containing at least one of sodium sulfite and sodium hydrogen sulfite is preferably used.
発明の効果  The invention's effect
[0094] 第 1の形態に係る本発明によれば、市販の分離膜、特に従来殺菌剤を使用するこ とができな力つた、 RO膜や NF膜を殺菌することが可能となり、長年の懸案であった 生物汚染のトラブルに対処することが可能となる。したがって本発明は、幅広い産業 での利用価値が高ぐ特に医製薬産業や食品産業など、菌類の繁殖を確実に避け なければならない分野への適用が可能であり、産業上の利用価値は極めて高い。  [0094] According to the present invention relating to the first embodiment, it becomes possible to sterilize commercially available separation membranes, particularly RO membranes and NF membranes, which have been unable to use conventional sterilizing agents. It will be possible to deal with biological contamination problems that have been a concern. Therefore, the present invention can be applied to fields in which fungal growth must be surely avoided, such as the pharmaceutical and pharmaceutical industries and the food industry, which have high utility value in a wide range of industries, and the industrial utility value is extremely high. .
[0095] 第 2の形態に係る本発明によれば、市販の分離膜、特に従来殺菌剤を使用するこ とができな力つた、 RO膜や NF膜を抗菌化することが可能となり、長年の懸案であつ た生物汚染のトラブルに対処することが可能となる。幅広 、産業での利用価値が高く 、特に医製薬産業や食品産業、浄水場、家庭用浄水器など、菌類の繁殖や臭気を 確実に避けなければならな 、分野への適用が広がることが想定され、産業上の利用 価値は極めて高い。  [0095] According to the present invention relating to the second embodiment, commercially available separation membranes, in particular, RO membranes and NF membranes that cannot be used with conventional disinfectants can be made antibacterial and have been used for many years. It is possible to deal with the problem of biological contamination that was a concern. Wide range, high industrial use value, especially in the pharmaceutical and pharmaceutical industries, food industry, water purification plants, household water purifiers, etc. Industrial value is extremely high.
[0096] また、ポリフエノールを含む有機物質および銀イオンを含む水を、連続的または断 続的に分離膜へ供給することによって、分離膜の酸化劣化が起こりやすい原水にお いても、安定した性能で運転を継続することができ、かつその改質処理中であっても 、後段への影響を最小限とし、超純水の給水を継続または停止を短時間とすることが 可能となる。産業上の利用価値は、非常に高いものである。  [0096] Further, by supplying water containing an organic substance containing polyphenol and silver ions to the separation membrane continuously or intermittently, even in raw water where the oxidative deterioration of the separation membrane is likely to occur, the water is stable. The operation can be continued with performance, and even during the reforming process, the influence on the subsequent stage can be minimized, and the supply of ultrapure water can be continued or stopped for a short time. The industrial utility value is very high.
[0097] 第 3の形態に係る本発明によれば、原水等が酸ィ匕性雰囲気である場合にあっても、 効果的に分離膜を改質でき、市販の分離膜を改質処理することによって、阻止性能 を大幅かつ確実に向上させることができ、高い阻止性能を維持しながら、さらなる低 圧化を実現した膜を提供することができる。また、劣化した膜の確実な性能回復およ び安定した運用にも大きな効果があり、産業上の利用価値は非常に高い。 [0097] According to the third aspect of the present invention, even when raw water or the like is in an acidic atmosphere, Separation membrane can be effectively modified, and by modifying the separation membrane on the market, the blocking performance can be improved significantly and surely, and further lower pressure can be achieved while maintaining high blocking performance. A membrane can be provided. In addition, there is a significant effect on reliable performance recovery and stable operation of deteriorated membranes, and the industrial utility value is very high.
図面の簡単な説明  Brief Description of Drawings
[0098] [図 1]本発明の一実施態様に係る分離膜の改質装置の機器系統図である。  FIG. 1 is an equipment system diagram of a separation membrane reformer according to an embodiment of the present invention.
[図 2]本発明の別の実施態様に係る分離膜の改質装置の機器系統図である。  FIG. 2 is an equipment system diagram of a separation membrane reformer according to another embodiment of the present invention.
[図 3]本発明における分離膜の改質装置の別の形態例を示す機器系統図である。  FIG. 3 is a system diagram showing another embodiment of the separation membrane reforming apparatus of the present invention.
[図 4]本発明における分離膜の改質装置のさらに別の形態例を示す機器系統図であ る。  FIG. 4 is an equipment system diagram showing still another embodiment of the separation membrane reformer according to the present invention.
[図 5]第 2の形態における本発明の分離膜の改質装置に後段装置を組み込む場合 の後段装置の例を示す機器系統図である。  FIG. 5 is an equipment system diagram showing an example of a post-stage apparatus when the post-stage apparatus is incorporated in the separation membrane reforming apparatus of the present invention in the second embodiment.
符号の説明  Explanation of symbols
[0099] 1 分離膜供給水タンク (原水タンク) [0099] 1 Separation membrane supply water tank (raw water tank)
2 加圧ポンプ  2 Pressurizing pump
3 分離膜モジュール  3 Separation membrane module
4、 5、 6、 7、 8、 9 弁  4, 5, 6, 7, 8, 9 valves
10、 20 薬液タンク  10, 20 Chemical tank
11、 21 薬注ポンプ  11, 21 chemical injection pump
12 水質計  12 Water quality meter
31、 31a, 31b、 31c 膜エレメン卜  31, 31a, 31b, 31c Membrane element
32、 32a, 32b、 32c 而圧容器としてのベッセル  32, 32a, 32b, 32c Vessels as pressure vessels
41 紫外線酸化装置  41 UV oxidation equipment
42 イオン交換榭脂装置  42 Ion exchange grease
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0100] 以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。なお、以 下に説明する実施の形態は、本発明の一例を示すものであり、本発明の内容を制限 するものではない。 [0101] まず、図 2を用いて第 1の形態に係る本発明の一実施態様について説明する。図 2 は殺菌性能を向上するための分離膜の改質装置を組み込んだ水処理システムを示 しており、この図 2を参照して本発明における分離膜モジュールの運転方法を説明す る。図 2は分離膜装置を組み込んだ水処理システムのフロー図を示しており、図にお いては、圧力計、流量計、弁などは適宜省略してある。 1は分離膜供給水タンク (原 水タンク)、 2は加圧ポンプ、 3は分離膜モジュール、 4〜9はボール弁 (4は圧力調節 弁)、 10、 20は薬液タンク、 11、 21は薬注ポンプを、 12は水質計、例えば導電率計 を、それぞれ示している。なお、分離膜モジュール 3は、分離膜そのものである膜エレ メント 31と、膜エレメント 31を格納するための耐圧容器であるベッセル 32から成る。 [0100] Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The embodiment described below shows an example of the present invention and does not limit the contents of the present invention. First, an embodiment of the present invention according to the first embodiment will be described with reference to FIG. FIG. 2 shows a water treatment system incorporating a separation membrane reformer for improving the sterilization performance. The operation method of the separation membrane module according to the present invention will be described with reference to FIG. Fig. 2 shows a flow chart of a water treatment system incorporating a separation membrane device. In the figure, pressure gauges, flow meters, valves, etc. are omitted as appropriate. 1 is a separation membrane supply water tank (raw water tank), 2 is a pressure pump, 3 is a separation membrane module, 4 to 9 are ball valves (4 is a pressure control valve), 10 and 20 are chemical tanks, 11 and 21 are A chemical injection pump, 12 is a water quality meter, for example, a conductivity meter. The separation membrane module 3 includes a membrane element 31 that is the separation membrane itself and a vessel 32 that is a pressure-resistant container for storing the membrane element 31.
[0102] 通常の運転時は、前段からの水、例えば除濁処理された原水を、供給水タンク 1に 受ける。弁 5、 7を開、弁 4を所定の圧力になるように開、弁 6、 8、 9を閉として、加圧ポ ンプ 2にて加圧された原水を、分離膜モジュール 3で濃縮水と透過水とに分離し、濃 縮水はブローされ、透過水は後段の装置へ送水される。なお、ボール弁 6および 7を 適宜調整し、濃縮水を一部循環する場合もある。  [0102] During normal operation, the feed water tank 1 receives water from the previous stage, for example, raw water subjected to turbidity treatment. Valves 5 and 7 are opened, valve 4 is opened to a predetermined pressure, valves 6, 8, and 9 are closed, and the raw water pressurized by pressurizing pump 2 is concentrated by separation membrane module 3. The concentrated water is blown and the permeated water is sent to the downstream device. In some cases, ball valves 6 and 7 may be adjusted appropriately to partially circulate the concentrated water.
[0103] 殺菌処理は、例えば、あらかじめ設定した所定の間隔で実施する。殺菌の前には、 殺菌剤耐性処理工程を実施し、その後殺菌剤添加工程を実施する。これらのために 、タンク 10には所定の濃度とした前述の有機物質の水溶液を、タンク 20には所定の 濃度とした酸化剤 (殺菌剤)の水溶液を貯留しておく。  [0103] The sterilization process is performed, for example, at a predetermined interval set in advance. Prior to sterilization, a bactericide resistance treatment process is performed, followed by a bactericide addition process. For this purpose, the tank 10 stores an aqueous solution of the aforementioned organic substance having a predetermined concentration, and the tank 20 stores an aqueous solution of an oxidizing agent (bactericide) having a predetermined concentration.
[0104] 殺菌剤耐性処理工程にお!、ては、薬注ポンプ 11を起動し、分離膜モジュール 3へ 有機物質を供給する。所定時間経過後、薬注ポンプ 11を停止し、続いて薬注ポンプ 21を起動して、分離膜モジュール 3へ殺菌剤を供給する。所定時間経過後、薬注ポ ンプ 21を停止する。  [0104] In the disinfectant resistance treatment process !, the chemical injection pump 11 is activated to supply the organic substance to the separation membrane module 3. After a predetermined time has elapsed, the chemical injection pump 11 is stopped, and then the chemical injection pump 21 is started to supply the disinfectant to the separation membrane module 3. After the specified time has elapsed, stop the dosing pump 21.
[0105] 有機物質の添カ卩中、後段への支障がなければ、通常の運転を停止する必要はな い。有機物質の透過水への漏洩が見られる場合で、後段への支障が生じ得る場合 には、添カ卩中に弁 5を閉、弁 9を開として、透過水をブローすることもできるし、あるい は、弁 5を閉、弁 8を開として、透過水を循環することもできる。循環する場合には、弁 7を閉、弁 6を開として、濃縮水も循環してもよい。この場合には、薬液濃度が一定濃 度に達した時点で、薬注ポンプ 11を停止する。 [0106] 殺菌剤耐性処理工程の時間は、 5分間〜 2時間、好ましくは 5分間〜 1時間とするこ と力 好適な処理のために望ましい。 5分間未満では、処理の効果が小さぐ 2時間を 超えても、処理の効果が高くなることはなぐ薬品の無駄使いとなってしまう。 [0105] During operation of adding organic substances, normal operation does not need to be stopped if there is no problem with the subsequent stage. If leakage of organic substances into the permeated water is observed and there is a possibility that it may interfere with the subsequent stage, the permeated water can be blown with valve 5 closed and valve 9 opened during the addition. Alternatively, the permeate can be circulated with the valve 5 closed and the valve 8 open. In the case of circulation, the concentrated water may be circulated with the valve 7 closed and the valve 6 opened. In this case, the chemical injection pump 11 is stopped when the chemical concentration reaches a certain concentration. [0106] The duration of the bactericide-resistant treatment step is 5 minutes to 2 hours, preferably 5 minutes to 1 hour. If the time is less than 5 minutes, the effect of the treatment is small. If the time exceeds 2 hours, the effect of the treatment is high, and the chemical is wasted.
[0107] 殺菌剤耐性処理工程は、殺菌の前に毎回実施しても、毎回実施しなくてもよい。毎 回実施しない場合は、殺菌剤耐性処理工程によって分離膜表面にコーティングされ た有機物質が残存している期間、例えば 2〜10回の殺菌に対して 1回、というように 設定すればよい。  [0107] The bactericide resistance treatment step may or may not be performed every time before sterilization. If it is not performed every time, it may be set such that the organic material coated on the surface of the separation membrane in the disinfectant-resistant treatment process remains, for example, once for 2 to 10 sterilizations.
[0108] 殺菌剤耐性処理工程は、必ずしも殺菌剤添加工程の直前に行わなくてもよ!/ヽ。例 えば殺菌剤添加工程の直後に実施し、これを、次回の殺菌に対する前処理工程とみ なしてもよい。  [0108] The bactericide resistance treatment step does not necessarily have to be performed immediately before the bactericide addition step! For example, it may be performed immediately after the disinfectant addition step, and this may be regarded as a pretreatment step for the next disinfection.
[0109] 殺菌剤耐性処理工程と同時に、還元剤を添加してもよい。有機物質を添加する水 に、酸化性物質が含まれている場合、有機物質が分離膜表面に到達する前に、殺 菌剤耐性効果を失ってしまうことがある。これを防ぐためには、有機物質の注入点より 前に、還元剤の注入点を設け、あら力じめ還元しておくことが好ましい。還元剤として は、特に限定されないが、亜硫酸ナトリウム、亜硫酸水素ナトリウムなどを用いることが でき、濃度は注入点において 0.1〜100mg/L程度に設定すると良い。さらに、有機物 質と還元剤を混合して添加してもよい。この方法を用いることで、分離膜に供給して いる原水や、有機物質を溶解させる水が酸化性雰囲気である場合でも、有機物質単 独で用いる場合と比較して、作業を煩雑とすることなぐ殺菌剤耐性効果を得ることが できる。  [0109] A reducing agent may be added simultaneously with the bactericide resistance treatment step. If the water to which the organic substance is added contains an oxidizing substance, the antibacterial resistance effect may be lost before the organic substance reaches the separation membrane surface. In order to prevent this, it is preferable to provide a reducing agent injection point before the organic material injection point to reduce the amount in advance. The reducing agent is not particularly limited, and sodium sulfite, sodium hydrogen sulfite and the like can be used, and the concentration is preferably set to about 0.1 to 100 mg / L at the injection point. Further, an organic substance and a reducing agent may be mixed and added. By using this method, even when the raw water supplied to the separation membrane or the water that dissolves the organic substance is in an oxidizing atmosphere, the work is complicated compared to the case of using the organic substance alone. A fungicide resistant effect can be obtained.
[0110] 上記実施態様では、 1モジュールの形態を例示した力 クリスマスツリー配置、 2段 ROなど、複数エレメントを含む複数モジュールで構成される分離膜装置にも適用で きる。例えば図 3に示すように、分離膜モジュール 3a〜3cを多段に(図示例では 2段 に)クリスマスツリー状に配置し、各モジュール 3a〜3cを、分離膜そのものである膜ェ レメント 31a〜31cと、膜エレメントを格納するための而圧容器であるベッセル 32a〜32 cから成る構成とすることができる。  [0110] The embodiment described above can also be applied to a separation membrane device constituted by a plurality of modules including a plurality of elements such as a force Christmas tree arrangement exemplifying the form of one module and a two-stage RO. For example, as shown in FIG. 3, the separation membrane modules 3a to 3c are arranged in a multi-stage (two stages in the illustrated example) in a Christmas tree shape, and each module 3a to 3c is a membrane element 31a to 31c which is the separation membrane itself. And vessels 32a to 32c, which are pressure vessels for storing the membrane elements.
[0111] また、上記図 2に示した実施の形態では、薬液タンクを 2つ用いる例を示した力 両 者を混合し、 1液として添加してもよい。 1液として用いる場合は、処理を実施する現 場にて 2液を混合してもよいし、現場へ持ち込む前の段階、すなわち薬液の製造過 程'製造工場にて混合し、その混合液を現場で使用してもよい。この場合には、例え ば図 4に示すように、 1つの薬液タンク 10と 1つの薬注ポンプ 11を備えていればよい。 [0111] In the embodiment shown in Fig. 2 described above, both of the forces shown in the example of using two chemical tanks may be mixed and added as one liquid. When used as a single solution, The two liquids may be mixed at the site, or they may be mixed at the manufacturing factory before the production site, that is, the chemical liquid manufacturing process, and the mixed liquid may be used on site. In this case, for example, as shown in FIG. 4, one chemical tank 10 and one chemical injection pump 11 may be provided.
[0112] 殺菌剤耐性処理工程に使用する有機物質の濃度は、特に限定されないが、分離 膜モジュール入口において 0.1〜200mg/L、好ましくは 0.5〜100mg/Lであることが、 効率の良い処理をするために好ましい。 0.5mg/L未満では効果が薄ぐ 200mg/Lを超 えるとファゥリングを起こす場合があり、好ましくない。  [0112] The concentration of the organic substance used in the bactericide-resistant treatment step is not particularly limited, but it is 0.1 to 200 mg / L, preferably 0.5 to 100 mg / L at the separation membrane module inlet for efficient treatment. This is preferable. If it is less than 0.5 mg / L, the effect is weak. If it exceeds 200 mg / L, fouling may occur, which is not preferable.
[0113] 前記殺菌剤耐性処理工程における加圧通水時の透過流束は、 0.3〜5.0m/dayの 範囲とすることが、好適な処理効果を得るために望ましい。より好ましい透過流束の 範囲は、 0.5〜3.0m/day、さらに好ましくは 0.7〜2.0m/dayである。 0.3m/day未満では 、有機物質の吸着効果が低ぐ殺菌剤耐性効果が見込めない。 5.0m/dayを超えると 、ファゥリングを起こす場合があり、好ましくない。 [0113] In order to obtain a suitable treatment effect, it is desirable that the permeation flux at the time of pressurized water flow in the bactericide-resistant treatment step is in the range of 0.3 to 5.0 m / day. A more preferable permeation flux range is 0.5 to 3.0 m / day, and even more preferably 0.7 to 2.0 m / day. If it is less than 0.3 m / day, it is not possible to expect a fungicide resistance effect with a low organic substance adsorption effect. And when it is more than 5.0m / da y, there is a case to cause Fauringu, undesirable.
[0114] 前記有機物質を含む水に酸を添加し、 pHを 1〜5としてもよい。 pHを上記範囲にコ ントロールすることにより、有機物質の沈殿を防ぎ、殺菌剤耐性処理を適切に実施す ることができる。酸としては、特に限定されないが、塩酸、硫酸、硝酸、リン酸、クェン 酸、シユウ酸、カルボン酸などを用いることができ、特にクェン酸は入手が容易で、毒 性も低いことから用いやすぐ操作性が良い。  [0114] An acid may be added to water containing the organic substance to adjust the pH to 1 to 5. By controlling the pH within the above range, it is possible to prevent the precipitation of organic substances and appropriately carry out the bactericide resistance treatment. The acid is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citrate, oxalic acid, carboxylic acid, and the like can be used. In particular, citrate is easily available and has low toxicity. Easy to operate.
[0115] 本発明で言うポリフ ノールとは、複数の水酸基が結合した芳香族化合物を総称し た、一般的なポリフエノール類のことを指す。ポリフエノールとしては例えば、アントシ ァニン、カテキン、タンニン、ルチン、ケルセチン、イソフラボン、フラボノイド、フミン類 、フルボ酸などが挙げられるが、特に限定はされない。  [0115] The polyphenol referred to in the present invention refers to general polyphenols generically referring to aromatic compounds in which a plurality of hydroxyl groups are bonded. Examples of polyphenols include anthocyanins, catechins, tannins, rutin, quercetin, isoflavones, flavonoids, humins, and fulvic acids, but are not particularly limited.
[0116] タンニンはタンニン酸、タンニン類とも呼ばれ、混同して用いられる力 本願中では 全て同義で用いている。また、五倍子タンニンのことをガロタンニンと呼ぶこともある。 なお五倍子とは、ヌルデ属植物の虫コブのことである。  [0116] Tannins are also called tannic acid and tannins, and are used in confusing terms. In addition, pentaploid tannin is sometimes called gallotannin. In addition, a quintuplet is an insect cob of the genus Nurde.
[0117] タンニン酸には、加水分解型と縮合型がある。前者の原料の例としては、五倍子、 没食子、チェストナット (Chestnut),オーク (Oak Wood),ユーカリプタス (Eucalyptus)、 ディビディビ (Divi- Divi)、タラ (Tara)、スマック (Sumac)、ミラボラム (Myrabolam)、アルガ 口ビア (Algarobilla)、バロ-ァ (Valonea)、胡桃、栗、木苺、グミ、ザクロ、ァカメガシヮ、 ウルシ科、サンシュュ、ゲンノショウコ、などが挙げられる。後者の原料の例としては、 ケプラチヨ (Quebracho)、ビノレマ力ツチ (Burma Cutch)、ワットノレ (Wattle)、ミモザ (Mimos a)、スプノレース (Spruse)、ヘムロック (Hemlock)、マングローブ (Mangrove)、力シヮ榭皮( Oak bark),アバラム、ガンビア (Gambier)、茶、柿渋、ユキノシタ、ブドウ、リンゴ、蓮根 、コーヒー、しそ、ボケ、椿、ローズマリー、パセリ、サルビアの花、ヒマヮリ、などが挙げ られる。なお、加水分解型はピロガロール型 (Hydrolyzable Tannin)、縮合型はカテコ ール型 (Condensel Tannin)とも呼ばれる。また、前者の加水分解生成物として、没食 子酸プロピルなどを用いることもできる。 [0117] Tannic acid includes a hydrolysis type and a condensation type. Examples of the former ingredients are pentaploid, gallic, chestnut, oak wood, eucalyptus, divi-divi, tara, sumac, myrabolam , Algarobilla, Valonea, walnuts, chestnuts, mallet, gummy, pomegranate, akamegashi mochi, Examples include urushiaceae, sanshu, gennoshouko, and the like. Examples of the latter ingredients include Quebracho, Burma Cutch, Wattle, Mimos a, Spruse, Hemlock, Mangrove, Power Examples include oak bark, abalam, Gambier, tea, astringent shibu, yukinoshita, grape, apple, lotus root, coffee, shiso, bokeh, persimmon, rosemary, parsley, salvia flower, and sunflower. The hydrolysis type is also called pyrogallol type (Hydrolyzable Tannin), and the condensation type is also called catechol type (Condensel Tannin). Moreover, propyl gallate etc. can also be used as the former hydrolysis product.
[0118] 次に、第 2の形態における本発明の実施の形態 (オフライン処理)に係る分離膜の 改質方法を図 1を参照して説明する。図 1は本例の処理方法を実施する、膜改質装 置の機器系統図である (圧力計、流量計、弁などは適宜省略してある)。 1は分離膜 供給水タンク (原水タンク)、 2は加圧ポンプ、 3は分離膜モジュール、 4は圧力調節弁 、 5〜9はボール弁力もなる弁を、それぞれ示している。なお、分離膜モジュール 3は 、分離膜そのものである膜エレメント 31と、膜エレメントを格納するための耐圧容器で あるベッセル 32から成る。  Next, a method for reforming a separation membrane according to an embodiment (off-line processing) of the present invention in the second embodiment will be described with reference to FIG. FIG. 1 is an apparatus system diagram of a membrane reforming apparatus for carrying out the treatment method of this example (pressure gauge, flow meter, valve, etc. are omitted as appropriate). 1 is a separation membrane supply water tank (raw water tank), 2 is a pressure pump, 3 is a separation membrane module, 4 is a pressure control valve, and 5 to 9 are valves that also have ball valve force. The separation membrane module 3 includes a membrane element 31 that is the separation membrane itself and a vessel 32 that is a pressure-resistant container for storing the membrane element.
[0119] ベッセル 32内に膜エレメント 31を装填後、弁 5を閉の状態でタンク 1に水を十分量入 れ、弁 6、 8、 9を閉、弁 5、 7を開、弁 4を適宜開として、ポンプ 2を起動する。圧力がか 力もない状態でしばらく通水し、必要であればタンク 1へ水を補給しながら、分離膜モ ジュール 3を水洗する。なお、本発明でいう圧力がかからない状態とは、透過水が得 られな 、ほどの低圧の状態を!、う。  [0119] After the membrane element 31 was loaded into the vessel 32, with a sufficient amount of water in tank 1 with valve 5 closed, valves 6, 8, 9 were closed, valves 5, 7 were opened, and valve 4 was Open pump 2 as appropriate and start pump 2. Pass water for a while under no pressure, and wash the separation membrane module 3 with water while supplying water to the tank 1 if necessary. In the present invention, the state where no pressure is applied refers to a state where the permeated water is not low enough to obtain permeated water! Uh.
[0120] 次にポンプ 2停止後、弁 5を閉として、タンク 1に水を所定量入れ、改質薬品である 有機物質および銀イオンを所定量加えて、十分に溶解する。弁 7、 9を閉、弁 5、 6、 8 を開、弁 4を所定の圧力になるように開として、ポンプ 2を起動する。  [0120] Next, after the pump 2 is stopped, the valve 5 is closed, a predetermined amount of water is put into the tank 1, and a predetermined amount of organic substances and silver ions, which are reforming chemicals, are added and sufficiently dissolved. Valves 7 and 9 are closed, valves 5, 6, and 8 are opened, valve 4 is opened to a predetermined pressure, and pump 2 is started.
[0121] 所定時間経過後、ポンプ 2を停止し、弁 9を開けてタンク 1内の薬液を排出する。水 でタンク 1を水洗後、弁 9を閉として水を貯留する。弁 6、 8、 9を閉、弁 5、 7を開、弁 4 を適宜開として、ポンプ 2を起動する。圧力が力からない状態でしばらく通水し、必要 であればタンク 1へ水を補給しながら、分離膜モジュール 3を水洗する。また弁 6も開 として、循環ラインの水洗も適宜行なう。 [0122] 本実施形態では、有機物質と銀イオンを混合して処理する場合を示したが、別々に 用いることもできる。その場合には、有機物質→銀イオンの順番で用い、それぞれの 処理の間に、水洗工程を設ける。 [0121] After a predetermined time has elapsed, the pump 2 is stopped, the valve 9 is opened, and the chemical liquid in the tank 1 is discharged. After washing tank 1 with water, valve 9 is closed and water is stored. Start pump 2 with valves 6, 8, 9 closed, valves 5, 7 open, and valve 4 open as appropriate. Water is passed for a while without pressure, and the separation membrane module 3 is washed with water while supplying water to the tank 1 if necessary. Valve 6 is also opened and the circulation line is rinsed appropriately. [0122] In the present embodiment, the case where an organic substance and silver ions are mixed and processed is shown, but they can also be used separately. In that case, use organic substances in the order of silver ions, and provide a water washing step between each treatment.
[0123] 水洗工程は、弁 5を閉の状態でタンク 1に水を十分量入れ、弁 6、 8、 9を閉、弁 5、 7 を開、弁 4を適宜開として、ポンプ 2を起動する。圧力が力からない状態でしばらく通 水し、必要であればタンク 1へ水を補給しながら、分離膜モジュール 3を水洗する。  [0123] In the water washing process, with a sufficient amount of water in tank 1 with valve 5 closed, valves 6, 8, and 9 are closed, valves 5 and 7 are opened, valve 4 is opened as appropriate, and pump 2 is started To do. Water is passed for a while without pressure, and the separation membrane module 3 is washed with water while supplying water to the tank 1 if necessary.
[0124] 改質処理後の分離膜は、水処理装置全体のシステム中で用いることができる。例え ば、原水を凝集沈殿、砂ろ過、膜ろ過等の方法で除濁処理後、改質処理をした分離 膜を用いたり、後段に EDIを用いたりすることもできる。  [0124] The separation membrane after the reforming treatment can be used in the system of the entire water treatment apparatus. For example, the raw water can be deturbed by a method such as coagulation sedimentation, sand filtration, membrane filtration, etc., and then a reformed separation membrane can be used, or EDI can be used downstream.
[0125] タンク 1に供給する水は、純水が好ましいが、純水が利用できない場合は、 SDI値が 5以下の除濁水を用いてもょ 、。  [0125] The water supplied to tank 1 is preferably pure water. If pure water is not available, turbid water with an SDI value of 5 or less may be used.
[0126] 処理時間は、特に限定されないが、有機物質と銀イオンの混合物による処理、また は有機物質による処理、および銀イオンを含む水溶液による処理それぞれに、 5分 〜24時間、好ましくは 30分〜 6時間であること力 効率の良い処理をするために好ま しい。 5分未満では処理の効果が薄ぐ 24時間を超えるとファゥリングを起こしたり、抗 菌処理効果のさらなる向上が望めな力つたりする場合があり、好ましくない。  [0126] The treatment time is not particularly limited, but is 5 minutes to 24 hours, preferably 30 minutes for each treatment with a mixture of an organic substance and silver ions, or a treatment with an organic substance, and a treatment with an aqueous solution containing silver ions. ~ 6 hours power is preferred for efficient processing. If it is less than 5 minutes, the effect of the treatment will be weak. If it exceeds 24 hours, it may cause fouling or may cause further improvement in the antibacterial treatment effect, which is not preferable.
[0127] 次に第 2の形態における本発明の別の実施の形態 (インライン処理)における分離 膜モジュールの運転方法を前述の図 2を参照して説明する。前述した第 1の形態に おけるのと同様、通常の運転時は、前段からの水、例えば除濁処理された原水を、 供給水タンク 1に受ける。弁 5、 7を開、弁 4を所定の圧力になるように開、弁 6、 8、 9を 閉として、加圧ポンプ 2にて加圧された原水を、分離膜モジュール 3で濃縮水と透過 水に分離し、濃縮水はブロー、透過水は後段の装置へ送水される。なお、ボール弁 6 および 7を適宜調整し、濃縮水を一部循環する場合もある。  Next, an operation method of the separation membrane module in another embodiment (inline processing) of the present invention in the second embodiment will be described with reference to FIG. As in the first embodiment described above, during normal operation, the feed water tank 1 receives water from the previous stage, for example, raw water subjected to turbidity treatment. Valves 5 and 7 are opened, valve 4 is opened to a predetermined pressure, valves 6, 8, and 9 are closed, and the raw water pressurized by the pressure pump 2 is converted into concentrated water by the separation membrane module 3. Separated into permeated water, concentrated water is blown, and permeated water is sent to the downstream device. In some cases, the ball valves 6 and 7 may be adjusted appropriately to partially circulate the concentrated water.
[0128] 薬液タンク 10には、あら力じめ所定の濃度とした有機物質水溶液を、薬液タンク 20 には、あらかじめ所定の濃度とした銀イオン水溶液を貯留しておく。断続的に添加を 行なう場合で、一定時間毎に添加を行なうケースでは、一定時間毎に、自動または 手動で、薬注ポンプ 11を起動し、所定時間経過後停止、続けて薬注ポンプ 21を起動 し、所定時間経過後停止すればよい。断続的に添加を行う場合で、水質計 12からの 電気信号によって添加を行うケースでは、水質計 12がある基準値以下となったら、薬 注ポンプ 11へ電気信号が送られ、ポンプが起動する。注入開始後、水質計 12がある 基準値以上となったら、薬注ポンプ 11へ電気信号が送られ、ポンプが停止する。続 いてポンプ 21が起動し、所定時間経過後にポンプ 21が停止する。また、連続的に添 加を行なう場合には、薬注ポンプ 11、 21は常に起動しておくか、所定時間毎に交互 に起動すればよい。 [0128] The chemical solution tank 10 stores an organic substance aqueous solution with a predetermined concentration, and the chemical solution tank 20 stores a silver ion aqueous solution with a predetermined concentration in advance. In the case of intermittent addition, when the addition is made at regular intervals, the chemical injection pump 11 is started automatically or manually at regular intervals, stopped after a predetermined time, and then the chemical injection pump 21 is turned on. Start up and stop after a lapse of a predetermined time. In the case of intermittent addition, from the water quality meter 12 In the case of addition by an electrical signal, when the water quality meter 12 falls below a certain reference value, an electrical signal is sent to the dosing pump 11 and the pump is started. When the water quality meter 12 exceeds a certain reference value after the injection starts, an electric signal is sent to the chemical injection pump 11 and the pump stops. Subsequently, the pump 21 is started, and the pump 21 is stopped after a predetermined time. In addition, when adding continuously, the dosing pumps 11 and 21 should always be started or alternately started every predetermined time.
[0129] 有機物質の添カ卩中、後段への支障がなければ、通常の運転を停止する必要はな い。有機物質の透過水への漏えいが見られる場合で、後段への支障が生じ得る場合 は、添カ卩中に弁 5を閉、弁 9を開として、透過水をブローすることもできるし、もしくは弁 5を閉、弁 8を開として、透過水を循環することもできる。循環とする場合には、弁 7を 閉、弁 6を開として、濃縮水も循環しても良い。この場合には、薬液濃度が一定濃度 に達した時点で、薬注ポンプ 11、 21を停止する。  [0129] During the addition of organic substances, normal operation does not need to be stopped if there is no hindrance to the subsequent stage. If leakage of organic substances into the permeated water is observed and there is a possibility that it may interfere with the subsequent stage, the permeated water can be blown with valve 5 closed and valve 9 opened during the addition, Alternatively, the permeate can be circulated with valve 5 closed and valve 8 open. In the case of circulation, the concentrated water may be circulated with the valve 7 closed and the valve 6 opened. In this case, when the drug solution concentration reaches a certain concentration, the drug injection pumps 11 and 21 are stopped.
[0130] 薬注時間は、特に限定されないが、有機物質と銀イオンの混合物の薬注、または 有機物質の薬注、および銀イオンを含む水溶液の薬注それぞれに、 5分〜 24時間、 好ましくは 30分〜 6時間であることが、効率の良い処理をするために好ましい。 5分未 満では処理の効果が薄ぐ 24時間を超えるとファゥリングを起こしたり、抗菌処理効果 のさらなる向上が望めな力つたりする場合があり、好ましくない。  [0130] The drug injection time is not particularly limited, but preferably 5 minutes to 24 hours for a drug injection of a mixture of an organic substance and silver ions, or an organic substance and an aqueous solution containing silver ions. Is preferably 30 minutes to 6 hours for efficient treatment. If it is less than 5 minutes, the effect of the treatment is weak, and if it exceeds 24 hours, it may cause fouling or may cause further improvement in the antibacterial treatment effect.
[0131] 薬注を断続的に実施する場合の薬注間隔は、特に限定されないが、有機物質と銀 イオンの混合物の薬注、または有機物質の薬注、および銀イオンを含む水溶液の薬 注それぞれにおいて、 1年に 1回以上 1日に 1回以下、好ましくは 3ヶ月に 1回以上 1 週間に 1回以下とすることが、抗菌作用を維持するために好ましい。 1年に 1回を下回 つてしまうと、抗菌効果が薄れる恐れがあり、 1日に 1回を超えると処理頻度が高すぎ 、薬品コストが高くなつてしまう。  [0131] The dosing interval for intermittent dosing is not particularly limited, but is a mixture of an organic substance and silver ion, or an organic substance, and an aqueous solution containing silver ions. In order to maintain the antibacterial action, it is preferable to set it once a year or more and once or less a day, preferably once every 3 months or less once a week. If it is less than once a year, the antibacterial effect may be diminished, and if it exceeds once a day, the treatment frequency is too high and the chemical cost becomes high.
[0132] 改質薬品である有機物質の濃度は、特に限定されないが、分離膜モジュール入口 において 0.1〜200mg/L、好ましくは 0.5〜100mg/Lであること力 効率良い処理をす るために好ましい。 0.1mg/L未満では効果が薄ぐ 200mg/Lを超えるとファゥリングを 起こす場合があり、好ましくない。  [0132] The concentration of the organic substance as the modifying chemical is not particularly limited, but is preferably 0.1 to 200 mg / L, preferably 0.5 to 100 mg / L at the inlet of the separation membrane module, which is preferable for efficient processing. . Less than 0.1 mg / L is less effective. Over 200 mg / L may cause fouling, which is not preferable.
[0133] 銀イオンの濃度は、特に限定されないが、分離膜モジュール入口において 0.01〜2 00mg/L、好ましくは 0.02〜100mg/Lであること力 効率良い処理をするために好まし い。 0.01mg/L未満では効果が薄ぐ 200mg/Lを超えると、薬品コストがかさみ、好まし くない。 [0133] The concentration of silver ions is not particularly limited, but is 0.01 to 2 at the inlet of the separation membrane module. 00 mg / L, preferably 0.02 to 100 mg / L is preferable for efficient treatment. The effect is less than 0.01 mg / L. If it exceeds 200 mg / L, the chemical cost is increased, which is not preferable.
[0134] 加圧通水時の透過流束は、 0.3〜5.0m/dayの範囲とすることが、好適な改質効果を 得るために望ましい。好適な透過流束の範囲は、 0.3〜5.0m/day、好ましくは 0.5〜3. Om/day、さらに好ましくは 0.7〜2.0m/dayである。 0.3m/day未満では、有機物質の吸 着効果が低ぐ抗菌処理効果が見込めない。 5.0m/dayを超えると、ファゥリングを起こ す場合があり、好ましくない。  [0134] The permeation flux during pressurized water flow is preferably in the range of 0.3 to 5.0 m / day in order to obtain a suitable reforming effect. A suitable permeation flux range is 0.3 to 5.0 m / day, preferably 0.5 to 3. Om / day, more preferably 0.7 to 2.0 m / day. If it is less than 0.3 m / day, an antibacterial treatment effect with low organic substance adsorption effect cannot be expected. If it exceeds 5.0m / day, fouling may occur, which is not preferable.
[0135] 前記有機物質を含む水に酸を添加し、 pHを 1〜5としてもよい。 pHを上記範囲にコ ントロールすることにより、有機物質の沈殿を防ぎ、処理を適切に実施することができ る。酸としては、特に限定されないが、塩酸、硫酸、硝酸、リン酸、クェン酸、シユウ酸 、カルボン酸、などを用いることができ、特にクェン酸は入手が容易で、毒性も低いこ とから用いやすぐ操作性が良い。  [0135] An acid may be added to water containing the organic substance to adjust the pH to 1 to 5. By controlling the pH within the above range, precipitation of organic substances can be prevented and treatment can be performed appropriately. The acid is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citrate, oxalic acid, carboxylic acid, and the like can be used. In particular, citrate is easily available and has low toxicity. The operability is good immediately.
[0136] 改質処理を実施する前に、分離膜を薬品洗浄してもよい。特に分離膜に汚染が見 られる場合には、改質効果が低減する場合があり、適切な薬品洗浄を実施することが 望ましい。薬品洗浄の方法としては、特に限定されないが、酸またはアルカリを用い た洗浄方法を用いることができる。汚染の状態に応じて、どちらか一方のみを用いた 洗浄を実施しても良いし、両者を順番に用いて洗浄を実施してもよい。酸としては、 特に限定されないが、塩酸、硫酸、硝酸、リン酸、クェン酸、シユウ酸、カルボン酸な どを用いることができ、特にシユウ酸やクェン酸は洗浄効果が高ぐ望ましい。アル力 リとしては、特に限定されないが、水酸化ナトリウム、水酸ィ匕カリウム、炭酸ナトリウム、 水酸ィ匕カルシウム、亜硫酸ナトリウムなどを用いることができ、特に水酸ィ匕ナトリウムは 、汎用性の観点力も望ましい。  [0136] Before the reforming treatment is performed, the separation membrane may be chemically cleaned. In particular, when the separation membrane is contaminated, the reforming effect may be reduced, and it is desirable to perform appropriate chemical cleaning. The chemical cleaning method is not particularly limited, and a cleaning method using acid or alkali can be used. Depending on the state of contamination, cleaning using only one of them may be performed, or cleaning may be performed using both in order. The acid is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citrate, oxalic acid, carboxylic acid, and the like can be used. In particular, oxalic acid and citrate are desirable because they have a high cleaning effect. Although there are no particular limitations on the strength of the alkali, sodium hydroxide, potassium hydroxide, sodium carbonate, calcium hydroxide, sodium sulfite, and the like can be used. View power is also desirable.
[0137] 次に、第 2の形態に係る本発明における分離膜の運転方法および装置についての 具体的な例を、前述の図 4に示した形態の分離膜装置の後段に図 5に示す装置を接 続した形態の超純水製造装置を例にとって説明する。図 5は分離膜装置よりも後段 に設置される、紫外線酸ィ匕装置 41およびイオン交換榭脂装置 42を示している。サブ システムに含まれるその他の装置は省略してある。 [0138] 通常の運転時は、前段からの水、例えば除濁処理された原水を、供給水タンク 1に 受ける。弁 5、 7を開、弁 4を所定の圧力になるように開、弁 6、 8、 9を閉として、加圧ポ ンプ 2にて加圧された原水を、分離膜モジュール 3で濃縮水と透過水に分離し、濃縮 水はブロー、透過水は後段の装置へ送水される。なお、ボール弁 6および 7を適宜調 整し、濃縮水を一部循環する場合もある。 Next, a specific example of the method and apparatus for operating the separation membrane in the present invention according to the second embodiment is shown in the apparatus shown in FIG. 5 after the separation membrane apparatus of the embodiment shown in FIG. An example of an ultrapure water production system in which is connected. FIG. 5 shows an ultraviolet acid oxidizer 41 and an ion exchange resin rig 42 installed downstream of the separation membrane device. Other devices included in the subsystem are omitted. [0138] During normal operation, the feed water tank 1 receives water from the previous stage, for example, raw water subjected to turbidity treatment. Valves 5 and 7 are opened, valve 4 is opened to a predetermined pressure, valves 6, 8, and 9 are closed, and the raw water pressurized by pressurizing pump 2 is concentrated by separation membrane module 3. The concentrated water is blown and the permeated water is sent to the downstream device. In some cases, ball valves 6 and 7 may be adjusted as appropriate to partially circulate the concentrated water.
[0139] 薬液タンク 10には、あら力じめ所定の濃度とした有機物質を含む水溶液 (本実施形 態では、ポリフエノールを含む有機物質および銀イオンを含む水溶液)を貯留してお く。水質計 12がある基準値以下となったら、薬注ポンプ 11へ電気信号が送られ、ボン プが起動する。薬注ポンプ 11は、あら力じめ所定の注入量となるように設定しておく。  [0139] In the chemical solution tank 10, an aqueous solution containing an organic substance having a predetermined concentration (in this embodiment, an organic substance containing polyphenol and an aqueous solution containing silver ions) is stored. When the water quality meter 12 falls below a certain reference value, an electric signal is sent to the dosing pump 11 and the pump is activated. The medicinal pump 11 is set so as to give a predetermined injection amount.
[0140] 注入開始後、水質計 12がある基準値以上となったら、薬注ポンプ 11へ電気信号が 送られ、ポンプが停止する。  [0140] After the start of injection, when the water quality meter 12 exceeds a certain reference value, an electric signal is sent to the dosing pump 11 and the pump stops.
[0141] なお、断続的に添加を行なう場合で、一定時間毎に添加を行なうケースでは、水質 計からの電気信号は必要なぐ一定時間毎に、自動または手動で、薬注ポンプ 11を 起動すればよい。また、連続的に添加を行なう場合には、薬注ポンプ 11は常に起動 しておく。本発明によれば、断続添加、連続添カ卩にかかわらず、有機物質の添加中 であっても、通常の運転を停止する必要はないか、断続添加の場合には、停止する 場合でも短時間で済む。  [0141] In addition, in the case of intermittent addition, and in the case of addition at regular intervals, the electrical signal from the water quality meter should be started automatically or manually at regular intervals as needed. That's fine. In addition, when adding continuously, the medicine injection pump 11 is always started. According to the present invention, it is not necessary to stop normal operation even during addition of an organic substance regardless of intermittent addition or continuous addition, or in the case of intermittent addition, even if it is stopped. It takes time.
[0142] 分離膜装置より送水された水は、図 5に示される各装置を含むサブシステムにより 処理され、 TOC濃度を所定濃度以下とした上で、ユースポイントへ超純水として供給 される。有機物質の添加中に、所定濃度を超えてしまう場合には、その期間のみ排 水をするが、本発明の方法では、この排水時間は従来よりも極めて短時間で済む。  [0142] The water sent from the separation membrane device is processed by the subsystem including each device shown in Fig. 5, and the TOC concentration is set to a predetermined concentration or less, and then supplied to the use point as ultrapure water. When a predetermined concentration is exceeded during the addition of the organic substance, water is drained only during that period. In the method of the present invention, this drainage time is much shorter than in the past.
[0143] なお、本発明においては、改質処理後、長期間保存する場合には、十分に水洗を 行って力 分離膜を保存することが望ましい。分離膜の処理後には使用するまで保 存しなければならないケースがあるため、本方法により保存中の改質効果の変化を 防止することができる。  [0143] In the present invention, when storing for a long time after the reforming treatment, it is desirable to store the force separation membrane by sufficiently washing with water. Since there are cases where the separation membrane needs to be stored until it is used, this method can prevent changes in the reforming effect during storage.
[0144] また、改質処理後、金属イオンを含む水溶液を通水してもよ!ヽ。この方法を用いるこ とで、分離膜の処理安定性が向上する。なお、金属イオンを含む水溶液は、膜表面 と接する状態で供給されれば、透過水を得るための加圧はしてもしなくてもよ ヽが、 加圧通水した方が、より効果が大きいものと推定される。また、特に通水をせず、膜に 水溶液が接した状態で静止して 、ても、すなわち浸漬状態でも効果がある。 [0144] After the modification treatment, an aqueous solution containing metal ions may be passed through! By using this method, the processing stability of the separation membrane is improved. The aqueous solution containing metal ions may or may not be pressurized to obtain permeated water if it is supplied in contact with the membrane surface. It is presumed that the effect is greater when pressurized water is passed. Further, even if water is not passed through and the film is still in contact with the aqueous solution, it is effective even in the immersed state.
[0145] 金属イオンとしては、特に限定されな!、が、アンチモン、鉄、マンガン、銅、ニッケル 、亜鉛、アルミニウム、錫、モリブデン、クロム、チタンなどのイオンが挙げられる。  [0145] The metal ion is not particularly limited, but examples include ions of antimony, iron, manganese, copper, nickel, zinc, aluminum, tin, molybdenum, chromium, titanium, and the like.
[0146] 改質処理に際しては、還元剤を併用してもよい。分離膜に供給している原水や、有 機物質や銀イオンを溶解させる水が酸ィ匕性雰囲気である場合、有機物質が分離膜 に到達する前に分解してしまい、改質の効果が得られない場合があった。この方法を 用いることで、分離膜に供給している原水や、有機物質を溶解させる水が酸化性雰 囲気である場合でも、良好な処理ができる。  [0146] In the modification treatment, a reducing agent may be used in combination. If the raw water supplied to the separation membrane or the water that dissolves organic substances and silver ions is in an acidic environment, the organic substance decomposes before reaching the separation membrane, and the effect of reforming is reduced. In some cases, it could not be obtained. By using this method, even when the raw water supplied to the separation membrane or the water for dissolving the organic substance is in an oxidizing atmosphere, a satisfactory treatment can be performed.
[0147] 還元剤を併用する方法としては、特に限定されないが、有機物質を含む水、銀ィォ ンを含む水のどちらかに混合してもよ 、し、別途添加してもよ 、。  [0147] The method of using the reducing agent in combination is not particularly limited, and it may be mixed with water containing an organic substance or water containing silver, or may be added separately.
[0148] 使用する還元剤としては、特に限定されないが、亜硫酸ナトリウム、亜硫酸水素ナト リウムは、従来より用いられている汎用的な還元剤であり、コストも安いので、これらを 用いるのが好ましい。  [0148] The reducing agent to be used is not particularly limited, but sodium sulfite and sodium hydrogen sulfite are general-purpose reducing agents that have been used in the past and are inexpensive, and therefore, it is preferable to use them.
[0149] 次に、第 3の形態における本発明の実施の形態 (オフライン処理)に係る分離膜の 改質方法を図 1を参照して説明する。前述したのと同様、ベッセル 32内に膜エレメント 31を装填後、弁 5を閉の状態でタンク 1に水を十分量入れ、弁 6、 8、 9を閉、弁 5、 7を 開、弁 4を適宜開として、ポンプ 2を起動する。圧力が力からない状態でしばらく通水 し、必要であればタンク 1へ水を補給しながら、分離膜モジュール 3を水洗する。  Next, a method for reforming a separation membrane according to an embodiment (off-line processing) of the present invention in the third embodiment will be described with reference to FIG. As described above, after loading the membrane element 31 in the vessel 32, with a sufficient amount of water in the tank 1 with the valve 5 closed, the valves 6, 8, 9 are closed, the valves 5, 7 are opened, and the valves are opened. Start pump 2 with 4 open as appropriate. Pass water for a while without pressure, and wash the separation membrane module 3 while supplying water to the tank 1 if necessary.
[0150] 次にポンプ 2停止後、弁 5を閉として、タンク 1に水を所定量入れ、改質薬品である 有機物質および還元剤を所定量加えて、十分に溶解する。弁 7、 9を閉、弁 5、 6、 8 を開、弁 4を所定の圧力になるように開として、ポンプ 2を起動する。  [0150] Next, after the pump 2 is stopped, the valve 5 is closed, a predetermined amount of water is put into the tank 1, and a predetermined amount of organic substance and reducing agent as reforming chemicals are added to sufficiently dissolve. Valves 7 and 9 are closed, valves 5, 6, and 8 are opened, valve 4 is opened to a predetermined pressure, and pump 2 is started.
[0151] 所定時間経過後、ポンプ 2を停止し、弁 9を開けてタンク 1内の薬液を排出する。水 でタンク 1を水洗後、弁 9を閉として水を貯留する。弁 6、 8、 9を閉、弁 5、 7を開、弁 4 を適宜開として、ポンプ 2を起動する。圧力が力からない状態でしばらく通水し、必要 であればタンク 1へ水を補給しながら、分離膜モジュール 3を水洗する。また弁 6も開 として、循環ラインの水洗も適宜行なう。  [0151] After a predetermined time has elapsed, the pump 2 is stopped, the valve 9 is opened, and the chemical liquid in the tank 1 is discharged. After washing tank 1 with water, valve 9 is closed and water is stored. Start pump 2 with valves 6, 8, 9 closed, valves 5, 7 open, and valve 4 open as appropriate. Water is passed for a while without pressure, and the separation membrane module 3 is washed with water while supplying water to the tank 1 if necessary. Valve 6 is also opened and the circulation line is rinsed appropriately.
[0152] 改質処理後の分離膜は、水処理装置全体のシステム中で用いることができる。例え ば、原水を凝集沈殿、砂ろ過、膜ろ過等の方法で除濁処理後、改質処理をした分離 膜を用いたり、後段に EDIを用いたりすることもできる。 [0152] The separation membrane after the reforming treatment can be used in the system of the entire water treatment apparatus. example For example, the raw water can be deturbed by a method such as coagulation sedimentation, sand filtration, membrane filtration, etc., and then a modified separation membrane can be used, or EDI can be used in the subsequent stage.
[0153] タンク 1に供給する水は、純水が好ましいが、純水が利用できない場合は、 SDI値が 5以下の除濁水を用いてもよい。本方法では、還元剤を添加しているため、酸化性雰 囲気の水であっても、分離膜に影響のない除濁水であれば、純水以外を用いること もできる。また、純水を用いている場合でも、長期的には空気中の酸素が溶液に溶解 することによって、酸化性雰囲気となり、有機物質の効果が低減する恐れがあるので 、予防的に還元剤を添加する方が好ましい。  [0153] The water supplied to the tank 1 is preferably pure water, but when pure water cannot be used, turbidity water having an SDI value of 5 or less may be used. In this method, since a reducing agent is added, even water in an oxidizing atmosphere can be used other than pure water as long as it is turbid water that does not affect the separation membrane. Even when pure water is used, since oxygen in the air dissolves in the solution in the long term, an oxidizing atmosphere is created and the effect of the organic substance may be reduced. It is more preferable to add.
[0154] 処理時間は、特に限定されないが、 5分〜 24時間、好ましくは 10分〜 6時間であるこ と力 効率の良い処理をするために好ましい。 5分未満では処理の効果が薄ぐ 24時 間を超えるとファゥリングを起こしたり、処理効果のさらなる向上が望めな力つたりする 場合があり、好ましくない。  [0154] The treatment time is not particularly limited, but is preferably 5 minutes to 24 hours, preferably 10 minutes to 6 hours, in order to perform a power efficient treatment. If the treatment time is less than 5 minutes, the effect of the treatment is weak, and if it exceeds 24 hours, fouling may occur or the treatment effect may be further improved.
[0155] 改質処理前後で、処理の効果を確認する方法としては、塩ィ匕ナトリウム、塩化カル シゥム、硫酸マグネシウムなどの電解質水溶液を用いて、塩類の阻止性能を評価す る他、シリカ(ケィ酸ナトリウム)やアルコール類等の TOC成分の阻止性能を評価する ことが好ましい。通常、 ROや NFの性能評価は電解質水溶液を用いることが多いが、 改質処理によって、非電解質成分の阻止性能も向上するため、シリカや TOCを指標 として用いるのが良い。  [0155] As a method for confirming the effect of the treatment before and after the reforming treatment, an aqueous electrolyte solution such as sodium chloride sodium, calcium chloride, magnesium sulfate, etc. is used to evaluate the salt blocking performance, as well as silica ( It is preferable to evaluate the blocking performance of TOC components such as sodium silicate and alcohols. In general, RO and NF performance evaluations often use an aqueous electrolyte solution, but silica and TOC should be used as indicators because the modification process improves the blocking performance of non-electrolyte components.
[0156] 第 3の形態における本発明の別の実施の形態 (オンライン処理)に係る分離膜の改 質方法を図 2を参照して説明する。前述したのと同様、通常の運転時は、前段からの 水、例えば除濁処理された原水を、供給水タンク 1に受ける。弁 5、 7を開、弁 4を所定 の圧力になるように開、弁 6、 8、 9を閉として、加圧ポンプ 2にて加圧された原水を、 分離膜モジュール 3で濃縮水と透過水に分離し、濃縮水はブロー、透過水は後段の 装置へ送水される。なお、ボール弁 6および 7を適宜調整し、濃縮水を一部循環する 場合もある。  A separation membrane reforming method according to another embodiment (on-line processing) of the present invention in the third embodiment will be described with reference to FIG. As described above, during normal operation, the feed water tank 1 receives water from the previous stage, for example, raw water subjected to turbidity treatment. Valves 5 and 7 are opened, valve 4 is opened to a predetermined pressure, valves 6, 8, and 9 are closed, and the raw water pressurized by the pressure pump 2 is converted into concentrated water by the separation membrane module 3. Separated into permeated water, the concentrated water is blown, and the permeated water is sent to the downstream device. In some cases, ball valves 6 and 7 may be adjusted as appropriate to partially circulate the concentrated water.
[0157] 薬液タンク 10には、あら力じめ所定の濃度とした還元剤水溶液を、薬液タンク 20に は、あらかじめ所定の濃度とした有機物質水溶液を貯留しておく。水質計 12がある基 準値以下となったら、薬注ポンプ 11、 21へ電気信号が送られ、ポンプが起動する。薬 注ポンプ 11、 21は、あらかじめ所定の注入量となるように設定しておく。 [0157] The chemical solution tank 10 stores a reducing agent aqueous solution having a predetermined concentration, and the chemical solution tank 20 stores an organic substance aqueous solution having a predetermined concentration in advance. When the water quality meter 12 falls below a certain reference value, an electric signal is sent to the dosing pumps 11 and 21, and the pump is started. medicine Note: Pumps 11 and 21 are set in advance to achieve a predetermined injection volume.
[0158] 注入開始後、水質計 12がある基準値以上となったら、薬注ポンプ 11、 21へ電気信 号が送られ、ポンプが停止する。  [0158] When the water quality meter 12 exceeds a certain reference value after the start of injection, an electric signal is sent to the dosing pumps 11 and 21, and the pump stops.
[0159] なお、断続的に添加を行う場合で、一定時間毎に添加を行うケースでは、水質計か らの電気信号は必要なぐ一定時間毎に、自動または手動で、薬注ポンプ 11、 21を 起動すればよい。また、連続的に添加を行う場合には、薬注ポンプ 11、 21は常に起 動しておく。なお還元剤は、原水中に含まれる酸化剤を還元する目的で添加してい る場合には、有機物質を断続的、連続的いずれの添加をしている場合にかかわらず 、薬注ポンプ 11を常に起動しておき、還元剤を連続して添加する。  [0159] In addition, in the case where the addition is performed intermittently and at regular intervals, the electrical signal from the water quality meter is automatically or manually delivered at regular intervals as needed, the dosing pump 11, 21 Can be activated. In addition, when adding continuously, the dosing pumps 11 and 21 are always started. Note that when the reducing agent is added for the purpose of reducing the oxidizing agent contained in the raw water, the chemical injection pump 11 is used regardless of whether the organic substance is added intermittently or continuously. Always start and add the reducing agent continuously.
[0160] 有機物質の添カ卩中、後段への支障がなければ、通常の運転を停止する必要はな い。有機物質の透過水への漏えいが見られる場合で、後段への支障が生じ得る場合 は、添カ卩中に弁 5を閉、弁 9を開として、透過水をブローすることもできるし、もしくは弁 5を閉、弁 8を開として、透過水を循環することもできる。循環とする場合には、弁 7を 閉、弁 6を開として、濃縮水も循環しても良い。この場合には、薬液濃度が一定濃度 に達した時点で、薬注ポンプ 11、 21を停止する。  [0160] During operation of adding organic substances, normal operation does not need to be stopped if there is no problem with the subsequent stage. If leakage of organic substances into the permeated water is observed and there is a possibility that it may interfere with the subsequent stage, the permeated water can be blown with valve 5 closed and valve 9 opened during the addition, Alternatively, the permeate can be circulated with valve 5 closed and valve 8 open. In the case of circulation, the concentrated water may be circulated with the valve 7 closed and the valve 6 opened. In this case, when the drug solution concentration reaches a certain concentration, the drug injection pumps 11 and 21 are stopped.
[0161] 改質薬品である有機物質の濃度は、特に限定されないが、分離膜モジュール入口 において 0.1〜200mg/L、好ましくは 0.5〜100mg/Lであること力 効率良い処理をす るために望ましい。 0.1mg/L未満では効果が薄ぐ 200mg/Lを超えるとファゥリングを 起こす場合があり、好ましくない。  [0161] The concentration of the organic substance that is the modifying chemical is not particularly limited, but is preferably 0.1 to 200 mg / L, preferably 0.5 to 100 mg / L at the inlet of the separation membrane module, which is desirable for efficient processing. . Less than 0.1 mg / L is less effective. Over 200 mg / L may cause fouling, which is not preferable.
[0162] 還元剤の濃度は、特に限定されないが、分離膜モジュール入口において 0.1〜200 mg/L、好ましくは 0.2〜100mg/Lであること力 効率良い処理をするために望ましい。 0.1mg/L未満では効果が薄ぐ 200mg/Lを超えると、薬品コストがかさみ、好ましくな い。  [0162] The concentration of the reducing agent is not particularly limited, but is preferably 0.1 to 200 mg / L, preferably 0.2 to 100 mg / L at the inlet of the separation membrane module, in order to perform efficient treatment. If it is less than 0.1 mg / L, the effect is not good.
[0163] 前記加圧通水時の透過流束は、 0.3〜5.0m/dayの範囲とすることが、好適な改質効 果を得るために望ましい。より好ましい透過流束の範囲は、 0.5〜3.0m/day、さらに好 ましくは 0.7〜2.0m/dayである。 0.3m/day未満では、有機物質の吸着効果が低ぐ阻 止性能の向上が見込めない。 5.0m/dayを超えると、ファゥリングを起こす場合があり、 好ましくない。従来、海淡用の中空糸 RO膜にてタンニン酸処理をするケースがあつ たが、処理の際の透過流束が非常に低ぐ効果が不十分であった。本発明方法では 、 0.3〜5.0m/dayと高い透過流束にて処理を行なうことで、高い改質効果を実現でき る。 [0163] In order to obtain a suitable reforming effect, the permeation flux at the time of pressurized water flow is preferably in the range of 0.3 to 5.0 m / day. A more preferable permeation flux range is 0.5 to 3.0 m / day, and even more preferably 0.7 to 2.0 m / day. If it is less than 0.3 m / day, the organic substance adsorption effect is low, and improvement of the blocking performance cannot be expected. If it exceeds 5.0m / day, fouling may occur, which is not preferable. Conventionally, there are cases where tannic acid treatment is performed with hollow fiber RO membranes for seawater. However, the effect of very low permeation flux during processing was insufficient. In the method of the present invention, a high reforming effect can be realized by processing at a high permeation flux of 0.3 to 5.0 m / day.
[0164] 前記有機物質を含む水に酸を添加し、 pHを 1〜5としてもよい。 pHを上記範囲にコ ントロールすることにより、有機物質の沈殿を防ぎ、改質を適切に実施することができ る。酸としては、特に限定されないが、塩酸、硫酸、硝酸、リン酸、クェン酸、シユウ酸 、カルボン酸、などを用いることができ、特にクェン酸は入手が容易で、毒性も低いこ とから用いやすぐ操作性が良い。  [0164] An acid may be added to water containing the organic substance to adjust the pH to 1 to 5. By controlling the pH within the above range, precipitation of organic substances can be prevented and reforming can be carried out appropriately. The acid is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citrate, oxalic acid, carboxylic acid, and the like can be used. In particular, citrate is easily available and has low toxicity. The operability is good immediately.
実施例  Example
[0165] 次に実施例を挙げて本発明を更に具体的に説明する力 これは単に例示であって 、本発明を制限するものではない。まず、本発明の第 1の形態における実施例につ いて説明する。  Next, the power to explain the present invention more specifically with reference to examples. This is merely an example and does not limit the present invention. First, an example in the first mode of the present invention will be described.
[0166] 実施例 1  [0166] Example 1
有機物質として五倍子タンニンを、殺菌剤として次亜塩素酸ナトリウム用いて、図 2 に示した装置にて、前記方法により連続運転を行った。タンク 1に受けた原水は、前 段の膜除濁装置にて除濁処理された地下水であり、運転期間中の導電率は、平均 2 OmS/m前後で安定していた。膜は日東電工製 ES-15-D8を用いた。有機物質濃度、 殺菌剤濃度は、分離膜モジュールの入口でそれぞれ 10mg/L、 0.5mg/Lとなるように 調整した。殺菌剤耐性処理工程、殺菌剤添加工程は、それぞれ 1日に 1回、 30分間 とした。  Continuous operation was carried out by the above method using the apparatus shown in FIG. 2 using pentaploid tannin as an organic substance and sodium hypochlorite as a bactericide. The raw water received in Tank 1 was groundwater that had been clarified by the membrane turbidizer in the previous stage, and the conductivity during the operation period was stable at an average of around 2 OmS / m. The membrane used was Nitto Denko ES-15-D8. The organic substance concentration and bactericide concentration were adjusted to 10 mg / L and 0.5 mg / L, respectively, at the inlet of the separation membrane module. The disinfectant resistance treatment process and the disinfectant addition process were performed once a day for 30 minutes each.
[0167] 実施例 2 [0167] Example 2
実施例 1において、殺菌剤としてクロラミンを用いた以外は、実施例 1と同じ方法に て処理を行った。  In Example 1, the treatment was performed in the same manner as in Example 1 except that chloramine was used as a bactericide.
[0168] 実施例 3 [0168] Example 3
有機物質として五倍子タンニンを、殺菌剤として次亜塩素酸ナトリウム用いて、図 2 に示した装置にて、前記方法により連続運転を行った。タンク 1に受けた原水は、前 段の膜除濁装置にて除濁処理された地下水であり、運転期間中の導電率は、平均 2 OmS/m前後で安定していた。膜は日東電工製 LES90- D8を用いた。有機物質濃度、 殺菌剤濃度は、分離膜モジュールの入口でそれぞれ 10mg/L、 0.5mg/Lとなるように 調整した。殺菌剤耐性処理工程、殺菌剤添加工程は、それぞれ 1日に 1回、 30分間 とした。 Continuous operation was carried out by the above method using the apparatus shown in FIG. 2 using pentaploid tannin as an organic substance and sodium hypochlorite as a bactericide. The raw water received in Tank 1 was groundwater that had been clarified by the membrane turbidizer in the previous stage, and the conductivity during the operation period was stable at an average of around 2 OmS / m. The membrane was Nitto Denko LES90-D8. Organic substance concentration, The disinfectant concentration was adjusted to 10 mg / L and 0.5 mg / L at the inlet of the separation membrane module, respectively. The disinfectant resistance treatment process and the disinfectant addition process were performed once a day for 30 minutes each.
[0169] 実施例 4 [0169] Example 4
実施例 3において、殺菌剤としてクロラミンを用いた以外は、実施例 3と同じ方法に て処理を行った。  In Example 3, the treatment was performed in the same manner as in Example 3 except that chloramine was used as a bactericide.
[0170] 比較例 1 [0170] Comparative Example 1
実施例 1において、殺菌剤耐性処理工程を行わず、殺菌剤添加工程のみを実施、 すなわち通常の殺菌のみを実施した以外は、実施例 1と同じ方法にて処理を行った  In Example 1, the bactericide resistance treatment step was not performed, only the bactericide addition step was performed, that is, the treatment was performed in the same manner as in Example 1 except that only normal sterilization was performed.
[0171] 比較例 2 [0171] Comparative Example 2
実施例 2において、殺菌剤耐性処理工程を行わず、殺菌剤添加工程のみを実施、 すなわち通常の殺菌のみを実施した以外は、実施例 2と同じ方法にて処理を行った  In Example 2, the bactericide resistance treatment step was not performed, only the bactericide addition step was performed, that is, the treatment was performed in the same manner as in Example 2 except that only normal sterilization was performed.
[0172] 比較例 3 [0172] Comparative Example 3
実施例 1において、殺菌剤耐性処理工程、殺菌剤添加工程を行わず、すなわち一 切殺菌を行わずに運転を実施した以外は、実施例 1と同じ方法にて処理を行った。  In Example 1, the treatment was performed in the same manner as in Example 1 except that the bactericide resistance treatment step and the bactericide addition step were not performed, that is, the operation was performed without performing any sterilization.
[0173] 比較例 4 [0173] Comparative Example 4
実施例 3において、殺菌剤耐性処理工程を行わず、殺菌剤添加工程のみを実施、 すなわち通常の殺菌のみを実施した以外は、実施例 3と同じ方法にて処理を行った  In Example 3, the bactericide resistance treatment step was not performed, only the bactericide addition step was performed, that is, the treatment was performed in the same manner as in Example 3 except that only normal sterilization was performed.
[0174] 比較例 5 [0174] Comparative Example 5
実施例 4において、殺菌剤耐性処理工程を行わず、殺菌剤添加工程のみを実施、 すなわち通常の殺菌のみを実施した以外は、実施例 4と同じ方法にて処理を行った  In Example 4, the bactericide resistance treatment step was not carried out, only the bactericide addition step was carried out, that is, the treatment was carried out in the same manner as in Example 4 except that only normal bactericidal treatment was carried out.
[0175] 比較例 6 [0175] Comparative Example 6
実施例 3において、殺菌剤耐性処理工程、殺菌剤添加工程を行わず、すなわち一 切殺菌を行わずに運転を実施した以外は、実施例 3と同じ方法にて処理を行った。 [0176] 上記条件にて連続運転を実施し、運転初期、 1力月後、 2力月後、 3力月後において それぞれ性能評価を行った。なお阻止率は、導電率を基準に計算した。透過水量は 、運転初期を 100とした相対値で示した。結果を表 1に示す。 In Example 3, the treatment was performed in the same manner as in Example 3 except that the bactericide resistance treatment step and the bactericide addition step were not performed, that is, the operation was performed without performing any sterilization. [0176] Continuous operation was performed under the above conditions, and performance evaluation was performed at the initial stage of operation, after 1 month, after 2 months, and after 3 months. The rejection rate was calculated based on the conductivity. The amount of permeated water was shown as a relative value with the initial operation as 100. The results are shown in Table 1.
[0177] [表 1] [0177] [Table 1]
阻止率 透過水量 通水差圧 [MPa] Rejection rate Permeated water Flow differential pressure [MPa]
運転初期 99.3% 100 0.010  Initial operation 99.3% 100 0.010
1 力月後 99.3% 100 0.010  1 month later 99.3% 100 0.010
実施例 1 Example 1
2 力月後 99.3% 100 0.010  2 months later 99.3% 100 0.010
3 力月後 99.3% 100 0.010  3 months later 99.3% 100 0.010
運転初期 99.3% 100 0.010  Initial operation 99.3% 100 0.010
1 力月後 99.3% 100 0.010  1 month later 99.3% 100 0.010
実施例 2 Example 2
2 力月後 99.3% 100 0.010  2 months later 99.3% 100 0.010
3 力月後 99.3% 100 0.010  3 months later 99.3% 100 0.010
運転初期 97.5% 100 0.010  Initial operation 97.5% 100 0.010
1 力月後 97.5% 100 0.010  1 month later 97.5% 100 0.010
実施例 3 Example 3
2 力月後 97.5% 100 0.010  After 2 months 97.5% 100 0.010
3 力月後 97.5% 100 0.010  After 3 months 97.5% 100 0.010
運転初期 97.5% 100 0.010  Initial operation 97.5% 100 0.010
1 力月後 97.5% 100 0.010  1 month later 97.5% 100 0.010
実施例 4 Example 4
2 力月後 97.5% 100 0.010  After 2 months 97.5% 100 0.010
3 力月後 97.5% 100 0.010  After 3 months 97.5% 100 0.010
運転初期 99.3% 100 0.010  Initial operation 99.3% 100 0.010
1 力月後 98.5% 105 0.010  1 month later 98.5% 105 0.010
比較例 1 Comparative Example 1
2 力月後 97.0% 115 0.010  2 months later 97.0% 115 0.010
3 力月後 95.0% 130 0.010  After 3 months 95.0% 130 0.010
運転初期 99.3% 100 0.010  Initial operation 99.3% 100 0.010
1 力月後 99.0% 100 0.010  1 month later 99.0% 100 0.010
比較例 2 Comparative Example 2
2 力月後 98.0% 105 0.010  2 months later 98.0% 105 0.010
3 力月後 96.5% 120 0.010  After 3 months 96.5% 120 0.010
運転初期 99.3% 100 0.010  Initial operation 99.3% 100 0.010
1 力月後 99.3% 100 0.020  1 month later 99.3% 100 0.020
比較例 3 Comparative Example 3
2 力月後 99.2% 98 0.040  2 After 9 months 99.2% 98 0.040
3 力月後 99.0% 96 0.055  3 After 9 months 99.0% 96 0.055
運転初期 97.5% 100 0.010  Initial operation 97.5% 100 0.010
1 力月後 97.0% 105 0.010  1 month later 97.0% 105 0.010
比較例 4 Comparative Example 4
2 力月後 96.0% 115 0.010  2 months later 96.0% 115 0.010
3 力月後 94.5% 130 0.010  3 After 9 months 94.5% 130 0.010
運転初期 97.5% 100 0.010  Initial operation 97.5% 100 0.010
1 力月後 97.3% 100 0.010  1 month later 97.3% 100 0.010
比較例 5 Comparative Example 5
2 力月後 97.0% 105 0.010  2 months later 97.0% 105 0.010
3 力月後 95.5% 120 0.010  After 3 months 95.5% 120 0.010
運転初期 97.5% 100 0.010  Initial operation 97.5% 100 0.010
1 力月後 97.5% 100 0.020  1 month later 97.5% 100 0.020
比較例 6 Comparative Example 6
2 力月後 97.4% 98 0.035  2 months later 97.4% 98 0.035
3 力月後 97.2% 96 0.050  3 After 9 months 97.2% 96 0.050
1に示すように、殺菌剤添加工程のみの比較例 1、 2、 4、 5では、殺菌によって通 水差圧の上昇は抑制できたものの、膜が劣化し、阻止性能が悪ィ匕した。殺菌も行わ ない比較例 3、 6では、阻止性能はほぼ保たれたものの、通水差圧の上昇が生じてし まった。さらに連続運転を継続すると、透過水量の大幅な低下が引き起こされるもの と予想される。一方、殺菌剤耐性処理工程、殺菌剤添加工程を実施した実施例 1〜 4では、 3ヶ月間の連続運転後でも、初期と同等の性能が維持できた。なお、殺菌剤 の相違による効果の違!、はなかった。 As shown in Fig. 1, in Comparative Examples 1, 2, 4, and 5 where only the disinfectant was added, Although the increase in water differential pressure could be suppressed, the membrane deteriorated and the blocking performance deteriorated. In Comparative Examples 3 and 6 where sterilization was not performed, the blocking performance was almost maintained, but the water flow differential pressure increased. Further continuous operation is expected to cause a significant decrease in the amount of permeate. On the other hand, in Examples 1 to 4 in which the bactericide resistance treatment process and the bactericide addition process were performed, the same performance as the initial stage could be maintained even after 3 months of continuous operation. In addition, there was no difference in effect due to the difference in disinfectant.
[0179] 次に、本発明の第 2の形態の実施例について説明する。  Next, an example of the second mode of the present invention will be described.
実施例 5、比較例 7— 1〜7— 3  Example 5, Comparative Example 7— 1 to 7— 3
まず、以下の手順にて表 2に示す 4種類の膜 (膜 A〜D)を準備した。膜は日東電工 社製 LES90を、銀イオンは硝酸銀水溶液を、有機物質は五倍子タンニンを用いた。  First, four types of membranes (membranes A to D) shown in Table 2 were prepared by the following procedure. The membrane was Nitto Denko LES90, the silver ion was an aqueous silver nitrate solution, and the organic substance was pentaploid tannin.
[0180] [表 2]  [0180] [Table 2]
Figure imgf000033_0001
Figure imgf000033_0001
[0181] 上記膜それぞれを純水で水洗後、 105個の菌類を含む水へ膜を浸漬し、 25°Cで 3日 間放置した。その後、浸漬液の菌数を測定した。結果を表 3に示す。 [0181] After washing the membrane, respectively with pure water, the membrane was immersed in water containing 10 5 fungi and allowed to stand for 3 days at 25 ° C. Thereafter, the number of bacteria in the immersion liquid was measured. The results are shown in Table 3.
[0182] [表 3] [0182] [Table 3]
Figure imgf000033_0002
Figure imgf000033_0002
[0183] 表 3に示すように、有機物質および銀イオンで処理をした膜 Dのみ高い殺菌作用を 示した。したがって、本発明の分離膜の抗菌効果は非常に大きいものである。  [0183] As shown in Table 3, only the membrane D treated with an organic substance and silver ions exhibited a high bactericidal action. Therefore, the antibacterial effect of the separation membrane of the present invention is very large.
[0184] 実施例 6 有機物質として五倍子タンニンを、銀イオンとして硝酸銀水溶液用いて、図 2に示 す装置にて、連続運転および抗菌処理を行った。タンク 1に受けた原水は、前段の膜 除濁装置にて除濁処理された地下水であり、運転期間中の導電率は平均 20mS/m前 後、 TOCは平均 2mg/L程度で安定していた。膜は日東電工社製 ES-10-D8を用いた 。有機物質および銀イオン濃度は、分離膜モジュールの入口で 10mg/Lとなるように 調整し、添カ卩間隔は 2週間に 1回、添加時間はそれぞれ 1時間とした。 [0184] Example 6 Continuous operation and antibacterial treatment were performed with the apparatus shown in Fig. 2 using pentaploid tannin as the organic substance and silver nitrate aqueous solution as the silver ion. The raw water received in Tank 1 is groundwater that has been turbidized by the membrane turbidizer in the previous stage, and the conductivity during the operation period is about 20 mS / m on average, and the TOC is stable at an average of about 2 mg / L. It was. As the membrane, ES-10-D8 manufactured by Nitto Denko Corporation was used. The organic substance and silver ion concentrations were adjusted to 10 mg / L at the inlet of the separation membrane module, the addition interval was once every two weeks, and the addition time was 1 hour each.
[0185] 比較例 8— 1 [0185] Comparative Example 8— 1
実施例 6において、有機物質や銀イオンを用いずに、つまり抗菌処理を行わずに、 実施例 6と同じ方法にて連続運転を行った。  In Example 6, continuous operation was performed in the same manner as in Example 6 without using an organic substance or silver ions, that is, without performing antibacterial treatment.
[0186] 比較例 8— 2 [0186] Comparative Example 8-2
実施例 6において、銀イオンを用いずに有機物質のみを用いた以外は、実施例 6と 同じ方法にて連続運転および抗菌処理を行った。  In Example 6, continuous operation and antibacterial treatment were performed in the same manner as in Example 6 except that only an organic substance was used without using silver ions.
[0187] 比較例 8— 3 [0187] Comparative Example 8-3
実施例 6において、有機物質を用いずに銀イオンのみを用いた以外は、実施例 6と 同じ方法にて連続運転および抗菌処理を行った。  In Example 6, continuous operation and antibacterial treatment were performed in the same manner as in Example 6 except that only silver ions were used without using an organic substance.
[0188] 上記条件にて連続運転および抗菌を実施し、運転初期、 1力月後、 2力月後、 3力月 後それぞれの性能評価を行った。なお阻止率は、導電率を基準に計算した。透過水 量は、運転初期を 100とした相対値で示した。結果を表 4に示す。 [0188] Continuous operation and antibacterial were carried out under the above conditions, and performance evaluation was performed at the initial stage of operation, after 1 month, after 2 months, and after 3 months. The rejection rate was calculated based on the conductivity. The amount of permeated water was shown as a relative value with the initial operation as 100. The results are shown in Table 4.
[0189] [表 4] [0189] [Table 4]
阻止率 透過水量 通水差圧 [MPa] 実施例 6 運転初期 99. 3X 100 0. 010 Blocking rate Permeated water Flow differential pressure [MPa] Example 6 Initial operation 99. 3X 100 0. 010
1 力月後 99. 3» 100 0. 010  1 month later 99. 3 »100 0. 010
2 力月後 99. 3¾ 100 0. 010  2 months later 99. 3¾ 100 0. 010
3 力月後 99. 3» 100 0. 010  After 3 months 99. 3 »100 0. 010
比較例 8-1 運転初期 99. 0» 100 0. 010  Comparative Example 8-1 Initial operation 99.0 »100 0. 010
1 力月後 98. 7» 98 0. 020  1 month later 98. 7 »98 0. 020
2 力月後 98. 3« 94 0. 040  2 months later 98. 3 «94 0. 040
3 力月後 97. 4X 89 0. 055  3 months later 97. 4X 89 0. 055
比較例 8-2 運転初期 99. 3» 100 0. 010  Comparative Example 8-2 Initial operation 99. 3 »100 0. 010
1 力月後 98. 7X 98 0. 020  1 month later 98. 7X 98 0. 020
2 力月後 98. 2% 94 0. 035  2 months later 98. 2% 94 0. 035
3 力月後 97. 7X 89 0. 050  3 months later 97. 7X 89 0. 050
比較例 8-3 運転初期 99. 0» 100 0. 010  Comparative Example 8-3 Initial operation 99. 0 »100 0. 010
1 力月後 98. 9X 100 0. 015  1 month later 98. 9X 100 0. 015
2 力月後 98. 7« 98 0. 020  2 months later 98. 7 «98 0. 020
3 力月後 98. 4¾ 95 0. 025  3 months later 98. 4¾ 95 0. 025
[0190] 表 4に示すように、有機物質および銀イオンによる定期的な抗菌処理を実施した実 施例 6では、性能の変化がなぐ安定した運用が可能であった。一方、抗菌処理を実 施しなかった比較例 8— 1では、経時的な阻止率'透過水量の低下、通水差圧の上 昇が発生し、分離膜のスライム汚染が推察された。有機物質または銀イオンいずれ かの処理のみを実施した比較例 8— 2、 8— 3では、何も処理をしない比較例 8— 1よ りは改善されたものの、不十分であった。 [0190] As shown in Table 4, in Example 6 in which periodic antibacterial treatment with organic substances and silver ions was performed, stable operation with no change in performance was possible. On the other hand, in Comparative Example 8-1 where antibacterial treatment was not performed, the rejection rate over time 'decreased permeated water volume and the increased water flow differential pressure occurred, and it was assumed that the separation membrane was slime contaminated. In Comparative Examples 8-2 and 8-3, where only the treatment with either an organic substance or silver ions was performed, although improved over Comparative Example 8-1, where no treatment was performed, it was insufficient.
[0191] 実施例 7  [0191] Example 7
図 4および図 5に示した装置にて、ポリフエノールを含む有機物質および銀イオンを 含む水を加圧通水したが、有機物質として五倍子タンニンを用いて、前記方法により 連続運転を行い、主として図 5に示した装置による後段処理の効果を確認した。タン ク 1に受けた原水は、前段の膜除濁装置にて除濁処理された地下水であり、運転期 間中の導電率は、平均 20mS/m前後で安定していた。また、 ORPは平均 +600mVであ り、酸化傾向を持つ水であった。膜は日東電工社製 ES-10-D8を用いた。薬液濃度 は、分離膜モジュールの入口で 10mg/Lとなるように調整した。後段のイオン交換榭 脂装置には、混床榭脂であるオルガノ製 ESG-2を用い、 SV=50[/h]にて通水した。ま た、水質計にて、分離膜透過水の導電率を監視し、次の表 5に示す条件で有機物質 が添加されるよう設定した。 [0192] [表 5]
Figure imgf000036_0001
In the apparatus shown in FIG. 4 and FIG. 5, an organic substance containing polyphenol and water containing silver ions were passed under pressure. However, continuous operation was performed by the above method using pentaploid tannin as the organic substance. The effect of the post-processing by the equipment shown in Fig. 5 was confirmed. The raw water received in Tank 1 was groundwater that had been turbidized by the membrane turbidizer in the previous stage, and the conductivity during the operation period was stable at an average of around 20 mS / m. The ORP averaged +600 mV, and it was water with an oxidation tendency. As the membrane, ES-10-D8 manufactured by Nitto Denko Corporation was used. The chemical concentration was adjusted to 10 mg / L at the inlet of the separation membrane module. ESG-2 made by Organo, which is a mixed bed resin, was passed through the ion exchange resin apparatus at the latter stage, and water was passed at SV = 50 [/ h]. The conductivity of the separation membrane permeated water was monitored with a water quality meter, and it was set so that organic substances were added under the conditions shown in Table 5 below. [0192] [Table 5]
Figure imgf000036_0001
[0193] 比較例 9 1  [0193] Comparative Example 9 1
実施例 7において、有機物質添加を実施しない以外は、実施例 7と同じ方法にて処 理を行った。  In Example 7, the treatment was performed in the same manner as in Example 7 except that no organic substance was added.
[0194] 比較例 9 2  [0194] Comparative Example 9 2
実施例 7において、紫外線酸ィ匕装置を使用しない以外は、実施例 7と同じ方法にて 処理を行った。  In Example 7, the treatment was performed in the same manner as in Example 7 except that the ultraviolet acid oxidizer was not used.
[0195] 上記条件にて連続運転を実施し、有機物質添カ卩中および添加停止中それぞれに おいて、分離膜の阻止率、イオン交換榭脂装置出口の導電率、および TOC濃度の 測定を実施した。測定は、運転初期および 3力月後に実施した。結果を表 6に示す。  [0195] Continuous operation was performed under the above conditions, and the rejection rate of the separation membrane, the conductivity of the ion-exchange resin outlet, and the TOC concentration were measured during the addition of organic substances and when the addition was stopped. Carried out. Measurements were taken at the beginning of operation and after 3 months. The results are shown in Table 6.
[0196] [表 6]  [0196] [Table 6]
Figure imgf000036_0002
Figure imgf000036_0002
[0197] 表 6に示すように、改質剤としての有機物質を使用しな!ヽ比較例 9 1にお ヽては、 超純水水質は安定していたものの、分離膜の阻止率が経時的に低下し、後段への 負荷の増力 II ·寿命の低下を引き起こす懸念があった。紫外線酸化装置を使用しない 比較例 9— 2においては、有機物質の添カ卩中にイオン交換榭脂出口水質の悪化が 見られ、もはや超純水とは言えないレベルとなってしまったため、供給を止めざるを得 なかった。紫外線酸ィ匕装置を使用した実施例 7においては、有機物質の添加中であ つても、イオン交換榭脂出口水質は良好に維持され、連続的な超純水の供給が可能 であった。 [0198] 実施例 8 [0197] As shown in Table 6, organic substances as modifiers should not be used! In Comparative Example 91, although the quality of ultrapure water was stable, the rejection rate of the separation membrane was low. There was a concern that it would decrease over time and increase the load on the latter stage II. In Comparative Example 9-2, which does not use an ultraviolet oxidizer, the quality of the ion exchange resin outlet water deteriorated during the addition of the organic substance, and it was no longer said to be ultrapure water. I had to stop. In Example 7 using the ultraviolet acid bath, the quality of the ion-exchange resin outlet water was maintained well even during the addition of the organic substance, and continuous supply of ultrapure water was possible. [0198] Example 8
実施例 7と同様に、有機物質として五倍子タンニンを用いて、図 4および図 5に示し た装置にて、前記方法により連続運転を行った。タンク 1に受けた原水は、前段の膜 除濁装置にて除濁処理された地下水であり、運転期間中の導電率は、平均 15mS/m 前後で安定していた。また、 ORPは平均 +500mVであり、酸化傾向を持つ水であった 。膜は日東電工社製 ES-20-D8を用いた。薬液濃度は、分離膜モジュールの入口で 1 Omg/Lとなるように調整した。後段のイオン交換榭脂装置には、混床榭脂であるオル ガノ製 ESG-2を用い、 SV=50[/h]にて通水した。水質計にて、分離膜透過水の導電 率を監視し、次の表 7に示す条件で有機物質が添加されるように設定した。  In the same manner as in Example 7, using pentaploid tannin as an organic substance, continuous operation was performed by the above method in the apparatus shown in FIGS. The raw water received in Tank 1 was groundwater that was turbidized by the membrane turbidizer in the previous stage, and the conductivity during the operation period was stable at an average of around 15 mS / m. The ORP averaged +500 mV, and it was water with an oxidation tendency. The membrane used was Nitto Denko's ES-20-D8. The chemical concentration was adjusted to 1 Omg / L at the inlet of the separation membrane module. ESG-2 made by Organo, which is a mixed bed resin, was passed through the ion exchange resin apparatus at the latter stage, and water was passed at SV = 50 [/ h]. The conductivity of the separation membrane permeated water was monitored with a water quality meter, and it was set so that organic substances were added under the conditions shown in Table 7 below.
[0199] [表 7]
Figure imgf000037_0001
[0199] [Table 7]
Figure imgf000037_0001
[0200] 比較例 10— 1  [0200] Comparative Example 10— 1
実施例 8において、有機物質添加を実施しない以外は、実施例 8と同じ方法にて処 理を行った。  In Example 8, the treatment was performed in the same manner as in Example 8 except that no organic substance was added.
[0201] 比較例 10— 2 [0201] Comparative Example 10-2
実施例 8において、紫外線酸ィ匕装置を使用しない以外は、実施例 8と同じ方法にて 処理を行った。  In Example 8, the treatment was performed in the same manner as in Example 8 except that the ultraviolet acid oxidizer was not used.
[0202] 上記条件にて連続運転を実施し、有機物質添加前から添加を停止した後までのィ オン交換榭脂装置出口の TOC濃度を測定した。なお、本システムにおける TOC濃度 の許容値は、 l[mg/m3]であった。結果を表 8に示す。 [0202] Continuous operation was performed under the above conditions, and the TOC concentration at the outlet of the ion exchange resin device was measured from before the addition of the organic substance to after the addition was stopped. The allowable value of TOC concentration in this system was l [mg / m 3 ]. The results are shown in Table 8.
[0203] [表 8] T0C濃度 [0203] [Table 8] T0C concentration
[mg/m3 ] [mg / m 3 ]
実施例 8 添加前 0. 8  Example 8 Before addition 0.8
添加中 1. 4  During addition 1. 4
添加停止直後 1. 3  Immediately after stopping addition 1. 3
10分後 0. 9  10 minutes later 0.9
20分後 0. 8  20 minutes later 0.8
30分後 0. 8  30 minutes later 0.8
40分後 0. 8  40 minutes later 0.8
50分後 0. 8  50 minutes later 0.8
比較例 10- 1 0. 8  Comparative Example 10- 1 0.8
比較例 10 - 2 添加前 0. 8  Comparative Example 10-2 Before addition 0.8
添加中 80  During addition 80
添加停止直後 80  Immediately after stopping addition 80
10分後 65  10 minutes later 65
20分後 30  20 minutes later 30
30分後 5  30 minutes later 5
40分後 2  40 minutes later 2
50分後 0. 9  50 minutes later 0.9
[0204] 表 8に示すように、紫外線酸ィ匕装置を使用しない比較例 10— 2においては、有機 物質添加中の TOC濃度が大幅に上昇した上、添加停止後も許容範囲まで復帰する のに 50分程度かかった。一方、紫外線酸化装置を使用した実施例 8では、有機物質 添カ卩中の TOC濃度の上昇が小さぐ添加停止後も 10分程度で許容範囲まで復帰し たため、超純水の供給停止時間は大幅に短縮され、排水しなければならない量も低 減した。 [0204] As shown in Table 8, in Comparative Example 10-2 that does not use the UV oxidation apparatus, the TOC concentration during the addition of organic substances increased significantly, and it returned to the allowable range even after the addition was stopped. It took about 50 minutes. On the other hand, in Example 8 using an ultraviolet oxidizer, the increase in the TOC concentration in the organic substance-added cake was small, and even after the addition was stopped, it returned to the allowable range in about 10 minutes. It has been greatly shortened and the amount that must be drained has also been reduced.
[0205] 次に、本発明の第 3の形態の実施例について説明する。  Next, an example of the third mode of the present invention will be described.
実施例 9  Example 9
有機物質として五倍子タンニンを、還元剤として亜硫酸水素ナトリウム用いて、図 1 に示す装置にて改質処理を行った。膜は日東電工社製 LES90-D8の新品を用いた。 薬液濃度は分離膜入口でそれぞれ 50mg/Lとし、溶解水は ORPが +600mVである、酸 ィ匕傾向を持つ除濁水を用いた。処理時間は 1時間、処理時の透過流束はそれぞれ 1 .Om/dayとした。 The reforming process was performed in the apparatus shown in Fig. 1 using pentaploid tannin as the organic substance and sodium hydrogen sulfite as the reducing agent. A new LES90-D8 manufactured by Nitto Denko Corporation was used as the membrane. The chemical concentration was 50 mg / L at the inlet of the separation membrane, and the dissolved water used was turbid water with an acid tendency, with an ORP of +600 mV. Processing time is 1 hour, and permeation flux during processing is 1 each. .Om / day.
[0206] 比較例 11 1 [0206] Comparative Example 11 1
実施例 9において、還元剤を使用せず、五倍子タンニンによる改質処理のみを実 施した以外は、実施例 9と同じ方法にて処理を行った。  In Example 9, the treatment was performed in the same manner as in Example 9 except that the reducing agent was not used and only the reforming treatment with pentaploid tannin was performed.
[0207] 比較例 11 2 [0207] Comparative Example 11 2
実施例 9において、有機物質を使用せず、亜硫酸水素ナトリウムの添加処理のみを 実施した以外は、実施例 9と同じ方法にて処理を行った。  In Example 9, the treatment was performed in the same manner as in Example 9 except that no organic substance was used and only sodium bisulfite was added.
[0208] 上記処置前後、それぞれの膜の NaCl透過率 (透塩率)、 Ca2+透過率を測定し、性能 評価を行った。なお、透塩率は導電率にて評価した。性能評価時の透過流束は、 1.0 m/dayとした。結果を表 9に示す。 [0208] Before and after the treatment, the NaCl permeability (salt permeability) and Ca 2+ permeability of each membrane were measured to evaluate the performance. In addition, the salt permeability was evaluated by electrical conductivity. The permeation flux at the time of performance evaluation was 1.0 m / day. The results are shown in Table 9.
[0209] [表 9] [0209] [Table 9]
Figure imgf000039_0001
Figure imgf000039_0001
[0210] 還元剤を使用せず、五倍子タンニンによる改質処理のみを実施した比較例 11 1 では、若干の改質効果があったものの、実施例 9と比較して効果が不十分であった。 分離膜へ有機物質が到達する前に、有機物質が分解してしまったものと推定される。 有機物質を使用せず、亜硫酸水素ナトリウムの添加処理のみを実施した比較例 11 —2では、性能の向上は全く見られな力つた。一方、有機物質および還元剤の混合 液を用いた実施例 9では、大幅な性能向上が見られ、改質の効果が大き力つた。 [0210] In Comparative Example 11 1 where only the reforming treatment with pentaploid tannin was performed without using a reducing agent, although there was a slight reforming effect, the effect was insufficient compared with Example 9. . It is presumed that the organic material was decomposed before the organic material reached the separation membrane. In Comparative Example 11-2, in which no organic substance was used and only sodium bisulfite was added, the performance was not improved at all. On the other hand, mixing organic substances and reducing agents In Example 9 using the liquid, a significant performance improvement was observed, and the effect of reforming was significant.
[0211] 実施例 10 [0211] Example 10
有機物質として五倍子タンニンを、還元剤として亜硫酸ナトリウム用いて、図 2に示 す装置にて処理を行った。タンク 1に受けた原水は、前段の膜除濁装置にて除濁処 理された地下水であり、運転期間中の導電率は、平均 20mS/m前後で安定していた。 また、 ORPは平均 +600mVであり、酸化傾向を持つ水であった。膜は日東電工社製 ES -10-D8を用いた。有機物質および還元剤濃度は、分離膜モジュールの入口で 10mg /Lとなるように調整した。水質計にて、透過水の導電率を監視し、次の条件で有機物 質が添加されるように設定した。  The treatment was performed in the apparatus shown in Fig. 2 using pentaploid tannin as the organic substance and sodium sulfite as the reducing agent. The raw water received in Tank 1 was groundwater that was turbidized by the membrane turbidizer in the previous stage, and the conductivity during the operation period was stable at an average of around 20 mS / m. The ORP averaged +600 mV, and it was water with an oxidation tendency. As the membrane, ES-10-D8 manufactured by Nitto Denko Corporation was used. The organic substance and reducing agent concentrations were adjusted to 10 mg / L at the inlet of the separation membrane module. The conductivity of the permeated water was monitored with a water quality meter, and it was set to add organic substances under the following conditions.
•lmS/m以上:添カ卩開始  • lmS / m or higher: start of supplement
•0.7mS/m以下:添加停止  • 0.7mS / m or less: Stop addition
[0212] 比較例 12— 1  [0212] Comparative Example 12— 1
実施例 10において、還元剤を使用せず、五倍子タンニンによる処理のみを実施し た以外は、実施例 10と同じ方法にて処理を行った。  In Example 10, the treatment was performed in the same manner as in Example 10, except that the reducing agent was not used and only the treatment with pentaploid tannin was performed.
[0213] 比較例 12— 2  [0213] Comparative Example 12-2
実施例 10において、有機物質を使用せず、亜硫酸ナトリウムの添加のみを実施し た以外は、実施例 10と同じ方法にて処理を行った。  In Example 10, treatment was performed in the same manner as in Example 10 except that no organic substance was used and only sodium sulfite was added.
[0214] 上記条件にて連続運転を実施し、運転初期、 1力月後、 2力月後、 3力月後それぞれ の性能評価を行った。なお、透過水量は、運転初期を 100とした相対値で示した。結 果を表 10に示す。  [0214] Continuous operation was performed under the above conditions, and performance evaluation was performed at the initial stage, after 1 month, after 2 months, and after 3 months. The permeated water amount is shown as a relative value with the initial operation as 100. The results are shown in Table 10.
[0215] [表 10] [0215] [Table 10]
透過水導電率 透過水量 Permeated water conductivity Permeated water volume
[mS/m]  [mS / m]
実施例 1 0 運転初期 0. 5 100  Example 1 0 Initial operation 0.5 100
1力月後 0. 7 100 1 month later 0.7 7 100
2力月後 0. 8 1002 months later 0.8 8 100
3力月後 0. 7 100 比較例 12 - 1 運転初期 0. 5 100 3 months later 0.7 7 100 Comparative Example 12-1 Initial Operation 0.5 100
1力月後 0. 8 100 1 month later 0.8 100
2力月後 1. 2 1032 months later 1. 2 103
3力月後 2. 0 1 10 比較例 12-2 運転初期 0. 5 100 After 3 months 2. 0 1 10 Comparative Example 12-2 Initial operation 0.5 100
1力月後 0. 9 100 1 month later 0.9 9 100
2力月後 1. 5 1052 months later 1.5 5 105
3力月後 2. 8 120 還元剤を使用せず、五倍子タンニンによる処理のみを実施した比較例 12—1では 、若干の処理効果が見られたものの、実施例 10と比較して効果が不十分であり、経 時的に性能の劣化が起こってしまった。分離膜へ有機物質が到達する前に、有機物 質が分解してしまったものと推定される。有機物質を使用せず、亜硫酸ナトリウムの添 加処理のみを実施した比較例 12— 2では、性能の回復は全く見られず、大幅な性能 の劣化が起こった。一方、有機物質および還元剤を併せて用いた実施例 10では、安 定した運用が可能となり、処理の効果が大き力つた。 産業上の利用可能性 After 3 months 2.8 120 In Comparative Example 12-1, which did not use a reducing agent and was only treated with pentaploid tannin, although a slight treatment effect was observed, the effect was less than in Example 10. It was sufficient, and performance deteriorated over time. It is presumed that the organic material was decomposed before it reached the separation membrane. In Comparative Example 12-2, in which no organic substance was used and only sodium sulfite was added, performance was not recovered at all, and significant performance degradation occurred. On the other hand, in Example 10 using both an organic substance and a reducing agent, stable operation was possible and the effect of the treatment was significant. Industrial applicability
本発明に係る分離膜の殺菌方法および装置並びにその方法により処理された分 離膜は、分離膜の殺菌性能や抗菌性能、阻止性能の向上が要求されるあらゆる用 途に適用でき、とくに逆浸透膜やナノろ過膜を殺菌するのに好適なものである。  The separation membrane sterilization method and apparatus according to the present invention and the separation membrane treated by the method can be applied to any application that requires improvement of the sterilization performance, antibacterial performance, and inhibition performance of the separation membrane, and particularly reverse osmosis. It is suitable for sterilizing membranes and nanofiltration membranes.

Claims

請求の範囲 The scope of the claims
[I] ポリフエノールを含む有機物質を含む水を加圧通水することにより分離膜を殺菌剤 耐性処理した後、殺菌剤を含む水を分離膜へ供給して分離膜を殺菌処理することを 特徴とする、分離膜の改質方法。  [I] The separation membrane is treated with a bactericidal agent by passing water containing an organic substance containing polyphenol under pressure, and the separation membrane is then sterilized by supplying water containing a bactericide to the separation membrane. A method for modifying a separation membrane.
[2] 前記分離膜として、逆浸透膜またはナノろ過膜を使用することを特徴とする、請求 項 1に記載の分離膜の改質方法。  [2] The method for reforming a separation membrane according to [1], wherein a reverse osmosis membrane or a nanofiltration membrane is used as the separation membrane.
[3] 前記分離膜として、スパイラル型膜エレメントを使用することを特徴とする、請求項 1 に記載の分離膜の改質方法。 [3] The method for reforming a separation membrane according to [1], wherein a spiral membrane element is used as the separation membrane.
[4] 前記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜を使用することを特 徴とする、請求項 1に記載の分離膜の改質方法。 [4] The method for modifying a separation membrane according to claim 1, wherein a membrane containing at least an aromatic polyamide-based material is used as the separation membrane.
[5] 前記分離膜として、殺菌剤耐性処理前の 500mg/L塩ィ匕ナトリウム水溶液の阻止率 力 99%以下の性能を持つ分離膜を使用することを特徴とする、請求項 1に記載の 分離膜の改質方法。 [5] The separation membrane according to claim 1, wherein the separation membrane is a separation membrane having a performance of a rejection rate of 99% or less of a 500 mg / L aqueous sodium chloride solution before the bactericide resistance treatment. Separation membrane modification method.
[6] 前記殺菌剤として、塩素系殺菌剤を用いることを特徴とする、請求項 1に記載の分 離膜の改質方法。  [6] The method for modifying a separation membrane according to [1], wherein a chlorine-based disinfectant is used as the disinfectant.
[7] 前記有機物質の平均分子量が、 200〜5000であることを特徴とする、請求項 1に記 載の分離膜の改質方法。  [7] The method for reforming a separation membrane according to [1], wherein the organic substance has an average molecular weight of 200 to 5,000.
[8] 前記有機物質として、タン-ン酸を用いることを特徴とする、請求項 1に記載の分離 膜の改質方法。 8. The separation membrane reforming method according to claim 1, wherein tannic acid is used as the organic substance.
[9] 前記タンニン酸として、加水分解型タンニンを用いることを特徴とする、請求項 8に 記載の分離膜の改質方法。  9. The separation membrane reforming method according to claim 8, wherein hydrolyzable tannin is used as the tannic acid.
[10] 前記タンニン酸として、五倍子を原料として作られたものを用いることを特徴とする、 請求項 8に記載の分離膜の改質方法。 [10] The method for reforming a separation membrane according to [8], wherein the tannic acid is made from a pentaploid as a raw material.
[II] 請求項 1〜10のいずれかに記載の分離膜の改質方法により処理された分離膜。  [II] A separation membrane treated by the method for modifying a separation membrane according to any one of claims 1 to 10.
[12] ポリフエノールを含む有機物質を含む水を加圧通水することにより分離膜を殺菌剤 耐性処理する手段と、該殺菌剤耐性処理後に殺菌剤を含む水を分離膜へ供給して 分離膜を殺菌する手段とを有することを特徴とする、分離膜の改質装置。 [12] A means for treating the separation membrane with a fungicide resistance by passing water containing an organic substance containing polyphenol under pressure, and supplying the water containing the bactericide to the separation membrane after the resistance treatment And a means for sterilizing the membrane.
[13] 前記分離膜が、逆浸透膜またはナノろ過膜からなることを特徴とする、請求項 12に 記載の分離膜の改質装置。 [13] The method according to claim 12, wherein the separation membrane comprises a reverse osmosis membrane or a nanofiltration membrane. The separation membrane reformer as described.
[14] 前記分離膜として、スパイラル型膜エレメントが使用されていることを特徴とする、請 求項 12に記載の分離膜の改質装置。  [14] The separation membrane reformer according to claim 12, wherein a spiral membrane element is used as the separation membrane.
[15] 前記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜が使用されているこ とを特徴とする、請求項 12に記載の分離膜の改質装置。 15. The separation membrane reformer according to claim 12, wherein a membrane containing at least an aromatic polyamide-based material is used as the separation membrane.
[16] 前記分離膜として、殺菌剤耐性処理前の 500mg/L塩ィ匕ナトリウム水溶液の阻止率 力 99%以下の性能を持つ分離膜が使用されていることを特徴とする、請求項 12に 記載の分離膜の改質装置。 [16] The separation membrane according to claim 12, wherein the separation membrane is a separation membrane having a performance of 99% or less of a blocking rate of a 500 mg / L sodium chloride aqueous solution before the antibacterial agent treatment. The separation membrane reformer as described.
[17] 前記殺菌剤として、塩素系殺菌剤が用いられることを特徴とする、請求項 12に記載 の分離膜の改質装置。 17. The separation membrane reformer according to claim 12, wherein a chlorine-based disinfectant is used as the disinfectant.
[18] 前記有機物質の平均分子量が、 200〜5000であることを特徴とする、請求項 12に 記載の分離膜の改質装置。  18. The separation membrane reforming apparatus according to claim 12, wherein the average molecular weight of the organic substance is 200 to 5,000.
[19] 前記有機物質として、タンニン酸が用いられることを特徴とする、請求項 12に記載 の分離膜の改質装置。 19. The separation membrane reforming apparatus according to claim 12, wherein tannic acid is used as the organic substance.
[20] 前記タンニン酸として、加水分解型タンニンが用いられることを特徴とする、請求項 [20] The hydrolyzable tannin is used as the tannic acid,
19に記載の分離膜の改質装置。 20. The separation membrane reformer according to 19.
[21] 前記タンニン酸として、五倍子を原料として作られたものが用いられることを特徴と する、請求項 19に記載の分離膜の改質装置。 [21] The separation membrane reformer according to [19], wherein the tannic acid is made from a pentaploid as a raw material.
[22] 水処理システムに組み込まれていることを特徴とする、請求項 12〜21のいずれか に記載の分離膜の改質装置。 [22] The separation membrane reforming apparatus according to any one of [12] to [21], which is incorporated in a water treatment system.
[23] 水処理システムが純水製造設備からなる、請求項 22に記載の分離膜の改質装置。 23. The separation membrane reforming apparatus according to claim 22, wherein the water treatment system comprises a pure water production facility.
[24] 分離膜に、ポリフエノールを含む有機物質および銀イオンを含む水を加圧通水し、 分離膜に前記有機物質を介して銀イオンを固定ィ匕し、分離膜の抗菌性能を向上させ ることを特徴とする、分離膜の改質方法。 [24] Improve the antibacterial performance of the separation membrane by pressurizing water containing organic substances including polyphenol and water containing silver ions through the separation membrane, and fixing the silver ions through the organic material to the separation membrane. A method for reforming a separation membrane, characterized by comprising:
[25] 前記ポリフエノールを含む有機物質および銀イオンを含む水を分離膜へ供給する 方法として、ポリフエノールを含む有機物質および銀イオンを混合した混合液を、分 離膜へ供給することを特徴とする、請求項 24に記載の分離膜の改質方法。 [25] As a method of supplying the organic substance containing polyphenol and water containing silver ions to the separation membrane, a mixed liquid obtained by mixing the organic substance containing polyphenol and silver ions is supplied to the separation membrane. The method for modifying a separation membrane according to claim 24.
[26] 前記ポリフエノールを含む有機物質および銀イオンを含む水を分離膜へ供給する 方法として、ポリフエノールを含む有機物質を分離膜へ供給後、銀イオンを含む水を 分離膜へ供給することを特徴とする、請求項 24に記載の分離膜の改質方法。 [26] Supplying the organic material containing polyphenol and water containing silver ions to the separation membrane 25. The method for reforming a separation membrane according to claim 24, characterized in that, after supplying an organic substance containing polyphenol to the separation membrane, water containing silver ions is supplied to the separation membrane.
[27] 前記分離膜として、改質処理前の 500mg/L塩化ナトリウム水溶液の阻止率が、 99% 以下の性能を持つ分離膜を使用することを特徴とする、請求項 24に記載の分離膜 の改質方法。 [27] The separation membrane according to claim 24, wherein the separation membrane uses a separation membrane having a performance of 99% or less of a rejection rate of a 500 mg / L sodium chloride aqueous solution before the reforming treatment. Reforming method.
[28] 前記分離膜として、逆浸透膜またはナノろ過膜を使用することを特徴とする、請求 項 24に記載の分離膜の改質方法。  28. The method for modifying a separation membrane according to claim 24, wherein a reverse osmosis membrane or a nanofiltration membrane is used as the separation membrane.
[29] 前記分離膜として、スパイラル型膜エレメントを使用することを特徴とする、請求項 2[29] The spiral membrane element may be used as the separation membrane.
4に記載の分離膜の改質方法。 4. The method for modifying a separation membrane according to 4.
[30] 前記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜を使用することを特 徴とする、請求項 24に記載の分離膜の改質方法。 30. The method for modifying a separation membrane according to claim 24, wherein a membrane containing at least an aromatic polyamide material is used as the separation membrane.
[31] 前記有機物質の平均分子量が、 200〜5000であることを特徴とする、請求項 24に 記載の分離膜の改質方法。 [31] The method for reforming a separation membrane according to [24], wherein the organic substance has an average molecular weight of 200 to 5,000.
[32] 前記有機物質として、タン-ン酸を用いることを特徴とする、請求項 24に記載の分 離膜の改質方法。 [32] The method for modifying a separation membrane according to [24], wherein tan-acid is used as the organic substance.
[33] 前記タンニン酸として、加水分解型タンニンを用いることを特徴とする、請求項 32に 記載の分離膜の改質方法。  33. The method for reforming a separation membrane according to claim 32, wherein hydrolyzable tannin is used as the tannic acid.
[34] 前記タンニン酸として、五倍子を原料として作られたものを用いることを特徴とする、 請求項 32に記載の分離膜の改質方法。 34. The method for reforming a separation membrane according to claim 32, wherein the tannic acid is made from a pentaploid as a raw material.
[35] 銀イオン源として、硝酸銀、硫酸銀のうち、少なくともいずれか一つを含む物質を用 いることを特徴とする、請求項 24に記載の分離膜の改質方法。 35. The method for reforming a separation membrane according to claim 24, wherein a substance containing at least one of silver nitrate and silver sulfate is used as the silver ion source.
[36] 請求項 24〜35のいずれかに記載の分離膜の改質方法により改質された分離膜。 [36] A separation membrane modified by the method for modifying a separation membrane according to any one of claims 24 to 35.
[37] 分離膜に、ポリフエノールを含む有機物質および銀イオンを含む水を加圧通水し、 分離膜に前記有機物質を介して銀イオンを固定ィ匕し、分離膜の抗菌性能を向上させ る手段を有することを特徴とする、分離膜の改質装置。 [37] Improve the antibacterial performance of the separation membrane by pressurizing water containing an organic substance containing polyphenol and water containing silver ions through the separation membrane, and fixing silver ions through the organic substance to the separation membrane. An apparatus for reforming a separation membrane, characterized by comprising means for causing
[38] 前記ポリフエノールを含む有機物質および銀イオンを含む水を分離膜へ供給する 手段が、ポリフエノールを含む有機物質および銀イオンを混合した混合液を、分離膜 へ供給する手段力もなることを特徴とする、請求項 37に記載の分離膜の改質装置。 [38] The means for supplying the organic substance containing polyphenol and water containing silver ions to the separation membrane also has a means to supply a mixed liquid obtained by mixing the organic substance containing polyphenol and silver ions to the separation membrane. The apparatus for reforming a separation membrane according to claim 37, wherein
[39] 前記ポリフエノールを含む有機物質および銀イオンを含む水を分離膜へ供給する 手段が、ポリフエノールを含む有機物質を分離膜へ供給後、銀イオンを含む水を分 離膜へ供給する手段からなることを特徴とする、請求項 37に記載の分離膜の改質装 置。 [39] The means for supplying the organic material containing polyphenol and water containing silver ions to the separation membrane supplies the organic material containing polyphenol to the separation membrane, and then supplies water containing silver ions to the separation membrane. 38. The separation membrane reforming device according to claim 37, characterized in that it comprises means.
[40] 前記分離膜として、改質処理前の 500mg/L塩化ナトリウム水溶液の阻止率が、 99% 以下の性能を持つ分離膜が使用されることを特徴とする、請求項 37に記載の分離膜 の改質装置。  [40] The separation according to claim 37, wherein the separation membrane is a separation membrane having a performance of 99% or less of a rejection rate of a 500 mg / L sodium chloride aqueous solution before the reforming treatment. Membrane reformer.
[41] 前記分離膜として、逆浸透膜またはナノろ過膜が使用されることを特徴とする、請求 項 37に記載の分離膜の改質装置。  [41] The apparatus for reforming a separation membrane according to [37], wherein a reverse osmosis membrane or a nanofiltration membrane is used as the separation membrane.
[42] 前記分離膜として、スパイラル型膜エレメントが使用されることを特徴とする、請求項[42] The spiral membrane element may be used as the separation membrane.
37に記載の分離膜の改質装置。 37. The separation membrane reformer according to 37.
[43] 前記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜が使用されることを 特徴とする、請求項 37に記載の分離膜の改質装置。 [43] The apparatus for reforming a separation membrane according to [37], wherein a membrane containing at least an aromatic polyamide-based material is used as the separation membrane.
[44] 前記有機物質の平均分子量が、 200〜5000であることを特徴とする、請求項 37〖こ 記載の分離膜の改質装置。 [44] The separation membrane reformer according to [37], wherein the organic material has an average molecular weight of 200 to 5,000.
[45] 前記有機物質として、タンニン酸が用いられることを特徴とする、請求項 37に記載 の分離膜の改質装置。 45. The separation membrane reformer according to claim 37, wherein tannic acid is used as the organic substance.
[46] 前記タンニン酸として、加水分解型タンニンが用いられることを特徴とする、請求項 [46] The hydrolyzable tannin is used as the tannic acid,
45に記載の分離膜の改質装置。 45. The separation membrane reformer according to 45.
[47] 前記タンニン酸として、五倍子を原料として作られたものが用いられることを特徴と する、請求項 45に記載の分離膜の改質装置。 [47] The separation membrane reforming apparatus according to [45], wherein the tannic acid is a tannic acid produced from a pentup.
[48] 銀イオン源として、硝酸銀、硫酸銀のうち、少なくともいずれか一つを含む物質が用 いられることを特徴とする、請求項 37に記載の分離膜の改質装置。 48. The separation membrane reformer according to claim 37, wherein a substance containing at least one of silver nitrate and silver sulfate is used as the silver ion source.
[49] 分離膜に、ポリフエノールを含む有機物質および還元剤を含む水を加圧通水し、分 離膜の阻止性能を向上、回復させることを特徴とする、分離膜の改質方法。 [49] A method for reforming a separation membrane, characterized in that an organic substance containing polyphenol and water containing a reducing agent are passed through the separation membrane under pressure to improve and recover the separation membrane blocking performance.
[50] 前記ポリフエノールを含む有機物質および還元剤を含む水を分離膜へ供給する方 法として、ポリフエノールを含む有機物質および還元剤を混合した混合液を、分離膜 へ供給することを特徴とする、請求項 49に記載の分離膜の改質方法。 [50] As a method of supplying the organic substance containing polyphenol and water containing a reducing agent to the separation membrane, a mixed liquid in which the organic substance containing polyphenol and the reducing agent are mixed is supplied to the separation membrane. The method for modifying a separation membrane according to claim 49.
[51] 前記ポリフエノールを含む有機物質および還元剤を含む水を分離膜へ供給する方 法として、分離膜へ原水を供給するラインに、還元剤を含む水、ポリフエノールを含む 有機物質を含む水の順番で注入し、分離膜へ供給することを特徴とする、請求項 49 に記載の分離膜の改質方法。 [51] As a method for supplying the organic material containing polyphenol and water containing the reducing agent to the separation membrane, the line supplying raw water to the separation membrane contains water containing the reducing agent and organic material containing polyphenol. The method for reforming a separation membrane according to claim 49, wherein water is injected in the order of water and supplied to the separation membrane.
[52] 前記分離膜として、改質処理前の 500mg/L塩ィ匕ナトリウム水溶液の阻止率力 99% 以下の性能を持つ分離膜を使用することを特徴とする、請求項 49に記載の分離膜 の改質方法。  [52] The separation according to claim 49, wherein the separation membrane is a separation membrane having a performance of 99% or less of a rejection rate power of a 500 mg / L aqueous sodium chloride solution before reforming treatment. Membrane modification method.
[53] 前記分離膜として、逆浸透膜またはナノろ過膜を使用することを特徴とする、請求 項 49に記載の分離膜の改質方法。  [53] The method for modifying a separation membrane according to [49], wherein a reverse osmosis membrane or a nanofiltration membrane is used as the separation membrane.
[54] 前記分離膜として、スパイラル型膜エレメントを使用することを特徴とする、請求項 4[54] The spiral membrane element may be used as the separation membrane.
9に記載の分離膜の改質方法。 10. The method for modifying a separation membrane according to 9.
[55] 前記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜を使用することを特 徴とする、請求項 49に記載の分離膜の改質方法。 [55] The method for modifying a separation membrane according to [49], wherein a membrane containing at least an aromatic polyamide-based material is used as the separation membrane.
[56] 前記有機物質の平均分子量が、 200〜5000であることを特徴とする、請求項 49〖こ 記載の分離膜の改質方法。 [56] The method for reforming a separation membrane according to [49], wherein the organic substance has an average molecular weight of 200 to 5,000.
[57] 前記有機物質として、タン-ン酸を用いることを特徴とする、請求項 49に記載の分 離膜の改質方法。 [57] The method for modifying a separation membrane according to [49], wherein tan-acid is used as the organic substance.
[58] 前記タンニン酸として、加水分解型タンニンを用いることを特徴とする、請求項 57に 記載の分離膜の改質方法。  [58] The method for reforming a separation membrane according to [57], wherein hydrolyzable tannin is used as the tannic acid.
[59] 前記タンニン酸として、五倍子を原料として作られたものを用いることを特徴とする、 請求項 57に記載の分離膜の改質方法。 [59] The method for reforming a separation membrane according to [57], wherein the tannic acid is a tannic acid made from a pentup.
[60] 前記還元剤として、亜硫酸ナトリウム、亜硫酸水素ナトリウムのうち、少なくともいず れカ 1つを含む物質を用いることを特徴とする、請求項 49に記載の分離膜の改質方 法。 [60] The method for reforming a separation membrane according to [49], wherein a substance containing at least one of sodium sulfite and sodium hydrogen sulfite is used as the reducing agent.
[61] 請求項 49〜60のいずれかに記載の分離膜の改質方法により改質された分離膜。  [61] A separation membrane modified by the method for modifying a separation membrane according to any one of [49] to [60].
[62] 分離膜に、ポリフエノールを含む有機物質および還元剤を含む水を加圧通水し、分 離膜の阻止性能を向上、回復させる手段を有することを特徴とする、分離膜の改質 装置。 [62] The improvement of the separation membrane is characterized by having a means for pressurizing water containing an organic substance containing polyphenol and a reducing agent through the separation membrane to improve and recover the separation membrane blocking performance. Quality equipment.
[63] 前記ポリフエノールを含む有機物質および還元剤を含む水を分離膜へ供給する手 段として、ポリフエノールを含む有機物質および還元剤を混合した混合液を、分離膜 へ供給する手段力もなることを特徴とする、請求項 62に記載の分離膜の改質装置。 [63] As a means for supplying the organic substance containing polyphenol and water containing the reducing agent to the separation membrane, it also has a means to supply a mixed liquid in which the organic substance containing polyphenol and the reducing agent are mixed to the separation membrane. 63. The separation membrane reforming apparatus according to claim 62, wherein:
[64] 前記ポリフエノールを含む有機物質および還元剤を含む水を分離膜へ供給する手 段として、分離膜へ原水を供給するラインに、還元剤を含む水、ポリフエノールを含む 有機物質を含む水の順番で注入し、分離膜へ供給する手段からなることを特徴とす る、請求項 62に記載の分離膜の改質装置。  [64] As a means of supplying the organic material containing polyphenol and water containing the reducing agent to the separation membrane, the line supplying raw water to the separation membrane contains water containing the reducing agent and organic material containing polyphenol. 63. The separation membrane reforming device according to claim 62, comprising means for injecting water in the order and supplying it to the separation membrane.
[65] 前記分離膜として、改質処理前の 500mg/L塩ィ匕ナトリウム水溶液の阻止率力 99% 以下の性能を持つ分離膜が使用されることを特徴とする、請求項 62に記載の分離膜 の改質装置。  [65] The separation membrane according to claim 62, wherein a separation membrane having a performance of 99% or less of a rejection rate power of a 500 mg / L aqueous sodium chloride solution before the modification treatment is used as the separation membrane. Separation membrane reformer.
[66] 前記分離膜として、逆浸透膜またはナノろ過膜が使用されることを特徴とする、請求 項 62に記載の分離膜の改質装置。  [66] The separation membrane reformer according to [62], wherein a reverse osmosis membrane or a nanofiltration membrane is used as the separation membrane.
[67] 前記分離膜として、スパイラル型膜エレメントが使用されることを特徴とする、請求項[67] The spiral membrane element may be used as the separation membrane.
62に記載の分離膜の改質装置。 The separation membrane reformer according to 62.
[68] 前記分離膜として、少なくとも芳香族ポリアミド系素材を含む膜が使用されることを 特徴とする、請求項 62に記載の分離膜の改質装置。 [68] The separation membrane reformer according to [62], wherein a membrane containing at least an aromatic polyamide-based material is used as the separation membrane.
[69] 前記有機物質の平均分子量が、 200〜5000であることを特徴とする、請求項 62に 記載の分離膜の改質装置。 [69] The separation membrane reformer according to [62], wherein the organic substance has an average molecular weight of 200 to 5,000.
[70] 前記有機物質として、タンニン酸が用いられることを特徴とする、請求項 62に記載 の分離膜の改質装置。 70. The separation membrane reformer according to claim 62, wherein tannic acid is used as the organic substance.
[71] 前記タンニン酸として、加水分解型タンニンが用いられることを特徴とする、請求項 [71] The hydrolyzable tannin is used as the tannic acid,
70に記載の分離膜の改質装置。 70. The separation membrane reformer according to 70.
[72] 前記タンニン酸として、五倍子を原料として作られたものが用いられることを特徴と する、請求項 70に記載の分離膜の改質装置。 72. The separation membrane reforming apparatus according to claim 70, wherein the tannic acid is made from a pentaploid as a raw material.
[73] 前記還元剤として、亜硫酸ナトリウム、亜硫酸水素ナトリウムのうち、少なくともいず れカ 1つを含む物質が用いられることを特徴とする、請求項 62に記載の分離膜の改 質装置。 73. The separation membrane modifying apparatus according to claim 62, wherein a substance containing at least one of sodium sulfite and sodium hydrogen sulfite is used as the reducing agent.
PCT/JP2006/324648 2005-12-12 2006-12-11 Process and apparatus for modifying separation membrane and separation membranes modified by the process WO2007069558A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-357692 2005-12-12
JP2005357692A JP2007160173A (en) 2005-12-12 2005-12-12 Sterilization method and apparatus of separation membrane, and separation membrane treated by this method
JP2005366099A JP2007167725A (en) 2005-12-20 2005-12-20 Method and apparatus for modifying separation membrane, and separation membrane modified by the method
JP2005-366099 2005-12-20

Publications (1)

Publication Number Publication Date
WO2007069558A1 true WO2007069558A1 (en) 2007-06-21

Family

ID=38162866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324648 WO2007069558A1 (en) 2005-12-12 2006-12-11 Process and apparatus for modifying separation membrane and separation membranes modified by the process

Country Status (2)

Country Link
TW (1) TW200732030A (en)
WO (1) WO2007069558A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112928A (en) * 2007-11-05 2009-05-28 Japan Organo Co Ltd Method of modifying separation membrane, separation membrane modified thereby, modifier and apparatus for this modification
JP2009165949A (en) * 2008-01-15 2009-07-30 Japan Organo Co Ltd Antibacterial separative membrane, its manufacturing method, and manufacturing apparatus of antibacterial separative membrane
JP2015097990A (en) * 2013-11-19 2015-05-28 栗田工業株式会社 Rejection enhancing method of reverse osmosis membrane, reverse osmosis membrane and water treatment method
CN106334453A (en) * 2016-11-10 2017-01-18 山西太钢不锈钢股份有限公司 Method for controlling microorganisms of smelting waste water treatment system
JP2018047406A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method
CN110467189A (en) * 2018-05-09 2019-11-19 上海核工程研究设计院有限公司 A kind of device and method being concentrated for boron in radioactivity borate waste solution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660281A (en) * 1970-05-06 1972-05-02 Du Pont Permeation separation membranes
US3886066A (en) * 1972-11-06 1975-05-27 Du Pont Tannin treatment for non-porous semipermeable membranes
JPS6344989A (en) * 1986-08-13 1988-02-25 Japan Organo Co Ltd Treatment of washing waste water containing oxidizing agent
JPH01104310A (en) * 1987-10-14 1989-04-21 Kurita Water Ind Ltd Membrane separation
JPH01135506A (en) * 1987-11-20 1989-05-29 Toray Ind Inc Method for producing purified water
JP2000073277A (en) * 1998-08-28 2000-03-07 Natl Inst Of Sericultural & Entomological Science Antimicrobial polymer material and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660281A (en) * 1970-05-06 1972-05-02 Du Pont Permeation separation membranes
US3886066A (en) * 1972-11-06 1975-05-27 Du Pont Tannin treatment for non-porous semipermeable membranes
JPS6344989A (en) * 1986-08-13 1988-02-25 Japan Organo Co Ltd Treatment of washing waste water containing oxidizing agent
JPH01104310A (en) * 1987-10-14 1989-04-21 Kurita Water Ind Ltd Membrane separation
JPH01135506A (en) * 1987-11-20 1989-05-29 Toray Ind Inc Method for producing purified water
JP2000073277A (en) * 1998-08-28 2000-03-07 Natl Inst Of Sericultural & Entomological Science Antimicrobial polymer material and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112928A (en) * 2007-11-05 2009-05-28 Japan Organo Co Ltd Method of modifying separation membrane, separation membrane modified thereby, modifier and apparatus for this modification
JP2009165949A (en) * 2008-01-15 2009-07-30 Japan Organo Co Ltd Antibacterial separative membrane, its manufacturing method, and manufacturing apparatus of antibacterial separative membrane
JP2015097990A (en) * 2013-11-19 2015-05-28 栗田工業株式会社 Rejection enhancing method of reverse osmosis membrane, reverse osmosis membrane and water treatment method
JP2018047406A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method
WO2018056242A1 (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Reverse osmosis membrane rejection rate-improving agent and rejection rate-improving method
CN106334453A (en) * 2016-11-10 2017-01-18 山西太钢不锈钢股份有限公司 Method for controlling microorganisms of smelting waste water treatment system
CN110467189A (en) * 2018-05-09 2019-11-19 上海核工程研究设计院有限公司 A kind of device and method being concentrated for boron in radioactivity borate waste solution

Also Published As

Publication number Publication date
TW200732030A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
JP5691519B2 (en) Fresh water generation method
EP2609990B1 (en) Method for preventing microbial growth on filtration membrane
WO2020071177A1 (en) Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system
WO2007069558A1 (en) Process and apparatus for modifying separation membrane and separation membranes modified by the process
JP4974276B2 (en) Separation membrane modification method and apparatus, separation membrane modified by the method, and separation membrane operation method and apparatus
JP5670383B2 (en) Dialysis water supply device and dialysis water supply method
Maeda Roles of sulfites in reverse osmosis (RO) plants and adverse effects in RO operation
JP2009028724A (en) Method for water treatment and apparatus for water treatment
JP2006015236A (en) Apparatus and method for preparing regenerated water
JP7367181B2 (en) Water recovery system and water recovery method
JP5093883B2 (en) Separation membrane modification method and apparatus, separation membrane modified by the method, and separation membrane operation method and apparatus
JP2011088151A (en) Apparatus and method for preparing regenerated water
JP7333865B2 (en) Water treatment method and water treatment equipment
JP2020058972A (en) Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system
JP3547018B2 (en) Reverse osmosis treatment method and fresh water method
JPH09891A (en) Method for treating raw water using membrane module
JP3312483B2 (en) Reverse osmosis treatment method and desalination method
JPH0957067A (en) Separation with reverse osmotic membrane and apparatus therefor
JP2022016897A (en) Water recovery method and water recovery device
JP2007167713A (en) Method for operating separation membrane and apparatus
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JPH09893A (en) Method for treating raw water by means of membrane module
JP2007000790A (en) Method and device for treating/preserving separation membrane
JP2007160173A (en) Sterilization method and apparatus of separation membrane, and separation membrane treated by this method
WO2020012786A1 (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834403

Country of ref document: EP

Kind code of ref document: A1