WO2007066687A1 - Temperature measuring method, exposure method, exposure apparatus and method for manufacturing device - Google Patents

Temperature measuring method, exposure method, exposure apparatus and method for manufacturing device Download PDF

Info

Publication number
WO2007066687A1
WO2007066687A1 PCT/JP2006/324361 JP2006324361W WO2007066687A1 WO 2007066687 A1 WO2007066687 A1 WO 2007066687A1 JP 2006324361 W JP2006324361 W JP 2006324361W WO 2007066687 A1 WO2007066687 A1 WO 2007066687A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding
degree
information
light
emitted
Prior art date
Application number
PCT/JP2006/324361
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Nagasaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007549152A priority Critical patent/JPWO2007066687A1/en
Publication of WO2007066687A1 publication Critical patent/WO2007066687A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Definitions

  • the present invention relates to a measurement method, a basic method, an exposure apparatus, and a chair manufacturing method for acquiring the degree information of a holding unit.
  • a device for projecting a tan image of a disc onto the upper side through a projection system is used.
  • the light is emitted while being held by a holding unit such as a station. If there is a temperature difference between the holding unit and the holding unit, for example, may be heated when the holding unit holds the unit, and as a result, good exposure may occur. Therefore, in order to suppress the shape of, the temperature of the plate and / or the holding part is adjusted.
  • the device is provided with a holding part for holding the device, and a detector for receiving the light emitted from the holding member and optically acquiring the information of the holding part based on the result.
  • the degree of the holding part holding the can be accurately acquired, and the can be exposed satisfactorily.
  • a degree measurement method includes obtaining degree information of a part.
  • the degree of the holding unit that holds can be acquired accurately.
  • the light is received after passing through a part of the holding part for holding, and based on the result, the degree information of the holding part is obtained.
  • the method of being held by the holding unit is provided.
  • the degree of the holding part that holds can be acquired accurately, and can be satisfactorily exposed.
  • the issu can be manufactured using a method capable of exposing the satisfactorily.
  • FIG. 6 is a plan view for explaining a detection device according to two states.
  • FIG. 1 A first figure.
  • FIG. 6 is a plan view for explaining a detection device according to 6 2 state.
  • FIG. 6 is a plan view for explaining a detection device according to 6 2 state.
  • Fig. 7 is a chart showing an example of the manufacturing process of the equities.
  • the X related to the state.
  • the mask stage S that holds the mask and is movable, the base stage PS that holds P and is movable, and the mask held by the mask S are It is equipped with a science system P that projects the tan image of the mask exposed by exposure onto the base P, and a control that controls the operation of the exposure X body.
  • X irradiates the light passing through the screen onto P via the projection system P, thereby projecting the tan image of the screen onto the base P and giving P.
  • a film such as a photo-resist (protection film) or a protective film is coated on a substrate such as a semiconductor.
  • the disc is shrunk upwards Including formed.
  • a disc is used as the disc, but a reflective disc may be used.
  • the exposure X is synchronized with the disk P in a predetermined scanning direction and a tan image of the disk is projected onto the substrate P (scanning step).
  • the direction of movement with respect to the disk P in the horizontal plane inspection direction
  • the direction perpendicular to the direction in the horizontal plane is the X (inspection direction)
  • the vertical direction is the X axis and the direction.
  • the direction of the projection system P is the Z direction.
  • the () directions around X ,, and Z are x 0 and Z, respectively.
  • the X of this embodiment has a detection 2 that optically obtains information on the degree of te based on the result of a predetermined light emission 2 radiated on the te of the stage S that holds P. It 2 is connected to the control.
  • a storage device 2 that stores information regarding exposure and a notification 3 that notifies the exposure X are connected.
  • 3 includes, for example, a display device, a light emitting device that emits light, and a pronunciation that emits a sound.
  • the exposure X is provided with 4 for sending P to the stage PS. 4 is capable of loading () P into the step PS, and the group P on the step PS is from that step PS (unable. 4 is connected to the control and is controlled by the control. Further, the exposure X has a degree adjustment 5 for adjusting the degree of the base P before being subjected to the step PS. The degree adjustment 5 is connected to the control and is controlled and controlled. In the embodiment, the temperature adjustment 5 is provided on the road of 4. Controls 4, conveys P to temperature adjustment 5, and adjusts the degree of P using temperature adjustment 5. After that, the adjusted P is turned into the stage PS by using 4.
  • the temperature control 5 has a put () that holds the previous base P.
  • the degree of P held in the put can be adjusted by adjusting the degree of put.
  • a fluid for example, flows in the part of the put.
  • the degree adjustment 5 can adjust the degree of the putt by adjusting the degree of the body flowing through it. Of course, you can also adjust the degree of putting by using a heater or a pet.
  • 002 reveals a predetermined area on the disk with a certain degree of distribution.
  • the emitted light for example, far-infrared light () such as a (,,) kiss (248) emitted from a lamp, and true ambient light () such as a kiss () aza (57) are used.
  • a scratch light is used for the exposure.
  • the squeegee S can move in the X, Z directions while holding the sk by the squeegee device including actuators such as utterers.
  • Measured by Squeegee 6 of Squeegee S (henceforth Squeeze).
  • the 6 is capable of irradiating the measurement light 6 on 7 of the measurement 8 provided on the stage S, and measures the report of the stage S using 7 thereof.
  • the squeezer 6 includes an X 6X capable of emitting measurement light 6 measuring the X axis and a 6 capable of emitting measurement light 6 measuring the axis.
  • a measurement 8X with a reflection 7X perpendicular to the axis and a measurement 8 with a reflection 7 perpendicular to the axis are provided.
  • the X 6X is capable of irradiating the reflected light 7X with the measurement light 6 measuring the X axis, and is capable of measuring the position of the squeegee S in the X direction.
  • 6 is capable of irradiating the reflection 7 with measuring light 6 whose axis is to be measured, and is capable of measuring the position with respect to the orientation of the squeegee S.
  • the 6 can use that number of measuring 6 , It is possible to measure the Z direction of the squeegee S.
  • the 6 is connected to the control. Control the storage system Connected to. Controls the skew position based on the result of the 6 and controls the skew held by the skew stage S.
  • measurement 8 may include a naki (toctor) that is not only a plane mirror, but instead of measuring 8 as a scuttage, for example, by processing () of sukusuteji S to form a reflection. Moyo.
  • the sukusuteji S may have a structure which is disclosed in 8 3 79 (6 72 34), for example.
  • the 002 academic system P projects the tan image of the disk onto the base P at a predetermined rate. Holds an undergraduate degree P.
  • the ratio of the academic system P in the embodiment is, for example, 4, 58, etc., and forms a pattern in the projection area that is conjugate with the above-mentioned area.
  • the projection system P may be reduced, or it may be the deviation of the system and the system.
  • the projection system P may be a deviation that does not include a reflection optics, a reflection that does not include a refractor, and a reflection that includes a reflection optics and an element.
  • the projection system P may form a deviation between the inverted image and the normal image.
  • the 002 step s has a step 9, a te mounted on the step 9, and a holder o attached to the te for holding P detachably.
  • the holder o attached to the te for holding P detachably.
  • Stage 9 is carried by Abearing 9 against P's (guide). It is almost parallel to the X plane of, and the stage s is movable in the X direction above.
  • Step s is a step that includes actuators such as
  • step 9 It is possible to move up while holding P on the hod.
  • step 9 By moving the step, step 9 upward in the X ,, z direction, the te mounted on that step 9 can be moved in the X ,, z direction with respect to the step 9, step 9. It is equipped with a te which can move in the z, x, and second directions.
  • Te includes an actuator g, such as a voice eater, which is located between 9 and 10 te, and a unit (such as under) for measuring the amount of movement of the actuator.
  • Te is supported on stage 9 by at least 3 actuators g.
  • Each of the actuators 9 can drive the te independently of the stage 9 in the z direction. Drives te in the z, x, and direction with respect to step 9 by adjusting the amount of movement of each of the actuators g of 3.
  • the steps including, 2 and the step s Can be moved in the direction of 6 in the directions of X ,, z, x 6, z.
  • stage control Can control the position of the plane of P held in Te's holder with respect to the X ,, z, x 6, and z direction 6 directions by controlling the position.
  • stage s (which is P) of stage s 0, for stage.
  • the 4 is connected to the control.
  • the 4 uses the reflection 2 facing the side of the measurement 3 provided on the te surface to measure the information about the X ,, and z directions of the te.
  • the 4 includes X 4X capable of emitting the measurement light 4 measuring the X axis and 4 capable of emitting the measurement light 4 measuring the axis.
  • X 4X is capable of irradiating the reflected 2X with the measurement light 4 measuring the X axis, and is also capable of measuring the position related to the X direction of TE.
  • Numeral 4 is capable of irradiating the reflection 2 with the measuring light 4 whose axis is to be measured, and is capable of measuring the position related to the te direction.
  • the 4 uses that number of metering 4's. , Te z direction information can be measured.
  • the plane (with respect to z, x, and direction) of the plane of P held by Te's hodder is detected by Ocus Bengs. Connected to the OCS Beng Control. Drives the stage based on the result of The 4 and the result of Okas Beng, and controls P held by the holder.
  • the number of Okas Bengs is By measuring the information, () in the x direction is detected. Furthermore, for example, if the z can be used to measure the information in the z and x directions, it may be possible to provide a few ocus wings so that the information in the z direction can be measured during the operation of. Also, during the exposure work, you can use the results of Z to control the z and x directions.
  • the exposure X is provided with the degree adjustment 3 capable of adjusting the degree of exposure.
  • Degree adjustment 3 is connected to the control and is controlled by the control.
  • the temperature control 3 is provided in the te section. The temperature adjustment 3 can be used to adjust the degree of temperature, including the top o holder.
  • the temperature adjustment 3 is to adjust the temperature by flowing a temperature-adjustable fluid (for example,) into the te. You can also use mochi, hita, and pets.
  • a temperature-adjustable fluid for example,
  • the X of the embodiment is equipped with a detection 2 that emits light 2 from te and optically acquires information on the degree of te.
  • 2 is disposed at a predetermined position away from the te, is equipped with the detecting light 2 capable of emitting the detecting light 2, and radiates the detecting light 2 emitted from the 2 onto the te.
  • the detection 2 is a measurement of the degree information by using the 2.
  • 00362 is a plan view showing TE 2
  • FIG. 3 is a plan view.
  • TE is transparent to the detection light 2.
  • the TE can be made of a transparent material having a low expansion coefficient, such as Dare () manufactured by Yothon Co., Ltd., for example.
  • the measurement 3 provided at 003T has a reflection that faces inward.
  • Emitted light 2 from the second part of 00382 is reflected and irradiated through a transparent substrate.
  • the detection light 2 that has passed through and is reflected and reflected is reflected and reflected.
  • the incident light of the detection light 2 reflected at 2 passes through te again, then is emitted from the substrate and reaches the 2.
  • the 2 reflects the reflected light and emits the detected light 2 that has passed through the te.
  • the 2 uses the reflected and reflected detection light 2 as a basis for
  • the detection 2 acquires the degree information based on the result of the detection light 2, that is, the correlation with the predetermined reflection.
  • the TE section is provided with a measurement 3X having a reflection 2X perpendicular to the X axis and a measurement 3 having a reflection 2 perpendicular to the axis.
  • the 3X 2X back-to-back has a reflection X perpendicular to the X axis
  • the measurement 3 2 back-to-back has a reflection perpendicular to the axis.
  • the 2 for acquiring the degree information includes X 2 X capable of emitting the detection light 2 measuring the X axis and 2 capable of emitting the detection light 2 measuring the axis.
  • X 2 X is capable of irradiating the reflection X with detection light 2 whose X axis is measured, and is capable of measuring the relative position relationship in the X direction with a predetermined reflection X.
  • 2 is capable of irradiating the reflection with detection light 2 whose axis is measured, and is capable of measuring the relative position relationship with respect to the direction of a given reflection.
  • ⁇ 4a ⁇ is set as a. 2 acquires information about each of these.
  • the shape of A is in the X direction is a square shape, and is the side of A.
  • 004 12 has a plurality (4) of 2 depending on the number of measurement points. It is. 2 uses these multiple 2 to
  • two X 2 Xa 2 X b are arranged at a predetermined position in the X direction of the te so that they are aligned in the direction. Further, two X a 2 b are arranged at a predetermined position in the direction of te so as to be lined up in the X direction.
  • 004 3X is provided on the side surface on the X side of the te formed in the shape (rectangular shape), and measurement 3 is provided on the side surface on the te side.
  • X coincides with the side of x on the side of A
  • the reflection coincides with the side of A on the side of.
  • X Xa 2 Xb emits the detection light 2 from the X direction to the reflection X through the te
  • a 2 b emits the detection light 2 to the reflection direction via the te.
  • the detection light 2 emitted substantially parallel to X XXa and X passes through A, C, is reflected by reflection X, passes through A and C again, and is then X Xa.
  • the detection light 2 emitted substantially parallel to X Xb and X passes through A, is reflected by the reflection X, passes through A again, and is then X Xb.
  • the detection light 2 emitted substantially parallel to a et al. passes through a, is reflected by reflection, passes through a again, and then
  • the detection light 2 emitted almost parallel to b and b passes through a and C, is reflected by reflection, passes through a and C again, and is then b.
  • the 4X4 of Te It is also measured by The 4X4 of Te.
  • the X 4X is placed in a predetermined position in the X direction of the te.
  • X 4X obtains information about Te's X direction using reflection 2X, which is formed by the reflection X and back-to-back.
  • X 4X makes the measuring light 4 reflect 2X from the x direction without going through TE.
  • the control emits the detection light 2 from each of the detection 2's 2 Xa 2 X and 2 a 2 b.
  • the detected light 2 emitted from each of the 2 Xa 2 X and 2 a 2 b passes through te, is reflected by each of the reflections X, passes through te again, and is transmitted to the Xa 2 Xb 2 a 2 b.
  • Be done. 2 obtains the detected light 2 that has passed through the te, and based on the result, obtains the rate of occurrence of the te (constituting te) with respect to the output of light 2, and acquires the degree information of te based on the rate of occurrence. .
  • 004 462 is the TE based on the result of detected light 2.
  • the fold amount for the fold rate is calculated, and the degree of variation (A) with respect to te is calculated based on the calculated fold amount. By this, the degree of test can be obtained.
  • the 2 can measure the position (eg,) of a given reflection. Also, as mentioned above,
  • the a can measure the distance () in the direction between the side on the A side and the side on the 2A side. In the same way, measured at each of the 2 Xa 2 Xb ,,,
  • the storage device 2 stores the relationship with the degree of change of the te, that is, the refractive index (d d).
  • (d d) is a known value of the material forming the te (in the embodiment, dare).
  • the value of the standard bending rate is also the known value of the material and is stored in storage device 2.
  • the refractive index is calculated from () to (4)
  • the detection 2 uses the reflection formed in the part of the 2T to measure the position relative to the predetermined reflection, and based on the result, obtains the degree information of the TE. be able to In addition, in the present embodiment, since the detection 2 irradiates the detection light 2 to each of the number (a to) of te, based on the result of the plurality of the emitted light 2, the te The temperature distribution for each temperature, that is, the degree distribution of TE can be obtained.
  • the operation of acquiring the information every time using 00512 is performed before P, for example. 2 is output to the control, and the control can execute a predetermined process according to the degree information acquired in the detection 2.
  • the control is obtained such that the degree difference with the base P-te before being changed to te (hodder) is small, or the degree of te has a predetermined relationship with the degree of P.
  • one degree of P degree can be adjusted. For example, control is
  • control temperature adjustment 3 Based on the temperature information, control temperature adjustment 3 to adjust the temperature so that the difference between the temperature of the base and the base before being changed becomes small. At this time, if a sensor for detecting the degree of P is provided, the control uses the sensor to predict the degree of P. , Or the temperature of P based on the sensor (ie, of P) is used as a target value to control temperature adjustment 3 to adjust the temperature of TE. Uses detection 2 to obtain temperature information and temperature adjustment 3 to detect temperature information.
  • the degree of P and the degree of substrate can be adjusted in a predetermined relationship even if one of temperature adjustment 5 degrees and adjustment 3 is deviated. Also, if the degree of P adjusted by temperature adjustment 5 is predetermined, the temperature adjustment is performed based on the degree of P adjusted by temperature adjustment 5 and the result of 2 without using the temperature sensor. You can use 3 to adjust the degree of TE and adjust the degree of P and the degree of basis to a predetermined relationship. Of course, the control can also adjust the degree with respect to P-te by using each of temperature adjustment 5 degree adjustment 3 based on the result of detection 2.
  • 00544 is a plan view showing the group P after being subjected to a te treatment. Multiple regions are set on P. Is the projection system P
  • the control locates A and A in the region of, and then controls the substrate PS to scan (scan) P towards projection A.
  • the projection is set in the shape of a set having the X direction as the longitudinal direction, and the projection A is scanned in the direction of P and the exposure is irradiated onto the P so that the projection is performed. It is possible to control the size of the area. Then, after the light in the area of is completed, the control steps P to the next 2 areas of exposure. After locating and, scan in the direction of the base P and scan the region of 2.
  • control controls the movement of the PS by using the 4 that irradiates the reflection 2 with the measurement light 4 and reports the TE holding P.
  • the detection 2 is for optically detecting the temperature information of the TE, and is provided at a position on the TE side such as the 2 for acquiring the temperature information. For example, if a temperature sensor is provided on the te, that sensor may increase the amount of te, or a cable connected to the temperature sensor may prevent the te (stage PS) from moving smoothly. However, in this embodiment, it is possible to prevent the occurrence of such a defect.
  • the notification 3 for notifying the status of the exposure X is provided.
  • the temperature adjustment 3 is used to adjust the temperature.
  • the control can use the notification 3 to notify, for example, that TE has reached a desired frequency. Or, for example, even if the adjustment operation of TE was performed using adjustment adjustment 3, the TE adjustment was performed based on the result of detection 2.
  • control can use the notification 3 to issue, for example, a warning.
  • 4 sets of A to are set in TE and information is obtained for each of these sets.
  • the number of measurement rear is not limited to 4, and any number can be set. You can. By increasing the number of rears, the degree distribution of TE can be obtained more accurately.
  • a plurality of measurement points are set in the X direction of te, and the degree distribution in the X direction is obtained by this. For example, a plurality of points are set in the Z direction. You may choose to obtain information about each of these. By doing so, the degree distribution in the Z direction can be obtained.
  • the 4 measures the information of the te by irradiating the reflection 2 with the measuring light 4 without passing the te, and the 2 different from the 4 passes the te through the te.
  • the reflected detection light 2 is radiated to obtain information on the degree of the test.
  • the control can adjust the condition of TE (stage S) based on the information of TE acquired in Detection 2 without adjusting this time.
  • control controls the stage PS based on the information on the temperature obtained in the detection 2 to adjust the position of the te when moving each knee on P.
  • the position or size of each region on P may change, and the distance between each region on P may change. Therefore, based on the amount of movement of the separation due to the degree difference with P-te and the stored degree difference with P-te Later, the distance can be adjusted when stepping the te to position the second arm in place.
  • the control controls step PS and the information and memory of the temperature acquired in detection 2 are stored. Based on the information from device 2, it is possible to adjust the position of te when each region on P is operated. In this case, you can use the result of the temperature sensor or the degree of P by the temperature adjustment 5 as the degree of base P. Thus, by adjusting the condition of TE based on the result of Detection 2, the next tan image can be superposed on the tan previously formed on P. Thus, by adjusting the condition of P, it is possible to satisfactorily expose the region on P even if there is a temperature difference from P.
  • control informs that the condition of Stage PS has been changed.
  • 3 can display on the display that the condition of Stage PS has changed.
  • control can adjust () of the projection system P by using the imaging 4 based on the degree information acquired by using the detection 2.
  • the temperature of the temperature sensor may be used as the degree of P, and the degree of P by temperature adjustment 5 may be used.
  • control can issue the alarm 3 by using the notification 3.
  • the position adjustment of the tan image state may be performed.
  • Reflection 5 having reflection 6 is provided on the te surface of the 007 embodiment. 6 points in the z direction. 2, te
  • the substrate is transparent to the detection light 23. Even in this embodiment like 007, the X
  • the detection light 23 reflected by 206 is emitted.
  • the detection light 23 is emitted so as to pass through A and C.
  • Each of the 007 23 23 24 is located in a position on the te side.
  • 23 irradiates te with detection light 23 from a position away from te.
  • 24 is a position apart from the te and emits the detection light 23 that has passed through the te.
  • the projection 23 is provided in a position facing the te, and 24 is provided in a position facing the te.
  • the detection light 23 emitted from 007 23 is incident on the side surface on the te side with a fixed 0, and after passing through te, is emitted from the direction for reflection 6.
  • the detection light 23 reflected by 6 is emitted from the side surface on the substrate side after passing through the te and reaches 25 of 24.
  • the te output for the te 23 is obtained, and the te frequency information is acquired based on the obtained od.
  • the percentage of change in te with respect to te is obtained, and based on the obtained amount of fold, the variation with respect to te (A) is calculated. Ask. In this way, the information on the degree is obtained.
  • the temperature information is acquired based on the positions 25 of detections 2 and 24.
  • the detection light 23 passing through the TE fluctuates according to the folding rate. For example, if the detected light 23 passes through the reference te at 23 a in 6, the detected light 23 passing through the te that is changed by A with respect to the reference changes by the te, and thus the detected light 23. Depending on the index of refraction, it passes through te at 23 b of 2 which is different from 23 a of. If the detected light 23 fluctuates due to the degree of change in the te (refraction rate), the position of the emitted light 23 at 24 of 25 fluctuates.
  • the detected light 23 that has passed through 25 reaches 25 of 2 on 25, and the detected light 23 that has passed through t at 23 b of 2 reaches 25 of 2 which is different from 25 of 25 on 25.
  • only A is required to change the output 23 of the light emitted at 25 with respect to te (the ratio with respect to the fraction).
  • the angle of incidence and length are known (constant) and the distance A can be 24. Further, as described above, the detection light 23 and the detection light 23 passing through A and C are emitted from the detection 2 and the plurality of 23, respectively. Therefore, similar to the above-mentioned situation, four equations including the human incidence angle, length, and A are derived, and by solving these four equations as simultaneous equations, the ellipticity of You can In addition, it is possible to derive the folding rate () with respect to the folding rate based on the standard.
  • the storage device 2 stores the bending rate (dd) which is the known value of the material forming the te. Similarly, the value of the bending rate on the basis of the known value of the material is also stored in the storage device 2. Therefore, based on (dd), the standard folding rate, and the folding rate of ⁇ , the degree of ⁇ can be obtained. It is also possible to obtain the degree distribution of TE. In addition, the control is performed in the same way as the state according to the degree information acquired in Detection 2. Can perform certain reasons.
  • the number of measurement points is not limited to 4 in the 2 states, and may be set to any number. In addition, for example, you can set multiple points for the Z direction and acquire information for each of these points.
  • the body is made of a transparent material (for example, dare).
  • a transparent material for example, dare
  • the body is made of a transparent material (for example, dare).
  • dare for example, even if only a part through which the emitted light passes is made transparent.
  • the degree information may be acquired while holding P in te, or may be acquired without holding P.
  • the X in the above-mentioned state for example, as disclosed in International Publication 99 495 4, it may be applied to a device in which the body is filled during exposure. In the equipment, the body comes into contact with, for example, P-te, but by using the equipment in the above-mentioned state, it is possible to accurately obtain the degree information. In this case, the body degree may be adjusted based on the degree information detected in detection 2 (2).
  • P in the above state is a conductor window made of a semiconductor chair.
  • glass for displays glass for displays, ceramics for heads, or discs used in the location or (English, English), etc. are applicable.
  • the shape is not limited to a shape, but may be another shape such as a shape.
  • the 008 X is a step-and-skin-type running (scanning step) that synchronizes with the disk P and scans the disk's turn, as well as a batch of disk turns with the disk P stopped.
  • P can also be applied to step-and-pit type throws in which P is sequentially stepped.
  • the first exposure should be performed with tan P almost stopped.
  • a projection system for example, a projection system at a rate of 8 and no reflector.
  • the 2 nd tan is also applied to a stick-type device that partially overlaps the tan by using its academic system. it can.
  • a stick type dew it is also applicable to a step-and-stuck type dew where P is transferred at least by partially overlapping at least two tans.
  • a skull is placed in () and a is placed in () for the projection system.
  • International Publication 2 4 9 956 national publication 2 6 23 88
  • the stem is used to measure the squeegee stage information, but the present invention is not limited to this.
  • a shunt () provided on the surface of the stage may be used.
  • the projection system may consist of one (faculty). It is also possible to apply the concept to the systems and methods that use the projection system. Even when using an academic system, it is irradiated through an undergraduate school such as an exposure screen or lens.
  • Japanese Patent No. 2 645 4 report Japanese Patent No. 2 645 4 report, US 6 8 97 963 etc., a measuring section using a reference part and various sensors formed with a step reference holding The light can also be applied to a device equipped with.
  • the type of 990 X is not limited to a semiconductor device manufacturing device in which a semiconductor device is used for P, and a device, a pad, a (CC), an ink, an S chip, or a mask or a mask manufactured by a child manufacturing display device. It can also be widely used as a device for manufacturing etc.
  • an electronic disc also referred to as a deformable disc, which forms a tan or a reflection tan or a luminescence tan based on the data of the exposure tan, for example, an image display () It can be used to include (Dg a Mc omo Devce), which is the seed of.
  • the references in the text relating to exposure equipment, etc. are used as part of the main text.
  • the X in the embodiment is manufactured by assembling various systems including elements while maintaining the predetermined mechanical degree, electric degree, and optical degree.
  • various types of systems are used to achieve optical degrees
  • various types are used to achieve mechanical degrees
  • various types are used. Adjustments are made to achieve the degree of electricity.
  • the stand-up process from the system includes mechanical connections, electrical circuit connections, and air pressure connections between the various systems. It goes without saying that there is a system stand-up process before this system stand-up process. When the process of setting up the system is completed, the overall adjustment is performed and the degree as an exposed body is secured. It is desirable that the exposure temperature and kun are controlled.
  • the equus such as the conductor chair is made up of the following steps: a step 2 for manufacturing the equipment, a step 2 2 for manufacturing a disk based on this step, and a step for manufacturing the chair. 2 3, the step of exposing the disk tank by X in the above-mentioned embodiment, the step of developing the exposed part, the step including the process such as the (key) etching process of the developed part 2 4, the standing step (Including dicing process, bonding process, cage process) 25, inspection step 26, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Disclosed is an exposure apparatus comprising a holding member (10) for holding a substrate (P), and a sensing unit (20) for optically obtaining information on the temperature of the holding member (10) by receiving a sensing light (21L) from the holding member (10).

Description

度計測 、法、露光 、法、露光 置、 イ 、  Degree measurement, method, exposure, method, exposure position, a,
ス製 法  Manufacturing method
術分野  Surgical field
0001 、 を保持する保持部 の 度情報を取得する 度計測 法、基 する 法、露光 置、 イス製 法に関する。 0001, The present invention relates to a measurement method, a basic method, an exposure apparatus, and a chair manufacturing method for acquiring the degree information of a holding unit.
、 2 5 2 6日に出願された 2 5 35 659号に基 き 先権 を主張し、その 容をここに援用する。 0002 導体 イス等を製造する オト グラ ィ 程では、 スクの タ ン像を投 影 学系を介して 上に投影する 置が用 られて る。 ステ 等の保持部 に保持された状態で 光される。 と保持部 との間に温度差が あると、 を保持部 で保持したとき、例えば が熱 する可能性があり、そ の 果、露光 良が発生する可能性がある。そのため、 の 形を抑えるため に、 板及び 又は保持部 を温度調整することが行われて る。  , Claiming priority based on No. 2 5 35 659 filed on May 25, 26, the content of which is incorporated herein. 002 In the manufacturing process of conductor chairs, etc., a device for projecting a tan image of a disc onto the upper side through a projection system is used. The light is emitted while being held by a holding unit such as a station. If there is a temperature difference between the holding unit and the holding unit, for example, may be heated when the holding unit holds the unit, and as a result, good exposure may occur. Therefore, in order to suppress the shape of, the temperature of the plate and / or the holding part is adjusted.
には、 の 度を調整した後に、その を基 ステ ジで保持する 術が開示 されて る。 Discloses a method of adjusting the degree of and then holding it at the base stage.
1 55945 報  1 55945 Report
発明の  Invention
明が解決しよ とする課題  Problems that Ming is trying to solve
0003 と保持部 との 度差を調整するためには、 ステ ジなどの 持部 の 度情報を 確に取得する必要がある。 In order to adjust the degree difference between 000 3 and the holding section, it is necessary to acquire the degree information of the holding section such as stages.
0004 、 を保持する保持部 の 度情報を 確に取得できる 度計測 法、基 を良好に露光できる 法、露光 置、 びその 法、露光 置を 用 る イス製 法を提供することを目的とする。 It is an object of the present invention to provide a degree measuring method capable of accurately obtaining degree information of a holding portion for holding 000, a method capable of exposing a substrate satisfactorily, an exposing device, and a chair manufacturing method using the exposing device.
題を解決するための  To solve the problem
0005 以下の 成を採用して る。 The composition below 005 is adopted.
0006 明の の 様に従えば、 上に露光 を照射して する 置にお て、 を保持する保持部 、保持部材 らの の 出光を受 、そ の 果に基 て、保持部 の 度情報を光学的に取得する検出 、を 備えた 置が提供される。 If you follow 000 6 Ming, you will irradiate the top with exposure. The device is provided with a holding part for holding the device, and a detector for receiving the light emitted from the holding member and optically acquiring the information of the holding part based on the result.
0007 明の の 様によれば、 を保持する保持部 の 度を 確に取得でき 、 を良好に露光できる。 According to the above description, the degree of the holding part holding the can be accurately acquired, and the can be exposed satisfactorily.
0008 明の 2の 様に従えば、上記 様の 置を用 る イス製 法が 提供される。 According to item 2 of 0008 Ming, a chair manufacturing method using the above device is provided.
0009 明の 2の 様によれば、 を良好に露光できる 置を用 て イ スを製造することができる。 According to the item 2 of 000 Akira, it is possible to manufacture the sheet by using a device capable of exposing satisfactorily.
また 明の 3の 様に従えば、 を保持するための 持部 の 出光を照射することと、保持部 の な とも一部を通過した の 出光を受 することと、 の 果に基 て、保持部 の 度情報を取得することとを含 む 度計測 法が提供される。  Further, according to the item 3 of Ming, based on the fact that the light emitted from the holding portion for holding is emitted and the light emitted from the holding portion that has passed through a part is received, A degree measurement method is provided that includes obtaining degree information of a part.
明の 3の 様によれば、 を保持する保持部 の 度を 確に 取得できる。  According to 3 of Ming, the degree of the holding unit that holds can be acquired accurately.
また 明の 4の 様に従えば、 する 法であ て、 を保 持するための 持部 の な とも一部を通過した の 出光を受 、 の 果に基 て、保持部 の 度情報を取得し、保持部 に保持された する 法が提供される。  According to 4 of Ming, according to the law, the light is received after passing through a part of the holding part for holding, and based on the result, the degree information of the holding part is obtained. However, the method of being held by the holding unit is provided.
明の 4の 様によれば、 を保持する保持部 の 度を 確に取得でき 、 を良好に露光できる。  According to item 4 of Ming, the degree of the holding part that holds can be acquired accurately, and can be satisfactorily exposed.
明の 5の 様に従えば、上記 様の 法を用 る イス製 法が 提供される。  According to Ming No. 5, a chair manufacturing method using the above method is provided.
明の 5の 様によれば、 を良好に露光できる 法を用 て イ スを製造することができる。  According to item 5 of Ming, the issu can be manufactured using a method capable of exposing the satisfactorily.
明の  Of Ming
0010 明によれば、 を良好に露光することができ、所望の 能を有する イス を製造することができる。 0011 態に係る 置を示す である。According to 001, it is possible to satisfactorily expose and to manufacture a chair having a desired function. This is the position related to the 001 state.
2 態に係る検出 置を説明するための 面図である。 FIG. 6 is a plan view for explaining a detection device according to two states.
3 態に係る検出 置を説明するための 面図である。 It is a front view for explaining a detection device concerning three states.
4 テ に保持された を示す 面図である。 FIG.
5 ョッ 域が変形する様子を示す である。 5 This shows how the area is deformed.
6 2 態に係る検出 置を説明するための 面図である。 6 is a plan view for explaining a detection device according to 6 2 state. FIG.
7 イク イスの製 程の 例を示す チャ ト図である。 号の  Fig. 7 is a chart showing an example of the manufacturing process of the equities. Of the issue
0012 … 置、2… 憶装置、3… 置、5… 度調整 置、 … テ 、 … 、 2… 、 4… ザ 、 4 … 測光、 2 … 置、 2 … ザ 、 2 … 出光、23… 置、23 … 出光、24… 置、 25… 、30…テ 度調整 置、4 … 置、 … 、 X… 置、P… 、P … 学系、PS … ステ ジ 明を実施するための 良の 001… Position, 2… Storage device, 3… Position, 5… Degree adjustment position,… Te,…, 2…, 4… The, 4… Photometry, 2… Position, 2… The, 2… Idemitsu, 23… Position , 23… Idemitsu, 24… Position, 25…, 30… Temperature adjustment Position, 4… Position,…, X… Position, P…, P… Academic system, PS… Stage
0013 下、本 明の 態に て 面を参照しながら 明するが、 はこれ に限定されな 。 [0113] The present invention will be described below with reference to the surface, but is not limited to this.
0014 001
態に て説明する。 は 態に係る Xを示す である。 にお て、露光 Xは、 スク を保持して移動 能な スクステ ジ S と、 Pを保持して移動 能な基 ステ ジPS と、 スクステ ジ S に保持されて る スク を で 明する と、露光 で 明された スク の タ ン像を基 P上に投影する 学系P と、露光 X 体の 作を制御する制御 とを備えて る。 Xは、 スク を 通過した を投影 学系P を介して P上に照射することによ て、 ス ク の タ ン像を基 P上に投影して、 Pを する。  I will explain. Is the X related to the state. In the exposure X, the mask stage S that holds the mask and is movable, the base stage PS that holds P and is movable, and the mask held by the mask S are It is equipped with a science system P that projects the tan image of the mask exposed by exposure onto the base P, and a control that controls the operation of the exposure X body. X irradiates the light passing through the screen onto P via the projection system P, thereby projecting the tan image of the screen onto the base P and giving P.
0015 なお、ここで 半導体ウ 等の基 上に感光 ( ジスト)、保護膜 などの膜が 布されたものを含む。 スクは 上に縮小 影される イス タ 形成された を含む。また、本実施 態にお ては、 スクとして スクを用 るが、反射 スクを用 てもよ 。 [0115] Here, it includes the one in which a film such as a photo-resist (protection film) or a protective film is coated on a substrate such as a semiconductor. The disc is shrunk upwards Including formed. In addition, in this embodiment, a disc is used as the disc, but a reflective disc may be used.
0016 実施 態では、露光 Xとして スク Pとを所定の 査方向に同期 動し スク の タ ン像を基 P上に投影する ( スキ ヤ ングステッ )を使用する場合を例にして説明する。 下の 明にお て、水平 面内にお て スク Pとの 動方向( 査方向)を 、水平面内 にお て 向と直 する方向をX ( 査方向)、X軸及び 向に垂 直で投影 学系P の 行な方向をZ 向とする。また、X 、 、 Z まわりの ( ) 向をそれぞれ、 x 0 、 Z 向とする。 [0116] In the embodiment, a case will be described as an example in which the exposure X is synchronized with the disk P in a predetermined scanning direction and a tan image of the disk is projected onto the substrate P (scanning step). As will be seen below, the direction of movement with respect to the disk P in the horizontal plane (inspection direction), the direction perpendicular to the direction in the horizontal plane is the X (inspection direction), and the vertical direction is the X axis and the direction. The direction of the projection system P is the Z direction. The () directions around X ,, and Z are x 0 and Z, respectively.
0017 後述するよ に、本実施 態の Xは、 Pを保持する ステ ジ S の テ に照射した所定の 出光2 の 果に基 て、 テ の 度情報を光学的に取得する検出 2 を備えて る。 2 は制御 に接続されて る。 [0117] As will be described later, the X of this embodiment has a detection 2 that optically obtains information on the degree of te based on the result of a predetermined light emission 2 radiated on the te of the stage S that holds P. It 2 is connected to the control.
0018 また、制御 には、露光に関する情報を記憶した記憶装置2と、露光 Xの 報知する報知 3とが接続されて る。 3は、例えば ディスプ イ の 置、光を発する発光 置、 び音を発する発音 含む。 [0118] Further, for control, a storage device 2 that stores information regarding exposure and a notification 3 that notifies the exposure X are connected. 3 includes, for example, a display device, a light emitting device that emits light, and a pronunciation that emits a sound.
0019 また、露光 Xは、 ステ ジPS に対して Pを 送する 4を 備えて る。 4は、 Pを ステ ジPS に搬入( ) 能であると ともに、 ステ ジPS 上の基 Pをその ステ ジPS ら (アン 能である。 4は制御 に接続されており、制御 に制御される。 また、露光 Xは、 ステ ジPS に される前の基 Pの 度を調整す る 度調整 5を備えて る。 度調整 5は制御 に接続されており、制 御 に制御される。 実施 態にお ては、温度調整 5は、 4の 路上に設けられて る。 は、 4を制御して、 Pを温度 調整 5に搬送し、温度調整 5を用 て Pの 度を調整した後、その 度調整された Pを 4を用 て ステ ジPS に する。 [0119] The exposure X is provided with 4 for sending P to the stage PS. 4 is capable of loading () P into the step PS, and the group P on the step PS is from that step PS (unable. 4 is connected to the control and is controlled by the control. Further, the exposure X has a degree adjustment 5 for adjusting the degree of the base P before being subjected to the step PS. The degree adjustment 5 is connected to the control and is controlled and controlled. In the embodiment, the temperature adjustment 5 is provided on the road of 4. Controls 4, conveys P to temperature adjustment 5, and adjusts the degree of P using temperature adjustment 5. After that, the adjusted P is turned into the stage PS by using 4.
0020 なお、温度調整 5は、 前の基 Pを保持するプ ト ( )を有し 、プ ト の 度を調整することによ て、プ ト に保持された Pの 度を調整することができる。なお、プ ト の 部には、流体( えば、 )が 流れる が形成されて る。 度調整 5は、その を流れる 体の 度を調整することによ て、プ ト の 度を調整することができる。もちろん、ヒ タ、ペ チ 子などを用 てプ ト の 度を調整してもよ 。 0021 は、 スク 上の所定の 域を 一な 度分布の で 明 するものである。 ら 出される としては、例えば ランプ ら 出される ( 、 、 ) キ ザ ( 248 )等の遠 外光( )、 キ ザ ( ) ザ ( 5 7 )等の真 外光( )などが用 られる。 実施 態にお ては、露光 として、 キ ザ光が用 られる。 002 Note that the temperature control 5 has a put () that holds the previous base P. , The degree of P held in the put can be adjusted by adjusting the degree of put. In addition, a fluid (for example,) flows in the part of the put. The degree adjustment 5 can adjust the degree of the putt by adjusting the degree of the body flowing through it. Of course, you can also adjust the degree of putting by using a heater or a pet. 002 reveals a predetermined area on the disk with a certain degree of distribution. As the emitted light, for example, far-infrared light () such as a (,,) kiss (248) emitted from a lamp, and true ambient light () such as a kiss () aza (57) are used. In the embodiment, a scratch light is used for the exposure.
0022 スクステ ジ S は、 ア タ等のアクチ タを含む スクステ ジ 置により、 スク を保持した状態で、X 、 、 Z 向に移動 能であ る。 スクステ ジ S (ひ ては スク )の 、 スクステ ジ ザ 6によ て計測される。 ザ 6は、 スクステ ジ S 上に設けられ た計測 8の 7に計測光6 を照射 能であり、その 7を用 て スクス テ ジ S の 報を計測する。 スクステ ジ ザ 6は、X軸を計 測 とする計測光6 を射出 能なX 6Xと、 軸を計測 とする計測光6 を 射出 能な 6 とを含み、 スクステ ジ S 上には、X軸に垂直な反射 7Xを有する計測 8Xと、 軸に垂直な反射 7 を有する計測 8 とが設けら れて る。X 6Xは、X軸を計測 とする計測光6 を反射 7Xに照射 能で あり、 スクステ ジ S のX 向に関する 置を計測 能である。 6 は、 軸を計測 とする計測光6 を反射 7 に照射 能であり、 スクステ ジ S の 向に関する 置を計測 能である。また、X 6X 6 の な とも一方を 、X軸を計測 とする計測光6 軸を計測 とする 計測光6 の な とも一方を 射することにより、 ザ 6は、その 数 の 測光6 を用 て、 スクステ ジ S の Z 向の 報を計測 能であ る。 ザ 6は制御 に接続されて る。 スクステ ジ 置も制御 に接続されて る。 は、 ザ 6の 果に基 て ス クステ ジ 置を制御 、 スクステ ジ S に保持されて る スク の 御を行 。 002 The squeegee S can move in the X, Z directions while holding the sk by the squeegee device including actuators such as utterers. Measured by Squeegee 6 of Squeegee S (henceforth Squeeze). The 6 is capable of irradiating the measurement light 6 on 7 of the measurement 8 provided on the stage S, and measures the report of the stage S using 7 thereof. The squeezer 6 includes an X 6X capable of emitting measurement light 6 measuring the X axis and a 6 capable of emitting measurement light 6 measuring the axis. A measurement 8X with a reflection 7X perpendicular to the axis and a measurement 8 with a reflection 7 perpendicular to the axis are provided. The X 6X is capable of irradiating the reflected light 7X with the measurement light 6 measuring the X axis, and is capable of measuring the position of the squeegee S in the X direction. 6 is capable of irradiating the reflection 7 with measuring light 6 whose axis is to be measured, and is capable of measuring the position with respect to the orientation of the squeegee S. In addition, by irradiating one of X 6X 6 and the measuring light 6 measuring the X-axis, and measuring one of the measuring lights 6, the 6 can use that number of measuring 6 , It is possible to measure the Z direction of the squeegee S. The 6 is connected to the control. Control the storage system Connected to. Controls the skew position based on the result of the 6 and controls the skew held by the skew stage S.
0023 なお、計測 8は平面鏡のみでな ナ キ ( ト クタ)を含むものと してもよ 、計測 8を スクステ ジに する わりに、例えば スクステ ジ S の ( )を 工して反射 を形成してもよ 。また、 スクステ ジ S は、例えば 8 3 79 ( 6 72 34 )に開 示される 能な構成としてもよ 。 It should be noted that measurement 8 may include a naki (toctor) that is not only a plane mirror, but instead of measuring 8 as a scuttage, for example, by processing () of sukusuteji S to form a reflection. Moyo. Moreover, the sukusuteji S may have a structure which is disclosed in 8 3 79 (6 72 34), for example.
0024 学系P は、 スク の タ ン像を所定の 率で基 P上に投影する ものである。 学系P の 保持されて る。 実施 態の 学系P は、その 率が例えば 4、 5 8等の縮 であり、前述 の 域と共役な投影 域に スク タ ンの を形成する。なお、投影 学系P は縮小 、 系及び 大系の ずれでもよ 。また、投影 学系P は、 反射光学 子を含まな 、屈折 子を含まな 反射 、反射光学 子 と 子とを含む の ずれであ てもよ 。また、投影 学系P は、倒立像と正 像との ずれを形成してもよ 。 The 002 academic system P projects the tan image of the disk onto the base P at a predetermined rate. Holds an undergraduate degree P. The ratio of the academic system P in the embodiment is, for example, 4, 58, etc., and forms a pattern in the projection area that is conjugate with the above-mentioned area. It should be noted that the projection system P may be reduced, or it may be the deviation of the system and the system. Further, the projection system P may be a deviation that does not include a reflection optics, a reflection that does not include a refractor, and a reflection that includes a reflection optics and an element. Also, the projection system P may form a deviation between the inverted image and the normal image.
0025 学系P には、例えば 6 78454 ( 応する米国 4 666 273 )、 956 2 ( 応する米国 6 235 438 )、国際公開 3 65428 ン ( 応する米国 2 5 2 6 85 )等に開示されて るよ 、投影 学系P の ( )を調整 能な結像 4 が設けられて る。 4 は、投影 学系 P の 数の 子の 部を移動 能な光学 置を含む。 002 School P is disclosed in, for example, 6 78454 (Responsive US 4 666 273), 956 2 (Responsive US 6 235 438), International Publication 3 65428 (Responsive US 2 5 2 6 85), etc. Therefore, there is an image formation 4 that can adjust () of the projection system P. 4 contains optics that can move part of the number of projection system P.
、投影 学系P の 数の 子の 定の 子を光軸 X (Z )に移動したり、光軸A に対して さ ることができる。 , It is possible to move a fixed number of elements of the projection system P to the optical axis X (Z) or to refer to the optical axis A.
4 は、投影 学系P の 定の 子を動 すことで、投影 学系P の 4 moves a constant child of the projection system P,
( 、ディスト ョン、球面 差等) ( )等を含む ( を調整することができる。また、結像 4 として、 の 部に保持されて る一部の 子ど しの間の空間の気体の 力を調整 する 置を設けることもできる。 4 は制御 に接続 されており、制御 に制御される。 (, Distortion, spherical difference, etc.) (), etc. can be adjusted. Also, as the image 4, the gas in the space between some of the children held in the part of Adjust force A device can also be provided. 4 is connected to the control and is controlled by the control.
0026 ステ ジ s は、ステ ジ 9と、ステ ジ 9上に搭 された テ と、 テ に設けられ、 Pを着脱 能に保持する ホ ダ o とを備えて る。 実施 態にお ては、 ホ ダ は、 テ The 002 step s has a step 9, a te mounted on the step 9, and a holder o attached to the te for holding P detachably. In the embodiment, the
上に設けられた に配置されており、 テ の 外の は、 ホ ダ に保持された Pの 面とほぼ同じ高さ( )にな るよ 平坦 とな て る。なお、 ホ ダ に保持された Pの 面と、 テ の との間に 差があ てもよ 。  It is placed on the upper side and is flat so that the outside of the te is almost at the same height () as the plane of P held by the hodder. It should be noted that there may be a difference between the P surface held by the holder and the TE surface.
0027 ステ ジ 9は、 アベア ング9 により、 Pの (ガイド )に対 して 持されて る。 の X 面とほぼ平行であり、 ステ ジ s は、 上でX 向に移動 能である。 002 Stage 9 is carried by Abearing 9 against P's (guide). It is almost parallel to the X plane of, and the stage s is movable in the X direction above.
0028 ステ ジ s は、 ア タ等のアクチ タを含む ステ ジ 002 Step s is a step that includes actuators such as
置により、 ホ ダ に Pを保持した状態で、 上で移動 能 である。 ステ ジ 、ステ ジ 9を 上でX 、 、 z 向に移動することによ て、そのステ ジ 9上に搭 されて る テ をX 、 、 z 向に移動 能な第 、ステ ジ 9に対して テ をz 、 x 、 向に 移動 能な第2 とを備えて る。  It is possible to move up while holding P on the hod. By moving the step, step 9 upward in the X ,, z direction, the te mounted on that step 9 can be moved in the X ,, z direction with respect to the step 9, step 9. It is equipped with a te which can move in the z, x, and second directions.
0029 、 ア タ等のアクチ タを含む。 2 、ステ ジ029, including actors such as Atta. 2, stage
9 テ との間に 在された、例えばボイス イ タ等のアクチ タg と、 アクチ タの 動量を計測する の ( ン ダ など)とを含む。 テ は、少な とも3 のアクチ タg によ てステ ジ 9上に支持される。アクチ タ9 のそれぞれは、ステ ジ 9に対し て テ をz 向に独立して駆動 能である。 は、3 のアク チ タg それぞれの 動量を調整することによ て、ステ ジ 9に対して テ を、z 、 x 、 向に駆動する。このよ に、 、 2 を含む ステ ジ 、 ステ ジ s の テ を、X 、 、z 、 x 6 、 z 向の6 の 向に移動 能である。 ステ ジ 制御 に接続されて る。 は、 ステ 置を制御することにより、 テ の ホ ダ に保持された Pの 面のX 、 、z 、 x 6 、 z 向の6 の 向に関す る 置を制御 能である。 It includes an actuator g, such as a voice eater, which is located between 9 and 10 te, and a unit (such as under) for measuring the amount of movement of the actuator. Te is supported on stage 9 by at least 3 actuators g. Each of the actuators 9 can drive the te independently of the stage 9 in the z direction. Drives te in the z, x, and direction with respect to step 9 by adjusting the amount of movement of each of the actuators g of 3. In this way, the steps including, 2 and the step s Can be moved in the direction of 6 in the directions of X ,, z, x 6, z. Connected to stage control. Can control the position of the plane of P held in Te's holder with respect to the X ,, z, x 6, and z direction 6 directions by controlling the position.
0030 ステ ジ s の テ (ひ ては P)の 、 ステ ジ用の ザ 4によ て計測される。 ザ 4は制御 に接 続されて る。 ザ 4は、 テ の 面に設けられた計測 3 の 側を向 反射 2を用 て、 テ のX 、 、 z 向に関 する 報を計測する。 It is measured by ZE 4 of stage s (which is P) of stage s 0, for stage. The 4 is connected to the control. The 4 uses the reflection 2 facing the side of the measurement 3 provided on the te surface to measure the information about the X ,, and z directions of the te.
0031 ザ 4は、X軸を計測 とする計測光 4 を射出 能なX 4Xと 、 軸を計測 とする計測光 4 を射出 能な 4 とを含む。 テ 003 the 4 includes X 4X capable of emitting the measurement light 4 measuring the X axis and 4 capable of emitting the measurement light 4 measuring the axis. Te
の 部には、X軸に垂直な反射 2Xを有する計測 3Xと、 軸に垂直な反 射 2 を有する計測 3 とが設けられて る。X 4Xは、X軸を計測 と する計測光 4 を反射 2Xに照射 能であり、 テ のX 向に関 する 置を計測 能である。 4 は、 軸を計測 とする計測光 4 を反 射 2 に照射 能であり、 テ の 向に関する 置を計測 能 である。また、X 4X 4 の な とも一方を 、X軸を 計測 とする計測光 4 軸を計測 とする計測光 4 の な とも一方を 射することにより、 ザ 4は、その 数の 測光 4 を用 て、 テ の z 向の 報を計測 能である。また、 テ の ホ ダ に保持されて る Pの 面の (z 、 x、 向に関する )は、 オ カス・ ベ ング によ て検出される 。 オ カス・ ベ ング 制御 に接続されて る。 は、 ザ 4の 果及び オ カス・ ベ ング の 果に基 て、 ステ ジ 置を駆動し、 ホ ダ に保持されて る Pの 御を行 。  In this part, there are a measurement 3X having a reflection 2X perpendicular to the X axis and a measurement 3 having a reflection 2 perpendicular to the axis. X 4X is capable of irradiating the reflected 2X with the measurement light 4 measuring the X axis, and is also capable of measuring the position related to the X direction of TE. Numeral 4 is capable of irradiating the reflection 2 with the measuring light 4 whose axis is to be measured, and is capable of measuring the position related to the te direction. In addition, by radiating one of X 4X 4 and the measuring light 4 measuring the X-axis, and measuring one of the measuring light 4 measuring the X-axis, the 4 uses that number of metering 4's. , Te z direction information can be measured. In addition, the plane (with respect to z, x, and direction) of the plane of P held by Te's hodder is detected by Ocus Bengs. Connected to the OCS Beng Control. Drives the stage based on the result of The 4 and the result of Okas Beng, and controls P held by the holder.
0032 オ カス・ ベ ング はその 数の でそれぞれ 向の 報を計測することで、 x 向の ( )を検出する ものである。さらに、例えば ザ を使 て z 、 x 向の 報を計測 能であるときは、 の 作中にそのz 向の 報が 計測 能となるよ に オ カス・ ベ ング を設けな てもよ 、少な とも露光 作中は ザ の 果を用 てz 、 x 向に関する の 御を行 にしてもよ 。 003 The number of Okas Bengs is By measuring the information, () in the x direction is detected. Furthermore, for example, if the z can be used to measure the information in the z and x directions, it may be possible to provide a few ocus wings so that the information in the z direction can be measured during the operation of. Also, during the exposure work, you can use the results of Z to control the z and x directions.
0033 また、本実施 態にお ては、露光 Xは、 テ の 度を調整 能な 度調整 3 を備えて る。 度調整 3 は制御 に接続されてお り、制御 に制御される。 実施 態にお ては、温度調整 3 は テ の 部に設けられて る。 は、温度調整 3 を用 て、上面 o ホ ダ を含む テ の 度を調整 能である。 Further, in the present embodiment, the exposure X is provided with the degree adjustment 3 capable of adjusting the degree of exposure. Degree adjustment 3 is connected to the control and is controlled by the control. In the embodiment, the temperature control 3 is provided in the te section. The temperature adjustment 3 can be used to adjust the degree of temperature, including the top o holder.
0034 なお、温度調整 3 は、例えば、 テ 内に温度調整 能な流体( えば、 )を流すことによ て、 テ の 度を調整するものである。も ちろん、ヒ タ、ペ チ 子などを用 ることもできる。 The temperature adjustment 3 is to adjust the temperature by flowing a temperature-adjustable fluid (for example,) into the te. You can also use mochi, hita, and pets.
0035 実施 態の Xは、 テ らの 出光2 を して、 テ の 度情報を光学的に取得する検出 2 を備えて る。 2 は、 テ ら離れた所定位置に配置され、検出光2 を射出 能な ザ 2 を備えており、 ザ 2 ら 出した検出光2 を テ に照射する。 実施 態にお て、検出 2 は、 テ の 度情報を、 ザ 2 を用 て 学的に計測する。 The X of the embodiment is equipped with a detection 2 that emits light 2 from te and optically acquires information on the degree of te. 2 is disposed at a predetermined position away from the te, is equipped with the detecting light 2 capable of emitting the detecting light 2, and radiates the detecting light 2 emitted from the 2 onto the te. In the embodiment, the detection 2 is a measurement of the degree information by using the 2.
0036 2は テ 2 を示す 面図、図3は平面図である。 実 施 態にお ては、 テ は、検出光2 に対して 明である。00362 is a plan view showing TE 2, and FIG. 3 is a plan view. In the actual embodiment, TE is transparent to the detection light 2.
2 は、 テ に検出光2 を照射するとともに、その テ の 部を通過した検出光2 の 、その 果に基 て、 テ  2 irradiates the te with the detection light 2, and based on the result of the detection light 2 that has passed through the te part,
の 度情報を取得する。 テ は、例えば、 ョッ 本株式会社製の デ ア( )等の、透明で 膨張 数が小さ 材料で 成可能である。 0037 テ に設けられた計測 3は、内側を向 反射 を有して る。  To get information about. The TE can be made of a transparent material having a low expansion coefficient, such as Dare () manufactured by Yothon Co., Ltd., for example. The measurement 3 provided at 003T has a reflection that faces inward.
、 ザ 4 らの 測光 4 が 射される反射 2 背中 わ に形成されて る。 , The reflections from which the photometers 4 from 4 are emitted 2 Back Formed in the crocodile.
0038 2 の ザ 2 らの 出光2 は、透明な基 テ を介 して反射 照射される。 ザ 2 ら 出され、透明な基 テ Emitted light 2 from the second part of 00382 is reflected and irradiated through a transparent substrate. The transparent substrate
を通過し、反射 照射された検出光2 は、反射 反射する。  The detection light 2 that has passed through and is reflected and reflected is reflected and reflected.
で反射した検出光2 の 射光は、再び テ を通過した後、基 テ より 出され、 ザ 2 に到達する。 ザ 2 は、反射 反射し、 テ を通過した検出光2 を する。 ザ 2 は、 反射 反射した検出光2 を 、その 果に基 て、所定の  The incident light of the detection light 2 reflected at 2 passes through te again, then is emitted from the substrate and reaches the 2. The 2 reflects the reflected light and emits the detected light 2 that has passed through the te. The 2 uses the reflected and reflected detection light 2 as a basis for
反射 との 対位置 係を計測 能である。 述するよ に、検出 2 は、検出光2 の 果、すなわち、所定の 反射 との 対位置 係に基 て、 テ の 度情報を取得する。  It is possible to measure the position relative to the reflection. As described above, the detection 2 acquires the degree information based on the result of the detection light 2, that is, the correlation with the predetermined reflection.
0039 のよ に、 テ の 部には、X軸に垂直な反射 2Xを有する計 測 3Xと、 軸に垂直な反射 2 を有する計測 3 とが設けられて る。そ の 3Xの 2X 背中合わ に、X軸に垂直な反射 Xが設けられ、 計測 3 の 2 背中合わ に、 軸に垂直な反射 が設けられて る。 テ の 度情報を取得するための ザ 2 は、X軸を計 測 とする検出光2 を射出 能なX 2 Xと、 軸を計測 とする検出光2 を射出 能な 2 とを含む。X 2 Xは、X軸を計測 とする検出光 2 を反射 Xに照射 能であり、所定の 反射 XとのX 向に 関する相対位置 係を計測 能である。 2 は、 軸を計測 とする検出 光2 を反射 に照射 能であり、所定の 反射 との 向に関する相対位置 係を計測 能である。 Like 003, the TE section is provided with a measurement 3X having a reflection 2X perpendicular to the X axis and a measurement 3 having a reflection 2 perpendicular to the axis. The 3X 2X back-to-back has a reflection X perpendicular to the X axis, and the measurement 3 2 back-to-back has a reflection perpendicular to the axis. The 2 for acquiring the degree information includes X 2 X capable of emitting the detection light 2 measuring the X axis and 2 capable of emitting the detection light 2 measuring the axis. X 2 X is capable of irradiating the reflection X with detection light 2 whose X axis is measured, and is capable of measuring the relative position relationship in the X direction with a predetermined reflection X. 2 is capable of irradiating the reflection with detection light 2 whose axis is measured, and is capable of measuring the relative position relationship with respect to the direction of a given reflection.
0040 次に、検出 2 を用 て テ の 度情報を取得する手順に て 説明する。 実施 態では、 3に示すよ に、 テ の 度計測 004 Next, the procedure for acquiring the information each time by using the detection 2 will be described. In the embodiment, as shown in 3,
アとして ~ 4 ア ~ が設定される。 2 は、これら ア ~ それぞれの 度情報を取得する。 実施 態にお ては、 ア ~ のX 向における形状は正方形状であり、 ア ~ の 辺の である。  ~ 4a ~ is set as a. 2 acquires information about each of these. In the embodiment, the shape of A is in the X direction is a square shape, and is the side of A.
0041 2 は、計測 アの数に応じて複数(4 )の ザ 2 を有し て る。 2 は、これら複数の ザ 2 を用 て、 テ 004 12 has a plurality (4) of 2 depending on the number of measurement points. It is. 2 uses these multiple 2 to
の 数の 置のそれぞれに検出光2 を照射する。 体的には、 テ の X 向に れた所定位置に、 向に並ぶよ に2 のX 2 Xa 2 X bが配置される。また、 テ の 向に れた所定位置に、X 向 に並ぶよ に2 のX a 2 bが配置される。  Irradiate detection light 2 to each of the above units. Physically, two X 2 Xa 2 X b are arranged at a predetermined position in the X direction of the te so that they are aligned in the direction. Further, two X a 2 b are arranged at a predetermined position in the direction of te so as to be lined up in the X direction.
0042 3Xは、 形状( 方形状)に形成された テ の X側の側面 に設けられ、計測 3 は、 テ の 側の側面に設けられる。004 3X is provided on the side surface on the X side of the te formed in the shape (rectangular shape), and measurement 3 is provided on the side surface on the te side.
Xは X 向を向 ており、反射 は 向を向 て る。 Xは 、 ア 、 の x側の側面と一致しており、反射 は、 ア 、 の 側の 側面と一致して る。X Xa 2 Xbは、 テ を介して、 X 向 ら、反射 Xに検出光2 を人射し、 a 2 bは、 テ を介して、 向 ら、反射 に検出光2 を人射する。  X points in the X direction and the reflection points in the direction. X coincides with the side of x on the side of A, and the reflection coincides with the side of A on the side of. X Xa 2 Xb emits the detection light 2 from the X direction to the reflection X through the te, and a 2 b emits the detection light 2 to the reflection direction via the te.
0043 X Xa らX とほぼ平行に射出される検出光2 は、 アC、 を通過 した後、反射 Xで反射し、再び ア 、Cを通過した後、X Xaで される。X Xb らX とほぼ平行に射出される検出光2 は、 ア 、 を通過した後、反射 Xで反射し、再び ア 、 を通過した後、X Xb で される。 a ら とほぼ平行に射出される検出光2 は、 ア 、 を通過した後、反射 で反射し、再び ア 、 を通過した後、The detection light 2 emitted substantially parallel to X XXa and X passes through A, C, is reflected by reflection X, passes through A and C again, and is then X Xa. The detection light 2 emitted substantially parallel to X Xb and X passes through A, is reflected by the reflection X, passes through A again, and is then X Xb. The detection light 2 emitted substantially parallel to a et al. passes through a, is reflected by reflection, passes through a again, and then
aで される。 b ら とほぼ平行に射出される検出光2 は、 アC、 を通過した後、反射 で反射し、再び ア 、Cを通過した後、 bで される。  done with a. The detection light 2 emitted almost parallel to b and b passes through a and C, is reflected by reflection, passes through a and C again, and is then b.
0044 また、 テ の 、 ザ 4X 4 によ て計測され る。X 4Xは、 テ の X 向に れた所定位置に配置されて る。X 4Xは、反射 X 背中合わ に形成された x 向を向 反射 2Xを用 て テ のX 向の 報を取得する。X 4Xは、 テ を介さずに、 x 向 ら計測光 4 を反射 2Xに する。004 It is also measured by The 4X4 of Te. The X 4X is placed in a predetermined position in the X direction of the te. X 4X obtains information about Te's X direction using reflection 2X, which is formed by the reflection X and back-to-back. X 4X makes the measuring light 4 reflect 2X from the x direction without going through TE.
4 は、 テ の 向に れた所定位置に配置されており、 反射 背中合わ に形成された 向を向 反射 2 を用 て の 向の 報を取得する。 4 は、 テ を 介さずに、 向 ら計測光 4 を反射 2 に する。 4 is placed in a predetermined position facing the te, and the direction 2 formed by the back-to-back reflection is used. Get information about 4 reflects the measurement light 4 toward the reflection 2 without going through the TE.
0045 テ の 度情報を取得するために、制御 は、検出 2 の ザ 2 Xa 2 X、2 a 2 bのそれぞれ ら検出光2 を射出する。 ザ 2 Xa 2 X、2 a 2 bのそれぞれ ら 出された検出光2 は、 テ を通過し、反射 X のそれぞれで反射し、再び テ を通過して、 ザ Xa 2 Xb 2 a 2 bに される 。 2 は、 テ を通過した検出光2 を 、その 果に 基 て、 テ ( テ を構成する )の 出光2 に対する 折率 報を求め、その 折率 報に基 て、 テ の 度 情報を取得する。 In order to obtain the information of 004 degrees, the control emits the detection light 2 from each of the detection 2's 2 Xa 2 X and 2 a 2 b. The detected light 2 emitted from each of the 2 Xa 2 X and 2 a 2 b passes through te, is reflected by each of the reflections X, passes through te again, and is transmitted to the Xa 2 Xb 2 a 2 b. Be done. 2 obtains the detected light 2 that has passed through the te, and based on the result, obtains the rate of occurrence of the te (constituting te) with respect to the output of light 2, and acquires the degree information of te based on the rate of occurrence. .
0046 2 は、検出光2 の 果に基 て、 テ の 004 462 is the TE based on the result of detected light 2.
での 折率 に対する 折率 量を求め、求めた 折率 量に基 て、 テ の に対する 度変 (A )を求める。これにより 、 テ の 度を求めることができる。  The fold amount for the fold rate is calculated, and the degree of variation (A) with respect to te is calculated based on the calculated fold amount. By this, the degree of test can be obtained.
0047 下、具体例に て説明する。 ア ~ の 出光2 に対する 折率( 折率)を ~ とした場合、各 ア ~ の 辺の であるので、 ザ aで計測される としたとき、A specific example will be described below. When the folding rate (folding rate) of A to A for Idemitsu 2 is, it is for each side of A, so when the measurement is made in the a,
( )X2 ( )  () X2 ()
が成り立 。 のよ に、 ザ 2 は、所定の 反射 との 対位置 ( えば )を計測 能である。また、上述のよ に、反射  Holds. Therefore, The 2 can measure the position (eg,) of a given reflection. Also, as mentioned above,
ア の 側の側面とは一致して る。したが て、 ザ aは、 ア の 側の側面と、 2 ア の 側の側面との間の 向に関する距離( )を計測 能である。 様に、 ザ 、2 Xa 2 Xbのそれぞれ で計測される 、 、 と  It coincides with the side face on the a side. Therefore, the a can measure the distance () in the direction between the side on the A side and the side on the 2A side. In the same way, measured at each of the 2 Xa 2 Xb ,,,
2 3 4 したとき、 2 3 4
( )X2 (2)  () X2 (2)
2 C 2 C
( )X2 (3)  () X2 (3)
3 C 3 C
( X2 (4) が成り立 。 (X2 (4) Holds.
0048 ( )~(4)式にお て、長さ は既知の値であり、 ~ の値は、 ザIn the formulas 004 () to (4), the length is a known value, and the values of to are
2 a 2 、2 Xa 2 Xbのそれぞれの 果 ら導出されるため、 ( )~(4)式を連立方程式として解 ことにより、 ア ~ の 出光2 に対 する 折率を ~ を求めることができる。このよ に、検出光2 の 果に基 て、 テ の 出光2 に対する 折率 報を求めることができる。 また、基準 での 折率 に対する 折率 ( 、 0 C )を求めることができる。  Since it is derived from each of 2 a 2 and 2 Xa 2 Xb, by solving Eqs. () To (4) as simultaneous equations, it is possible to obtain F . In this way, based on the result of the detected light 2, it is possible to obtain the information about the output ratio of TE to the output light 2. In addition, it is possible to obtain the folding rate (, 0 C) with respect to the standard folding rate.
 0
0049 憶装置2には、 テ の 度変 折率 との 係、換言す れば、屈折率の (d d )が 記憶されて る。 (d d )は、 テ を形成する材料( 実施 態では デ ア) 有の 知の値である 。また、基準 での 折率 の値も、材料 有の 知の値であり 憶装置 2に記憶されて る。 The storage device 2 stores the relationship with the degree of change of the te, that is, the refractive index (d d). (d d) is a known value of the material forming the te (in the embodiment, dare). The value of the standard bending rate is also the known value of the material and is stored in storage device 2.
0に対する ア の 度変 量をA とした 、 Let A be the degree of variation of A with respect to 0,
(d d )X A (5)  (d d) X A (5)
が成り立 。 のよ に、屈折率 は( )~(4) より 出され、基準 折率 Holds. Therefore, the refractive index is calculated from () to (4)
(d d )は既知の値であるため、 ア の に対する 度変 A を求めることができる。したが て、 ア の ( 対温度)を求める ことができる。 様に、基準 に対する 2~ 4 ア ~ の 度変 量を A A A とした場合、 Since (d d) is a known value, it is possible to find the time-varying A for A. Therefore, it is possible to obtain (a) (temperature). Similarly, if A A A is the degree variable of 2 to 4 A with respect to the standard,
(d d )X A (6) (d d) X A (6)
(d d )X A (7) (d d) X A (7)
C C
(d d )X A (8)  (d d) X A (8)
が成り立ち、 2~ 4 ア ~ それぞれの ( 対温度)を求めることができる  Can be obtained, and each (to temperature) of 2 to 4
0050 上のよ に、検出 2 は、 ザ 2 テ の 部に形 成された反射 を用 て、所定の 反射 との 対位置 係を計測 し、その 果に基 て、 テ の 度情報を取得することができる また、本実施 態にお ては、検出 2 は、 テ の 数の ( ア ~ )のそれぞれに検出光2 を照射して るので、それら複数の 出光2 の 果に基 て、 テ の ア ~ 毎の温度、すなわち テ の 度分布を求めることができる。 00500 As above, the detection 2 uses the reflection formed in the part of the 2T to measure the position relative to the predetermined reflection, and based on the result, obtains the degree information of the TE. be able to In addition, in the present embodiment, since the detection 2 irradiates the detection light 2 to each of the number (a to) of te, based on the result of the plurality of the emitted light 2, the te The temperature distribution for each temperature, that is, the degree distribution of TE can be obtained.
0051 2 を用 た テ の 度情報を取得する動作は、例えば Pを する前に行われる。 2 の 制御 に出力され、制御 は、検出 2 で取得した テ の 度情報に応じて、所定の 理を実行することができる。 えば、 テ ( ホ ダ )に され る前の基 P テ との 度差が小さ なるよ に、ある は、 Pの 度に対して テ の 度が所定関係となるよ に、制御 は、取得した テ の 度情報に基 て、 P テ の な とも 一方の 度を調整することができる。 えば、制御 は、取得した テ The operation of acquiring the information every time using 00512 is performed before P, for example. 2 is output to the control, and the control can execute a predetermined process according to the degree information acquired in the detection 2. For example, the control is obtained such that the degree difference with the base P-te before being changed to te (hodder) is small, or the degree of te has a predetermined relationship with the degree of P. Based on the degree information, one degree of P degree can be adjusted. For example, control is
の 度情報に基 て、 テ ( ホ ダ )に される前の 基 P テ との 度差が小さ なるよ に、温度調整 3 を制御して 、 テ の 度を調整する。このとき、 Pの 度を検出する センサ が設けられて る場合には、制御 は、その センサを用 て Pの 度を 予 出する。 、この センサの (すなわち Pの ) に基 て、ある はこの Pの 度を目標値として、温度調整 3 を制御し て、 テ の 度を調整する。 は、検出 2 を用 て、 テ の 度情報を タし 、温度調整 3 を用 て、 テ  Based on the temperature information, control temperature adjustment 3 to adjust the temperature so that the difference between the temperature of the base and the base before being changed becomes small. At this time, if a sensor for detecting the degree of P is provided, the control uses the sensor to predict the degree of P. , Or the temperature of P based on the sensor (ie, of P) is used as a target value to control temperature adjustment 3 to adjust the temperature of TE. Uses detection 2 to obtain temperature information and temperature adjustment 3 to detect temperature information.
の 度を調整する。これにより、制御 は、 テ を所望の 度に することができる。  Adjust the degree of. This allows the control to bring TE to the desired degree.
0052 また、 Pの 度を検出する センサが設けられて る場合には、制御 005 In addition, if a sensor that detects the degree of P is provided, control
は、取得した テ の 度情報と温度センサの 果とに基 て、 テ ( ホ ダ )に される前の基 P テ との 度差が小さ なるよ に、ある 、 Pの 度に対して テ の 度 が所定関係となるよ に、温度調整 5を制御して、 Pの 度を調整した後、 の 度調整された Pを、 4を用 て テ に することが できる。なお、温度センサが設けられて る場合には、温度調整 5 度調 整 3 の ずれ 一方を ても、 Pの 度と基 テ の 度とを 所定の 係に調整することができる。また、温度調整 5で調整される Pの 度が予 定められて る場合には、温度 センサを使わずに、温度調整 5で 調整される Pの 度と 2 の 果とに基 て、温度調整 3 を使 て テ の 度を調整して、 Pの 度と基 テ の 度とを所定の 係に調整することができる。もちろん、制御 は、検出 2 の 果に基 て、温度調整 5 度調整 3 のそれぞれを用 て、 P テ との 方の 度を調整することもできる。 Based on the obtained temperature information of the temperature and the result of the temperature sensor, there is a small difference between the temperature of the base P and the temperature before the temperature is changed to the temperature of the base. After adjusting the degree of P by controlling temperature adjustment 5 so that the degree of The adjusted P can be turned to 4 using 4. If a temperature sensor is provided, the degree of P and the degree of substrate can be adjusted in a predetermined relationship even if one of temperature adjustment 5 degrees and adjustment 3 is deviated. Also, if the degree of P adjusted by temperature adjustment 5 is predetermined, the temperature adjustment is performed based on the degree of P adjusted by temperature adjustment 5 and the result of 2 without using the temperature sensor. You can use 3 to adjust the degree of TE and adjust the degree of P and the degree of basis to a predetermined relationship. Of course, the control can also adjust the degree with respect to P-te by using each of temperature adjustment 5 degree adjustment 3 based on the result of detection 2.
0053 そして、検出 2 の 果に基 て、 テ ( ホ ダ ) に される前の基 P テ の な とも一方の 度を調整する 動作が実行された後、制御 は、 4を用 て、 Pを テ 0053 Then, based on the result of detection 2, after the operation of adjusting the degree of one of the bases P before being changed to the TE (order) is executed, the control uses 4 to set P Te
に する。 P テ とは所望の 係にな ており、 テ で Pを保持したときにも、 Pが することを抑制することができ る。  To Since P has a desired relationship with P, even when P is held by T, it is possible to prevent P from moving.
0054 4は、 テ に された後の基 Pを示す 面図である。 P上 には複数の ョッ 域が設定されて る。 は、投影 学系P の00544 is a plan view showing the group P after being subjected to a te treatment. Multiple regions are set on P. Is the projection system P
( の ) Pとが、 4 、矢 に沿 て相対的に移動する よ に、 Pを保持した ステ ジPS を移動し 、 ョッ 域のそれぞれ を順次 する。 えば、制御 は、 の ョッ 域を するために、 の ョッ 域の A とを位置 わ した後、基 ステ ジ PS を制御して、投影 A に対して Pを 向に走査(スキヤン)する。 実施 態にお ては、投影 は、X 向を長手方向とするス ット状に設定 されており、投影 A に対して Pを 向に走査し 、 P上に露光 を照射することにより、所定の きさを有する の ョッ 域を すること ができる。そして、 の ョッ 域の 光が完了した後、制御 は、 Pをス テッピング 動し、次に露光される き 2の ョッ 域の とを位置 わ した後、基 Pを 向に走査し、その 2の ョッ 域を する。 は、スキヤン 動とステッピング 動とを繰り返し、 P上の 複数の ョッ 域のそれぞれを順次 する。また、 P上の ョッ 域を するときには、制御 は、反射 2に計測光 4 を照射する ザ 4を 用 て、 Pを保持した テ の 報を タし 、 ステ PS の 動を制御する。 Move the step PS holding P so that (and) P and 4 move relatively along the arrow, and move through each of the zones. For example, the control locates A and A in the region of, and then controls the substrate PS to scan (scan) P towards projection A. In the embodiment, the projection is set in the shape of a set having the X direction as the longitudinal direction, and the projection A is scanned in the direction of P and the exposure is irradiated onto the P so that the projection is performed. It is possible to control the size of the area. Then, after the light in the area of is completed, the control steps P to the next 2 areas of exposure. After locating and, scan in the direction of the base P and scan the region of 2. Repeats the skimming motion and the stepping motion to sequentially move each of the multiple regions on P. In addition, when controlling the range above P, the control controls the movement of the PS by using the 4 that irradiates the reflection 2 with the measurement light 4 and reports the TE holding P.
0055 上 明したよ に、検出 2 は、 Pを保持する テ の 度を 確に取得することができるため、制御 は、例えば、 P テ との 度差に起因する 良の 生を抑え、 Pを良好に露光することができ る。また、検出 2 は、 テ の 度情報を光学的に検出するものであ り、温度情報を取得するための ザ 2 等の機 、 テ の 側の れた位置に設けられて る。 えば、 テ に温度センサを設けた 場合、その センサによ て テ の 量が増したり、ある は温度セ ンサに接続されるケ 類によ て テ ( ステ ジPS )の 滑 な移動を妨げる可能性があるが、本実施 態にお ては、そのよ 不具合の 生 を抑えることができる。 As described above, Detection 2 can accurately obtain the degree of TE that holds P. Therefore, control is performed by suppressing the occurrence of goodness due to the difference between P and P, for example. Good exposure is possible. In addition, the detection 2 is for optically detecting the temperature information of the TE, and is provided at a position on the TE side such as the 2 for acquiring the temperature information. For example, if a temperature sensor is provided on the te, that sensor may increase the amount of te, or a cable connected to the temperature sensor may prevent the te (stage PS) from moving smoothly. However, in this embodiment, it is possible to prevent the occurrence of such a defect.
0056 実施 態にお ては、露光 Xの 況を報知する報知 3が設けら れており、例えば、検出 2 で テ の 度情報を タし 、温度 調整 3 を用 て テ の 度調整を〒 合、制御 は、報知 3を用 て、例えば テ が所望の 度にな たことを報知すること ができる。ある は、例えば 度調整 3 を用 て テ の 度調整 作を実行したにも わらず、検出 2 の 果に基 て、 テ In the embodiment, the notification 3 for notifying the status of the exposure X is provided. For example, if the detection 2 detects the temperature information, the temperature adjustment 3 is used to adjust the temperature. The control can use the notification 3 to notify, for example, that TE has reached a desired frequency. Or, for example, even if the adjustment operation of TE was performed using adjustment adjustment 3, the TE adjustment was performed based on the result of detection 2.
が所望の 度にならな と判断した場合には、制御 は、報知 3を用 て、例えば ラ 警告を発することができる。  If the control determines that it is not at the desired time, the control can use the notification 3 to issue, for example, a warning.
0057 なお、本実施 態にお ては、 テ に4 の ア ~ を 設定し、これら ア ~ それぞれの 度情報を取得して るが、もちろん、計測 リアは4 に限られず、任意の 数に設定してもよ 。 リアの数を 多 することにより、 テ の 度分布をより 確に求めることができる。 0058 また、本実施 態にお ては、計測 アを テ のX 向に複 数 定し、これによりX 向に関する 度分布を求めて るが、例えばZ 向に 関して複数の アを設定し、それら アのそれぞれの 度 情報を取得するよ にしてもよ 。 することにより、Z 向に関する 度分布を求 めることができる。 In the present embodiment, 4 sets of A to are set in TE and information is obtained for each of these sets. Of course, the number of measurement rear is not limited to 4, and any number can be set. You can. By increasing the number of rears, the degree distribution of TE can be obtained more accurately. Further, in the present embodiment, a plurality of measurement points are set in the X direction of te, and the degree distribution in the X direction is obtained by this. For example, a plurality of points are set in the Z direction. You may choose to obtain information about each of these. By doing so, the degree distribution in the Z direction can be obtained.
0059 なお、本実施 態にお ては、 ザ 4が テ を介さずに反 射 2に計測光 4 を照射して テ の 報を計測し、 ザ 4とは別の ザ 2 が テ を介して反射 検出光2 を照射して テ の 度情報を取得して るが、例えば、 テ In the present embodiment, the 4 measures the information of the te by irradiating the reflection 2 with the measuring light 4 without passing the te, and the 2 different from the 4 passes the te through the te. The reflected detection light 2 is radiated to obtain information on the degree of the test.
の 度情報を取得するための ザ 2 の 果に基 て、 テ の 置を制御するよ にしてもよ 。すなわち、 テ の 度情報 を取得する動作と、 テ の 報を取得する動作とを、 ザ 2 を用 て実行するよ にしてもよ 。この 合、 ザ 4を ことができる 0060 なお、上述の 態にお ては、検出 2 の 果に基 て、露光 良の 生を抑えるために、 P テ の な とも一方の 度を調 整して るが、この 度調整を行わずに、例えば、制御 は、検出 2 で取 得した テ の 度情報に基 て、 テ ( ステ ジ S )の 件を調整することができる。  It is also possible to control the position of the te based on the result of the 2 above to obtain the information. That is, the operation of acquiring the information on the TE and the operation of acquiring the information on the TE may be executed by using the second operation. In this case, it is possible to do the 4 above. In the above-mentioned state, based on the result of the detection 2, in order to suppress the occurrence of good exposure, one of the P test is adjusted. However, for example, the control can adjust the condition of TE (stage S) based on the information of TE acquired in Detection 2 without adjusting this time.
0061 えば、 4を参照して説明したよ に、 P上の複数の ョッ 域を順次 006, for example, as described with reference to 4, the multiple regions on P are sequentially
する際、制御 は、検出 2 で取得した テ の 度情報に基 て、 ステ ジPS を制御して、 P上の各 ョッ 域を するときの テ の 置を調整する。  In this case, the control controls the stage PS based on the information on the temperature obtained in the detection 2 to adjust the position of the te when moving each knee on P.
0062 えば、 P テ との 度差に起因して、 Pが 、 P上の各 ョッ 域の 置、 又は大きさが変化して、 P上の各 ョッ の 離が変動する可能性がある。そこで、 P テ との 度差 、 記憶された P テ との 度差に起因する ョッ の 離の 動量に基 て、制御 は、例えば、 の ョッ 域を 後、第2の ョッ 域を 置に配置するために テ をステッ グ 動するときの 離を調整することができる。 For example, due to the difference between P and P, the position or size of each region on P may change, and the distance between each region on P may change. Therefore, based on the amount of movement of the separation due to the degree difference with P-te and the stored degree difference with P-te Later, the distance can be adjusted when stepping the te to position the second arm in place.
0063 すなわち、 P テ との 度差と基 テ に保持された006, that is, the difference between P and
P上の複数の ョッ の 対位置の との 係を予 めて記憶装置 2に記憶してお ことにより、制御 は、 ステ ジPS を制御して、検出 2 で取得した テ の 度情報と記憶装置2の 報とに基 て、 P上の各 ョッ 域を するときの テ の 置を調整することが できる。この 合、基 Pの 度として、温度センサの 果を用 てもよ 、温 度調整 5による Pの 度を用 てもよ 。このよ に、検出 2 の 果に基 て テ の 件を調整することによ て、 P上に 先に形成されて る タ ンに、次の タ ン像を良好に重ね合わ ることができる 。このよ に、 Pの 件を調整することによ て、 P テ と の間に温度差がある場合でも、 P上の ョッ 域を良好に露光することができ である。  By storing the relationship between the paired positions of the multiple needles on P in memory device 2 in advance, the control controls step PS and the information and memory of the temperature acquired in detection 2 are stored. Based on the information from device 2, it is possible to adjust the position of te when each region on P is operated. In this case, you can use the result of the temperature sensor or the degree of P by the temperature adjustment 5 as the degree of base P. Thus, by adjusting the condition of TE based on the result of Detection 2, the next tan image can be superposed on the tan previously formed on P. Thus, by adjusting the condition of P, it is possible to satisfactorily expose the region on P even if there is a temperature difference from P.
0064 なお、制御 は、例えば ステ ジPS の 件が変更されたことを報知006 In addition, control informs that the condition of Stage PS has been changed.
3で報知することができる。 えば 3は、 ステ ジPS の 件 が変更したことを表示 置で表示することができる。  Can be notified by 3. For example, 3 can display on the display that the condition of Stage PS has changed.
0065 また、制御 は、検出 2 を用 て取得した テ の 度情報に 基 て、結像 4 を用 て、投影 学系P の ( ) を調整することができる。 Further, the control can adjust () of the projection system P by using the imaging 4 based on the degree information acquired by using the detection 2.
0066 えば、 P テ との 度差に起因して、 Pが 、 ョッ 域の きさが変化したり、ある は 5に示すよ に、 P上の ョッ 域が 理想の 状に対して変形 、理想の ( 5では正方形状)に対して実際の ( 5では台形状)が異なる可能性がある。そこで、 P テ との 度 差、 P テ との 度差に起因する P上の ョッ 域の に基 て、制御 は、結像 4 を用 て、 P上に先に形 成されて る ョッ 域の 状に合わ て、その ョッ 上に投影する タ ン 像を調整することができる。 0067 すなわち、 P テ との 度差と基 テ に保持された P上の ョッ 域の との 係を予 めて記憶装置2に記憶してお こと により、制御 は、結像 4 を制御して、検出 2 で取得した テ の 度情報と記憶装置2の 報とに基 て、投影 学系P に よる タ ン像の投 ( タ ン像の形 、大きさ等)を調整することができる。こ の 合、基 Pの 度として、温度センサの 果を用 てもよ し、温度調整 5による Pの 度を用 てもよ 。このよ に、検出 2 の 果に 基 て投影 学系P による タ ン像の投 態を調整することによ て、 P上に先に形成されて る タ ンに、次の タ ン像を良好に重ね合わ ることが できる。 For example, due to the difference from P te, P changes the size of the range, or, as shown in 5, the range on P is deformed and idealized. The actual (5 is trapezoidal) may be different from (5 is square). Therefore, based on the deviation on P, and the deviation on P caused by the deviation on P, the control is performed using imaging 4 and the control previously formed on P. You can adjust the tan image projected on the screen according to the shape of. 006: That is, the relationship between the degree difference with P-te and the area of the region on P held at the base is stored in the storage device 2 in advance, so that the control controls the image formation 4. , The projection of the tan image by the projection system P (shape, size, etc. of the tan image) can be adjusted based on the temperature information acquired in the detection 2 and the information in the storage device 2. In this case, the temperature of the temperature sensor may be used as the degree of P, and the degree of P by temperature adjustment 5 may be used. Thus, by adjusting the projection image of the tan image by the projection system P based on the result of the detection 2, the next tan image is better than the tan image previously formed on P. Can be overlaid.
0068 なお、制御 は、例えば タ ン像の投 態が所望 態に 正しきれな 場合には、報知 3を用 て、警告 ラ を発することができる。 Note that, for example, when the state of the tan image cannot be completely adjusted to the desired state, the control can issue the alarm 3 by using the notification 3.
もちろん、検出 2 の 果に基 て、 タ ン像の投 態の テ の 置調整とを実行してもよ 。  Of course, based on the result of detection 2, the position adjustment of the tan image state may be performed.
0069 2006 9 2
2 態に て 6を参照して説明する。 下の 明にお て、上述の 態と同一 同等の 分に ては同一の 号を付し、その 明を簡 略 し は省略する。  Refer to 6 for 2 states. In the following description, the same components as those described above are designated by the same reference numerals, and the description thereof will be omitted.
0070 実施 態の テ の 面には、反射 6を有する反射 5が設 けられて る。 6は z 向を向 て る。 2 、 テ Reflection 5 having reflection 6 is provided on the te surface of the 007 embodiment. 6 points in the z direction. 2, te
に検出光23 を照射する 23と、検出光23 に対して所定の 係に 設けられ、検出光23 を 能な受 25を有する 24とを備えて る。  It is provided with 23 for irradiating the detection light 23, and 24 having a receiver 25 that is provided in a predetermined relationship with the detection light 23 and is capable of receiving the detection light 23.
の 様、基 テ は、検出光23 に対して 明である。 0071 の 様、本実施 態にお ても、 テ には、X  , The substrate is transparent to the detection light 23. Even in this embodiment like 007, the X
向に4 の 度計測 ア ~ が設定される。 ア ~ の 辺の である。 6には、 アC、 を通過するよ に検出光23 を射出する 23 と、そ 23に対応して設けられた 24とが示されて る。  4 degree measurement A to are set. It is on the side of a. 6 shows 23 that emits the detection light 23 so as to pass through C, and 24 that is provided corresponding to 23.
23は、反射 6に め方向 ら検出光23 を照射する。 24は、反射 20 6で反射した検出光23 を する。 23 emits detection light 23 from the direction for reflection 6. 24 reflection The detection light 23 reflected by 206 is emitted.
0072 ではあるが、検出 2 、 ア 、 を通過するよ に検出光23 を射 出する 23 びその 23に対応する 24と、 ア 、Cを 通過するよ に検出光23 を照射する 23 びその 23に対応するAlthough it is 007, it corresponds to 23 that emits detection light 23 so as to pass through Detection 2, A, and 24, and that corresponds to 23 and 23 that emits detection light 23 so that it passes through A and C. Do
24と、 ア 、 を通過するよ に検出光23 を照射する 23 びその 23に対応する 24とを備えて る。  24, 23, which emits the detection light 23 so as to pass through, and 24 corresponding to the 23.
0073 下、図6を参照しながら、 アC、 を通過するよ に検出光23 を射出するBelow, referring to FIG. 6, the detection light 23 is emitted so as to pass through A and C.
23 びその 23に対応する 24に て主に説明するが、 他の投 23 24もほぼ同様である。  23 and 24 corresponding to 23 are mainly explained, but other investments 23 24 are almost the same.
0074 23 24のそれぞれは、 テ の 側の れた位 置に設けられて る。 23は、 テ ら離れた位置 ら検出光2 3 を テ に照射する。 24は、 テ ら離れた位 置で、 テ を通過した検出光23 を する。 6にお ては、投射 23は、 テ の 向に れた位置に設けられ、 24は、 テ の 向に れた位置に設けられて る。 Each of the 007 23 23 24 is located in a position on the te side. 23 irradiates te with detection light 23 from a position away from te. 24 is a position apart from the te and emits the detection light 23 that has passed through the te. In 6, the projection 23 is provided in a position facing the te, and 24 is provided in a position facing the te.
0075 23 ら 出された検出光23 は、 テ の 側の側面に所 定の 0で人射し、 テ を通過した後、反射 6に め方向 ら 人射する。 6で反射した検出光23 は、 テ を通過した後、基 テ の 側の側面 ら 出され、 24の 25に到達する。The detection light 23 emitted from 007 23 is incident on the side surface on the te side with a fixed 0, and after passing through te, is emitted from the direction for reflection 6. The detection light 23 reflected by 6 is emitted from the side surface on the substrate side after passing through the te and reaches 25 of 24.
2 、 テ を通過した検出光23 の 果に基 て、 テ の 出光23 に対する 折率 報を求め、その 折率 報に基 て、 テ の 度情報を取得する。 実施 態にお ても、検出 2 、検出光23 の 果に基 て、 テ の での 折率 に対する 折率 量を求め、求めた 折率 量に基 て、 テ の に対する 度変 (A )を求める。これにより、 テ の 度情報を求める。  2. Based on the result of the detected light 23 that has passed through the te, the te output for the te 23 is obtained, and the te frequency information is acquired based on the obtained od. In the embodiment as well, based on the results of Detect 2 and Detected Light 23, the percentage of change in te with respect to te is obtained, and based on the obtained amount of fold, the variation with respect to te (A) is calculated. Ask. In this way, the information on the degree is obtained.
0076 実施 態にお ては、検出 2 、 24の 25の 置に 基 て、温度情報を取得する。 テ の 度に応じて、 テ の 出光23 に対する 折率が変 する。その 折率 に応じて、 テ を通過する検出光23 の が変動する。 えば、 6にお て、検出光23 が基準 の テ を の 23 aで通過する場合、基準 に対してA だけ 度変 した テ を通過する検出光23 は、その テ の 度変化、ひ ては屈折率 に応じて、 の 23 aとは異 なる 2の 23 bで テ を通過する。 テ の 度変化( 折率 に起因して検出光23 の が変動すると、 24の 25 での 出光23 の 置が変動する。 えば、 の 23 aで テ In the embodiment, the temperature information is acquired based on the positions 25 of detections 2 and 24. Depending on the degree of The turnover rate for Idemitsu 23 changes. The detection light 23 passing through the TE fluctuates according to the folding rate. For example, if the detected light 23 passes through the reference te at 23 a in 6, the detected light 23 passing through the te that is changed by A with respect to the reference changes by the te, and thus the detected light 23. Depending on the index of refraction, it passes through te at 23 b of 2 which is different from 23 a of. If the detected light 23 fluctuates due to the degree of change in the te (refraction rate), the position of the emitted light 23 at 24 of 25 fluctuates.
を通過した検出光23 は、 25上における の 25 に到達し、 2の 23 bで テ を通過した検出光23 は、 25上における の 25 とは異なる 2の 25 に到達する。すなわち、 25での 出光 23 の 、 テ の に対する 度変化( 折率 に対する 折率 )に伴 て A だけ する。  The detected light 23 that has passed through 25 reaches 25 of 2 on 25, and the detected light 23 that has passed through t at 23 b of 2 reaches 25 of 2 which is different from 25 of 25 on 25. In other words, only A is required to change the output 23 of the light emitted at 25 with respect to te (the ratio with respect to the fraction).
0077 射角 、 び長さ は既知の ( 定の )であり、距離A は 24の 果 ら めることができる。また、上述のよ に、検出 2 、複数の 23のそれぞれより、 ア 、 を通過する検出光23 、 ア 、Cを通過する検 出光23 、 ア 、 を通過する検出光23 を照射して る。したが て、上述 の 態とほぼ同様、人射角 、長さ 、 A を含む4 の式が導出 され、これら4 の式を連立方程式として解 ことにより、 ア ~ の 折率 ~ を導出することができる。また、基準 での 折率 に対する 折率 ( )を導出することができる。 The angle of incidence and length are known (constant) and the distance A can be 24. Further, as described above, the detection light 23 and the detection light 23 passing through A and C are emitted from the detection 2 and the plurality of 23, respectively. Therefore, similar to the above-mentioned situation, four equations including the human incidence angle, length, and A are derived, and by solving these four equations as simultaneous equations, the ellipticity of You can In addition, it is possible to derive the folding rate () with respect to the folding rate based on the standard.
0 0 C 0 0  0 0 C 0 0
0078 また、上述の 様、記憶装置2には、 テ を形成する材 料 有の 知の値である 折率の (d d )が 記憶されて る。 様に、材料 有の 知の値である基準 での 折率 の値も、記憶装置 2に記憶されて る。したが て、 (d d )と、基準 折率 と、 出した ア ~ の 折率 ~ とに基 て、 ア ~ の 度を求めることができる 。また、 テ の 度分布を求めるこ ができる。また、制御 は、 態と同様に、検出 2 で取得した テ の 度情報に応じて、 定の 理を実行することができる。 Further, as described above, the storage device 2 stores the bending rate (dd) which is the known value of the material forming the te. Similarly, the value of the bending rate on the basis of the known value of the material is also stored in the storage device 2. Therefore, based on (dd), the standard folding rate, and the folding rate of ~, the degree of ~ can be obtained. It is also possible to obtain the degree distribution of TE. In addition, the control is performed in the same way as the state according to the degree information acquired in Detection 2. Can perform certain reasons.
0079 なお、 2 態にお ても、計測 アは4 に限られず、任意の 数に 設定してもよ 。また、例えばZ 向に関して複数の アを設定し、そ れら アのそれぞれの 度情報を取得するよ にしてもよ 。 Note that the number of measurement points is not limited to 4 in the 2 states, and may be set to any number. In addition, for example, you can set multiple points for the Z direction and acquire information for each of these points.
0080 なお、上述の 、 2 態にお ては、 テ 体が透明な材料( えば デ ア)で 成されるよ に説明したが、例えば 出光が通過する一部分 のみが透明な部 成されて てもよ 。 In the above-mentioned 2nd state, it was explained that the body is made of a transparent material (for example, dare). However, for example, even if only a part through which the emitted light passes is made transparent. Yeah.
また、上述の 、 2 態にお て、 テ の 度情報は、 テ に Pを保持した状態で取得してもよ し、 Pを保持して な 状態 で取得してもよ 。  In addition, in the above-mentioned two states, the degree information may be acquired while holding P in te, or may be acquired without holding P.
0081 なお、上述の 態の Xとして、例えば、国際公開 99 495 4 ン に開示されて るよ 、露光 の 間を 体で満たす 置に適用してもよ 。 置にお ては、 P テ の 等に 体が接触するが、上述の 態の 置を用 ることにより 、 テ の 度情報を 確に取得することができる。この 合、検出 2 (2 )で検出された テ の 度情報に基 て 体の 度を調整す るよ にしてもよ 。 It should be noted that, as the X in the above-mentioned state, for example, as disclosed in International Publication 99 495 4, it may be applied to a device in which the body is filled during exposure. In the equipment, the body comes into contact with, for example, P-te, but by using the equipment in the above-mentioned state, it is possible to accurately obtain the degree information. In this case, the body degree may be adjusted based on the degree information detected in detection 2 (2).
0082 なお、上記 態の Pとしては、半導体 イス製 の 導体ウ Note that P in the above state is a conductor window made of a semiconductor chair.
のみならず、ディスプ イデ イス用のガラス 、 ッド用のセラ ック ウ 、ある は 置で用 られる スクまたは の ( 英、 ンウ )等が適用される。 はその 状が 形に限られるものでな 、 形など 他の形状でもよ 。  Not only that, glass for displays, ceramics for heads, or discs used in the location or (English, English), etc. are applicable. The shape is not limited to a shape, but may be another shape such as a shape.
0083 Xとしては、 スク Pとを同期 動して スク の タ ンを走 査 するステップ・アン スキヤン 式の走 (スキヤ ングステッ ) の他に、 スク Pとを 止した状態で スク の タ ンを一括 、 Pを順次ステップ 動さ るステップ・アンド・ ピ ト 式の投 (ステッ にも適用することができる。 The 008 X is a step-and-skin-type running (scanning step) that synchronizes with the disk P and scans the disk's turn, as well as a batch of disk turns with the disk P stopped. , P can also be applied to step-and-pit type throws in which P is sequentially stepped.
0084 また、露光 Xとしては、 タ ン Pとをほぼ 止した状態で第 を投影 学系( えば 8 率で反射 子を含まな 投 影 学系)を用 て P上に一括 する方式の 置にも適用できる。この 合、更にその後に、 2 タ ン Pとをほぼ 止した状態で第2 タ ンの をその 学系を用 て、 タ ン 部分的に重ねて P上に一括 するスティッ 式の 置にも適用できる。また、スティッ 式の露 としては、 P上で少な とも2 の タ ンを部分的に重ねて転写し、 Pを順次移動さ るステップ・アン スティッ 式の露 置にも適用できる。 0085 態における 、投影 学系に対してその ( )に ス クが配置され、その ( )に が配置されるものとしたが、例えば国際公開 2 4 9 956 ン ( 国公開2 6 23 88 )に開示さ れて るよ に、鉛直方向( )に関して投影 学系( 数の ジ ) を上下 転さ て設け、その ( )に を配置し、その ( )に スクを配置するよ にしてもよ 。 Also, for exposure X, the first exposure should be performed with tan P almost stopped. Can also be applied to a system in which P is packaged on P by using a projection system (for example, a projection system at a rate of 8 and no reflector). In this case, further, after that, with the 2 tan P almost stopped, the 2 nd tan is also applied to a stick-type device that partially overlaps the tan by using its academic system. it can. In addition, as a stick type dew, it is also applicable to a step-and-stuck type dew where P is transferred at least by partially overlapping at least two tans. In the situation of 008, a skull is placed in () and a is placed in () for the projection system. For example, in International Publication 2 4 9 956 (national publication 2 6 23 88) As disclosed, it is also possible to arrange the projection system (number j) up and down with respect to the vertical direction (), place () in it, and place the disc in ().
0086 態では ステムを用 て スクステ ジ ステ ジの 報を計測するものとしたが、これに限らず、例えば ステ ジの 面に設けら れるスケ ( )を検出する ン ダ ステムを用 てもよ 。この 合、 干渉 ステム ン ダ ステムの 方を備える イ ッド ステムとし、干渉 ステムの 果を用 て ン ダ ステムの 果の (キヤ ョン)を ことが好ま 。また、干渉 ステム ン ダ ステムとを切り替え て る、ある はその 方を用 て、 ステ ジの 御を行 にしてもよ 0087 態では、複数の ( 学部 )を有する 学系を備えた 置を例に挙げて説明してきたが、投影 学系は一 の ( 学部 ) で構成されて てもよ 。また、投影 学系を用 な 置及び 法にも 明を適用することができる。 学系を用 な 場合であ ても、露光 スク又は ンズなどの 学部 を介して に照射される。 In the 008 state, the stem is used to measure the squeegee stage information, but the present invention is not limited to this. For example, a shunt () provided on the surface of the stage may be used. In this case, it is preferable to use an id stem with an interfering stem under stem, and use the result of the interfering stem for the end of the under stem. In addition, it is possible to control the stage by switching between the interference system and the system, or in that case, in the case of 0087, an example of a system with a school system with multiple (faculties) is used. As explained above, the projection system may consist of one (faculty). It is also possible to apply the concept to the systems and methods that use the projection system. Even when using an academic system, it is irradiated through an undergraduate school such as an exposure screen or lens.
0088 また、 、 63 99 報、特 2 4783 報、特 2 5 5958 報、米国 6 34 7 、米国 6 4 44 、米 6 549 269 、 び米国 6 59 634 、米国 6 2 8 4 7 、 米国 6 262 796号などに開示されて るよ 数の ステ ジを備えた チステ ジ型の露 置にも適用できる。 008, 63 99, Special 2 4783, Special 2 55958, US 6 34 7, US 6 44 44, US 6549 269, and US 6 59 634, US 6 2 8 4 7 and US 6 262 796 are also applicable to chisted type exposures with a number of stages.
0089 更に、 354 報、特 2 645 4 報、米国 6 8 97 963号などに開示されて るよ に、 を保持する ステ ジ 基準 ク が形成された基準部 や各種の センサを した計測ステ ジとを備えた 置にも 明を適用することができる。 Further, as disclosed in 354 report, Japanese Patent No. 2 645 4 report, US 6 8 97 963 etc., a measuring section using a reference part and various sensors formed with a step reference holding The light can also be applied to a device equipped with.
0090 Xの 類としては、 Pに半導体 タ ンを する半導体 子製造 の 置に限られず、 子製造 ディスプ イ製 の 置、 ッド、 (CC )、 イク ン、 S チッ プ、ある は ク 又は スクなどを製造するための 置などにも広 用で きる。 The type of 990 X is not limited to a semiconductor device manufacturing device in which a semiconductor device is used for P, and a device, a pad, a (CC), an ink, an S chip, or a mask or a mask manufactured by a child manufacturing display device. It can also be widely used as a device for manufacturing etc.
0091 なお、上述の 態にお ては、 過性の 上に所定の タ ン(又 は位 タ ン・ タ ン)を形成した スクを用 たが、この スクに 代えて、例えば 6 778 257 報に開示されて るよ に、露光す き タ ンの デ タに基 て タ ン又は反射 タ ン、ある は発光 タ ンを形成する電子 スク( 変成形 スクとも呼ばれ、例えば 像表 示 ( )の 種である (Dg a Mc o m o Devce)などを含 む 用 てもよ 。 In the above-mentioned condition, a disc with a predetermined tan (or a tan tan) formed on the transient was used. Instead of this sk, for example, 6 778 257 was reported. As disclosed in (1), an electronic disc (also referred to as a deformable disc, which forms a tan or a reflection tan or a luminescence tan based on the data of the exposure tan, for example, an image display () It can be used to include (Dg a Mc omo Devce), which is the seed of.
0092 また、例えば、国際公開 2 35 68 ン に開示されて るよ に 、干渉 P上に形成することによ て、 P上にライン・アン スペ ス タ ンを する ( ソグラ ィ ステム)にも 明を適用することができる。 0093 さらに、例えば 2 4 5 985 ( 6 6 3 6 )に 開示されて るよ に 2 の スクの タ ンを、投影 学系を介して 上で合 成し、 回のスキヤン 光によ て 上の ョッ 域をほぼ同時に二重 する 置にも 明を適用することができる。 Further, for example, as disclosed in International Publication No. 2 356 68, by forming on the interference P, a line unsplit pattern is formed on the P (somatic system). Can be applied. In addition, two disc tans, as disclosed in, for example, 2 4 5 985 (6 6 3 6), are synthesized above via the projection system, and are transformed by The light can also be applied to a device that doubles the region at almost the same time.
0094 なお、法令で許容される限りにお て、露光 置などに関する引例の 示を援用し て本文の 載の 部とする。 0095 上のよ に、実施 態の Xは、 素を含む各種サ ステムを 、所定の 械的 度、電気 度、光学的 度を保 よ に、組み立てることで製造 される。これら各種 度を確保するために、この み立ての 後には、各種 学系に ては光学的 度を達成するための 整、各種 に ては機械的 度を 達成するための 整、各種 に ては電気 度を達成するための 整が 行われる。 サ ステム ら 置 の み立て工程は、各種サ ステム 互の、機械的接続、電気回路の 続、気圧 路の が含まれる。こ の サ ステム ら 置 の み立て工程の前に、 サ ステム の み立て工程があることは までもな 。 サ ステムの 置 の み立 て工程が終了したら、総合 整が行われ、露光 体としての 度が確保さ れる。なお、露光 置の 温度およびク ン が管理されたク ン ム で ことが望まし 。 To the extent permitted by law, the references in the text relating to exposure equipment, etc., are used as part of the main text. As described above, the X in the embodiment is manufactured by assembling various systems including elements while maintaining the predetermined mechanical degree, electric degree, and optical degree. In order to secure these various degrees, after this adjustment, various types of systems are used to achieve optical degrees, various types are used to achieve mechanical degrees, and various types are used. Adjustments are made to achieve the degree of electricity. The stand-up process from the system includes mechanical connections, electrical circuit connections, and air pressure connections between the various systems. It goes without saying that there is a system stand-up process before this system stand-up process. When the process of setting up the system is completed, the overall adjustment is performed and the degree as an exposed body is secured. It is desirable that the exposure temperature and kun are controlled.
0096 導体 イス等の イク イスは、 7に示すよ に、 イク イスの ・ 計を〒 ステッ 2 、この ステップに基 た スク( ク )を製 作するステッ 2 2、 イスの である を製造するステッ 2 3、前述した 実施 態の Xにより スクの タ ンを に露光する工程、露光した を現像する工程、現像した の (キ ア) チング 程などの プ セスを含むステッ 2 4、 イス み立てステップ(ダイ ング 程、ボンデ ィング 程、 ッケ ジ 程を含む)2 5、検査ステッ 2 6等を経て 造される。 As shown in Fig. 7, the equus such as the conductor chair is made up of the following steps: a step 2 for manufacturing the equipment, a step 2 2 for manufacturing a disk based on this step, and a step for manufacturing the chair. 2 3, the step of exposing the disk tank by X in the above-mentioned embodiment, the step of developing the exposed part, the step including the process such as the (key) etching process of the developed part 2 4, the standing step (Including dicing process, bonding process, cage process) 25, inspection step 26, etc.

Claims

求の Wanted
する 置にお て、  In the
前記 を保持する保持部 、  A holding unit for holding the
前記 持部材 らの の 出光を受 、その 果に基 て、前記 持 部 の 度情報を光学的に取得する検出 、を備えた 。 A detector is provided, which receives the light emitted from the holding member and optically acquires the degree information of the holding portion based on the result.
2 持部 の な とも一部は前記 の 出光に対して 明性を有し、 2 A part of the holding part has the brightness for the above-mentioned light emission,
前記 、前記 持部 の な とも一部を通過した前記 の 出光を 受 、その 果に基 て、前記 度情報を取得する 載の The above-mentioned light is received after passing through a part of the holding part, and the degree information is acquired based on the result.
3 、前記 の 出光を前記 持部 に照射するとともに、前記 持部 の な とも一部を通過した前記 の 出光を受 する 2 載の 。3, irradiating the above-mentioned emitted light to the holding portion, and receiving the above-mentioned emitted light that has passed through a part of the holding portion.
4 、前記 果に基 て、前記 持部 の の 出光 に対する 折率 報を求め、前記 折率 報に基 て、前記 持部 の 度情 報を取得する 2又は3 載の 。4. Based on the above results, obtain the information about the light output of the holding unit, and based on the above information, obtain the information about the holding unit 2 or 3.
5 、前記 果に基 て、前記 持部 の 度での 折率に対する 折率 量を求め、前記 折率 量に基 て、前記 持部 の 度情報を取得する 4 載の 。5) Based on the above results, obtain the folding rate with respect to the folding rate of each holding section, and based on the folding rate, obtain the degree information of the holding section 4.
6 持部 の 度変 折率 との 係を予 記憶した 憶装 置をさらに備え、前記 、前記 果と前記 憶装置の 報と に基 て、前記 持部 の 度情報を取得する 5 載の 。7 持部 の な とも一部を通過した前記 の 出光を反射する 6) A device is further provided for storing the relationship between the degree of variation of the holding portion and the degree of variation of the holding portion, and the degree information of the holding portion is acquired based on the results and the information of the storage device. 7 Reflects the emitted light that has passed through a part of the holding part.
を備え、  Equipped with
前記 、前記 で反射した前記 の 出光の 果に基 て、前記 度情報を取得する 2~6の ずれ 載の 。8 、所定の 前記 との 対位置 係を計測 能な第 を含み、前記 の 果に基 て、前記 度情報を取 得する 7 載の 。 9 の 果に基 て、前記 持部 の 置を制御する 8 載の 。 Based on the output of the light reflected by the above, the information of the degree is acquired in 2 to 6 deviations. 8) Includes a number that can measure the relative position with respect to the above, and obtains the degree information based on the above 7). Based on the results of 9, there are 8 controls that control the position of the holding part.
0 持部 の 部に前記 と背中合わ に形成された 2 を用 て前記 持部 の 報を取得する 2 計を更に備え、  0 further comprises a total of 2 for obtaining information of the holding part by using 2 formed back to back in the part of the holding part,
前記 計 らの の 出光は、前記 持部 を介して、前記 に 入 、  The light emitted from the above enters the above through the holding section,
前記 2 計 らの 2の 出光は、前記 持部 を介さずに、前記 2 に入 する 8 載の 。  The two emitted lights from the above two totals enter the above two without going through the holding part.
、前記 め方向 ら前記 の 出光を照射する 、前記 で反射した前記 出光を受 する を有する とを備え、前記 での 置に基 て、前記 度情報を取得する 7 載の 。 And irradiating the emitted light from the direction, and receiving the emitted light reflected by the direction, and acquiring the degree information based on the above-mentioned position.
2 持部 の 数の 置 らの の 出光をそれぞれ 、その  2 The light output from each of the
果に基 て、前記 持部 の 度分布を求める ~ の ずれ 載の 。 Determining the degree distribution of the holding part based on the result.
3 得した温度情報に基 て、所定の 理を実行する 理装置をさらに備え た ~ 2の ずれ 載の 。 3 Based on the obtained temperature information, it further comprises a processing device that executes a predetermined processing.
4 理装置は、前記 得した温度情報に基 て、前記 板及び 持部 の な とも一方の 度を調整する 度調整 置を含む 3 載の 。 4 The processing device includes three degrees including a degree adjusting device that adjusts the degree of one of the plate and the holding part based on the obtained temperature information.
5 タ ン像を前記 上に投影する 学系を備え、  It is equipped with an academic system that projects a 5-tan image onto the above.
前記 理装置は、前記 得した温度情報に基 て、前記 学系の 態を調整する結像 置を含む 3又は 4 載の 。 The physical device has 3 or 4 units including an imaging unit for adjusting the state of the scientific system based on the obtained temperature information.
6 持部 の 度と前記 持部 に保持された前記 上の所 域の  6 The degree of holding section and the above-mentioned area held by the holding section.
との 係を予 記憶した 2 憶装置をさらに備え、  And a memory device that remembers the relationship with
前記 、前記 得した温度情報と前記 2 憶装置の 報とに基 て、前記 態を調整する 5 載の露 。 Based on the obtained temperature information and the information of the storage device, the above 5 dew conditions are adjusted.
7 を保持した前記 持部 を移動する移動 置を備え、 理装置は、前記 得した温度情報に基 て、前記 置の 件 を調整する移動調整 置を含む 3~ 6の ずれ 載の 。 8 持部 の 度情報と前記 持部 に保持された前記 上の ョッ 域 の 置の との 係を予 記憶した 3 憶装置を備え、 A moving unit for moving the holding unit holding 7; The processing device has 3 to 6 shifts including a movement adjustment device that adjusts the conditions of the device based on the obtained temperature information. 8 A storage device for storing the relationship between the degree information of the holding section and the position of the upper holding area held in the holding section in advance is provided,
前記 動調整 、前記 得した温度情報と前記 3 憶装置の 報とに 基 て、前記 上の ョッ 域を するときの 持部 の 置を調整 する 7 載の 。 7. The dynamic adjustment, based on the obtained temperature information and the information of the storage device, the position of the holding part when adjusting the upper jaw is adjusted.
9 理装置の 理状況を報知する報知 置を備えた 3~ 8の ずれ 載の 。 9 3 to 8 shifts equipped with a notification device to notify the physical condition of the processing device.
20 ~ 9の ずれ 載の 置を用 て するこ とと、 Using the offset position of 20-9,
前記 光された を現像することと、  Developing the illuminated light,
を含む イス製 。 Made of chair including.
2 を保持するための 持部 の 出光を照射することと、 Irradiating the light emitted from the holding part for holding 2;
前記 持部 の な とも一部を通過した前記 の 出光を受 することと、 の 果に基 て、前記 持部 の 度情報を取得することとを含む 度 計測 。 A measurement that includes receiving the light emitted from the holding section that has passed through a part of the holding section and acquiring information on the degree of the holding section based on the result.
22 する 法であ て、 22
前記 を保持するための 持部 の な とも一部を通過した の 出光を 受 、  It receives the light emitted from a part of the holding part for holding the
の 果に基 て、前記 持部 の 度情報を取得し、 前記 持部 に保持された前記 する 。 Based on the result of the above, the degree information of the holding section is acquired, and the information held by the holding section is obtained.
23 22の 法を用 て することと、 23 Using the law of 22 and
前記 光された を現像することとを含む イス製 。  A chair including developing the exposed light.
PCT/JP2006/324361 2005-12-06 2006-12-06 Temperature measuring method, exposure method, exposure apparatus and method for manufacturing device WO2007066687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007549152A JPWO2007066687A1 (en) 2005-12-06 2006-12-06 Temperature measurement method, exposure method, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-351659 2005-12-06
JP2005351659 2005-12-06

Publications (1)

Publication Number Publication Date
WO2007066687A1 true WO2007066687A1 (en) 2007-06-14

Family

ID=38122833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324361 WO2007066687A1 (en) 2005-12-06 2006-12-06 Temperature measuring method, exposure method, exposure apparatus and method for manufacturing device

Country Status (2)

Country Link
JP (1) JPWO2007066687A1 (en)
WO (1) WO2007066687A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145232A (en) * 2010-01-16 2011-07-28 Canon Inc Measuring apparatus and exposure device
WO2013175590A1 (en) * 2012-05-23 2013-11-28 株式会社ニッケ機械製作所 Measurement device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258141A (en) * 1985-09-09 1987-03-13 Sharp Corp Method for measuring temperature of substrate
JPH10142078A (en) * 1996-11-11 1998-05-29 Hamamatsu Photonics Kk Non-contact temperature measuring device
JPH10189424A (en) * 1996-12-27 1998-07-21 Nikon Corp Aligner
JP2004301825A (en) * 2002-12-10 2004-10-28 Nikon Corp Surface position detection device, exposure method and method for manufacturing device
JP2006324361A (en) * 2005-05-17 2006-11-30 Ngk Spark Plug Co Ltd Manufacturing method of ceramic laminate
JP7112000B2 (en) * 2017-03-31 2022-08-03 ダイキン工業株式会社 Method for producing fluoropolymer, surfactant for polymerization and use of surfactant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258141A (en) * 1985-09-09 1987-03-13 Sharp Corp Method for measuring temperature of substrate
JPH10142078A (en) * 1996-11-11 1998-05-29 Hamamatsu Photonics Kk Non-contact temperature measuring device
JPH10189424A (en) * 1996-12-27 1998-07-21 Nikon Corp Aligner
JP2004301825A (en) * 2002-12-10 2004-10-28 Nikon Corp Surface position detection device, exposure method and method for manufacturing device
JP2006324361A (en) * 2005-05-17 2006-11-30 Ngk Spark Plug Co Ltd Manufacturing method of ceramic laminate
JP7112000B2 (en) * 2017-03-31 2022-08-03 ダイキン工業株式会社 Method for producing fluoropolymer, surfactant for polymerization and use of surfactant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145232A (en) * 2010-01-16 2011-07-28 Canon Inc Measuring apparatus and exposure device
WO2013175590A1 (en) * 2012-05-23 2013-11-28 株式会社ニッケ機械製作所 Measurement device

Also Published As

Publication number Publication date
JPWO2007066687A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP6297793B2 (en) Optical method and optical measuring device for measuring the angular position of facets of at least one facet mirror for EUV applications
US20190129318A1 (en) Projection exposure system for microlithography with a measurement device
CN104204952B (en) Measure the measuring system of the image quality of EUV camera lenses
US7804603B2 (en) Measurement apparatus and method
TWI382202B (en) Catadioptric optical system for scatterometry
JP5727005B2 (en) Optical system and multifaceted mirror
KR101485192B1 (en) Systems and methods for determining the shape of glass sheets
TW200811609A (en) Surface location survey apparatus, exposure apparatus and fabricating method of device
CN104122761B (en) Equipment for the equipment of microlithography projection exposure and for checking substrate surface
KR100661794B1 (en) Infrared thermal image microscope with blackbody source
TW200921304A (en) Optical position assessment apparatus and method
JPH043008A (en) Method and device for detecting image plane
TW200409904A (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
TWI427433B (en) Measurement apparatus, exposure apparatus, and device fabrication method
TW200413861A (en) Lithographic apparatus and a measurement system
TW200839466A (en) Exposure device
JP4435759B2 (en) Substrate strain measurement
TW201234126A (en) Projection exposure tool for microlithography and method for microlithographic exposure
JP4909480B2 (en) Layer and surface property optical measurement method and apparatus
WO2007066687A1 (en) Temperature measuring method, exposure method, exposure apparatus and method for manufacturing device
TWI422867B (en) Method for arranging an optical module in a measuring apparatus and a measuring apparatus
JP2001281101A (en) Device and method for determining refracting power by spatial resolution
TWI251723B (en) Calibration method for a lithographic apparatus and device manufacturing method
TWI295413B (en) Lithographic apparatus and method to determine beam size and divergence.
JP2006352120A (en) Lithographic device adapted to calibrate imaging system with sensor, method of fabricating device, device fabricated by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007549152

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834116

Country of ref document: EP

Kind code of ref document: A1